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Abstract

A novel method for performing 3-D particle image velocimetry is developed and demon-

strated. The technique is based on light field photography, which uses a dense lenslet array

mounted near a camera sensor to simultaneously sample the spatial and angular distribution

of light entering the camera. Computational algorithms are then used to refocus the image

after it is taken and render a 3-D intensity distribution. This thesis provides an introduction

to the concepts of light field photography and outlines the processing steps and algorithms

required to obtain a 3-D velocity field. To support this, a ray-tracing simulator is used to

simulate light field images and rendering codes are generated to form 3-D particle volumes

which can be used for particle image velocimetry (PIV) interrogation. The simulation and

rendering code is tested with uniform displacement fields and a spherical vortex, and mea-

surement errors are quantified. It is shown that light field imaging is a feasible method

for performing 3-D velocimetry with a single camera, and steps are outlined for further

development and testing.
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Chapter 1

Introduction

The visualization of fluid motion has served both scientific and artistic purposes for cen-

turies, dating back to the early sketches of Leonardo da Vinci. His work in the field included

numerous illustrations of complex flow patterns, such as the turbulent flow downstream of

a flat plate immersed in fluid. These observations represented a new approach to the study

of fluids which emphasized the importance of visualization for understanding the complex

interactions, patterns, and topology of flows. A resurgence of interest in flow visualizations

occurred in the late nineteenth century due to the increased use of hydraulic systems in in-

dustry and the culmination of theoretical studies occurring in the field of hydrodynamics. A

number of landmark experiments that formed the foundation of modern fluid dynamics were

performed by pioneers such as Osborne Reynolds, Geoffery Taylor, and Ludwig Prandtl. In

particular, the pipe flow experiments of Reynolds formed the foundation for the study of

turbulence and established the Reynolds number as an important dimensionless parameter

to characterize fluid behavior.

Since the time of these early experiments, the study of fluid mechanics has allowed re-

markable technological progress to occur. The advances span a diverse range of fields, ranging

from aeronautics and hydraulics to biology and medical research. These applications have

drastically increased the need to not only visualize the fluid motion, but provide meaningful

measurements which can be used to improve the design of these devices. Fortunately, a num-

ber of advances have also occurred in measurement technology which have allowed scientists

to investigate a large gamut of flow regimes, characterized not only by velocity (subsonic,

supersonic, and hypersonic), but also by a variety of other factors (chemically reacting flows,

magnetohydrodynamic flows, etc.).
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Many of the advancements in fluid mechanics have occurred not only due to the in-

creasing accuracy and capability of measurement tools, but also from a more fundamental

approach to research involving the understanding of various aspects of fluid mechanics and,

in particular, turbulence. Various advancements have been made in the field over the years,

notably the seminal works by Kolmogorov in 1941 [4], which outlined the range of spatial

and temporal scales that universally pervade all turbulent flows, and Townsend in 1956 [5]

which first brought to light the importance of coherent structures in turbulent flows. Both of

these ideas have been expanded and studied in incredible detail; however, these fundamental

ideas pose unique challenges to the development of diagnostics and in some ways provide a

goal for all techniques to achieve. In this regard, the ultimate goal for diagnostic techniques

is to resolve the motions contained at the smallest scales of the flow while also being able

to measure the topology and interactions of the largest flow scales. While the focus of this

thesis does not concern fundamental turbulence research, the requirements turbulent flows

place on diagnostic methods provides the basic impetus for the current work.

In addition to conducting experiments, many fluid mechanical studies are performed

using theoretical and computational tools. Fluid motion can be fully described by the set

of nonlinear partial differential equations known as the Navier-Stokes equations. The equa-

tions were formalized in the middle of the nineteenth century; however, the complexity of

the equations yielded only a small number of exact solutions that were in most cases not

useful for practicing engineers. Rapid developments in computer technology and numeri-

cal solution methods have allowed these equations to be revisited and applied, establishing

the field of computational fluid dynamics (CFD). Within this field the most rigorous solu-

tion method is known as direct numerical simulation (DNS), where the full range of spatial

and temporal scales of the flow are computed. For specific cases (typically low Reynolds

numbers), DNS is a viable option that provides highly accurate results. However, as the

Reynolds number increases, the resulting number of required calculations rises exponentially

and quickly exceeds the capability of computers to solve in a timely manner. Unfortunately,
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many practical engineering scenarios operate in a high Reynolds number regime, and alter-

native solution methods are required. Typically, the approach is to use lower-order models

to reduce the complexity of the computation, which rely on broad physical assumptions or

tabulated experimental data.

For many scenarios, low-fidelity CFD is used as a powerful tool for engineers and scien-

tists. The heavy use and reliance on computational solutions does not however eliminate the

need for physical experiments. CFD depends on experimental data for validation purposes.

Likewise, CFD is heavily used to optimize designs before testing is conducted, eliminating

expensive additional testing and physical models. Thus, a primary challenge for modern mea-

surement technology is to acquire accurate quantitative data for validation of CFD models,

and to investigate flows that are still difficult to solve numerically, such as turbulent flows,

separated flows, unsteady flows, and more.

The development of lasers and digital charge-coupled device (CCD) cameras within the

last fifty years have transformed fluid measurement experiments. These technologies revo-

lutionized the field by enabling non-intrusive measurements, in contrast to highly intrusive

techniques utilizing hot-wires, pitot probes, tufts, and other simple devices. One of the first

optical techniques to be developed was Laser Doppler Anemometry (LDA), which is capa-

ble of a point (1-D) measurement of all three velocity components using the interference of

multiple laser beams to track the motion of particle tracers. As CCD technology developed

further, planar 2-D techniques were developed, including particle image velocimetry (PIV)

[6, 7, 3], planar Doppler velocimetry (PDV) [6, 8, 9], planar laser-induced fluorescence (PLIF)

[10, 11, 12], and molecular tagging velocimetry (MTV) [13, 14]. In these techniques, lasers

are used to create a high-intensity planar light source that is either scattered by particles

present in the flow field or is absorbed by molecules within the flow which subsequently fluo-

resce. A CCD camera captures the resulting distribution of signal within the plane. A major

advantage of these planar techniques is their ability to acquire data at multiple spatial loca-

tions simultaneously which enables measurements of derived quantities that were previously
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inaccessible. For example, spatial derivatives of a 2-D velocity field yield a component of

the vorticity and strain fields, which often are more useful quantities for fundamental fluids

studies than the velocity field itself [15].

There are however substantial limitations to the utility of planar measurements. The

majority of practical flows encountered are characterized by strongly three-dimensional fea-

tures, making the selection of a planar measurement location difficult or the basic premise of

a planar measurement inherently ill-posed. To extract meaningful 3-D information from the

flow, multiple experiments are conducted at various planes of interest. This can considerably

increase the duration and expense of a testing campaign. Another notable limitation is the

inability to calculate the full set of 3-D spatial and temporal derivatives. These drawbacks

have spurred the development of three-dimensional, three-component measurement tech-

niques such as tomographic PIV, holographic PIV, and others. Each of these techniques,

while powerful, have unique experimental restrictions and difficulties which prevent their

more widespread use and will be considered herein.

The previous discussions illustrate the major challenge of modern laser diagnostics;

namely, no diagnostic technique currently exists which is capable of accurately resolving the

3-D motion and properties of the entire range of scales in flows of practical interest. The

techniques that have already been developed are capable of acquiring 3-D, 3-C velocity data

but with multiple drawbacks and often complex setups. The subject of this thesis is the

development of a novel three-dimensional measurement technique using concepts from light

field rendering and photography to approach or exceed some of the capabilities of earlier

3-D, three-component (3-C) velocimetry techniques.

Chapter 2 provides additional background into existing three-dimensional measurement

techniques and describes limitations of these approaches. Particular attention is given to

tomographic and synthetic aperture PIV which have numerous parallels to the technique

being developed. Chapter 3 introduces the concepts and ideas behind light field photography.

This includes a review of earlier efforts in both photography and microscopy. Chapter 4
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describes the development of both a simplified 1-D light field simulator, and a complete 2-D

simulator for light fields. In this chapter, some of the basic shortcomings of the camera

will be addressed and a detailed parametric study is performed to provide insight into the

optimal experimental configuration. This includes variables such as particle seed density,

lenslet sizing, focal plane spacing, etc. In Chapter 5, the light field rendering codes are

discussed, including computational refocusing and volume reconstruction, which allow raw

light field images to be converted into volumetric intensity data. Chapter 6 discusses the

development of volumetric PIV algorithms which are used to perform the correlation on

volumetric data. This first begins with a validation of the approach on 2-D images, then is

extended to 3-D volumes. Lastly, Chapter 7 provides concluding remarks.
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Chapter 2

Three-Dimensional Flow Measurement Background

In developing a new diagnostic technique, the capabilities of existing measurement tech-

niques must be known and used for comparison throughout development. This chapter

presents an overview of the state-of-the-art in three-dimensional (3-D), three-component (3-

C) velocimetry techniques.

2.1 Scanning PIV

Scanning PIV is an intuitive extension of traditional PIV, which makes use of high-

repetition-rate lasers and cameras to record a number of particle image pairs throughout a

short duration scan, such that the motion of the flow is effectively frozen during the scan.

Galvanometric scanning mirrors or rotating mirrors are used to perform the scanning by

displacing the individual laser sheets so they are located at various depths with respect to

the camera. Traditional PIV algorithms are then used on each particle image pair to yield

a velocity field for each slice of the volume.

The technique takes advantage of the mature processing techniques developed for tradi-

tional PIV, and of all 3-D PIV techniques, has the highest in-plane accuracy in determining

velocity. By using a stereoscopic imaging arrangement, the third component of velocity can

be obtained for each planar slice, making the technique a true 3-D, 3-C measurement which

has accuracy equal to traditional stereoscopic PIV.

The primary disadvantage of the technique is that the timescale of the scanning and

imaging is often orders of magnitude longer than the characteristic timescales of most flows

encountered in practice. Even with kHz-rate laser and camera systems, scanning PIV is

typically only applied in water tunnels where flow velocities are on the order of centimeters
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per second. Additionally, the cameras must be configured such that the focal depth extends

across the entire depth of the scan, which can reduce the quality of the individual particle

images and lower the signal-to-noise ratio. In 1995, Brucker [16] implemented a system based

on this technique to measure the 3-D transient wake in a spherical cap wake flow in a water

tunnel. In this work, a Reynolds number of 300 was studied, based on a cap radius of 15 mm

and a freestream velocity of 10 cm/s. Each scan required 0.72 seconds for the acquisition of

9 individual planes (a total of 18 images). Another more recent study by Brucker [17] on an

air flow with an average velocity of 5 m/s used a 2 kHz camera to acquire 9 individual planes

for a total of 18 images. As a final example, Zhang et al. [18] used scanning PIV to study

a laminar separation bubble on an airfoil at moderate angles of attack in a water tunnel.

The Reynolds number in these experiments ranged from 20,000 to 60,000, based on a chord

length of 200 mm and a maximum freestream velocity of 0.3 m/s. For all of the examples

above, scanning PIV has provided useful 3-D data; however, the restrictions on flow velocity

are severe enough to prevent the technique from being used for the vast majority of practical

flows.

2.2 Defocusing PIV

In defocusing PIV, particle depth information is recovered by utilizing the natural blur-

ring of the particle with increasing distance from the focal plane of the imaging system. An

example of this effect is shown in Figure 2.1, where light from point A is in focus and results

in a sharp point being formed on the image plane. In contrast, light from point B does not

originate on the focal plane, and thus forms a diffuse point on the image plane. In theory,

this information in itself could recover the particle depth and position. However, typical

particle imaging scenarios are often also low-light scenarios, limiting the signal-to-noise ratio

of the resulting image. Additionally, as the particle density increases, identifying individual

particles becomes increasingly difficult due to substantial image overlap. Finally, even if

these two issues could be resolved, the particle blur is symmetric about the focal plane, such
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Figure 2.1: Schematic of a traditional particle imaging scenario with defocusing. Adapted
from [1].
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Figure 2.2: Schematic of a defocus PIV particle imaging scenario using a double aperture
arrangement. Adapted from [1].

that there exists an ambiguity of whether the particle is a certain distance towards or away

from the camera.

For these reasons, a specialized aperture is used to overcome each of these issues. The

concept was first demonstrated by Willert and Gharib [19] in 1992 and has been continually

refined since its inception. Pereira et al. [1] provides a revised description of the technique.

Essentially, the system can be described through the schematic in Figure 2.2, where a dual

aperture is used to encode depth information.

The defocusing PIV technique uses the image shift caused by the two apertures to

perform a measurement of the depth location of the particle. Note, for a two aperture

configuration, there still exists an ambiguity in depth, as a particle in opposite depth locations

will form the same image on the sensor. Most defocusing PIV implementations utilize a three
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aperture mask which is arranged in the form of a triangle. The ambiguity is removed by

measuring the orientation of the triangle on the resulting image. Besides the triangular

aperture, the concept has been extended by Lin et al. [20] using an annular aperture. The

advantages of this approach are the increased optical efficiency due to the use of a larger

aperture area.

Defocusing PIV has a number of attractive advantages, including a simple experimental

setup and straightforward image processing. These features have led to it being used in a

growing number of experiments with commercial implementations available (the TSI V3V

system being an example). However, defocusing PIV has a number of drawbacks, most

severely the restriction in total particle number density since the processing is more akin to

individual particle tracking velocimetry rather than the image correlation techniques used

in particle image velocimetry. In Pereira and Gharib [21] an error analysis is presented for

determining the maximum particle density. This restriction leads to a limit in the number

of recoverable velocity vectors in each image. For example, the images acquired in [20] result

in approximately 450 vectors per image, in contrast to the thousands of vectors attainable

from a traditional PIV recording. Further studied in [21] is the absolute error in defocusing

PIV measurements, on the order of 1-2% for in-plane motion, and as much as 10% for out-

of-plane motion. With these restrictions and errors, defocusing PIV is unsuitable for a large

number of fundamental turbulence studies or CFD validation efforts where highly accurate

data is available; however, it is finding use in general studies in a variety of fields (see Gharib

et al. [22] for examples).

2.3 Tomographic PIV

Tomographic PIV is based on the illumination, recording, and reconstruction of tracer

particles within a 3-D measurement volume. The technique uses several cameras to record

simultaneous views of the illuminated volume which is then reconstructed using optical

tomography algorithms to yield a discretized 3-D intensity field. A pair of 3-D intensity
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Figure 2.3: Schematic of a tomographic PIV experimental setup.

fields are analyzed using 3-D cross-correlation algorithms to calculate the 3-D, 3-C velocity

field within the volume. The technique was originally developed by Elsinga et al. in 2006 [23]

and has since grown and is the focus of intense research into improvements and applications

of the technique.

The use of multiple cameras requires relatively complex mounting and orientation hard-

ware to properly align each field of view. To ensure the focus is uniform across the volume,

each camera lens is aligned in a Scheimpflug configuration where the lens and image planes

are tilted with respect to the object plane residing in the illuminated volume. The particles

are kept in the focal depth of each camera by reducing the aperture (f/#) to increase the

depth of field. A calibration of the viewing angles and field of view is established using a

calibration target placed at several depths throughout the measurement volume. In order for

the reconstruction algorithms to correctly triangulate the particle position, the calibration

must be highly accurate (typically on the order of the particle image size, under 1 mm).

The reconstruction procedure is a complex under-determined inverse problem. The

primary complication is that a single set of views can result from a large number of 3-D

volumes. Procedures to properly determine the unique volume from a set of views are the
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foundation for the field of tomography. A number of procedures exist including algebraic,

Fourier, and back-projection reconstruction; however, for the small number of views and

high spatial frequencies present in particle images, algebraic techniques are typically used.

The first step in these algebraic algorithms is the proper conditioning of each of the

images. In particular, for efficient processing, the image data must be segmented to ensure

a zero-intensity background and portions of finite-intensity which define the individual par-

ticle images. This process may be quite complex due to the nature of the particle images,

which themselves constitute a range of intensities. These images are used as inputs to the

multiplicative algebraic reconstruction technique (MART) algorithm, which uses iterative

techniques to determine the intensity of the reconstructed volumetric pixels, or voxels. The

advantage of this pixel-by-pixel reconstruction technique is that it avoids the need to identify

individual particles and naturally takes into account the intensity distribution of the images.

As alluded to earlier, the reconstruction is not always unambiguous, which leads to the

generation of “ghost particles” which can reduce the quality of the resulting 3-D intensity

field. The conceptual reasoning behind the generation of ghost particles is shown in Figure

2.4. In this case, both cameras are capturing an image consisting of two separate particle

images. However, due to the ambiguity introduced along the line of sight of each camera, the

reconstruction process is unable to precisely determine the actual depth of the particle, and

thus accumulates intensity at the voxels corresponding to both the actual particle position

and the ghost particle position. To understand why this is a problem, consider the case

of a pair of particle images where the particle images have shifted between exposures. In

this case, if the actual particle displacement is outward, the ghost particles will also be

displaced outward, regardless of if the velocity field indicates another value. Additionally,

the magnitude of the ghost particle displacement is not set by the local value of the velocity

at the ghost particle location, but is a function of the velocity at the actual particle position

and the viewing angles of each camera. The issue with ghost particles can be addressed

by introducing additional views to the tomographic PIV setup, which substantially removes
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Figure 2.4: Demonstration of ghost particle formation and displacement.

the ambiguity that exists in a two or three camera setup, but increases optomechanical

complexity and system cost.

In Elsinga et al. [23], a parametric study was performed using a reduced-dimensionality

model (1-D slices reconstructing a 2-D volume), where parameters such as number of MART

iterations, number of cameras, viewing directions, particle image density, calibration accu-

racy, and image noise were varied. For their assessment, the cameras were placed at optical

infinity so that magnification, viewing direction, and focal depth were constant across the

field of view. They concluded that accurate volumes could be reconstructed by as few as

three cameras, however both the quality of the reconstruction and the achievable particle

seeding density increase by adding more cameras. The viewing angles were also varied to

optimize the reconstruction; an angle of 30 degrees was found optimal for reducing the num-

ber of “ghost particles,” as described above. At large viewing angles, the line-of-sight from

each camera increases to the point where more artifacts are present in the reconstructions.

The last trade study investigated the effect of calibration inaccuracies and found that a

calibration error of 1 pixel could result in as much as a 50% decrease in reconstruction accu-

racy. This is a significant finding that places stringent requirements on the optomechanical

setup for the cameras. In practice, typical calibration errors can be reduced to around 0.2
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pixels through self-calibration procedures, resulting in a negligible effect on reconstruction

performance. These errors have been explored more recently in Elsinga et al. [24].

Tomographic PIV has been applied perhaps to a broader range of flows than any other

3-D velocimetry technique. In Humble et al. [25], the technique was used to elucidate the

structure of a turbulent boundary layer/shock wave interaction. This study used the unique

aspects of 3-D, 3-C data to draw connections from supersonic boundary layers to the more

familiar structures, such as hairpin vortices and streamwise-elongated regions of low-speed

flow, that are found in incompressible boundary layers. The low-frequency motion of the

shock wave impinging on the boundary layer was found to have a direct connection to the

motion of the elongated regions of velocity.

Another example by Scarano and Poelma [26] investigated the vorticity field in the

wake of a cylinder at Reynolds numbers of 180, 360, 540, 1080, and 5540. This range of

Reynolds numbers allowed the transitional behavior of the flow to be studied in great detail.

In particular at Re = 180, regular shedding occurred, which slowly began developing counter-

rotative stream-wise vortex pairs at Re > 500. Between these two Reynolds numbers, both

the regular shedding and counter-rotating vortex pairs coexist. At the turbulent Reynolds

number of 5540, a large increase in the range of flow scales was observed as well as the

development of a distinct separated shear layer.

One of the more recent applications of the technique is for measuring the aero-acoustic

field of basic shapes by using high-repetition rate lasers and cameras. Violato et al. [27]

performed an experiment using a 5 kHz tomographic-PIV system to measure the 3D velocity

field near the leading edge of a standard NACA 0012 airfoil which was positioned in the

wake of a cylindrical rod. In this work, an analysis was performed of various pressure field

integration methods to reduce errors in the calculation, which are critical to ensure the

accurate sound field prediction with various acoustic analogies. It should be mentioned

that this work represents a relatively new field that is receiving considerable interest for the
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predicted capability of measuring the aeroacoustic properties of complex shapes and to help

validate computational aeroacoustic models.

2.4 Holographic PIV

Holographic PIV (HPIV) encompasses a variety of experimental techniques which use

the interference of coherent light scattered by a particle and a reference beam to encode

information of the amplitude and phase of the scattered light incident on a sensor plane.

This encoded information, known as a hologram, can then be used to reconstruct the original

intensity field by illuminating the hologram with the original reference beam via optical

methods or digital approximations. This intensity field is interrogated using cross-correlation

techniques to yield a velocity field. By using holography instead of traditional imaging, this

class of methods overcomes one of the primary limitations in most 3-D PIV schemes, namely

the limited focal depth of the imaging lenses used by individual cameras. The two primary

methods used in modern holographic PIV are off-axis holography and in-line holography,

both of which will be discussed here.

Off-axis holography uses separate beams to provide the object and reference waves. This

setup is used to avoid speckle noise from being generated from interference of the two waves

within the scattering medium, which would occur if they were both propagated through the

medium. A simplified schematic of this arrangement is provided in Figure 2.5. An actual

off-axis experiment is a highly complex optical system comprising numerous elements, and

the reader is referred to an example schematic in Sheng et al. [28] for a more complete

presentation. For the recording, an object beam is directed through the particle field, which

results in particle scattering normal to the beam direction. Simultaneously, a reference beam

enters at an oblique angle to the setup, and the combination of scattered object light and the

reference beam (i.e., the interference pattern/hologram) is recorded onto a holographic film

plate. For the purposes of reconstruction, a conjugate reference beam is directed onto the

developed holographic film (a transparency consisting of fine fringe patterns). The resulting
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Figure 2.5: Schematic of an off-axis holographic capture and reconstruction. Adapted from
[2].

wave transmitted through the film forms a stationary intensity field in real space which

represents the original 3-D volume. Using a set of cameras with shallow depths of field,

individual planes of this stationary volume can be captured and interrogated with typical

PIV algorithms.

In-line holography is another approach that provides some unique advantages for particle

imaging. Perhaps the largest of these is the use of forward scattered light, which is orders

of magnitude brighter than scattering oriented normal to the beam direction. Additionally,

the optical setup of such systems is much simpler because the residual light does not need

to be separated and recombined at a different location. A schematic of such a setup is given

in Figure 2.6. The in-line configuration also provides a relatively easy extension to apply

CCD and CMOS sensors, creating a separate class of experiments known as digital in-line

holography (DiH). The complexity of such setups shifts from the optical setup to image

post-processing, which involves the use of simulated reference beams. Further discussion of

these topics is beyond the scope of this thesis but is given an excellent treatment by Arroyo

and Hinsch [29].

Critical to all holographic setups are specialized requirements on lasers and recording

media. In both off-axis and in-line holographic setups, injection-seeded Nd:YAG lasers or

Ruby lasers must be used due to the requirement of a long (> 1 meter) coherence length. This
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Figure 2.6: Schematic of a digital in-line holographic capture and reconstruction.

coherence requirement is necessary due to the use of interference to generate the hologram.

To perform the recording, off-axis holography requires photographic plates to be used due

to narrow holographic fringe spacing, given by Equation 2.1:

df =
λ

2 sinα
(2.1)

where df is the fringe spacing, λ is the wavelength of laser light being used (typically 532

nm or other visible wavelengths), and α is the half-angle between the scattered object wave

and the reference wave. For the case of off-axis holography, the object wave arrives at the

holographic plate at a normal angle and the reference beam arrives at an angle to the plate.

For example, consider the half angle α between the beams to be 22.5 degrees. The fringe

spacing for this case would be approximately 0.695 microns, or equivalently 1440 lines/mm,

a resolution which can only be achieved using holographic film. This precludes the use of

digital cameras for direct sampling of the hologram in an off-axis setting.

A variety of issues degrade the quality of HPIV results. The first class of issues involves

the reconstruction itself. In holography, the object wave of a particle is typically assumed

to be spherical; however, due to Mie scattering theory, this wave is a complex shape which
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can distort the reconstructed particle. Another issue is the presence of substantial speckle

noise which lowers the overall signal-to-noise ratio of particle images. This effect is of greater

concern for in-line holographic systems because the reference beam is propagated through

the volume along with the scattered object beam. Noise can also be introduced through

impurities in the scattering medium, such as temperature variations and window blemishes.

Because holography requires coherent imaging, these effects are much more severe than in

normal imaging conditions. The combination of these factors increases the complexity of

the correlation process. In particular, the speckle noise in an HPIV recording often prevents

traditional image-based correlation methods from being used. Instead, single particle iden-

tification and correlation are implemented, which set limits on particle number density. A

more comprehensive outline of these error sources is given in Meng et al. [2]

In light of these issues, it may seem that Holographic PIV is too complicated and

error-prone to be used for flow measurements. However, many impressive results have been

obtained with all holographic approaches. Svizher and Cohen [30] used a hybrid in-line and

off-axis HPIV system to study the physics of hairpin vortices in a 40 x 30 x 30 mm3 volume

with great detail. HPIV has also been useful for fundamental turbulence studies, such as

in Tao et al. [31], which investigated the alignment of vorticity and strain rate tensors in

high Reynolds number turbulence. In this work, a volume of 46.5 x 45.1 x 44.5 mm3 was

used. As a final example, Sheng et al. [28] used holographic microscopy to perform near-wall

measurements of turbulent shear stress and velocity in boundary layers within an exceedingly

small measurement volume of 1.5 mm3. One advantage of using holography for extreme near-

wall measurements is the robustness of the technique in regards to interferences (traditional

PIV by comparison fares poorly in these cases, due to reflections at the interface). This

listing of experiments is only a few out of numerous publications about HPIV published in

recent years. For a more comprehensive listing on modern experiments, Meng et al. [2]

provides a good starting point.
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2.5 Synthetic Aperture PIV

Synthetic aperture PIV (SAPIV) is the most recent development in 3-D PIV techniques

that makes use of similar light field rendering concepts described in this work, and thus is

described in detail here. The technique uses a large camera array (eight or more cameras)

to capture multiple views of the measurement volume simultaneously. Methods from light

field rendering are used to generate digitally refocused planes at various depths within the

measurement volume. Using reconstruction procedures, it is possible to determine a pair of

3-D intensity fields which are used as inputs for volumetric PIV through cross-correlation.

The technique has just recently been developed by Belden et al. [32] and represents the

newest 3-D PIV technique developed.

The design of an SAPIV experiment is in many ways similar to a tomographic PIV

experiment. In each, cameras are individually positioned and adjusted to focus on a similar

field of view through the use of mounting hardware and lenses operated in a Scheimpflug

(tilted lens) condition. Also, the aperture of each camera must be adjusted so that the

measurement volume is contained within the entire focal depth of each camera. The primary

differences from a tomo-PIV setup are the larger number of cameras used and the radically

different reconstruction algorithms. For SAPIV, the map-shift-average algorithm is used to

construct a synthetically refocused image from the individual views by projecting each view

onto a desired focal surface. In the resulting image, points that lie on the focal surface are

sharp, whereas points off of the surface are blurred out. This algorithm is described for

general cases by Vaish et al [33], and is briefly explained here.

The process of projecting individual views onto a desired focal surface is known as

computing the homography of the image, which depends on the camera parameters and the

focal plane (i.e., for each desired focal plane, a new homography must be computed). The

homography is given as a mapping shown in Equation 2.2.
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For the implementation in Belden et al [32], two assumptions were made to simplify the

calculation of the homography at various focal planes. First, planar focal planes are used,

and secondly, this focal plane is aligned with the center of projection of each camera. The

assumption that the centers of projection of the cameras are collinear and parallel is possibly

an invalid assumption for real experiments, and represents an improvement that could be

made in the algorithm. Regardless, these two assumptions allow the analysis to continue,

and simplifies the homography transformation for various focal planes to a coordinate shift,

as shown in Equation 2.3.
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In this equation, x′ and y′ are the coordinates of the reference focal plane (determined

through a calibration procedure), and x′′ and y′′ are the coordinates of the new focal plane.

∆XCi and ∆YCi define the relative location of camera i, and finally µk is a constant that de-

termines the amount by which the focal plane is shifted. By using this equation to transform

the image from each camera and averaging the resulting transformed images, a refocused

image is rendered at the specified focal plane depth. In this image, in-focus particles will

appear sharp and bright, and out-of-focus particles will appear blurred and relatively dark.

Through a simple thresholding procedure (considered in detail later in this thesis), the parti-

cle images can be extracted and used to build slices of a three-dimensional intensity volume.

