
KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 7, 2006

KNAPSACK PROBLEMS WITH SETUPS

Except where reference in made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory
committee. This dissertation does not include proprietary or
classified information.

Yanchun Yang

Certificate of Approval:

_________________________ _________________________
Saeed Maghsoodloo Robert L. Bulfin, Chairman
Professor Technology Management Professor
Industrial and Systems Engineering Industrial and Systems Engineering

_________________________ _________________________
Jorge Valenzuela Stephen L. McFarland
Associate Professor Dean
Industrial and Systems Engineering Graduate School

 iii
KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense.
The author reserves all publication rights.

 Signature of Author

 Date of Graduation

 iv
VITA

Yanchun Yang, daughter of Jie Yang and Jianmei Zhao, was born on April 14, 1977,
in Jiagedaqi Daxinganling, Heilongjiang Province, P.R.China. She graduated with the
degrees of Bachelor of Science (Industrial Engineering) in 1998 and Master of
Management Engineering in 2001, both from Northeastern University, Shenyang,
P.R.China. She entered Graduate School, Auburn University, in January, 2003.

 v
DISSERTATION ABSTRACT
KNAPSACK PROBLEMS WITH SETUP

Yanchun Yang
Doctor of Philosophy, August 7, 2006
(MISE, Northeastern University, China, 2001)
(B.S., Northeastern University, China, 1998)

107 Typed Pages
Directed by Robert L. Bulfin

This research studies three integer programming models which can be applied to order
acceptance in make-to-order manufacturing or regional project selection in multiple
periods. All three models are the variations of the binary knapsack problems and they are
called the knapsack problem with setup (KPS), the multiple knapsacks problem with
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS),
respectively. In all three models, jobs belong to different families and some variables
represent setup for a family of jobs: if a setup is not done, no jobs in this family can be
processed; if two jobs are processed sequentially, no setup is required.

 vi
Branch-and-bound algorithms are used to obtain the optimal solutions to all three
models. Setup variables are branched on. After all setup variables are fixed, the models
are transformed to a (several) knapsack problem(s). For each model, an independent
linear knapsack problem is developed to give an upper bound. When a setup variable is
fixed during branching, we update certain variables in the linear knapsack problem. The
optimal objective of the updated linear knapsack problem is an upper bound on the
generated sub-problem. The rounded LP solution of the linear knapsack problem for KPS
or MCKS corresponds to an incumbent of KPS or MCKS. A greedy algorithm is
developed to obtain a lower bound on MKPS. Computational experiments show the
effectiveness of these algorithms.

 vii
 Style manual or journal used Bibliography conforms to those of European Journal of
Operational Research
Computer software used ANSI C, AMPL, Microsoft Office Excel and Microsoft
Office Word

 viii
TABLE OF CONTENTS
LIST OF TABLES... xi
LIST OF FIGURES .. xii
I. INTRODUCTION... 1
1.1. Objectives and significance .. 1
1.2. Mathematical Model... 3
1.2.1. Order acceptance .. 3
1.2.2. Regional project selection with a fixed budget .. 5
1.3. Basic research method .. 7
1.3.1. Cutting Plane .. 7
1.3.2. Dynamic Programming .. 7
1.3.3. Branch and Bound .. 8
1.4 Relaxation Method... 8
1.4.1. Linear Relaxation ... 8
1.4.2. Surrogate Relaxation .. 9
1.4.3. Lagrangean Relaxation... 10
References.. 11
?. KNAPSACK PROBLEM WITH SETUP .. 12
Abstract.. 12
2.1. Introduction... 12
2.2. Literature survey... 14
2.3. Background... 16
2.4. Solution algorithm .. 19
2.4.1. Fixing variables .. 19
2.4.2. Bounding .. 20
2.4.3. Choosing a new sub-problem ... 20

 ix
2.4.4. Heuristic ... 21
2.5. Computational experiments.. 21
2.6. Conclusions... 26
Appendix A. is greater than .. 27
0i
r
1, +ti
r
References.. 27
?. MULTIPLE KNAPSACK PROBLEM WITH SETUP.. 29
Abstract.. 29
3.1. Introduction... 29
3.2. Linear knapsack problems and knapsack problem with setup............................ 33
3.2.1. Linear knapsack problem ... 33
3.2.2. Algorithm for LKPS... 34
3.2.3. An upper bound on MKPS ... 36
3.3. Feasible solution (lower bound) ... 39
3.4. Branch-and-bound algorithm.. 40
3.4.1. Variable order... 40
3.4.2. Fixing .. 41
rk
y
3.4.3. Choosing a new sub-problem ... 45
3.5. Computational experiments.. 46
3.6. Conclusions... 54
Appendix A. The optimal objective of K1 is the upper bound on MKPS 55
References.. 58
?.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP 59
Abstract.. 59
4.1. Introduction and literature review .. 59
4.2. An upper bound and feasible solution .. 63
4.2.1. Linear knapsack problem ... 63
4.2.2. Transform a linear knapsack problem with setup to a linear knapsack
problem ... 64
4.2.3. The algorithm for the upper bound and feasible solution......................... 66
4.3. Fixing ... 70
it
y

 x
4.3.1. Fixing to one... 70
it
y
4.3.2. Fixing to zero.. 71
it
y
4.3.4. Choosing a New Sub-problem.. 72
4.4. Computational experiments.. 73
4.5. Conclusion .. 79
Appendix A. The optimal objective of is an upper bound on MCKS. 79
u
LKP
Appendix B. The rounded solution of corresponds to a feasible solution of
MCKS.. 81
u
LKP
Appendix C. Three Dominance rules .. 83
References.. 90
?. CONCLUSIONS... 91
BIBLIOGRAPHY... 94

LIST OF TABLES
Table 2.1. Solution time (seconds) for AKPS... 23
Table 2.2. Comparing solution time (seconds) of CPLEX and AKPS 26
Table 3.1. Solution time (minute) for AMKPS for 5 periods ... 47
Table 3.2. Solution time (minute) for AMKPS for 7 periods ... 48
Table 3.3. The lower bound, upper bound and optimal solution 51
Table 3.4. The comparison of solution time (Minute) between AMKPS and CPLEX 53
Table 4.1. Solution time (minutes) with 10N = and 74 ~ [10,30]
i
n
Table 4.2. Solution time (minutes) with 30N = and 75 ~ [30,50]
i
n
Table 4.3. Solution time (minutes) with 50N = and 75 ~ [50,70]
i
n
Table 4.4. The solution time (minute) comparison between AMCKS and CPLEX......... 78
 xi

LIST OF FIGURES
Fig. 2.1. Comparison of uncorrelated instances with similar total variables number....... 24
Fig. 2.2. Comparison of correlated instances with similar total variables number........... 24
Fig. 3.1. Solution time for average 45 jobs per family and 5 periods............................... 49
Fig. 3.2. Solution time for average 65 jobs per family and 5 periods............................... 49
Fig. 3.3. Solution time for average 85 jobs per family and 5 periods............................... 50
Fig. 3.4. Solution time for average 45 jobs per family and 7 periods............................... 50
Fig. 3.5. Solution time for average 65 jobs per family and 7 periods............................... 50
Fig. 3.6. Solution time for average 85 jobs per family and 7 periods............................... 51
Fig. 4.1. Solution Time for 50, 15NT= = and .. 76 ~ [50,70]
i
n
Fig. 4.2. Solution Time for 50, 20NT= = and ... 76 ~ [50,70]
i
n

 xii

I. INTRODUCTION
1.1. Objectives and significance
Make-to-order production is playing an increasingly important role in our economy,
partly due to the Internet and manufacturing technology advances. In make-to-order
production, price is dictated not only by cost, but also by the customer?s expectation as
well. Some customers are willing to pay a higher price for a short lead-time while others
are willing to wait for their products in exchange for lower prices. Thus prices can be
related to a product?s delivery date. Price, schedule and the total profit have very complex
connections. These connections are of extreme interest to businesses today.
 1
N
Assume there is a manufacturing company. At time T, they receive some orders (jobs),
which belong to families. Familyi ,N 1, ..i= , has jobs. Also assume that these jobs
should be produced in the next planning period. The company?s manufacturing capacity
is fixed and can?t be changed in the short term. Setup cost and setup time occurs when
manufacturing changes from a job in one family to another job from a different family.
There is no setup between jobs of the same family. The company operates with a batch
delivery policy; products that are manufactured in the same period have the same
shipping date. This is a common scenario in many manufacturing companies. Then the
company needs to decide how to choose orders to maximize the total profit. In this case, a
single knapsack model with setup is used to solve this problem.
i
n

To extend this problem, jobs can be manufactured inT different periods, but a family
can only be produced in a single period. Here the price charged for the product many
relate to the customer?s desired due date; the price depends on the job?s completion time.
The price could be determined by this way: there would be a base price for a job
delivered at the customer?s desired due date; there will be ?earliness? and ?tardiness?
penalties for other delivery dates. These prices would depend on the deviation from the
desired due date and each customer?s tolerance for this deviation. Sometimes, the price
could be increased for urgent jobs; or the price could be decreased if the customer agrees
to allow more time for delivery. So in this system, prices are changed based on the
product?s actual delivery time. The company might negotiate the price based on customer
desires and company capabilities. Before making a production schedule, we should know
the prices of jobs as a function of different completion dates.
With the added price variability, this model is more complex than typical scheduling
models in make-to-order manufacturing. The company has to consider the marginal profit
for different jobs, the current production capacity, and each family?s setup cost and time
before choosing orders and deciding the job assignment to maximize its total profit. A
multiple knapsack problem with setup (MKPS) model can solve this problem.
In above scenario, if production inT periods need the same non-renewable material
and jobs from the same family can be manufactured in multiple periods, then a multiple-
choice knapsack problem with setup (MCKS) can model this problem. MCKS is more
helpful in an organization?s decision making on a fixed budget to invest a number of
projects in multiple areas in multiple periods. In order to do a project in an area, a project
 2

office must be set up. The organization would like to decide where to set up offices and
which projects to do to maximize net profit subject to this budget restriction.
1.2. Mathematical Model
1.2.1. Order acceptance
In make-to-order, if all orders have to be finished in one time period, a knapsack
problem with setup (KPS) can be used to solve the orders acceptance problem. In this
situation, a company will decide which jobs will be produced in this period.
Given this model:

11 1
..
i
nNN
ij ij i i
ij i
Max c x f y
st
== =
+
?? ?

11 1
i
nNN
ij ij i i
ij i
ax dy b
== =
+
?? ?
? (1)
1, ; 1,
ij i
i
x yj ni N?== (2)
,{0,1} 1,;1,
ij i i
.x yjn?==N
)
 (3)
i -is index families,
j -is index jobs,
N -is the number of families,
i
n -is the number of jobs in familyi ,
ij
c -is the profit of job j in family , i
ij
a -is the time to process job in familyi , j
i
f -is the setup cost for familyi (0
i
f < ,
 3

i
d -is the setup time for familyi ,
b -is the time available for processing,
ij
x -is one if job in family is produced, zero otherwise, j i
i
y -is one if any job in family is produced, zero otherwise. i
Constraint (1) requires that the total time used by jobs and setups cannot exceed the time
available for production (resource other than time could also be considered). Constraints
(2) prohibit a job from being processed if it belongs to a family that has not been setup.
If jobs can be manufactured in multiple periods, and all items in same family should
be manufactured together in one period, then this model could be described as a multiple
knapsack problem with setup (MKPS):
111 11
..
i
n
TN TN
ijt ijt it it
tij ti
Max c x f y
st
=== ==
+
??? ??

 , (1)
11 1
1, ..
i
nNN
ij ijt i it t
ij i
ax dy b t T
== =
+?=
?? ?
1, ; 1, ; 1, ..
ijt i
it
x yj ni Nt T?===, (2)
1
11,.
T
it
t
yi
=
?=
?
N, (3)
, {0,1} 1, .. ; 1, .. ; 1, ..
i
x yjnNt?===T. (4)
ijt
x -is 1 if the job of family i is arranged into periodt , otherwise 0, j
it
y -is 1 if some job of familyi is arranged into periodt , otherwise 0,
ijt
c -is the profit of job of family in period t (), j i 0
ijt
c ?
it
f -is the setup cost for family in periodt (i 0
it
f)< ,
 4

ij
a -is the processing time for job of family (), j i 0
ij
a >
 5
0
0
i
d -is the setup time for family i (),
i
d >
t
b -is the available resource for processing in period t ().
t
b >
Constraint (1) requires that the total time used by jobs and setups cannot exceed the time
available in each period for production (resource other than time could also be
considered). Constraints (2) prohibit a job from being processed if it belongs to a family
that has not been setup. Constraints (3) guarantee setup of each family occurs once.
In this model, all jobs belong to different families. If a job is chosen, then setup
time and setup costs must occur. A job may be put intoT different periods, but the profit
is different in different periods. The objective is to maximize the sum of the profits of
accepted jobs.
N
1.2.2. Regional project selection with a fixed budget
Select projects which can be invested in multiple periods and in different regions to
maximize net profit. This model can be described as a multiple-choice knapsack problem
with setup.

111 11
..
i
n
TN TN
ijt ijt it it
tij ti
Max c x f y
st
=== ==
+
??? ??

11 1 11
i
nTN TN
ij ijt i it
tij ti
ax dy b
=== ==
+
??? ??
?, (1)
1, .. , 1, .. ; 1, ..
ijt it i
x yj ni Nt T?= = =, (2)
1
1 1,... , 1,..
T
ijt i
t
x iNj
=
?= =
?
n, (3)
, {0,1} 1,.. ; 1,.. ; 1,.. .
ijt it i
x yiNjnt?===T (4)
ijt
c -is the profit of project in area in period t (), j i 0
ijt
c ?
it
f -is the setup cost for opening an office in area in period t (i 0
it
f ?),
ij
a -is the investment needed for project in area (), j i 0
ij
a >
i
d -is the investment cost to open an office in area (), i 0
i
d >
b -is the budge available to invest (), 0b >
it
y - is one if office is set up in areai in periodt , otherwise zero,
ijt
x -is one if project in area is done in period , otherwise zero, j i t
N -is the number of areas,
T -is the number of periods.
Constraint (1) requires the total budget used by all projects and setup office can?t exceed
the budget available. Constraints (2) prohibit a project done before the office in this area
is set up. Constraints (3) guarantee a project in an area only can be invested once.
Constraints (4) require the variables to be binary.
 6

 7
1.3. Basic research method
These three models are integer programs (IPs). For integer programming, branch and
bound, cutting planes and dynamic programming could be used to optimally solve this
class problem.
1.3.1. Cutting Plane
Cutting plane algorithm is an important and well-known approach to solve IPs. It is
one of the purest methods in polyhedral description algorithms and an alternative to
enumeration. Cutting planes redefines the problem again and again by adding constraints
until the problem is solved.
In practice, a successful cutting plane algorithm depends on the relaxation method of
the original problem, and the choice of cutting inequalities. There must be a family of
valid inequalities, which define any optimal point, and a relaxation that is tractable. In
fact when we add valid inequalities to the relaxation, we solve a series of relaxed
problems. If this series of problems are easy to solve, that is better. But for these three
models, we did not find such an algorithm for the relaxations. Therefore, cutting plane
does not appear to be our best choice. For further study of cutting planes, refer to Parker
and Rardin (1988).
1.3.2. Dynamic Programming
Dynamic Programming is not a specific algorithm, but we can use dynamic
programming theory to design an algorithm for these three models. As the number of jobs
increase, that algorithm becomes worse, and storage space will increase exponentially.
We do not choose to use dynamic programming.

1.3.3. Branch and Bound
Branch and Bound belongs to the strategy of ?partial enumeration?, just like cutting
planes belongs to? polyhedral description?. These two strategies are often used to solve
IPs. Though they are non-polynomial in the worst case, they can be effective solution
procedures for IPs in practice.
In a branch-and-bound algorithm, if a variable is restricted to be binary, we can
separate the problem into two sub-problems: one with
x
0x = and the other with 1x = .
Successful applications for B&B need a good algorithm to calculate upper and lower
bounds for those sub-problems. The tighter the upper and lower bounds are, the more
effective the algorithm is. Only with strong bounds we can expect to fathom candidate
problems rapidly enough to avoid being overcome by the exponential growth in the
number of potential sub-problems.
Since we design a linear knapsack problem to supply the upper bound for each model
and the linear knapsack problem is easy to be solved by Danzig?s algorithm, B&B
becomes an attractive method to solve these problems.
1.4 Relaxation Method
1.4.1. Linear Relaxation
Linear programming is, without doubt, the most successful branch of optimization
(Parker and Rardin, 1988). Integer programming is usually changed to linear
programming by relaxing the integer constraints. Linear programs can be solved easily,
and may provide a good upper bound. Therefore, many integer program algorithms use a
linear relaxation to get the bound.
 8

In this paper, we relax the integer constraints of job variables for all three models.
Linear knapsack problems are designed to give the upper bounds on these relaxations.
1.4.2. Surrogate Relaxation
A surrogate constraint is a linear combination of other constraints. The following is an
example of surrogate relaxation:
11
1
..
(1,...,),
{0,1}
mn
jij
ij
n
jij i
j
ij
Max c x
st
ax b i m
x
==
=
?=
?
??
?

