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This research studies three integer programming models which can be applied to order 
acceptance in make-to-order manufacturing or regional project selection in multiple 
periods. All three models are the variations of the binary knapsack problems and they are 
called the knapsack problem with setup (KPS), the multiple knapsacks problem with 
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS), 
respectively. In all three models, jobs belong to different families and some variables 
represent setup for a family of jobs: if a setup is not done, no jobs in this family can be 
processed; if two jobs are processed sequentially, no setup is required.  
 
 vi
Branch-and-bound algorithms are used to obtain the optimal solutions to all three 
models. Setup variables are branched on. After all setup variables are fixed, the models 
are transformed to a (several) knapsack problem(s). For each model, an independent 
linear knapsack problem is developed to give an upper bound. When a setup variable is 
fixed during branching, we update certain variables in the linear knapsack problem. The 
optimal objective of the updated linear knapsack problem is an upper bound on the 
generated sub-problem. The rounded LP solution of the linear knapsack problem for KPS 
or MCKS corresponds to an incumbent of KPS or MCKS. A greedy algorithm is 
developed to obtain a lower bound on MKPS. Computational experiments show the 
effectiveness of these algorithms. 
 
 
 vii
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Operational Research 
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Office Word
 
 viii
TABLE OF CONTENTS 
LIST OF TABLES............................................................................................................. xi 
LIST OF FIGURES .......................................................................................................... xii 
I. INTRODUCTION........................................................................................................... 1 
1.1. Objectives and significance .................................................................................. 1 
1.2. Mathematical Model............................................................................................. 3 
1.2.1. Order acceptance ........................................................................................ 3 
1.2.2. Regional project selection with a fixed budget .......................................... 5 
1.3. Basic research method .......................................................................................... 7 
1.3.1. Cutting Plane .............................................................................................. 7 
1.3.2. Dynamic Programming .............................................................................. 7 
1.3.3. Branch and Bound ...................................................................................... 8 
1.4 Relaxation Method................................................................................................. 8 
1.4.1. Linear Relaxation ....................................................................................... 8 
1.4.2. Surrogate Relaxation .................................................................................. 9 
1.4.3. Lagrangean Relaxation............................................................................. 10 
References.................................................................................................................. 11 
?. KNAPSACK PROBLEM WITH SETUP .................................................................. 12 
Abstract...................................................................................................................... 12 
2.1. Introduction......................................................................................................... 12 
2.2. Literature survey................................................................................................. 14 
2.3. Background......................................................................................................... 16 
2.4. Solution algorithm .............................................................................................. 19 
2.4.1. Fixing variables ........................................................................................ 19
2.4.2. Bounding .................................................................................................. 20 
2.4.3. Choosing a new sub-problem ................................................................... 20 
 
 ix
2.4.4. Heuristic ................................................................................................... 21 
2.5. Computational experiments................................................................................ 21 
2.6. Conclusions......................................................................................................... 26 
Appendix A. is greater than ............................................................................ 27 
0i
r
1, +ti
r
References.................................................................................................................. 27 
?. MULTIPLE KNAPSACK PROBLEM WITH SETUP.............................................. 29 
Abstract...................................................................................................................... 29 
3.1. Introduction......................................................................................................... 29 
3.2. Linear knapsack problems and knapsack problem with setup............................ 33 
3.2.1. Linear knapsack problem ......................................................................... 33 
3.2.2. Algorithm for LKPS................................................................................. 34 
3.2.3. An upper bound on MKPS ....................................................................... 36 
3.3. Feasible solution (lower bound) ......................................................................... 39 
3.4. Branch-and-bound algorithm.............................................................................. 40 
3.4.1. Variable order........................................................................................... 40 
3.4.2. Fixing .................................................................................................. 41 
rk
y
3.4.3. Choosing a new sub-problem ................................................................... 45 
3.5. Computational experiments................................................................................ 46 
3.6. Conclusions......................................................................................................... 54 
Appendix A. The optimal objective of K1 is the upper bound on MKPS ................. 55 
References.................................................................................................................. 58 
?.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP .............................. 59 
Abstract...................................................................................................................... 59 
4.1. Introduction and literature review ...................................................................... 59 
4.2. An upper bound and feasible solution ................................................................ 63 
4.2.1. Linear knapsack problem ......................................................................... 63 
4.2.2. Transform a linear knapsack problem with setup to a linear knapsack 
problem ..................................................................................................... 64 
4.2.3. The algorithm for the upper bound and feasible solution......................... 66 
4.3. Fixing ............................................................................................................. 70 
it
y
 
 x
4.3.1. Fixing to one......................................................................................... 70 
it
y
4.3.2. Fixing to zero........................................................................................ 71 
it
y
4.3.4. Choosing a New Sub-problem.................................................................. 72 
4.4. Computational experiments................................................................................ 73 
4.5. Conclusion .......................................................................................................... 79 
Appendix A. The optimal objective of  is an upper bound on MCKS. ............ 79 
u
LKP
Appendix B. The rounded solution of  corresponds to a feasible solution of   
MCKS........................................................................................................................ 81 
u
LKP
Appendix C. Three Dominance rules ........................................................................ 83 
References.................................................................................................................. 90 
?. CONCLUSIONS......................................................................................................... 91 
BIBLIOGRAPHY............................................................................................................. 94 
 
LIST OF TABLES 
Table 2.1. Solution time (seconds) for AKPS................................................................... 23 
Table 2.2. Comparing solution time (seconds) of CPLEX and AKPS ............................. 26 
Table 3.1. Solution time (minute) for AMKPS for 5 periods ........................................... 47 
Table 3.2. Solution time (minute) for AMKPS for 7 periods ........................................... 48 
Table 3.3. The lower bound, upper bound and optimal solution ...................................... 51 
Table 3.4. The comparison of solution time (Minute) between AMKPS and CPLEX .... 53 
Table 4.1. Solution time (minutes) with 10N = and ...................................... 74 ~ [10,30]
i
n
Table 4.2. Solution time (minutes) with 30N = and ...................................... 75 ~ [30,50]
i
n
Table 4.3. Solution time (minutes) with 50N = and ..................................... 75 ~ [50,70]
i
n
Table 4.4. The solution time (minute) comparison between AMCKS and CPLEX......... 78 
 xi
 
LIST OF FIGURES 
Fig. 2.1. Comparison of uncorrelated instances with similar total variables number....... 24 
Fig. 2.2. Comparison of correlated instances with similar total variables number........... 24 
Fig. 3.1. Solution time for average 45 jobs per family and 5 periods............................... 49 
Fig. 3.2. Solution time for average 65 jobs per family and 5 periods............................... 49 
Fig. 3.3. Solution time for average 85 jobs per family and 5 periods............................... 50 
Fig. 3.4. Solution time for average 45 jobs per family and 7 periods............................... 50 
Fig. 3.5. Solution time for average 65 jobs per family and 7 periods............................... 50 
Fig. 3.6. Solution time for average 85 jobs per family and 7 periods............................... 51 
Fig. 4.1. Solution Time for 50, 15NT= = and .............................................. 76 ~ [50,70]
i
n
Fig. 4.2. Solution Time for 50, 20NT= = and ............................................. 76 ~ [50,70]
i
n
 
 xii
 
I. INTRODUCTION 
1.1. Objectives and significance 
Make-to-order production is playing an increasingly important role in our economy, 
partly due to the Internet and manufacturing technology advances. In make-to-order 
production, price is dictated not only by cost, but also by the customer?s expectation as 
well. Some customers are willing to pay a higher price for a short lead-time while others 
are willing to wait for their products in exchange for lower prices. Thus prices can be 
related to a product?s delivery date. Price, schedule and the total profit have very complex 
connections. These connections are of extreme interest to businesses today.  
 1
N
Assume there is a manufacturing company. At time T, they receive some orders (jobs), 
which belong to families. Familyi ,N 1, ..i= , has  jobs. Also assume that these jobs 
should be produced in the next planning period. The company?s manufacturing capacity 
is fixed and can?t be changed in the short term. Setup cost and setup time occurs when 
manufacturing changes from a job in one family to another job from a different family. 
There is no setup between jobs of the same family. The company operates with a batch 
delivery policy; products that are manufactured in the same period have the same 
shipping date. This is a common scenario in many manufacturing companies. Then the 
company needs to decide how to choose orders to maximize the total profit. In this case, a 
single knapsack model with setup is used to solve this problem.
i
n
 
 
To extend this problem, jobs can be manufactured inT different periods, but a family 
can only be produced in a single period. Here the price charged for the product many 
relate to the customer?s desired due date; the price depends on the job?s completion time. 
The price could be determined by this way: there would be a base price for a job 
delivered at the customer?s desired due date; there will be ?earliness? and ?tardiness? 
penalties for other delivery dates. These prices would depend on the deviation from the 
desired due date and each customer?s tolerance for this deviation. Sometimes, the price 
could be increased for urgent jobs; or the price could be decreased if the customer agrees 
to allow more time for delivery. So in this system, prices are changed based on the 
product?s actual delivery time. The company might negotiate the price based on customer 
desires and company capabilities. Before making a production schedule, we should know 
the prices of jobs as a function of different completion dates. 
With the added price variability, this model is more complex than typical scheduling 
models in make-to-order manufacturing. The company has to consider the marginal profit 
for different jobs, the current production capacity, and each family?s setup cost and time 
before choosing orders and deciding the job assignment to maximize its total profit. A 
multiple knapsack problem with setup (MKPS) model can solve this problem. 
In above scenario, if production inT periods need the same non-renewable material 
and jobs from the same family can be manufactured in multiple periods, then a multiple-
choice knapsack problem with setup (MCKS) can model this problem. MCKS is more 
helpful in an organization?s decision making on a fixed budget to invest a number of 
projects in multiple areas in multiple periods. In order to do a project in an area, a project 
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office must be set up. The organization would like to decide where to set up offices and 
which projects to do to maximize net profit subject to this budget restriction. 
1.2. Mathematical Model 
1.2.1. Order acceptance 
In make-to-order, if all orders have to be finished in one time period, a knapsack 
problem with setup (KPS) can be used to solve the orders acceptance problem. In this 
situation, a company will decide which jobs will be produced in this period.  
Given this model: 
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i  -is index families, 
j  -is index jobs, 
N -is the number of families, 
i
n  -is the number of jobs in familyi , 
ij
c  -is the profit of job j in family , i
ij
a  -is the time to process job in familyi , j
i
f  -is the setup cost for familyi (0
i
f < , 
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i
d  -is the setup time for familyi , 
b  -is the time available for processing, 
ij
x  -is one if job in family is produced, zero otherwise, j i
i
y  -is one if any job in family is produced, zero otherwise. i
Constraint (1) requires that the total time used by jobs and setups cannot exceed the time 
available for production (resource other than time could also be considered). Constraints 
(2) prohibit a job from being processed if it belongs to a family that has not been setup. 
If jobs can be manufactured in multiple periods, and all items in same family should 
be manufactured together in one period, then this model could be described as a multiple 
knapsack problem with setup (MKPS): 
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ijt
x    -is 1 if the job  of family i  is arranged into periodt , otherwise 0, j
it
y    -is 1 if some job of familyi  is arranged into periodt  , otherwise 0, 
ijt
c    -is the profit of job of family  in period t ( ), j i 0
ijt
c ?
it
f    -is the setup cost for family  in periodt  (i 0
it
f )< , 
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ij
a    -is the processing time for job  of family ( ), j i 0
ij
a >
 5
0
0
i
d    -is the setup time for family i ( ), 
i
d >
t
b    -is the available resource for processing in period t ( ). 
t
b >
Constraint (1) requires that the total time used by jobs and setups cannot exceed the time 
available in each period for production (resource other than time could also be 
considered). Constraints (2) prohibit a job from being processed if it belongs to a family 
that has not been setup. Constraints (3) guarantee setup of each family occurs once. 
In this model, all jobs belong to different families. If a job is chosen, then setup 
time and setup costs must occur. A job may be put intoT different periods, but the profit 
is different in different periods. The objective is to maximize the sum of the profits of 
accepted jobs. 
N
1.2.2. Regional project selection with a fixed budget 
Select projects which can be invested in multiple periods and in different regions to 
maximize net profit. This model can be described as a multiple-choice knapsack problem 
with setup. 
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ijt
c  -is the profit of project  in area in period t ( ),  j i 0
ijt
c ?
it
f  -is the setup cost for opening an office in area in period t (i 0
it
f ? ),  
ij
a  -is the investment needed for project  in area ( ),  j i 0
ij
a >
i
d  -is the investment cost to open an office in area ( ), i 0
i
d >
b  -is the budge available to invest ( ), 0b >
it
y  - is one if office is set up in areai in periodt , otherwise zero, 
ijt
x  -is one if project in area is done in period , otherwise zero, j i t
N  -is the number of areas, 
T  -is the number of periods.  
Constraint (1) requires the total budget used by all projects and setup office can?t exceed 
the budget available. Constraints (2) prohibit a project done before the office in this area 
is set up. Constraints (3) guarantee a project in an area only can be invested once. 
Constraints (4) require the variables to be binary. 
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1.3. Basic research method 
These three models are integer programs (IPs). For integer programming, branch and 
bound, cutting planes and dynamic programming could be used to optimally solve this 
class problem. 
1.3.1. Cutting Plane 
Cutting plane algorithm is an important and well-known approach to solve IPs. It is 
one of the purest methods in polyhedral description algorithms and an alternative to 
enumeration. Cutting planes redefines the problem again and again by adding constraints 
until the problem is solved. 
In practice, a successful cutting plane algorithm depends on the relaxation method of 
the original problem, and the choice of cutting inequalities. There must be a family of 
valid inequalities, which define any optimal point, and a relaxation that is tractable. In 
fact when we add valid inequalities to the relaxation, we solve a series of relaxed 
problems. If this series of problems are easy to solve, that is better. But for these three 
models, we did not find such an algorithm for the relaxations. Therefore, cutting plane 
does not appear to be our best choice. For further study of cutting planes, refer to Parker 
and Rardin (1988). 
1.3.2. Dynamic Programming 
Dynamic Programming is not a specific algorithm, but we can use dynamic 
programming theory to design an algorithm for these three models. As the number of jobs 
increase, that algorithm becomes worse, and storage space will increase exponentially. 
We do not choose to use dynamic programming. 
 