A pair of these volumes are then used in a 3-D cross-correlation to determine the 3-D, 3-C

displacement.
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In Belden et al. [32], a parametric study was performed to analyze the effect of the

measurement volume size, particle seeding density, mapping function error, and camera ar-

rangement. For all cases, a 5 x 5 camera array is used with an 85 mm focal-length lens, 1000

x 1000 px sensors, and pixel pitch of 10 µm. The reconstruction quality parameter Q, defined

originally by Elsinga et al. [23] for tomographic PIV evaluation, is used to judge the quality

of rendered volumes. In all cases, the reconstruction quality is reduced for greater particle

seeding densities and camera baselines. For example, in a 100 mm3 volume, adequate recon-

structions can be obtained with particle densities up to approximately 0.15 particles/mm3.

For smaller volumes, the acceptable seeding increases dramatically; in a 50 mm3 volume,

particle densities can be as high as 0.6 particles/mm3 to yield similar reconstruction quality.

The number of cameras was also varied to determine optimal performance. In all cases,

using more than 10 cameras allowed adequate reconstructions to be obtained. Diminishing

returns were found for arrays consisting of more than 13 cameras. Finally, mapping errors

were analyzed, and were determined to be negligible due to self-calibration procedures that

can reduce the mapping error to less than 0.1 pixels.

A sample experiment was undertaken using a set of 9 computer vision cameras imaging

a volume of 50 x 50 x 10 mm3 containing a small-scale repeatable vortex ring generated

by a piston apparatus. The seeding density for the experiment was approximately 0.026

particles/pixel, or equivalently 0.23 particles/mm3. It should be noted that this density is

significantly lower than simulations indicated would yield acceptable reconstruction quality.

Using this setup, adequate measurements of the vortex ring were made that approximately

match results obtained from 2D slices using traditional PIV.

2.6 Summary and Comparison

The previous sections presented a variety of current experimental techniques for per-

forming 3-D, 3-C PIV. Each technique has unique strengths and weaknesses, and no single

technique is capable of performing measurements for all experimental conditions. This in
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some ways is a testament to the difficulty of acquiring 3-D data. In this section, comparisons

will be made between the aforementioned techniques to highlight their utility and shortcom-

ings. In this comparison, scanning PIV will not be considered due to its highly limited

applicability to low-speed flows. Additionally, the processing for scanning PIV is nearly

identical to planar stereoscopic PIV, for which there are numerous articles in the literature

describing processing accuracy and capabilities.

The first criteria to be compared is the number of cameras used in the technique. The

cost and complexity of the technique are directly tied to the number of cameras required.

The fewest number of cameras needed is by holographic PIV, which acquires the entire

hologram all at once using digital in-line holography or with holographic film plates. In

each of these cases, only a single camera is required. In sharp contrast to this is synthetic

aperture PIV, which requires upwards of 10 cameras to achieve acceptable reconstruction

accuracy. However, the cameras used for SAPIV need not be high-quality cooled scientific

CCD cameras, but instead can be lower-cost computer vision cameras because the averaging

process used in the reconstruction procedure effectively reduces the impact of camera noise.

Techniques that use a moderate number of cameras are tomo-PIV (typically using 4), and

defocusing PIV (typically using 3).

The second major criteria for comparison is the size of the measurement volume each

technique can handle. The largest volumes are attainable using defocusing PIV (volumes

as large as 100 mm3 have been used). In contrast, most holographic PIV systems work

with very small volumes, due in large part to the limitations raised by the size of optics

available and the resolution requirements for identifying individual particles. Also though,

the smallest volumes are achievable using microscopic holographic PIV. In the moderate

regime are tomographic and synthetic aperture PIV. Due to the sensitivity of the MART

algorithm, tomo-PIV is unsuitable for depths in excess of 20 mm. Synthetic aperture PIV

is capable of viewing larger depths, but with reduced seeding density.
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The next comparison made is on the total number of particles which can effectively be

used in each technique. This metric serves two purposes: first, it helps describe the informa-

tion storage within each data set. In other words, the greater the total number of particle

tracers, the more information is contained regarding the flow field. Secondly, it evaluates

the robustness of the reconstruction algorithms. Currently, tomographic PIV is capable of

operating with the largest number of particles, which could potentially improve as numer-

ous researchers are exploring improvements in MART and other reconstruction algorithms.

Holographic PIV is next, followed closely by defocusing PIV. Surprisingly, synthetic aperture

PIV so far has been demonstrated with the least number of particles. However, SAPIV is a

new technique, and with further development may equal or exceed the particle count of the

other 3-D PIV methods.
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Chapter 3

Introduction to the Concepts of Light Field Rendering and Photography

The concept of light field imaging has evolved over the past 17 years beginning with the

work of Adelson and Bergen [34] and Adelson and Wang [35], and was extended by Ng et

al. [36] for hand-held photography and Levoy et al. [37] for microscopy. These recent works

describe the light field as the complete distribution of light in space which can be described

by a 5-D function, sometimes termed the plenoptic function, where each ray is parameterized

by its position (x, y, z) and angle of propagation (θ, φ). In a transparent medium such as air,

the radiance along a light ray remains constant along all points on its path. This makes one

of the spatial coordinates redundant and reduces the plenoptic function to a 4-D function

which is commonly termed the light field [38]. Conventional photography only captures the

2-D spatial distribution of the 4-D light field because the angular distribution is lost through

integration at the sensor surface.

Assuming the light field can be captured, there are a variety of computational methods

for generating 2-D images or even 3-D models from this 4-D data. These methods fall under

the general name of light field rendering, which was introduced to the computer graphics

community by Levoy and Hanrahan in 1996 [38]. In general, the term refers to methods for

computing new views or perspectives of a scene by extracting a proper 2-D slice from the 4-D

light field. Choosing a particular slice can allow for various unique imaging situations, such

as orthographic projections and crossed-slit projections. Another rendering technique that

is now widely used is synthetic aperture photography, where large arrays of cameras are used

to capture the light field and generate refocused images at multiple depths by extracting the

proper slice from the light field.
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These novel processing techniques are only available if the light field is known; therefore,

any device that can record portions of or the complete 4-D light field is of tremendous value.

As listed in Levoy [39], there are several ways to capture a light field including the mounting

of a camera on a movable gantry and taking a large number of photos at different positions

(used in the original work on light field rendering by Levoy and Hanrahan [38]), the use of a

large static array of cameras (e.g. Wilburn et al. [40]), or the use of a lenslet array mounted

near a camera sensor. This last device, which is termed the plenoptic camera, records the

light field in a single image and is the focus of the development in this work.

3.1 Light Fields and the Plenoptic Concept

Our description of the plenoptic camera begins with the work of Adelson and Wang [35]

who were the first to propose the concept of the plenoptic camera. They used the analogy

of a single-lens stereo view to describe the function of the camera. Figures 3.1 through 3.3

illustrate the fundamental principles of this concept. In Figure 3.1a, a point object is focused

onto an image sensor leading to a bright distinct point on the sensor surface. As the object

is moved closer (Figure 3.1b) and farther away (Figure 3.1c), the image of the spot grows

larger and appears blurred as it is out of focus. At this point, the position of the object is

not apparent from the image. However, if an eccentric aperture is used, the distance of the

object from the lens can be determined. In Figure 3.2a, when the object is in focus, the

light strikes the same point as before and produces a sharp peak at the center of the sensor.

When the object is moved closer to the lens (Fig. 3.2b), the eccentric aperture limits the

angular range of rays traveling to the sensor and the intersection of incident rays and the

image sensor leads to a blurred image of the object that is displaced to the right of center.

Conversely, when the object is moved further away, the rays follow a different path through

the aperture with the image formed in front of the sensor and the resulting rays traveling to

the left of center. Thus, a close-up object leads to lateral displacement on the sensor to the

right whereas a distant object leads to displacement to the left. As such, the precise location
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and depth of the object can be determined by measuring its horizontal displacement and size

on the sensor. This concept is similar to the working principles of defocusing PIV; however,

by making an additional modification, the plenoptic camera is able to provide much more

information regarding the light field.

(a) (b) (c)

Figure 3.1: Schematic of defocusing effect with a full aperture.

The plenoptic camera does not use an eccentric aperture. Instead, a lenslet array is used

to encode the angular information of incident rays onto pixels found behind each lenslet. This

is illustrated in Figure 3.3 with an array of pinholes used in place of lenslets. In this case,

a main lens is used to form an image on the array of pinholes with 3 x 3 pixels located

behind each pinhole. As such, each pinhole represents a macropixel. When an object is

perfectly focused on the center pinhole (Figure 3.3a), all of the rays converge at the pinhole

illuminating all of the pixels found underneath that particular pinhole. When the object is

moved closer (Figure 3.3b), however, a blurred spot is produced that spans several pinholes.

As the angle of rays reaching the pinholes varies depending on the pinhole location, only

certain pixels under each pinhole receive light whereas the others remain dark. This is
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illustrated by the pattern of pixels found beneath each figure. Conversely, when the the

object is moved further away, the angle of light rays incident on each pinhole is different,

and results in a different pattern on the pixel array (Figure 3.3c). As such, by analyzing

the distribution of light under each pinhole, the depth of the object can be determined.

Replacing the array of pinholes with a lenslet array yields an identical result, but greatly

increases the amount of light collected by the sensor.

This concept was demonstrated by Adelson and Wang [34] using a 500 x 500 pixel CCD

camera with microlenses forming 5 x 5 pixel macropixels. As such, the spatial resolution of

the resulting image was 100 x 100 pixels with the 25 pixels under each macropixel used to

record angular information about the image. This illustrates an inherent trade-off associated

with the plenoptic camera between spatial and angular resolution. Nonetheless, Adelson and

Wang were able to use their prototype sensor to demonstrate the concept for rangefinding

where they produced qualitatively accurate depth maps for various images.

(a) (b) (c)

Figure 3.2: Schematic of defocusing effect with the use of an eccentric aperture.

27



(a) (b) (c)

Figure 3.3: Schematic of defocusing effect with the use of an eccentric aperture.

3.2 Recent Developments

Interest in plenoptic cameras picked up recently due to the rapid increases in CCD

resolution which allow both the spatial and angular information to be adequately sampled. In

particular, we note the work of Ng et al. [36] who developed a hand-held version of the camera

using a commercially available 16 megapixel image sensor and a lenslet array consisting of 296

x 296 lenslets. Their focus was on digital photography where the additional information made

available with lightfield imaging enables computational rendering of synthetic photographs,

allowing for focusing of the camera or adjustment of the aperture after the image has been

taken. Also demonstrated in their work is the ability to move the observer across the aperture

of the camera, which produces changes in parallax. This is particularly useful in macro (close-

up) imaging as is often used in the laboratory and wind tunnel environment. The number

of views available is equal to the number of pixels behind each lenslet. In their case, this

corresponded to a total of 196 (14 x 14) different views of the same scene recorded on a single
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sensor. This will prove to be an important point when we consider the idea of tomographic

reconstruction where 196 viewpoints using separate cameras is not practical.

More recently, efforts have been underway by Levoy et al. [37, 41] to develop a lightfield

microscope based on the plenoptic camera. The fundamental principle remains the same;

however, their work focused on three additional challenges associated with microscopic imag-

ing. For one, wave optics and diffraction must be considered in a microscopic environment

whereas geometrical optics was sufficient before. Secondly, a typical microscope objective

functions differently than a normal camera lens. Finally, most objects in microscope images

are partially transparent whereas the previous effort in plenoptic photography by Ng et al.

[36] had focused on scenes with opaque objects. This last point is perhaps the most relevant

to this work, where illuminated particle fields are also partially transparent. This may at

first appear to be a major disadvantage in reconstructing a 3-D volume, because of the con-

tributions from scatterers located at multiple depths. Nevertheless, this imaging scenario can

take advantages of developments in the field of microscopy, where there has been substan-

tial effort at increasing the depth resolution of images acquired of transparent scenes. The

technique of deconvolution microscopy uses knowledge of the point-spread-function (PSF) of

the microscope objective to increase the depth resolution of the resulting image by removing

the contributions from out-of-plane captured light. The processed images exhibit clear and

defined features that are typically hidden by out-of-focus scatterers.

These prior efforts present a logical approach for determining a 3-D intensity field of a

transparent scene, which will be used in this work. First, a focal stack of images is generated

using the computational refocusing technique. The focal plane spacing and number of planes

generated will be discussed in later chapters. Second, a thresholding, 3-D deconvolution, or

limited-angle tomography algorithm can be used to modify the planes of the focal stack by

removing out-of-plane contributions and yielding a volume containing sharp particle images.

An analysis of these algorithms will be also be covered later in this thesis.
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3.3 Plenoptic 2.0

Since the original work by Ng et al. [36] on plenoptic photography, there have been

a number of additional investigators researching various extensions and modifications to

the technique. Most notably, Lumsdaine and Georgiev [42, 43] have explored the tradeoff

between spatial and angular resolution and developed a similar camera where the lenslet

array acts as an imaging system focused on the focal plane of the main camera lens. This

is in contrast to the original plenoptic cameras, which placed the lenslet array at the focal

plane of the main lens. This change in operation can be seen in Figure 3.4. In their work,

a 16 megapixel sensor was coupled with a lenslet array of 250 micron pitch and 750 micron

focal length. The number of lenslets was 144 in both directions. Thus, traditional plenoptic

rendering would only generate an image of 144 px x 144 px resolution. However, high

resolution rendering is able to extract an image of resolution 1040 px x 976 px.

The primary drawback to this technique is that much less angular resolution is captured.

At present, the amount of angular sampling required to generate clearly refocused images

of particle fields is unknown (the high spatial frequencies in particle images may invalidate

the high resolution plenoptic approach). Additionally, the rendering of high-resolution tech-

niques is more complicated and is less intuitive. For these reasons, traditional plenoptic

rendering is used throughout this work. However, as shown in [43], due to the similarities

in camera operation the plenoptic 2.0 rendering algorithms can be used for traditional light

field data. This presents the possibility of exploring these rendering algorithms in future

studies.
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Plenoptic 1.0 Plenoptic 2.0

Image Focal Plane

Figure 3.4: Fundamental difference in operation of original plenoptic and ”focused plenoptic”
cameras.
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Chapter 4

Camera Simulation

To evaluate camera performance under a variety of scenarios, both a simplified 1-D

and complete 2-D light field image simulator are developed. The 1-D simulator is used

primarily for the purpose of understanding the basic concept and operation of the camera

and identifying shortcomings or unexpected behavior. The 2-D simulator is used to render

full particle fields for use in reconstruction and cross-correlation algorithms. The simulators

are designed to generate a representative signal or image acquired by the camera sensor for

a particle field which is approximated by a distribution of one or more point light sources.

The value of this approach stems from the ability to vary parameters such as main lens focal

length, lenslet pitch, lenslet focal length, and others to test and optimize camera performance.

This chapter first begins with a description of the ray tracing procedure and defines the

variables to be used throughout the simulations. This provides the necessary framework for

constructing the 1-D simulator, which is then used to test a variety of imaging scenarios.

The simulator is then extended to include diffraction effects and produce complete 2-D light

field images of particle fields.

4.1 Ray Tracing Description and Optical Configuration

The use of linear (Gaussian) optics is well established for geometrically tracing the

path of light through space and various optical elements through the use of matrix methods

from linear algebra. An important application of Gaussian optics is ray tracing in computer

graphics. Briefly, ray tracing is a rendering technique in which a large number of light rays

from a scene are used to form an image at arbitrary locations or viewpoints. Rays of light are

initialized at the light source by specifying an initial position and direction. Any number of
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Figure 4.1: Schematic of Optical Configuration and Dimensional Definitions.

ray transfer matrices are then used to simulate optical elements and the propagation of light

through free space [44]. The intersection each ray makes with a sensor plane or designated

viewpoint defines the generated image. The primary limitation of traditional Gaussian optics

is that ray transfer matrices assume the optical elements and coordinates are defined with

respect to the optical axis. For a plenoptic camera, the lenslets are not located on the optical

axis, and thus require a modified approach. Georgeiv and Intwala [45] and Ahrenberg and

Magnor [46] have shown that Gaussian optics can be extended to light field imaging as

well, through an extension of basic linear optics known as affine optics. The simulations

constructed herein apply their work with affine optics to ray tracing, allowing lenslets to be

properly simulated and light field images of entire particle fields to be generated.

In Figure 4.1, the optical elements comprising the simulation are shown (not to scale),

and the corresponding dimensional variables are labeled. The origin of the optical axis is

located at the center of the sensor plane, with the z-axis oriented out of the camera through

the center of the lens aperture, and the x- and y-axes aligned with the sensor plane (the

x-axis is projected into the page in this figure). This imaging configuration can be described

using the classical thin lens equation, shown in equation 4.1. The assumption made with the

thin lens equation is that the thickness of the lens is negligible with respect to the overall

length of the optical system. Modern lenses with multiple optical elements are not thin by
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this definition, but the concept of principle planes can reduce any combination of lenses to

a single thin lens. The design of modern lenses takes this into account and allows them to

be simulated using this equation.

1

fm
=

1

so
+

1

si
(4.1)

In this equation, so is the distance from the object focal plane to the main lens, and si is the

distance between the main lens and the image focal plane. The main lens of focal length fm

acts to form an image at the image focal plane, exactly like a conventional camera. However

for the plenoptic camera, rather than placing the sensor at this plane, a lenslet array of focal

length fl and pitch pl is inserted. The sensor plane, with individual pixels of pitch pp, is

then placed at the focal length of the lenslet array. For all current simulations, the fill factor

of both the lenslets and the pixels are assumed to be 100%. Note again the lenslet array is

located at the focal point of the main lens, and that the distance between the lenslet array

and the sensor is much smaller than the distance between the main lens and the lenslet array.

With the basic dimensions specified, the ray transfer matrices can now be defined.

The first and most basic ray transfer matrix is for the propagation of light through free

space, or translation. This is modeled as a linear propagation of light from the original point

(x, y) at an angle (θ, φ) over a distance t. This is expressed in matrix notation in equation

4.2. Note that only the position of the ray changes, and the direction remains the same.



x′

y′

θ′

φ′


=



1 0 t 0

0 1 0 t

0 0 1 0

0 0 0 1





x

y

θ

φ


(4.2)

The next basic transfer matrix used is for refraction of light rays through a thin lens,

which is expressed in equation 4.3, where f is the focal length of the lens. In contrast to

translation, the position of the light ray is constant, while the direction of the light ray is

modified. As mentioned previously, the lens must either be thin, or capable of being reduced
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to a single effective thin lens for this equation to be used. This assumption is used for all

lenses used in both the 1-D and 2-D simulators.



x′

y′

θ′

φ′


=



1 0 0 0

0 1 0 0

−1/f 0 1 0

0 −1/f 0 1





x

y

θ

φ


(4.3)

The previous equations for light propagation and lens transfer make the assumption that

the optical element is centered with respect to the optical axis. For light field cameras using

a lenslet array, a modification must be made to account for the lenslets that are shifted from

the optical axis. The derivation of this approach, known as affine optics, is given in Georgeiv

and Intwala [45]. The result of their derivation is to treat the propagation through a lenslet

array of focal length fl and separation from the optical axis (sx, sy) as the combination of a

lens transfer matrix and a prism, as given below in equation 4.4. In contrast to the previous

two transfer matrices, both the position and the direction of the light ray are modified.
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1 0 0 0

0 1 0 0

−1/fl 0 1 0

0 −1/fl 0 1





x

y

θ

φ


+



0

0

sx/fl

sy/fl


(4.4)

4.2 1-Dimensional Ray-Tracing Simulator

The 1-D simulator is used as a relatively simple means to evaluate basic camera concepts

without requiring a full particle simulation and allowing the propagation of rays through the

system to be easily visualized. All particles are approximated in the simulator as point

sources of rays. This simplification allows the particle field to be defined as simply the

coordinates of each point, which is given in terms of a shift from the optical axis dy and a

shift from the object focal plane dz. A positive value of dy is oriented upward, and a positive
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value of dz is oriented away and out from the camera along the optical axis as indicated in

Figure 4.1.

The remaining variables are camera parameters, which can be divided into two cate-

gories: fixed parameters and variable parameters. The fixed parameters are set through the

hardware design of the camera and lenslet array and include the lenslet focal length fl, the

lenslet pitch pl, the pixel pitch pp, and the number of pixels np,y. These can be modified in

the simulator as needed but cannot be modified in the physical hardware once manufactured.

The other class of parameters are variable parameters, which can be changed to accom-

modate different imaging configurations. These include the main lens focal length fm and

the object focal plane distance so. These parameters could be directly varied to achieve the

desired imaging conditions. However, a more pragmatic approach can be used by defining

a field of view FOVy and the main lens focal length. This allows the magnification to be

calculated and enforces a unique combination of so and si in accordance with the thin-lens

equation. The camera specifications can be further defined by placing a condition on the

image-side or effective f-number of the main lens. As recognized by Ng et al. [36], to prevent

overlap or unused pixels of the lenslet images, the image-side f-number (also termed the effec-

tive f-number) of the main lens must be equal to or larger than the f-number of the lenslets.

For the main lens, the image-side f-number is calculated in terms of the magnification, as

described by Smith [47] and defined in equation 4.8. This f-number is used to calculate the

pitch or aperture diameter pm of the main lens. For the lenslets, the distance si is much

larger than the focal length of the lenslets fl, so it can be assumed the lenslets are focused

to infinity, allowing the simplified definition of f-number ((f/#)l = fl/pl) to be used. These

quantities and relationships are defined, in order of their calculation, through the following

equations.

M = −(np,y × pp)/FOVy (4.5)

si = fm(1−M) (4.6)
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so = −si/M (4.7)

(f/#)m = (f/#)l/(1−M) (4.8)

pm = fm/(f/#)m (4.9)

The positioning of the lenslet array must now be defined. It would be computationally

efficient and simple to develop an algorithm where the lenslet array begins at the exact edge

of the CCD. However, in an actual camera, the lenslet array will not be perfectly aligned

with the edge of the CCD and will exhibit a slight overlap over the entire sensor. To simulate

this, the number of lenslets needed to completely cover the sensor is determined. The total

size of the array will be slightly larger than the sensor, so an offset is calculated and applied

to center the lenslet array with respect to the optical axis. The simulated lenslet array can

be defined by three variables: the lenslet pitch pl, the number of lenslets in the vertical

direction nl,y, and a vertical offset oy. Determining the lenslet ns,y that a ray strikes is then

a computationally efficient process of division and rounding, as given by equation 4.10. The

corresponding shifts require multiplying the lenslet number by the lenslet pitch, then adding

a shift to move from the corner to the center of the lenslet, as shown in equation 4.11. Note

that the lenslet numbering starts at the top left corner of the sensor, which requires the

rays to be shifted by an amount equal to half the sensor size. This is accounted for in the

following equations.

ns,y = round([y + np,ypp/2− oy − pl/2]/pl) (4.10)

sy = ns,ypl + oy + pl/2− np,ypp/2 (4.11)

With the physical parameters of the simulator defined, the actual simulation process

can be presented. As mentioned previously, the simulator acts as a ray-tracing program

to propagate rays of light through the main lens and lenslet array to the sensor plane.

Initializing the rays for this procedure consists of two steps: the angular sweep of rays

must be defined and the rays themselves must be created. The first step is important for
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computational efficiency; the simulator should not allow rays to be generated which will fall

outside of the camera aperture. These bounds are easily calculated through equations 4.12

and 4.13 for each particle. The computational implementation uses the atan2 function to

ensure the correct sign is returned.

φmax = tan−1
(
pm/2− dy
so + dz

)
(4.12)

φmin = tan−1
(
−pm/2− dy
so + dz

)
(4.13)

At this point, a correction is added to the simulator to take into account the differences

in the solid collection angle of light depending on the position of the particle. The angle

subtended by rays intersecting the outer circumference of the aperture is denoted as the

reference angle γref . For each particle, the subtended angles are calculated and are divided

by the reference angle to determine the corrected number of rays to generate for each point,

as given in equation 4.14.

nrays,corr = round

(
nrays(φmax − φmin)

γref

)
(4.14)

A uniformly distributed random number generator is used to produce randomized angles

for the ray which fall within the angular bounds defined above. Using a random distribution

of angles better approximates the stochastic nature of image formation and prevents an

accumulation of simulation artifacts which could occur for uniform angular distributions.

With the initial position x, y, z and angle θ, φ of the ray defined, the tracing begins through

the use of equations 4.2 and 4.3. For the case of the 1-D simulation, these are simplified

to terms of y, z, and φ. The equations simulate propagation of the ray to the main lens,

through the main lens, and to the lenslet array. At this point, the lenslet that the ray strikes

must be determined using equations 4.10 and 4.11. This shift is then used in conjunction

with equation 4.4 to propagate the ray through the correct lenslet and to the sensor array.
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When the ray reaches the sensor, the pixel that it strikes must be determined. A similar

division and rounding procedure can be used to determine the correct pixel ypx, as given in

equation 4.15. Note that as before, the pixel coordinates begin at the top left corner of the

image and are accounted for with this equation.

ypx = round

(
(ppnp,y + pp)/2− y

pp

)
(4.15)

This series of steps is repeated until the correct number of rays is generated for each

particle. Each ray accumulates signal on the sensor to form the final image. For the 1-D

simulator, this image is a 1-D array which is visualized using simple plotting.

4.2.1 Tests using the 1-D Simulator

Four distinct test cases are used to illustrate important physical concepts behind the

plenoptic camera. These include a positive and negative depth change varying only dz, an

in-plane displacement test varying only dy, and a case involving a blur across two lenslets

due to a change in both dy and dz. These tests lead to the formation of an expression for the

in-plane and out-of-plane resolution of the camera and allow the expressions to be tested.

For these test cases a simplified set of parameters is used, listed below in Table 4.1.

Note that in order to fit the main lens and lenslet array into a single readable plot, the focal

length of the main lens is reduced to a very small value of 1.5 mm, which reduces the values

of so, si, and pm. This does not affect the trends which will be visualized herein, and is only

for display purposes. In all cases, a total of 50,000 rays were used to accumulate statistically

significant signal values. For plotting purposes, only 100 of the 50,000 rays are shown in the

following ray diagrams.

The first test evaluates a particle at two different depths. Figure 4.2 presents a simu-

lation where the particle is located on the optical axis but shifted 1000 µm away from the
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Table 4.1: Definition of Simulator Parameters

Lenslet Focal Length fl 500 µm (0.500 mm)
Lenslet Pitch pl 125 µm (0.125 mm)
Pixel Pitch pp 7.4 µm (0.0074 mm)
Number of Lenslets nl,y 5
Number of Pixels np,y 75
Main Lens Focal Length fm 1500 µm (1.5 mm)
Magnification M -1

camera. The first vertical line from the left is the object focal plane, the second line repre-

sents the main lens, the third line is the position of the lenslet array, and the fourth line is

the pixel array. To the right of the pixel array is a curve which provides a relative measure

of the integrated signal at each pixel. Readily apparent in the image is the large blur spot

incident on the lenslet array. Since this blur spot spans multiple lenslets, the signal is spread

to multiple locations on the sensor. The incident angle of the light rays on the lenslet array

determines the resulting pattern at the sensor. Figure 4.3 is an alternate case demonstrating

a particle located 1000 µm closer to the camera lens. Note the different signal pattern, which

is caused by the large difference in angles incident on the lenslet array. These signal patterns

are a key element in plenoptic camera performance, which allows the depth of particles to

be determined. Also, these two examples indicate that the depth of two in-line particles can

be determined without any ambiguity.

The next test exposes a potential limitation of the plenoptic camera. Figure 4.4 presents

an example where the particle is located on the focal plane with a -62 µm in-plane displace-

ment, which forms an image at the edge of the central lenslet. Figure 4.5 locates the particle

at the center of the focal plane resulting in an image being formed at the middle of the

central lenslet. Finally, Figure 4.6 has a +62 µm in-plane displacement, the exact opposite

of Figure 4.4. The most noticeable characteristic about these images is that the resulting

signal is very nearly similar, with hardly any bias in signal level, and no signal contributions

from other lenslets. This illustrates a worst-case scenario for the plenoptic camera; namely,

40



−7000 −6000 −5000 −4000 −3000 −2000 −1000 0 1000
−400

−300

−200

−100

0

100

200

300

400

Z−Coordinate (µm)

Y
−

C
o

o
rd

in
a
te

 (
µ

m
)

Figure 4.2: Depth testing, dy = 0 µm , dz = +1000 µm.
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Figure 4.3: Depth testing, dy = 0 µm , dz = −1000 µm.
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Figure 4.4: Spatial resolution testing, dy = −62 µm , dz = 0 µm.

particles that lie within the focal plane can not in general be resolved with a resolution

greater than half the lenslet pitch divided by the magnification (pl/2M). Figure 4.7 expands

on this idea again, when the particle is moved a very small amount, however, causing the

signal to dramatically change. The slight bias in edge pixels in these simulations does present

a means to measure the displacement within a lenslet; however, the variation in intensities is

likely too small to be captured with a detector or will be under the noise floor of the camera.

The next test illustrates a scenario for determining the spatial location of a particle

with sub-lenslet accuracy. Figure 4.8 illustrates a case of where a blur spot is formed on the

lenslet array. When the particle is moved 20 µm in the y-direction, a portion of the blur spot

crosses over into the next lenslet and is deflected accordingly. This results in a substantial

change in the resulting signal levels.