Then its surrogate relaxation is:
 9
i
11
11 1
..
{0,1}
mn
jij
ij
mn m
ijij
ij i
ij
Max c x
st
vax vb
x
==
== =
?
?
??
?? ?

The original problem?s solution is also a feasible solution to the surrogate relaxation,
but the solution of surrogate relaxation is not necessarily feasible to the original problem.
The surrogate relaxation has a larger feasible space. The optimal solution to the surrogate
is an upper bound of the original problem. In this paper, surrogate relaxation along with
linear relaxation will be used in MKPS to obtain a good upper bound.

1.4.3. Lagrangean Relaxation
Lagrangean relaxation is also a common relaxation model. This is an example for
Lagrangean relaxation:
Give the model L1
11
1
..
1,...,
{0,1}
i
i
nN
ij ij
ij
n
ij ij i
j
ij
Max c x
st
ax b i N
x
==
=
?=
?
??
?

Its Lagrangean relaxation, L2, is:
11 1 1
()
..
{0,1}
ii
nnNN
ij ij i i ij ij
ij i j
ij
Max c x u b a x
st
x
== = =
+?
?
?? ? ?

For each feasible solution of L1, we have
11 1 1 11
()
ii
nnNN N
ij ij i i ij ij ij ij
ij i j ij
cx u b ax cx
== = = ==
+? ?
?? ? ? ??
i
n

and all feasible solutions of L1 must be feasible solutions of L2, but not vice versa.
If we use Lagrangean relaxation, the knapsack problem?s good structure is destroyed.
Also experimentation shows the bound is not tight enough. Therefore, Lagrangean
relaxation is not used in this paper.
 10

 11
References
Parker, R.G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,
CA.

 12
?. KNAPSACK PROBLEM WITH SETUP
Abstract
This paper studies a 0-1 knapsack problem with setup (KPS) where one set of
variables serves as the upper bound of another set of variables. An efficient algorithm
presented by Bulfin (1988) for the linear relaxation of this problem is applied to obtain an
upper bound. Branch and bound is used to obtain the optimal solution, and the upper
bound variables are branched before the remaining variables so KPS becomes a single
knapsack problem. Computational experiments show that this algorithm is effective when
objective and constraint coefficients are uncorrelated. This model can be used in order
acceptance of single period in make-to-order manufacturing.
2.1. Introduction
A company makes metal door frames based on customer orders. Door frames have
different heights, widths, jamb sizes and a number of hinges and lock configurations. An
order can be for a single frame or for 1,000 identical frames. To make a particular frame,
the production machinery must be set up for the parameters of that door. Some setups,
like the height of the door are easily made, while others, like jamb size require much time
and labor. The actual cost to produce a frame depends on what other frames are being
produced; if many identical frames are made, economies of scale result in a low cost. On
the other hand, if a single frame is made, the setup cost dominates and the cost is high.

Thus which orders are accepted, when they are produced and the price charged are
critical to profitability.
This scenario describes the basic order acceptance problem faced by all make-to-order
manufacturers. Orders consist of jobs, and similar jobs make up a family. Families share
a setup; if two jobs from the same family are processed sequentially, no setup is required.
The manufacturer plans production for the next period based on orders received. An order
can be accepted or rejected for production in this period.
This problem can be formulated as a knapsack with setup. Let
i index families
j index jobs
N be the number of families,
i
n be the number of jobs in familyi ,
ij
c be the profit of job j in family , i
ij
a be the time to process job j in familyi ,
i
f be the setup cost for familyi (0
i
f)< ,
i
d be the setup time for family and i
b be the time available for processing.
The decision variables are:
ij
x is one if job j in family is produced, zero otherwise and i
i
y is one if any job in family is produced, zero otherwise. i
The model, which we call KPS, is:
 13

11 1
..
i
nNN
ij ij i i
ij i
Max c x f y
st
== =
+
?? ?

11 1
i
nNN
ij ij i i
ij i
ax dy b
== =
+
?? ?
? (1)
1, ; 1,
ij i
i
x yj ni N?== (2)
,{0,1} 1,;1,
ij i i
.x yjn?==N (3)

Constraint (1) requires that the total time to produce jobs cannot exceed the time
available. Constraints (2) ensure a job is processed only if it belongs to a family that has
been setup. Constraints (3) require the variables to be binary.
In the following section we give a brief literature review and discuss background used
in the solution methodology. In Section 2.3, we present an algorithm to solve KPS.
Computational results are given in Section 2.4. Finally, we give concluding remarks.
2.2. Literature survey
This linear relaxation of KPS was first introduced by Ham et al. (1985) as a cell
loading problem for a Group Technology production system. Bulfin (1988) developed a
polynomial algorithm for the linear relaxation of KPS. It is based on the ratio rule of
Dantzig (1957) for the linear knapsack problem.
Akinc (2004) derives an algorithm for a special case of KPS with no setup time, which
he called fixed-charge knapsack problem. His algorithm to solve the linear relaxation is
the same as the one in Bulfin (1988). He outlined a branch-and-bound algorithm to solve
the integer version and used this solution to compare heuristics. No solution times are
 14

given for the branch-and-bound algorithm. He states ?This problem is solved as an LP. If
all are integer, then the optimal solution of P (the fixed-charge knapsack problem) is
obtained from the solution of the ordinary 0/1 knapsack problem that optimally allocates
the available capacity to all
i
y
ij
x for which 1
i
y = .? This statement is not true, as seen by the
following counter-example:
11 12 1 21 22 2
11 12 21 22
11 1 12 1
21 2 22 2
11 12 21 22
65 58
..
344
,
,
,,, {0,1}
Max x x y x x y
st
xxx x
xyxy
xyxy
xxxx
+?++?
+++?
??
??
?

The LP?s optimal solution is
12
1, 1yy= = , and the objective is 13. Based on Akinc?s
claim, solving the integer knapsack with both setups included gives a solution value of 9,
with , and
12
1, 1yy==
11
1x =
12
1x = . But the solution
12
1, 0yy= = , and
11
1x =
12
1x = has
objective 10. Hence, the optimal objective of knapsack problem when all are integer in
LP solution is not necessarily optimal for the integer model. This brings the results of his
paper into question.
y
Chajakis and Guignard (1994) consider the setup knapsack problem which is similar
to ours except the setup cost
i
f and profit of job can be positive or negative. An extra
constraint is added to make sure a setup does not occur if no job in this family is put into
knapsack. This is unnecessary in KPS since is positive and
ij
c
ij
c
i
f is negative. Chajakis
and Guignard transform the original problem to an equivalent formulation without setup
variables by two methods. Variables y are described by a Boolean union of x variables
 15

so that the constraints coupling and can be deleted and the problem becomes a
?knapsack problem? with a Boolean union of all variables. The second method is to
enumerate all non-dominated feasible solution for each family and define a pseudo-
variable corresponding to this solution. This transforms the setup knapsack to a multiple-
choice knapsack problem and only one pseudo-variable can be one in an optimal solution.
Dynamic programming is used to solve the first transformation; branch-and-bound and
dynamic programming are both used to solve the multiple-choice knapsack problem in
the second transformation. Instances with 5, 10, 20, 50, and 200 families are tested. A
maximum of 4000 total variables can be solved.
x y
2.3. Background
The knapsack problem and its many variants are well-studied. For a discussion, see
Martello and Toth (1990) and Dudzinski and Walukiewicz (1987). We discuss some
basic results that will be used later in this paper. Dantzig (1957) defined the linear
knapsack problem as:
 16
.
1
1
..
01,1,
n
jj
j
n
jj
j
j
Max c x
st
ax b
x jn
=
=
?
?? =
?
?

If the variables are ordered by
12
12
...
n
n
ccc
aa
???
a
, he showed the optimal solution is
given by
1,
j
x jt=<

1
1
()
t
j
j
t
t
ba
x
a
?
=
?
=
?

0,
j
x jt=>
where .
1
min{ | }
i
j
j
tia
=
=>
?
b
Similarly, we define the linear relaxation of KPS (LKPS), which is given by
11 1
11 1
..
,
1, ; 1, ,
01,;1,,
01,1,..
i
i
nNN
ij ij i i
ij i
nNN
ij ij i i
ij i
ij i
i
ij i
i
Max c x f y
st
ax dy b
xyj ni N
xjnN
yiN
== =
== =
+
+?
?==
?==
?? =
?? ?
?? ?

Define ,1,. 1,.
ij
ij i
ij
c
riNj
a
===n. Order jobs so that .
i
niiii
rrrr
,321
...... ???

Let
11
0
1
1
max{ | 1, 2,.. }
i
i
t
k
ij i ij i
jj
iitk
ij iij i
j
j
cf cf
rk
adad
==
=
=
++
=
++
??
??
n for iN? .
Separate the jobs of familyi into two sets,
i
XM = {1? } and
i
t
i
XT = { +1.... }. Then
; a proof is given in the Appendix A.
i
t
i
n
i
nititii
rrrr
,2,1,0,
... ????
++
For familyi , define:
 17

 18
n
n
n
'
1
1
'
1
1
'
,1
'
,1
'
1, ..
1, ..
1
i
i
i
i
t
iiji
j
t
iiji
j
ijt ij i i
ijt ij i i
iii
ccf
aad
ccjt
aajt
nnt
=
=
?+
?+
=+
=+
==+
==+
=?+
?
?

Then LKPS can be reformulated as a classical linear knapsack problem, which we call
LBKP:
'
'
'
11
'
11
..
0 1, 1,.. 1,...
i
i
nN
ij ij
ij
n
N
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
???= =
??
??

and solved by Dantzig?s ratio rule. If there is no fractional variable, KPS is also solved.
We know that, at most, one variable will have a fractional value.
Suppose , . If
ij
zf= 01f<<
i
j t> , then job
i
tj+ in familyi will be the only fractional
variable KPS and all setup times and costs are considered. On the other hand, if 1j = ,
represents a virtual job composed of setup and jobs 1 through of family .
Here and
1i
z
i
t i
i
yf=
ij
x f= ,1,.
i
j t= so all are fractional in KPS and the setup time and cost
for familyi and the processing time and profit of the first jobs are only partially
considered. If we round the fractional variable(s) to zero, then the current solution is
feasible to KPS, and can be used as a lower bound in the branch-and-bound algorithm.
i
t

2.4. Solution algorithm
To develop a branch-and-bound algorithm, we need to make several decisions. These
include how to fix variables, calculate bounds, choose the next sub-problem to explore
and obtain an initial incumbent solution. We discuss these now.
2.4.1. Fixing variables
We only fix setup variables to be zero or one in our main branch-and-bound scheme.
When a sub-problem is created with fixed to one, the right hand side is reduced
by and
i
y
i
y
i
d
i
f is added to objective directly in the sub-problem. Then all ,
ij
z 1,..
i
j n= are
replaced by real variables
1
,...
i
i n
x x of familyi . When a sub-problem is created with
fixed to zero, ,
i
y
ij
z 1,.
i
j n= are removed from that sub-problem. Note that if all
i
y

are
binary in the linear relaxation but some
ij
x is fractional, solving a knapsack problem over
the
ij
x with = 1 will not necessarily give the optimal solution as we showed in Section 2.
When all are fixed, we solve a knapsack over the remaining variables to obtain the best
solution with those variables fixed. If this produces a better solution than the incumbent,
it replaces the incumbent.
i
y
i
y
We order the variables by
1i
z
10 20 0
...
N
rr r? ?? . If a variable has large , it is more
likely to be one in an optimal solution, while those with smaller ratios are more likely to
be zero. We choose either the first or last variable to fix first and work toward the middle.
This tends to keep the number of active branches small.
0i
r
 19

2.4.2. Bounding
 20
n n
We use LBKP as an upper bound on KPS. It is a linear relaxation which allocates the
setup time and cost proportionally. It is initially solved by the ratio rule. When some is
fixed, it is easy to resolve the sub-problem. If we fix to one, we delete the pseudo
variables and insert the new variables
i
y
i
y
1
,..
ii
zz
1
,...
i
i
x x . This may require taking resource
from some free variables, which are chosen by the ratio rule to maintain optimality.
Similarly, fixing may free up resource, which is then allocated to free variables
using the ratio rule.
0
i
y =
2.4.3. Choosing a new sub-problem
When variables are fixed, two sub-problems are created. If a sub-problem?s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to KPS we store it in a bucket. Each bucket contains sub-
problems with bounds that are about the same. LetUB be the best upper bound
and be the value of the current incumbent solution. If we wantINC K buckets, calculate
()UB INC
K
?
?= .
Then bucket one will contain all sub-problems with upper bounds in the
interval[, bucket two[2,UB UB??]],UB UB? ???, and bucket K [,INC INC +?].
Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a ?best-bound? strategy, but without the bookkeeping
overhead.

2.4.4. Heuristic
If the fractional valued variable of LBKP is , rounding down to 0 frees
resource. Allocate this resource to variables with processing time less than and
already has its family set up. Variables are chosen by the ratio rule until there are no more
variables which can use the remaining resource.
ij
z
ij
z
'
ij ij
az
'
ij ij
az
2.5. Computational experiments
Our experiments will be similar to previous experiments on knapsack problems.
However KPS has a setup requirement, so setup time and setup cost will be included in
this study. We wish to test our algorithm (AKPS) on a variety of problem instances to see
what problems can be solved. Instances will be generated by setting four parameters at
several levels. The parameters are the number of families, average number of jobs in a
family, proportion of setup time/cost relative to totals, and correlation between objective
function and constraint coefficients. All data will be integer valued.
The number of families will be fixed at 50 and 100. The number of jobs in familyi is a
uniformly distributed integer in either [40, 50] or [90,100]. Setup cost and time is given
by
1
1
()
i
n
it ijt
j
f ec
=
=?
?

2
1
()
i
n
ii
j
de a
=
=
? j

1
e and are uniform from [0.05, 0.15], [0.15, 0.25], [0.25, 0.35], and [0.35, 0.45].
2
e
 21

We choose and two ways. First and are both chosen uniformly from [10,
10000]; thus they are independent. Next, is chosen uniformly from [10, 10000], while
is chosen uniformly from [-1000, +1000], but if is less than 10 it is randomly
chosen from [10,100]; this introduces some correlation between the two coefficients.
a c
ij
a
ijt
c
ij
a
ijt
c
ij
a
ij
a
ijt
c
In previous knapsack studies, instances tend to be the hardest when the available
resource is roughly one half the sums of the constraint coefficients. Therefore, we choose
 uniformly from [,b
11
0.4*
i
nN
ij
ij
a
==
??
11
0.6*
i
nN
ij
ij
a
==
??
].
For each level of the four factors we generate ten instances. AKPS was coded in C and
all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum solution time (MAX) in seconds. We also give the average ratio of initial
solution (INC) to initial upper bound (UB) and the average ratio of initial incumbent to
the optimal solution (OPT).
 22

Table 2.1.
Solution time (seconds) for AKPS
uncorrelated correlated
N i
n
Setup
LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX
[0.05-0.15] 1.00 1.00 0.03 0.06 0.27 0.98 0.98 8.05 17.46 29.28
[0.15-0.25] 0.99 0.99 0.06 0.53 1.72 0.97 0.97 2.25 16.63 30.73
[0.25-0.35] 0.99 0.99 0.03 0.49 1.17 0.97 0.97 1.09 25.69 65.56
50

[40,60]

[0.35-0.45] 0.97 0.97 1.25 2.62 4.89 0.98 0.98 12.83 22.97 56.5
[0.05-0.15] 1.00 1.00 0.08 0.09 0.12 0.98 0.98 5.69 26.47 63.72
[0.15-0.25] 0.99 0.99 0.05 0.87 2.94 0.97 0.97 11.30 28.46 55.75
[0.25-0.35] 0.98 0.98 0.09 2.67 5.28 0.98 0.98 2.77 34.52 82.31
50

[90,110]

[0.35-0.45] 0.98 0.98 0.25 4.25 9.30 0.99 0.99 0.91 49.36 101.4
[0.05-0.15] 1.00 1.00 0.06 0.16 0.36 0.99 0.99 17.39 153.07 503.38
[0.15-0.25] 1.00 1.00 0.08 1.43 4.36 0.99 0.99 70.61 124.69 220.53
[0.25-0.35] 0.99 0.99 0.05 4.96 18.97 0.99 0.99 24.62 175.51 315.67
100

[40,60]

[0.35-0.45] 0.99 0.99 2.41 14.34 29.62 0.99 0.99 22.11 131.22 305.85
[0.05-0.15] 1.00 1.00 0.14 0.24 0.39 0.99 0.99 121.86 385.44 877.19
[0.15-0.25] 1.00 1.00 0.28 4.02 7.50 0.99 0.99 58.69 *477.78 877.73
[0.25-0.35] 0.99 0.99 1.33 11.86 30.48 0.99 0.99 17.55 *468.23 953.29
100

[90,110]