1.3.3. Branch and Bound 
Branch and Bound belongs to the strategy of ?partial enumeration?, just like cutting 
planes belongs to? polyhedral description?. These two strategies are often used to solve 
IPs. Though they are non-polynomial in the worst case, they can be effective solution 
procedures for IPs in practice.  
In a branch-and-bound algorithm, if a variable  is restricted to be binary, we can 
separate the problem into two sub-problems: one with
x
0x = and the other with 1x = . 
Successful applications for B&B need a good algorithm to calculate upper and lower 
bounds for those sub-problems. The tighter the upper and lower bounds are, the more 
effective the algorithm is. Only with strong bounds we can expect to fathom candidate 
problems rapidly enough to avoid being overcome by the exponential growth in the 
number of potential sub-problems. 
Since we design a linear knapsack problem to supply the upper bound for each model 
and the linear knapsack problem is easy to be solved by Danzig?s algorithm, B&B 
becomes an attractive method to solve these problems.  
1.4 Relaxation Method 
1.4.1. Linear Relaxation 
Linear programming is, without doubt, the most successful branch of optimization 
(Parker and Rardin, 1988). Integer programming is usually changed to linear 
programming by relaxing the integer constraints. Linear programs can be solved easily, 
and may provide a good upper bound. Therefore, many integer program algorithms use a 
linear relaxation to get the bound. 
 8
 
In this paper, we relax the integer constraints of job variables for all three models. 
Linear knapsack problems are designed to give the upper bounds on these relaxations. 
1.4.2. Surrogate Relaxation 
A surrogate constraint is a linear combination of other constraints. The following is an 
example of surrogate relaxation: 
11
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Then its surrogate relaxation is: 
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The original problem?s solution is also a feasible solution to the surrogate relaxation, 
but the solution of surrogate relaxation is not necessarily feasible to the original problem. 
The surrogate relaxation has a larger feasible space. The optimal solution to the surrogate 
is an upper bound of the original problem. In this paper, surrogate relaxation along with 
linear relaxation will be used in MKPS to obtain a good upper bound.  
 
1.4.3. Lagrangean Relaxation 
Lagrangean relaxation is also a common relaxation model. This is an example for 
Lagrangean relaxation: 
Give the model L1 
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Its Lagrangean relaxation, L2, is: 
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For each feasible solution of L1, we have 
11 1 1 11
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i
n
 
and all feasible solutions of L1 must be feasible solutions of L2, but not vice versa. 
If we use Lagrangean relaxation, the knapsack problem?s good structure is destroyed. 
Also experimentation shows the bound is not tight enough. Therefore, Lagrangean 
relaxation is not used in this paper. 
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?. KNAPSACK PROBLEM WITH SETUP 
Abstract 
This paper studies a 0-1 knapsack problem with setup (KPS) where one set of 
variables serves as the upper bound of another set of variables. An efficient algorithm 
presented by Bulfin (1988) for the linear relaxation of this problem is applied to obtain an 
upper bound. Branch and bound is used to obtain the optimal solution, and the upper 
bound variables are branched before the remaining variables so KPS becomes a single 
knapsack problem. Computational experiments show that this algorithm is effective when 
objective and constraint coefficients are uncorrelated. This model can be used in order 
acceptance of single period in make-to-order manufacturing. 
2.1. Introduction 
A company makes metal door frames based on customer orders. Door frames have 
different heights, widths, jamb sizes and a number of hinges and lock configurations. An 
order can be for a single frame or for 1,000 identical frames. To make a particular frame, 
the production machinery must be set up for the parameters of that door.  Some setups, 
like the height of the door are easily made, while others, like jamb size require much time 
and labor. The actual cost to produce a frame depends on what other frames are being 
produced; if many identical frames are made, economies of scale result in a low cost. On 
the other hand, if a single frame is made, the setup cost dominates and the cost is high. 
 
Thus which orders are accepted, when they are produced and the price charged are 
critical to profitability. 
This scenario describes the basic order acceptance problem faced by all make-to-order 
manufacturers. Orders consist of jobs, and similar jobs make up a family. Families share 
a setup; if two jobs from the same family are processed sequentially, no setup is required. 
The manufacturer plans production for the next period based on orders received. An order 
can be accepted or rejected for production in this period. 
This problem can be formulated as a knapsack with setup.  Let 
i  index families 
j  index jobs 
N  be the number of families, 
i
n   be the number of jobs in familyi , 
ij
c  be the profit of job j in family , i
ij
a  be the time to process job j in familyi , 
i
f   be the setup cost for familyi (0
i
f )< , 
i
d   be the setup time for family  and i
b   be the time available for processing. 
The decision variables are: 
ij
x     is one if job j in family is produced, zero otherwise and i
i
y     is one if any job in family is produced, zero otherwise. i
The model, which we call KPS, is: 
 13
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Constraint (1) requires that the total time to produce jobs cannot exceed the time 
available. Constraints (2) ensure a job is processed only if it belongs to a family that has 
been setup. Constraints (3) require the variables to be binary. 
In the following section we give a brief literature review and discuss background used 
in the solution methodology. In Section 2.3, we present an algorithm to solve KPS. 
Computational results are given in Section 2.4. Finally, we give concluding remarks. 
2.2. Literature survey 
This linear relaxation of KPS was first introduced by Ham et al. (1985) as a cell 
loading problem for a Group Technology production system. Bulfin (1988) developed a 
polynomial algorithm for the linear relaxation of KPS. It is based on the ratio rule of 
Dantzig (1957) for the linear knapsack problem.  
Akinc (2004) derives an algorithm for a special case of KPS with no setup time, which 
he called fixed-charge knapsack problem. His algorithm to solve the linear relaxation is 
the same as the one in Bulfin (1988). He outlined a branch-and-bound algorithm to solve 
the integer version and used this solution to compare heuristics. No solution times are 
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given for the branch-and-bound algorithm. He states ?This problem is solved as an LP. If 
all are integer, then the optimal solution of P (the fixed-charge knapsack problem) is 
obtained from the solution of the ordinary 0/1 knapsack problem that optimally allocates 
the available capacity to all
i
y
ij
x for which 1
i
y = .? This statement is not true, as seen by the 
following counter-example: 
11 12 1 21 22 2
11 12 21 22
11 1 12 1
21 2 22 2
11 12 21 22
65 58
..
344
,
,
,,, {0,1}
Max x x y x x y
st
xxx x
xyxy
xyxy
xxxx
+?++?
+++?
??
??
?
 
The LP?s optimal solution is
12
1, 1yy= = , and the objective is 13. Based on Akinc?s 
claim, solving the integer knapsack with both setups included gives a solution value of 9, 
with , and
12
1, 1yy==
11
1x =
12
1x = . But the solution
12
1, 0yy= = , and
11
1x =
12
1x = has 
objective 10. Hence, the optimal objective of knapsack problem when all are integer in 
LP solution is not necessarily optimal for the integer model. This brings the results of his 
paper into question. 
y
Chajakis and Guignard (1994) consider the setup knapsack problem which is similar 
to ours except the setup cost
i
f  and profit of job  can be positive or negative. An extra 
constraint is added to make sure a setup does not occur if no job in this family is put into 
knapsack.  This is unnecessary in KPS since  is positive and 
ij
c
ij
c
i
f  is negative.  Chajakis 
and Guignard transform the original problem to an equivalent formulation without setup 
variables by two methods.  Variables y  are described by a Boolean union of x variables 
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so that the constraints coupling and can be deleted and the problem becomes a 
?knapsack problem? with a Boolean union of all variables. The second method is to 
enumerate all non-dominated feasible solution for each family and define a pseudo-
variable corresponding to this solution. This transforms the setup knapsack to a multiple-
choice knapsack problem and only one pseudo-variable can be one in an optimal solution. 
Dynamic programming is used to solve the first transformation; branch-and-bound and 
dynamic programming are both used to solve the multiple-choice knapsack problem in 
the second transformation. Instances with 5, 10, 20, 50, and 200 families are tested. A 
maximum of 4000 total variables can be solved.  
x y
2.3. Background 
The knapsack problem and its many variants are well-studied. For a discussion, see 
Martello and Toth (1990) and Dudzinski and Walukiewicz (1987). We discuss some 
basic results that will be used later in this paper. Dantzig (1957) defined the linear 
knapsack problem as: 
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Then LKPS can be reformulated as a classical linear knapsack problem, which we call 
LBKP: 
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and solved by Dantzig?s ratio rule. If there is no fractional variable, KPS is also solved. 
We know that, at most, one variable will have a fractional value. 
Suppose , . If
ij
zf= 01f<<
i
j t> , then job
i
tj+ in familyi will be the only fractional 
variable KPS and all setup times and costs are considered. On the other hand, if 1j = , 
represents a virtual job composed of setup and jobs 1 through of family . 
Here and
1i
z
i
t i
i
yf=
ij
x f= ,1,.
i
j t= so all are fractional in KPS and the setup time and cost 
for familyi and the processing time and profit of the first jobs are only partially 
considered. If we round the fractional variable(s) to zero, then the current solution is 
feasible to KPS, and can be used as a lower bound in the branch-and-bound algorithm. 
i
t
 
2.4. Solution algorithm 
To develop a branch-and-bound algorithm, we need to make several decisions. These 
include how to fix variables, calculate bounds, choose the next sub-problem to explore 
and obtain an initial incumbent solution. We discuss these now. 
2.4.1. Fixing variables 
We only fix setup variables  to be zero or one in our main branch-and-bound scheme. 
When a sub-problem is created with  fixed to one, the right hand side is reduced 
by and
i
y
i
y
i
d
i
f is added to objective directly in the sub-problem. Then all , 
ij
z 1,..
i
j n= are 
replaced by real variables
1
,...
i
i n
x x  of familyi . When a sub-problem is created with  
fixed to zero, ,
i
y
ij
z 1,.
i
j n= are removed from that sub-problem. Note that if all
i
y
 
are 
binary in the linear relaxation but some 
ij
x is fractional, solving a knapsack problem over 
the
ij
x with = 1 will not necessarily give the optimal solution as we showed in Section 2. 
When all are fixed, we solve a knapsack over the remaining variables to obtain the best 
solution with those variables fixed.  If this produces a better solution than the incumbent, 
it replaces the incumbent. 
i
y
i
y
We order the variables by
1i
z
10 20 0
...
N
rr r? ?? . If a variable has large , it is more 
likely to be one in an optimal solution, while those with smaller ratios are more likely to 
be zero. We choose either the first or last variable to fix first and work toward the middle. 
This tends to keep the number of active branches small. 
0i
r
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2.4.2. Bounding 
 20
n n
We use LBKP as an upper bound on KPS. It is a linear relaxation which allocates the 
setup time and cost proportionally. It is initially solved by the ratio rule. When some is 
fixed, it is easy to resolve the sub-problem. If we fix  to one, we delete the pseudo 
variables and insert the new variables
i
y
i
y
1
,..
ii
zz
1
,...
i
i
x x . This may require taking resource 
from some free variables, which are chosen by the ratio rule to maintain optimality. 
Similarly, fixing  may free up resource, which is then allocated to free variables 
using the ratio rule. 
0
i
y =
2.4.3. Choosing a new sub-problem 
When variables are fixed, two sub-problems are created. If a sub-problem?s upper 
bound is no better than an incumbent solution it is discarded. When its bound indicates it 
could contain a better solution to KPS we store it in a bucket. Each bucket contains sub-
problems with bounds that are about the same. LetUB be the best upper bound 
and be the value of the current incumbent solution. If we wantINC K buckets, calculate  
()UB INC
K
?
?= . 
Then bucket one will contain all sub-problems with upper bounds in the 
interval[ , bucket two[2,UB UB?? ] ],UB UB? ???, and bucket K [,INC INC +?]. 
Buckets can be updated as upper bounds or the incumbent change. When we choose a 
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a ?best-bound? strategy, but without the bookkeeping 
overhead. 
 