As seen in these cases, much more information is available on the location of the par-

ticle when the signal is spread out over multiple lenslets. Not only is a new set of angular

information available, also the difference in signal levels is an indicator of the particle po-

sition. However, the worst-case scenario presented previously is important in quantifying
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Figure 4.5: Spatial resolution testing, dy = 0 µm , dz = 0 µm.
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Figure 4.6: Spatial resolution testing, dy = +62 µm , dz = 0 µm.
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Figure 4.7: Spatial resolution testing, dy = +63 µm , dz = 0 µm.
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Figure 4.8: Spatial resolution testing, dy = +10 µm , dz = +500 µm.
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Figure 4.9: Spatial resolution testing, dy = +30 µm , dz = +500 µm.

the measurement uncertainty of the camera. Rather than using a large number of simula-

tions to determine the bounds of the uncertainty, the depth-of-field equations can be used

to generalize the procedure and will be discussed in the next section.

4.2.2 Depth of Field and Achievable Resolution

Consider the ray schematic shown in Figure 4.10, which is an illustration of the classic

depth-of-field concept often used in photography. A point located a distance Do in front of

a convex lens will focus to a sharp point behind the lens at a distance Di. A fundamental

premise of geometrical optics is that the image of an infinitely small point is itself infinitely

sharp (i.e., has an infinitely small spot size). However, real optics applications utilize detec-

tors with sensor elements of a finite size. To characterize the effect this has on the optical

resolution of a system, a circle of confusion c is defined as an arbitrary measure of spatial res-

olution at the image plane. As shown in Figure 4.10, this circle of confusion can be seen as a

bounding diameter for the intersection of two light cones that originate at different locations

DF,o and DN,o, positioned on both sides of the original point Do. These two spots are known
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Figure 4.10: Schematic of dimensions for depth of field calculations.

as the far depth-of-field and the near depth-of-field, respectively, and the difference between

them ξz is called the focal depth, or simply the depth-of-field. Another way to understand

this concept is that if the circle of confusion is defined to be the size of a pixel on a sensor,

the focal depth ξz indicates the smallest physical depth over which the pixel integrates light

for the imaging condition defined by Do and Di.

This concept provides a simple way to estimate the achievable depth resolution of the

plenoptic camera if the circle of confusion is defined to be the lenslet pitch (in the next

chapter, this idea will be extended to give closed-form expressions for proper focal plane

spacing in computationally refocused images). The depth-of-field equations can be derived

using geometry and similar triangles; the resulting expressions are given in equations 4.16

through 4.18. In these equations, f is the main lens focal length, f/# is the main lens f-

number, c is the circle of confusion, and s is the location of the particle in object space. The

circle of confusion is defined as the lenslet pitch pl. For a particle lying on the focus plane (i.e.,

s = so) and with conditions specified in Table 4.1, these equations yieldDN,o = 2570 µm (2.57

mm) and DF,o = 3600 µm (3.60 mm), leading to a total ambiguity in depth ξz = 1030 µm

(1.03 mm). The maximum in-plane ambiguity is given by equation 4.19, ξy = 62.5 µm

(0.0625 mm).

DN,o =
sf 2

f 2 + c(s− f)(f/#)
(4.16)

DF,o =
sf 2

f 2 − c(s− f)(f/#)
(4.17)
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ξz = DF,o −DN,o (4.18)

ξy =
pl

2M
(4.19)

Now that analytical expressions have been developed for the maximum uncertainty for

in-plane and out-of-plane displacement, the effect of other variables can be considered. In

particular, magnification and focal length are two important parameters that can be varied

in an experiment. Note that changes of magnification for a fixed focal length lens result in

a change in the values of so and si. Secondly, the effect of focal length itself is analyzed

for two common focal lengths: 50 mm and 200 mm. In Figure 4.11, the plot is made for a

focal length of 50 mm. Perhaps intuitively, the ambiguities both increase as a less negative

magnification is used (corresponding larger field of view and larger so). This can be visualized

in the context of Figure 4.10. As the distance so from the main lens increases, the resulting

diamond shape which defines the ambiguity will become stretched along the optical axis.

The in-plane ambiguity also increases with a less negative magnification. This plot indicates

that ambiguities can be minimized by using large negative magnifications (small values of

so and small fields of view). Also, indicated in equations 4.16 and 4.17, the depth resolution

is a function of f-number. For a lower f-number, the size of the ambiguity will decrease.

Surprisingly, the plot in Figure 4.10 is the same for a focal length of 200 mm. This is due to

the calculation of optical quantities; the diameter of the main lens aperture is increased for

a 200 mm focal length, making the size of the ambiguity similar.

4.2.3 Including Diffraction Effects

The geometric optics model is an approximation to the actual behavior of light, and

is essentially correct when the wavelength of light is vanishingly small. In this case, the

use of discrete rays forming precisely defined spots in the image is appropriate. However,

this simplified model does not take into account the realistic effects of diffraction that arise

when the wavelength of light is a finite value. For a point-like image, diffraction causes the
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Figure 4.11: Effect of magnification on ambiguity, f = 50 mm.

precisely defined spot to spread and form a spot with a finite diameter. This has important

implications for PIV imaging because the diffraction spot size is typically on the order of

or larger than the pixel size. The effect of diffraction on general optical systems has been

described by Smith [47], and is further defined for the specific case of particle imaging

by Adrian and Westerweel [3]. In this section, the need for including diffraction effects is

demonstrated and a method for incorporating diffraction into the simulation is discussed.

To fix thoughts, consider the current imaging configuration where the magnification

M = −1, the f-number of the main lens (f/#)m = 2, the wavelength of light λ = 532 nm,

and the diameter of a particle dp = 1 µm. An approximation to the diameter of a particle

image at the image plane, including diffraction effects, is given in equation 4.20, from Adrian

and Westerweel [3, p. 101]. In this equation, ds is the diffraction spot diameter given by

equation 4.21. Note that this reference defines the magnification as a positive rather than a

negative quantity, and thus positive magnification is used in these equations.

dτ ≈ (M2d2p + d2s)
1/2 (4.20)
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ds = 2.44(1 +M)× (f/#)mλ (4.21)

With the experimental parameters defined above, the diffraction spot size ds = 5.19 µm and

the resulting particle image diameter dτ = 5.28 µm. For a lenslet of 125 µm pitch, dτ is

approximately 4.2% of the lenslet diameter. At the sensor plane, the magnification must

be recalculated for the lenslets themselves, M = −fl/si. This value is close to zero due

to the design of the camera. When this magnification is used in equations 4.20 and 4.21,

the diffraction spot size at the sensor plane is dτ = 5.2µm, and the particle image diameter

dτ = 5.3µm. This is approximately 70.5% of the pixel size based on a 7.4 µm pixel. Note

that the reason both blur spots come to be the same size for both the lenslet and pixel is

that the value of the magnification term is reduced by a factor of two for the pixel, which

corresponds to the f-number being greater by a factor of 2 for the main lens. For this reason,

diffraction effects must be included in the simulator at both the lenslet and sensor planes to

produce realistic images. Also, diffraction causes an order of magnitude larger blur than the

geometric image of the particle itself. Thus, only diffraction is taken into account and the

negligible effect of finite particle diameter is ignored. These calculations are summarized in

table 4.2.

Table 4.2: Definition of Diffraction Parameters

Diffraction-Limited Spot Size at Lenslet Array ds,m 5.2 µm
Std. Dev. of Normal Distribution at Lenslet Array σm 0.96 µm
Diffraction-Limited Spot Size as a Percentage of Lenslet Pitch 4.2%
Diffraction-Limited Spot Size at Sensor Array ds,l 5.2 µm
Std. Dev. of Normal Distribution at Sensor Array σl 0.96 µm
Diffraction-Limited Spot Size as a Percentage of Pixel Pitch 70.5%

The approach to implementing diffraction in this work appeals to the stochastic nature

of image formation. In the ray tracing procedure, diffraction is simulated as a random shift

of the spatial coordinate of the ray at both the lenslet plane and the sensor plane. The

behavior of this shift is governed by the diffraction pattern of a planar wavefront passing

through a circular aperture, which is then focused onto a planar surface or sensor. The
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intensity pattern of the focused spot is given by the Airy function shown in equation 4.22.

In this equation, r is a radial coordinate, whose origin is located at the central location of

the point. Da is the diameter of the aperture, Z0 is the distance from the aperture to the

point of focus, and J1 is the first-order Bessel function of the first kind.

|h(r)|2 =

(
πD2

a

4λZ0

)2 [
2
J1(πDar/λZ0)

πDar/λZ0

]2
(4.22)

Equation 4.22 is the theoretical solution for the intensity distribution; however, calcula-

tion of the Bessel function is an iterative procedure which makes computation difficult and

not well suited for massive computations. In contrast, the Gaussian function is calculated

through simple closed-form expression and has advantages in terms of both computational

efficiency and mathematical properties. Equation 4.23 is the Gaussian function presented in

Adrian and Westerweel [3, p. 101]. The Gaussian function can be fit to the Airy function

by setting the parameter β2 = 3.67. A comparison of these two functions is given in Figure

4.12, showing a qualitatively good fit.

g(s) = ce

(
−4β2 s2

d2s

)
(4.23)

Since the Gaussian function approximates the actual diffraction pattern, we can assume

that a focused particle image will have an intensity profile that is roughly Gaussian. The

image is actually created from the statistical distribution of photons incident on a sensor

plane. Thus, it can be understood as having been compiled by large numbers of individual

photons arranged in a normal (Gaussian) statistical distribution, or probability density func-

tion (PDF). The definition of a normal distribution is generally given in terms of a standard

deviation σ and a mean µ, as shown in equation 4.24. By taking the mean value to be zero

and equating the exponential terms of equations 4.23 and 4.24, the standard deviation can

be explicitly determined as given in equation 4.25. The values of the standard deviation at
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Figure 4.12: Comparison of Airy and Gaussian functions. Adapted from Adrian and West-
erweel [3, p. 101].

both the lenslet and sensor plane are given in table 4.2.

f(x) = ce

(
(s−µ)2

2σ2

)
(4.24)

σ =

√
d2s

8β2
(4.25)

These definitions now allow diffraction to be introduced into the ray tracing. When a

ray arrives at the lenslet plane, a normally distributed random number generator is used to

generate a random shift of the spatial coordinates. Note that the mean of the random number

generator is set to the initial spatial coordinate of the ray, and the standard deviation is set

as defined in equation 4.25. This process is used independently in both coordinate directions.

The ray is then propagated through the lenslet array using the appropriate shifts sx and sy

as previously defined. When the ray reaches the sensor, a similar procedure is performed,

but using the optical parameters of the lenslet to define ds rather than the optical parameters

of the main lens. This process is shown schematically in Figure 4.13.
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ds,m

ds,l

Figure 4.13: Schematic of diffraction simulation, applied at both the lenslet array and the
sensor.

The algorithm was first tested in the 1-D simulator, using the MATLAB normally

distributed random number generator randn. Figure 4.14 shows a run of the simulator using

the same particle placement as Figure 4.6. The effect of diffraction is to spread the signal

near the edge of the central lenslet to the adjoining lenslet. Potentially this effect could

be exploited to reduce the ambiguity in spatial resolution by an amount equal to twice

the diffraction-limited spot size at the lenslet plane. It also suggests that another method

for reducing the ambiguity is to intentionally blur the image using a ground glass diffuser.

These are commercially available for photographers, but will not be considered in this work

primarily because they typically reduce the light level by 10-20%.

4.3 2-Dimensional Ray-Tracing Simulator

The simulator is now extended to produce 2-D images of multiple particles distributed

within a volume. The ray tracing procedure is similar to the procedure developed earlier;

however, the scale of the computation is much larger and a separate approach is needed.

Consider the previous 1-D simulator, which traced 50,000 rays for a single particle. For the

2-D simulator, the same number or more rays are used, but the number of particles is much

larger, in many cases greater than 1,000. Thus, the computational effort can be orders of

magnitude greater. For this reason, the 2-D simulator has been concurrently programmed

both in MATLAB to validate the computational algorithm and Fortran to provide increases
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Figure 4.14: Diffraction testing using the same conditions as tested in Figure 4.6, dy =
+62 µm , dz = 0 µm.

in speed. The Fortran version is supplied in the appendix. The use of Fortran requires the

optical configuration and particle field to be generated and saved in separate text files to be

processed by the simulator. The MATLAB code outputs directly to a TIFF format image

file, while the Fortran code outputs an ASCII file which can be converted to an image file

after processing.

4.3.1 Optical Configuration

The optical configuration for the 2-D simulator proceeds along the same lines as the 1-D

simulator. An assumption made to simplify the extension to 2-D is the use of both square

lenslets and square pixels; therefore, the pixel pitch in the x-direction is equal to that in

the y-direction (pp,x = pp,y) and the lenslet pitch is equal in both directions (pl,x = pl,y).

Therefore, the pixel and lenslet pitches can be defined as before with the variables pp and

pl. This is a valid simplification as the vast majority of CCD sensors utilize square pixels,

and the lenslet arrays considered for the current work are comprised of square lenslets.

53



Another modification is made to take into account the aperture stops on most common

lenses. Equation 4.8 will return an exact value for the f-number; however, most lenses are

only offered with a discrete number of f-number settings, known as f-stops. Thus, a list of

common f-stops is used so that the f-number is rounded up to the nearest commonly available

f-stop (i.e., an exact f-number of 3.2 would be rounded up to 4 rather than the nearest value

of 2.8). This ensures there is no overlap in the lenslet images.

For fast computation the layout of the lenslet array is defined as a square grid (in

addition to the individual lenslets themselves being square). Note that a hexagonal layout

achieves an approximately 20% increase in spatial resolution by reducing unusable space

between each lenslet; however, no manufacturer was able to provide a hexagonal lenslet

array which forced the use of an array arranged in a square grid. The simulated lenslet array

can be defined by five variables: the lenslet pitch pl, the number of lenslets in the horizontal

direction nl,x, the number of lenslets in the vertical direction nl,y, a horizontal offset ox, and

a vertical offset oy. The offsets allow the array to be made larger than the sensor and then

centered, similar to the 1-D simulator. Determining the lenslet that a ray strikes is then a

computationally efficient process of division and rounding. The corresponding shifts require

multiplying the lenslet number by the lenslet pitch, then adding a shift to move from the

corner to the center of the lenslet, as defined previously in equations 4.10 and 4.11.

For visualization purposes, the center locations of the lenslets lx and ly can be calculated

using equations 4.26 and 4.27, respectively. Figure 4.15 shows the upper-left and lower-right

corners of the lenslet array and sensor. In this figure, the array covers all pixels of the

sensor, and along the edge only portions of the individual lenslets overlay the sensor. This

approximates how a real lenslet array would be aligned over a sensor.

lx = nxpl/2 + ox + pl/2 (4.26)

ly = nypl/2 + oy + pl/2 (4.27)
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Figure 4.15: Schematic of the lenslet array (red) overlaying the edge of the CCD array (blue).

A summary of these and other optical parameters is given in table 4.3. Unless otherwise

noted, these settings will be used for all 2-D simulations herein. The script outputs this

information to an ASCII file which is used as an input to the Fortran ray-tracing program.

Table 4.3: Definition of 2-D Simulator Parameters, based on Kodak KAI-16000 sensor.

Lenslet Focal Length fl 0.500 mm (500 µm)
Lenslet Pitch pl 0.125 mm (125 µm)
Pixel Pitch pp 0.0074 mm (7.4 µm)
Number of Pixels, X-Direction (Horizontal) np,x 4872
Number of Pixels, Y-Direction (Vertical) np,y 3248
Sensor Size, X-Direction (Horizontal) 36.05 mm
Sensor Size, Y-Direction (Vertical) 24.04 mm
Number of Lenslets, X-Direction (Horizontal) nl,x 289
Number of Lenslets, Y-Direction (Vertical) nl,y 193
Main Lens Focal Length fm 50 mm
Magnification M -1

4.3.2 Particle Field Generation

Similar to the 1-D simulator, all particles are approximated as point sources of rays.

The generation of particles is kept separate from the optical configuration script to allow

different optical configurations to be tested with identical particle fields. A MATLAB script

is used to generate the particle field, starting with two variables npts and nrays which define

the number of particles to generate, and the number of rays which will be simulated for
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each particle. The particle field is defined over a volume given by the bounds xspan, yspan,

and zspan. A schematic of this configuration is shown in Figure 4.16. Note that the z-axis

is the optical axis of the system, and at z = 0, the x-y plane is defined as the object focal

plane of the camera. Thus the origin of this coordinate system is the intersection of the

focal plane and the camera optical axis. In addition to the coordinates of the particle, an

intensity coefficient is defined for each particle to simulate variations in particle scattering.

The intensity variation is defined by the bounds imin to imax.

Using this information, the particle field coordinates and intensity coefficients are cre-

ated using a uniformly distributed random number generator. The output is written to

an ASCII text file, with the first two lines defining npts and nrays, followed by the particle

information written out in four-column format specifying x, y, and z coordinates and the

intensity coefficient, i.

zspan

Optical Axis, +z

xspan

yspan

Focal Plane

+y

+x

Figure 4.16: Particle field definitions.

4.3.3 Tests using the 2-D Simulator

Multiple test cases are used to show the 2-D performances of some test cases used

earlier in the 1-D simulator. These include a positive and negative depth change varying

56



only dz and an in-plane displacement test varying only dy. Following these tests, fields of

multiple particles will be simulated, first involving particle fields with no depth and then

being extended to finite depths.

Figure 4.17 represents the 2-D image of an in-focus particle. In this case, a single lenslet

is illuminated, as demonstrated earlier for the 1-D case. The light lines in the image represent

the individual lenslets. The next extension comes by adding a change in depth. Figure 4.18

shows cases of movements farther and closer to the camera. The image of the particle is

spread over multiple lenslets. Notably, the pattern is unique at each position, and is unique

for identical magnitudes of positive and negative depth.

Figure 4.17: In-focus particle image (dx = 0, dy = 0, and dz = 0). Lenslet array outline
given in light gray.

Changes in in-plane motion are shown in Figure 4.19. The left column of this figure

shows an in-focus particle. In particular, 4.19b shows diffraction spreading some signal to

a neighboring lenslet. The right column shows the motion of an out-of-focus particle. The

motion of the particle can be determined more accurately because the signal is no longer

constrained by the ambiguity over a single lenslet. This indicates the potential of sub-lenslet

resolution in certain cases.

Another example of the robustness of the plenoptic approach is with two in-line particles.

Figure 4.20 shows images of two in-line particles being displaced from each other a certain

extent. The unique patterns on the signal indicate ways to determine the depth of each

particle. This will be explored again when the refocusing algorithm is demonstrated.
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(a) dz = +1 mm (d) dz = −1 mm

(b) dz = +2 mm (e) dz = −2 mm

(c) dz = +3 mm (f) dz = −3 mm

Figure 4.18: Effect of a depth change on a single particle image. Lenslet array outline given
in light gray. In all cases, dx = 0 and dy = 0.

The next images demonstrate particle field images. Figures 4.21 through 4.24 show

particle fields with various values of zspan. Note the unique patterns formed in each image,

which are significantly different than a corresponding 2-D image. The light field algorithms
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(a) dy = +0 mm (d) dy = +0 mm

(b) dy = +0.62 mm (e) dy = +0.62 mm

(c) dy = +0.125 mm (f) dy = +0.125 mm

Figure 4.19: Effect of an in-plane and depth change on a single particle image. Lenslet array
outline given in light gray. In the left column, both dx = 0 and dz = 0. In the right column,
dx = 0 and dz = +2 mm.

to be discussed in the next chapter will be capable of extracting individual planes from this

data.
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(a) dz = −3,−1 mm (d) dz = −3,+1 mm

(b) dy = −3,−2 mm (e) dz = −3,+2 mm

(c) dy = −3,−3 mm (f) dz = −3,+3 mm

Figure 4.20: Example of two in-line particles, where the depth of the two particles are
individually varied. Lenslet array outline given in light gray. In all cases, dx = 0 and
dy = 0.
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Figure 4.21: In-focus particle image (zspan = 0). 1,000 particles simulated with 25,000 rays
each.

Figure 4.22: Particle image (zspan = 3.0 mm). 1,000 particles simulated with 25,000 rays
each. The lenslet grid outline has been removed to improve clarity.

61



Figure 4.23: Particle image (zspan = 5.0 mm). 1,000 particles simulated with 25,000 rays
each. The lenslet grid outline has been removed to improve clarity.

Figure 4.24: Particle image (zspan = 7.0 mm). 1,000 particles simulated with 25,000 rays
each. The lenslet grid outline has been removed to improve clarity.
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4.3.4 Angular Statistics

As an aside, the quantum efficiency of CCD cameras has an angular dependence be-

cause most modern sensors incorporate a microlens array positioned at the sensor surface

to increase fill factor. For example, the Kodak KAI-16000 sensor equipped with a microlens

array has a substantial reduction in relative quantum efficiency when light rays are incident

on the detector by over +/- 10 degrees [48]. Figures 4.25 and 4.26 are histograms showing

the distribution of angles at the sensor plane. Note that in both directions, a reasonable

fraction of light rays are at angles greater than 10 degrees when arriving at the sensor. This

indicates a microlens array could distort or attenuate the resulting signal values by a small

amount. This analysis was done only for the specified conditions that have been simulated,

and there may be scenarios where the angular distribution is more extreme. As a worst-case

bound on the angle incident on the sensor, equation 4.28 can be used. For the conditions

specified in table 4.3, the maximum angle is approximately 19 degrees, which is consistent

with the histogram values.

γmax =
pl
2fl

+ tan−1

(√
(np,xpp/2)2 + (np,ypp/2)2

si

)
(4.28)

It should be noted that this could be alleviated with the use of a field lens, as shown by

Adelson and Wang [35]. The purpose of this lens is to eliminate the “bulk angle” described

in the next chapter, which would reduce the magnitude of the angles at the edge of the

sensor.

4.4 Simulating Particle Displacements

Evaluating the velocity field requires two snapshots of the particle field to be acquired.

The displacement of the particles and the time interval ∆t between the two snapshots allows

the velocity to be calculated. To simulate this process, two light field images are rendered
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Figure 4.25: Distribution of θ angles in degrees for a 1,000 particle simulation.
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Figure 4.26: Distribution of φ angles in degrees for a 1,000 particle simulation.

which correspond to an initial particle field and a displaced particle field. A separate MAT-

LAB script was used to read the original file created by the particle field generation script

(Section 4.3.2), and apply displacements to each particle in accordance with a velocity field

specified by one or more equations.
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In this work, two simulated flow fields are evaluated. The first is a uniform flow field,

which can be defined as a constant displacement for each particle in any of the three coordi-

nate directions. Using uniform displacement provides a simple way to evaluate the resolution

of the technique, including minimum detectable displacement for both in-plane and depth

motions. Another advantage is that a uniform displacement field does not contain shear,

which allows the accuracy of the technique to be evaluated using very basic PIV correlation

algorithms.

The second flow field used for this work is a simulated vortex ring, which was used in

the initial tests of both Tomographic and Synthetic Aperture PIV. Vortex rings can be easily

defined using closed-form equations and exhibit large-scale 3-D structure which is important

for evaluating camera performance along all coordinates. For these reasons, the Hill’s spher-

ical vortex is used as the reference flow field for this work. This is a particular solution of

the vorticity equation for the generation of a steady inviscid vortex ring in which non-zero

values of vorticity are confined within a sphere. The theoretical approach and derivation of

the stream functions for this flow are given by Green [49]. By taking the derivatives of the

stream function the velocity field can be obtained. To simplify the equations, the derivation

of these equations is based on a cylindrical coordinate system in which the two primary coor-

dinates are the distance R perpendicular to the induced motion, and the distance Z parallel

to the induced motion. The origin of this coordinate system is the center of the vortex. The

size of the vortex based on the diameter of the vorticity-containing sphere is denoted as a,

and the induced velocity is given as u0. The stream function is a set of piecewise equations

defined independently for flow internal to the vortex and external to the vortex. The internal

velocity field is given by equations 4.29 and 4.30, and the external velocity field is given by

equations 4.31 and 4.32.

uint =
3

2
u0

(
1− 2R2 + Z2

a2

)
(4.29)
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vint =
3

2
u0

(
ZR

a2

)
(4.30)

uext = u0

[(
a2

Z2 +R2

)5/2(
2Z2 −R2

2a2

)
− 1

]
(4.31)

vext =
3

2
u0

(
ZR

a2

)(
a2

Z2 +R2

)5/2

(4.32)

To combine the solutions from the internal and external velocity fields, a simple test is

performed by equations 4.33 and 4.34 to check if the coordinate location being evaluated lies

within the bounds of the vortex, given by the vortex radius a. These statements are taken

to be boolean, which will evaluate to either 0 or 1. These values are used in equations 4.35

and 4.36 to give the final value of velocity.

tint = (R2 + Z2) ≤ a2 (4.33)

text = (R2 + Z2) > a2 (4.34)

u = uinttint + uexttext (4.35)

v = vinttint + vexttext (4.36)

With the velocity defined, the displacement of the particles can be calculated if a time

interval ∆t is specified. The general equation for particle displacement is actually a Taylor

series expansion, as indicated in equation 4.37. Unfortunately, this is an infinite series that

requires multiple derivatives of the velocity field to be calculated (typically only a few terms

are needed, but the derivatives can still be complicated expressions). The approach used

instead is to divide the total time step into a large number of smaller time steps (typically

1,000) to approximate the actual displacement.

x′ = v∆t− x∂v
∂x

+
x2

2

∂v2

∂2x
− x3

6

∂v3

∂3x
+ . . . (4.37)
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Figure 4.27: X-Y slice from particle displacement simulation of the Hill spherical vortex.
Parameters a = 1.5 mm.

This approach to evaluating displacement allows curved streamlines to be generated.

A consequence of this fact is that the flow field contains sharp velocity gradients which are

known to degrade PIV correlation accuracy [3, p. 345]. This can be partially compensated

by the use of window deformation techniques, which will be discussed in Chapter 6. Nev-

ertheless, this is an excellent test for evaluating the utility of the technique for a physically

realistic flow field. It should be noted that the previous discussion exposes a limitation of

PIV in that it only evaluates linear displacements. This is not a limitation caused by the

plenoptic camera.
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Chapter 5

Light Field Rendering Algorithms

Generating volumetric intensity data from a simulated or experimentally acquired light

field image requires the use of light field rendering algorithms. This chapter details the

algorithms used, including registration of the light field data, computational refocusing, and

intensity thresholding. More advanced reconstruction schemes using 3-D deconvolution are

also discussed and will be the subject of future investigations.

The primary concept behind light field rendering is to select a subset of rays from

the complete 4-D light field to generate a conventional 2-D image. The unique aspects of

the light field, such as the complete parameterization of spatial and angular information,

allows modifications to be made prior to the generation of the final 2-D image. Herein,

the computational refocusing approach uses the angular information contained in the light

field to propagate light rays to an image focal plane that is different from the original focal

plane. This procedure is similar to the ray-tracing developed previously in the context of

the image simulator. By integrating a subset of rays at this new location, a 2-D image at a

new location is created. To enable this process, the light field image must be parameterized

correctly. This is addressed in the first topic of this chapter, which is then followed by a

discussion of refocusing and rendering.

5.1 Light Field Registration

The parameterization of the 4-D light field uses two spatial coordinates (x, y), and two

angular coordinates (θ, φ). The process of registration refers to assigning specific values of

these four coordinates to each pixel of a light field image acquired with the plenoptic camera.
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With the light field parameterized in this manner, it is possible to perform ray-tracing to

synthetically refocus the camera to an arbitrary image focal plane.

The registration first begins by either simulating or acquiring a “pinhole” image to

determine the central locations of each lenslet. To create a simulated pinhole image, a large

number of points within the focus plane are defined (zspan = 0), and a large f-number is used

((f/#)m = 16) to generate distinct points on the sensor plane. The diffraction parameters

are recalculated, allowing the diffraction spot size to be representative of a (f/#)m = 16 lens.

Figure 5.1 is a representative pinhole image rendered using the simulator. The variation in

spot intensities is due to the random distribution of particles used to form the image. In

other words, the simulator models light as discrete rays emanating from point sources and

an approximation to a uniform field is created by using a large number of particles placed

on a single plane. Due to this, there can be inhomogeneities in the resulting image. This

has been compensated to an extent by using a large number (500,000) particles with a small

number of rays (100) emanating from each. Actual pinhole images will not be subject to

this effect.

Figure 5.1: Cropped portion of a simulated pinhole image with (f/#)m = 16.

A Cartesian grid is placed over the image which defines the search regions for each

lenslet image. This is performed in MATLAB by specifying mesh node points using the
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function meshgrid, which is manually offset as needed to position the grid appropriately.

The parameters of the grid are set through visual inspection of the resulting overlaid mesh

to ensure each grid cell contains only a single lenslet image. The finite spot size created

by diffraction provides an excellent way to resolve the lenslet locations to subpixel accuracy

by using a 2-D Gaussian peak fit on the spot formed under each lenslet. This is performed

in MATLAB by first determining the intensity centroid of each grid cell and a first-order

estimate of the standard deviations in both coordinate directions. These are used as a seed

for the MATLAB function fminsearch, which operates on the 2-D Gaussian function given

in equation 5.1.

f(x) = ce
−
(

(x−cx)2

2σ2x
+

(y−cy)2

2σ2y

)
(5.1)

After a number of iterations, the function returns updated estimates of the peak locations.