[0.35-0.45] 0.99 0.99 1.08 31.26 107.09 0.99 0.99 11.48 *484.35 784.72
Note: ?*? shows 3 of these instances ran out of memory; AVG, MAX, and MIN are calculated based on the
remaining seven instances.
Our heuristic solution is outstanding. On average, it was less than 2% from the optimal
over the entire range of instances tested. Based on the data from Table 2.1, correlated
instances are more difficult to solve than uncorrelated instances. The setup proportion has
a stronger effect on uncorrelated instances than correlated instances. With the same
number of variables, AKPS works better when there are fewer families and the number of
jobs per family is large. This makes sense since fewer family variables simplify the first
stage of the branching. Instances with 50 families and an average of 100 jobs per family
are much easier than instances with 100 families and an average of 50 jobs per family.
Fig. 2.1 shows the solution time of instances with 50N = and an average of 100 jobs
per family and instances with 100N = and an average of 50 jobs per family with
 23

uncorrelated coefficients. With roughly the same number of variables, instances with
larger are more difficult. Also, solution time increases as setup proportion increases.
The incumbent solution gets worse as setup proportion increases. Fig. 2.2 gives the
solution time with correlated coefficients. Instances with fewer families still work better
than the others but solution time is not changed too much as setup proportion increases.
In correlated instances, setup proportion does not have as much effect on the incumbent.
N
uncorrelated
0.00
2.00
4.00
6.00
8.00
10.00
12.00
14.00
16.00
[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]
Setup
N=50
N=100
Time (Seconds)

Fig. 2.1. Comparison of uncorrelated instances with similar total variables number

correlated
0.00
20.00
40.00
60.00
80.00
100.00
120.00
140.00
160.00
180.00
200.00
[0.05-0.15] [0.15-0.25] [0.25-0.35] [0.35-0.45]
Setup
N=50
N=100
Time (Seconds)

Fig. 2.2. Comparison of correlated instances with similar total variables number
 24

Chajakis and Guignard only test uncorrelated instances with coefficients from a small
range. (i.e. one set of instances obtains setup cost, profit from [-100, 100] and setup time,
processing time from [1,10]). Since the dynamic programming used in their paper has a
pseudo-polynomial worst case complexity, the large coefficients will increase the
difficulty of instances and need more storage without doubt. The second approach
presented fail in instances with total 4000 variables because of storage used up. The first
one can solve the same instances but need over 1000 seconds. They permit job profit
negative and setup cost positive in their model, which, to some extent, make instances
easier due to parts of variables having fixed to 0 by a preprocessing, which reduce the
size of the problem remarkably. The total number of variables after preprocessing is only
about 40%-60% of the original one. For instances with 4000 variables, only 2500
variables are left after this preprocessing.
We also compare AKPS with CPLEX 9.1 (called by AMPL). We test instances with
50 families and an average of 100 jobs per family. For each setup, we test five instances.
AKPS takes much less time for uncorrelated problems. CPLEX takes from 12 to 96 times
longer; as setup proportion increases the difference becomes smaller. When the
coefficients are not independent, the difference is much smaller. AKPS is only 3 to 6
times faster on average, and a few instances take less time on CPLEX.
We also compared some instances with 100 families and 50 jobs per family, but do not
present the data. CPLEX is better than AKPS when and c are correlated. But AKPS is
better than CPLEX if and are uncorrelated for instances with
a
a c 100, ~ [40,60]
i
Nn= .
Therefore we suggest using AKPS when a and c are uncorrelated; if they are correlated
and there are over 50 families CPLEX might be better.
 25

 26
Table 2.2.
Comparing solution time (seconds) of CPLEX and AKPS

 Uncorrelated Correlated
SETUP AKPS CPLEX CPLEX/AKPS AKPS CPLEX CPLEX/AKPS
0.05 1.17 23.40 21.87 13.08 0.60
0.09 1.92 21.33 13.64 491.73 36.05
0.05 1.06 21.20 44.06 253.78 5.76
0.05 1.08 21.60 34.00 3.81 0.11
[0.05-0.15]

0.06 0.86 14.33 37.42 226.00 6.04
AVG 20.37 9.71
0.05 4.67 93.40 24.58 411.08 16.72
0.41 26.28 64.10 56.78 929.03 16.36
0.05 2.31 46.20 40.14 376.75 9.39
0.11 15.44 140.36 40.22 269.69 6.71
[0.15-0.25]

0.05 6.97 139.40 81.39 215.44 2.65
AVG 96.69 10.36
4.75 15.52 3.27 23.64 6.67 0.28
1.95 12.09 6.20 46.01 514.64 11.19
0.61 16.97 27.82 88.14 5.75 0.07
2.75 17.39 6.32 7.67 14.86 1.94
[0.25-0.35]

1.55 26.58 17.15 72.03 102.00 1.42
AVG 12.15 2.98
3.97 11.20 2.82 179.06 7.42 0.04
0.91 16.36 17.98 6.56 35.95 5.48
1.41 65.77 46.65 36.91 283.38 7.68
7.42 2.91 0.39 107.62 265.69 2.47
[0.35-0.45]

4.58 12.78 2.79 22.16 96.05 4.33
AVG 14.13 4.00
2.6. Conclusions
We investigate the knapsack problem with setup. This is an important problem,
modeling order acceptance, cell loading, project selection and others. We have developed
an exact algorithm for the problem. The first computational tests on exact solutions
indicate our algorithm is vastly superior to CPLEX for many instances, superior on others
and about the same for the rest. Further, we have determined what parameter values make

instances hard for our algorithm. Finally, the proposed heuristic is excellent, being within
2% of optimal for all the problems tested.
Appendix A. is greater than .
0i
r
1, +ti
r
Proof.
Assume and0,,, >dcba
d
c
b
a
? , then
b
a
db
ca
?
+
+
. Since frombcad ?
d
c
b
a
? ,
then , or abbcadab +?+)()(cabdba +?+ , so
b
a
db
ca
?
+
+
. Thus if , then job
 should be included in
,1 0it i
r
+
? r
1t +
i
XM . Since it is not, then
,0 , 1iit
rr
+
> .
Therefore . represents family ?s maximum ability to obtain
profit for each unit of resource it consumes.
i
nititii
rrrr
,2,1,0,
... ????
++ 0i
r i
References
Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,
INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operations Research 5,
 266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985. Group Techonology, Kluwer Nijhoff Publishing,
Boston, Massachusetts.

 27

 28
Martello S. and Toth, P. 1990. Knapsack Problems: Algorithms and Computer
Implementations, John Wiley and Sons, New York.

?. MULTIPLE KNAPSACK PROBLEM WITH SETUP
Abstract
We present a multiple knapsack problem with setup (MKPS). This problem can be
used to model order acceptance and production scheduling of multiple periods in make-
to-order manufacturing. Some variables represent setting up production for a family of
jobs; if a setup is not done, no jobs in the family can be processed. Further, a family can
only be set up in one period of the planning horizon. A linear knapsack problem is
designed to give an upper bound on MKPS. A greedy algorithm is developed to obtain a
lower bound. Setup variables are branched on; when all set up variables are fixed, MKPS
becomes several independent knapsack problems. Computational experiments show this
algorithm is effective, especially when resources are tight.
3.1. Introduction
The knapsack problem and its variants are well known problems in integer
programming. In this paper, we present a model that we call the multiple knapsack
problem with setup (MKPS). In this model, jobs belong to different families. If a job is
processed, then a setup time and a setup cost are incurred. A job can be assigned
toT different periods, but only one setup for each family is allowed during the planning
horizon, so jobs in the same family must be processed in the same period. The profit for
job
N
j of familyi processed in periodt is , and varies for different periods, but the
ijt
c
 29

processing time stays the same. The objective is to maximize the sum of the profits of
processed jobs. Formally, we have:
ij
a
111 11
..
i
n
TN TN
ijt ijt it it
tij ti
Max c x f y
st
=== ==
+
??? ??

 (1)
11 1
,1,.
i
nNN
ij ijt i it t
ij i
ax dy b t T
== =
+?=
?? ?

,
1, ; 1, ; 1, ..
ijt i
it
x yj ni Nt T?=== (2)
 (3)
1
11,.
T
it
t
yi
=
?=
?
N
 , {0,1} 1,.. ; 1,.. ; 1,..
i
x yjnNt?===T (4)
ijt
x -is one if the
th
j job of familyi is arranged into periodt , otherwise zero,
it
y -is one if some job of family is arranged into period , otherwise zero, i t
ijt
c -is the profit of job j of family in period t (), i 0
ijt
c ?
it
f -is the setup cost for family in periodt (i 0
it
f)< ,
ij
a -is the processing time for job j of family (), i 0
ij
a >
i
d -is the setup time for family i (), 0
0
i
d >
t
b -is the available resource for processing in period t ().
t
b >
Constraints (1) require that the total resource used by jobs in each period can not exceed
the resource available. Constraints (2) prohibit a job from being processed if it belongs to
a family that has not been setup. Constraints (3) guarantee jobs in the same family
processed in a single period. Constraints (4) require all variables to be binary.
 30

This formulation models order acceptance in make-to-order manufacturers. Assume a
manufacturer receives orders for jobs which belong to different product families.
Orders can be manufactured inT periods. Setup time and setup cost occur between jobs of
different families. If jobs are accepted, jobs of the same family are done in the same
period.
N
In make-to-order production, price is dictated not only by cost, but also by the
customer?s expectation as well. Some customers are willing to pay a higher price for a
short lead-time, while others are not. Thus prices are related to a product?s completion
date, and different production schedules could produce different profits. The optimal
solution to MKPS gives the maximum profit, which orders to accept, and how to assign
jobs to periods.
The multiple knapsack problem assigns a set of items to multiple knapsacks with fixed
capacities so that the total profit of selected items is maximal. The multiple knapsack
problem is a special case of multiple knapsack problem with setup by ignoring the setup
variables and setting . The multiple knapsack problem has been widely
investigated. Martello and Toth (1980, 1981) discussed an upper bound algorithm using
Lagrangean relaxation. Pisinger (1999) presented an exact algorithm using a surrogate
relaxation to get an upper bound, and dynamic programming to get the optimal solution.
The surrogate relaxation of the multiple knapsack problem with identical multipliers is a
knapsack problem. Apparently, MKPS can not do in this way not only because each job
has the different profit coefficients in periods, but also there are the additional setup
variables in the model.
ijt ij
cc=
 31

MKPS has multiple-choice constraints like the multiple-choice knapsack problem. An
efficient algorithm and two dominance properties exist for the linear multiple-choice
knapsack problem. More detail can be found in Pisinger (1995).
The knapsack problem with setup (KPS) is a special case of MKPS when . Bulfin
(1988) gave an efficient algorithm for its linear relaxation (LKPS), which is similar to
Dantzig?s algorithm for the linear knapsack problem. This transforms the LKPS into a
knapsack problem by using a modified ratio related to a job set. We state this algorithm
in the following section. Akinc (2004) describes algorithms for a fixed-charge knapsack
problem, which is a special case of MKPS with a single period and zero setup time.
1T =
Though the LP solution is often a good upper bound on integer programs such as
knapsack problem and multiple-choice knapsack problem, we do not solve the linear
relaxation of MKPS for obtaining an upper bound, but design a linear knapsack problem
formulation, whose optimal objective is the upper bound of MKPS. Since MKPS
becomes independent knapsack problems if all variables are fixed, branching is done in
two stages. The first stage is to branch on variables. When all
it
y
it
y y variables are fixed, the
second stage solves independent knapsack problems. There are many algorithms
available for knapsack problem. We just use a simple branch-and-bound algorithm for
knapsack problem.
Our approach (AMKPS) is outlined below:
Step 1. Do surrogate relaxation and linear relaxation for MKPS.
Step 2. Find an initial upper bound for MKPS.
Step 3. Find a feasible solution (incumbent) for MKPS.
Step 4. Determine a branching order for the variables. y
 32

Step 5. Decide which variable to fix in current node. y
Step 6. Generate a new node by solving a sub-problem with fixed to one; save this
node if its bound is better than the incumbent solution. If all are fixed, then
solve a set of knapsack problems and update the incumbent solution if possible.
y
y
Step 7. Generate a new node by solving a sub-problem with fixed to zero; save this
node if its bound is better than the incumbent solution. If all are fixed, then
solve a set of knapsack problems and update the incumbent solution if possible.
y
y
Step 8. Choose a candidate node. If none exists, stop, the incumbent solution is optimal;
else go to Step 5.
The rest of the paper is organized as following: we discuss Steps 1 and 2 in section 3.2;
section 3.3 explains the approach used in Step 3 and section 3.4 presents the remaining
steps. Computational experiments are discussed in 3.5 and a summary is given in section
3.6.
3.2. Linear knapsack problems and knapsack problem with setup
We use the linear knapsack problem and linear knapsack problem with setup to obtain
an upper bound of MKPS. Let us review these two models firstly.
3.2.1. Linear knapsack problem
The linear knapsack problem is a well known integer program:
 33

 34
.
1
1
..
01,1,
n
jj
j
n
jj
j
j
Max c x
st
ax b
x jn
=
=
?
?? =
?
?

All variables are ordered by non-increasing profit-to-process ratio
k
k
c
a
. By Dantzig?s
algorithm, if variable is the first one with , then t
1
t
k
k
a
=
>
?
b
1, 1, .. 1
j
x jt==?
1
1
t
k
k
t
t
ba
x
a
?
=
?
=
?

0, 1,..
j
x jt n==+
3.2.2. Algorithm for LKPS
Bulfin (1988) shows LKPS can be transformed to a linear knapsack problem. Consider
the LKPS:
11 1
11 1
,
..
1, ; 1,
01,;1,
01,1,.
i
i
nNN
ij ij i i
ij i
nNN
ij ij i i
ij i
ij i
i
ij i
i
Max c x f y
st
ax dy b
xyj ni N
xjnN
yiN
== =
== =
+
+?
?==
?==
?? =
?? ?
?? ?

Bulfin?s algorithm uses the ratio
[]
iij
ii
fc
da
+
j
? ?+
? ?
?
?
 as a criterion to assign the
resource.
Define
,1,. 1,.
ij
ij i
ij
c
riNj
a
===n.
Reorder jobs 1? , so that . Let
i
n
i
niiii
rrrr
,321
...... ???
11
11
max{ | 1, 2,.. }
i
i
t
k
ij i ij i
jj
itk
ij iij i
j
j
cf cf
kn
adad
==
==
++
==
++
??
??
foriN? .
Then in familyi , jobs are separated into two sets:
i
XM = {1? }and
i
t
i
XT = { +1.... }.
The jobs in
i
t
i
n
i
XM can be considered as a single job.
Now for family , define: i
'
1
1
'
1
1
'
,1
'
,1
'
1, ..
1, ..
1
i
i
i
i
t
iiji
j
t
iiji
j
ijt ij i i
ijt ij i i
iii
ccf
aad
ccjt
aajt
nnt
=
=
?+
?+
=+
=+
==+
==+
=?+
?
?
n
n

Then LKPS can be reformulated as:
 35

 36
n
'
'
'
11
'
11
..
0 1, 1,.. 1,...
i
i
nN
ij ij
ij
nN
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
???= =
??
??

Pseudo job is composed of jobs
1i
z
1
,..
i
i t
x x along with the setup cost and time, and
, for
i
ij ij t
zx
+
= 2,..
ii
j nt=?. Solve this linear knapsack problem. At most one variable can
have a fractional value, say . Iff
1k
zf= , then ,1,.
kj k
x fj t= = . If , then , 1
kl
zfl=?
k
kl t
x f
+
= .
3.2.3. An upper bound on MKPS
3.2.3.1. Relaxation
Surrogate relaxation (Pisinger, 1999) and Lagrangian relaxation (Martello and Toth,
1981) have been applied to obtain an upper bound on the multiple knapsack problem. In
this paper, surrogate relaxation with identical multipliers on constraints (1) is used.
Selecting identical multipliers keeps unrelated to periods after surrogate relaxation.
Relaxing integrality of the variables gives a mix-integer formulation SMKPS:
ij
a
x

11 1 11
11 1 11 1
1
..
11,.
1, .. 1, .. 1, ..
0 1 1,.. 1,.. 1,..
{0,1} 1,.. 1,..
i
i
nTN TN
ijt ijt it it
tij ti
nTN TN T
ij ijt i it t
tij ti t
T
it
t
ijt it i
ijt i
it
Max c x f y
st
ax dy b
yiN
xyi Nj nt T
x iNjntT
yiNtT
=== ==
=== == =
=
+
+?
?=
?= = =
?? = = =
?==
??? ??
??? ?? ?
?

SMKPS gives an upper bound on MKPS since every solution to MKPS is a feasible
solution for SMKPS, but not vice versa. Unlike the usual approach, we do not solve
SMKPS to obtain an upper bound on MKPS; we design a new knapsack problem based
on SMKPS whose optimal solution is an upper bound on MKPS
3.2.3.2. The knapsack problem giving the upper bound of MKPS
Using only the variables of family in periodt of SMKPS, we construct the linear
knapsack problem with setup:
i
1
1
,
..
1,
01,
01,
i
i
n
ijt ij it i
j
n
ij ij i i
j
ij i
i
ij i
i
Max c x f y
st
ax dy b
xyj n
xjn
y
=
=
+
+?
?=
?=
??
?
?