2.4.4. Heuristic 
If the fractional valued variable of LBKP is , rounding down to 0 frees  
resource. Allocate this resource to variables with processing time less than and 
already has its family set up. Variables are chosen by the ratio rule until there are no more 
variables which can use the remaining resource. 
ij
z
ij
z
'
ij ij
az
'
ij ij
az
2.5. Computational experiments 
Our experiments will be similar to previous experiments on knapsack problems. 
However KPS has a setup requirement, so setup time and setup cost will be included in 
this study. We wish to test our algorithm (AKPS) on a variety of problem instances to see 
what problems can be solved. Instances will be generated by setting four parameters at 
several levels. The parameters are the number of families, average number of jobs in a 
family, proportion of setup time/cost relative to totals, and correlation between objective 
function and constraint coefficients. All data will be integer valued.  
The number of families will be fixed at 50 and 100. The number of jobs in familyi is a 
uniformly distributed integer in either [40, 50] or [90,100]. Setup cost and time is given 
by 
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1
e and  are uniform from [0.05, 0.15], [0.15, 0.25], [0.25, 0.35], and [0.35, 0.45].   
2
e
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We choose and  two ways.  First  and  are both chosen uniformly from [10, 
10000]; thus they are independent. Next, is chosen uniformly from [10, 10000], while 
is chosen uniformly from [ -1000, +1000], but if is less than 10 it is randomly 
chosen from [10,100]; this introduces some correlation between the two coefficients.  
a c
ij
a
ijt
c
ij
a
ijt
c
ij
a
ij
a
ijt
c
In previous knapsack studies, instances tend to be the hardest when the available 
resource is roughly one half the sums of the constraint coefficients. Therefore, we choose 
 uniformly from [ ,b
11
0.4*
i
nN
ij
ij
a
==
??
11
0.6*
i
nN
ij
ij
a
==
??
].  
For each level of the four factors we generate ten instances. AKPS was coded in C and 
all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of 
memory. In the following tables, we report the minimum (MIN), average (AVG) and 
maximum solution time (MAX) in seconds. We also give the average ratio of initial 
solution (INC) to initial upper bound (UB) and the average ratio of initial incumbent to 
the optimal solution (OPT).  
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Table 2.1.  
Solution time (seconds) for AKPS 
uncorrelated correlated 
N  i
n  
Setup 
LB/UB LB/OPT MIN AVG MAX LB/UB LB/OPT MIN AVG MAX 
[0.05-0.15] 1.00 1.00 0.03 0.06 0.27 0.98 0.98 8.05 17.46 29.28 
[0.15-0.25] 0.99 0.99 0.06 0.53 1.72 0.97 0.97 2.25 16.63 30.73 
[0.25-0.35] 0.99 0.99 0.03 0.49 1.17 0.97 0.97 1.09 25.69 65.56 
50 
 
 
[40,60] 
 
 
[0.35-0.45] 0.97 0.97 1.25 2.62 4.89 0.98 0.98 12.83 22.97 56.5 
[0.05-0.15] 1.00 1.00 0.08 0.09 0.12 0.98 0.98 5.69 26.47 63.72 
[0.15-0.25] 0.99 0.99 0.05 0.87 2.94 0.97 0.97 11.30 28.46 55.75 
[0.25-0.35] 0.98 0.98 0.09 2.67 5.28 0.98 0.98 2.77 34.52 82.31 
50 
 
 
[90,110] 
 
 
[0.35-0.45] 0.98 0.98 0.25 4.25 9.30 0.99 0.99 0.91 49.36 101.4 
[0.05-0.15] 1.00 1.00 0.06 0.16 0.36 0.99 0.99 17.39 153.07 503.38 
[0.15-0.25] 1.00 1.00 0.08 1.43 4.36 0.99 0.99 70.61 124.69 220.53 
[0.25-0.35] 0.99 0.99 0.05 4.96 18.97 0.99 0.99 24.62 175.51 315.67 
100 
 
 
[40,60] 
 
 
[0.35-0.45] 0.99 0.99 2.41 14.34 29.62 0.99 0.99 22.11 131.22 305.85 
[0.05-0.15] 1.00 1.00 0.14 0.24 0.39 0.99 0.99 121.86 385.44 877.19 
[0.15-0.25] 1.00 1.00 0.28 4.02 7.50 0.99 0.99 58.69 *477.78 877.73 
[0.25-0.35] 0.99 0.99 1.33 11.86 30.48 0.99 0.99 17.55 *468.23 953.29 
100 
 
 
[90,110] 
 
 
[0.35-0.45] 0.99 0.99 1.08 31.26 107.09 0.99 0.99 11.48 *484.35 784.72 
Note: ?*? shows 3 of these instances ran out of memory; AVG, MAX, and MIN are calculated based on the 
remaining seven instances. 
Our heuristic solution is outstanding. On average, it was less than 2% from the optimal 
over the entire range of instances tested. Based on the data from Table 2.1, correlated 
instances are more difficult to solve than uncorrelated instances. The setup proportion has 
a stronger effect on uncorrelated instances than correlated instances. With the same 
number of variables, AKPS works better when there are fewer families and the number of 
jobs per family is large. This makes sense since fewer family variables simplify the first 
stage of the branching. Instances with 50 families and an average of 100 jobs per family 
are much easier than instances with 100 families and an average of 50 jobs per family. 
Fig. 2.1 shows the solution time of instances with 50N = and an average of 100 jobs 
per family and instances with 100N = and an average of 50 jobs per family with 
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uncorrelated coefficients. With roughly the same number of variables, instances with 
larger  are more difficult. Also, solution time increases as setup proportion increases. 
The incumbent solution gets worse as setup proportion increases. Fig. 2.2 gives the 
solution time with correlated coefficients. Instances with fewer families still work better 
than the others but solution time is not changed too much as setup proportion increases. 
In correlated instances, setup proportion does not have as much effect on the incumbent. 
N
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Fig. 2.1. Comparison of uncorrelated instances with similar total variables number  
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Fig. 2.2. Comparison of correlated instances with similar total variables number 
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Chajakis and Guignard only test uncorrelated instances with coefficients from a small 
range. (i.e. one set of instances obtains setup cost,  profit from [-100, 100] and setup time, 
processing time from [1,10]). Since the dynamic programming used in their paper has a 
pseudo-polynomial worst case complexity, the large coefficients will increase the 
difficulty of instances and need more storage without doubt. The second approach 
presented fail in instances with total 4000 variables because of storage used up. The first 
one can solve the same instances but need over 1000 seconds. They permit job profit 
negative and setup cost positive in their model, which, to some extent, make instances 
easier due to parts of variables having fixed to 0 by a preprocessing, which reduce the 
size of the problem remarkably. The total number of variables after preprocessing is only 
about 40%-60% of the original one. For instances with 4000 variables, only 2500 
variables are left after this preprocessing.  
We also compare AKPS with CPLEX 9.1 (called by AMPL). We test instances with 
50 families and an average of 100 jobs per family. For each setup, we test five instances. 
AKPS takes much less time for uncorrelated problems. CPLEX takes from 12 to 96 times 
longer; as setup proportion increases the difference becomes smaller. When the 
coefficients are not independent, the difference is much smaller. AKPS is only 3 to 6 
times faster on average, and a few instances take less time on CPLEX. 
We also compared some instances with 100 families and 50 jobs per family, but do not 
present the data. CPLEX is better than AKPS when  and c  are correlated. But AKPS is 
better than CPLEX if and are uncorrelated for instances with
a
a c 100, ~ [40,60]
i
Nn= . 
Therefore we suggest using AKPS when a and c are uncorrelated; if they are correlated 
and there are over 50 families CPLEX might be better.  
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Table 2.2.  
Comparing solution time (seconds) of CPLEX and AKPS 
  
 
     Uncorrelated                  Correlated        
SETUP AKPS CPLEX CPLEX/AKPS AKPS CPLEX CPLEX/AKPS 
0.05 1.17 23.40 21.87 13.08 0.60 
0.09 1.92 21.33 13.64 491.73 36.05 
0.05 1.06 21.20 44.06 253.78 5.76 
0.05 1.08 21.60 34.00 3.81 0.11 
[0.05-0.15] 
 
 
0.06 0.86 14.33 37.42 226.00 6.04 
AVG   20.37   9.71 
0.05 4.67 93.40 24.58 411.08 16.72 
0.41 26.28 64.10 56.78 929.03 16.36 
0.05 2.31 46.20 40.14 376.75 9.39 
0.11 15.44 140.36 40.22 269.69 6.71 
[0.15-0.25] 
 
 
0.05 6.97 139.40 81.39 215.44 2.65 
AVG   96.69   10.36 
4.75 15.52 3.27 23.64 6.67 0.28 
1.95 12.09 6.20 46.01 514.64 11.19 
0.61 16.97 27.82 88.14 5.75 0.07 
2.75 17.39 6.32 7.67 14.86 1.94 
[0.25-0.35] 
 
 
1.55 26.58 17.15 72.03 102.00 1.42 
AVG   12.15   2.98 
3.97 11.20 2.82 179.06 7.42 0.04 
0.91 16.36 17.98 6.56 35.95 5.48 
1.41 65.77 46.65 36.91 283.38 7.68 
7.42 2.91 0.39 107.62 265.69 2.47 
[0.35-0.45] 
 
