

Role of the Best Practices from Extant Literature in Current Algorithm and Data

Structure Visualizations

by

Ravali Gondi

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

August 06, 2011

Key words: Algorithm and Data Structure Visualization, Algorithm Animation, Best Practices,

Visualization Systems, Effect on Student‘s Learning, Teaching,

Design Requirements, Literature, Pedagogy

Copyright 2011 by Ravali Gondi

Approved by

Dean Hendrix, Chair, Associate Professor of Computer Science and Software Engineering

David Umphress, Associate Professor of Computer Science and Software Engineering

James Cross, Professor of Computer Science and Software Engineering

ii

Abstract

Although there are many algorithm visualizations today, there is a question as to why

algorithm and data structure visualization technology has not proved its effectiveness and gained

widespread acceptance in mainstream computing education. While there are many likely reasons

behind this, one possibility is that current visualization systems as a whole need to better focus

on adopting best practices advocated in the research literature. In particular, this work

conjectures that visualization systems need to better address certain pedagogical requirements

and best practice features to be effectively used for education purposes. The widespread adoption

of commonly accepted best practices would be seen as an important step in the maturation of the

software visualization field. Indeed, only when software visualization systems that support an

accepted, pedagogically effective feature set are common and widely accessible will these

systems have the opportunity to make a significant impact on computing education.

After an extensive review of the extant literature, a set of best practices was selected to

evaluate the central thesis question: To what extent do commonly available software

visualization systems provide an appropriate, pedagogically effective feature set? This thesis

question is further refined by four related research questions. A qualitative and quantitative

analysis of data collected from the AlgoViz portal suggests that while a majority of visualization

systems do not adhere to most best practices, there is a subset of relatively mature systems that

provide a rich pedagogically effective feature set that is likely to enhance the teaching and

learning environment.

iii

Acknowledgments

 I take pleasure in thanking many people for making my thesis possible. Firstly, I convey

deep sense of gratitude to my major professor, Dr. Dean Hendrix for his extreme support,

guidance, motivation, patience and importantly time on every step throughout my thesis work

while understanding my situation always. Without his great help and suggestions, this thesis

wouldn‘t have taken a successful shape. My sincere thanks also extend to the committee

members, Dr. David Umphress and Dr. James Cross for being part of my advisory committee

and their cooperation, proof reading and timely mentoring during my thesis. My heart filled

thanks for my best sister, Rajitha Gondi and friends ShivaKrishna Shagabandi, Ramesh Bokka

and Karthik Vemula for their ever helping hands, moral support and advice. I am truly grateful to

GOD for giving me good opportunities that are tuning up my life as expected and for the

adorable parents who have always been for me with their support, blessings and encouragement.