 37

Based on Bulfin?s algorithm, this formulation can be transformed to a linear knapsack
problem with pseudo variables
1
,...
it
n
z z and their corresponding profit and processing
coefficients
1
,...
it
n
cc
1
,...
it
n
aa. Pseudo variables are ordered by non-increasing ratio
j
j
c
a
.
We define a set
11
{(0,0),(,) | 1,.. }
tt
it j j it
jj
Pact
==
=
??
n=from these pseudo coefficients. For
the sake of brevity, record these points are with
0
,...
it
n
pp
1
.
t
tj
j
p xa
=
=
?
and
1
.
t
tj
j
p yc
=
=
?
.
We can constructT point sets for
it
P 1, ..tT= . Let and delete any repeated points.
Order all points by non-decreasing . Apply the following rules to delete points from .
'
1
T
i
t
P
=
=
? it
P
.px
'
i
P
1. If
r
p and
s
p have . .
rs
p xpx? and . .
rs
p ypy? , then delete
s
p
2. If , ,
rks
p pp have . . .
rks
p xpxpx??and . . .
rks
p ypypy? ? , and

.. ..
.. .
kr sk
kr sk
py py py py
.p xpx pxpx
??
?
??
, then delete
k
p .
These two dominance rules are called multiple-choice dominance rules in this paper,
and stems from the two dominance rules for the multiple-choice knapsack problem
(Sinha and Zoltners, 1979). Assume there are
'
1
i
n + points
'
0
,...
i
n
p p () remained,
ordered by increasing and . We can define pseudo variables by
setting and .
0
(0,0)p =
.px .py
'
i
n
'
1
,..
i
i
in
zz
'
1
..
ij j j
apxp
?
=?x y
'
1
..
ij j j
cpyp
?
=?
 38

Repeating this process for all families, we obtainN
'
1
N
i
i
n
=
?
pseudo variables and a linear
knapsack problem K1 with resource b (
1
T
k
k
bb
=
=
?
):
'
'
'
11
'
11
'
..
0 1, 1,.. 1,..
i
i
n
N
ij ij
ij
n
N
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
??= =
??
??
n
it it
res==0j

We prove the optimal objective of K1 is an upper bound on MKPS in Appendix B.
3.3. Feasible solution (lower bound)
A good initial feasible solution can fathom many candidate nodes and reduce the
search time. We will use a greedy algorithm to calculate one.
Algorithm determines a feasible assignment of family ?s jobs to
period when there is resource available. The algorithm returns , the total profit of
this assignment and , the amount of resource actually used.
(,)assign i t i
t
t
b
it
obj
it
res
Algorithm : (,)assign i t
Step 1. Set ,obj ,
t
bb= 0,0=
 , ,
it it it
obj obj f?+
i
bbd??
it i
res d= .
Step 2. ; if 1jj?+
i
j n> , stop.
Step 3. If , then
ij
ba?

it it ijt
obj obj c? + ,
ij
bba? ? ,
it it ij
res res a? + ;
 39

 If , then go to Step 2; else stop. 0b >
 else go to Step 2
Algorithm is used to get the feasible solution. It uses to assign a family to a
period and update the available resource. It continues until there is not enough resource
left for any job.
feas
it
obj
 40
TStep 1. Set . Solve for{1, . . }NN N= (,)assign i t 1,.. 1,..iNt= =
Step 2. Choose{, with}rs max{ | , 1,.. }
rs it
obj obj i NN t T= ?=; if , stop. 0
rs
obj =
Step 3. ,
rs
lb lb obj?+
s s
b b res??
r
. Delete r from . IfNN NN ?= , stop.
Step 4. Solve . Go to Step 2. (,)assign i s iNN?
3.4. Branch-and-bound algorithm
To develop a branch-and-bound algorithm, we need to make several decisions. These
include how to fix variables, calculate bounds, choose the next sub-problem to explore
and obtain an initial incumbent solution. Also, the order to fix variables has to be decided.
3.4.1. Variable order
Order all variables by non-increasing
it
y
1
,1,.,1,.
i
n
it ijt it
j
pro c f i N t T
=
=+= =
?
. If is
near the front, then this variable is more likely to be one. Similarly if is near the end, it
is more likely to be zero. Fixing variables first at the front or rear aid in keeping the
number of branches small. We fix variables by looking at the beginning and end of
it
y
it
y
it
y

this ordered list and working toward the middle. So familyi ,1,.
it
yt T= has a search order:
if is the variable of theT variables related to family , then set .
it
y
th
k i ()
it
oy k=
In the current node, we decide which variable will be fixed based on all variables fixed.
Assume we fix . Since each family is assigned to at most one period,
then for
rk
y
0
rt
y = () (
rt rk
oy oy<) 1, ..tT= .
3.4.2. Fixing
rk
y
As we proceed through branch-and-bound algorithm, we fix setup variables to zero or
one. If is free, family is represented by pseudo variables
rk
y r ,1,.
rj r
zj n?= ; these variables
are never fixed. If is fixed at one, all pseudo variables
rk
y ,1,.
rj
zj
r
n?= are removed and
real variables ,1,.
rjk r
x j= nare included in K1;
rjk
x are always free in the branch-and-
bound algorithm. If is fixed at zero, all pseudo variables as well as their coefficients
are recalculated, excluding the possibility of family r being setup in period , and
included in K1; again the new
rk
y
k
,1,.
rj r
zj n?= are always free. When
all are fixed to either zero or one, a knapsack problem over the
appropriate
, 1,.. 1,..
it
yi Nt T==
ijt
x is solved to determine the optimal solution.
When is fixed to one, the bounding problem K1 changes as follows:
rk
y
the actual setup cost for family in periodt is added to the objective; r
the actual setup time for family is subtracted from the surrogate constraint; r
pseudo variables for family are removed, and r
real variable ,1,.
rjk r
x j= nare added
 41

When is fixed to zero, the changes are removing pseudo variables for family and
adding new pseudo variables.
rk
y r
We also tighten the relaxation by adding the constraint for period to the bounding
problem. Pseudo variables will only use the surrogate resource, but
k
it
z
ijk
x variables will
use both the surrogate resource and the resource from period . Subtracting the setup
time will reduce the available surrogate resource and will reduce the resource from
period . Removing pseudo variables may increase the surrogate resource, but will not
affect the resource for period . Thus, the previous optimal solution to the bounding
problem may no longer be feasible or optimal. We could re-solve it from scratch, but we
will show how to adjust the old solution to obtain the optimal solution to the new
bounding problem. First, we introduce some notations.
k
k
k
Let
obj : The current node?s upper bound,
{| 1}
tit
Giy==: Family fixed to periodt ,
{| }
it
U i y is free= : Family free,
'
1
t
T
i
tiG
bb d
=?
=?
??
: Available resource for all variables,
'
,1,.
t
tt i
iG
bb dt T
?
=? =
?
: Available resource for families in periodt .
The current node?s upper bound is the optimal objective of this formulation, K2. It can be
proved by an approach similar to what we used in Appendix A.
 42

'
'
'
111 1
''
111
'
1
..
,1,.
ii
tt
ii
t
i
t
nn
TT
ij ij ijt ijt it
iU j t iG j t iG
nn
T
ij ij ij ijt
iU j t iG j
n
ij ijt t
iG j
Max c z c x f
st
az ax b
ax b t T
?= =?= =?
?= =?=
?=
++
+?
?=
?? ??? ??
?? ???
??

When we fix to one, set
rk
y
''
kkr
bbd=?
''
r
bbd=?
rk
obj obj f=+
{}
kk
GG r=?
\{ }UUr= and
0, 1,..
rt
ytTt== ?k
r

The algorithm to fix to one can be separated into three steps:
rk
y
Step 1. Delete pseudo variables from the outer knapsack.
'
1
,...
r
r
rn
zz
Step 2. Restore feasibility (if necessary).
Step 2.1. Set . If , find the variable
''
kk
bbd??
'
1
i
k
n
ij ijk k
iG j
ax b
?=
>
?? ijk
x greater than zero
with smallest ratio. Decrease it until either it is zero or
'
1
i
k
n
ij ijk k
iG j
ax b
?=
=
??
.
Repeat until
'
1
i
k
n
ij ijk k
iG j
ax b
?=
=
??
is achieved.
 43

 44
111
ii
t
nnT
ij ij ij ijt
iU j t iG j
az ax b
?= =?=
Step 2.2. Set . If
'''
r
bbd??
'
+ >
?? ???
, repeat the procedure in
2.1, except choose either
ijt
x or variables greater than zero with smallest
ratio.
ij
z
Step 3. Restore optimality.
Step 3.1. Let be the set of all zero-value
variables. Find the maximum ratio of all variables in
{| 0, }{| 0,
ijt ijt ij ij
Vxx iU zz iU==??=?}
max
r V.
Step 3.2. Set all fractional-valued variables and all variables with value one and
ratio less than to zero. Put these variables in
max
r Vin the proper ratio order.
This releases resource for new variables to use. Variables in K2 now have
value one only and their ratio is no worse than
max
r
Step 3.3. Do the following sub-algorithm to obtain the optimal solution of K2.
Step a. Set . 1k =
Step b. If the variable inV is
th
k
ijt
x , then go to Step c; else the variable
inV is , and go to Step d.
th
k
ij
z
Step c. If , then
'
0
t
b = 1kk? + ;
else
If , thenbb
'
t
ba?
ij
a
''
ttij
? ?
''
ij
,bba? ?
ijt
obj c?+, obj ,
and 1
ijt
x = ;
else
'
t
ijt
ij
b
x
a
= ,
'
bb
''
t
b? ? ,and
ijt ijt
obj obj c x? + .
Go to Step e.

 45
'
ij
aStep d. If , thenbb
'
ij
ba?
'''
? ?
'
ij
obj c, obj ? + , and . 1
ij
z =
Set 1kk? + .
else
'
'ij
ij
b
z
a
= ,
'
0b = ,and .
'
ij ij
obj obj c z?+
Step e. If and
'
0b > kV? go to Step b; else stop.
When we fix to zero, pseudo variables are deleted from variable set.
Since , update . Apply the multiple-choice
dominance rules to delete dominated points. Use the remaining points to obtain the
updated pseudo variables . We can resolve the problem with new variable set to
obtain the upper bound of the sub-problem with
rk
y
'
1
,..
i
r
rn
zz
0, () (), 1,..
rt rt rk
yoyoyt=<=T
it
P
'
()()
rt rk
i
oy oy
P
>
=
?
'
1
,..
i
r
rn
zz
0
rk
y = . In this case, only steps 1 and 3
are needed to resolve the problem.
3.4.3. Choosing a new sub-problem
When variables are fixed, two sub-problems are created. If a sub-problem?s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to MKPS we store it in a bucket. Each bucket contains
sub-problems with bounds that are about the same. LetUB be the best upper bound
and be the value of the current incumbent solution. If we wantINC K buckets, calculate
()UB INC
K
?
?= .
Then bucket one will contain all sub-problems with upper bounds in the
interval[, bucket two[2,UB UB??]],UB UB? ???, and bucket K [,INC INC +?].

Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a ?best-bound? strategy, but without the bookkeeping
overhead.
3.5. Computational experiments
We test AMKPS on a variety of problem instances to see what problems can be solved
in reasonable time. Instances are generated by setting four parameters at several levels.
The parameters are average number of jobs in a family, number of periods, proportion of
setup time/cost relative to totals, and resource tightness. The number of families is fixed
to ten (). The number of jobs in a family is integer uniformly distributed from
three intervals [40, 50], [60, 70] and [80, 90]. The number of periods will be either five or
seven, corresponding to a work week. Setup cost and time are determined by
10N =
1
1
()
i
n
it ijt
j
f ec
=
=?
?

2
1
()
i
n
ii
j
de a
=
=
? j

We choose and uniformly from [0.15, 0.25], [0.25, 0.35], [0.35, 0.45], and [0.45,
0.55]. Resource availability is determined by
1
e
2
e
11
()
i
n
N
ij
ij
t
a
b
K
==
=
??
, where K is 10, 7.5 or 5.
Finally, and are random integers chosen from[10, 10000].
ijt
c
ij
a
For each level of the four factors we generate ten instances. AMKPS was coded in C
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
 46

 47
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum (MAX) solution time in minutes. A zero indicates less than one minute of
computational time. We also give the average ratio of initial solution (INC) to initial
upper bound (UB) and the average ratio of initial solution to the optimal solution (OPT).
Table 3.1 gives results for five period problems and Table 3.2 is for seven periods.
Table 3.1
Solution time (minute) for AMKPS for 5 periods
 [40, 50] [60 70] [80, 90]
Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN
[0.15 0.25] 0.84 0.87 0 0 0 0.85 0.88 0 0 0 0.85 0.88 0 0 0
[0.25 0.35] 0.93 0.98 0 0 0 0.94 0.99 0 0 0 0.95 1.00 0 0 0
[0.35 0.45] 0.96 0.99 0 0 0 0.97 0.99 0 0 0 0.98 0.99 0 0 0
[0.45 0.55] 0.92 0.99 0 0 0 0.92 0.99 0 0 0 0.91 0.99 0 0 0
K=10

Average 0.91 0.96 0 0 0 0.92 0.96 0 0 0 0.92 0.97 0 0 0
[0.15 0.25] 0.73 0.74 0 0 0 0.72 0.73 0 0 0 0.71 0.72 0 0 0
[0.25 0.35] 0.82 0.89 0 0 0 0.81 0.87 1 0 0 0.80 0.85 1 0 0
[0.35 0.45] 0.89 0.98 0 0 0 0.89 0.99 1 0 0 0.89 0.99 1 0 0
[0.45 0.55] 0.94 0.99 0 0 0 0.95 0.99 0 0 0 0.96 1.00 0 0 0
K=7.5

Average 0.85 0.90 0 0 0 0.84 0.90 0 0 0 0.84 0.89 0 0 0
[0.15 0.25] 0.94 0.95 0 0 0 0.94 0.95 0 0 0 0.94 0.95 0 0 0
[0.25 0.35] 0.86 0.88 0 0 0 0.89 0.90 0 0 0 0.89 0.90 0 0 0
[0.35 0.45] 0.76 0.79 0 0 0 0.78 0.80 0 0 0 0.76 0.78 0 0 0
[0.45 0.55] 0.72 0.82 1 1 0 0.71 0.80 3 1 1 0.70 0.80 8 3 2
K=5

Average 0.82 0.86 0 0 0 0.83 0.86 1 0 0 0.82 0.86 2 1 0

Table 3.2
Solution time (minute) for AMKPS for 7 periods
 [40, 50] [60 70] [80, 90]
Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN
[0.15 0.25] 0.87 0.92 2 1 0 0.86 0.91 5 3 1 0.86 0.90 9 5 2
[0.25 0.35] 0.94 0.99 0 0 0 0.94 0.99 0 0 0 0.95 0.99 1 0 0
[0.35 0.45] 0.96 0.99 0 0 0 0.96 0.99 0 0 0 0.97 0.99 0 0 0
[0.45 0.55] 0.88 0.98 0 0 0 0.88 0.99 0 0 0 0.87 0.99 0 0 0
K=10

Average 0.91 0.97 1 0 0 0.91 0.97 1 1 0 0.91 0.97 3 1 0
[0.15 0.25] 0.80 0.86 7 3 1 0.79 0.85 12 6 2 0.78 0.85 26 17 10
[0.25 0.35] 0.82 0.91 11 4 1 0.83 0.91 22 10 2 0.81 0.90 29 19* 13
[0.35 0.45] 0.90 0.98 2 1 0 0.91 1.00 12 3 0 0.91 0.99 10 4* 1
[0.45 0.55] 0.94 0.99 0 0 0 0.95 1.00 0 0 0 0.96 1.00 0 0 0
K=7.5

Average 0.87 0.94 5 2 0 0.87 0.94 12 5 1 0.87 0.94 16 10 6
[0.15 0.25] 0.95 0.98 0 0 0 0.95 0.98 0 0 0 0.96 0.98 0 0 0
[0.25 0.35] 0.90 0.95 1 0 0 0.91 0.96 1 0 0 0.90 0.95 3 1 0
[0.35 0.45] 0.82 0.91 3 1 0 0.83 0.92 8 3 1 0.82 0.91 11 4 2
[0.45 0.55] 0.75 0.89 9 4 1 0.74 0.87 16 9 3 0.74 0.87 19 10 5
K=5

Average 0.86 0.93 3 2 0 0.86 0.93 6 3 1 0.86 0.93 8 4 2
Note: ?*? means some instances run out of memory, and the value of AVG in the table is the average of the
remaining instances, as are Max and Min.
AMKPS performs very well for five period problems, with the hardest taking less than
8 minutes. Seven period instances are harder, but most instances are solved in less than
30 minutes.
Seven of the 720 instances were not solved by AMKPS. These instances had seven
periods, and average of 85 jobs per family, resource tightness of 7k = and setup
percentage of [0.25, 0.35] or [0.35, 0.45]. These instances used up memory. The Min,
Max, and Average are of the problems actually solved. Solution time increases as number
of period and number of jobs increase. We ran some instances with different
combinations of numbers of periods and jobs and found that the solution time changes in
almost the same way as for the test problems.
 48

The relationships between setup and resource tightness are more complex. Fig. 3.1 to
3.6 demonstrate this.
40-50
0.00
0.10
0.20
0.30
0.40
0.50
0.60
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time(Minute)

Fig. 3.1. Solution time for average 45 jobs per family and 5 periods

60-70
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time (Minute)