 
4.58 12.78 2.79 22.16 96.05 4.33 
AVG   14.13   4.00 
2.6. Conclusions 
We investigate the knapsack problem with setup. This is an important problem, 
modeling order acceptance, cell loading, project selection and others. We have developed 
an exact algorithm for the problem. The first computational tests on exact solutions 
indicate our algorithm is vastly superior to CPLEX for many instances, superior on others 
and about the same for the rest. Further, we have determined what parameter values make 
 
instances hard for our algorithm. Finally, the proposed heuristic is excellent, being within 
2% of optimal for all the problems tested. 
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?. MULTIPLE KNAPSACK PROBLEM WITH SETUP 
Abstract 
We present a multiple knapsack problem with setup (MKPS). This problem can be 
used to model order acceptance and production scheduling of multiple periods in make-
to-order manufacturing. Some variables represent setting up production for a family of 
jobs; if a setup is not done, no jobs in the family can be processed. Further, a family can 
only be set up in one period of the planning horizon. A linear knapsack problem is 
designed to give an upper bound on MKPS. A greedy algorithm is developed to obtain a 
lower bound. Setup variables are branched on; when all set up variables are fixed, MKPS 
becomes several independent knapsack problems. Computational experiments show this 
algorithm is effective, especially when resources are tight.  
3.1. Introduction 
The knapsack problem and its variants are well known problems in integer 
programming. In this paper, we present a model that we call the multiple knapsack 
problem with setup (MKPS). In this model, jobs belong to different families. If a job is 
processed, then a setup time and a setup cost are incurred. A job can be assigned 
toT different periods, but only one setup for each family is allowed during the planning 
horizon, so jobs in the same family must be processed in the same period. The profit for 
job
N
j of familyi processed in periodt is , and varies for different periods, but the 
ijt
c
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processing time stays the same. The objective is to maximize the sum of the profits of 
processed jobs.  Formally, we have: 
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x    -is one if the
th
j  job of familyi is arranged into periodt , otherwise zero, 
it
y    -is one if some job of family  is arranged into period  , otherwise zero, i t
ijt
c    -is the profit of job j of family  in period t ( ), i 0
ijt
c ?
it
f    -is the setup cost for family  in periodt  (i 0
it
f )< , 
ij
a   -is the processing time for job j  of family ( ), i 0
ij
a >
i
d    -is the setup time for family i ( ), 0
0
i
d >
t
b    -is the available resource for processing in period t ( ). 
t
b >
Constraints (1) require that the total resource used by jobs in each period can not exceed 
the resource available. Constraints (2) prohibit a job from being processed if it belongs to 
a family that has not been setup. Constraints (3) guarantee jobs in the same family 
processed in a single period. Constraints (4) require all variables to be binary.   
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This formulation models order acceptance in make-to-order manufacturers. Assume a 
manufacturer receives orders for jobs which belong to  different product families. 
Orders can be manufactured inT periods. Setup time and setup cost occur between jobs of 
different families. If jobs are accepted, jobs of the same family are done in the same 
period.  
N
In make-to-order production, price is dictated not only by cost, but also by the 
customer?s expectation as well. Some customers are willing to pay a higher price for a 
short lead-time, while others are not. Thus prices are related to a product?s completion 
date, and different production schedules could produce different profits. The optimal 
solution to MKPS gives the maximum profit, which orders to accept, and how to assign 
jobs to periods. 
The multiple knapsack problem assigns a set of items to multiple knapsacks with fixed 
capacities so that the total profit of selected items is maximal. The multiple knapsack 
problem is a special case of multiple knapsack problem with setup by ignoring the setup 
variables and setting . The multiple knapsack problem has been widely 
investigated. Martello and Toth (1980, 1981) discussed an upper bound algorithm using 
Lagrangean relaxation. Pisinger (1999) presented an exact algorithm using a surrogate 
relaxation to get an upper bound, and dynamic programming to get the optimal solution. 
The surrogate relaxation of the multiple knapsack problem with identical multipliers is a 
knapsack problem. Apparently, MKPS can not do in this way not only because each job 
has the different profit coefficients in periods, but also there are the additional setup 
variables in the model. 
ijt ij
cc=
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MKPS has multiple-choice constraints like the multiple-choice knapsack problem. An 
efficient algorithm and two dominance properties exist for the linear multiple-choice 
knapsack problem. More detail can be found in Pisinger (1995). 
The knapsack problem with setup (KPS) is a special case of MKPS when . Bulfin 
(1988) gave an efficient algorithm for its linear relaxation (LKPS), which is similar to 
Dantzig?s algorithm for the linear knapsack problem. This transforms the LKPS into a 
knapsack problem by using a modified ratio related to a job set. We state this algorithm 
in the following section. Akinc (2004) describes algorithms for a fixed-charge knapsack 
problem, which is a special case of MKPS with a single period and zero setup time.  
1T =
Though the LP solution is often a good upper bound on integer programs such as 
knapsack problem and multiple-choice knapsack problem, we do not solve the linear 
relaxation of MKPS for obtaining an upper bound, but design a linear knapsack problem 
formulation, whose optimal objective is the upper bound of MKPS. Since MKPS 
becomes independent knapsack problems if all variables are fixed, branching is done in 
two stages. The first stage is to branch on variables. When all
it
y
it
y y variables are fixed, the 
second stage solves independent knapsack problems. There are many algorithms 
available for knapsack problem. We just use a simple branch-and-bound algorithm for 
knapsack problem.  
Our approach (AMKPS) is outlined below: 
Step 1. Do surrogate relaxation and linear relaxation for MKPS. 
Step 2. Find an initial upper bound for MKPS. 
Step 3. Find a feasible solution (incumbent) for MKPS. 
Step 4. Determine a branching order for the variables. y
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Step 5. Decide which variable to fix in current node.  y
Step 6. Generate a new node by solving a sub-problem with fixed to one; save this 
node if its bound is better than the incumbent solution. If all are fixed, then 
solve a set of knapsack problems and update the incumbent solution if possible. 
y
y
Step 7. Generate a new node by solving a sub-problem with fixed to zero; save this 
node if its bound is better than the incumbent solution. If all are fixed, then 
solve a set of knapsack problems and update the incumbent solution if possible. 
y
y
Step 8. Choose a candidate node. If none exists, stop, the incumbent solution is optimal; 
else go to Step 5. 
The rest of the paper is organized as following: we discuss Steps 1 and 2 in section 3.2; 
section 3.3 explains the approach used in Step 3 and section 3.4 presents the remaining 
steps. Computational experiments are discussed in 3.5 and a summary is given in section 
3.6. 
3.2. Linear knapsack problems and knapsack problem with setup 
We use the linear knapsack problem and linear knapsack problem with setup to obtain 
an upper bound of MKPS. Let us review these two models firstly. 
3.2.1. Linear knapsack problem 
The linear knapsack problem is a well known integer program:  
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3.2.2. Algorithm for LKPS 
Bulfin (1988) shows LKPS can be transformed to a linear knapsack problem. Consider 
the LKPS: 
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Bulfin?s algorithm uses the ratio
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Then in familyi , jobs are separated into two sets: 
i
XM = {1? }and
i
t
i
XT = { +1.... }. 
The jobs in
i
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Then LKPS can be reformulated as: 
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Pseudo job  is composed of jobs 
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z
1
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i
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x x along with the setup cost and time, and 
, for 
i
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zx
+
= 2,..
ii
j nt=?. Solve this linear knapsack problem. At most one variable can 
have a fractional value, say . Iff
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+
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3.2.3. An upper bound on MKPS 
3.2.3.1. Relaxation 
Surrogate relaxation (Pisinger, 1999) and Lagrangian relaxation (Martello and Toth, 
1981) have been applied to obtain an upper bound on the multiple knapsack problem. In 
this paper, surrogate relaxation with identical multipliers on constraints (1) is used. 
Selecting identical multipliers keeps unrelated to periods after surrogate relaxation. 
Relaxing integrality of the variables gives a mix-integer formulation SMKPS:  
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SMKPS gives an upper bound on MKPS since every solution to MKPS is a feasible 
solution for SMKPS, but not vice versa. Unlike the usual approach, we do not solve 
SMKPS to obtain an upper bound on MKPS; we design a new knapsack problem based 
on SMKPS whose optimal solution is an upper bound on MKPS 
3.2.3.2. The knapsack problem giving the upper bound of MKPS 
Using only the variables of family in periodt of SMKPS, we construct the linear 
knapsack problem with setup: 
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Based on Bulfin?s algorithm, this formulation can be transformed to a linear knapsack 
problem with pseudo variables
1
,...
it
n
z z and their corresponding profit and processing 
coefficients
1
,...
it
n
cc
1
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it
n
aa. Pseudo variables are ordered by non-increasing ratio
j
j
c
a
. 
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These two dominance rules are called multiple-choice dominance rules in this paper, 
and stems from the two dominance rules for the multiple-choice knapsack problem 
(Sinha and Zoltners, 1979). Assume there are 
'
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Repeating this process for all families, we obtainN
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pseudo variables and a linear 
knapsack problem K1 with resource b (
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We prove the optimal objective of K1 is an upper bound on MKPS in Appendix B.  
3.3. Feasible solution (lower bound) 
A good initial feasible solution can fathom many candidate nodes and reduce the 
search time. We will use a greedy algorithm to calculate one.  
Algorithm determines a feasible assignment of family ?s jobs to 
period when there is resource available. The algorithm returns , the total profit of 
this assignment and , the amount of resource actually used.  
(, )assign i t i
t
t
b
it
obj
it
res
Algorithm : (, )assign i t
Step 1. Set ,obj ,
t
bb= 0,0=  
       , ,
it it it
obj obj f?+
i
bbd??
it i
res d= . 
Step 2. ; if 1jj?+
i
j n> , stop. 
Step 3. If , then 
ij
ba?
                 
it it ijt
obj obj c? + ,
ij
bba? ? ,
it it ij
res res a? + ;  
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  If , then go to Step 2; else stop. 0b >
           else  go to Step 2 
Algorithm is used to get the feasible solution. It uses to assign a family to a 
period and update the available resource. It continues until there is not enough resource 
left for any job. 
feas
it
obj
 40
TStep 1. Set . Solve for{1, . . }NN N= (, )assign i t 1,.. 1,..iNt= =  
Step 2. Choose{, with}rs max{ | , 1,.. }
rs it
obj obj i NN t T= ?=; if , stop. 0
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obj =
Step 3. ,
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lb lb obj?+
s s
b b res??
r
. Delete r from . IfNN NN ?= , stop.  
Step 4. Solve . Go to Step 2. (, )assign i s iNN?
3.4. Branch-and-bound algorithm 
To develop a branch-and-bound algorithm, we need to make several decisions. These 
include how to fix variables, calculate bounds, choose the next sub-problem to explore 
and obtain an initial incumbent solution. Also, the order to fix variables has to be decided.  
3.4.1. Variable order 
Order all variables by non-increasing
it
y
1
,1,.,1,.
i
n
it ijt it
j
pro c f i N t T
=
=+= =
?
. If is 
near the front, then this variable is more likely to be one. Similarly if is near the end, it 
is more likely to be zero. Fixing variables first at the front or rear aid in keeping the 
number of branches small.  We fix variables by looking at the beginning and end of 
it
y
it
y
it
y
 
this ordered list and working toward the middle. So familyi ,1,.
it
yt T= has a search order: 
if is the variable of theT variables related to family , then set . 
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y
th
k i ( )
it
oy k=
In the current node, we decide which variable will be fixed based on all variables fixed. 
Assume we fix . Since each family is assigned to at most one period, 
then for
rk
y
0
rt
y = ( ) (
rt rk
oy oy< ) 1, ..tT= . 
3.4.2. Fixing  
rk
y
As we proceed through branch-and-bound algorithm, we fix setup variables to zero or 
one. If is free, family is represented by pseudo variables
rk
y r ,1,.
rj r
zj n?= ; these variables 
are never fixed. If is fixed at one, all pseudo variables
rk
y ,1,.
rj
zj
r
n?= are removed and 
real variables ,1,.
rjk r
x j= nare included in K1; 
rjk
x are always free in the branch-and-
bound algorithm. If is fixed at zero, all pseudo variables as well as their coefficients 
are recalculated, excluding the possibility of family r being setup in period , and 
included in K1; again the new
rk
y
k
,1,.
rj r
zj n?= are always free. When 
all are fixed to either zero or one, a knapsack problem over the 
appropriate
, 1,.. 1,..
it
yi Nt T==
ijt
x is solved to determine the optimal solution. 
When is fixed to one, the bounding problem K1 changes as follows: 
rk
y
the actual setup cost for family in periodt is added to the objective; r
the actual setup time for family is subtracted from the surrogate constraint; r
pseudo variables for family are removed, and r
real variable ,1,.
rjk r
x j= nare added 
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When is fixed to zero, the changes are removing pseudo variables for family and 
adding new pseudo variables.  
rk
y r
We also tighten the relaxation by adding the constraint for period to the bounding 
problem. Pseudo variables will only use the surrogate resource, but
k
it
z
ijk
x variables will 
use both the surrogate resource and the resource from period . Subtracting the setup 
time will reduce the available surrogate resource and will reduce the resource from 
period . Removing pseudo variables may increase the surrogate resource, but will not 
affect the resource for period . Thus, the previous optimal solution to the bounding 
problem may no longer be feasible or optimal. We could re-solve it from scratch, but we 
will show how to adjust the old solution to obtain the optimal solution to the new 
bounding problem. First, we introduce some notations. 
k
k
k
Let 
obj : The current node?s upper bound, 
{| 1}
tit
Giy==: Family fixed to periodt , 
{| }
it
U i y is free= : Family free, 
'
1
t
T
i
tiG
bb d
=?
=?
??
: Available resource for all variables, 
'
,1,.
t
tt i
iG
bb dt T
?
=? =
?
: Available resource for families in periodt . 
The current node?s upper bound is the optimal objective of this formulation, K2. It can be 
proved by an approach similar to what we used in Appendix A. 
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When we fix to one, set 
rk
y
''
kkr
bbd=? 
''
r
bbd=? 
rk
obj obj f=+ 
{}
kk
GG r=?  
\{ }UUr= and 
0, 1,..
rt
ytTt== ?k
r
 
The algorithm to fix to one can be separated into three steps: 
rk
y
Step 1. Delete pseudo variables from the outer knapsack. 
'
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Step 2. Restore feasibility (if necessary). 
Step 2.1. Set . If , find the variable
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is achieved. 
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Step 3.2. Set all fractional-valued variables and all variables with value one and 
ratio less than to zero. Put these variables in
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r Vin the proper ratio order. 
This releases resource for new variables to use. Variables in K2 now have 
value one only and their ratio is no worse than  
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r
Step 3.3. Do the following sub-algorithm to obtain the optimal solution of K2. 
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When we fix to zero, pseudo variables are deleted from variable set. 
Since , update . Apply the multiple-choice 
dominance rules to delete dominated points. Use the remaining points to obtain the 
updated pseudo variables . We can resolve the problem with new variable set to 
obtain the upper bound of the sub-problem with
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y
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y = . In this case, only steps 1 and 3 
are needed to resolve the problem.  
3.4.3. Choosing a new sub-problem 
When variables are fixed, two sub-problems are created. If a sub-problem?s upper 
bound is no better than an incumbent solution it is discarded. When its bound indicates it 
could contain a better solution to MKPS we store it in a bucket. Each bucket contains 
sub-problems with bounds that are about the same. LetUB be the best upper bound 
and be the value of the current incumbent solution. If we wantINC K buckets, calculate  
()UB INC
K
?
?= . 
Then bucket one will contain all sub-problems with upper bounds in the 
interval[ , bucket two[2,UB UB?? ] ],UB UB? ???, and bucket K [,INC INC +?]. 
 