iv

Table of Contents

Abstract .. ii

Acknowledgments ... iii

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction1

 1.1 The motivation for algorithmic visualization .. .1

 1.2 History of algorithm and data structure visualizations .. .5

 1.3 Current use of visualizations .. .6

 1.4 Different kinds of algorithm visualization users and their roles7

 1.5 Thesis question and approach for the analysis10

Chapter 2 Definitions and Theory of Concepts12

 2.1 Software Visualization12

 2.1.1 Algorithm Visualization.. .13

 2.1.2 Program Visualization .. .14

 2.2 Algorithmic animation as a subfield of software visualization14

Chapter 3 Literature Review .. .16

 3.1 Design of algorithm visualizations .. .16

 3.2 Analysis of requirements for algorithm visualization development from literature .17

 3.2.1 Users‘ Analysis17

v

 3.2.2 Needs Analysis... 18

 3.2.3 Task Analysis ... 19

 3.2.4 Information Analysis ... 20

 3.2.5 Scope Analysis ... 21

 3.2.6 Resources Analysis .. 22

 3.3 Academic experience with algorithmic animation .. .23

Chapter 4 Best Practices for Effective Visualizations26

 4.1 Need to support flexible execution control of the algorithm visualization27

 4.2 Visualizations prompt users for answers to questions, predictions etc29

 4.3 Provide a context for users to interpret the visualization31

 4.4 Provide multiple views or representations33

 4.5 Allow user-specified data sets35

 4.6 Provide underlying source code and program execution37

 4.7 Can it be used as a lecture aid? .. .40

 4.8 Can it be used for self-study?... .42

 4.9 Can it be used as a debugging aid? .. .43

Chapter 5 Different Visualization Systems.. .44

 5.1 ANIMAL.. .44

 5.2 JHAVE47

 5.3 JGRASP49

 5.4 JELIOT .. .53

 5.5 MATRIXPRO .. .56

Chapter 6 Problem Statement .. .59

vi

 6.1 Motivation and associated research questions59

 6.2 Methodology .. .60

Chapter 7 Data Collection, Analysis, and Results62

 7.1 Use of Algoviz.org62

 7.2 Summary of the data collection process .. .68

 7.2.1 Data collection process69

 7.3 Summary of the data collected71

 7.4 Data analysis .. .73

 7.4.1 Data analysis to address the hypothesis .. .74

 7.4.2 Data analysis to address RQ176

 7.4.3 Data analysis to address RQ278

 7.4.4 Data analysis to address RQ380

 7.4.5 Data analysis to address RQ484

Chapter 8 Summary and Conclusions .. .87

References…… .. .89

Appendix ……101

vii

List of Tables

Table 7.1 Representation of the data collected based on the AlgoViz portal 72

Table 7.2 Representing best practices as stated in this thesis .. 73

Table 7.3 Data analysis to address the hypothesis ... 75

Table 7.4 Representation of the data collected based on the AlgoViz portal 77

Table 7.5 Data analysis to address research related question 1 ... 77

Table 7.6 Representing best practices as stated in this thesis .. 77

Table 7.7 Data analysis to address research related question 2 ... 78

Table 7.8 Representing best practices as stated in this thesis .. 79

Table 7.9 Data showing SV systems supporting more practices in order to address

 research related question 3 ... 80

Table 7.10 Data showing SV systems supporting fewer practices in order to address

 research related question 3 ... 82

Table 7.11 Data analysis to address research related question 4 ... 85

Table 7.12 Representing best practices as stated in this thesis .. 86

viii

List of Figures

Figure 1.1a Proof without words: the sum of successive odd integers is the square of an

 integer4

Figure 1.1b Proof without words: bottom-up heap construction is O(n) 4

Figure 1.2 History of common Algorithm Visualization Systems .. 6

Figure 1.3 Schematic view of user roles .. 8

Figure 1.4 Software Visualization production process showing the roles involved 9

Figure 2.1 The classification of Software Visualization .. 12

Figure 2.2 Visualizing Software Visualization .. 14

Figure 3.1 Graphical representation of information in Quadtree Compression Algorithm 21

Figure 4.1 ANIMAL‘s animation display control tool bar .. 28

Figure 4.2 ANIMAL‘s speed control tool bar ... 28

Figure 4.3 Representation of dynamic questions during algorithm execution from

 JHAVE ... 30

Figure 4.4 Representation of textual description for easy interpretation of the

 visualization ... 32

Figure 4.5 Representing multiple views .. 34

Figure 4.6 Allowing the user to input any data set to explore algorithm behavior.................. 36

Figure 4.7 Representation of program visualization and code highlighting 38

Figure 4.8 Representation of the view of call stack during a program execution 39

Figure 5.1 Algorithm animation using ANIMAL .. 46

ix

Figure 5.2 Representation of algorithm execution from JHAVE .. 47

Figure 5.3 JHAVE representing algorithm visualization with pop-up questions………………49

Figure 5.4 Simple representation of jGRASP tool... 50

Figure 5.5 Representation of jGRASP features ... 52

Figure 5.6 Representation of Jeliot System ... 54

Figure 5.7 Representation of JELIOT 2000 System with more views 55

Figure 5.8 Red-Black Tree illustration in MatrixPro ... 57

Figure 7.1 Representation of recommended rating for a given visualization 63

Figure 7.2 Representation of AlgoViz Catalog.. 64

Figure 7.3 Representation of fields for a visualization entry ... 65

Figure 7.4 Field Reports entry in the AlgoViz portal .. 66

Figure 7.5 Representation of bibliography collection in AlgoViz portal 67

Figure 7.6 Snapshot of Forum discussions in AlgoViz portal ... 68

Figure 7.7 Description of a particular visualization in AlgoViz .. 70

Figure 7.8 Recommendation rating based on various categories for a visualization entry 70