Fig. 3.2. Solution time for average 65 jobs per family and 5 periods

 49

80-90
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time (Minute)

Fig. 3.3. Solution time for average 85 jobs per family and 5 periods

 Fig. 3.4. Solution time for average 45 jobs per family and 7 periods
40-50
0
1
2
3
4
5
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time (Minute)

60-70
0
2
4
6
8
10
12
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time (Minute)

Fig. 3.5. Solution time for average 65 jobs per family and 7 periods
 50

80-90
0
5
10
15
20
25
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
Setup
K=10
K=7.5
K=5
Time (Minute)

Fig. 3.6. Solution time for average 85 jobs per family and 7 periods

When , the maximum time happens on instances with setup from [0.15, 0.25];
when , the maximum time happens on instances with setup from [0.25, 0.35];
when , instances with setup from [0.45, 0.55] use the most time. From these plots,
we conclude that problems become difficult when .
10K =
7.5K =
5K =
*~(2,3)eK
The heuristic algorithm given in this paper is very effective, especially when the
resources are tight. We give the quality (average proportion of lower bound to initial
upper bound and to optimal solution) in Table 3.3. The quality decreased as resources
increase in each period. For both five and seven period problems, the heuristic is good,
typically in the 85%-95% range.
Table 3.3
The lower bound, upper bound and optimal solution
[40 50] [60, 70] [80, 90]
Period Resource Setup
INC/UB INC/OPT INC/UB INC/OPT INC/UB INC/OPT
K=10 Average 0.91 0.96 0.92 0.96 0.92 0.97
K=7.5 Average 0.85 0.90 0.84 0.90 0.84 0.89
Period 5

K=5 Average 0.82 0.86 0.83 0.86 0.82 0.86
K=10 Average 0.91 0.97 0.91 0.97 0.91 0.97
K=7.5 Average 0.87 0.94 0.87 0.94 0.87 0.94
Period 7

K=5 Average 0.86 0.93 0.86 0.93 0.86 0.93
 51

We also compare AMKPS to CPLEX 9.1 (called by AMPL). We choose the hardest
instances for AMKPS (7 periods and) to compare. Trial runs on other
instances showed these results are typical. Due to the difficulty of solving with CPLEX,
only five instances per level were solved. Table 3.4 shows the clear superiority of
AMKPS. CPLEX solved very few problems in less than two hours; we let one solve until
the optimal solution is obtained, and it took over 29 hours.
~ [80,90]
i
n
 52

Table 3.4
The comparison of solution time (Minute) between AMKPS and CPLEX
K=10 K=7.5 K=5
 Setup CPLEX AMKPS CPLEX AMKPS CPLEX AMKPS
* 2 * 13 26 0
* 11 * 16 7 0
* 5 * 13 10 0
* 4 * 30 9 0
[0.15,0.25]

 * 12 * 12 8 0
AVG * 7 * 17 12 0
* 1 116 21 36 0
* 0 * 10 * 1
* 0 * * 77 1
* 0 * 28 26 0
[0.25, 0.35]

 * 0 * * * 2
AVG * 0 * * * 1
* 0 * 6 * 2
* 0 * 2 * 3
* 0 * * * 4
* 0 * 6 * 3
[0.35, 0.45]

 * 0 * 2 * 9
AVG * 0 * * * 4
* 0 19 0 * 14
* 0 14 0 * 22
* 0 4 0 * 27
* 0 22 0 * 16
[0.45, 0.55]

 * 0 7 0 * 11
AVG * 0 13 0 * 18

Note: * means the instance uses more than 2 hours or uses up memory.

AMKPS use less time than CPLEX for all but three instances
when and is from [80, 90]. We also do experiments with instances with
fewer variables and AMKPS also used less considerably time than CPLEX.
*~(2,3)eK
i
n
 53

3.6. Conclusions
The MKPS model can be used for order selection in make-to-order manufacturing. In
this paper, we use branch-and-bound algorithm to solve MKPS and design a new method
to get an upper bound on MKPS. Rather than relaxing constraints of the original models
to an upper bound, we propose a new linear knapsack model to obtain an upper bound.
We prove the knapsack optimal objective solution is an upper bound on MKPS. In
branching, we add a resource constraint whose family has been fixed to that to tighten the
relaxation. This prohibits jobs from using more than the period capacity. This knapsack
problem can still be solved efficiently. We also give an effective greedy heuristic which
supplies a good feasible solution as a lower bound. After all variables are branched on,
MKPS is transformed to knapsack problems. The computational experiments show that
AMKPS works well with a tight resource limit. Sixty seven-period instances are tested to
compare AMKPS with CPLEX: AMKPS solve 57 instances of them in less than 30
minutes but CPLEX fail in 46 instances and need more time than AMKPS for the
remaining 14 instances. In this paper, we only use a simple branch-and-bound algorithm
for the knapsack problem when all setup variables are fixed. If a better algorithm, e.g. the
one developed by Martello et al. (1999) is used, the solution time can be reduced.
y

 54

Appendix A. The optimal objective of K1 is the upper bound on MKPS
Before proving the proposition, we need the following Lemma:
Lemma 1. A linear knapsack problem can be transformed to a concave piecewise
function
Proof.
For knapsack problem
 55
.
1
1
..
01,1,
n
jj
j
n
jj
j
j
Max c x
st
ax b
x jn
=
=
?
?? =
?
?

Order all variables by non-increasing ratio
j
j
c
a
. Define a point
set . Put these points on coordinates and connect the
adjacent points, we can obtain a concave piecewise function and these points are the
breaking points of the piecewise function. is the optimal objective of the linear
knapsack problem.
11
{(0,0),(,) | 1,.. }
tt
jj
jj
Pact
==
=
??
n=
F
()Fb
If , set ;
1
n
j
j
ba
=
?
?
1
()
n
j
j
Fb c
=
=
?
else if 1
t
x =
1
t
j
j
ab
=
<
?

1
1
()
t
j
j
t
t
ba
x
a
?
=
?
=
?
if
1
11
tt
jj
jj
ab a
?
==
?<
? ?

0
t
x = if
1
1
t
j
j
ba
?
=
?
?
On the verse, if we know , we can construct an equivalent knapsack problem for
this piecewise function.
()Fb
Proposition 1. The optimal objective of K1 is the upper bound on MKPS
Proof.
The coefficients of variables from familyi in periodt
1
, ,...
i
it i t in t
f cc,
construct a linear knapsack problem with setup, say :
1
, ,...
i
ii in
da a
it
LKPS
1
0
1
,
..
1,
01,
01,
i
i
n
ijt ij it i
j
n
ij ij i i
j
ij i
i
ij i
i
Max c x f y
st
ax dy b
xyj n
xjn
y
=
=
+
+?
?=
?=
??
?
?

Based on Bulfin?s algorithm, this formulation can be transformed to a linear knapsack
problem with pseudo variables
1
,...
i
i n
z z
?
and their corresponding profit and processing
coefficients . Pseudo variables are ordered by non-increasing ratio,1,
ij ij i
ca j n?? = .?
ij
ij
c
a
?
?
.
Then we can obtain a piecewise function with its breaking point set so that for any
available resource , is the optimal solution of the .
it
F
it
P
0
b
0
()
it
Fb
it
LKPS
 56

 57
it
PWe define , and delete all dominated points by two multiple-choice dominance
rules for linear multiple-choice knapsack problem (Sinha and Zoltners, 1979).
Connecting the remaining points, we can obtain another piecewise function , which
has .
'
1
T
i
t
P
=
=
?
i
F
000
() (), 0
iit
Fb F b b?>
If the optimal solution of MKPS is known, assume 1
it
y = and the resources and profit
from family are andi
i
w , 1,..
i
profit i N= with solution set ={| . Then is a
feasible solution from the following linear knapsack problem () with setup and
i
S 1
ijt ijt
xx= }
i
S
1
LKPS
i
profit is the objective of the feasible solution
1
1
,
..
1,
01,
01,
i
i
n
ijt ij it i
j
n
ij ij i i i
j
ij i
i
ij i
i
Max c x f y
st
ax dy w
xyj n
xjn
y
=
=
+
+?
?=
?=
??
?
?

Since is the optimal objective of , thus .
Since , then and
()
it i
Fw
1
LKPS () , 1,..
it i i
F w profit i N?=
() ()
ii iti
Fw F w? () , 1,..
ii i
F w profit i N?=
11
()
NN
ii i
ii
F w profit
==
?
??
. Set
1, 1, ..
ij
zjk==
1
''
11
ii
kk
ij i ij
jj
aw a
+
==
?<
??
 if
'
1
'1
1
i
k
iij
j
ik
ik
wa
z
a
=
+
+
?
=
?
if
1
11
tt
jj
jj
ab a
?
==
?<
??
0, 1
ij
zjk=>+

Then the solution set
'
,1,.,1,.
ij i
z jn==Nis a feasible solution of K1 since
1
N
i
i
wb
=
?
?
.
Hence the optimal solution of K1 is greater or equal to
1
()
N
ii
i
F w
=
?
, and an upper bound on
MKPS.
References
Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-
277.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for
the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,
European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275-288.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114, 528-541.

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations
Research 27, 503-515.

 58

 59
?.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP
Abstract
We present a multiple-choice knapsack problem with setup (MCKS). This model can
be applied to regional project selection in multiple periods. In the model, some variables
model setups and serve as the upper bound on the remaining ones. A linear knapsack
problem is designed to give an upper bound on MCKS, and a branch-and-bound
algorithm is used to optimally solve MCKS. Setup variables are branched on; when all
are fixed, MCKS becomes a knapsack problem. Computational experiments show this
algorithm is effective even for instances CPLEX can not solve in two hours.
4.1. Introduction and literature review
The multiple-choice knapsack problem (MCK) is well known in combinational
optimization. In this paper, we present a model we call a multiple-choice knapsack
problem with setup (MCKS). This model can be used in regional project selection in
multiple periods for an organization (country or company) which has a fixed budget to
invest in a number of projects in multiple areas which can be done in multiple periods. To
do a project in an area, a project office must be set up. The organization would like to
decide where to set up offices and which projects to do to maximize net present value
subject to a budget restriction.

Given the formulation of MCKS:
111 11
..
i
nTN TN
ijt ijt it it
tij ti
Max c x f y
st
=== ==
+
??? ??

11 1 11
i
nTN TN
ij ijt i it
tij ti
ax dy b
=== ==
+
??? ??
?, (1)
1, .. , 1, .. ; 1, ..
ijt it i
x yj ni Nt T?= = =, (2)
1
1 1,... , 1,..
T
ijt i
t
x iNj
=
?= =
?
n, (3)
, {0,1} 1,.. ; 1,.. ; 1,.. .
ijt it i
x yiNjnt?===T (4)
ijt
c -is the profit of project j in area in period t (), i 0
ijt
c ?
it
f -is the setup cost for opening an office in area in period t (i 0
it
f ?),
ij
a -is the investment needed for project j in area (), i 0
ij
a >
i
d -is the investment cost to open an office in area (), i 0
i
d >
b -is the budge available to invest (), 0b >
it
y - is one if office is set up in areai in periodt , otherwise zero,
ijt
x -is one if project j in area is done in period , otherwise zero, i t
N -is the number of areas,
T -is the number of periods.
Constraint (1) requires the total budget used by all projects and to setup offices can not
exceed the budget available. Constraints (2) prohibit a project being done unless the
office in this area is set up. Constraints (3) guarantee that a project can only be done once.
Constraints (4) require all variables to be binary.
 60

Besides the application of regional development, this model can also be used in order
acceptance in multiple periods with a non-renewable resource.
We develop an upper bound and an effective heuristic for MCKS based on the linear
knapsack problem with setup and the linear multiple-choice knapsack problem.
Following traditional terminology, we call areai family , and the projecti j in area jobi j
of familyi . We also call the setup time of familyi and
i
d
it
f the setup cost of family in
period .
i
t
For the linear knapsack problem, Dantzig (1957) gave an algorithm which allocates
the limited resource to jobs based on the non-increasing profit-to-processing ratio.
Without y variables, MCKS becomes a multiple-choice knapsack problem, another well-
studied problem. (See Pisinger,1995; Sarin and Karwan, 1989; Armstrong et al, 1983)
Two dominance rules for the linear multiple-choice knapsack problem (Sinha and
Zoltners, 1979) are used to develop a linear knapsack problem as an upper bound on
MCKS.
Without constraint (2), MCKS becomes a knapsack problem with setup. Bulfin (1988)
gave an efficient algorithm for its linear relaxation. We explain this algorithm in the
following section. Akinc (2004) describes algorithms for a fixed-charge knapsack
problem, which is a special case of MCKS; it has a single period and no setup time.
We use a branch-and-bound algorithm to obtain the optimal solution to MCKS. It can
be briefly described by two steps. We branch on variables; when all variables are
fixed, the problem is a knapsack problem in the variables. We use a simple branch-and-
bound algorithm to solve this knapsack problem. To reduce the branches of the tree,
y y
x
 61

y variables are reordered before branching. The ordering process is as follows: Order
variables by non-increasing
it
y
1
,1,.,1,.
i
n
it ijt it
j
pro c f i N t T
=
=+= =
?
. If is near the front,
then this variable is more likely to be 1. Similarly if is near the end, it is more likely to
be 0. We fix variables by looking at the beginning and end of this ordered list and
working toward the middle. Fixing variables first at the front or rear aids in keeping the
number of branches small. Renumber variables by this order so that will be branched
on before .
it
y
it
y
it
y
it
y
1it
y
+
The algorithm (AMCKS) for solving MCKS is outlined below:
Step 1. Obtain an upper bound formulation for MCKS and a feasible solution for MCKS.
Step 2. Decide which variable to be fixed in the current node.
Step 2.1. Generate a new node by fixing some to one; save this node if its bound
is better than the incumbent solution. If all are fixed, solve a knapsack
problem and update the incumbent solution if possible.
y
y
Step 2.2. Generate a new node by fixing to zero; save this node if its bound is
better than incumbent solution. If all are fixed, then solve a knapsack
problem and update the incumbent solution if possible. Delete the
current candidate node.
y
y
Step 3. Choose a new candidate node. If none exists, stop, the incumbent solution is
optimal; else go to Step 2.
In the remaining of the paper, we discuss Step 1 in section 4.2. Section 4.3 explains the
algorithms used in Steps 2 and 3. Section 4.4 discusses computational experiments.
 62

4.2. An upper bound and feasible solution
Unlike the usual approaches of relaxing some constraints of a formulation to obtain an
upper bound, we design a linear knapsack problem whose optimal objective is an upper
bound on MCKS. This approach uses the algorithm presented by Bulfin (1988) for the
linear knapsack problem with setup, which transforms a linear knapsack problem with
setup to a linear knapsack problem.
4.2.1. Linear knapsack problem
Consider a linear knapsack problem:
1
1
..
01
n
jj
j
n
jj
j
j
Max c x
st
ax b
x
=
=
?
??
?
?

All variables are ordered by non-increasing
j
j
c
a
. By Dantzig?s algorithm (1957), if
1
11
kk
jj
jj
ab a
+
==
?<
??
, then
1, 1,...
j
x jk==
1
1
1
k
j
j
k
k
ba
x
a
=
+
+
?
=
?

0, 2,..
j
x jk n==+
 63

 64
n
A linear knapsack problem corresponds to a concave piecewise function.
Define , and put these
11
{(0,0),(,) | 1,.. }
kk
jj
jj
Pack
==
==
??
1n+ points on coordinates and
connect the adjacent points. This defines a concave piecewise function . This process is
independent of resourceb . For a given resourceb , is the optimal objective of the
linear knapsack problem with resource (If
F
()Fb
b
1
n
j
j
b
=
> a
?
, set
1
()
n
j
j
Fb c
=
=
?
). For brevity,
denote these points as
0
,..
n
p p with
1
.
k
kj
j
p xa
=
=
?
and
1
.
k
kj
j
p yc
=
=
?
1, ..kn= . 1,..
k
p kn= are
the break points of the piecewise function . Conversely the break points of a concave
piecewise function define a linear knapsack problem with some resource by
defining
F n
F b
j
x corresponding to
1
..
jj j
apxp
?
x= ? and
1
..
jj j
cpypy
?
= ? 1, ..jn=
,
, .
4.2.2. Transform a linear knapsack problem with setup to a linear knapsack problem
Consider the linear knapsack problem with setup:
11 1
11 1
..
,
1, ; 1, ,
01,;1,
01,1,..
i
i
nNN
ij ij i i
ij i
nNN
ij ij i i
ij i
ij i
i
ij i
i
Max c x f y
st
ax dy b
x yj ni N
x jn N
yiN
== =
== =
+
+?
?==
?==
?? =
?? ?
?? ?