This procedure is relatively quick; for an iteration tolerance of 1 × 10−7, each grid cell

takes approximately 0.03 seconds to evaluate, and the centers of all lenslet images could be

found in about 10 minutes. Note that this is a one-time procedure for a particular camera

configuration. The lenslet center locations are saved to a file and used on all subsequent

images that use identical camera settings. An example of a small portion of a processed

image is shown in Figure 5.2, where the grid is shown and the centroid values determined

from the Gaussian fit. Upon visual inspection, excellent agreement is seen with the center

of the lenslet images.

The next step in the registration procedure is to convert the lenslet centroid positions

cx and cy from image coordinates back to the optical axis coordinates (lx and ly) using

equations 5.2 and 5.3. Also, the angle between the optical axis at the aperture and the

lenslet is determined, denoted lθ and lφ. These are termed the “bulk angles” in this work,

and are calculated with equations 5.4 and 5.5 using the atan2 function.

lx = cxpp − ppnp,x/2 (5.2)
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Figure 5.2: Cropped portion of processed image showing grid cells and center locations.

ly = −cypp + ppnp,y/2 (5.3)

lθ = tan−1 lx/si (5.4)

lφ = tan−1 ly/si (5.5)

A basic working principle of the plenoptic camera is that the spatial resolution is sampled

at the lenslet location, and thus all pixels corresponding to a particular lenslet are set to the

same spatial coordinate. Determining the individual pixels that are paired with a lenslet

is found by using a distance formula in both coordinate directions. Since the location of

each lenslet is known, the average distance and radius can be calculated. This is used to set

the bounds on the lenslet size used in the distance calculation. Once the proper pixels are

identified, the x and y coordinates for each of the pixels are set to the lx and ly coordinates

of the lenslet. Next, the angles for each pixel pθ and pφ are calculated through the use of

equations 5.6 through 5.9, where fl is the lenslet focal length and xl and yl are local spatial

coordinates for the pixel.

xl = xppp −
np,x

2
pp − lx (5.6)
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yl = yppp −
np,y
2
pp − ly (5.7)

pθ = tan−1 xl/fl (5.8)

pφ = tan−1 yl/fl (5.9)

This process is repeated for each lenslet in the image, such that each pixel has a spatial

position defined by the nearest lenslet and an angular position defined by the relative location

with respect to the lenslet centroid. An example registration is shown in Figure 5.3, with both

angular coordinates listed. This registration procedure is more general than the approach

taken by Ng et al. [36], which used image rotation, resizing, and cropping to ensure that

an integer number of pixels defined each lenslet. Their approach is simpler to implement

and allows computationally efficient algorithms to be used such as Fourier slice refocusing

[50]. However, both rotation and resizing involve bilinear interpolation procedures which

have been shown to degrade traditional particle imaging [3, p. 394]. The technique given

here requires no interpolation in the registration process.
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Figure 5.3: Registration for a single lenslet. Top number (red) indicates the angle θ. Bottom
number (green) indicates the angle φ. Actual pixel locations given by blue points. Lenslet
centroid shown as red asterisk.
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5.2 Computational Refocusing

Rendering a single pixel of a computationally rendered image is a straighforward process

of integrating the signal from all pixels underneath a particular lenslet. By performing this

operation for each lenslet, a large number of pixels are generated, corresponding to the final

computationally rendered image. The computed image will have a depth of field given by

the effective f-number of the system and the size of the lenslets. Note that other rendering

techniques exist which use a subset of the pixels under each lenslet. This is known as synthetic

aperture refocusing, and allows the size and position of the aperture to be adjusted after

the image is captured to simulate various depths of field and perspective changes. This

capability is not used for the algorithms discussed here.

Computational refocusing is a simple extension of light field rendering, which uses the

angular information defined at each pixel to effectively propagate the intensity to a new

plane. This is similar to the ray-tracing defined in the previous chapter, and actually uses

equation 4.2 for the propagation. The lateral coordinate of the ray at this new plane can

be located within the domain of a different lenslet, causing the resulting rendered image to

have a difference in intensity. The algorithm first begins by defining the size of the synthetic

sensor. This differs from the actual sensor size, as indicated in Figure 5.4. The synthetic

size synthx and synthy is simply defined by the size of the usable lenslets on the sensor.

In the figure, xmax, xmin, ymax, and ymin are the maximum and minimum lenslet centroid

locations, and avgx and avgy are the average size of the individual lenslets determined from

the registration procedure.

This definition of the synthetic sensor size is valid when the refocus plane is located

at the original focus plane (i.e, t = 0). However, when the refocus plane is translated to

a different distance, the synthetic sensor size must be modified to take into account the

trapezoidal shape of the imaging volume. This is illustrated in Figure 5.5, where the sizes

of the pixels and overall sensor can be seen to increase as the distance is increased from the

lens. This scaling can be accounted for through the use of similar triangles, giving a scale
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Synthetic Width, synthx

Physical Width
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Synthetic Height, synthy

xmaxxmin
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ymax

Figure 5.4: Differences in synthetic sensor size vs. actual sensor size.

factor SF = (t+ si)/si. Using this scale factor, the synthetic sensor size and synthetic pixel

size can be calculated using equations 5.10 through 5.13.

si t

Synthetic Focal Planes

Trapezoidal Imaging Volume

Figure 5.5: Change in synthetic sensor size with refocus distance.

avgx = SF ×
(
xmax − xmin
nx − 1

)
(5.10)

avgy = SF ×
(
ymax − ymin
ny − 1

)
(5.11)

synthx = SF × (xmax − xmin) + avgx (5.12)

synthy = SF × (ymax − ymin) + avgy (5.13)
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With the size of the synthetic sensor defined at a refocus distance, each ray of the light

field can be rendered. First, it must be determined where the ray intersects the synthetic

focal plane in terms of the lenslet number. This is done through equations 5.14 and 5.15.

Note that these equations will return a fractional value.

ns,x = (synthx/2 + avgx/2 + x)/avgx (5.14)

ns,y = (synthy/2 + avgy/2− y)/avgy (5.15)

The fractional value returned by these equations allows for a sub-pixel interpolation of

the intensity in the rendered images. Consider the diagram shown in Figure 5.6. If the ray

of the light field is considered to be discretized into pixel-sized elements, and the particular

ray falls on a non-integer lenslet number, the signal from the particular ray will be spread

over multiple elements. Calculating the contribution of the signal to the overlapped pixels is

done using the normalized coefficients TL, TR, BL, and BR. This is schematically outlined

in Figure 5.6a, and the resulting distribution of signal is given in Figure 5.6b. Note that the

intensity levels are inverted in this figure, and a darker gray value indicates greater intensity.

The code for performing this operation is not listed here, but is provided in the appendix.

Lx Rx

By

Ty

BL BR

TRTL

(a) (b)

(x,y)

Figure 5.6: Signal interpolation technique, a) Definition of normalized coefficients, b) Re-
sulting rendered pixels.

A set of four low-particle-density, half-size refocused images is generated and shown

in Figure 5.7. In this case, arbitrary focal plane spacing was chosen as a demonstration.

In Figure 5.7a, the image is rendered with no refocusing performed. Clear points can be
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identified corresponding to imaged particles. Also notable are collections of low-intensity

blur spots throughout the image. As shown in figures 5.7b-e, bright points from one image

appear as blur spots in the remaining images. From a casual inspection, it appears that

each plane is unique in that the pattern of high-intensity, in-focus particles is unique in each

image.

These images provides insight on two important issues. First, it is clear that the choice

of focal plane locations is key for ensuring the uniqueness of each refocused image. This will

be the topic of the next section. The second finding is the clarity by which in-focus particles

can be identified amidst a background of blurred particles. This contrast in signal values

may allow simple thresholding to be used for volume reconstruction, a topic which will also

be discussed in the following sections.

5.3 Focal Plane Spacing

The depth-of-field concepts developed earlier in Section 4.2.2 provide a starting point

for determining the focal plane locations. The basic premise is that each refocused image

will contain unique information if the focal depths of each refocused image do not overlap.

This is schematically shown in Figure 5.8. Here, multiple light cones are emanating from

the object space, forming multiple diamonds in the image space. As previously stated, the

height of these diamonds is equal to the circle of confusion, c. In this analysis, c is taken to

be the calculated lenslet pitch.

From an overview of this figure, it is apparent that unique information will only be

generated when refocus planes are chosen that lie within separate diamonds (i.e., two planes

should not fall within the same diamond; these would contain redundant information). For

this work, the focal plane is placed at the center of this diamond.

To determine the actual locations, a marching approach is required that first solves for

the original focus plane, then steps to the remaining planes. Since this discussion is focused

on the image plane rather than the object plane, the earlier expressions for depth of field are
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(a) t = 0 mm

(b) t = −2 mm (c) t = +2 mm

(d) t = −4 mm (e) t = +4 mm

Figure 5.7: Example of refocused images at various refocusing planes.

not used. Instead, the term depth of focus is used to describe the equations dealing with the

image plane. For determining the initial bounds DN,i and DF,i of the original focus plane,

equations 5.16 and 5.17 are used.

DN,i =
fDi

f − (f/#)pl
(5.16)

DF,i =
fDi

f + (f/#)pl
(5.17)
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Figure 5.8: Unique depths of field for calculation of the focal plane spacing.

By rearranging the equations, they can be rewritten to remove the term corresponding

to the distance Di. The resulting equations 5.18 and 5.19 are much better suited for a

marching approach in both directions from the original image focal plane.

DN,i =
fDF,i((f/#)c/f + 1)

f − (f/#)c
(5.18)

DF,i =
fDN,i(1− (f/#)c/f)

f + (f/#)c
(5.19)

Di = DN,i(1− (f/#)c/f) (5.20)

These equations have been applied with the reference imaging conditions given in table

4.3. As suggested by Levoy [37], the number of unique focal planes capable of being generated

by a plenoptic camera is equal to the number of pixels underneath each lenslet. For the

camera considered here, this is taken to be 16. Thus, a total of 8 planes are found on either

side of the original image focal plane. The relevant values of the calculation are shown in

table 5.1. The second and third columns are the bounds on the depth of focus for each

plane. Column 4 shows the size of this depth of field; note, the size of the depth of field

changes depending on which direction the image is refocused. The fifth column takes these

values and divides it by the circle of confusion c (in this case, lenslet pitch pl). This shows,

as before, that the ambiguity in depth is almost an order of magnitude larger than in-plane
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ambiguity. The location of each of the refocus planes is given in the sixth column, and finally,

the distance the light field must be propagated t is given in the last column.

Table 5.1: Synthetic Depth of Field and Focal Plane Positioning

Plane No. DN,i (mm) DF,i (mm) DF,i −DN,i (DF,i −DN,i)/c Di (mm) t

1 91.8523 92.7755 0.9231 7.3851 92.3116 -7.6884
2 92.7755 93.7079 0.9324 7.4593 93.2393 -6.7607

*3 93.7079 94.6497 0.9418 7.5343 94.1764 -5.8236
4 94.6497 95.6009 0.9513 7.6100 95.1229 -4.8771
5 95.6009 96.5617 0.9608 7.6865 96.0789 -3.9211

*6 96.5617 97.5322 0.9705 7.7638 97.0445 -2.9555
7 97.5322 98.5124 0.9802 7.8418 98.0199 -1.9801
8 98.5124 99.5025 0.9901 7.9206 99.0050 -0.9950

*9 99.5025 100.5025 1.0000 8.0002 100.0000 0.0000
10 100.5025 101.5126 1.0101 8.0806 101.0050 1.0050
11 101.5126 102.5328 1.0202 8.1618 102.0202 2.0202

*12 102.5328 103.5633 1.0305 8.2438 103.0455 3.0455
13 103.5633 104.6041 1.0408 8.3267 104.0811 4.0811
14 104.6041 105.6554 1.0513 8.4104 105.1272 5.1272

*15 105.6554 106.7173 1.0619 8.4949 106.1837 6.1837
16 106.7173 107.7898 1.0725 8.5803 107.2509 7.2509
17 107.7898 108.8731 1.0833 8.6663 108.3288 8.3288

Table 5.1 provides the actual values which will be used herein for all refocused images

unless otherwise stated. Another, possibly easier, way to visualize this data is with a simple

plot. Figure 5.9 shows each of these points, and the corresponding depth-of-field “diamonds”

created by each. In this figure, the cross markers represent the refocus plane positions, and

the vertical line at 100 mm indicates the original image focal plane position. Note the

unequal axes in this figure, which are used for ease of visualization. Also, the optical axis in

this figure does not correspond to the optical axis in the actual simulators; here, the optical

axis is taken to be the distance from the lens si.

As an aside, it is worth exploring the differences focal length and f-number play in

determining unique focal planes. For a short focal-length lens, having a large f-number can

cause drastic nonlinearity in the sizing and spacing of the focal planes, as shown in Figure

5.10 for the case of a 50 mm lens operated at an f-number of 11. However, as focal length
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Figure 5.9: Unique depths of field for calculation of the focal plane spacing. f/# = 2, f = 50
mm.

is increased, this effect becomes much less significant. Figure 5.11 shows a 200 mm focal-

length lens operated at the same f-number. The primary reason for this is the distances from

the lens; for the 50 mm/f-number 11 case, the limited angles of light allowed to enter the

camera require a large physical distance in order to generate a unique focal plane spacing.

For the 200 mm case, the distance required to generate the unique focal planes is the same;

however, it is a smaller percentage of the total imaging distance and thus doesn’t result in

a substantial nonlinearity.

5.4 Single-particle refocusing

With the focal planes defined, a more detailed look can be used to evaluate the rendered

images. First, the case of refocusing a single particle is considered. In the following plots,

a cropped 2-D image is shown as well as a 1-D slice of pixel intensity values through the

center of the image. Figures 5.12 through 5.16 present these various views. In each case,

clear changes in image intensity and diameter can be seen. One of the best ways to evaluate

changes in shape is by defining a particle image diameter, which can be found by performing
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Figure 5.10: Unique depths of field for calculation of the focal plane spacing. f/# = 11,
f = 50 mm.
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Figure 5.11: Unique depths of field for calculation of the focal plane spacing. f/# = 11,
f = 200 mm.

a Gaussian fit to the data. By using the previously derived equation 4.25 and rearranging

to solve for ds (the spot diameter defined in Adrian and Westerweel [3, p. 101]), the particle

image diameter in pixels can be determined. This is a critical parameter for PIV evaluation;

the majority of PIV algorithms perform best when the particle image diameter is greater
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than 1.5 pixels. In the figures shown here, this does not appear to be an issue. Note that

in Figure 5.14 the Gaussian function is slightly skewed; there actually is a small value of

image intensity which is not easily visible because the lenslet is not exactly positioned on

the optical axis. Regardless, this shows that even for an approximately in-focus image, the

particle diameter is suitable for PIV. Another interesting feature of this data is the rapid

change in intensity values. The in-focus particle in Figure 5.12 exhibits a peak intensity of

around 30,000, whereas the out-of-focus particle in Figure 5.14 has a peak intensity much

lower, roughly 800. This suggests that out-of-focus particles could potentially be removed

from images using a simple thresholding process. This will be the topic of the next section.
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Figure 5.12: Refocus plane 3, t = −5.8236 mm
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Figure 5.13: Refocus plane 6, t = −2.9555 mm

The focal plane spacing derived earlier is the minimum spacing required in order for a

particle located at any position within the volume to be focused on a plane in the refocused

images. However, to ensure that the resulting volume of the focal stack is scaled correctly
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Figure 5.14: Refocus plane 9, t = 0.0000 mm
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Figure 5.15: Refocus plane 12, t = +3.0455 mm
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Figure 5.16: Refocus plane 15, t = +6.1837 mm

in all three dimensions, the refocus planes are typically supersampled. For example, in the

current configuration, each pixel of a 2-D rendered slice represents an area of 125 µm2,

defined by the area of the lenslets. For the reconstructions to be properly scaled, the refocus

plane spacing (depth-dimension) must be equal to the image or in-plane dimension.
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5.5 Intensity Thresholding

The refocused planes contain multiple contributions from out-of-focus particles. These

contributions would distort the correlation in PIV algorithms if not removed from the 3-

D data. For this reason, an approach used by Belden et al. [32] for synthetic aperture

PIV data is adapted for this work. In their paper, they considered refocused images to be

composed of high-intensity in-focus particle images and low-intensity out-of-focus noise, both

of which are randomly distributed in space. They found that the intensity distribution of a

refocused image was approximately Gaussian, allowing the convenient parameters of mean

µ and standard deviation σ to be used for quantifying the intensity range. The refocused

images generated in this work do not appear to have the same Gaussian intensity distribution,

but can be described in general terms using one; for example, Figure 5.17 shows an intensity

histogram of a sample refocused image with a Gaussian fit overlaying the histogram. While

the Gaussian curve doesn’t closely follow the data, it does describe the general trends well.

Also included on this graph are the locations of the mean intensity value, and the value

located three standard deviations above the mean. In this work, this threshold level is

adopted.

A modification made to the technique of Belden et al. is to dilate the thresholded images

by a radius of 1 pixel. This serves the primary purpose of ensuring that each particle image

contains neighboring information and has an effective diameter of greater than 1 pixel. The

reason for this change is that the primary sub-pixel evaluation routines in PIV processing

algorithms rely on either a three-point Gaussian or polynomial fit to the correlation plane.

The shape and information of the correlation peak in PIV algorithms is dictated by the

form of the particle images; thus, including neighboring information in the particle images

ensures that the correlation plane will also contain multiple pixels of information available to

sub-pixel estimators. Also, the artifact known as “peak locking,” or integer biasing in PIV

vector fields, is primarily driven by particle image sizes being less than roughly 2 pixels.
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Figure 5.17: Intensity histogram for a refocused image using 100 bins. Gaussian distribution
fitted to the distribution, and markers of the mean intensity, and three standard deviations
above the mean intensity given.

To perform the dilation, the thresholded image is converted into a binary image. MAT-

LAB has a number of convenient routines for modifying binary images. In particular, the

strel function is used to produce the correct dilation filter, which is then passed to imdilate.

The resulting dilated binary image is then multiplied by the original image, to yield a final

thresholded image. The results of this operation are shown in figures 5.18 through 5.20. The

former is an original refocused image, and the latter represents the image after thresholding

and dilation. Clearly, the thresholding removes the low-intensity background due to out-

of-focus particles and retains the in-focus particle images. Such an image is suitable as a

preliminary input for correlation algorithms.

5.6 3-D Deconvolution and Limited-Angle Tomography

The thresholding procedure described above is used to generate inputs to the correlation

algorithms. This procedure is simple but is not well-suited for dense particle fields where

particles may not be easily identified. Another disadvantage with the thresholding approach

is that only information from a single refocused plane is used to make the thresholding
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Figure 5.18: Original light field image without thresholding.

Figure 5.19: Light field image with non-dilated thresholding.

Figure 5.20: Light field image with dilated thresholding.

calculation (as opposed to using information contained in all planes to make an accurate

determination). For this reason, the techniques of 3-D deconvolution and limited-angle
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tomography can be used, which compute the 3-D volume by using information from more

than one plane simultaneously, and could potentially give more accurate results.

3-D deconvolution was pioneered in the early 1980s as the mathematical foundation to

deconvolution microscopy, and has advanced over the past twenty years to include multiple

deconvolution algorithms and implementations. It was developed as a method to increase

the spatial resolution in microscopes. Resolving small structures within biological cells is

not typically possible using traditional microscopy due to the fundamental limiting effects of

diffraction for both imaging and illumination. Some of these issues have been addressed using

clever illumination techniques and fluorescent markers; however even with these methods,

out-of-focus scatter from other regions of the specimen reduce the effective resolution of

the in-focus images. 3-D deconvolution uses information on the blurring behavior of the

microscope objective to reduce out-of-focus scatter in in-focus images.

An introduction and review of deconvolution techniques is given by Sibarita [51] and Mc-

Nally et al. [52], with a short summary given here. The first step in a deconvolution process

is either the calculation or measurement of the 3-D point spread function (PSF) of the optical

system. In microscopes, this is a complex function due to the effects of diffraction. Typically

this is performed by imaging tiny fluorescent beads at different focal depths. In traditional

photography, the PSF can be approximated much more simply since the effects of diffraction

are negligible, but it can be determined in a similar fashion by measuring the manner in

which an approximately point light source becomes blurred. For light field photography, the

PSF can be calculated in exactly the same way, except rather than using manual refocusing,

the image of a point source can be taken once and computationally refocused. However,

there is a complication of the PSF for traditional and light field photography which involves

the radial asymmetry of the PSF. Because a traditional camera acquires perspective views

of a scene, the angles of light incident on the sensor vary. This is in contrast to microscopy,

where all views are effectively orthographic.
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Once the PSF is known, a variety of computational algorithms can be used. Each of

these algorithms uses the knowledge of the PSF and the data contained in the focal stack

to remove out-of-focus contributions. In a basic sense, it can be regarded as an inversion

method. The simplest algorithm used is the nearest neighbors algorithm, which restricts

itself to using neighboring planes of data rather than the entire focal stack. The justification

for this is that the nearest two planes make the most substantial contribution to the in-focus

plane. This algorithm is very fast to apply and does not require iteration. Constrained

iterative algorithms such as the Jansson Van-Cittert algorithm and the Gold algorithm can

generate good results; however, they are typically slow and very sensitive to measurement

noise. This may preclude them from being used in images with low signal-to-noise ratio.

Another class of methods is known as statistical methods. One example is the maximum

likelihood estimation (MLE) algorithm, which uses the knowledge of the image noise sources

(Poisson noise) to make an estimate of the resulting images. Another approach is to use a

regularization function in addition to the MLE algorithm. This makes an assumption that

the noise is Gaussian to simplify the mathematical formulation, which is quite complex.

The review by Sibarita [51] gives examples of each of these applied to microscope data. In

this paper, the author mentions that no one algorithm is well suited for all cases; however,

the maximum likelihood estimation algorithm and one-step algorithms not discussed here

(Wiener filtering and unconstrained Tikhonov-Miller) perform poorly in terms of final image

quality.

It should be mentioned at this point that deconvolution microscopy has been used

as a method for performing 3-D micro-PTV measurements. Park and Kihm [53] used a

microscope with a 40X objective lens to visualize particle motion in a 100 µm2 square micro-

channel. The technique was able to resolve particles within a 5.16 µm cubic volume. The

basic processing methodology was to take the particle images and use the knowledge of

the microscope PSF to determine the depth. The entire volume under consideration was

intentionally defocused to ensure no ambiguity in depth location occurred. Their work was
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able to obtain fairly accurate measurements to within of +/- 7% (limited partially due to

Brownian motion). However, it is doubtful the methodology used in their work can be

applied to this work primarily since it deals with microscopic imaging and does not concern

the reconstruction of a 3-D intensity field, but rather the identification and matching of the

PSF.
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Chapter 6

Volumetric Correlation Algorithms

In order to extract the displacement information from a pair of 3-D particle fields,

a statistical interrogation scheme is required. These schemes are typically known as PIV

algorithms, which rely on taking two images acquired at different times and finding the

proper displacement to yield the maximum match between the two images. Typically the

images are discretized into hundreds or thousands of interrogation windows which allow

spatial variations in the displacement field throughout the images. By multiplying the pixel

displacement by the magnification of the imaging system and the pixel size, the physical

displacement is determined. The development of these algorithms for 2-D image data began

as early as the 1980s but was severely restricted due to the limited computing capabilities

available. A history of the early efforts and developments is not given here; the reader is

referred to the review by Adrian [54] for additional historical context. However, as computing

technology evolved, increasingly sophisticated interrogation procedures were developed which

allowed for improved evaluation of particle displacement. A variety of approaches have been

used, most of which can be classified into one or more groups:

• single-pass correlation

• multiple-pass correlation with discrete window offset

• grid refinement schemes

• multiple-pass correlation with image deformation

• spatially adaptive correlation

• optical flow
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The single pass correlation technique, described in [55], was one of the first algorithms

to be developed and tested on digital PIV data. Since then, researchers have found that an

iterative solution approach can be used to increase the dynamic velocity range (DVR) and

dynamic spatial range (DSR). The DVR is defined as the ratio of the maximum to minimum

resolvable velocity, and the DSR is defined as the ratio of the maximum to minimum re-

solvable length scale. Substantial improvements in DVR can be achieved using a multi-pass

iterative interrogation with a window offset, which reduces the in-plane loss-of-pairs and

achieves greater accuracy and range in velocity measurement [56, 57]. Furthermore, by us-

ing a grid refinement in addition to the multi-pass window offset method, each interrogation

region can be reduced in size which results in an increase in DSR [57].

The accuracy of PIV interrogation was further advanced by the application of image

deformation techniques. These techniques perform a traditional single-pass correlation to

determine a velocity field, and deform the two images such that the deformation follows the

velocity field [58, 59]. In this manner, the correlation becomes far more robust with respect

to velocity gradients that have a spatial scale on the order of the interrogation window

size. These techniques also allow the use of symmetric offsets on both images to achieve

second-order accuracy, as first suggested by Wereley and Meinhart [60].

A variety of other schemes have been developed and are still under development. Spa-

tially adaptive PIV eliminates the use of a Cartesian grid for performing the interrogation,

and results in interrogation windows spaced and sized to the scales of the flow field under

evaluation [61]. This technique does yield increases in both DVR and DSR; however, the

complexity of the algorithms make applying the technique difficult. Additionally, since the

interrogation grid is uniquely adapted for each image pair, it is difficult to compile turbulent

statistics since measurements are located at different positions in each correlation. Typically

measurements must be interpolated onto a uniform grid, which can have the detrimental

effect of smoothing the data.
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Optical flow presents another approach to measuring displacement, which uses concepts

developed originally for computer vision research. Optical flow algorithms are fundamentally

different from correlation-based PIV algorithms in that the interrogation is performed by

determining the gradient of intensity between an image pair. The displacement vector is

simply a vector aligned along the gradient [62]. The advantage to this technique is the

substantial increase in data yield (each pixel of the image results in a velocity vector).

However, a fundamental limitation exists due to the calculation of the gradient: particle

displacements cannot in general be greater than the particle image diameter. This greatly

limits the DVR of the technique. However, research is still being conducted in this field on

better understanding the connection between optical flow and fluid motion to extend the

range of velocities that can be measured. Note that the references given for each of the

algorithms discussed above are by no means exhaustive, but give the most well known work

related to each algorithm.

Based on the previous discussion, the algorithms that appear capable of achieving the

highest DVR, DSR, and accuracy while still being relatively straightforward enough to im-

plement are the multi-pass discrete offset methods with grid refinement. The results from the

third international PIV challenge (collected and published by Stanislas et al. [63]) showed

that image deformation techniques are recommended; however, particular attention must

be paid to the validation procedures and low-pass filters used, which greatly increases the

difficulty of accurately implementing the algorithm. Some other findings were a general

agreement that interrogation window sizes smaller than 16 x 16 pixels should be almost

universally avoided. Also, the application of optical flow algorithms in the same tests did

not achieve similar performance as the advanced correlation-based algorithms.

These findings motivated the choice in this work to use a multi-grid, multi-pass discrete

offset method. Herein, the technique will be referred to as WIDIM (window displacement

iterative multigrid), an acronym first used by Scarano [57]. This chapter begins with a basic

description of the technique and outlines the processing steps required. The algorithm is
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developed first for the evaluation of 2-D PIV images and is then extended to work for 3-D

data based on modifications to the 2-D algorithm.

6.1 WIDIM Algorithm Development

A schematic outline of the WIDIM algorithm is given in Figure 6.1 and can be described

as consisting of two separate methods. First, a grid refinement algorithm is used (also

referred to as multi-grid), where the interrogation window size is decreased as a means to

increase the DSR of the result. The second is the multi-pass algorithm, where multiple passes

are performed using the displacement data from a previous pass to offset the interrogation

windows prior to the correlation. The primary advantage to this iterative approach is the

ability to eliminate the in-plane loss of pairs which occurs with no prediction step.

Load
Images

Grid
Generation

Cross
Correlation Update

Displacement
d = p + c

Validate
Displacement

Update Predictor

Test for
Convergence Output

Multi-Grid Multi-Pass

Figure 6.1: WIDIM algorithm flow chart.

6.1.1 Grid Generation

A Cartesian grid is generated that allows each interrogation window to fit within the

image domain while also allowing for interrogation region overlap. The grid methodology is

shown for a single interrogation row in Figure 6.2. The sizes of the interrogation windows are

given as xsize and ysize, and the spacing between each window (which allows for overlap) is

denoted as xspacing and yspacing. Note that in Figure 6.2, the actual window sizes are distorted

to show the window overlap, in this case 25%, more clearly. The number of windows that can

fit within a given image size are determined by using a loop to fill the image until another
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interrogation window cannot fit in the image area. This will result in a corner of the image

not being covered by interrogation windows. For this reason, the grid is then offset by an

amount xoffset and yoffset to center the grid within the image. The grid is defined as integer

node points xnode and ynode and by the locations of the centroids xcent and ycent which can

be fractional values.