Figure 7.9 Overall recommendation rating for a visualization entry 71

Figure 7.10 Data analysis to address research related question 3 .. 83

1

CHAPTER 1

INTRODUCTION

Algorithms and data structures play a major role throughout computing education, and

are the primary tools in software development. However, understanding these crucial concepts

seems to be difficult for many students. From anecdotal evidence and general reports in the

literature, many students in early computing courses find it very challenging to understand the

concepts of algorithms and data structures, possibly because of the necessity to understand them

both as high level abstractions and as concrete implementations.

Algorithm Visualization Systems are tools used to develop animations, graphical images,

and other visualizations to illustrate the dynamic behavior of algorithms and data structures.

These graphic representations are being used for designing, learning, explaining, and analyzing

algorithms, as well as documenting and debugging programs. Algorithm visualization systems

can be considered as a modern e-learning mechanism that aids students and teachers to better

learn and teach both the abstract and detailed behavior of algorithms. Such systems, even if well

designed, have very little educational value if they do not engage learners in pedagogically

effective ways.

1.1 The motivation for algorithm visualization

An algorithm can be defined as the transformation of input data into output data with a

precise sequence of computation that makes reference to a detailed data model. The fundamental

2

characteristic of any algorithm is that of computations that determine a specific trajectory in the

state space of machine configurations [55]. In imperative programming languages, instances of

this ―state space of machine configurations‖ are modeled by single variables, arrays of values,

linked lists, trees, and other data structures. Thus, in order to understand a program and its

underlying algorithm, one must be able to mentally construct (i.e., visualize) a sequence of

transformations effected by the computations on these data structures. It seems intuitively clear

that an appropriate visualization of these transformations would make understanding more

efficient.

Certainly the readability of an algorithm or program will make a difference in

understanding. It is believed that visual animation of an algorithm or program will be much more

helpful in understanding the process and flow of the algorithm or program compared to static

reading techniques. According to [56], visual representations are also ―data structures for

expressing knowledge‖. Even many psychologists believe that thinking needs visual images [92],

defining the concept of ―visual literacy‖ [57] that can be developed and trained in order to

achieve better results.

Accepting the premise that software visualizations can play an important role in learning,

an appropriate model with specific quasi-physical representations must be selected. To select a

model, which will determine the particular representations and images that will be depicted, it is

necessary to consider the appropriate physical animations and the appropriate physical objects

they act upon. For example, in order for a visualization of a linked list insertion algorithm to

achieve its intended pedagogical results, the model on which the visualization is based (say,

boxes and arrows with fluid horizontal and vertical motion) must be able to be intuitively

understood by the user and be directly indicative of the abstract objects and operations being

3

depicted (inserting a new node in a linked list of nodes). Many view the model as the single-

most important determinate of visualization‘s success [54]. Consequently, the two important

features of a successful algorithm animation are a suitable physical model for the abstract data

types which are involved in the various operations and the granularity level at which the

aggregation of the algorithm‘s steps will be defined [54]. The granularity level determines

whether the model is applicable for both the high and low-level operations like the smallest

changes that occur in each step of the algorithm. As a general goal, it is important to support both

high and low-level granularities so that the more applicable one can be chosen by the user based

on individual needs.

A long-standing tradition in mathematics called ―proofs without words‖ provides a good

example of effectively selecting a model and level of granularity. The intent of a proof without

words is to clearly explain and justify the theoretical logic or soundness of a proposition without

any verbal proofs [93]. That is, given a statement of a theorem, the picture alone is enough for a

student to understand the truth of the theorem. For instance, consider a sequence consisting of

the sum of consecutive odd numbers: 1, 1+3, 1+3+5, 1+3+5+7, and so on. A concept for students

to understand is that the sum of n consecutive odd integers is a perfect square. A proof without

words of this concept is shown in Figure 1.1a [54]. These kind of static pictures are helpful in

mathematics to understand the premise without any verbal explanation.