Bulfin (1988) proposed an efficient algorithm, similar to Dantzig?s algorithm for the
linear knapsack problem (1957). Reorder all jobs of family so
that
i
1
1
,1,. 1
ij ij
i
ij ij
jn
aa
+
+
?=?1, ..iN
cc
, = . Let
11
1
1
max{ | 1, 2,.. }
i
i
t k
ij i ij i
jj
itk
ij iij i
jj
cf cf
kn
adad
==
=
=
++
==
++
??
??
for iN? .
Then for family , jobs can be separated into two sets: i
i
XM = {1? }and
i
t
i
XT =
{ +1.... }. The jobs in
i
t
i
n
i
XM can be considered as a single job.
Now for family , define: i
'
1
1
'
1
1
'
,1
'
,1
'
1, ..
1, ..
1
i
i
i
i
t
iiji
j
t
iiji
j
ijt ij i i
ijt ij i i
iii
ccf
aad
ccjt
aajt
nnt
=
=
?+
?+
=+
=+
==+
==+
=?+
?
?
n
n
n

Then linear knapsack problem with setup can be reformulated as:
'
'
'
11
'
11
..
0 1, 1,.. 1,...
i
i
nN
ij ij
ij
nN
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
???= =
??
??

 65

Pseudo job is composed of jobs
1i
z
12
,,.
i
ii t
x xxand
i
ij ij t
zx
+
= , for 2,..
ii
j nt=?. After
solving this linear knapsack problem, at most one variable can have a fractional value,
say . If , then andf
1k
z= f
k
yf= ,1,.
kj k
x fj t= = . If , 1
kl
zfl= ? , then only
k
kl t
x f
+
= .
4.2.3. The algorithm for the upper bound and feasible solution
Before we explain the approach to obtain an upper bound and a feasible solution for
MCKS, let us introduce the period subset?s piecewise function of family . i
4.2.3.1. Subset?s piecewise function
If the optimal solution of MCKS is known, then { | 1}
iit
Sty= = is the set of periods in
which family is processed. But before solving MCKS, is unknown. We know must
be a subset of{1 . Set{1 has total
i
i
S
i
S
, . . }T , . . }T 2 1
T
? non-empty subsets, which we denote
as
1
,..
K
SS,2and1
T
K =?
k
S is the cardinality of the subset .
k
S
For any , define {1, .. }, 1, ..
k
STk?=K
Smax{ | }
k
ijS ijt k
cc=?
k
k
iS it
tS
f f
?
=
?

k
iS k i
dS= d.
Using pseudo variables
ij
x? , , for each , we can formulate a linear knapsack problem
with setup:
i
y?
k
S
 66

1
0
1
..
,
1, ,
01,,
01.
i
kk
i
k
n
ijS ij iS i
j
n
ij ij iS i
j
ij i
i
ij i
i
Max c x f y
st
ax d y b
xyj n
xjn
y
=
=
??+
??+?
???=
? ?=
???
?
?

This problem can be transformed to a linear knapsack problem based on section 4.2.2,
the linear knapsack problem defines a concave piecewise function with break points
set . Thus
k
iS
F
k
iS
P
k
iS
F is the piecewise function of for family .
k
S i
4.2.3.2. Upper bound formulation of MCKS
After obtaining
k
iS
F and its break points set for each subset of familyi ,
we define and delete any repeated points in the set. Apply the following two
multiple-choice dominance rules (Sinha and Zoltners, 1979) to
k
iS
P , 1,..
k
Sk K=
1
k
K
i
k
PP
=
?=
? iS
i
P? :
Dominance rule 1. If
r
p and
s
p have . .
rs
p xpx? and . .
rs
p ypy? , then delete
s
p
Dominance rule 2. If , ,
rks
p pp have . . .
rks
p xpxpx? ? ,. . .
rks
p ypypy? ? and
.. ..
.. .
kr sk
kr sk
py py py py
.p xpx pxpx
??
?
??
, then delete
k
p .
Call the set of remaining points and put them on coordinates. Connecting the
adjacent points in , we obtain a concave piecewise function with break
points
i
P
i
P
i
F
'
1
,...
i
n
p p . All points in
i
P
?
are below the line of the piecewise function thus
i
F
 67

000
() () 0, 1,.
k
iiS
Fb F b b k K??=.
 68
x
?
=?Define pseudo variables with and
'
i
n
'
1
,..
i
i
in
zz
'
1
..
ij j j
apxp
?
=?
'
1
..
ij j j
cpypy 1, ..
i
j n?= .
Repeating this process for all families, we obtainN
'
1
N
i
i
n
=
?
pseudo variables and
formulate a linear knapsack problem with resource .
u
LKP b
'
'
'
11
'
11
'
..
01,1,.1,.
i
i
nN
ij ij
ij
nN
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
??= =
??
??
n

We prove that the optimal objective of is an upper bound on MCKS. This
problem has at most one fractional variable. If we round this fractional variable to zero,
then we obtain a feasible integer solution for . The integer solution
of corresponds to a feasible solution of MCKS and its objective is a lower bound on
MCKS. (Refer to the Appendix C for their proofs).
u
LKP
u
LKP
u
LKP
This approach is impractical if T is large. We present three dominance rules to reduce
the number of subsets considered. (Refer to the Appendix D for their proofs).
Consider two subsets of family : if , {1,.. }
rk
SS T? i
00
() ()
rk
iS iS
F bFb? for all , then
dominates . All break points of are below , so
0
0b >
r
S
k
S
k
iS
F
r
iS
F
k
iS i
PP? which means need
not be included in . Consider
k
iS
P
i
P
?
1
,..
K
SSof familyi :
Dominance rule 3. If and , then dominates .
r
SS?
k
k
11
rr k
nn
ijS iS ijS iS
jj
cf cf
==
+> +
?? r
S
k
S

Dominance rule 4. Assume and dominates . If there is another
subset with
rk
SS?
r
S
k
S
l
S
lk
SS??=, then dominates .
l
SS?
r lk
SS?
Dominance rule 5. Assume ,
rk
SS? 0
rk
iS iS
ff= = and 0
rk
iS iS
dd= = . If there is a subset
with
l
S
lk
SS??=, then dominates .
l
SS?
k lr
SS?
With the help of dominance rules, the break points of some period subsets? piecewise
functions need not be included into
i
P
?
and thus reduce the effect to determine . After
finding all non-dominated subsets, we calculate the break points of their piecewise
functions. We do not put all break points together and apply dominance rules 1 and 2
once; rather we add these points into
u
LKP
i
P
?
in a specific order and apply dominance rules 1
and 2 totalT times.
 Define
ik
S to be all non-empty subsets of{, for familyi and be all non-
dominated points set from the piecewise functions of all elements in
..}kT
ik
P?
ik
S . With the help of
Dominance rule 4, the algorithm to generate is:
i
P
Step 1. Set . 1kT=?
Step 2. While () 0k >
{ Set {|
jj ik
SkSSS=? ?}
 Set
1ik ik
SSS
?
= ?
 Apply dominance rule 3 to delete dominated sets in
1ik
S
?

 } 1kk??
Step 3. Calculate and for
k
iS
F
k
iS
P
1ki
SS? .
 69

Step 4. Set k andT=
1iT
P ?
+
? = .
Step 5. While () 0k >
{ Set
11
{| /
k
ik ik iS k ik ik
PP PSSS
++
??=? ? }
 Apply rules 1 and 2 to delete dominated points in
i
P?
 } 1kk??
When the algorithm ends, is the we need. After ,
1i
P?
i
P
i
P 1, ..N= are known, is
obtained.
u
LKP
4.3. Fixing
it
y
When we fix to one or zero,
it
y , 1,.. 1
ik
yk t= ? have been fixed by the variable order.
Define and
1
{| 1, }
iik
Sky kt==?
1
i
S includes all non-empty subsets of .
1
i
S
4.3.1. Fixing to one
it
y
When we fix to one, is subtracted from and
it
y
i
d b
it
f is added to the objective.
Then
it
f and can be viewed as zero. Coefficients
i
d
k
iS
f and related to
subset
k
iS
d
1
,,
kkk
St SS S??
i
change. Therefore all and related to these subsets change,
which can cause a change of .
F P
i
P
We can calculate the new piecewise functions for all affected and apply the above
algorithm to obtain an updated . Then we obtain the new pseudo variables and their
processing time and profit coefficients of family from the updated .
k
S
i
P
i
i
P
 70

This updating process can be simplified by applying dominance rule 5. Based on this,
subset dominates any subset
1
i
S
1
,
kk i
SS S? . Therefore, we only need consider subsets
are
1
1
{| }
ijjit it
SSSS S
+
???
1+
. The process to update can be described as:
i
P
Step 1. Calculate the piecewise function of subset .
1
i
S
Step 2. Calculate the piecewise functions of subsets
1
1
{|
ijjit
SSSS
+
??}.
Step 3. corresponding to
1it
P
+
?
1it
S
+
is known from the calculation of the upper bound on
MCKS. Set
1
'
11
{}{ | { | }
k
i
iit iSk i jjit
iS
PP P PS S SS S
++
??=?? ?? ? and apply rules 1
and 2 to delete dominated points in
i
P?and obtain the updated .
i
P
After we obtain the updated , we can obtain the new pseudo variables of family .
i
P i
4.3.2. Fixing to zero
it
y
If we fix
it
to 0, then all subsets includingt must delete this period, so their piecewise
functions change, resulting in a different .
y
i
P
 Assumel is the last period in
1
, then
1
stays the same since we fix y to one. All
subsets used to update when we fix to one are
i
S
i
S
il
i
P
il
y
1
1
{| }and
ijjil
SSSS
+
??
1il
S
+
; all
subsets used to update P when we fix y to zero is
i it
1
1
{| }S?and
ijjit
SSS
+
?
1it
S
+
.
Since
11il it
SS
++
to
when we fi
? , then all subsets used when zero are part of the subsets for fixing
one. We save the P x y to one so we need not calculate the updated
it
y
il
y
i il i
P .

 71

4.3.3. Bounding
 72
iable z a
n:
.n

 After we obtain the new pseudo jobs from the updated
i
, the node?s new
upper bound can be obtained by replacing the old pseudo var
'
1
,..
i
i
in
zof f milyi with
the new ones. For the current node?s upper bound formulatio
'
1
,..
i
i
in
zz P
s
'
'
'
11
'
11
'
..
01,1,.1,
i
i
nN
ij ij
ij
nN
ij ij
ij
ij i
Max c z
st
az b
ziNj
==
==
?
??= =
??
??

If we fix
it
to 1, then reduce available resourceb by
i
d ; delete all old pseudo
jobs ; replace by the new ones and find the new optimal. If we fix to 0, then we
replace all old pseudo jobs by new ones and find the new optimal. We can prove
the new optimal is the upper bound of the current node by an approach similar to what we
used in Appendix A.
y
'
1
,..
i
i
in
zz
it
y
'
1
,..
i
i
in
zz
4.3.4. Choosing a New Sub-problem
When variables are fixed, two sub-problems are created. If a sub-problem?s upper
bound is no better than an incumbent solution it is discarded. When its bound indicates it
could contain a better solution to MCKS we store it in a bucket. Each bucket contains
sub-problems with bounds that are about the same. Let B be the best upper bound
and be the value of the current incumbent solution. If we want
U
INC K buckets, calculate
()UB INC
K
?
?= .

 73
]UB?? , bucket]UB
Then bucket one will contain all sub-problems with upper bounds in the
interval[UB two[2UB, ,? ? cket??, and bu K [,]INC INC +? .
Buckets can be updated as upper bounds or the incumbent change. When we choose a
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives an almost ?best-bound? strategy, but without the bookkeeping
overhead.
4.4
d.
t
buted
from 10, 30], [30, 50] and [50, 70]. Setup cost and time will be determined by
. Computational experiments
We test AMCKS on a variety of problem instances to see what problems can be solve
Instances will be generated by setting five parameters at several levels. The parameters
are number of families, average number of jobs in a family, proportion of setup time/cos
relative to total time and cost, number of periods, and relationship between a and c . The
number of families will be fixed at 10, 30 and 50. The number of periods will be fixed at
5, 10, 15 and 20. The number of jobs in a family will be integer uniformly distri
 [
1
1
()
i
n
it ijt
j
f ec
=
=?
?

2
1
()
i
n
de a=
?

iij
j=
We will choose and uniformly from [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], and [0.2, 0.25].
and have three relationships: is uniformly chosen from [10, 10000], and is
chosen from[10, 10000] and is randomly chosen from[10, 10000], and =+, is
1 2
ij
also uniformly chosen from [10, 10000] (uncorrelated relationship-U);
ij
a is uniformly
e e
a c a
ijt
c
ij
t
ijt ij
ctee

 74
n it
sen from [10,100] (stron ti
uni
??
randomly chosen from [0, 2000] (weak relationship-W);
ij
a is uniformly chosen from[10,
10000], and
ijt
c is randomly chosen from[
ij
a -1000,
ij
a +1000], if
ijt
c is less than 10, the
is randomly ch lao g re onship-S). Resource availability will be
form from
11 11
0.4* ,0.6* ,
ij ij
ij ij
aa
== ==
??
??
ii
nnNN
?? ??

pper bound (UB) and the average ratio of initial solution to the
Table 4.1
o e
.
For each level of the five factors we generate ten instances. AMCKS was coded in C
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum (MAX) solution time in minutes. We also give the average ratio of initial
solution (INC) to initial u
optimal solution (OPT).
Soluti n tim (minutes) with N 10= and ~
i
n [10,30]
 U S W
pe d L L L rio Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX
[0.05-0.1] 0.977 0.978 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.902 0.903 0.00 0.00 0.01
[0.1-0.15] 0.976 0.977 0.00 0.00 0.00 0.988 0.989 0.00 0.00 0.00 0.843 0.845 0.00 0.00 0.01
[0.15-0.2] 0.953 0.953 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.878 0.883 0.00 0.00 0.01
5

[0.2-0.25] 0.912 0.913 0.00 0.00 0.00 0.929 0.930 0.00 0.00 0.00 0.893 0.900 0.00 0.00 0.01
[0.05-0.1] 0.992 0.992 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.00 0.903 0.904 0.00 0.01 0.02
[0.1-0.15] 0.978 0.978 0.00 0.00 0.01 0.990 0.990 0.00 0.00 0.01 0.894 0.896 0.00 0.01 0.02
[0.15-0.2] 0.973 0.974 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.01 0.833 0.838 0.00 0.01 0.02
10

[0.2-0.25] 0.947 0.949 0.00 0.00 0.00 0.919 0.921 0.00 0.01 0.01 0.905 0.910 0.01 0.01 0.03
[0.05-0.1] 0.993 0.993 0.02 0.02 0.03 0.996 0.996 0.00 0.00 0.01 0.862 0.862 0.00 0.02 0.03
[0.1-0.15] 0.992 0.993 0.00 0.01 0.01 0.989 0.990 0.00 0.00 0.01 0.893 0.895 0.00 0.02 0.05
[0.15-0.2] 0.967 0.968 0.00 0.00 0.01 0.996 0.996 0.00 0.01 0.02 0.895 0.899 0.01 0.04 0.07
15

[0.2-0.25] 0.935 0.936 0.00 0.00 0.01 0.945 0.946 0.00 0.01 0.03 0.837 0.842 0.03 0.05 0.07
[0.05-0.1] 0.994 0.994 0.09 0.10 0.11 0.997 0.998 0.01 0.01 0.01 0.904 0.905 0.02 0.04 0.05
[0.1-0.15] 0.978 0.979 0.02 0.02 0.03 0.985 0.985 0.00 0.01 0.03 0.907 0.908 0.00 0.04 0.08
[0.15-0.2] 0.978 0.979 0.01 0.01 0.02 0.997 0.998 0.04 0.919 0.923 0.01 0.08 0.19
20

[0.2-0.25] 0.958 0.959 0.01 0.01 0.01 0.950 0.952 0.00 0.12 0.845 0.851 0.05 0.12 0.41
0.01 0.02
0.03

 75
Ta le 4.2
o e

b
Soluti n tim (minutes) with N 30= and ~n [30,50]
i
 S U W
Pe d L L L rio Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX
[0.05-0.1] 0.996 0.996 0.00 0.02 0.07 0.999 0.999 0.00 0.02 0.08 0.949 0.950 0.04 0.41 0.76
[0.1-0.15] 0.991 0.991 0.00 0.02 0.04 0.989 0.989 0.00 0.08 0.25 0.954 0.954 0.04 0.19 0.30
[0.15-0.2] 0.987 0.987 0.00 0.01 0.04 0.984 0.984 0.00 0.12 0.35 0.958 0.958 0.00 0.22 0.49
5

[0.2-0.25] 0.974 0.974 0.00 0.02 0.04 0.977 0.977 0.00 0.11 0.34 0.964 0.965 0.00 0.27 0.63
[0.05-0.1] 0.997 0.997 0.01 0.05 0.17 0.999 0.999 0.01 0.03 0.06 0.966 0.966 0.07 0.79 1.57
[0.1-0.15] 0.999 0.999 0.01 0.01 0.01 0.997 0.997 0.00 0.09 0.46 0.952 0.952 0.08 0.69 1.04
[0.15-0.2] 0.990 0.990 0.00 0.03 0.05 0.983 0.983 0.00 0.20 0.64 0.961 0.962 0.11 1.08 2.01
10

[0.2-0.25] 0.980 0.980 0.00 0.05 0.13 0.983 0.983 0.01 0.29 0.57 0.964 0.965 0.33 1.51 3.67
[0.05-0.1] 0.997 0.997 0.06 0.09 0.18 0.999 0.999 0.00 0.05 0.21 0.972 0.972 0.24 0.97 1.92
[0.1-0.15] 0.996 0.996 0.02 0.04 0.09 0.996 0.996 0.01 0.15 0.44 0.970 0.971 0.12 0.89 1.46
[0.15-0.2] 0.982 0.982 0.01 0.08 0.18 0.990 0.990 0.01 0.28 1.25 0.962 0.962 0.06 1.69 2.74
15