Buckets can be updated as upper bounds or the incumbent change. When we choose a 
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives almost a ?best-bound? strategy, but without the bookkeeping 
overhead. 
3.5. Computational experiments 
We test AMKPS on a variety of problem instances to see what problems can be solved 
in reasonable time. Instances are generated by setting four parameters at several levels. 
The parameters are average number of jobs in a family, number of periods, proportion of 
setup time/cost relative to totals, and resource tightness. The number of families is fixed 
to ten ( ). The number of jobs in a family is integer uniformly distributed from 
three intervals [40, 50], [60, 70] and [80, 90]. The number of periods will be either five or 
seven, corresponding to a work week. Setup cost and time are determined by 
10N =
1
1
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i
n
it ijt
j
f ec
=
=?
?
 
2
1
()
i
n
ii
j
de a
=
=
? j
 
We choose and uniformly from [0.15, 0.25], [0.25, 0.35], [0.35, 0.45], and [0.45, 
0.55].  Resource availability is determined by
1
e
2
e
11
()
i
n
N
ij
ij
t
a
b
K
==
=
??
, where K is 10, 7.5 or 5. 
Finally, and are random integers chosen from[10, 10000]. 
ijt
c
ij
a
For each level of the four factors we generate ten instances. AMKPS was coded in C 
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of 
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memory. In the following tables, we report the minimum (MIN), average (AVG) and 
maximum (MAX) solution time in minutes. A zero indicates less than one minute of 
computational time. We also give the average ratio of initial solution (INC) to initial 
upper bound (UB) and the average ratio of initial solution to the optimal solution (OPT). 
Table 3.1 gives results for five period problems and Table 3.2 is for seven periods. 
Table 3.1 
Solution time (minute) for AMKPS for 5 periods 
  [40, 50] [60 70] [80, 90] 
Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN
[0.15 0.25] 0.84 0.87 0 0 0 0.85 0.88 0 0 0 0.85 0.88 0 0 0 
[0.25 0.35] 0.93 0.98 0 0 0 0.94 0.99 0 0 0 0.95 1.00 0 0 0 
[0.35 0.45] 0.96 0.99 0 0 0 0.97 0.99 0 0 0 0.98 0.99 0 0 0 
[0.45 0.55] 0.92 0.99 0 0 0 0.92 0.99 0 0 0 0.91 0.99 0 0 0 
K=10 
 
 
 
Average 0.91 0.96 0 0 0 0.92 0.96 0 0 0 0.92 0.97 0 0 0 
[0.15 0.25] 0.73 0.74 0 0 0 0.72 0.73 0 0 0 0.71 0.72 0 0 0 
[0.25 0.35] 0.82 0.89 0 0 0 0.81 0.87 1 0 0 0.80 0.85 1 0 0 
[0.35 0.45] 0.89 0.98 0 0 0 0.89 0.99 1 0 0 0.89 0.99 1 0 0 
[0.45 0.55] 0.94 0.99 0 0 0 0.95 0.99 0 0 0 0.96 1.00 0 0 0 
K=7.5 
 
 
 
Average 0.85 0.90 0 0 0 0.84 0.90 0 0 0 0.84 0.89 0 0 0 
[0.15 0.25] 0.94 0.95 0 0 0 0.94 0.95 0 0 0 0.94 0.95 0 0 0 
[0.25 0.35] 0.86 0.88 0 0 0 0.89 0.90 0 0 0 0.89 0.90 0 0 0 
[0.35 0.45] 0.76 0.79 0 0 0 0.78 0.80 0 0 0 0.76 0.78 0 0 0 
[0.45 0.55] 0.72 0.82 1 1 0 0.71 0.80 3 1 1 0.70 0.80 8 3 2 
K=5 
 
 
 
Average 0.82 0.86 0 0 0 0.83 0.86 1 0 0 0.82 0.86 2 1 0 
 
 
Table 3.2 
Solution time (minute) for AMKPS for 7 periods 
 [40, 50] [60 70] [80, 90] 
Resource Setup INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN INC/UB INC/OPT MAX AVG MIN
[0.15 0.25] 0.87 0.92 2 1 0 0.86 0.91 5 3 1 0.86 0.90 9 5 2 
[0.25 0.35] 0.94 0.99 0 0 0 0.94 0.99 0 0 0 0.95 0.99 1 0 0 
[0.35 0.45] 0.96 0.99 0 0 0 0.96 0.99 0 0 0 0.97 0.99 0 0 0 
[0.45 0.55] 0.88 0.98 0 0 0 0.88 0.99 0 0 0 0.87 0.99 0 0 0 
K=10 
 
 
 
Average 0.91 0.97 1 0 0 0.91 0.97 1 1 0 0.91 0.97 3 1 0 
[0.15 0.25] 0.80 0.86 7 3 1 0.79 0.85 12 6 2 0.78 0.85 26 17 10 
[0.25 0.35] 0.82 0.91 11 4 1 0.83 0.91 22 10 2 0.81 0.90 29 19* 13 
[0.35 0.45] 0.90 0.98 2 1 0 0.91 1.00 12 3 0 0.91 0.99 10 4* 1 
[0.45 0.55] 0.94 0.99 0 0 0 0.95 1.00 0 0 0 0.96 1.00 0 0 0 
K=7.5 
 
 
 
Average 0.87 0.94 5 2 0 0.87 0.94 12 5 1 0.87 0.94 16 10 6 
[0.15 0.25] 0.95 0.98 0 0 0 0.95 0.98 0 0 0 0.96 0.98 0 0 0 
[0.25 0.35] 0.90 0.95 1 0 0 0.91 0.96 1 0 0 0.90 0.95 3 1 0 
[0.35 0.45] 0.82 0.91 3 1 0 0.83 0.92 8 3 1 0.82 0.91 11 4 2 
[0.45 0.55] 0.75 0.89 9 4 1 0.74 0.87 16 9 3 0.74 0.87 19 10 5 
K=5 
 
 
 
Average 0.86 0.93 3 2 0 0.86 0.93 6 3 1 0.86 0.93 8 4 2 
Note: ?*? means some instances run out of memory, and the value of AVG in the table is the average of the 
remaining instances, as are Max and Min.  
AMKPS performs very well for five period problems, with the hardest taking less than 
8 minutes. Seven period instances are harder, but most instances are solved in less than 
30 minutes. 
Seven of the 720 instances were not solved by AMKPS. These instances had seven 
periods, and average of 85 jobs per family, resource tightness of 7k = and setup 
percentage of [0.25, 0.35] or [0.35, 0.45]. These instances used up memory. The Min, 
Max, and Average are of the problems actually solved. Solution time increases as number 
of period and number of jobs increase. We ran some instances with different 
combinations of numbers of periods and jobs and found that the solution time changes in 
almost the same way as for the test problems. 
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The relationships between setup and resource tightness are more complex. Fig. 3.1 to 
3.6 demonstrate this. 
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0.60
[0.15 0.25] [0.25 0.35] [0.35 0.45] [0.45 0.55]
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K=5
Time(Minute)
 
Fig. 3.1. Solution time for average 45 jobs per family and 5 periods 
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K=7.5
K=5
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Fig. 3.2. Solution time for average 65 jobs per family and 5 periods 
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Fig. 3.3. Solution time for average 85 jobs per family and 5 periods 
 
 
 Fig. 3.4. Solution time for average 45 jobs per family and 7 periods 
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Fig. 3.5. Solution time for average 65 jobs per family and 7 periods 
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Fig. 3.6. Solution time for average 85 jobs per family and 7 periods 
 
When , the maximum time happens on instances with setup from [0.15, 0.25]; 
when , the maximum time happens on instances with setup from [0.25, 0.35]; 
when , instances with setup from [0.45, 0.55] use the most time. From these plots, 
we conclude that problems become difficult when .  
10K =
7.5K =
5K =
*~(2,3)eK
The heuristic algorithm given in this paper is very effective, especially when the 
resources are tight. We give the quality (average proportion of lower bound to initial 
upper bound and to optimal solution) in Table 3.3. The quality decreased as resources 
increase in each period. For both five and seven period problems, the heuristic is good, 
typically in the 85%-95% range. 
Table 3.3 
The lower bound, upper bound and optimal solution 
[40 50] [60, 70] [80, 90] 
Period Resource Setup 
INC/UB INC/OPT INC/UB INC/OPT INC/UB INC/OPT 
K=10 Average 0.91 0.96 0.92 0.96 0.92 0.97 
K=7.5 Average 0.85 0.90 0.84 0.90 0.84 0.89 
Period 5 
 
 
K=5 Average 0.82 0.86 0.83 0.86 0.82 0.86 
K=10 Average 0.91 0.97 0.91 0.97 0.91 0.97 
K=7.5 Average 0.87 0.94 0.87 0.94 0.87 0.94 
Period 7 
 
 
K=5 Average 0.86 0.93 0.86 0.93 0.86 0.93 
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We also compare AMKPS to CPLEX 9.1 (called by AMPL). We choose the hardest 
instances for AMKPS (7 periods and ) to compare. Trial runs on other 
instances showed these results are typical.  Due to the difficulty of solving with CPLEX, 
only five instances per level were solved. Table 3.4 shows the clear superiority of 
AMKPS. CPLEX solved very few problems in less than two hours; we let one solve until 
the optimal solution is obtained, and it took over 29 hours.  
~ [80,90]
i
n
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Table 3.4 
The comparison of solution time (Minute) between AMKPS and CPLEX  
K=10 K=7.5 K=5 
 Setup CPLEX AMKPS CPLEX AMKPS CPLEX AMKPS 
* 2 * 13 26 0
* 11 * 16 7 0 
* 5 * 13 10 0
* 4 * 30 9 0 
[0.15,0.25] 
 
 
 * 12 * 12 8 0
AVG * 7 * 17 12 0 
* 1 116 21 36 0
* 0 * 10 * 1 
* 0 * * 77 1
* 0 * 28 26 0 
[0.25, 0.35] 
 
 
 * 0 * * * 2
AVG * 0 * * * 1 
* 0 * 6 * 2
* 0 * 2 * 3 
* 0 * * * 4
* 0 * 6 * 3 
[0.35, 0.45] 
 
 
 * 0 * 2 * 9
AVG * 0 * * * 4 
* 0 19 0 * 14
* 0 14 0 * 22 
* 0 4 0 * 27
* 0 22 0 * 16 
[0.45, 0.55] 
 
 
 * 0 7 0 * 11
AVG * 0 13 0 * 18 
 
Note: * means the instance uses more than 2 hours or uses up memory.  
 