Goodrich and Tamassia [58] have incorporated similar visual proofs without much

explanation in the subject area of data structures and they have noticed that best way of

recollecting the properties and characteristics of the data structures by the students is achievable

if each property is associated with a suitable picture. For example, in order to prove that a heap

4

can be built in linear time from an unordered array they have used the single picture shown in

Figure 1.1b [58].

Figure 1.1a: Proof without words: the sum of successive odd integers is a perfect square [54].

Figure 1.1b: Proof without words: bottom-up heap construction is O(n) [58]

While Goodrich and Tamassia [58] have used these static pictures to help students learn

certain properties of data structures and algorithms, static pictures with little other information

are probably not as effective in helping students learn the behavior of data structures and

algorithms. The complete behavior of an algorithm or program cannot be fully explained with

still pictures. Thus, it is important to have a dynamic model with specific moving images

(animations) explaining the process without any words.

5

1.2 History of algorithm and data structure visualizations

Algorithm and data structure visualizations have been playing important role for quite

some time in the field of computing and computing education. The objective of Algorithm

Visualization (AV) techniques is to enhance the understanding capability of students with regard

to how the algorithms work by representing them graphically. This technology evolved in mid

1970‘s when instructors developed prototype systems that could produce animated films that

represented the execution of programs [1]. The authors claimed that such systems would enable

others to ―produce short quick-and-dirty single-concept film clips with only hours of effort‖[1].

This practice became more familiar through the well-known film visualization ―Sorting out

Sorting‖ developed by Ronald Baeker in 1981 [94]. The first well recognized visualization

system for developing algorithm animations was BALSA [15], introduced in 1984. Other highly

interactive systems quickly followed (e.g. [2, 3]), and then evolved into interactive programming

environments in which users could develop their own visualizations (e.g. [4, 5]).

Many algorithm visualizations and visualization systems have emerged since then and are

freely available to the users. This technology has had lot of growth over the past three decades,

and Figure 1.2 shows a timeline for various algorithm animation systems developed during this

period.

6

Figure 1.2: History of common Algorithm Visualization Systems from [34]

1.3 Current use of visualizations

Many visualization tools and systems have been developed to deliver ―canned‖

animations as well as allow developers to construct their own algorithm animations. Such

technology is now widely used to:

 Facilitate instructors explaining algorithm executions in a lecture (e.g. [2]);

 Help students use it themselves for improving their knowledge on the operations of

various algorithms (e.g. [6]);

 Help instructors find errors in student programs while evaluating (e.g. [7]) and

 Educate students about basic understanding and operations of an abstract data type while

working in a computer science laboratory (e.g. [8]).

It is intuitively accepted that visualization technology can serve as an effective alternative

or supplement to written explanations in textbooks and verbal explanations in lectures.

However, research indicates that there exist controversies on the efficacy of visualizations in

practice. Some studies have shown that there is no significant difference in visualization

7

approach when compared to traditional learning [17, 19, 20], whereas other studies have shown

that the algorithm and data structure visualizations can indeed enhance the learning of basic data

structures that are typically part of a computer science curriculum [21, 18, 16]. Owing to the

intuitive appeal of algorithm animation, there are many algorithm visualizations developed for

most standard topics in CS 1, CS 2, and CS 3, but reflecting the reality of the research results,

many of them do not have effective pedagogical value [27, 28, 14, 11]. To address this

dichotomy, there has been research focused on identifying features that influence the

effectiveness of software visualizations [22, 23, 25, 26, 29].

1.4 Different kinds of algorithm visualization users and their roles

Algorithm visualization is used by a wide variety of audiences, such as [12]:

1) Researchers performing research in the areas of software visualization or algorithm

animation.

2) Visualization Tool Developers developing various visualization tools for visualizing

algorithms, data structures and program execution graphically. Some of these tools

directly provide visualizations for its users, such as Jeliot 2000 [10], and a few serve as

meta-tools that help the visualization developers to design their own visualizations, such

as JAWAA [9] or ANIMAL [13].

3) Visualization Designers implement their visual representations by relating to the abstract

theoretical concepts to help the students or learners understand the concepts in a more

accurate manner.