Image Width

X Size

Y Size

X Spacing Node Point Center Point

Y Offset

X Offset

Figure 6.2: Schematic of PIV gridding.

6.1.2 Cross-Correlation

The interrogation of displacement is achieved using the discrete spatial cross-correlation

R of two image windows, IA and IB, as defined in equation 6.1. The values of p and q are

the shift of the interrogation regions with respect to each other.

R(p, q) =
1

xsize × ysize

xsize∑
m=1

ysize∑
n=1

IA(m,n)IB(m+ p, n+ q) (6.1)

The cross-correlation can be computed directly from this equation, however this is a

computationally intensive operation requiring (xsizeysize)
4 operations. An alternative is the

use of an efficient Fast Fourier Transform (FFT) algorithm which reduces the complexity to

(xsizeysize)
2 log2(xsizeysize)

2.

To perform the FFT-based spatial correlation, the image windows are obtained by

using the previously defined grid node points and window sizes to extract a subset of data

from the individual images. Each window is subtracted by the mean value of itself to

eliminate the correlation of the mean and fluctuating intensities as shown in [3, p. 320]. This

subtraction procedure is valid for the case of relatively homogeneous illumination within
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each interrogation window, which is almost always a valid assumption. An example of two

windows is shown in Figure 6.3a,b. Next, the two-dimensional FFT of both windows, FA and

FB, is computed using the fft2 function in MATLAB. The shifted absolute magnitudes of

these Fourier transforms are shown in Figure 6.3c,d. The resulting pair of Fourier transforms

are then multiplied together. Specifically, the complex conjugate of FA is multiplied by FB.

This quantity is known as the cross-spectral density and is shown in Figure 6.3e. Taking

the inverse FFT using the MATLAB function ifft2 yields the spatial correlation R. Some

implementations of the FFT, such as the FFTW library used by MATLAB, shuffle the FFT

such that high frequencies are placed at the center, and the DC-component is located at

the corners. For this reason, the function fftshift is used to reshuffle the values of the

correlation plane so the center of the plane corresponds to zero displacement. The shifted

correlation plane is shown in Figure 6.3f.

The drawback of using FFTs instead of a direct computation approach is that the

FFT is defined only for periodic signals. As detailed in Adrian and Westerweel [3, p. 372],

the exact value of the spatial correlation can only be recovered by zero-padding the input

values such that the resulting size of the inputs IA and IB are ≥ 2xsize and ≥ 2ysize. In

practice, selection of window sizes in accordance with the one-quarter rule (displacements

should be less than one-quarter of the interrogation window size) reduces this effect because

the correlation peak will not be “folded” back into the actual correlation plane through

the periodicity effect. However, to ensure correlation artifacts do not skew the results of

this work, all spatial correlations are zero-padded by twice the input size in both coordinate

directions. Note that even with zero-padding, the computational efficency of the FFT method

is still an order of magnitude better than the direct method. For example, using 64 x 64 px

interrogation windows, the direct approach requires almost twenty million operations, while

the zero-padded FFT requires just 200,000.

A further modification to the FFT method described here is to properly scale the cor-

relation plane. As noted in Raffel et al. [7, p. 139], the correlation coefficient is the proper
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normalization of the cross correlation, which allows a comparison between different correla-

tion planes to be made. Additionally, the values of the correlation coefficient give a first-order

approximation to the relative strength of the correlation. To modify the correlation plane to

yield the correlation coefficient, the data is scaled by dividing it by the standard deviations of

the original windows. Note that the standard deviation is calculated prior to the application

of zero-padding. After this is performed, the values of the correlation plane will nominally

fall in the range −1 ≤ R ≤ 1.

With the correlation plane calculated, the displacement is found by estimating the

precise location of the peak value. The estimate can be broken into two components, the

integer displacement m0 and n0, and the fractional estimate εX and εY . The value of the

total displacement is the sum of the integer and fractional displacements for each coordinate.

The integer estimate is found using a simple maximum search within the correlation plane,

excluding boundary pixels. The fractional displacement is determined using a Gaussian

three-point estimator, which has become the standard method for subpixel peak detection

in PIV. The Gaussian estimate is defined in equation 6.2, R0 is the maximum value of the

correlation plane at (m0, n0), and R−1 and R+1 are the values of the neighboring points.

This equation can be applied separately and independently along all coordinate directions.

ε =
lnR−1 − lnR+1

2 lnR−1 − 4 lnR0 + 2 lnR+1

(6.2)

Note that the form of equation 6.2 requires a neighboring value of the correlation in each

direction. For this reason, the integer estimator defined previously excludes boundary points.

Also, the Gaussian estimator requires all values of the correlation plane to be positive (the

natural logarithm of zero or a negative number is undefined). Due to this, the correlation

plane is scaled in the estimator by subtracting the minimum value of the correlation plane,

making all values of the plane greater than or equal to zero. To eliminate any possibility

that the zero value could be encountered, a value of 1× 10−10 is added to ensure all values

are positive. These modifications to the correlation plane do not shift the estimated peak
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(a) IA (b) IB

(c) |FA|, shifted (d) |FB|, shifted

(e) |S|, shifted (f) R, shifted

Figure 6.3: Intermediate steps for the calculation of the spatial correlation with the FFT.
Window size 64 x 64 px. Data from case A2 of the 2005 PIV Challenge.

location, since the estimate is based on the ratio of the surrounding pixel intensities and not

on the absolute intensity value of the pixels.
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As an final step to determine the actual displacement, the estimate is reduced by an

amount equal to half of the correlation plane size. This is because for zero displacement

the peak is located at the center of the correlation plane while the estimators provide values

given in image coordinates which begin at the upper-left corner of the plane. Equations

6.3 and 6.4 perform this shift. The additional subtraction of one is due to the nature of

MATLAB image indexing, which begins at one.

dx = (m0 + εX)−Rx,size/2− 1 (6.3)

dy = (m0 + εY )−Ry,size/2− 1 (6.4)

An example of this cross-correlation procedure without any window offset applied to

an entire image is given in Figure 6.4. From a qualitative standpoint, the flow field of a

turbulent jet is represented quite well. However, there do appear to be obvious outliers in

the data. Therefore, validation procedures must be developed to detect outliers and replace

them with suitable displacement values.

6.1.3 Vector Validation

To identify invalid vectors and replace them, a local validation process is used for de-

tection. The multi-step procedure outlined here is similar to the one outlined by Adrian and

Westerweel [3, p. 512].

1. Local outlier detection using the normalized median test. Vectors exceeding a threshold

value of two are tagged as invalid.

2. Bilinear interpolation to replace vectors tagged as invalid.

3. Repeat process until convergence.

The normalized median test is described by Westerweel and Scarano [64] and is a local

validation test based on the median value of the velocity components of the neighboring
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MATLAB

Figure 6.4: Example of a cross-correlation performed using 48 x 48 px interrogation window
sizes with 24 x 24 px spacing and no window offset. Vectors scaled by a factor of 5. Data
from case A, image 2 of the 2003 PIV Challenge.

eight vectors. The technique is robust and applies to a wide variety of flows, including those

with large velocity gradients, and is now the predominant validation technique used in PIV

codes.
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MATLAB

Figure 6.5: Vector field from Figure 6.4 using the iterative validation and replacement pro-
cedure.

6.1.4 Predictor Generation

After a initial interrogation pass performed without a window offset, the predictor for

the next iteration can be generated by simply rounding the value of the displacement to

the nearest integer value. The resulting values px and py are used to offset the individual
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windows of image B from image A. An example of the predictor field is shown in figures 6.6

and 6.7.

A more complex approach is needed to apply the predictor to a refined grid. As the grid

resolution increases, the values of the predictor must be interpolated from the displacement

field of the previous grid. For this reason, a bilinear interpolation is performed with the

MATLAB function interp2. The results of the interpolation are then rounded to yield

integer values.
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Figure 6.6: X-Coordinate Predictor using 64 x 64 px interrogation window sizes with 32 x
32 px spacing. Data from case A, image 2 of the 2003 PIV Challenge.

6.1.5 Grid Refinement

After multiple passes using identical grid settings, the velocity field will converge. To

increase the spatial resolution of the algorithm, a new grid can be generated using a smaller

window size and window spacing. To accomplish this a refinement factor Rf is defined,

which is taken to be an integer value going from 1 to as much as 4. The grid parameters at
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Figure 6.7: Y-Coordinate Predictor using 64 x 64 px interrogation window sizes with 32 x
32 px spacing. Data from case A, image 2 of the 2003 PIV Challenge.
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Figure 6.8: X-Coordinate Corrector using 64 x 64 px interrogation window sizes with 32 x
32 px spacing. Data from case A, image 2 of the 2003 PIV Challenge.
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Figure 6.9: Y-Coordinate Corrector using 64 x 64 px interrogation window sizes with 32 x
32 px spacing. Data from case A, image 2 of the 2003 PIV Challenge.

each refinement level are then defined in equations 6.5 to 6.8, where xsize,i, ysize,i, xspacing,i,

and yspacing,i are the initial grid settings.

xsize = ceil(xsize,i/Rf ) (6.5)

ysize = ceil(ysize,i/Rf ) (6.6)

xspacing = ceil(xspacing,i/Rf ) (6.7)

yspacing = ceil(yspacing,i/Rf ) (6.8)

In the above equations, the ceil function is used to ensure integer values of all inputs.

Additionally, a check is performed on both xsize and ysize to ensure that they are even

values. This restriction is due to the way the fftshift function in MATLAB reshuffles the

correlation plane. After the grid parameters are set, the grid generation function generates
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new node and centroid points for use in the calculations. An example of the grid refinement

is given in figures 6.10 through 6.13.

Figure 6.10: Rf = 1. Initial percentage of valid vectors: 97%.

From 6.10 to 6.13, the spatial resolution increases dramatically; however, at high refine-

ment levels a high percentage of invalid vectors exist. This is due to the reduced number of

particles forming a distinct correlation peak, as detailed in Adrian and Westerweel [3, p. 346].

In this work, the acceptable maximum refinement level is defined as the highest level which

can be achieved with greater than 95% valid vectors on the first validation pass. Another

way to visualize this behavior is in figures 6.14 and 6.15. In the former, the RMS of the

corrector values are plotted alongside the refinement value. Note that due to the multi-pass

procedure, within each grid refinement step the RMS error generally decreases significantly.

The second figure shows the performance of the vector validation and replacement scheme

along with the refinement number. Note the substantial drop in valid vectors when the

refinement factor Rf = 4.
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Figure 6.11: Rf = 2. Initial percentage of valid vectors: 97%.

6.2 Extension to 3-D PIV

Extending the WIDIM algorithm to 3-D requires each component of the algorithm to

be adapted for 3-D correlation. This is a relatively simple procedure which does not involve

substantial modification of the PIV code. A notable change is the use of the fftn and

ifftn commands for performing the 3-D FFT and inverse FFT, respectively. However, the

images do need to be conditioned prior to being loaded into the code. This is because the

output from the rendering code has equal resolution at each plane but actually represents a

trapezoidal volume in which the magnification changes at each plane. Thus, if a modification

is not made to the individual refocus planes, the differences in magnification through each

interrogation volume will result in a slight shear. To correct for this, the data in each of the

refocused images is resized in a manner such that the magnification is set to a constant value

while no information is lost. This is done by calculating the image size for each plane using

the relation (t + si)/si. The base resolution is chosen as the plane with the largest scale
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Figure 6.12: Rf = 3. Initial percentage of valid vectors: 95%.

factor. This procedure is shown schematically in Figure 6.16. This procedure takes a data

set consisting of multiple planes at identical pixel resolution but different magnifications

due to their distance from the lens. By performing a resizing operation on each of the

planes, the magnification can be adjusted such that the image data now represents constant

magnification. For the resizing, data outside of the image range is taken to be zero. The

shaded regions in Figure 6.16 correspond to areas filled with zeros. An example of this

applied to a set of 2-D data is given in Figure 6.17.

One of the most important parameters in PIV interrogation is particle number density

within the interrogation windows, which is designated NI . It can be defined as the average

number of particle images within each interrogation window or volume. It is well documented

that increasing the number density directly increases the peak detection probability and

accuracy [3, p. 343], and suitable values typically occur for NI > 10 [3, p. 350]. This

parameter can be controlled in an experiment by introducing or removing seeding particles,

107



Figure 6.13: Rf = 4. Initial percentage of valid vectors: 85%.
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Figure 6.14: Corrector RMS for the multi-pass algorithm. The refinement factor Rf is also
plotted for clarity.

or at processing time by modifying the size of the interrogation windows or volumes. For

measurements desiring high spatial resolution, the interrogation window size must be made

as small as possible. Thus to ensure NI is a large enough value in these cases, the seeding
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Figure 6.15: Percentage of valid vectors for the multi-pass algorithm. The refinement factor
Rf is also plotted for clarity.

Non-constant Magnification

Constant Magnification

Figure 6.16: Schematic of resize operation.

concentration is often increased in the case of a traditional PIV measurement. The limitation

in seeding concentration typically occurs when laser speckle noise becomes the dominant

factor in the imaging or the line of sight loses transparency due to the dense particle field.

For 3-D PIV, most techniques do not directly measure the intensity field and for this

reason require reconstruction procedures to generate a volumetric intensity field. Through

the use of Monte Carlo simulations and actual experiments, all reconstruction procedures

(MART, SAPIV Thresholding, etc.) have limits on the particle density of fields to yield

acceptable reconstructions. In essence, the primary limitation of spatial resolution in 3-D

PIV is due to the limited particle density able to be reconstructed. It is estimated that the
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(a) t = −7.7 mm (b) t = −4.5 mm

(c) t = −1.3 mm (d) t = 1.9 mm

(e) t = 5.1 mm (f) t = 8.3 mm

Figure 6.17: Example of resizing operation applied to a set of refocused planes. Note that
in these images the thresholding operation has not been applied to give a clearer view of the
resizing procedure.

technique described here will have similar limitations to the SAPIV thresholding technique,

but this must be verified. Additionally, the 3-D PIV code itself must be verified. For this

reason, the technique is first tested on simulated uniform velocity fields independently in

both the x and z directions. This allows the accuracy of the technique to be evaluated for
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both in-plane and out-of-plane motion. The variable to be changed in these simulations is

the particle number density, measured in particles per pixel (ppp).
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Chapter 7

Results

Testing of the simulation, rendering, and PIV algorithms is performed in this section by

analyzing cases of uniform in-plane and out-of-plane displacements and a spherical vortex

simulation. The resulting velocity fields are screened for bias errors, and the accuracy is

estimated for motions in the in-plane and out-of-plane directions.

7.1 Uniform X-Direction Displacements

A uniform displacement in the x-direction was tested to identify any bias errors which

could be present in the rendering codes or PIV algorithms. A uniform shift of 4.5 pixels was

used; the pixel size was determined by the 125 µm pitch of the lenslets, so the physical shift

input into the simulator was 0.562 mm. For these tests a relatively low particle density of

0.001 particles per pixel (ppp) was used. Particles per pixel is defined in this case as the

number of pixels of the CCD, not of the refocused images. By comparison, tomographic

PIV and other 3-D techniques typically use seeding densities an order of magnitude greater.

16 refocused planes are generated using the plane spacing derived from the depth of field

equations. An example of the velocity field generated in this configuration is given in Figure

7.1. In this run, 4800 vectors are generated while only 1 out of every 3 vectors is shown for

clarity. From a qualitative perspective, it is clear from this overview that the PIV algorithms

do not result in substantial outliers. A more rigorous comparison of the accuracy is performed

by generating displacement histograms for each coordinate direction.

Figure 7.2 is a histogram of the x-displacements using 50 bins. A Gaussian function

is fit to the data to show the excellent agreement between the histogram and the normal

distribution. This is an indication that the velocity vectors are complying with the statistical
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Figure 7.1: Velocity field using 0.001 particles per pixel and a simulated 4.5 pixel shift in
the x-direction.

central limit theorem, which states that the compilation of many independent, identical

random variables (such as the random error in PIV, [3, p. 380]) will tend towards a normal

distribution. The annotations in Figure 7.2 indicate the mean and standard deviation of the

samples, not of the Gaussian curve fit.

Note that the mean value appears to show a slight underestimation of the actual dis-

placement (4.5 px). This is likely a bias error inherent in the PIV processing itself. The

value is consistent with the magnitude of the displacement bias error described in Adrian

and Westerweel [3, p. 356]. This underestimation occurs when the values of the correlation

peak are slightly skewed due to the finite size of the interrogation regions. This leads to a

systematic underestimation of the actual displacement. Modern PIV interrogation methods

eliminate this issue by using fractional window offset techniques to position the correlation

peak at the center of the correlation plane which eliminates the bias error. These tech-

niques are more complicated due to the use of image interpolation schemes which introduce
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additional complexity in the interrogation steps. However, the magnitude of this error is

relatively small and is on the order of the random error magnitude for PIV.
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Figure 7.2: Histogram of x-displacements. 50 bins used over 4800 data points.

Histograms were also generated in the other coordinate directions for the case of uni-

form x-coordinate displacement. Figure 7.3 presents the displacements in the y-direction,

and Figure 7.4 presents the data in the z-direction. In both cases, the mean value of the

displacement is zero, and the standard deviation of the displacement is in agreement with

the random error magnitude typical of PIV interrogations [3, p. 380].

As a further test to evaluate the accuracy of the rendering codes, the image resizing

step was removed to gauge the effect on the PIV interrogation. By removing the image

resize step, the magnification is no longer constant throughout the image, and it should

be expected that a depth-dependent bias should exist. Figure 7.5 shows a histogram of

x-component vectors for this scenario. The bimodal distribution in the histogram is due to

the change in magnification. This is clarified in Figure 7.6, which shows the error increasing

as the distance from the central plane also increases. In this figure, the average displacement

was subtracted to better illustrate the spatial distribution of the bias.
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Figure 7.3: Histogram of y-displacements. 50 bins used over 4800 data points.
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Figure 7.4: Histogram of z-displacements. 50 bins used over 4800 data points.

7.2 Uniform Z-Direction Displacements

Particle displacements in the z-direction are particularly challenging as the number of

pixels in the depth direction (16) is significantly lower than that in the in-plane directions.

For this reason, the interrogation volume size in the z-direction must be reduced to allow

for multiple planes to be measured. For the cases studied here, the interrogation window
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Figure 7.5: Histogram of x-displacements without using image resizing. 50 bins used over
4800 data points.
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Figure 7.6: Vector field showing one of every 5 vectors without image resizing. Mean value of
x-component subtracted, and both y and z components set to zero for effective visualization.

initial zsize was set to 16 px, and the initial zspacing is 8 px. Additionally, the first tests of the

uniform z-displacement showed severe bias errors related to particles leaving the rendered
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measurement volume. For this reason, the rendering was expanded by 50% for both positive

and negative depths, and the number of refocus planes generated was doubled (32). This

allows for particles located near the edge of the measurement volume to gradually fade out

of the measurement volume rather than be cut off. This procedure was found effective for

eliminating biases near the boundaries of the volume.

Figure 7.7 shows the velocity field obtained for the uniform z-displacement case with

a nominal displacement of 2.5 pixels. One out of every four vectors is shown for clarity.

From a qualitative standpoint, it captures the displacements with few major outliers. As

for the previous case, a more substantial analysis can be made by analyzing displacement

histograms. Figure 7.8 shows a histogram of the z-displacements. Notable in this figure

is the presence of a bimodal structure centered on integer displacements, likely due to the

“peak-locking” effect in PIV. There also appears to be a small outlier at 0 px, likely due to

a region of interrogation windows without particles near the edges of the volume.
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Figure 7.7: Vector field for uniform z-displacement showing one of every 4 vectors.
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Figure 7.8: Histogram of z-displacements. 100 bins used to highlight peak-locking effect
more clearly.

To confirm these ideas, a vector field is shown in Figure 7.9 where the mean displacement

has been subtracted from the actual displacement, giving a view at the spatial distribution of

the bias errors. It is clear through inspection of this figure that there appears to be an inward

bias towards the edge of the interrogation volume, and the outliers corresponding to zero

displacement are found to occur at the edges of the volume, where there could potentially

be few particle images. Note that in this figure, the vectors have been scaled by a factor of

4 to highlight the effects.

These findings indicate that z-displacements can be measured; however, they are highly

sensitive to peak-locking effects. By modifying the thresholding and rendering procedures

in future efforts, it may be possible to reduce the peak-locking effect and potentially reduce

biases at the edge of the measurement volume. Histograms of the displacement in both the x-

direction and y-direction are shown in figures 7.10 and 7.11, respectively. As in the previous

case of uniform x-displacement, the errors in other coordinate directions are minimal and

correspond to the magnitude of the random error in PIV.
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Figure 7.9: Vector field for uniform z-displacements (same as Figure 7.7). Mean value of the
displacement subtracted to show location and direction of bias.
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Figure 7.10: Histogram of x-displacements. 100 bins used over 3600 data points.

7.3 Variation of Particle Number Density

As previously noted, the particle number density is a critical parameter in PIV, which

specifies the maximum spatial resolution that can typically be achieved. The number density
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Figure 7.11: Histogram of y-displacements. 100 bins used over 3600 data points.

was increased in the simulations from the base value of 0.001 ppp to 0.005 and also 0.01 ppp.

To demonstrate the effect of this increase on the refocused planes, Figure 7.12 shows an

example refocused plane from each case, with and without the thresholding applied. An

interesting result can be found from this figure that the thresholding technique performs

poorly at high particle densities. The reduced number of particles in the thresholded images

precludes performing any PIV interrogation with these data sets.

To understand why the thresholding procedure deteriorates at high particle image den-

sities, the intensity histograms are compared for both 0.001 and 0.01 ppp in figures 7.13

and 7.14. Clearly, at high particle densities the intensity distribution becomes noticeably

more Gaussian and the threshold level is increased. It should be noted that the Gaussian

intensity distribution and high threshold levels demonstrated in Figure 7.14 also exist for

the individual planes of the rendered volume, not just the entire volume. This indicates that

the use of a unique threshold calculated for each focal plane would have a minimal effect for

improving the discrimination of particles.

Based on these results, PIV was not attempted at the higher particle densities of 0.005

and 0.01 ppp, since the low number of particles in the thresholded images would result in
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(a) Original, 0.001 ppp (b) Thresholded, 0.001 ppp

(c) Original, 0.005 ppp (d) Thresholded, 0.005 ppp

(e) Original, 0.01 ppp (f) Thresholded, 0.01 ppp

Figure 7.12: Example of resizing operation applied to a set of refocused planes. Note that
in these images the thresholding operation has not been applied to give a clearer view of the
resizing procedure.

interrogation volumes with few or no particles and thus invalid results. As a rule of thumb,

accurate PIV evaluation requires greater than 10 particle images within each volume [3,

p. 350].
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Figure 7.13: Histogram of the rendered intensity volume corresponding to Figure 7.12a. The
3σ threshold level for this case is 0.34.
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Figure 7.14: Histogram of the rendered intensity volume corresponding to Figure 7.12e. The
3σ threshold level for this case is 0.72.

7.4 Velocity Field of a Simulated Vortex

The previous two sections evaluated the performance of the PIV and rendering codes

on uniform displacement fields to check for bias errors and peak-locking effects. With these
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errors now quantified, a true 3-D velocity field can be tested to evaluate the algorithms for

the case of displacements in all three directions. The Hill’s spherical vortex is used for this

purpose. Figure 7.15 shows the 3-D velocity field generated by the rendering and PIV code.

Qualitatively, the large-scale vortical structure can be easily deduced with good resolution.

Figures 7.16 and 7.17 present projective views of the 3-D velocity field to provide additional

insight.
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Figure 7.15: 3-D velocity field of a inviscid spherical vortex. All vectors plotted.

As in the previous cases, the histograms of displacement are shown to evaluate the

effects of peak locking or any bias. Figures 7.18 through 7.20 show these histograms for

x, y, and z-displacements, respectively. Most notable is the reduced effect of peak locking

for z-displacements, which may simply be caused by the lower percentage of vectors with

appreciable displacement in the z-direction.
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Figure 7.16: X-Y projection of the 3-D velocity field in Figure 7.15. All vectors plotted.
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Figure 7.17: Y-Z projection of the 3-D velocity field in Figure 7.15. All vectors plotted.
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Figure 7.18: Histogram of x-displacements for the velocity field given in Figure 7.15
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Figure 7.19: Histogram of y-displacements for the velocity field given in Figure 7.15
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Figure 7.20: Histogram of z-displacements for the velocity field given in Figure 7.15
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Chapter 8

Concluding Remarks

This thesis has detailed the development of a novel 3-D particle image velocimetry tech-

nique based on light field imaging by describing the concept of light fields and plenoptic

photography, detailing the development of rendering codes, and finally integrating the ren-

dering codes with a complete simulation of the camera and a 3-D PIV algorithm. Conclusions

can be drawn from each of these.

The application of light field imaging to particle imaging was able to be explored in this

thesis. For example, the depth and angular resolution can be traded through the design of

the lenslet array. Increasing pitch of the lenslet increases the number of pixels covered by the

lenslet and the number of unique focal planes available to be generated but also results in a

reduction in the spatial resolution of each refocused image. The choice of lenslet size used

in this work was primarily to evaluate the performance of a commercially available lenslet

array; however, custom lenslet arrays can be manufactured. As an aside, the capability of

trading depth resolution for spatial resolution could allow for innovative new ways to perform

dual-plane PIV without multiple cameras and polarization filters. Another approach could

be increase the depth resolution of the technique and use the camera with particle tracking

velocimetry (PTV) algorithms. Advances in sensor technology may allow for smaller pixels

to be reliably manufactured in the future and allow both the angular and spatial resolution

to be sampled in much greater detail.

Other design parameters include the optical parameters such as magnification, the work-

ing distances si and so, and the f-number. In this thesis, it was demonstrated that increasing

the depth resolution required the lenslet size (and thus circle of confusion) to be made smaller

the camera to be operated at a magnification closer to 1 so the cone of rays generated at
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different refocus planes do not intersect in an elongated volume. This finding has practical

implications in that performing high resolution measurements will be easier within small

measurement volumes. It also constrains the design space for lenslet arrays. In most cases,

a lenslet with a low f-number is desired. Currently, the lowest f-number available for com-

mercial order is f/4, but custom designs may allow this to be reduced to smaller numbers.

This has the combined effect of potentially increasing the depth resolution of the camera as

well as increasing the light gathering capacity. However, it must be kept in mind that the

f-number of the camera lens is fixed by the effective f-number of the lenslets and is generally

lower than the lenslet f-number. The f-number of the lenslets should thus not be designed

in a manner where the main lens cannot properly match the required effective f-number.

The rendering codes developed in this thesis have successfully allowed for multiple planes

to be refocused. However, the rendering process still requires additional work to fully under-

stand the performance and limitations. A particular interest would be comparing rendering

techniques used by other light field research groups, such as Fourier slice refocusing, to the

current technique. Additionally, more basic questions persist and must be answered in future

efforts. Namely, there is not a clear understanding of the number of focal planes that can be

generated from a light field image and if generating a greater number of planes has any posi-

tive effect on the PIV interrogation. The current viewpoint taken in this work was originally

given by Levoy, who uses the concept of uniqueness to restrict the number of generated focal

planes to the number of pixels under a lenslet in any one direction. This perhaps could be

strengthened for the case of particle imaging by developing a firmer theoretical background.

A notable deficiency of the rendering codes, specifically the intensity thresholding, is the

inability to handle high particle number densities. This represents an area where tremendous

progress can still be made in the technique by introducing more sophisticated 3-D deconvolu-

tion or limited angle tomographic schemes to eliminate out-of-focus particles. Improvements

in this step of the rendering process have a direct effect in increasing the accuracy of PIV

by allowing a larger number of particles to be placed within each interrogation volume and
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allowing low intensity scatterers (which would be eliminated by the thresholding procedure)

also to contribute to the correlation.

Finally, the PIV code developed in this thesis provided a reasonably accurate interro-

gation with adequate dynamic spatial and velocity range to evaluate the refocused images

generated from the simulator and rendering codes. However, enormous developments in

PIV techniques have occurred since the technique used in this thesis (discrete window off-

set) was proposed in 1999. The challenges in correctly implementing advanced correlation

schemes ideally require dedicated efforts and suggest a collaborative effort should be formed

with others in the 3-D PIV community such that the predominant focus in plenoptic PIV

development is on the rendering codes and design studies.