AMKPS use less time than CPLEX for all but three instances 
when and is from [80, 90]. We also do experiments with instances with 
fewer variables and AMKPS also used less considerably time than CPLEX. 
*~(2,3)eK
i
n
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3.6. Conclusions 
The MKPS model can be used for order selection in make-to-order manufacturing. In 
this paper, we use branch-and-bound algorithm to solve MKPS and design a new method 
to get an upper bound on MKPS. Rather than relaxing constraints of the original models 
to an upper bound, we propose a new linear knapsack model to obtain an upper bound. 
We prove the knapsack optimal objective solution is an upper bound on MKPS. In 
branching, we add a resource constraint whose family has been fixed to that to tighten the 
relaxation. This prohibits jobs from using more than the period capacity. This knapsack 
problem can still be solved efficiently. We also give an effective greedy heuristic which 
supplies a good feasible solution as a lower bound. After all variables are branched on, 
MKPS is transformed to knapsack problems. The computational experiments show that 
AMKPS works well with a tight resource limit. Sixty seven-period instances are tested to 
compare AMKPS with CPLEX: AMKPS solve 57 instances of them in less than 30 
minutes but CPLEX fail in 46 instances and need more time than AMKPS for the 
remaining 14 instances.  In this paper, we only use a simple branch-and-bound algorithm 
for the knapsack problem when all setup variables are fixed. If a better algorithm, e.g. the 
one developed by Martello et al. (1999) is used, the solution time can be reduced.  
y
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Appendix A. The optimal objective of K1 is the upper bound on MKPS 
Before proving the proposition, we need the following Lemma:  
Lemma 1. A linear knapsack problem can be transformed to a concave piecewise 
function 
Proof.  
For knapsack problem 
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Based on Bulfin?s algorithm, this formulation can be transformed to a linear knapsack 
problem with pseudo variables
1
,...
i
i n
z z
?
and their corresponding profit and processing 
coefficients . Pseudo variables are ordered by non-increasing ratio,1,
ij ij i
ca j n?? = .?
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c
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?
. 
Then we can obtain a piecewise function with its breaking point set so that for any 
available resource , is the optimal solution of the .  
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PWe define , and delete all dominated points by two multiple-choice dominance 
rules for linear multiple-choice knapsack problem (Sinha and Zoltners, 1979). 
Connecting the remaining points, we can obtain another piecewise function , which 
has .   
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Then the solution set
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z jn==Nis a feasible solution of K1 since
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Hence the optimal solution of K1 is greater or equal to
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?
, and an upper bound on 
MKPS. 
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?.MULTIPLE-CHOICE KNAPSACK PROBLEM WITH SETUP 
Abstract 
We present a multiple-choice knapsack problem with setup (MCKS). This model can 
be applied to regional project selection in multiple periods. In the model, some variables 
model setups and serve as the upper bound on the remaining ones. A linear knapsack 
problem is designed to give an upper bound on MCKS, and a branch-and-bound 
algorithm is used to optimally solve MCKS. Setup variables are branched on; when all 
are fixed, MCKS becomes a knapsack problem. Computational experiments show this 
algorithm is effective even for instances CPLEX can not solve in two hours.  
4.1. Introduction and literature review 
The multiple-choice knapsack problem (MCK) is well known in combinational 
optimization. In this paper, we present a model we call a multiple-choice knapsack 
problem with setup (MCKS). This model can be used in regional project selection in 
multiple periods for an organization (country or company) which has a fixed budget to 
invest in a number of projects in multiple areas which can be done in multiple periods. To 
do a project in an area, a project office must be set up. The organization would like to 
decide where to set up offices and which projects to do to maximize net present value 
subject to a budget restriction.
 
 
Given the formulation of MCKS: 
111 11
..
i
nTN TN
ijt ijt it it
tij ti
Max c x f y
st
=== ==
+
??? ??
 
11 1 11
i
nTN TN
ij ijt i it
tij ti
ax dy b
=== ==
+
??? ??
?,                                                                      (1) 
1, .. , 1, .. ; 1, ..
ijt it i
x yj ni Nt T?= = =,                                                          (2) 
1
1 1,... , 1,..
T
ijt i
t
x iNj
=
?= =
?
n,                                                                      (3) 
, {0,1} 1,.. ; 1,.. ; 1,.. .
ijt it i
x yiNjnt?===T                                                       (4) 
ijt
c  -is the profit of project j  in area in period t ( ),  i 0
ijt
c ?
it
f  -is the setup cost for opening an office in area in period t (i 0
it
f ? ),  
ij
a  -is the investment needed for project j  in area ( ),  i 0
ij
a >
i
d  -is the investment cost to open an office in area ( ), i 0
i
d >
b  -is the budge available to invest ( ), 0b >
it
y  - is one if office is set up in areai in periodt , otherwise zero, 
ijt
x  -is one if project j in area is done in period , otherwise zero, i t
N  -is the number of areas, 
T  -is the number of periods.  
Constraint (1) requires the total budget used by all projects and to setup offices can not 
exceed the budget available. Constraints (2) prohibit a project being done unless the 
office in this area is set up. Constraints (3) guarantee that a project can only be done once. 
Constraints (4) require all variables to be binary. 
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Besides the application of regional development, this model can also be used in order 
acceptance in multiple periods with a non-renewable resource. 
We develop an upper bound and an effective heuristic for MCKS based on the linear 
knapsack problem with setup and the linear multiple-choice knapsack problem. 
Following traditional terminology, we call areai family , and the projecti j in area  jobi j  
of familyi . We also call the setup time of familyi and
i
d
it
f the setup cost of family in 
period . 
i
t
For the linear knapsack problem, Dantzig (1957) gave an algorithm which allocates 
the limited resource to jobs based on the non-increasing profit-to-processing ratio. 
Without y variables, MCKS becomes a multiple-choice knapsack problem, another well-
studied problem. (See Pisinger,1995; Sarin and Karwan, 1989; Armstrong et al, 1983 ) 
Two dominance rules for the linear multiple-choice knapsack problem (Sinha and 
Zoltners, 1979) are used to develop a linear knapsack problem as an upper bound on 
MCKS.   
Without constraint (2), MCKS becomes a knapsack problem with setup. Bulfin (1988) 
gave an efficient algorithm for its linear relaxation. We explain this algorithm in the 
following section. Akinc (2004) describes algorithms for a fixed-charge knapsack 
problem, which is a special case of MCKS; it has a single period and no setup time.  
We use a branch-and-bound algorithm to obtain the optimal solution to MCKS. It can 
be briefly described by two steps. We branch on variables; when all variables are 
fixed, the problem is a knapsack problem in the variables. We use a simple branch-and-
bound algorithm to solve this knapsack problem. To reduce the branches of the tree, 
y y
x
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y variables are reordered before branching. The ordering process is as follows: Order 
variables by non-increasing
it
y
1
,1,.,1,.
i
n
it ijt it
j
pro c f i N t T
=
=+= =
?
. If is near the front, 
then this variable is more likely to be 1. Similarly if is near the end, it is more likely to 
be 0. We fix variables by looking at the beginning and end of this ordered list and 
working toward the middle. Fixing variables first at the front or rear aids in keeping the 
number of branches small. Renumber variables by this order so that will be branched 
on before .   
it
y
it
y
it
y
it
y
1it
y
+
The algorithm (AMCKS) for solving MCKS is outlined below: 
Step 1. Obtain an upper bound formulation for MCKS and a feasible solution for MCKS. 
Step 2. Decide which variable to be fixed in the current node. 
Step 2.1. Generate a new node by fixing some to one; save this node if its bound 
is better than the incumbent solution. If all are fixed, solve a knapsack 
problem and update the incumbent solution if possible. 
y
y
Step 2.2. Generate a new node by fixing to zero; save this node if its bound is 
better than incumbent solution. If all are fixed, then solve a knapsack 
problem and update the incumbent solution if possible. Delete the 
current candidate node. 
y
y
Step 3. Choose a new candidate node. If none exists, stop, the incumbent solution is 
optimal; else go to Step 2.  
In the remaining of the paper, we discuss Step 1 in section 4.2. Section 4.3 explains the 
algorithms used in Steps 2 and 3. Section 4.4 discusses computational experiments. 
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4.2. An upper bound and feasible solution  
Unlike the usual approaches of relaxing some constraints of a formulation to obtain an 
upper bound, we design a linear knapsack problem whose optimal objective is an upper 
bound on MCKS. This approach uses the algorithm presented by Bulfin (1988) for the 
linear knapsack problem with setup, which transforms a linear knapsack problem with 
setup to a linear knapsack problem.  
4.2.1. Linear knapsack problem 
Consider a linear knapsack problem: 
1
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jj
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jj
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j
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x
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?
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x jk n==+  
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A linear knapsack problem corresponds to a concave piecewise function. 
Define , and put these
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1n+  points on coordinates and 
connect the adjacent points. This defines a concave piecewise function . This process is 
independent of resourceb . For a given resourceb , is the optimal objective of the 
linear knapsack problem with resource  (If
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defining
F n
F b
j
x corresponding to
1
..
jj j
apxp
?
x= ?  and
1
..
jj j
cpypy
?
= ? 1, ..jn=
,
, . 
4.2.2. Transform a linear knapsack problem with setup to a linear knapsack problem 
Consider the linear knapsack problem with setup: 
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Bulfin (1988) proposed an efficient algorithm, similar to Dantzig?s algorithm for the 
linear knapsack problem (1957).  Reorder all jobs of family so 
that
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i
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Then linear knapsack problem with setup can be reformulated as: 
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Pseudo job  is composed of jobs 
1i
z
12
,,.
i
ii t
x xxand
i
ij ij t
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+
= , for 2,..
ii
j nt=?. After 
solving this linear knapsack problem, at most one variable can have a fractional value, 
say . If , then andf
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z= f
k
yf= ,1,.
kj k
x fj t= = .  If , 1
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zfl= ? , then only
k
kl t
x f
+
= . 
4.2.3. The algorithm for the upper bound and feasible solution 
Before we explain the approach to obtain an upper bound and a feasible solution for 
MCKS, let us introduce the period subset?s piecewise function of family . i
4.2.3.1. Subset?s piecewise function 
If the optimal solution of MCKS is known, then { | 1}
iit
Sty= = is the set of periods in 
which family is processed. But before solving MCKS, is unknown. We know must 
be a subset of{1 . Set{1 has total
i
i
S
i
S
, . . }T , . . }T 2 1
T
? non-empty subsets, which we denote 
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Using pseudo variables
ij
x? , , for each , we can formulate a linear knapsack problem 
with setup: 
i
y?
k
S
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This problem can be transformed to a linear knapsack problem based on section 4.2.2, 
the linear knapsack problem defines a concave piecewise function with break points 
set . Thus
k
iS
F
k
iS
P
k
iS
F is the piecewise function of for family . 
k
S i
4.2.3.2. Upper bound formulation of MCKS 
After obtaining 
k
iS
F and its break points set for each subset of familyi , 
we define and delete any repeated points in the set. Apply the following two 
multiple-choice dominance rules (Sinha and Zoltners, 1979) to
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Call the set of remaining points  and put them on coordinates. Connecting the 
adjacent points in , we obtain a concave piecewise function  with break 
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n
p p . All points in
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are below the line of the piecewise function thus 
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F
 67
 