[0.2-0.25] 0.974 0.974 0.05 0.09 0.15 0.983 0.983 0.00 0.88 5.57 0.959 0.959 0.01 2.86 6.17
[0.05-0.1] 0.997 0.997 0.87 1.74 3.68 0.999 0.999 0.03 0.10 0.34 0.982 0.982 0.05 0.97 2.10
[0.1-0.15] 0.999 0.999 0.07 0.08 0.09 0.997 0.997 0.02 0.09 0.16 0.971 0.971 0.12 1.75 5.91
.2] 0.987 0.987 0.03 0.08 0.17 0.994 0.994 0.02 0.16 0.49 0.975 0.976 0.22 2.18 8.73
0.26 0.977 0.977 0.11 1.28 7.92 0.942 0.943 1.18 12.42 51.60
[0.15-0
20

[0.2-0.25] 0.977 0.977 0.03 0.14

Table 4.3
oSoluti n time (minutes) with N 50= and ~n [50,70]
i
 U W S
Period L L L Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX
[0.05-0.1] 0.997 0.997 0.01 0.15 0.82 1.000 1.000 0.00 0.09 0.34 0.979 0.979 0.05 2.12 4.25
[0.1-0.15] 0.997 0.997 0.00 0.07 0.51 0.995 0.995 0.01 0.39 0.93 0.980 0.980 0.21 1.64 3.70
[0.15-0.2] 0.991 0.991 0.00 0.14 0.36 1.000 1.000 0.10 1.74 4.49 0.984 0.984 0.03 1.03 3.43
5
[0.2-0.25] 0.987 0.987 0.00 0.13 0.36 0.983 0.983 0.08 0.92 1.76 0.980 0.980 0.30 3.09 5.78
[0.05-0.1] 0.998 0.998 0.03 0.39 1.88 1.000 1.000 0.02 0.17 0.52 0.988 0.988 0.02 3.10 6.99
[0.1-0.15] 1.000 1.000 0.01 0.04 0.09 0.999 0.999 0.02 0.29 1.26 0.976 0.976 0.12 4.46 8.44
[0.15-0.2] 0.991 0.991 0.02 0.16 0.48 1.000 1.000 0.02 2.00 4.56 0.970 0.970 0.86 9.72 19.66
10
[0.2-0.25] 0.985 0.985 0.01 0.42 1.41 0.986 0.986 0.21 2.65 6.05 0.971 0.971 4.23 16.20 28.67
[0.05-0.1] 0.997 0.997 0.20 0.80 2.10 1.000 1.000 0.02 0.14 0.31 0.984 0.984 0.36 7.29 22.69
[0.1-0.15] 0.998 0.998 0.05 0.13 0.33 0.997 0.997 0.05 0.95 3.95 0.979 0.979 0.06 8.33 17.03
[0.15-0.2] 0.993 0.993 0.03 0.35 0.96 1.000 1.000 0.01 2.24 5.83 0.969 0.970 0.06 17.70 35.68
15
[0.2-0.25] 0.987 0.987 0.02 0.43 1.01 0.990 0.990 0.04 1.89 3.75 0.976 0.976 0.07 30.40 82.01
[0.05-0.1] 0.997 0.997 19.50 29.00 44.47 1.000 1.000 0.08 0.26 0.53 0.983 0.983 0.11 8.88 27.13
[0.1-0.15] 0.998 0.998 0.17 0.45 1.35 0.998 0.998 0.03 0.41 2.71 0.981 0.981 0.44 13.60 29.35
[0.15-0.2] 0.991 0.991 0.13 0.52 1.08 1.000 1.000 0.12 2.08 7.84 0.973 0.973 3.15 34.10 125.01
2
.54
0
[0.2-0.25] 0.990 0.990 0.09 0.64 1.53 0.991 0.991 0.03 5.41 21.96 0.978 0.979 1.34 41.10 95

 76
tion are more difficult than large setup proportion. The difference between
5% setup and 10% setup is apparent, but there is little difference between 10% setup and
15% setup.
Fig. 4.1 and Fig. 4.2 show when coefficients are uncorrelated, instances with small
setup propor
N=50;T=15
0
5
10
15
20
25
30
35
[0.05-0.1] [0.1-0.15] [0.15-0.2] [0.2-0.25]
Setup proportion
U
W
S
Time (Minute)

~ [50,70]
i
n Fig. 4.1. Solution Time for 50NTand, 15= =
50 families, 20 periods
0
5
10
20
25
35
40
45
[0.05-0.1] [0.1-0.15]
15
30
[0.15-0.2] [0.2-0.25]
setup proportion
U
W
S
Time (Minute)

Fig. 4.2. Solution Time for 50, 20NT= = and ~ [50,70]
i
n
The dominance rules are more effective when setup proportion is large and
when a and c are uncorrelated. If the setup proportion is small, jobs are more often
assigned to multiple periods; the dominance rules are not as effective as for instances
with large setup proportion. But when s correlated over different periods, there is not c i

 77

eases, instances wit having weak relationship and
str m t and
nce
 the lower
bo
n
rd
knapsack
pro
d on MCKS r

 use up before the first break point of the piecewise function. If
e fractional value is the first pseudo variable of some family, all variables corresponded
as good.
lso c mp C X ll M . W s rd
instances fo M 0 ds m 90]
i
n om Tr ns
much difference in assigning a job to a particular period. Thus AMCKS can easily solve
an instance with small setup proportion.
When setup proportion incr h ,ac
ong relationship beco e harder. By the central limit theorem, the total setup cos
time follow a normal distribution. Under the weak and strong relationships, the
correlation of setups in different periods increases. With setup proportion increasing,
setup has more effect on the optimal solution and differences in periods decrease. He
dominance rules are not as effective in this case. The other possible reason is
und. With setup proportion increasing, the lower bound becomes worse so we can not
fathom nodes as effectively.
Instances with a and c correlated are more difficult. The piecewise function for
different periods become flat, and the computation for the composite piecewise functio
becomes complex. The knapsack problem when all setup variables fixed is also a ha
problem; we did not use a special algorithm to deal with correlation in the
blem. Some improvement can be expected if a special algorithm is used.
We use the rounded solution as a lower boun , which is very effective. Fo
instances with 30N = and 50N = , the lower bound is at least 95% of the optimal.
When 10N = , it is worse since there are fewer points on every piecewise function, so the
resource is much easier to
th
to this pseudo variable are rounded to zero, thus the lower bound is not
We a o are AMCKS to PLE 9.1 (ca ed by A PL) e choo e the ha est
r A CKS (2 perio , 50 fa ilies, ~ [80,) to c pare. ial ru on

 78
other instan lts are ty on CPLEX to iff of
solving with P l ins s p el so ab sho e c
superiority of AMCKS.

Table 4.4
The solution m e pa et A S a L
 S
ces showed these resu pical . Due the d iculty
 C LEX, on y five tance er lev were lved. T le 4 ws th lear
 ti e (minut) com rison b ween MCK nd CP EX
U W
Setup AMCKS C/A C AMCKS C/A CPLEX PLEX CPLEX AMCKS C/A
1 > 120.00 39.82 3.01 4.51 1.31 3.45 5.12 0.77 6.65
2 >
>
>
[0.05-0.1]
>12 .00 14 3 4. 2 0. 5. 1. 7
AVG
> 5 1
120.00 15.39 7.80 5.53 0.15 37.58 5.90 8.46 0.70
3 120.00 31.31 3.83 5.05 0.16 31.06 13.68 15.05 0.91
4 120.00 19.23 6.24 4.82 2.58 1.87 4.19 1.60 2.62

5 0 .3 8.37 4 08 58.28 07 4 3.45
 5.85 26.45 2.87
1 120.00 0.21 70.34 7.79 0.04 90.61 5.03 1.79 2.82
2 > 5
>
1
[0.1-0.15]
120.00 0.17 8. 3 0. 13 3 1. 9
VG 587.84 44.91 7.00
4 0.
120.00 0.24 06.97 7.82 1.03 7.57 82.07 8.39 9.78
3 120.00 0.22 545.99 8.79 0.86 10.19 5.24 1.00 5.22
4 17.11 0.20 590.17 8.59 5.23 1.64 >120.00 13.56 8.85

5 > 725.73 5 59 14.56 .2 5 8.33
A
1 50.85 0.09 566.01 7.47 0.13 56.14 12.68 17.1 74
2 7.41 0.08 91.82 7.10 0.19 38.35 >120.00 31.1 .86
3 15.84 0.12 129.98 9.22 0.32 28.91 >120.00 33.79 3.55
4 15.52 0.16 97.24 8.92 4.89 1.82 29.80 8.90 3.35
[0.15-0.2]

5
average 180.83 30.60 4.83
1 8.70 0.32 27.41 6.87 0.15 47.39 >120.00 28.72
0 3

 17.36 0.91 19.08 9.18 0.33 27.77 32.76 2.59 12.63
4.18
2 7.59 0.84 8.99 7.11 12.00 0.59 >120.00 17.92
3
4 7.08 0.20 34.63 6.29 4.88 1.29 >120.00 48.74 2.46

5
average 35.60 27.20 4.07
6.70
8.53 2.23 3.82 6.89 0.18 39.29 >120.00 47.09 2.55
[0.2-0.25]
 7.44 0.07 103.13 6.87 0.14 47.42 >120.00 26.83 4.47

Whe and are uncorrelated, AMCKS is much better than CPLEX. When and are
correlated, AMCKS is still better than CPLEX except for instances with 5% setup and
both solvers take longer for instances with larger setup than those with smaller setup.
AMCKS solves problems with 5%-10% setup in about one-third hour; when setup
proportion is over 10%, AMCKS takes less than one hour. For problems with 10%, 15%
n a c a c

 79
CPLEX failed to solve many instances in two hours. Though CPLEX
can
e
od
f
 for
roportion has more effect on instances with uncorrelated
relationship instances than other instances. In this paper, we only use a simple branch-
fixed. If a
gorithm, e.g. the one developed by Martello et al. (1999) is used, the solution
tim
Appendix A. The optimal objective of is an upper bound on MCKS.
If the optimal solution of MCKS is known, then we obtain the
sets in the optimal solution of MCKS and the resource taken by
and 20% setups,
 obtain a near optimal solution, it can?t prove it is optimal in two hours, which often
happens in many algorithms for integer programming.
4.5. Conclusion
MCKS can be used for project selection for a country or company. In this paper, w
use a branch-and-bound algorithm to solve the multiple-choice knapsack problem with
setup. A linear knapsack problem is designed to give an upper bound on MCKS. We
develop three dominance rules to simplify the process and save time to obtain an upper
bound model. The rounded solution of the linear knapsack problem provides a go
incumbent for MCKS. For instances with N greater than 30, the heuristic is over 95% o
the optimal solution. Computational experiments show the algorithm?s effectiveness.
Compared to CPLEX, the proposed algorithm obtains the optimal solution in less time
most instances. Setup p
and-bound algorithm for the knapsack problem when all setup variables are
better al
e can be reduced.
Proof.
u
LKP
{ | 1}
iit
Sty==, 1, ..iN=

 80
fam s e profit 1ilyi is
i
w as well a contribut d , ,..
i
prof it i N= with
i
wb?
?
 and th optimal
objective
N
i
profit
?
.
1
N
i=
e
=
For the period set , there is cct
1i
i
i
ijS ijt i
S max{ , }S,
i
i
iS it
tS
f f
?
=
?
, and
i
iS i i
dS= d. Using = ?
pseudo variables
ij
x? and , formulate a linear knapsack problem with setup
i
y?
i
S
LKP by
these coefficients:
,
1, .. ,
01.
i
kk
i
k
n
ijS ij iS i
j
n
ij ij iS i i
j
ij i
i
i
Max c x f y
ax d y w
xyj n
y
=
=
??+
??+?
???=
?
?
?

Since we know the optimal solution of MCKS, se
t
1
1
,
..st
01,.,
ij i
xjn?=
???
t
1
T
ii
t
yy
=
?=
?
and
1
T
ij ijt
t
x x
=
? =
?
1, ..
i
j n= ,
so that
i
y?and
ij
x? are a feasible solution of
i
S
LK know
1 1
ii
ijS ij ijS i
jjt
cx c x
===
?
???
1
it
t
P . We
1
i
nn nTT
jt ijt ijt
tj
cx
=
?
?
and
1
ii
i
T
iS i it
f yf?
n
y
=
=
?
, thus
1
kk
ijS ij iS i i
j
c x f y profit
=
??
i
+?
Because
?
 .
()
i
iS i
F w is the optimal objective of
i
S
LKP , then ()
i
iS i i
F wprof? t. The linear
knapsack problem obtained from is ()
ii
Fw

 81
1
'
1
'
i
ij ij
j
n
ij
j
Max c z
a
=
=
?
?

D ne its solution for this problem
'
'
..
i
n
st
'
01,1.
ij i
ij i
z w
zjn
?
?? =
efi is
i
Z . Repeating this process f
i
or all families,
i 1
N
Z
=
fe
..
01,1,.1,.
i
ij ij
j
nN
ij ij
ij i
Max c z
st
az b
ziNjn
=
?
??= =
??
??

easible solution is
?
is a asible solution for
u
LKP
'
i
nN
i=
'
'
11
'
11
'
ij==
and its objective of this f ()
ii
i
N
F w ich is les than the optimal
ective of LKP e
i iS i i
F w profit??, the
i=
Appendix B. The rounded solution of corresponds to a feasible solution of MCKS
in the brea and the corresponding profit
obtained by the family is . For all pseudo variables
n
?
wh s
obj
u
. Sinc (
i
F w n
i
profit
?
is less than the optimal
objective of
u
LKP .
) ()
i
1
N
u
LKP
Proof.
k solution isAssume resource taken by familyi
i
w
i
obj
1
,..
i
ii
zz
?
, there is
1
1
ij ij
ij ij
cc
aa
+
+
??
? .

 82
If for al then as g
rounded solution, and k, then the coefficients of z comes from
si n all variables of familyi to zero. If 1
ik
z = in the
k
0
ij
z = l
'
1, ..
i
jn= ,
0
ij
zj=>
i k
p and
1k
p
?
in
point set by xand y
i
P
1
..
ik k k
apxp
?
? =?
1
..
ik k k
cpyp
?
? = ? . On the piecewise
function
i
F ,.
ki
p xw= and .
ki
p y obj= . Assume this point
k
p comes from the break points of
c wise functiopie e n
k
iS
F .
k
iS
F corre ponds to a lines ar knapsack problem , but
k
S
LKP
this
k
S
LKP is the transformation of a linear knapsack problem with setup LKP
k
S
S
iS i
n
ij ij iS i
j
ij i
i
ij i
Max c x f y
st
ax d y b
xyj n
xjn
y
=
??+
??+?
???=
? ?=
???
?
?