In light of the difficulties expressed above, the plenoptic PIV concept has been demon-

strated in this thesis to be certainly feasible using currently available hardware and software

and should continue to be developed. The attractiveness of a single-camera solution for 3-D

PIV cannot be discounted; however, rather than seeing plenoptic PIV as a replacement for

tomographic or holographic PIV, perhaps it should be considered a unique complement to

these techniques, whose simplicity could allow it to be used in laboratories worldwide.
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Appendix A: Fortran 2-D Simulation Code

1 program p l enop t i c s imu l a t o r

3 ! Bring in random number module .
! h t t p ://www. n e t l i b . org/random/

5 use random

7 implicit none

9 real : : f l , p l , p p , f m , FOV x , FOV y , M, s i , s o , fnum l , fnum m , p m
real : : sigma m , s igma l , o x , o y , p ccd x , p ccd y , c o l l a n g l e

11 real : : phi max , phi min , ph i t o t a l , theta max , theta min , t h e t a t o t a l , phi , theta
real : : randa , randb , sx , sy

13

integer : : n p x , n p y , n rays , n l x , n l y , npts , nrays phi , n rays the ta
15 integer : : x ccd , y ccd , nsx , nsy

integer : : i , j
17

real , allocatable , dimension ( : , : ) : : image , image 2d
19 real , allocatable , dimension ( : ) : : dx , dy , dz , i n t e n s i t y

real , dimension ( 4 , 4 ) : : T1 , T2 , T3 , L1 , L2 , A1
21 real , dimension (4 ) : : ray , ray2 , ray3 , ray4 , ray5

23 character (40) : : op t i c s f i l e name , f i e l d f i l e n ame , output f i l ename , t ou tpu t f i l ename

25 ! Temporary Var iab l e s
real : : tmp n p y , tmp n p x , tmp n l x , tmp n l y , tmp n rays

27 character (17) : : dump

29 write (∗ ,∗ ) ’ P l enopt i c Image Simulator ’
write (∗ ,∗ ) ’ Kyle Lynch ( lynchkp@auburn . edu ) ’

31 write (∗ ,∗ )

33 ca l l get command argument (1 , f i e l d f i l e n am e )
ca l l get command argument (2 , output f i l ename )

35

! Load in op t i c s s e t t i n g s from f i l e .
37 op t i c s f i l e n ame = ’ op t i c s 2 . txt ’

open(unit=8, f i l e=opt i c s f i l e name , status=’ old ’ )
39 read (8 ,100) dump, f l

read (8 ,100) dump, p l
41 read (8 ,100) dump, p p

read (8 ,100) dump, tmp n p x
43 read (8 ,100) dump, tmp n p y

read (8 ,100) dump, f m
45 read (8 ,100) dump, FOV x

read (8 ,100) dump, FOV y
47 read (8 ,100) dump, M

read (8 ,100) dump, s i
49 read (8 ,100) dump, s o

read (8 ,100) dump, fnum l
51 read (8 ,100) dump, fnum m

read (8 ,100) dump, p m
53 read (8 ,100) dump, sigma m

read (8 ,100) dump, s i gma l
55 read (8 ,100) dump, tmp n l x

read (8 ,100) dump, tmp n l y
57 read (8 ,100) dump, o x
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read (8 ,100) dump, o y
59 read (8 ,100) dump, tmp n rays

n p x = nint ( tmp n p x )
61 n p y = nint ( tmp n p y )

n l x = nint ( tmp n l x )
63 n l y = nint ( tmp n l y )

n rays = nint ( tmp n rays )
65 allocate ( image ( n p y , n p x ) )

allocate ( image 2d ( n p y , n p x ) )
67 100 format (A, F14 . 6 )

close (8 )
69

! Load in p a r t i c l e f i e l d
71 ! f i e l d f i l e n ame = ’ f i e l d . t x t ’

open(unit=9, f i l e=f i e l d f i l e n am e )
73 read (9 , ’ ( I14 ) ’ ) npts

allocate ( dx ( npts ) )
75 allocate ( dy ( npts ) )

allocate ( dz ( npts ) )
77 allocate ( i n t e n s i t y ( npts ) )

do i = 1 , npts
79 read (9 , ’ (F14 . 6 , 1X, F14 . 6 , 1X, F14 . 6 , 1X, F14 . 6 ) ’ ) dx ( i ) , dy ( i ) , dz ( i ) , i n t e n s i t y ( i )

enddo
81 close (9 )

83 ! ou tpu t f i l ename = ’ image . t x t ’
open(unit=10, f i l e=output f i l ename )

85

t ou tpu t f i l ename = ’ image2D . txt ’
87 open(unit=11, f i l e=t outpu t f i l ename )

89 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 !
! Begin Image Ray Tracing

93 !
!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

97 ! I n i t i a l i z e image arrays with zeros .
do j = 1 , n p y

99 do i = 1 , n p x
image ( j , i ) = 0 .0

101 image 2d ( j , i ) = 0 .0
enddo

103 enddo

105 ! Lens l e t −> CCD Ray Transfer Matrix
T3 ( 1 , : ) = ( / 1 . , 0 . , f l , 0 . / )

107 T3 ( 2 , : ) = ( / 0 . , 1 . , 0 . , f l /)
T3 ( 3 , : ) = ( / 0 . , 0 . , 1 . , 0 . / )

109 T3 ( 4 , : ) = ( / 0 . , 0 . , 0 . , 1 . / )

111 ! Main Lens Ray Transfer Matrix
L1 ( 1 , : ) = ( / 1 . , 0 . , 0 . , 0 . / )

113 L1 ( 2 , : ) = ( / 0 . , 1 . , 0 . , 0 . / )
L1 ( 3 , : ) = (/−1./ f m , 0 . , 1 . , 0 . / )

115 L1 ( 4 , : ) = (/0 . , −1 ./ f m , 0 . , 1 . / )

117 ! Lens l e t Ray Transfer Matrix
L2 ( 1 , : ) = ( / 1 . , 0 . , 0 . , 0 . / )

119 L2 ( 2 , : ) = ( / 0 . , 1 . , 0 . , 0 . / )
L2 ( 3 , : ) = (/−1./ f l , 0 . , 1 . , 0 . / )

121 L2 ( 4 , : ) = (/0 . , −1 ./ f l , 0 . , 1 . / )

123 ! Main Lens −> Lens l e t s Ray Transfer Matrix
T2 ( 1 , : ) = ( / 1 . , 0 . , s i , 0 . / )

125 T2 ( 2 , : ) = ( / 0 . , 1 . , 0 . , s i /)
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T2 ( 3 , : ) = ( / 0 . , 0 . , 1 . , 0 . / )
127 T2 ( 4 , : ) = ( / 0 . , 0 . , 0 . , 1 . / )

129 A1 = matmul (T2 , L1)

131 p ccd x = n p x ∗p p
p ccd y = n p y ∗p p

133

c o l l a n g l e = 2 ∗ atan2 (p m/2 , s o )
135

do i = 1 , npts
137

write (∗ ,∗ ) i
139

T1 ( 1 , : ) = ( / 1 . , 0 . , s o+dz ( i ) , 0 . / )
141 T1 ( 2 , : ) = ( / 0 . , 1 . , 0 . , s o+dz ( i )/ )

T1 ( 3 , : ) = ( / 0 . , 0 . , 1 . , 0 . / )
143 T1 ( 4 , : ) = ( / 0 . , 0 . , 0 . , 1 . / )

145 phi max = atan2 (p m/2−dy ( i ) , s o+dz ( i ) ) ;
phi min = atan2(−p m/2−dy ( i ) , s o+dz ( i ) ) ;

147 ph i t o t a l = phi max − phi min ;

149 theta max = atan2 (p m/2−dx ( i ) , s o+dz ( i ) ) ;
theta min = atan2(−p m/2−dx ( i ) , s o+dz ( i ) ) ;

151 t h e t a t o t a l = theta max − theta min ;

153 nrays ph i = nint ( ( p h i t o t a l / c o l l a n g l e ) ∗ s q r t ( real ( n rays ) ) ) ;
n rays the ta = nint ( ( t h e t a t o t a l / c o l l a n g l e ) ∗ s q r t ( real ( n rays ) ) ) ;

155

do j = 1 , ( nrays ph i ∗ nrays the ta )
157

ca l l random number ( randa )
159 ca l l random number ( randb )

161 theta = theta min + ( randa ∗( theta max−theta min ) )
phi = phi min + ( randb ∗( phi max−phi min ) )

163 ray = (/dx ( i ) , dy ( i ) , theta , phi /)

165 ! Propogate ray from poin t to the main l en s
ray2 (1 ) = T1(1 ,1 )∗ ray (1 ) + T1(1 ,2 )∗ ray (2 ) + T1(1 ,3 )∗ ray (3 ) + T1(1 ,4 )∗ ray ( 4 ) ;

167 ray2 (2 ) = T1(2 ,1 )∗ ray (1 ) + T1(2 ,2 )∗ ray (2 ) + T1(2 ,3 )∗ ray (3 ) + T1(2 ,4 )∗ ray ( 4 ) ;
ray2 (3 ) = T1(3 ,1 )∗ ray (1 ) + T1(3 ,2 )∗ ray (2 ) + T1(3 ,3 )∗ ray (3 ) + T1(3 ,4 )∗ ray ( 4 ) ;

169 ray2 (4 ) = T1(4 ,1 )∗ ray (1 ) + T1(4 ,2 )∗ ray (2 ) + T1(4 ,3 )∗ ray (3 ) + T1(4 ,4 )∗ ray ( 4 ) ;

171 i f ( s q r t ( ray2 (1)∗∗2 + ray2 (2)∗∗2) < (p m/2)) then

173 ! Propogate ray through the main l en s and to the l e n s l e t array .
ray3 (1 ) = A1(1 ,1 )∗ ray2 (1 ) + A1(1 ,2 )∗ ray2 (2 ) + &

175 A1(1 ,3 )∗ ray2 (3 ) + A1(1 ,4 )∗ ray2 ( 4 ) ;
ray3 (2 ) = A1(2 ,1 )∗ ray2 (1 ) + A1(2 ,2 )∗ ray2 (2 ) + &

177 A1(2 ,3 )∗ ray2 (3 ) + A1(2 ,4 )∗ ray2 ( 4 ) ;
ray3 (3 ) = A1(3 ,1 )∗ ray2 (1 ) + A1(3 ,2 )∗ ray2 (2 ) + &

179 A1(3 ,3 )∗ ray2 (3 ) + A1(3 ,4 )∗ ray2 ( 4 ) ;
ray3 (4 ) = A1(4 ,1 )∗ ray2 (1 ) + A1(4 ,2 )∗ ray2 (2 ) + &

181 A1(4 ,3 )∗ ray2 (3 ) + A1(4 ,4 )∗ ray2 ( 4 ) ;

183 ! DIFFRACTION AT LENSLET
ray3 (1 ) = ray3 (1 ) + s igma l ∗ random normal ( ) ;

185 ray3 (2 ) = ray3 (2 ) + s igma l ∗ random normal ( ) ;

187 ! 2D Image Capture .
x ccd = nint ( ( ray3 (1 ) + ( p ccd x+p p )/2 ) / p p ) ;

189 y ccd = nint ( ( ray3 (2 ) + ( p ccd y+p p )/2 ) / p p ) ;
i f ( x ccd>0 . and . y ccd>0 . and . x ccd<(n p x+1) . and . y ccd<(n p y+1)) then

191 image 2d ( y ccd , x ccd ) = image 2d ( y ccd , x ccd ) + i n t e n s i t y ( i ) ;
endif

193

137



! Find l e n s l e t
195 nsx = nint ( ( ray3 (1 ) + p ccd x /2 − o x − p l /2 ) / p l ) ;

nsy = nint ( ( ray3 (2 ) + p ccd y /2 − o y − p l /2 ) / p l ) ;
197 sx = nsx ∗ p l + o x + p l /2 − p ccd x /2 ;

sy = nsy ∗ p l + o y + p l /2 − p ccd y /2 ;
199

! Propogate ray through l e n s l e t
201 ray4 (1 ) = (L2 (1 ,1 )∗ ray3 (1 ) + L2 (1 ,2 )∗ ray3 (2 ) + &

L2 (1 ,3 )∗ ray3 (3 ) + L2 (1 ,4 )∗ ray3 ( 4 ) ) + 0 . ;
203 ray4 (2 ) = (L2 (2 ,1 )∗ ray3 (1 ) + L2 (2 ,2 )∗ ray3 (2 ) + &

L2 (2 ,3 )∗ ray3 (3 ) + L2 (2 ,4 )∗ ray3 ( 4 ) ) + 0 . ;
205 ray4 (3 ) = (L2 (3 ,1 )∗ ray3 (1 ) + L2 (3 ,2 )∗ ray3 (2 ) + &

L2 (3 ,3 )∗ ray3 (3 ) + L2 (3 ,4 )∗ ray3 ( 4 ) ) + sx/ f l ;
207 ray4 (4 ) = (L2 (4 ,1 )∗ ray3 (1 ) + L2 (4 ,2 )∗ ray3 (2 ) + &

L2 (4 ,3 )∗ ray3 (3 ) + L2 (4 ,4 )∗ ray3 ( 4 ) ) + sy/ f l ;
209

! Propogate ray to the CCD
211 ray5 (1 ) = T3(1 ,1 )∗ ray4 (1 ) + T3(1 ,2 )∗ ray4 (2 ) + &

T3(1 ,3 )∗ ray4 (3 ) + T3(1 ,4 )∗ ray4 ( 4 ) ;
213 ray5 (2 ) = T3(2 ,1 )∗ ray4 (1 ) + T3(2 ,2 )∗ ray4 (2 ) + &

T3(2 ,3 )∗ ray4 (3 ) + T3(2 ,4 )∗ ray4 ( 4 ) ;
215 ray5 (3 ) = T3(3 ,1 )∗ ray4 (1 ) + T3(3 ,2 )∗ ray4 (2 ) + &

T3(3 ,3 )∗ ray4 (3 ) + T3(3 ,4 )∗ ray4 ( 4 ) ;
217 ray5 (4 ) = T3(4 ,1 )∗ ray4 (1 ) + T3(4 ,2 )∗ ray4 (2 ) + &

T3(4 ,3 )∗ ray4 (3 ) + T3(4 ,4 )∗ ray4 ( 4 ) ;
219

! DIFFRACTION AT PIXEL
221 ray5 (1 ) = ray5 (1 ) + sigma m∗ random normal ( ) ;

ray5 (2 ) = ray5 (2 ) + sigma m∗ random normal ( ) ;
223

! Determine which p i x e l the ray w i l l s t r i k e .
225 x ccd = nint ( ( ray5 (1 ) + ( p ccd x+p p )/2 ) / p p ) ;

y ccd = nint ( ( ray5 (2 ) + ( p ccd y+p p )/2 ) / p p ) ;
227

! Ensure i t f a l l s w i th in sensor and record the s i g n a l
229 i f ( x ccd>0 . and . y ccd>0 . and . x ccd<(n p x+1) . and . y ccd<(n p y+1)) then

image ( y ccd , x ccd ) = image ( y ccd , x ccd ) + i n t e n s i t y ( i ) ;
231 endif

233 endif

235 enddo

237 enddo

239 ! Write out image data
write (10 , ’ ( I5 ) ’ ) n p x

241 write (10 , ’ ( I5 ) ’ ) n p y
do j = 1 , n p y

243 do i = 1 , n p x
write (10 , ’ ( I6 ) ’ ) n int ( image ( j , i ) )

245 enddo
enddo

247 close (10)

249 write (∗ ,∗ ) ’ S u c c e s s f u l l y exported image data to ’ , output f i l ename

251 ! Write out image data
write (11 , ’ ( I5 ) ’ ) n p x

253 write (11 , ’ ( I5 ) ’ ) n p y
do j = 1 , n p y

255 do i = 1 , n p x
write (11 , ’ (F8 . 1 ) ’ ) image 2d ( j , i )

257 enddo
enddo

259 close (11)

261 write (∗ ,∗ ) ’ S u c c e s s f u l l y exported image data to ’ , t ou tpu t f i l ename
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263 end program p l enop t i c s imu l a t o r
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Appendix B: Matlab Simulator Scripts

1 function p a r t i c l e g e n ( f i l ename , p a r t i c l e d e n s i t y , x span , y span , z span , . . .
i min , i max , type )

3 %PARTICLE GEN 2 Generate Pa r t i c l e F ie l d
% [ ] = PARTICLE GEN 2(FILENAME,PARTICLE DENSITY,X SPAN,Y SPAN,Z SPAN, . . .

5 % I MIN ,I MAX)
% Outputs a t e x t f i l e conta in ing the number o f po in t s ( p a r t i c l e s ) and the

7 % x , y , and z coord ina te s f o r the p a r t i c l e . I n t e n s i t y c o e f f i c e n t s are
% a l so output .

9 %
% Inputs :

11 % FILENAME i s the f i l e to output p a r t i c l e p o s i t i o n s .
% PARTICLE DENSITY i s the dens i t y o f p a r t i c l e s , in number per mmˆ3.

13 % X SPAN i s the t o t a l s i z e o f the x−coord inate o f the volume , which w i l l
% be centered with r e spec t to the o p t i c a l a x i s .

15 % Y SPAN i s the t o t a l s i z e o f the y−coord inate o f the volume , which w i l l
% be centered with r e spec t to the o p t i c a l a x i s .

17 % Z SPAN i s the t o t a l s i z e o f the z−coord inate o f the volume , which w i l l
% be centered with r e spec t to the o p t i c a l a x i s .

19 % I MIN i s the minimum pa r t i c l e i n t e n s i t y c o e f f i c e n t .
% I MIN i s the maximum pa r t i c l e i n t e n s i t y c o e f f i c e n t .

21 %
% Outputs :

23 % None .
%

25 % Kyle Lynch ( lynchkp@auburn . edu ) January 30 , 2011

27 % Define the ranges .
x min = −x span + x span /2 ;

29 y min = −y span + y span /2 ;
z min = −z span + z span /2 ;

31 x max = x span − x span /2 ;
y max = y span − y span /2 ;

33 z max = z span − z span /2 ;

35 i f strcmp ( type , ’ vo lumetr i c ’ )
volume = (x max−x min )∗ ( y max−y min )∗ ( z max−z min ) ;

37 n pts = round( p a r t i c l e d e n s i t y ∗volume ) ;
e l s e i f strcmp ( type , ’ p inho l e ’ ) ;

39 n pts = 750000;
z max = 0 ;

41 z min = 0 ;
e l s e i f strcmp ( type , ’ p e r p i x e l ’ )

43 npx = 4872∗3248;
n pts = round( p a r t i c l e d e n s i t y ∗npx ) ;

45 else
fprintf ( ’ Improper type . E i ther ”normal” or ” p inho l e . ”\n ’ ) ;

47 return ;
end

49

% Generate po in t s
51 xval = x min + (x max−x min ) . ∗ rand ( n pts , 1 ) ;

yval = y min + (y max−y min ) . ∗ rand ( n pts , 1 ) ;
53 zva l = z min + ( z max−z min ) . ∗ rand ( n pts , 1 ) ;

i v a l = i min + ( i max−i min ) . ∗ rand ( n pts , 1 ) ;
55

% Write the f i l e
57 fpr intf ( ’Number o f P a r t i c l e s : %d\n ’ , n pts )

fpr intf ( ’ Exporting to %s \n ’ , f i l ename ) ;
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59 f i d = fopen ( f i l ename , ’w+’ ) ;
fpr intf ( f i d , ’%14d\n ’ , n pts ) ;

61 for i = 1 : n pts
fpr intf ( f i d , ’%14.6 f %14.6 f %14.6 f %14.6 f \n ’ , xval ( i ) , yval ( i ) , zva l ( i ) , i v a l ( i ) ) ;

63 end
fclose ( f i d ) ;

65

% % Plo t t i n g Functions
67 % i f z max−z min > 0

% f i g u r e
69 % p lo t 3 ( zva l , xva l , yva l , ’ . ’ )

% x l a b e l ( ’Z ’ )
71 % y l a b e l ( ’X’ )

% z l a b e l ( ’Y’ )
73 % view (40 ,10)

% ax i s equa l
75 % ax i s i j

% ax i s ( [ z min z max x min x max y min y max ] )
77 % t i t l e ( ’3D Par t i c l e Locations ’ )

% end
79 %

% f i g u r e
81 % p l o t ( xva l , yva l , ’ . ’ )

% x l a b e l ( ’X’ )
83 % y l a b e l ( ’Y’ )

% ax i s equa l
85 % ax i s xy

% ax i s ( [ x min x max y min y max ] )
87 % t i t l e ( ’2D Par t i c l e Pro jec t ions ’ )

function op t i c s g en ( f i l ename , f l , p l , p p , n p x , n p y , f m , M, n rays , type )
2 %OPTICS GEN 2 Generate Opt i ca l Parameters
% [ ] = OPTICS GEN 2(FILENAME, F L , P L , P P , N P X , N P Y , F M, M, N RAYS)

4 % Outputs a t e x t f i l e conta in ing the o p t i c a l parameters o f the system .
%

6 % Inputs :
% FILENAME i s the f i l e to output the o p t i c a l s e t t i n g s .

8 % F L i s the f o c a l l eng t h o f the l e n s l e t s , in mm.
% P L i s the p i t c h o f the l e n s l e t s , in mm.

10 % P P i s the p i t c h o f the p i x e l s , in mm.
% N P X i s the number o f p i x e l s h o r i z o n t a l l y .

12 % N P Y i s the number o f p i x e l s v e r t i c a l l y .
% F M i s the f o c a l l eng t h o f the main l en s .

14 % M i s the magni f i ca t ion o f the o p t i c a l system .
% N RAYS i s the number o f rays to be generated fo r each po in t .

16 %
% Outputs :

18 % None .
%

20 % Kyle Lynch ( lynchkp@auburn . edu ) January 30 , 2011

22 % Derived parameters
FOV y = − n p y ∗p p / M;

24 FOV x = − n p x ∗p p / M;
% M = − ( p p∗n p y / FOV y) ;

26 s i = f m∗(1−M) ;
s o = − s i / M;

28 fnum l = f l / p l ;

30 i f strcmp ( type , ’ normal ’ )
fnum m = fnum l / (1−M) ;

32 e l s e i f strcmp ( type , ’ p inho l e ’ )
fnum m = 16 ;

34 else
fprintf ( ’ Improper type . E i ther ”normal” or ” p inho l e . ”\n ’ ) ;

36 return ;
end

38

141



p m = f m / fnum m ;
40 p ccd x = n p x ∗p p ;

p ccd y = n p y ∗p p ;
42

fnum sca le = [ 0 . 5 0 .7 1 .0 1 .4 2 2 .8 4 5 .6 8 11 16 22 32 45 64 90 1 2 8 ] ;
44 fnum m = min( fnum sca le ( ( fnum scale−fnum m)>=0));

46 % Di f f r a c t i on Parameters . Adrian and Westerweel use p o s i t i v e
% magn i f i ca t i ons .

48 lam = 532E−9 ∗ 1E3 ; % conver t to mm
betasq = 3 . 6 7 ;

50 M1 = s i / s o ;
ds m = 2.44 ∗ (1 + M1) ∗ fnum m ∗ lam ;

52 sigma m = sqrt ( ( ds mˆ2) / (8∗ betasq ) ) ;
d i f f r a c t m pe r c e n t = (ds m / p l ) ∗ 100 ;

54 M2 = f l / s i ;
d s l = 2 .44 ∗ (1 + M2) ∗ fnum l ∗ lam ;

56 s i gma l = sqrt ( ( d s l ˆ2) / (8∗ betasq ) ) ;
d i f f r a c t l p e r c e n t = ( d s l / p p ) ∗ 100 ;

58 % keyboard

60 fpr intf ( ’CCD Reso lut ion : %d px X, %d px Y\n ’ , n p x , n p y )
fpr intf ( ’ P ixe l Pitch : %f mm X, %f mm Y\n ’ , p p , p p ) ;

62 fpr intf ( ’ Phys i ca l S i z e o f CCD: %f mm X, %f mm Y\n\n ’ , p ccd x , p ccd y ) ;

64 fpr intf ( ’Main Lens D i f f r a c t i o n Spot S i z e : %f \n ’ , ds m ) ;
fpr intf ( ’Main Lens D i f f r a c t i o n Std . Dev : %f \n ’ , sigma m ) ;

66 fpr intf ( ’Main Lens D i f f r a c t i o n Percentage o f Lens l e t Pitch : %f \n ’ , . . .
d i f f r a c t m pe r c e n t ) ;

68 fpr intf ( ’ Lenset D i f f r a c t i o n Spot S i z e : %f \n ’ , d s l ) ;
fpr intf ( ’Main Lens D i f f r a c t i o n Std . Dev : %f \n ’ , s i gma l ) ;

70 fpr intf ( ’Main Lens D i f f r a c t i o n Percentage o f Lens l e t Pitch : %f \n\n ’ , . . .
d i f f r a c t l p e r c e n t ) ;

72

% keyboard ;
74

% Determine the g r i d o f f s e t to center the g r i d wi th in the image .
76 n l y = 0 ;

for ( y = 0 : p l : ( p ccd y ) )
78 n l x = 0 ;

for ( x = 0 : p l : ( p ccd x ) )
80 n l x = n l x + 1 ;

end
82 n l y = n l y + 1 ;

end
84 n l = n l y ∗ n l x ;

o x = ( ( p ccd x − ( x+p l ) ) / 2 ) ;
86 o y = ( ( p ccd y − ( y+p l ) ) / 2 ) ;

fpr intf ( ’ Lens l e t Pitch : %f X, %f Y\n ’ , p l , p l ) ;
88 fpr intf ( ’ Lens l e t O f f s e t : %f X, %f Y\n ’ , o x , o y ) ;

fpr intf ( ’Number o f Len s l e t s : %d X, %d Y\n ’ , n l x , n l y )
90 fpr intf ( ’ Total Number o f Len s l e t s : %d\n ’ , n l )

fpr intf ( ’ Focal Length o f Len s l e t s : %f mm\n ’ , f l ) ;
92

% Step 8 : Export a l l data .
94 fpr intf ( ’ Exporting to %s \n ’ , f i l ename ) ;

f i d = fopen ( f i l ename , ’w ’ ) ;
96 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ f l ’ , f l ) ; % 1

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ p l ’ , p l ) ; % 2
98 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ p p ’ , p p ) ; % 3

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ n p x ’ , n p x ) ; % 4
100 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ n p y ’ , n p y ) ; % 5

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ f m ’ , f m ) ; % 6
102 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’FOV x ’ ,FOV x ) ; % 7

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’FOV y ’ ,FOV y ) ; % 8
104 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’M’ ,M) ; % 9

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ s i ’ , s i ) ; % 10
106 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ s o ’ , s o ) ; % 11
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fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ fnum l ’ , fnum l ) ; % 12
108 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ fnum m ’ , fnum m ) ; % 13

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’p m ’ ,p m ) ; % 14
110 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ sigma m ’ , sigma m ) ; % 15

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ s i gma l ’ , s i gma l ) ; % 16
112 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ n l x ’ , n l x ) ; % 17

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ n l y ’ , n l y ) ; % 18
114 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ o x ’ , o x ) ; % 19

fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ o y ’ , o y ) ; % 20
116 fpr intf ( f i d , ’%15s = %14.6 f \n ’ , ’ n rays ’ , n rays ) ; % 21

118 return ;

120 % Plo t t i n g Functions
l e n s l e t l o c = zeros ( n l y , n l x , 2 ) ;

122 for ( y = 1 : 1 : n l y )
for ( x = 1 : 1 : n l x )

124 l e n s l e t l o c (y , x , 1 ) = (x−1)∗ p l + o x + p l /2 ;
l e n s l e t l o c (y , x , 2 ) = (y−1)∗ p l + o y + p l /2 ;

126 end
end

128 l e n s l e t l o c ( : , : , 1 ) = l e n s l e t l o c ( : , : , 1 ) − ( p ccd x /2 ) ;
l e n s l e t l o c ( : , : , 2 ) = l e n s l e t l o c ( : , : , 2 ) − ( p ccd y /2 ) ;

130

h = figure ( ’ Po s i t i on ’ , [ 100 100 650 3 1 5 ] ) ;
132 subplot (121)

hold on
134 l ine ([− p ccd x /2 p ccd x / 2 ] , [ p ccd y /2 p ccd y /2 ] )

l ine ( [ p ccd x /2 p ccd x / 2 ] , [ p ccd y /2 −p ccd y /2 ] )
136 l ine ( [ p ccd x /2 −p ccd x /2] , [− p ccd y /2 −p ccd y /2 ] )

l ine ([− p ccd x /2 −p ccd x /2] , [− p ccd y /2 p ccd y /2 ] )
138 l ine ( [ 0 0 ] , [− p ccd y /2 p ccd y /2 ] , ’ Color ’ , ’ k ’ )

l ine ([− p ccd x /2 p ccd x / 2 ] , [ 0 0 ] , ’ Color ’ , ’ k ’ )
140 plot ( l e n s l e t l o c ( : , : , 1 ) , l e n s l e t l o c ( : , : , 2 ) , ’ ro ’ , ’ MarkerSize ’ , 5 ) ;

xlabel ( ’X (mm) ’ ) , ylabel ( ’Y (mm) ’ )
142 axis image

144 subplot (122)
hold on

146 l ine ([− p ccd x /2 p ccd x / 2 ] , [ p ccd y /2 p ccd y /2 ] )
l ine ( [ p ccd x /2 p ccd x / 2 ] , [ p ccd y /2 −p ccd y /2 ] )

148 l ine ( [ p ccd x /2 −p ccd x /2] , [− p ccd y /2 −p ccd y /2 ] )
l ine ([− p ccd x /2 −p ccd x /2] , [− p ccd y /2 p ccd y /2 ] )

150 l ine ( [ 0 0 ] , [− p ccd y /2 p ccd y /2 ] , ’ Color ’ , ’ k ’ )
l ine ([− p ccd x /2 p ccd x / 2 ] , [ 0 0 ] , ’ Color ’ , ’ k ’ )

152 plot ( l e n s l e t l o c ( : , : , 1 ) , l e n s l e t l o c ( : , : , 2 ) , ’ ro ’ , ’ MarkerSize ’ , 5 ) ;
xlabel ( ’X (mm) ’ ) , ylabel ( ’Y (mm) ’ )

154 axis image

156 % Depth o f f i e l d parameters
DN = ( s o ∗ f m ˆ2) / ( f mˆ2 + fnum m∗ p l ∗( s o−f m ) ) ;

158 DF = ( s o ∗ f m ˆ2) / ( f mˆ2 − fnum m∗ p l ∗( s o−f m ) ) ;
DOF = abs (DF − DN)

function s im di sp lacement gen ( f i l ename , output f i l ename , func , dt , ns teps )
2 %SIM DISPLACEMENT GEN Generate Pa r t i c l e Displacements
% [ ] = SIM DISPLACEMENT GEN(FILENAME,OUTPUT FILENAME,DT,NSTEPS) take s an

4 % input p a r t i c l e f i e l d f i l e , a p p l i e s a v e l o c i t y f i e l d to the p a r t i c l e
% l o c a t i on s over a number o f s teps , and saves the new p a r t i c l e l o c a t i on s

6 % to a f i l e .
%

8 % Inputs :
% FILENAME i s the f i l e conta in ing the i n i t i a l p a r t i c l e p o s i t i o n s .