000
() () 0, 1,.
k
iiS
Fb F b b k K??=. 
 68
x
?
=?Define pseudo variables with  and
'
i
n
'
1
,..
i
i
in
zz
'
1
..
ij j j
apxp
?
=?
'
1
..
ij j j
cpypy 1, ..
i
j n?= .  
Repeating this process for all families, we obtainN
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We prove that the optimal objective of  is an upper bound on MCKS. This 
problem has at most one fractional variable. If we round this fractional variable to zero, 
then we obtain a feasible integer solution for . The integer solution 
of corresponds to a feasible solution of MCKS and its objective is a lower bound on 
MCKS. (Refer to the Appendix C for their proofs). 
u
LKP
u
LKP
u
LKP
This approach is impractical if T is large. We present three dominance rules to reduce 
the number of subsets considered. (Refer to the Appendix D for their proofs).  
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Dominance rule 4. Assume and dominates . If there is another 
subset with
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With the help of dominance rules, the break points of some period subsets? piecewise 
functions need not be included into
i
P
?
and thus reduce the effect to determine . After 
finding all non-dominated subsets, we calculate the break points of their piecewise 
functions. We do not put all break points together and apply dominance rules 1 and 2 
once; rather we add these points into
u
LKP
i
P
?
in a specific order and apply dominance rules 1 
and 2 totalT times. 
 Define
ik
S to be all non-empty subsets of{,  for familyi  and be all non-
dominated points set from the piecewise functions of all elements in
..}kT
ik
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S . With the help of 
Dominance rule 4, the algorithm to generate is: 
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We can calculate the new piecewise functions for all affected and apply the above 
algorithm to obtain an updated . Then we obtain the new pseudo variables and their 
processing time and profit coefficients of family  from the updated . 
k
S
i
P
i
i
P
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This updating process can be simplified by applying dominance rule 5.  Based on this, 
subset dominates any subset
1
i
S
1
,
kk i
SS S? . Therefore, we only need consider subsets 
are
1
1
{| }
ijjit it
SSSS S
+
???
1+
. The process to update can be described as: 
i
P
Step 1. Calculate the piecewise function of subset . 
1
i
S
Step 2. Calculate the piecewise functions of subsets
1
1
{|
ijjit
SSSS
+
??}. 
Step 3. corresponding to
1it
P
+
?
1it
S
+
is known from the calculation of the upper bound on 
MCKS. Set
1
'
11
{}{ | { | }
k
i
iit iSk i jjit
iS
PP P PS S SS S
++
??=?? ?? ? and apply rules 1 
and 2 to delete dominated points in
i
P?and obtain the updated .  
i
P
After we obtain the updated , we can obtain the new pseudo variables of family . 
i
P i
4.3.2. Fixing to zero 
it
y
If we fix
it
to 0, then all subsets includingt must delete this period, so their piecewise
functions change, resulting in a different . 
y  
i
P
 Assumel is the last period in
1
, then
1
stays the same since we fix y to one. All 
subsets used to update  when we fix to one are
i
S
i
S
il
i
P
il
y  
1
1
{| }and
ijjil
SSSS
+
??
1il
S
+
; all 
subsets used to update P  when we fix y to zero is
i it
1
1
{| }S?and
ijjit
SSS
+
?
1it
S
+
.  
Since
11il it
SS
++
to 
when we fi
? , then all subsets used when zero are part of the subsets for fixing
one. We save the P x y to one so we need not calculate the updated
it
y
il
y
i il i
P . 
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 After we obtain the new pseudo jobs from the updated
i
, the node?s new 
upper bound can be obtained by replacing the old pseudo var
'
1
,..
i
i
in
zof f milyi with
the new ones. For the current node?s upper bound formulatio
'
1
,..
i
i
in
zz P
s
'
'
'
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If we fix
it
to 1, then reduce available resourceb  by
i
d ; delete all old pseudo
jobs ; replace by the new ones and find the new optimal. If we fix to 0, then we
replace all old pseudo jobs by new ones and find the new optimal. We can prove 
the new optimal is the upper bound of the current node by an approach similar to what we 
used in Appendix A. 
y
'
1
,..
i
i
in
zz
it
y
'
1
,..
i
i
in
zz
4.3.4. Choosing a New Sub-problem 
When variables are fixed, two sub-problems are created. If a sub-problem?s upper 
bound is no better than an incumbent solution it is discarded. When its bound indicates it 
could contain a better solution to MCKS we store it in a bucket. Each bucket contains 
sub-problems with bounds that are about the same. Let B be the best upper bound
and be the value of the current incumbent solution. If we want
U
INC K buckets, calculate  
()UB INC
K
?
?= . 
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]UB?? , bucket ]UB
Then bucket one will contain all sub-problems with upper bounds in the 
interval[UB  two[2UB, ,? ? cket??, and bu K [, ]INC INC +? . 
Buckets can be updated as upper bounds or the incumbent change. When we choose a 
new sub-problem to explore, we take one based on LIFO from the lowest numbered, non-
empty bucket. This gives an almost ?best-bound? strategy, but without the bookkeeping 
overhead. 
4.4
d. 
t 
buted 
from 10, 30], [30, 50] and [50, 70]. Setup cost and time will be determined by 
. Computational experiments 
We test AMCKS on a variety of problem instances to see what problems can be solve
Instances will be generated by setting five parameters at several levels. The parameters 
are number of families, average number of jobs in a family, proportion of setup time/cos
relative to total time and cost, number of periods, and relationship between a and c . The 
number of families will be fixed at 10, 30 and 50. The number of periods will be fixed at 
5, 10, 15 and 20. The number of jobs in a family will be integer uniformly distri
 [
1
1
()
i
n
it ijt
j
f ec
=
=?
?
 
2
1
()
i
n
de a=
?
 
iij
j=
We will choose and uniformly from [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], and [0.2, 0.25].   
and have three relationships:  is uniformly chosen from [10, 10000], and  is 
chosen from[10, 10000] and  is randomly chosen from[10, 10000], and =+, is 
1 2
ij
also uniformly chosen from [10, 10000] (uncorrelated relationship-U); 
ij
a  is uniformly 
e e
a c a
ijt
c
ij
t
ijt ij
ctee
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sen from [10,100] (stron ti
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randomly chosen from [0, 2000] (weak relationship-W); 
ij
a is uniformly chosen from[10, 
10000], and 
ijt
c is randomly chosen from[
ij
a -1000, 
ij
a +1000], if 
ijt
c is less than 10, the
is randomly ch lao g re onship-S). Resource availability will be 
form from
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pper bound (UB) and the average ratio of initial solution to the 
Table 4.1 
o e
. 
For each level of the five factors we generate ten instances. AMCKS was coded in C
and all instances were run on a Dell P.C. with 1.7G Intel processor and 512M bytes of
memory. In the following tables, we report the minimum (MIN), average (AVG) and
maximum (MAX) solution time in minutes. We also give the average ratio of initial 
solution (INC) to initial u
optimal solution (OPT). 
Soluti n tim  (minutes) with N 10= and ~
i
n [10,30]  
 U S  W  
pe d L  L L  rio  Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX
[0.05-0.1] 0.977 0.978 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.902 0.903 0.00 0.00 0.01
[0.1-0.15] 0.976 0.977 0.00 0.00 0.00 0.988 0.989 0.00 0.00 0.00 0.843 0.845 0.00 0.00 0.01
[0.15-0.2] 0.953 0.953 0.00 0.00 0.00 0.991 0.991 0.00 0.00 0.00 0.878 0.883 0.00 0.00 0.01
5 
 
 
[0.2-0.25] 0.912 0.913 0.00 0.00 0.00 0.929 0.930 0.00 0.00 0.00 0.893 0.900 0.00 0.00 0.01
[0.05-0.1] 0.992 0.992 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.00 0.903 0.904 0.00 0.01 0.02
[0.1-0.15] 0.978 0.978 0.00 0.00 0.01 0.990 0.990 0.00 0.00 0.01 0.894 0.896 0.00 0.01 0.02
[0.15-0.2] 0.973 0.974 0.00 0.00 0.00 0.997 0.997 0.00 0.00 0.01 0.833 0.838 0.00 0.01 0.02
10 
 
 
[0.2-0.25] 0.947 0.949 0.00 0.00 0.00 0.919 0.921 0.00 0.01 0.01 0.905 0.910 0.01 0.01 0.03
[0.05-0.1] 0.993 0.993 0.02 0.02 0.03 0.996 0.996 0.00 0.00 0.01 0.862 0.862 0.00 0.02 0.03
[0.1-0.15] 0.992 0.993 0.00 0.01 0.01 0.989 0.990 0.00 0.00 0.01 0.893 0.895 0.00 0.02 0.05
[0.15-0.2] 0.967 0.968 0.00 0.00 0.01 0.996 0.996 0.00 0.01 0.02 0.895 0.899 0.01 0.04 0.07
15 
 
 
[0.2-0.25] 0.935 0.936 0.00 0.00 0.01 0.945 0.946 0.00 0.01 0.03 0.837 0.842 0.03 0.05 0.07
[0.05-0.1] 0.994 0.994 0.09 0.10 0.11 0.997 0.998 0.01 0.01 0.01 0.904 0.905 0.02 0.04 0.05
[0.1-0.15] 0.978 0.979 0.02 0.02 0.03 0.985 0.985 0.00 0.01 0.03 0.907 0.908 0.00 0.04 0.08
[0.15-0.2] 0.978 0.979 0.01 0.01 0.02 0.997 0.998 0.04 0.919 0.923 0.01 0.08 0.19
20 
 
 
[0.2-0.25] 0.958 0.959 0.01 0.01 0.01 0.950 0.952 0.00 0.12 0.845 0.851 0.05 0.12 0.41
0.01 0.02
0.03
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Ta le 4.2
o e
 
 
b  
Soluti n tim  (minutes) with N 30= and ~n [30,50] 
i
 S U W  
Pe d L  L L  rio  Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX
[0.05-0.1] 0.996 0.996 0.00 0.02 0.07 0.999 0.999 0.00 0.02 0.08 0.949 0.950 0.04 0.41 0.76
[0.1-0.15] 0.991 0.991 0.00 0.02 0.04 0.989 0.989 0.00 0.08 0.25 0.954 0.954 0.04 0.19 0.30
[0.15-0.2] 0.987 0.987 0.00 0.01 0.04 0.984 0.984 0.00 0.12 0.35 0.958 0.958 0.00 0.22 0.49
5 
 
 
[0.2-0.25] 0.974 0.974 0.00 0.02 0.04 0.977 0.977 0.00 0.11 0.34 0.964 0.965 0.00 0.27 0.63
[0.05-0.1] 0.997 0.997 0.01 0.05 0.17 0.999 0.999 0.01 0.03 0.06 0.966 0.966 0.07 0.79 1.57
[0.1-0.15] 0.999 0.999 0.01 0.01 0.01 0.997 0.997 0.00 0.09 0.46 0.952 0.952 0.08 0.69 1.04
[0.15-0.2] 0.990 0.990 0.00 0.03 0.05 0.983 0.983 0.00 0.20 0.64 0.961 0.962 0.11 1.08 2.01
10 
 
 
[0.2-0.25] 0.980 0.980 0.00 0.05 0.13 0.983 0.983 0.01 0.29 0.57 0.964 0.965 0.33 1.51 3.67
[0.05-0.1] 0.997 0.997 0.06 0.09 0.18 0.999 0.999 0.00 0.05 0.21 0.972 0.972 0.24 0.97 1.92
[0.1-0.15] 0.996 0.996 0.02 0.04 0.09 0.996 0.996 0.01 0.15 0.44 0.970 0.971 0.12 0.89 1.46
[0.15-0.2] 0.982 0.982 0.01 0.08 0.18 0.990 0.990 0.01 0.28 1.25 0.962 0.962 0.06 1.69 2.74
15 
 
 
[0.2-0.25] 0.974 0.974 0.05 0.09 0.15 0.983 0.983 0.00 0.88 5.57 0.959 0.959 0.01 2.86 6.17
[0.05-0.1] 0.997 0.997 0.87 1.74 3.68 0.999 0.999 0.03 0.10 0.34 0.982 0.982 0.05 0.97 2.10
[0.1-0.15] 0.999 0.999 0.07 0.08 0.09 0.997 0.997 0.02 0.09 0.16 0.971 0.971 0.12 1.75 5.91
.2] 0.987 0.987 0.03 0.08 0.17 0.994 0.994 0.02 0.16 0.49 0.975 0.976 0.22 2.18 8.73
0.26 0.977 0.977 0.11 1.28 7.92 0.942 0.943 1.18 12.42 51.60
[0.15-0
20 
 