Based on Bulfin?s algorithm for linear knapsack problem with setup, the variables
1
ijS ij
j=
0
1
,
..
,
1.. ,
01.,
01.
i
kk
i
k
n
i
k
S
LKPS can be separated into two set
1
{,. }
iit
XMxx? ?= and }
1
{,.
i
it in
XTx x
+
??= . If is the
reak point of
ij
zin
first b
k
iS
F , then set 1 1,..
ik
kt? = = andx 1 1,..
ik i
x kt n? = =+ ; else
set 1 1,... 1
ik
x kjt? == +?. If 1
ik
x? = , let 1
ijr
x = and 0
ir
y = if Smax{ | }
ijr ijt k
cct= ? ; else
set 0,
ijr k
x rS=?. Then and
1
i
kk
n
ijt ijt it it i
tS j tS
c x f y obj
?= ?
+=
?? ?
1
i
kk
n
ij ijt i it i
tS j tS
ax dy w
?= ?
+ =
?? ?
asible integer solution of MCK
. Repeat
this process to all families, and we can obtain a fe S with
e rounded solution?s objective ofthe objective the same as th
u
. LKP

 83
Appendix C. Three Dominance rules
Let us introduce two notations:

' 1
0
1
..
()
..
jj
jj
pypy
Fb
p xpx
+
+
?
=
?
, : The derivative function of piecewise
eak points o and
0
0b ?
function F . , 1,...
j
pj n= are n br f F
0
(0,0)p = .
1
..
jj
px b p x
+
?< .
Ifbp>
0
.
n
x, then
0
() 0Fb? = .
{| 1,. , (0)}
k
k
ijS
ki
ij
c
Jjjn F
a
?== ?
iS
: The job set to form the first line between
0
p and
1
p
of
k
iS
F ., 1,.
k
Sk K= are all subsets of for family
Before proving Dominance rule 1, 2 and 3, we need the following Lemma:
Lemma 1. Le be three different subsets of for famil , and
l
{1, . . }T i .
t , ,
rkl
SSS {1, . . }T yi
rk
SSS?=,
rk
SS??=. If , then(0) (0)
rk
iS iS
FF??> (0) (0)
rl
iS iS
FF? ?? .
Proof.
Case 1: If there is ()
lrs
j JJJ?? ?
(1) If ,
then
lr
ijS ijS
cc=
(0)
l
l
ijS
iS
ij
a
c
F?? , but (0)
l
r
ijS
iS
ij
c
F
a
?< , thus
l
i iS
FF(0) (0)
r
S
? ?> .
(2) If ,
then
lk
ijS ijS
cc=
(0)
l
l
ijS
iS
ij
c
F
a
?? , but (0)
k
k
ijS
iS
ij
c
F
a
?< , thus (0) (0) (0)
lkr
iS iS iS
FFF? ??< < .
lr
JJJ??
s
, then define
ijS
,
l
l ijS
Jcc=
{| , }
lr
r
llijS
JjjJcc=? = Case 2: If
an {| }
k
k
l ijS
Jjj=? thend

[()]
r k
iS ijS
fc++
?
) (
(0)
())
rk
rk
ll
rk
rk
ll
iS ijS
jJ jJ
iS
iS iS ij ij
jJ jJ
fc
F
dd a a
??
??
+
? =
++ +
?
??
.
Since
l
 84
()
rr
iS
fc+
(0)
()
r
l
r
r
r
l
ijS
jJ
iS
iS ij
jJ
F
da
?
?
??
+
?
in the same way,
?
()
()
k
k
k
l
iS
ijS
iS
jJ
fc
da
?
+
+
?
?
(0)
k
k
l
k
jJ
iS
ij
F
?
?? . Therefore,
r
(0) max{ (0), (0)} (0)
lrk
iS iS iS iS
FFFF? ?? ?? =

Le ma 2. 1,m If ..
iit
dftT===,and there are two sets and with
) (
rk
iS iS
Fb? and
 0, 0,
r
S
k
S
rk
SS? ,
then ()Fb
00
''
000
1
() (),0
i
rk
n
iS iS ij
j
Fb Fb b a
=
???
?
.
Proof.
 A:
01,1,.
i
rr
r
n
ijS ijS
j
n
ijS i
Max c x
Consider knapsack problem
1

..st
0
1
,
r
ij ijS
j
ax b
x jn
=
?
??=
?
is the optimal objective of the linear knapsack problem A with right-hand side
Consider the knapsack problem B:

=
?
0
()
r
iS
Fb
0
b .

 85
01,1,.
kk
i
k
k
ijS ijS
n
ij ijS
j
ijS i
ax b
i
n
Max c x
1
..
j
st
=
?
0
1
x jn
=
?
??=

?
0
()
k
iS
F b is the op imal linear knapsack problem B with right-
sid
0
b .Since
rk
SS? , then
rk
S ij
c
t objective of the hand
S
ce
ij
? a s le space is same with B?s,
iS
nd A?s fea ib
thus
iS
F
00
() ()
rk
bFb? .
set
Let
0
{| 1,. , ()}
r
r
ijS
c
Jj Fb??
riiS
ij
j n
a
== min{ , }
rr r
r
ij S ijS
cc
jJ?=?then? and
r
ij ij
aa
0
(
rr
r
r
ij S
iS
ij
Fb
a
? ;
set
)
c
=
0
{| 1,. , ()}
k
ijS
c
Jjjn Fb??== ?
k
kiiS
a
and
ij
min{ , }
kk k
k
ij S ijS
k
ij ij
cc
jJ
aa
?=?then
0
()
k
ij
iS
Fb?
kk
k
S
ij
c
a
= .
Then
''
rk
J J? .
Case 1: If JJ??= ,
kr
if
rk
j j= , then since , thus ;
if
rr kk
ij S ij S
cc?
''
00
() ()
rk
iS iS
Fb Fb?
rk
j j? , then
kk kr rr
kk
ij S ij S ij S
ij ij ij
ccc
aa
??
r
a
, thus
Case 2: If ,
''
00
() ()
rk
iS iS
Fb Fb? .
kr
JJ???

 86
 jo
00
() ()
kr
rk
ijSijS
iS iS
ij ij
cc
Fb Fb
aa
?????b
r
j J?? but
k
j J?there is a , thus? .

, letf
rk
SS?
r
p
k
pLemma 3. I and be the first points except (0, 0) on piecewise
functions
r
iS
F , and
k
iS
F respectivel max{ . , }pxp= . Then forbb> ,
''
y. Define .
rs
b x
Proof.
If
1 01
00
() ()
rk
iS iS
Fb Fb? .
0
1
*
i
n
ki i
j
bSd a
=
?+
? j
, then
''
00
() () 0
rk
iS iS
Fb Fb= = .
If
0
11
r i ij k i ij
jj==
0
r
iS
**
ii
nn
Sd ab Sd a+?< +
??
, then ()Fb
'
0= ,
'
0
() 0Fb> .
If
k
iS
0
1
*
i
n
ri
j
bSd a
=
<+
? ij
, then assume
'
0
()
rr
r
r
ij S
iS
ij
c
Fb
a
= ,
' ij S
c
0
()
kk
k
k
iS
ij
Fb
a
= .
Since **
ri k
Sd Sd<
i
, then
00
**
ri k
bSdbSd?>?
i
. Then for the linear knapsack
problem

1
0
1
..
*,
i?
01,1,.
i
rr
r
r
n
ijS ijS
j
n
ij ijS r
j
ijS i
c x
st
ax b S d
xjn
=
=
??
??=
?

and its piecewise function
Max
r
iS
F , there is
0
(*)
rr
r
r
ij S
iS r i
ij
c
Fb S d
a
? ?=.
For the linear knapsack problem

1
0
1
..
*
01,1,.
k
ijS i
b S d
xjn
?
?=

a
i
kk
i
k
n
ijS ijS
j
n
ij ijS k i
j
Max c x
st
ax
=
=
?
?
?
?
nd its piecewise function
k
iS
F , there is
0
(*)
kr
k
k
ij S
iS k i
ij
c
Fb S d
a
? ?=.
Based on lemma 2, there is
00
(*)(*
rk
iS r i iS r i
Fb S d Fb S d? ???).
Since piecewise function is concave function, then
00
(*)(*
kk
iS r i iS k i
Fb S d Fb S d???.)
Therefore
kkrr
rk
ij Sij S
ij ij
cc
aa
? , so (
k
iS
F F
Lemma 4. Assume . If
''
00
())
r
iS
b b? .

rk
SS? (0) (0)
rk
iS iS
FF? ?> , then there is at most one intersection
of and except (0,0); if
r k
iS
F
iS
F (0) (0)
rk
iS iS
FF? ?? , then dominates .
Pro
k
S
r
S
of.
Case 1: (0) (0)
rk
iS iS
FF??>
Assume
 87
r
p
k
p are the first points respectively on piecewise function
r
iS
F and
k
iS
Fand . If
there are two intersections
12
,p p of
r
iS
F and , then there
k
iS
F
is
11
(.) (.)
rk
iS iS
F px F px??< and
22
(.) (.)
rk
iS iS
F px F px? ?> . Since
r
iS
F and
k
iS
F are concave
piecewise functions, there is
2
.max{.,.}
rk
p xpxpx> . But based on lemma 3,
22
(.) (.)
rk
iS iS
Fpx Fpx??> can not be true.
Therefore, there is no second intersection
2
p .

Case 2: (0) (0)
rk
iS iS
FF??< .
 88
If . .
rk
p xpx? , there is no intersectio between (0n p , .
k
p x). If there is an intersection
outside of (0, .
k
p x), then there is
11
(.) (.)
rk
iS iS
F px F px? ?> that is impossible based on lemma
3.
If . .
rk
p xpx> :
Define
1
rk
JJJ=?. Since n,1,.
rk
ijS ijS i
ccj? = , then
kr
ijSijS
ij ij
cc
aa
? . We
have
1
1
1
(.) (.)
kk
k
k r
k
k
iS ijS
jJ J
iS k ij iS k
jJ
iS ij
jJ J
fc
Fpx a Fpx
da
??
?
??
+
??+? ?
+
?
?
?
1
.
kijr
jJ
and
p xap
?
+?
?
x, thus
00
() ()
kr
iS iS
F bFb> for x
0
(0, .)
r
bp? . If there is an intersection p
outside of (0, .)
r
p x , then that is impossible based on lemma 3.
Case 3:
If
(.) (.)
rk
iS iS
Fpx Fpx??>
 (0) (0)
rk
iS iS
FF??=
. .
rk
p xpx? ,
000
() (), (0, .)
rk
iS iS r
Fb Fb b px=?, and
000
() (), (., .)
rk
iS iS r k
F bFbbpxpx<? . If there is an intersection outside ofp (0, .)
k
p x ,
then that is impossible based on lemma 3. (.) (.)
rk
iS iS
Fpx Fpx??>
..
rk
p xpx> can not happen since if there is
1
rk
J JJ= ? , then
1
(0),
k r
k
ijS ijS
iS
ij ij
c c
Fj
aa
??? ?J, thus should be included into . Then
1
J
k
J .
r
p x can not be
larger than .
k
p x .

 89
Dominance rule 3. If , and
k
, then dominates
Proof.
For , there is , thus
rk
SS?
11
ii
rr k
nn
ijS iS ijS iS
jj
cf cf
==
+> +
?? r
S
k
S .
0
1
i
r
n
ij iS
j
bad
=
=+
? 00
() ()
rk
iS iS
Fb Fb> (0) (0)
rk
iS iS
FF? ?> based on case 2 of
lemma 4. Based on case 1 of lemma 4, there is at most one intersection p
with (.) (.)Fpx Fpx??< ,
0
.
rk
iS iS
p xb< , thus
00
() ()Fb Fb> can not be true. Thus there is no
intersection of
r
rk
iS iS

iS
F and
k
iS
F , and dominates
rk r k
set
l
S with ,
rl kl
SS SS
ir
S
ik
S .

Dominance rule 4. If and dominates , then for another SS? S S
? ??= ?=,
rl
SS? dominates
kl
SS? .
Proof.
Define variabl
ijS ijS ijS
ccc?=?
k
e
rlr
,
kl
ijS ijS ijS
ccc? =?. Since
rk
ijS ijS
cc? , then
k
ijS ijS ijS ijS
rl r r r
jjj===
rk
ijS ijS
cc???,and
11
(| 0) (| 0)
nn
jj
cc cc
==
??>???>
??
.
We know:
(| 0)
nnn
ijS S ijS ijS ijS
cccc
?
=+??>
???

111
(| 0)
kl k k k
ijS S ijS ijS ijS
jjj
cccc
?
===
=+??>
???

Since
rl
rl
iS S it
tS S
rk
111
nnn
f f
?
??
=
?
>
kl
kl
iS S it
tS S
f f
?
??
=
?
, we can
nn
obtain
ijS S iS S ijS S iS S
jj
cf cf
?? ??
==
+? +
??
. Because
l
,
11
rl rl kl kl
rl k
SSSS???

then
r
S dominates
k
S by dominance rule 3.

Dominance rule 5. If
rk
SS? , 0ff
rk
iS iS
= = , 0dd
rk
iS iS
= = then for another period
set ith ,SS SS
l
S w
 90
lr lk
? ??= ?=, dominates
lk
SS?
rl
SS? .
Proof.
Since ff==, dd
rk
rk
iS iS
rk
iS iS
SS? , 0 0= = ,
then ,
rl kl rl kl
iSS iSS iSS iSS
ffdd
????
==,
ij
a keeps same, and
rl kl
ijS S ijS S
cc
??
? , then for any
resource
0
b there is
00
() ()
rl kl
iS S iS S
FbFb
??
? , thus
lk
SS? dominates
rl
SS? .
Re

European Journal of Operational Research 170, 363-375
Armstrong R.D, Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a
, 9,
184-198.
Bulfin, R. L. 1988. An algorithm for the continous, variable upper bound knapsack

277
Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for

.
European Journal of Operational Research 83, 394-410.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem?, Operations
ferences
Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,

multiple-choice knapsack problem, ACM Transactions on Mathematical Software

problem, OPSEARCH 25 (2), 119-125.
Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5, 266-

the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.
Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem
Research Letters, 8, 95-100.

 91
This research investigated three integer programming models which can be applied to
order acceptance in make-to-order production and regional project selection in multiple
periods: the knapsack problem with setup (KPS), the multiple knapsack problem with
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS). The
common characteristics of all three models are: jobs belong to different families; setup
time and setup costs are incurred if a job is processed; if two jobs from the same family
are processed sequentially, no setup is required; resource is limited and some jobs can be
selected to be manufactured. The objective is to maximize the sum of profits of processed
jobs.
 KPS can be used in order acceptance of single period. The model selects the jobs to
be processed for maximizing the total profit. MKPS, as an extension of KPS, is used in
order acceptance of multiple periods. Besides selecting the jobs to be processed, it also
decides the periods which the selected jobs are arranged in. Jobs? coefficients vary in
different periods, but the processing time stays the same. In MKPS, jobs? profits affect
job?s production schedule and the chosen schedules decide the job?s profit. The two
factors are balanced by maximizing the total profit under a resource limit. MCKS is
applied to regional projects selection in multiple periods, and it can also be used in order
acceptance of multiple periods with a non-renewable resource.
?. CONCLUSIONS

Branch-and-bound algorithm is used to obtain the optimal solution for all three models.
The success of the algorithm relies on the effectiveness of the upper bound and lower
bound in branching and the effort to obtain them. Unlike the usual approaches of relaxing
 92
some constraints of a formulation to obtain an upper bound, we design a linear knapsack
As the simplest among the three models, KPS can be viewed as a special case of the
oth
near relaxation to a linear knapsack problem. We show a linear knapsack problem
co , and the concave piecewise function defines
Multiple-choice constraints are on the setup variables in MKPS to guarantee the jobs
mily be processed in a single period. In MCKS, multiple-choice constraints
pproaches to obtain the linear knapsack problems which give the upper bounds on
MK e obtain a concave piecewise function for each family
seudo variables as well as their profit and processing coefficients are defined from these
pie truct the linear knapsack
omplex than those in MKPS. We develop three dominance rules to simplify it.
KPS or MCKS is rounded to
CKS. A greedy algorithm is developed to obtain a lower bound on MKPS.
problem for each model, and its LP solution is the upper bound on the model.
er two. Bulfin (1988) gave an algorithm for its linear relaxation, which transforms the
li
rresponds to a concave piecewise function
the variables as well as their coefficients in the linear knapsack problem.
of the same fa
are on the job variables so that a family?s jobs can be processed in multiple periods.
A
PS and MCKS are similar. W
with the help of two dominance rules for linear multiple-choice knapsack problem.
P
cewise functions. We use these pseudo variables to cons
problem. The process to obtain the concave piecewise functions in MCKS is more
c
If the LP solution of the linear knapsack problem for
integers, we obtain an integer solution that corresponds to an incumbent of KPS or
M

 93
fter
ll setup variables are fixed, the problem change to a (several) knapsack problem(s). A
sim e these knapsack problems. The
e algorithms for all three models arrive at the optimal solution in less time for most
ins
Branching is done in two stages. The first stage is to branch on setup variables. A
a
ple branch-and-bound algorithm is used to solv
computational experiments show these algorithms? effectiveness. Compared to CPLEX,
th
tances.

 94
BIBLIOGRAPHY
Akinc, U. 2004. Approximate and exact algorithm for the fixed-charge knapsack problem,
European Journal of Operational Research 170, 363-375.

Armstrong R.D., Kung D.S., Sinha P., Zoltners A.A. 1983. A computation study of a
multiple-choice knapsack problem, ACM Transactions on Mathematical Software, 9,
184-198.

Bulfin, R. L. 1988. An algorithm for the continuous variable upper bound knapsack
problem, OPSEARCH 25 (2), 119-125.

Chajakis, E.D., Guignard, M. 1994. Exact algorithms for the setup knapsack problem,
INFOR 32 (3), 124-142.

Dantzig, G.B. 1957. Discrete variable extremum problems, Operation Research 5,
 266-277.

Dudzinski, K., Walukiewicz, S. 1987. Exact methods for the knapsack problem and its
generalizations. European Journal of Operational Research 28, 3-21.

Ham, I., Hitomi, K., Yoshida, T. 1985 Group Techonology, Kluwer Nijhoff Publishing,
Boston, Massachusetts.

Martello, S., Pisinger, D., Toth, P. 1999. Dynamic programming and strong bounds for
the 0-1 Knapsack Problem. Management Science 45 (3), 414-424.

Martello, S., Toth, P. 1980. Solution of the zero-one multiple knapsack problem,
European Journal of Operational Research 4, 276-283.

Martello, S., Toth, P. 1981. A bound and bound algorithm for the zero-one multiple
knapsack problem. Discrete Applied Mathematics 3, 275-288.

Martello S., Toth, P. 1990. Knapsack Problems: Algorithms and Computer
Implementations, John Wiley and Sons, New York.

Parker, R. G., Rardin, R. L. 1988. Discrete Optimization. Academic Press, Inc. San Diego,
CA.

 95
Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem.
European Journal of Operational Research 83, 394-410.

Pisinger, D. 1999. An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114, 528-541.

Sarin S., Karwan MH. 1989. The linear multiple choice knapsack problem?, Operations
Research Letters, 8, 95-100

Sinha, A., Zoltners, A.A. 1979. The multiple-choice knapsack problem, Operations
Research 27, 503-515.