10 % OUTPUT FILENAME i s the f i l e to output f i n a l p a r t i c l e pos i t ons .
% FUNC i s the v e l o c i t y f i e l d func t i on to be used .

12 % DT i s the durat ion o f each t imestep , in seconds .
% NSTEPS i s the number o f t imes t eps taken .

14 %
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% Outputs :
16 % None .

%
18 % Kyle Lynch ( lynchkp@auburn . edu ) October 12 , 2010

20 f i d = fopen ( f i l ename , ’ r+’ ) ;
% type = f g e t l ( f i d ) ;

22 n pts = str2num( fget l ( f i d ) ) ;
% n rays = str2num ( f g e t l ( f i d ) ) ;

24

for i = 1 : n pts
26 tmp = str2num( fget l ( f i d ) ) ;

xval ( i ) = tmp ( 1 ) ;
28 yval ( i ) = tmp ( 2 ) ;

zva l ( i ) = tmp ( 3 ) ;
30 i v a l ( i ) = tmp ( 4 ) ;

end
32 fc lose ( f i d ) ;

34 a = 5 ;
u0 = 1 ;

36

s t ep d t = dt / nsteps ;
38 for t = 0 : s t ep d t : dt

X = xval ;
40 Y = zva l ;

Z = yval ;
42 [TH,R,Z ] = cart2pol (X,Y,Z ) ;

44 [ u , v ] = feval ( func , Z ,R, a , u0 ) ;
[ vx , vy , vz ] = pol2cart (TH, v , u ) ;

46

vx2 = vx ;
48 vy2 = vz+u0 ;

vz2 = vy ;
50

xval = xval + vx2∗ s t ep d t ;
52 yval = yval + vy2∗ s t ep d t ;

zva l = zva l + vz2∗ s t ep d t ;
54 end

56 % Write the f i l e
f i d 2 = fopen ( output f i l ename , ’w+’ ) ;

58 % f p r i n t f ( f id2 , ’%14 s\n ’ , ’ p a r t i c l e s ’ ) ;
fpr intf ( f id2 , ’%14d\n ’ , n pts ) ;

60 % f p r i n t f ( f id2 , ’%14d\n ’ , n rays ) ;

62 for i = 1 : n pts
fpr intf ( f id2 , ’%14.6 f %14.6 f %14.6 f %14.6 f \n ’ , xval ( i ) , yval ( i ) , zva l ( i ) , i v a l ( i ) ) ;

64 end

66 fc lose ( f i d 2 ) ;

68 end

function [ u , v ] = s im h i l l v o r t e x (Z ,R, a , u0 )
2 %SIM HILL VORTEX Generate Pa r t i c l e Displacements
% [U,V] = SIM HILL VORTEX(Z,R,A,U0)

4 % Simulates v e l o c i t y f i e l d o f H i l l ’ s Spher i ca l Vortex , from ”Fluid
% Vort ices ” by Sheldon Green . (1995)

6 %
% Inputs :

8 % Z i s the coord inate l y i n g in the d i r e c t i on o f induced vor t ex v e l o c i t y .
% R i s the coord inate perpend icu lar to the d i r e c t i on o f induced v e l o c i t y .

10 % A i s the s i z e o f the vor t ex .
% U0 i s the f rees t ream v e l o c i t y .

12 % NSTEPS i s the number o f t imes t eps taken .
%
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14 % Outputs :
% U i s the x−component o f v e l o c i t y .

16 % V i s the y−component o f v e l o c i t y .
%

18 % Kyle Lynch ( lynchkp@auburn . edu ) October 12 , 2010

20 u in t = (3/2) .∗ u0 .∗ (1 − ( ( 2 . ∗R.ˆ2 + Z . ˆ 2 ) . / ( a . ˆ 2 ) ) ) ;
v i n t = (3/2) .∗ u0 .∗ ( (Z .∗R) . / ( a . ˆ 2 ) ) ;

22

u ext = u0 .∗ ( ( ( a . ˆ 2 . / ( Z .ˆ2 + R. ˆ 2 ) ) . ˆ ( 5 . / 2 ) ) . ∗ ( ( 2 . ∗Z.ˆ2 − R. ˆ 2 ) . / ( 2 . ∗ a .ˆ2) ) −1) ;
24 v ext = (3/2) .∗ u0 .∗ ( (Z .∗R) . / ( a . ˆ 2 ) ) .∗ ( ( a . ˆ 2 ) . / ( Z .ˆ2 + R. ˆ 2 ) ) . ˆ ( 5 . / 2 ) ;

26 t e s t i n t = (R.ˆ2 + Z.ˆ2)<=a . ˆ 2 ;
t e s t e x t = (R.ˆ2 + Z.ˆ2)>a . ˆ 2 ;

28

u = u in t .∗ t e s t i n t + u ext .∗ t e s t e x t ;
30 v = v i n t .∗ t e s t i n t + v ext .∗ t e s t e x t ;

32 end
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Appendix C: Light Field Rendering Codes

function [ cx , cy ] = l f c a l i b r a t i o n ( f i l ename )
2 %LF CALIBRATION Light F ie l d Image Coordinate Ca l i b ra t i on
% [CX, CY] = LF CALIBRATION(FILENAME) r e g i s t e r s

4 % l e n s l e t images and as s i gn s and ( i , j ) coord inate system to each l e n s l e t .
% Add i t i ona l l y , edge l e n s l e t s are i d e n t i f i e d and d i scarded .

6 %
% Outputs :

8 % CX i s an 2−D array s p e c i f y i n g the j−coord inate o f each l e n s l e t .
% CY i s an 2−D array s p e c i f y i n g the i−coord inate o f each l e n s l e t .

10 %
% Kyle Lynch ( lynchkp@auburn . edu ) September 12 , 2010

12

image = imread ( f i l ename ) ;
14 image = double ( image ) ;

16 % Define g r i d . Must be done manually .
nlx = 288 ;

18 nly = 192 ;
sz = 16 . 9 73 ;

20 o f f s e t x = 0 ;
o f f s e t y = 2 ;

22

[ xgr id ygr id ] = meshgrid ( 1 : sz : sz ∗nlx , 1 : sz : sz ∗nly ) ;
24 xgr id = xgr id + o f f s e t x ;

ygr id = ygr id + o f f s e t y ;
26

% Calcu la t e cen t ro id l o c a t i on s .
28 t ic

% f i g u r e
30 cx = zeros ( nly−1,nlx −1);

cy = zeros ( nly−1,nlx −1);
32 for yidx = 1 : nly−1

for xidx = 1 : nlx−1
34 xpt = round( xgr id ( yidx , xidx ) ) ;

ypt = round( ygr id ( yidx , xidx ) ) ;
36 subset = image( ypt : ypt+round( sz ) , xpt : xpt+round( sz ) ) ;

[ p f i t ] = g a u s s 2 d f i t ( subset ) ;
38 cx ( yidx , xidx ) = ( xpt−1) + p f i t ( 2 ) ;

cy ( yidx , xidx ) = ( ypt−1) + p f i t ( 3 ) ;
40 end

fprintf ( ’Peak− f i t : Line %d o f %d\n ’ , yidx , nly −1);
42 end

toc
44

end

1 function [ x array , y array , the ta ar ray , ph i ar ray , rad iance ] = . . .
l f r a d i a n c e g e n ( f i l ename , cx , cy )

3 %LF RADIANCE GEN Light F ie l d Radiance Generation
% [X ARRAY,Y ARRAY,THETAARRAY,PHI ARRAY,RADIANCE] =

5 % LF RADIANCE GEN(FILENAME,CX,CY) genera te s a l l in format ion
% regard ing radiance elements , i n c l ud ing t h e i r i n t en s i t y , p i x e l coord inates ,

7 % sp a t i a l coord inates , and angular coord ina te s .
%

9 % Inputs :
% FILENAME i s a s t r i n g de f i n i n g the l e n s l e t image f i l e .

11 % CX i s an 2−D array s p e c i f y i n g the x−coord inate o f each l e n s l e t .
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% CY i s an 2−D array s p e c i f y i n g the y−coord inate o f each l e n s l e t .
13 %

% Outputs :
15 % XARRAY i s a 4−D array s p e c i f y i n g the x−coord ina te s o f each radiance element .

% YARRAY i s a 4−D array s p e c i f y i n g the y−coord ina te s o f each radiance element .
17 % THETAARRAY i s a 4−D array s p e c i f y i n g the t h e t a ang le o f each radiance element .

% PHI ARRAY i s a 4−D array s p e c i f y i n g the phi ang le o f each radiance element .
19 % RADIANCE i s a 4−D array s p e c i f y i n g the i n t e n s i t y o f each radiance element .

%
21 % Kyle Lynch ( lynchkp@auburn . edu ) October 4 , 2010

23 i f nargin < 3
fprintf ( ’Not enough input arguments .\n ’ ) ;

25 return ;
end

27

% Determine number o f l e n s l e t s .
29 [ n l y , n l x ] = s ize ( cx ) ;

31 % Read in image f i l e .
image = imread ( f i l ename ) ;

33 image = double ( image ) ;

35 % Misce l laneous i n i t i a l i z a t i o n s .
[ n p y , n p x ] = s ize ( image ) ;

37 p p = 0 . 0074 ;
f l = 0 . 5 0 0 ;

39 s i = 100 ;
p ccd x = p p∗n p x ;

41 p ccd y = p p∗n p y ;

43 % Determine the average spacing between the cen te r s o f each l e n s l e t . This
% a l l ows us to determine the e f f e c t i v e number o f p i x e l s underneath each

45 % l e n s l e t . The f l o o r func t i on rounds t h i s number down to the neares t
% in t e g e r va lue to ensure no over lap occurs . Add i t i ona l l y , a check i s

47 % performed to ensure t ha t the number o f p i x e l s used in both the x and y
% d i r e c t i o n s i s equa l .

49 avg x = mean( ( cx ( : , n l x )−cx ( : , 1 ) ) / ( n l x −1)) ; %%%% SHOULD THIS BE NLX−1?
avg y = mean( ( cy ( n l y , : )− cy ( 1 , : ) ) / ( n l y −1)) ;

51 % keyboard ;
i f ( f loor ( avg x ) ˜= f loor ( avg y ) )

53 fpr intf ( ’ Error : Unequal Lens l e t S i z e ’ ) ; return ;
else

55 n p l = f loor ( avg x ) ;
r = n p l / 2 ;

57 end
n p l = 14 ;

59 r = 7 ;

61 % I n i t i a l i z e the data arrays . These are 4−D arrays , the s i z e o f the f i r s t
% two are equa l to the number o f l e n s l e t s in each d i r ec t i on , and the second

63 % two are equa l to the number o f p i x e l s under each l e n s l e t as de f ined
% above .

65 % n array = zeros ( n l y , n l x , n p l , n p l ) ;
% m array = zeros ( n l y , n l x , n p l , n p l ) ;

67 x array = zeros ( n l y , n l x , n p l , n p l ) ;
y ar ray = zeros ( n l y , n l x , n p l , n p l ) ;

69 the ta a r r ay = zeros ( n l y , n l x , n p l , n p l ) ;
ph i a r ray = zeros ( n l y , n l x , n p l , n p l ) ;

71 rad iance = zeros ( n l y , n l x , n p l , n p l ) ;

73 % imshow( image , [ ] ) , ho ld on

75 % Loop through each l e n s l e t , f i r s t in the ho r i z on t a l ( x−d i r e c t i on ) , and
% then in the v e r t i c a l (y−d i r e c t i on ) .

77 for y = 1 : n l y
fpr intf ( ’ Radiance Gen : %d o f %d\n ’ , y , n l y ) ;

79 for x = 1 : n l x
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81 % Grab the cen t ro id l o c a t i on in ( x , y ) coord ina te s from the o r i g i n a l
% p i x e l coord ina te s . Note t ha t because the y−coord inate i s f l i p p e d

83 % in image coordinates , a corresponding f l i p has to occur here .
l x = cx (y , x )∗ p p − p ccd x /2 ;

85 l y = p ccd y /2 − cy (y , x )∗ p p ;

87 % Find the t he t a and phi ang le f o r the l e n s l e t c en t ro id l o c a t i on .
% This i s known as the bu l k ang le and i s c a l c u l a t e d as the

89 % arctangent o f the r a t i o o f l e n s l e t p o s i t i on d i v i d ed by re f e r ence
% image d i s t ance . This i s a l s o c a l l e d the ” bu l k ang le ” .

91 l t h e t a = atan2 ( l x , s i ) ;
l p h i = atan2 ( l y , s i ) ;

93

% With the l e n s l e t in format ion def ined , the p i x e l s underneath the
95 % l e n s l e t must be i d e n t i f i e d . The p i x e l s are found wi th in a rad ius

% de f ined p r e v i ou s l y . The p i x e l coord ina te s in the x−d i r e c t i on are
97 % stored as m ind , and in the y−d i r e c t i on as n ind .

d i s t x = abs ( ( 1 : n p x ) − cx (y , x ) ) ;
99 d i s t y = abs ( ( 1 : n p y ) − cy (y , x ) ) ;

m ind = find ( d i s t x < r ) ; % X
101 n ind = find ( d i s t y < r ) ; % Y

103 % Create an array o f s p a t i a l coord ina te s equa l to the s i z e o f the
% b l ock o f p i x e l s covered by the l e n s l e t . These coord ina te s are

105 % homogenous wi th in a s i n g l e l e n s l e t .
x c = ones ( length ( n ind ) , length (m ind ) )∗ l x ;

107 y c = ones ( length ( n ind ) , length (m ind ) )∗ l y ;

109 % Determine the ang l e s f o r each o f the l e n s l e t p i x e l s . This i s
% known as the ” l o c a l ang le .” F i r s t the i n t e rna l s p a t i a l

111 % coord ina te s are de f ined fo r each p i x e l ( e f f e c t i v e l y j u s t an
% o f f s e t from the l e n s l e t c en t ro id l o c a t i on ) , then the arc tangent

113 % i s used to c a l c u l a t e the ang le .
x2 = m ind∗p p − p ccd x /2 − l x ;

115 y2 = p ccd y /2 − n ind ∗p p − l y ;
[X2 ,Y2 ] = meshgrid ( x2 , y2 ) ;

117 p theta = atan2 (X2 , f l ) + l t h e t a ;
p phi = atan2 (Y2 , f l ) + l p h i ;

119

% Save a l l c a l i b r a t i o n informat ion to the s p e c i f i e d arrays .
121 x array (y , x , : , : ) = x c ;

y ar ray (y , x , : , : ) = y c ;
123 the ta a r r ay (y , x , : , : ) = p theta ;

ph i a r ray (y , x , : , : ) = p phi ;
125 rad iance (y , x , : , : ) = image( n ind , m ind ) ;

127 end

129 end

131 end

1 function [ image , s c a l e f a c ] = l f r e n d e r ( radiance , x array , y array , the ta ar ray , ph i ar ray , t )
%LF RENDER Light F ie l d Rendering/Refocusing

3 % [IMAGE] = LF RENDER(RADIANCE,X ARRAY,Y ARRAY,THETAARRAY,PHI ARRAY,T)
% in t e g r a t e s s i g n a l from each l e n s l e t , render ing an image .

5 %
% Inputs :

7 % RADIANCE i s a 4−D array s p e c i f i y i n g the i n t e n s i t y o f each radiance element .
% XARRAY i s a 4−D array s p e c i f y i n g the x−coord ina te s o f each radiance element .

9 % YARRAY i s a 4−D array s p e c i f y i n g the y−coord ina te s o f each radiance element .
% THETAARRAY i s a 4−D array s p e c i f y i n g the theta−coord ina te s o f each radiance element .

11 % PHI ARRAY i s a 4−D array s p e c i f y i n g the phi−coord ina te s o f each radiance element .
% T i s an op t i ona l argument s p e c i f y i n g the d i s t ance to t r a n s l a t e the

13 % focus p lane . By de f au l t , t = 0.
%

15 % Outputs :
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% IMAGE i s a 2−D double−pr e c i s i on image .
17 %

% Kyle Lynch ( lynchkp@auburn . edu ) October 4 , 2010
19

i f nargin < 5
21 fprintf ( ’Not enough input arguments .\n ’ ) ;

return ;
23 e l s e i f nargin < 6

t = 0 ;
25 end

27 % Set rendered image dimensions , which are equa l to the number o f l e n s l e t s
% in each o f the coord inate d i r e c t i o n s .

29 [ ny , nx , np , nt ] = s ize ( rad iance ) ;
image = zeros (ny , nx ) ;

31

s i = 100 ;
33

% Determine the e f f e c t i v e sensor s i z e , which i s equa l to the s i z e o f the
35 % l e n s l e t array . Sub t ra t ing x min from x max w i l l determine the d i s t ance

% between the outermost l e n s l e t c en t ro id l o c a t i on s . To f ind the t o t a l
37 % dis tance to the ou t s i d e s o f the l e n s l e t s , an add i t i ona l l e n s l e t diameter

% must be added .
39 s c a l e f a c = ( ( t+s i )/ s i ) ;

x min = min( x ar ray ( : ) ) ;
41 y min = min( y ar ray ( : ) ) ;

x max = max( x ar ray ( : ) ) ;
43 y max = max( y ar ray ( : ) ) ;

avg x = mean( ( x max − x min ) / (nx−1) ) ∗ s c a l e f a c ;
45 avg y = mean( ( y max − y min ) / (ny−1) ) ∗ s c a l e f a c ;

p ccd x = (x max − x min )∗ s c a l e f a c + avg x ;
47 p ccd y = (y max − y min )∗ s c a l e f a c + avg y ;

49 % Use simple 2−D ray t rac ing to propagate the radiance to a d i f f e r e n t
% po s i t i on . This d i s t ance i s denoted by the v a r i a b l e t .

51 i f ( t ˜= 0)
x ar ray = x array + t ∗ th e ta a r r ay ;

53 y array = y array + t ∗ ph i a r ray ;
end

55

% Acce lera te the render ing by only c a l c u l a t i n g rays with nonzero i n t e n s i t y .
57 r ad i an c e t e s t = find ( radiance >0);

59 % Render each ray .
for r = 1 : length ( r ad i an c e t e s t )

61

% Grab a l l in format ion about the p a r t i c u l a r ray from the informat ion
63 % arrays .

ray = rad i an c e t e s t ( r ) ; % Ray index .
65 r ay rad i ance = rad iance ( ray ) ; % Ray i n t e n s i t y .

ray x = x array ( ray ) ; % Ray x−coord inate
67 ray y = y array ( ray ) ; % Ray y−coord inate

69 % Determine the l o c a t i on the ray i n t e r s e c t s the f o c a l p lane in terms o f
% the l e n s l e t number ( f l o a t i n g−po in t number ) .

71 i n i t i a l x = ( p ccd x /2 + ray x + avg x /2) / ( avg x ) ;
i n i t i a l y = ( p ccd y /2 − ray y + avg y /2) / ( avg y ) ;

73

% Determine the four surrounding p i x e l s .
75 L x = f loor ( i n i t i a l x ) ;

R x = ce i l ( i n i t i a l x ) ;
77 L x c o e f f = R x − i n i t i a l x ;

R x co e f f = i n i t i a l x − L x ;
79

B y = f loor ( i n i t i a l y ) ;
81 T y = ce i l ( i n i t i a l y ) ;

B y co e f f = T y − i n i t i a l y ;
83 T y coe f f = i n i t i a l y − B y ;
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85 % Determine the con t r i bu t i on o f the ray to each p i x e l .
TL = T y coe f f ∗ L x c o e f f ;

87 TR = T y coe f f ∗R x coe f f ;
BL = B y co e f f ∗ L x c o e f f ;

89 BR = B y coe f f ∗R x coe f f ;

91 % Render the f i n a l image through a summation o f the image array . The
% mu l t i p l e i f s ta tements are used to b l o c k rays t ha t are propogated

93 % out s i d e o f the image coord ina te s .
i f T y > 0 && T y <= ny

95 i f L x > 0 && L x <= nx
% Top Le f t P i xe l

97 image(T y , L x ) = image(T y , L x ) + ray rad i ance ∗TL;
end

99 i f R x > 0 && R x <= nx
% Top Right P i xe l

101 image(T y , R x ) = image(T y , R x ) + ray rad i ance ∗TR;
end

103 end

105 i f B y > 0 && B y <= ny
i f L x > 0 && L x <= nx

107 % Bottom Le f t P i x e l
image(B y , L x ) = image(B y , L x ) + ray rad i ance ∗BL;

109 end
i f R x > 0 && R x <= nx

111 % Bottom Right P i xe l
image(B y , R x ) = image(B y , R x ) + ray rad i ance ∗BR;

113 end
end

115

end
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Appendix D: Matlab 3-D PIV Codes

1 clear a l l
clc

3

% Spec i f y c o r r e l a t i on s e t t i n g s and input f i l e s .
5 s c a l e f a c t o r = 4 ; % Vector d i s p l a y s c a l e f a c t o r .

zero padding = ’ f a l s e ’ ; % Zero−padded co r r e l a t i on .
7 spo f = ’ f a l s e ’ ; % Symmetric phase−only f i l t e r i n g .

nmt eps = 0 . 1 ; % Error va lue f o r normalized median t e s t ( u s ua l l y 0.1−0.2).
9 nmt thre sh lv l = 2 ; % Threshold va lue f o r normalized median t e s t ( u s ua l l y 2 ) .

s t a r t x s p a c i n g = 32 ; % Spacing between in t e r r o ga t i on windows in x−d i r e c t i on .
11 s t a r t y s p a c i n g = 32 ; % Spacing between in t e r r o ga t i on windows in y−d i r e c t i on .

s t a r t z s p a c i n g = 4 ; % Spacing between in t e r r o ga t i on windows in y−d i r e c t i on .
13 s t a r t x s i z e = 64 ; % Size o f i n t e r r o ga t i on windows in x−d i r e c t i on .

s t a r t y s i z e = 64 ; % Size o f i n t e r r o ga t i on windows in y−d i r e c t i on .
15 s t a r t z s i z e = 8 ; % Size o f i n t e r r o ga t i on windows in y−d i r e c t i on .

r e f i n emen t f a c t o r = 3 ; % Refinement f a c t o r ( s i z e i n i t i a l / s i z e f i n a l )
17 f i l e p r e f i x = ’C:\ Users \ lynchkp\Desktop\Light F i e ld Rendering Codes\001x\ ’ ; % Base f i l e d i r e c t o r y .

f i l e A p r e f i x = ’ imgA ’ ;
19 f i l e B p r e f i x = ’ imgB ’ ;

21 % Load f i l e s . A l l images conver ted to double−pr e c i s i on format .
n f i l e s = 16 ;

23 idx = 1 ;
for i = 1 : 1 : n f i l e s

25 imgA ( : , : , idx ) = double ( imread ( [ f i l e p r e f i x f i l e A p r e f i x num2str( i , ’%03d ’ ) ’ . t i f ’ ] ) ) ;
imgB ( : , : , idx ) = double ( imread ( [ f i l e p r e f i x f i l e B p r e f i x num2str( i , ’%03d ’ ) ’ . t i f ’ ] ) ) ;

27 idx = idx + 1 ;
end

29 [ image height , image width , image depth ] = s ize ( imgA ) ;

31 h = figure ;
imshow (imgA ( : , : , 4 ) , [ ] )

33 set (h , ’ Color ’ , ’ none ’ ) ;

35

37 % ex p o r t f i g ( ’C:\Users\ l ynchkp \Desktop\Masters Thesis \ f i g u r e s \001 p lane4 . pdf ’ , h ) ;
break ;

39

for R = 1 : r e f i n emen t f a c t o r
41

% Define the window parameters f o r the p a r t i c u l a r g r i d re f inement
43 % l e v e l . Note the g r i d re f inement i s e xponen t i a l because the re f inement

% fa c t o r i s in the denominator .
45 x spac ing = round( s t a r t x s p a c i n g / R) ;

y spac ing = round( s t a r t y s p a c i n g / R) ;
47 z spac ing = round( s t a r t z s p a c i n g / R) ;

x s i z e = round( s t a r t x s i z e / R) ;
49 y s i z e = round( s t a r t y s i z e / R) ;

z s i z e = round( s t a r t z s i z e / R) ;
51

% Ensure both dimensions o f each window are even , due to the
53 % performance o f the f f t s h i f t f unc t i on .

i f mod( x s i z e , 2 ) == 1
55 x s i z e = x s i z e + 1 ;

end
57 i f mod( y s i z e , 2 ) == 1

y s i z e = y s i z e + 1 ;
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59 end
i f mod( z s i z e , 2 ) == 1

61 z s i z e = z s i z e + 1 ;
end

63

% Generate the g r i d . For the i n i t i a l gr id , no informat ion needs to be
65 % saved . For the remaining gr ids , o ld g r i d data must be s to red to b u i l d

% the p r ed i c t o r .
67 i f R > 1

o l d c en t x = cent x ; o l d c en t y = cent y ; o l d c e n t z = cen t z ;
69 o ld nx = nx ; o ld ny = ny ; o ld nz = nz ;

o ld dx = dx ; o ld dy = dy ; o ld dz = dz ;
71 end

[ node x , node y , node z , cent x , cent y , cent z , nx , ny , nz ] = . . .
73 g ene r a t e g r i d 3d ( image height , image width , image depth , . . .

x s i z e , y s i z e , z s i z e , x spac ing , y spac ing , z spac ing ) ;
75

% I n i t i a l i z e the p r ed i c t o r . For the i n i t i a l gr id , no c o r r e l a t i on e x i s t s
77 % and thus i t can be s e t to zero f o r a l l windows . However , f o r the

% remaining gr ids , t he re e x i s t s c o r r e l a t i on data to use f o r
79 % i n i t i a l i z i n g a p r ed i c t o r .

i f R > 1
81 [ px , py , pz ] = . . .

g e n e r a t e p r e d i c t o r d i s c r e t e 3 d ( o ld cent x , o ld cent y , o l d c en t z , old dx , old dy , o ld dz , . . .
83 old nx , old ny , o ld nz , cent x , cent y , cent z , nx , ny , nz ) ;

else
85 px = zeros ( s ize ( node x ) ) ;

py = zeros ( s ize ( node y ) ) ;
87 pz = zeros ( s ize ( node z ) ) ;

end
89

% Multi−pass ana l y s i s . The number o f passes are d i c t a t e d by a
91 % convergence c r i t e r i a , such tha t the RMS va lue s o f the cor rec to r

% d i f f e r by l e s s than 0.1 p i x e l s , and l e s s than 10 passes are
93 % performed .

old rms = 0 ; new rms = 1E6 ; pass = 1 ;
95 while (abs ( new rms − old rms ) > 0 . 1 ) && ( pass < 10)

97 [ cx , cy , cz , R vec , IA vec , IB vec ] = p i v p a s s d i s c r e t e 3 d ( imgA , imgB , node x , node y , node z , . . .
x s i z e , y s i z e , z s i z e , px , py , pz , zero padding , spo f ) ;

99

%%% Update Displacement %%%
101 dx = px + cx ;

dy = py + cy ;
103 dz = pz + cz ;

105 %%% Val ida te Displacement %%%
o l d t o t a l = 0 ; new tota l = 1 ; pass2 = 1 ;

107 while (abs ( new tota l − o l d t o t a l ) > 0 . 1 ) && ( pass2 < 10)
[ t e s t ] = normal i z ed med ian te s t 3d (dx , dy , dz , nx , ny , nz , nmt thresh lv l , nmt eps ) ;

109 [ dx , dy , dz ] = b i l i n e a r i n t e r p o l a t i o n 3 d (dx , dy , dz , nx , ny , nz , t e s t ) ;
o l d t o t a l = new tota l ;

111 new tota l = ( ( numel ( t e s t )−numel ( find ( t e s t ==0)))/numel ( t e s t ) )∗100 ;
fpr intf ( ’ Va l idat i on Percentage : %.2 f \n ’ , new tota l ) ;

113 pass2 = pass2 + 1 ;
end

115

%%% Update Pred ic tor and Convergence Check %%%
117 pass = pass + 1 ;

px = round( dx ) ;
119 py = round( dy ) ;

pz = round( dz ) ;
121 old rms = new rms ;

new rms = sqrt (mean( cx .ˆ2 + cy . ˆ 2 ) ) ;
123 fpr intf ( ’ Corrector RMS: %.4 f \n ’ , new rms ) ;

125 end
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127 end

129 load s c a l e v e c2
dx = dx .∗ median( s c a l e v e c2 ) ;

131 dy = dy .∗ median( s c a l e v e c2 ) ;

133 h = figure ( ’ Po s i t i on ’ , [ 100 100 600 4 0 0 ] ) ;
s c a l e f a c = 40 ;

135 sk ip = 5 ;
qu iver3 ( cent x ( 1 : sk ip : end ) , c ent y ( 1 : sk ip : end ) , c en t z ( 1 : sk ip : end ) , . . .