 
[0.2-0.25] 0.977 0.977 0.03 0.14
 
Table 4.3 
oSoluti n time (minutes) with N 50= and ~n [50,70]  
i
 U  W S 
Period L  L L   Setup LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX LB/UB B/OPT MIN AVG MAX 
[0.05-0.1] 0.997 0.997 0.01 0.15 0.82 1.000 1.000 0.00 0.09 0.34 0.979 0.979 0.05 2.12 4.25 
[0.1-0.15] 0.997 0.997 0.00 0.07 0.51 0.995 0.995 0.01 0.39 0.93 0.980 0.980 0.21 1.64 3.70 
[0.15-0.2] 0.991 0.991 0.00 0.14 0.36 1.000 1.000 0.10 1.74 4.49 0.984 0.984 0.03 1.03 3.43 
5 
[0.2-0.25] 0.987 0.987 0.00 0.13 0.36 0.983 0.983 0.08 0.92 1.76 0.980 0.980 0.30 3.09 5.78 
[0.05-0.1] 0.998 0.998 0.03 0.39 1.88 1.000 1.000 0.02 0.17 0.52 0.988 0.988 0.02 3.10 6.99 
[0.1-0.15] 1.000 1.000 0.01 0.04 0.09 0.999 0.999 0.02 0.29 1.26 0.976 0.976 0.12 4.46 8.44 
[0.15-0.2] 0.991 0.991 0.02 0.16 0.48 1.000 1.000 0.02 2.00 4.56 0.970 0.970 0.86 9.72 19.66
10 
[0.2-0.25] 0.985 0.985 0.01 0.42 1.41 0.986 0.986 0.21 2.65 6.05 0.971 0.971 4.23 16.20 28.67
[0.05-0.1] 0.997 0.997 0.20 0.80 2.10 1.000 1.000 0.02 0.14 0.31 0.984 0.984 0.36 7.29 22.69
[0.1-0.15] 0.998 0.998 0.05 0.13 0.33 0.997 0.997 0.05 0.95 3.95 0.979 0.979 0.06 8.33 17.03
[0.15-0.2] 0.993 0.993 0.03 0.35 0.96 1.000 1.000 0.01 2.24 5.83 0.969 0.970 0.06 17.70 35.68
15 
[0.2-0.25] 0.987 0.987 0.02 0.43 1.01 0.990 0.990 0.04 1.89 3.75 0.976 0.976 0.07 30.40 82.01
[0.05-0.1] 0.997 0.997 19.50 29.00 44.47 1.000 1.000 0.08 0.26 0.53 0.983 0.983 0.11 8.88 27.13
[0.1-0.15] 0.998 0.998 0.17 0.45 1.35 0.998 0.998 0.03 0.41 2.71 0.981 0.981 0.44 13.60 29.35
[0.15-0.2] 0.991 0.991 0.13 0.52 1.08 1.000 1.000 0.12 2.08 7.84 0.973 0.973 3.15 34.10 125.01
2
.54
0 
[0.2-0.25] 0.990 0.990 0.09 0.64 1.53 0.991 0.991 0.03 5.41 21.96 0.978 0.979 1.34 41.10 95
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tion are more difficult than large setup proportion. The difference between 
5% setup and 10% setup is apparent, but there is little difference between 10% setup and 
15% setup. 
Fig. 4.1 and Fig. 4.2 show when coefficients are uncorrelated, instances with small 
setup propor
N=50;T=15
0
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~ [50,70]
i
n  Fig. 4.1. Solution Time for 50NTand, 15= =
50 families, 20 periods
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Fig. 4.2. Solution Time for 50, 20NT= = and ~ [50,70]
i
n  
The dominance rules are more effective when setup proportion is large and 
when a and c are uncorrelated. If the setup proportion is small, jobs are more often 
assigned to multiple periods; the dominance rules are not as effective as for instances 
with large setup proportion. But when s correlated over different periods, there is not c i
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eases, instances wit having weak relationship and 
str m t and 
nce 
 the lower 
bo
n 
rd 
knapsack 
pro
d on MCKS r 
 
 use up before the first break point of the piecewise function. If 
e fractional value is the first pseudo variable of some family, all variables corresponded 
as good. 
lso c mp  C X ll M . W s rd
instances fo M 0 ds m 90]
i
n om  Tr ns 
much difference in assigning a job to a particular period. Thus AMCKS can easily solve
an instance with small setup proportion.  
When setup proportion incr h ,ac
ong relationship beco e harder. By the central limit theorem, the total setup cos
time follow a normal distribution. Under the weak and strong relationships, the 
correlation of setups in different periods increases. With setup proportion increasing, 
setup has more effect on the optimal solution and differences in periods decrease. He
dominance rules are not as effective in this case. The other possible reason is
und. With setup proportion increasing, the lower bound becomes worse so we can not 
fathom nodes as effectively.  
Instances with a and c correlated are more difficult. The piecewise function for 
different periods become flat, and the computation for the composite piecewise functio
becomes complex. The knapsack problem when all setup variables fixed is also a ha
problem; we did not use a special algorithm to deal with correlation in the 
blem. Some improvement can be expected if a special algorithm is used. 
We use the rounded solution as a lower boun , which is very effective. Fo
instances with 30N = and 50N = , the lower bound is at least 95% of the optimal. 
When 10N = , it is worse since there are fewer points on every piecewise function, so the
resource is much easier to
th
to this pseudo variable are rounded to zero, thus the lower bound is not 
We a o are AMCKS to PLE 9.1 (ca ed by A PL) e choo e the ha est 
r A CKS (2  perio , 50 fa ilies, ~ [80, ) to c pare. ial ru on 
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other instan lts are ty on CPLEX  to iff of
solving with P l ins s p el  so ab sho e c
superiority of AMCKS.  
 
Table 4.4 
The solution m e pa et  A S a L
  S
ces showed these resu pical .  Due  the d iculty  
 C LEX, on y five tance er lev were lved. T le 4 ws th lear 
 ti e (minut ) com rison b ween MCK nd CP EX 
U W  
Setup AMCKS C/A C  AMCKS C/A  CPLEX PLEX CPLEX AMCKS C/A 
1 >  120.00 39.82 3.01 4.51 1.31 3.45 5.12 0.77 6.65 
2 >  
>  
>  
[0.05-0.1] 
>12 .00 14 3 4. 2 0.  5.  1. 7 
AVG 
>  5  1  
120.00 15.39 7.80 5.53 0.15 37.58 5.90 8.46 0.70 
3 120.00 31.31 3.83 5.05 0.16 31.06 13.68 15.05 0.91 
4 120.00 19.23 6.24 4.82 2.58 1.87 4.19 1.60 2.62 
 
 
 
5 0 .3 8.37 4 08 58.28 07 4 3.45 
   5.85   26.45   2.87 
1 120.00 0.21 70.34 7.79 0.04 90.61 5.03 1.79 2.82 
2 >  5  
>  
1  
[0.1-0.15] 
120.00 0.17 8. 3 0.  13 3 1. 9 
VG    587.84   44.91   7.00 
4 0.
120.00 0.24 06.97 7.82 1.03 7.57 82.07 8.39 9.78 
3 120.00 0.22 545.99 8.79 0.86 10.19 5.24 1.00 5.22 
4 17.11 0.20 590.17 8.59 5.23 1.64 >120.00 13.56 8.85 
 
 
 
5 > 725.73 5 59 14.56 .2 5 8.33 
A
1 50.85 0.09 566.01 7.47 0.13 56.14 12.68 17.1 74 
2 7.41 0.08 91.82 7.10 0.19 38.35 >120.00 31.1 .86 
3 15.84 0.12 129.98 9.22 0.32 28.91 >120.00 33.79 3.55 
4 15.52 0.16 97.24 8.92 4.89 1.82 29.80 8.90 3.35
[0.15-0.2] 
 
 
5 
average    180.83   30.60   4.83 
1 8.70 0.32 27.41 6.87 0.15 47.39 >120.00 28.72 
0 3
 
 17.36 0.91 19.08 9.18 0.33 27.77 32.76 2.59 12.63 
4.18 
2 7.59 0.84 8.99 7.11 12.00 0.59 >120.00 17.92 
3 
4 7.08 0.20 34.63 6.29 4.88 1.29 >120.00 48.74 2.46 
 
 
5 
average      35.60   27.20   4.07
6.70 
8.53 2.23 3.82 6.89 0.18 39.29 >120.00 47.09 2.55 
[0.2-0.25] 
 7.44 0.07 103.13 6.87 0.14 47.42 >120.00 26.83 4.47 
 
 
Whe and are uncorrelated, AMCKS is much better than CPLEX. When and are 
correlated, AMCKS is still better than CPLEX except for instances with 5% setup and 
both solvers take longer for instances with larger setup than those with smaller setup. 
AMCKS solves problems with 5%-10% setup in about one-third hour; when setup 
proportion is over 10%, AMCKS takes less than one hour. For problems with 10%, 15% 
n a c a c
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CPLEX failed to solve many instances in two hours. Though CPLEX 
can
e 
od 
f 
 for 
roportion has more effect on instances with uncorrelated 
relationship instances than other instances. In this paper, we only use a simple branch-
fixed. If a 
gorithm, e.g. the one developed by Martello et al. (1999) is used, the solution 
tim
Appendix A. The optimal objective of  is an upper bound on MCKS. 
If the optimal solution of MCKS is known, then we obtain the 
sets in the optimal solution of MCKS and the resource taken by 
and 20% setups, 
 obtain a near optimal solution, it can?t prove it is optimal in two hours, which often 
happens in many algorithms for integer programming.  
4.5. Conclusion 
MCKS can be used for project selection for a country or company. In this paper, w
use a branch-and-bound algorithm to solve the multiple-choice knapsack problem with 
setup. A linear knapsack problem is designed to give an upper bound on MCKS. We 
develop three dominance rules to simplify the process and save time to obtain an upper 
bound model. The rounded solution of the linear knapsack problem provides a go
incumbent for MCKS. For instances with N greater than 30, the heuristic is over 95% o
the optimal solution. Computational experiments show the algorithm?s effectiveness. 
Compared to CPLEX, the proposed algorithm obtains the optimal solution in less time
most instances. Setup p
and-bound algorithm for the knapsack problem when all setup variables are 
better al
e can be reduced.  
Proof.  
u
LKP
{ | 1}
iit
Sty==, 1, ..iN=
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Appendix C. Three Dominance rules 
Let us introduce two notations: 
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This research investigated three integer programming models which can be applied to 
order acceptance in make-to-order production and regional project selection in multiple 
periods: the knapsack problem with setup (KPS), the multiple knapsack problem with 
setup (MKPS) and the multiple-choice knapsack problem with setup (MCKS). The 
common characteristics of all three models are: jobs belong to different families; setup 
time and setup costs are incurred if a job is processed; if two jobs from the same family 
are processed sequentially, no setup is required; resource is limited and some jobs can be 
selected to be manufactured. The objective is to maximize the sum of profits of processed 
jobs.  
 KPS can be used in order acceptance of single period. The model selects the jobs to 
be processed for maximizing the total profit. MKPS, as an extension of KPS, is used in 
order acceptance of multiple periods. Besides selecting the jobs to be processed, it also 
decides the periods which the selected jobs are arranged in. Jobs? coefficients vary in 
different periods, but the processing time stays the same. In MKPS, jobs? profits affect 
job?s production schedule and the chosen schedules decide the job?s profit. The two 
factors are balanced by maximizing the total profit under a resource limit. MCKS is 
applied to regional projects selection in multiple periods, and it can also be used in order 
acceptance of multiple periods with a non-renewable resource.  
?. CONCLUSIONS 
 
 
Branch-and-bound algorithm is used to obtain the optimal solution for all three models. 
The success of the algorithm relies on the effectiveness of the upper bound and lower 
bound in branching and the effort to obtain them. Unlike the usual approaches of relaxing 
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some constraints of a formulation to obtain an upper bound, we design a linear knapsack 
As the simplest among the three models, KPS can be viewed as a special case of the 
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near relaxation to a linear knapsack problem. We show a linear knapsack problem 
co , and the concave piecewise function defines 
Multiple-choice constraints are on the setup variables in MKPS to guarantee the jobs 
mily be processed in a single period. In MCKS, multiple-choice constraints 
pproaches to obtain the linear knapsack problems which give the upper bounds on 
MK e obtain a concave piecewise function for each family 
seudo variables as well as their profit and processing coefficients are defined from these 
pie truct the linear knapsack 
omplex than those in MKPS. We develop three dominance rules to simplify it.  
KPS or MCKS is rounded to 
CKS. A greedy algorithm is developed to obtain a lower bound on MKPS.  
problem for each model, and its LP solution is the upper bound on the model. 
er two. Bulfin (1988) gave an algorithm for its linear relaxation, which transforms the 
li
rresponds to a concave piecewise function
the variables as well as their coefficients in the linear knapsack problem. 
of the same fa
are on the job variables so that a family?s jobs can be processed in multiple periods. 
A
PS and MCKS are similar. W
with the help of two dominance rules for linear multiple-choice knapsack problem. 
P
cewise functions. We use these pseudo variables to cons
problem. The process to obtain the concave piecewise functions in MCKS is more 
c
If the LP solution of the linear knapsack problem for 
integers, we obtain an integer solution that corresponds to an incumbent of KPS or 
M
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fter 
ll setup variables are fixed, the problem change to a (several) knapsack problem(s). A 
sim e these knapsack problems. The 
e algorithms for all three models arrive at the optimal solution in less time for most 
ins
Branching is done in two stages. The first stage is to branch on setup variables. A
a
ple branch-and-bound algorithm is used to solv
computational experiments show these algorithms? effectiveness. Compared to CPLEX, 
th
tances.  
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