137 dx ( 1 : sk ip : end)∗ s c a l e f a c − mean( dx ( 1 : sk ip : end)∗ s c a l e f a c ) , dy ( 1 : sk ip : end)∗ s c a l e f a c ∗0 , dz ( 1 : sk ip : end)∗ s c a l e f a c ∗0 ,0)
view ( [ 1 38 70 ] )

139 xlabel ( ’X (px ) ’ ) ;
ylabel ( ’Y (px ) ’ ) ;

141 zlabel ( ’Z (px ) ’ ) ;
box o f f

143 set (h , ’ Color ’ , ’ none ’ ) ;
e x p o r t f i g ( ’C:\ Users \ lynchkp\Desktop\Masters Thes i s \ f i g u r e s \001 x vec to r s non . pdf ’ ,h ) ;

145

h = figure ( ’ Po s i t i on ’ , [ 100 100 600 3 0 0 ] ) ;
147 [ n , x ] = hist (dx , 5 0 ) ;

hist (dx , 5 0 )
149

h2 = f i ndob j (gca , ’Type ’ , ’ patch ’ ) ;
151 set ( h2 , ’ FaceColor ’ , [ . 6 . 6 . 6 ] , ’ EdgeColor ’ , [ . 3 . 3 . 3 ] )

153 hold on
[ p ] = g a u s s 1 d f i t (n , x )

155 ztmp = p (1) ∗ exp( −(0.5∗(x−p ( 2 ) ) . ˆ 2 ) / p (3)ˆ2 ) ;
r = plot (x , ztmp , ’ r− ’ , ’ LineWidth ’ , 2 )

157 set ( r , ’ LineWidth ’ , 2 )
xlabel ( ’ Displacement (px ) ’ ) ;

159 ylabel ( ’ Counts ’ ) ;

161 annotat ion ( ’ textbox ’ , [ . 1 8 . 68 . 18 . 1 3 ] , . . .
’ FontSize ’ ,10 , ’ BackgroundColor ’ , ’ none ’ , ’ EdgeColor ’ , ’ none ’ , . . .

163 ’ S t r ing ’ , [ ’ \ sigma = ’ num2str( std ( dx ) , ’%.2 f ’ ) ’ px ’ ] ) ;
annotat ion ( ’ textbox ’ , [ . 1 8 . 74 . 18 . 1 3 ] , . . .

165 ’ FontSize ’ ,10 , ’ BackgroundColor ’ , ’ none ’ , ’ EdgeColor ’ , ’ none ’ , . . .
’ S t r ing ’ , [ ’ \mu = ’ num2str(mean( dx ) , ’%.2 f ’ ) ’ px ’ ] ) ;

167

set (h , ’ Color ’ , ’ none ’ ) ;
169 e x p o r t f i g ( ’C:\ Users \ lynchkp\Desktop\Masters Thes i s \ f i g u r e s \001 x v e c t o r s h i s t x non . pdf ’ ,h ) ;

1 function [ cx , cy , cz , R vec , IA vec , IB vec ] = p i v p a s s d i s c r e t e 3 d ( imgA , imgB , node x , node y , node z , . . .
x s i z e , y s i z e , z s i z e , px , py , pz , zero padding , spo f )

3 %PIV PASS DISCRETE PIV in t e r r o ga t i on with d i s c r e t e window o f f s e t .
% [ ] = PIV PASS DISCRETE(IMGA, IMGB, NODE X, NODE Y, NODE Z,

5 % X SIZE , Y SIZE , Z SIZE , PX, PY, PZ, ZERO PADDING, SPOF)
% FFT−based d i s c r e t e s p a t i a l c o r r e l a t i o n . Based on the implementation

7 % sugges t ed in Adrian and Westerweel (2011) , pp . 369−376.
%

9 % Inputs :
% IMGA i s the f u l l data o f the f i r s t image .

11 % IMGA i s the f u l l data o f the second image .
% NODE X are the upper− l e f t node po in t s o f each window (x−coord inate ) .

13 % NODE Y are the upper− l e f t node po in t s o f each window (y−coord inate ) .
% NODE Z are the upper− l e f t node po in t s o f each window ( z−coord inate ) .

15 % X SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s ( x−coord inate ) .
% Y SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s (y−coord inate ) .

17 % Z SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s ( z−coord inate ) .
% PX i s the d i s c r e t e i n t e g e r p r ed i c t o r o f x−coord inate d isp lacement .

19 % PY i s the d i s c r e t e i n t e g e r p r ed i c t o r o f y−coord inate d isp lacement .
% PZ i s the d i s c r e t e i n t e g e r p r ed i c t o r o f z−coord inate d isp lacement .

21 % ZERO PADDING i s a boolean fo r us ing zero−padded in t e r r o ga t i on windows .
% SPOF i s a boolean fo r us ing symmetric phase−only f i l t e r i n g .

23 %
% Outputs :

153



25 % CX i s the f r a c t i o n a l co r r ec to r o f x−coord inate d isp lacement .
% CY i s the f r a c t i o n a l co r r ec to r o f y−coord inate d isp lacement .

27 % CZ i s the f r a c t i o n a l co r r ec to r o f y−coord inate d isp lacement .
% R VEC i s a vec tor conta in ing each c o r r e l a t i on volume fo r ana l y s i s .

29 %
% Kyle Lynch ( lynchkp@auburn . edu ) February 27 , 2011

31

t ic
33

[ image height , image width , image depth ] = s ize ( imgA ) ;
35

% Set parameters t ha t depend on co r r e l a t i on plane s i z i n g .
37 i f strcmp ( zero padding , ’ t rue ’ )

U = y s i z e ∗2 ;
39 V = x s i z e ∗2 ;

W = z s i z e ∗2 ;
41 else

U = y s i z e ;
43 V = x s i z e ;

W = z s i z e ;
45 end

47 % I n i t i a l i z e s to rage arrays .
R vec = zeros (U, V, W, numel ( node x ) ) ;

49 IA vec = zeros ( y s i z e , x s i z e , z s i z e , numel ( node x ) ) ;
IB vec = zeros ( y s i z e , x s i z e , z s i z e , numel ( node x ) ) ;

51

IA = zeros ( y s i z e , x s i z e , z s i z e ) ;
53 IB = zeros ( y s i z e , x s i z e , z s i z e ) ;

cx = zeros (1 , numel ( node x ) ) ;
55 cy = zeros (1 , numel ( node y ) ) ;

cz = zeros (1 , numel ( node y ) ) ;
57

for idx = 1 : numel ( node x )
59

% Generate windows .
61 for z = 1 : z s i z e

for y = 1 : y s i z e
63 for x = 1 : x s i z e

65 y i = y + node y ( idx ) ;
x i = x + node x ( idx ) ;

67 z i = z + node z ( idx ) ;
y ip = y + node y ( idx ) + py ( idx ) ;

69 xip = x + node x ( idx ) + px ( idx ) ;
z ip = z + node z ( idx ) + pz ( idx ) ;

71

i f ( ( x i <= 0) | | ( x i > image width ) | | ( y i <= 0) | | ( y i > image he ight ) | | ( z i <= 0) | | ( z i > image depth ) )
73 IA(y , x , z ) = 0 ;

else
75 IA(y , x , z ) = imgA( yi , xi , z i ) ;

end
77

i f ( ( xip <= 0) | | ( xip > image width ) | | ( yip <= 0) | | ( yip > image he ight ) | | ( z ip <= 0) | | ( z ip > image depth ) )
79 IB (y , x , z ) = 0 ;

else
81 IB (y , x , z ) = imgB( yip , xip , z ip ) ;

end
83

end
85 end

end
87

% Calcu la t e standard dev i a t i on o f windows .
89 IA std = std ( IA ( : ) ) ;

IB std = std ( IB ( : ) ) ;
91

% Calcu la t e mean of windows .
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93 IA mean = mean( IA ( : ) ) ;
IB mean = mean( IB ( : ) ) ;

95

% Subtrac t mean from both windows .
97 IA s = IA − IA mean ;

IB s = IB − IB mean ;
99

% Perform FFT.
101 FA = f f t n ( IA s , [U, V, W] ) ;

FB = f f t n ( IB s , [U, V, W] ) ;
103

% Mul t i p l y by complex conjugate .
105 S = conj (FA) .∗ FB;

107 % Take inve r s e FFT and r e s c a l e the data .
R = i f f t n (S , ’ symmetric ’ ) . / (U∗V∗W∗ IA std ∗ IB std ) ;

109

% Reshu f f l e FFT plane .
111 R = f f t sh i f t (R) ;

113 [ x0 , y0 , z0 ] = gaus s i an e s t imato r 3d (R) ;

115 % Corrector Ca l cu la t i on .
cx ( idx ) = x0 − V/2 −1;

117 cy ( idx ) = y0 − U/2 −1;
cz ( idx ) = z0 − W/2 −1;

119

121 i f (max( IA ( : ) ) == 0) | | (max( IB ( : ) ) == 0)
cx ( idx ) = 0 ;

123 cy ( idx ) = 0 ;
cz ( idx ) = 0 ;

125 end

127 R vec ( : , : , : , idx ) = R;
IA vec ( : , : , : , idx ) = IA ;

129 IB vec ( : , : , : , idx ) = IB ;

131 end

133

135 end

1 function [ t e s t ] = . . .
norma l i z ed med ian te s t 3d (dx , dy , dz , nx , ny , nz , nmt thresh lv l , nmt eps )

3

t ic
5

rad iu s = 1 ;
7

% Convert 1−D f i e l d to 3−D f i e l d to make index ing and ne ighbor ing data
9 % eas i e r to process .

idx = 1 ;
11 dx2 = zeros (ny , nx , nz ) ;

dy2 = zeros (ny , nx , nz ) ;
13 dz2 = zeros (ny , nx , nz ) ;

for z = 1 : nz
15 for y = 1 : ny

for x = 1 : nx
17 dx2 (y , x , z ) = dx ( idx ) ;

dy2 (y , x , z ) = dy ( idx ) ;
19 dz2 (y , x , z ) = dz ( idx ) ;

idx = idx + 1 ;
21 end

end
23 end
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25 t e s t 2 = ones (ny , nx , nz ) ;
for z = 1 : 1 : nz

27 for y = 1 : 1 : ny
for x = 1 : 1 : nx

29

% Extract data neighborhood exc lud ing the center po in t .
31 ne igh x = [ ] ; ne igh y = [ ] ; n e i gh z = [ ] ; idx = 1 ;

for k = −rad iu s : 1 : r ad iu s
33 for j = −rad iu s : 1 : r ad iu s

for i = −rad iu s : 1 : r ad iu s
35 x i = x + i ;

y j = y + j ;
37 zk = z + k ;

i f ( ( x i <= nx) && ( x i > 0) && . . .
39 ( y j <= ny) && ( yj > 0) && . . .

( zk <= nz ) && ( zk > 0) && . . .
41 ( ( j ˜= 0) | | ( i ˜= 0) | | ( k ˜= 0 ) ) )

ne igh x ( idx ) = dx2 ( yj , xi , zk ) ;
43 ne igh y ( idx ) = dy2 ( yj , xi , zk ) ;

ne i gh z ( idx ) = dz2 ( yj , xi , zk ) ;
45 idx = idx + 1 ;

end
47 end

end
49 end

51 % Calcu la t e median o f ne ighbor ing va lue s
neighmed x = median( ne igh x ) ;

53 neighmed y = median( ne igh y ) ;
neighmed z = median( ne i gh z ) ;

55

% Fluc tua t i ons with r e spec t to the median
57 medf luct x = dx2 (y , x , z ) − neighmed x ;

medf luct y = dy2 (y , x , z ) − neighmed y ;
59 medf luct z = dz2 (y , x , z ) − neighmed z ;

61 % Abso lute va lue o f r e s i d u a l s w i th in the neighborhood
ne ighmedf luct x = ne igh x − neighmed x ;

63 ne ighmedf luct y = ne igh y − neighmed y ;
ne ighmedf luc t z = ne igh z − neighmed z ;

65

% Median of a b s o l u t e r e s i d u a l s
67 medneighmedfluct x = median(abs ( ne ighmedf luct x ) ) ;

medneighmedfluct y = median(abs ( ne ighmedf luct y ) ) ;
69 medneighmedf luct z = median(abs ( ne ighmedf luc t z ) ) ;

71 % Normalized f l u c t u a t i o n s
normf luct x = abs ( medf luct x / ( medneighmedfluct x + nmt eps ) ) ;

73 normf luct y = abs ( medf luct y / ( medneighmedfluct y + nmt eps ) ) ;
normf luc t z = abs ( medf luc t z / ( medneighmedf luct z + nmt eps ) ) ;

75

i f ( sqrt ( normf luct x ˆ2 + normf luct y ˆ2 + normf luc t z ˆ2) > nmt thre sh lv l )
77 t e s t 2 (y , x , z ) = 0 ;

end
79

end
81 end

end
83

% Convert 3−D t e s t to 1−D t e s t .
85 idx = 1 ;

t e s t = zeros (1 , ny∗nx∗nz ) ;
87 for z = 1 : nz

for y = 1 : ny
89 for x = 1 : nx

t e s t ( idx ) = t e s t 2 (y , x , z ) ;
91 idx = idx + 1 ;

end
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93 end
end

95

% Calcu la t e percentage o f erroneous vec t o r s
97 % percent = ( count / (nx∗ny∗nz )) ∗ 100;

% percent = ( ( numel ( dx)−numel ( f i nd ( t e s t ==0)) ) / numel ( dx ) ) ∗ 100;
99

% f p r i n t f ( ’ Normalized Median Test complete , e l apsed time %.2 f seconds .\n ’ , toc ) ;
101

end

function [ dx out , dy out , dz out ] = b i l i n e a r i n t e r p o l a t i o n 3 d (dx , dy , dz , nx , ny , nz , t e s t )
2

t ic
4

% Convert 1−D f i e l d to 3−D f i e l d to make index ing and ne ighbor ing data
6 % eas i e r to process .

idx = 1 ;
8 dx2 = zeros (ny , nx , nz ) ;

dy2 = zeros (ny , nx , nz ) ;
10 dz2 = zeros (ny , nx , nz ) ;

t e s t 2 = zeros (ny , nx , nz ) ;
12 for z = 1 : nz

for y = 1 : ny
14 for x = 1 : nx

dx2 (y , x , z ) = dx ( idx ) ;
16 dy2 (y , x , z ) = dy ( idx ) ;

dz2 (y , x , z ) = dz ( idx ) ;
18 t e s t 2 (y , x , z ) = t e s t ( idx ) ;

idx = idx + 1 ;
20 end

end
22 end

24 dx out2 = dx2 ;
dy out2 = dy2 ;

26 dz out2 = dz2 ;
for z = 1 : 1 : nz

28 for y = 1 : 1 : ny
for x = 1 : 1 : nx

30 i f t e s t 2 (y , x , z ) == 0

32 % X−Component o f B i l i n ea r I n t e r p o l a t i on
idx = 1 ;

34 ne igh x = [ ] ;
for i = [−1 , 1 ]

36 x i = x + i ;
y j = y ;

38 zk = z ;
i f ( ( x i <= nx) && ( x i > 0) && ( t e s t 2 ( yj , xi , zk)==1) )

40 ne igh x ( idx ) = dx2 ( yj , xi , zk ) ;
idx = idx + 1 ;

42 end
end

44 i f numel ( ne igh x ) >= 1
dx out2 (y , x , z ) = sum( ne igh x ) / numel ( ne igh x ) ;

46 end

48 % Y−Component o f B i l i n ea r I n t e r p o l a t i on
idx = 1 ;

50 ne igh y = [ ] ;
for i = [−1 , 1 ]

52 x i = x ;
y j = y + i ;

54 zk = z ;
i f ( ( y j <= ny) && ( yj > 0) && ( t e s t 2 ( yj , xi , zk)==1) )

56 ne igh y ( idx ) = dy2 ( yj , xi , zk ) ;
idx = idx + 1 ;
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58 end
end

60 i f numel ( ne igh y ) >= 1
dy out2 (y , x , z ) = sum( ne igh y ) / numel ( ne igh y ) ;

62 end

64 % Z−Component o f B i l i n ea r I n t e r p o l a t i on
idx = 1 ;

66 ne igh z = [ ] ;
for i = [−1 , 1 ]

68 x i = x ;
y j = y ;

70 zk = z + i ;
i f ( ( zk <= nz ) && ( zk > 0) && ( t e s t 2 ( yj , xi , zk)==1) )

72 ne igh z ( idx ) = dz2 ( yj , xi , zk ) ;
idx = idx + 1 ;

74 end
end

76 i f numel ( ne i gh z ) >= 1
dz out2 (y , x , z ) = sum( ne i gh z ) / numel ( ne i gh z ) ;

78 end

80

end
82 end

end
84 end

86 % Convert 2−D f i e l d to 1−D array .
idx = 1 ;

88 for z = 1 : nz
for y = 1 : ny

90 for x = 1 : nx
dx out ( idx ) = dx out2 (y , x , z ) ;

92 dy out ( idx ) = dy out2 (y , x , z ) ;
dz out ( idx ) = dz out2 (y , x , z ) ;

94 idx = idx + 1 ;
end

96 end
end

98

% f p r i n t f ( ’ B i l i n ea r vec tor replacement complete , e l apsed time %f seconds .\n ’ , toc ) ;
100

end

1 function [ node x , node y , node z , cent x , cent y , cent z , nx , ny , nz ] = . . .
g en e r a t e g r i d 3d ( image height , image width , image depth , . . .

3 x s i z e , y s i z e , z s i z e , x spac ing , y spac ing , z spac ing )
%GENERATE GRID 3D Generate 3D PIV Grid

5 % [NODE X, NODE Y, NODE Z, CENT X, CENT Y, CENT Z, NX, NY, NZ] =
% GENERATE GRID(IMAGE HEIGHT, IMAGEWIDTH, IMAGE DEPTH,

7 % X SIZE , Y SIZE , Z SIZE , X SPACING, Y SPACING, Z SPACING)
% Creates a g r i d f o r PIV eva lua t ion , based on the dimensions and

9 % separa t i ons o f i n t e r r o ga t i on windows .
%

11 % Inputs :
% IMAGE HEIGHT i s the he i gh t o f the image (y−coord inate ) .

13 % IMAGEWIDTH i s the width o f the image ( x−coord inate ) .
% IMAGE DEPTH i s the width o f the image ( z−coord inate ) .

15 % X SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s ( x−coord inate ) .
% Y SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s (y−coord inate ) .

17 % Z SIZE i s the i n t e r r o ga t i on window s i z e in p i x e l s ( z−coord inate ) .
% X SPACING i s the i n t e r r o ga t i on window spacing in p i x e l s ( x−coord inate ) .

19 % Y SPACING i s the i n t e r r o ga t i on window spacing in p i x e l s (y−coord inate ) .
% Z SPACING i s the i n t e r r o ga t i on window spacing in p i x e l s ( z−coord inate ) .

21 %
% Outputs :

23 % NODE X are the upper− l e f t node po in t s o f each window (x−coord inate ) .
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% NODE Y are the upper− l e f t node po in t s o f each window (y−coord inate ) .
25 % NODE Z are the upper− l e f t node po in t s o f each window ( z−coord inate ) .

% CENT X are the cen t ro id po in t s o f each window (x−coord ina te s ) .
27 % CENT Y are the cen t ro id po in t s o f each window (y−coord ina te s ) .

% CENT Z are the cen t ro id po in t s o f each window ( z−coord ina te s ) .
29 % NX are the number o f windows in the x−d i r e c t i on .

% NY are the number o f windows in the y−d i r e c t i on .
31 % NZ are the number o f windows in the z−d i r e c t i on .

%
33 % Kyle Lynch ( lynchkp@auburn . edu ) March 3 , 2011

35 % Determine the g r i d o f f s e t to center the g r i d wi th in the image .
nz = 0 ;

37 for z = 1 : z spac ing : image depth−z s i z e
ny = 0 ;

39 for y = 1 : y spac ing : image height−y s i z e
nx = 0 ;

41 for x = 1 : x spac ing : image width−x s i z e
nx = nx + 1 ;

43 end
ny = ny + 1 ;

45 end
nz = nz + 1 ;

47 end
x o f f s e t = round ( ( image width−x s i z e−x ) / 2 ) ;

49 y o f f s e t = round ( ( image height−y s i z e−y ) / 2 ) ;
z o f f s e t = round ( ( image depth−z s i z e−z ) / 2 ) ;

51 fpr intf ( ’ Grid Generation . . . \ n ’ ) ;
fpr intf ( ’X S i z e : %3d , Y S i z e : %3d , Z S i z e : %3d\n ’ , x s i z e , y s i z e , z s i z e ) ;

53 fpr intf ( ’X Spacing : %3d , Y Spacing : %3d , Z Spacing : %3d\n ’ , x spac ing , y spac ing , z spac ing ) ;
fpr intf ( ’X Regions : %3d , Y Regions : %3d , Z Regions : %3d\n ’ , nx , ny , nz ) ;

55 fpr intf ( ’X Of f s e t : %3d , Y Of f s e t : %3d , Z Of f s e t : %3d\n ’ , x o f f s e t , y o f f s e t , z o f f s e t ) ;
fpr intf ( ’Number o f Regions : %6d\n ’ , nx∗ny∗nz ) ;

57

% Build g r i d nodal and cen t ro id po in t s and s t o r e them in row−major format .
59 idx = 1 ;

node x = zeros (1 , nx∗ny∗nz ) ; cent x = zeros (1 , nx∗ny∗nz ) ;
61 node y = zeros (1 , nx∗ny∗nz ) ; cent y = zeros (1 , nx∗ny∗nz ) ;

node z = zeros (1 , nx∗ny∗nz ) ; c en t z = zeros (1 , nx∗ny∗nz ) ;
63 for z = 1 : 1 : nz

for y = 1 : 1 : ny
65 for x = 1 : 1 : nx

node x ( idx ) = x o f f s e t + (x−1)∗ x spac ing ;
67 cent x ( idx ) = x o f f s e t + (x−1)∗ x spac ing + x s i z e /2 ;

69 node y ( idx ) = y o f f s e t + (y−1)∗ y spac ing ;
cent y ( idx ) = y o f f s e t + (y−1)∗ y spac ing + y s i z e /2 ;

71

node z ( idx ) = z o f f s e t + ( z−1)∗ z spac ing ;
73 c en t z ( idx ) = z o f f s e t + ( z−1)∗ z spac ing + z s i z e /2 ;

75 idx = idx + 1 ;
end

77 end
end

79

end

function [ px , py , pz ] = . . .
2 g e n e r a t e p r e d i c t o r d i s c r e t e 3 d ( o ld cent x , o ld cent y , o l d c en t z , old dx , old dy , o ld dz , . . .

o ld nx , old ny , o ld nz , new cent x , new cent y , new cent z , new nx , new ny , new nz )
4 %GENERATE PREDICTOR DISCRETE Generate d i s c r e t e i n t e g e r p r ed i c t o r
% [ ] = GENERATE PREDICTOR DISCRETE(OLD CENT X, OLD CENT Y, OLD DX, OLD DY,

6 % OLD NX, OLD NY, NEW CENT X, NEW CENT Y, NEWNX, NEWNY)
% Creates the p r ed i c t o r array fo r PIV in t e r roga t i on , based on a l i n e a r

8 % in t e r p o l a t i o n to new gr i d coord ina te s .
%

10 % Inputs :
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% OLD CENT X i s an array o f o ld window cen t ro id l o c a t i on s ( x−coord inate ) .
12 % OLD CENT Y i s an array o f o ld window cen t ro id l o c a t i on s (y−coord inate ) .

% OLD DX i s the array o f o ld d i sp lacements ( x−coord inate ) .
14 % OLD DY i s the array o f o ld d i sp lacements (y−coord inate ) .

% OLD NX i s the number o f o ld i n t e r r o ga t i on windows in the x−d i r e c t i on .
16 % OLD NY i s the number o f o ld i n t e r r o ga t i on windows in the y−d i r e c t i on .

% NEWCENT X i s an array o f new window cen t ro id l o c a t i on s ( x−coord inate ) .
18 % NEWCENT Y i s an array o f new window cen t ro id l o c a t i on s (y−coord inate ) .

% NEWNX i s the number o f new in t e r r o ga t i on windows in the x−d i r e c t i on .
20 % NEWNY i s the number o f new in t e r r o ga t i on windows in the y−d i r e c t i on .

%
22 % Outputs :

% PX i s the d i s c r e t e i n t e g e r p r ed i c t o r f o r the x−coord inate .
24 % PY i s the d i s c r e t e i n t e g e r p r ed i c t o r f o r the y−coord inate .

%
26 % Kyle Lynch ( lynchkp@auburn . edu ) February 27 , 2011

28 % Convert 1−D f i e l d to 3−D f i e l d to make index ing and ne ighbor ing data
% ea s i e r to process .

30 idx = 1 ;
dx2 = zeros ( old ny , old nx , o ld nz ) ;

32 dy2 = zeros ( old ny , old nx , o ld nz ) ;
dz2 = zeros ( old ny , old nx , o ld nz ) ;

34 for z = 1 : o ld nz
for y = 1 : o ld ny

36 for x = 1 : o ld nx
o ld c en t x2 (y , x , z ) = o ld c en t x ( idx ) ;

38 o ld c en t y2 (y , x , z ) = o ld c en t y ( idx ) ;
o l d c en t z 2 (y , x , z ) = o l d c e n t z ( idx ) ;

40 old dx2 (y , x , z ) = old dx ( idx ) ;
o ld dy2 (y , x , z ) = old dy ( idx ) ;

42 o ld dz2 (y , x , z ) = o ld dz ( idx ) ;
idx = idx + 1 ;

44 end
end

46 end

48 idx = 1 ;
dx2 = zeros ( old ny , old nx , o ld nz ) ;

50 dy2 = zeros ( old ny , old nx , o ld nz ) ;
dz2 = zeros ( old ny , old nx , o ld nz ) ;

52 for z = 1 : new nz
for y = 1 : new ny

54 for x = 1 : new nx
cent x2 (y , x , z ) = new cent x ( idx ) ;

56 cent y2 (y , x , z ) = new cent y ( idx ) ;
c en t z2 (y , x , z ) = new cent z ( idx ) ;

58 idx = idx + 1 ;
end

60 end
end

62

% Perform in t e r p o l a t i o n .
64 px2 = round( i n t e rp3 ( o ld cent x2 , o ld cent y2 , o ld c en t z2 , old dx2 , cent x2 , cent y2 , cent z2 , ’ l i n e a r ’ , 0 ) ) ;

py2 = round( i n t e rp3 ( o ld cent x2 , o ld cent y2 , o ld c en t z2 , old dy2 , cent x2 , cent y2 , cent z2 , ’ l i n e a r ’ , 0 ) ) ;
66 pz2 = round( i n t e rp3 ( o ld cent x2 , o ld cent y2 , o ld c en t z2 , o ld dz2 , cent x2 , cent y2 , cent z2 , ’ l i n e a r ’ , 0 ) ) ;

68 % Convert 2−D arrays back to 1−D arrays .
idx = 1 ;

70 for z = 1 : new nz
for y = 1 : new ny

72 for x = 1 : new nx
px ( idx ) = px2 (y , x , z ) ;

74 py ( idx ) = py2 (y , x , z ) ;
pz ( idx ) = pz2 (y , x , z ) ;

76 idx = idx + 1 ;
end

78 end
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end
80

end

161