8

4) Students or Learners use the visualizations to enhance their conceptual knowledge either

by viewing or interacting with them using one or more engagement strategies described

in [11].

These roles can be inter-changeable among the individuals. For example, if instructors

self-build their own visualizations, they would take the visualization designers role.

Figure 1.3: Schematic view of user roles [14]

 Figure 1.4 [34] below represents another taxonomy of various persons that use software

visualization techniques. Karavirta defines the roles as follows. Programmer is a person who is

involved in developing program or algorithm and a SV system developer develops the software

required to run the visualizations. Visualizer is the one who creates the visualizations and the

user is the person who uses them. In practice, all these roles often overlap and a particular person

can also take two different roles at the same time [30].

9

Figure 1.4: Software Visualization production process showing the roles involved [34]

As just discussed, the above two figures show the different roles of individuals and how

they can interact with each other. Each of these roles has its own importance and expectations of

visualizations. The visualization tool developers or SV system developers try to optimize their

tools to produce better visualizations and try to meet the best practices advocated in the extant

literature. On the other side, visualization designers or visualizers strive to use these tools and

develop efficient visualizations that are useful to a large group of audiences. The instructors try

to use these developed visualizations to incorporate them in their course material to enhance

student learning and understanding capability and also to satisfy their teaching approach. And the

learners hopefully learn the algorithm and data structure concepts better using these

10

visualizations. At times, instructors or learners adopt the role of visualization designer when

trying to develop their own visualizations. There is a large set of users using these visualizations

in different ways for which it is required to know how far each of these visualizations adhere to

the best practices from the literature. This helps the instructors and students to better evaluate

required visualizations before they can be used and also motivates the visualization tool

designers and visualization designers to develop better products estimating its effective impact

on student‘s learning.

1.5 Thesis question and approach for the analysis

After learning more about algorithm visualization, its technology and the effect it can

have on learning, we reviewed the literature to identify a core set of features and characteristics

that have been demonstrated to contribute to visualization‘s effectiveness. We will refer to these

core features as ―best practices.‖ The primary question that my research addresses is the extent

to which current, commonly available algorithm and data structure visualization systems adhere

to these best practices advocated in the extant literature. The hypothesis that my research

investigates is:

Hypothesis: Most current visualization systems do not support most best practices.

The primary thesis question and the research hypothesis are supported by four specific research

questions.

RQ1: To what extent do current visualization systems adhere to the best practices?

RQ2: Which best practices are most commonly supported by current visualization

systems?

11

RQ3: Is there a set of visualization systems that, as a group, adhere to more best

practices than visualization systems in general?

RQ4: What portion of visualization systems are recommended for use in the classroom?

12

CHAPTER 2

DEFINITIONS AND THEORY OF CONCEPTS

2.1 Software Visualization

Price et al. [30] have defined software visualization as "the use of the crafts of

typography, graphic design, animation, and cinematography with modern human computer

interaction technology to facilitate both the human understanding and effective use of computer

software." Software visualization is categorized into two parts – Algorithm Visualization and

Program Visualization. Algorithm visualization is further categorized into static and dynamic

algorithm visualization. The dynamic interactive graphic representation is same as Algorithm

Animation, which is one form of software visualization, as shown in Figure 2.1.

Figure 2.1: The classification of Software Visualization [31]

13

Software itself is very complex, abstract, creative, and difficult to observe. To better

understand software, software visualization techniques use visual representations of complex

software, information, algorithms, and data structures. To categorize them individually based on

various themes within visualization, software visualization is visualization for software

engineering; information visualization is the representation of large data sets and program or

algorithm visualization is the structure and behavior representation of algorithms and data

structures for pedagogical purposes.

2.1.1 Algorithm Visualization

Algorithm Visualization is considered to be the process of graphically illustrating the

dynamic and abstract behavior or functionality of an algorithm and the internal state changes of

its underlying data structures including interactive graphical displays of fundamental operations

[33]. It uses computer-graphic related technologies to abstract the algorithms, data structures,

their operations and semantics in order to produce a well-designed graphical representation of

these abstractions [24]. There was rapid growth of this technology and related visual tools with

the availability of high-performance graphics hardware, advancement in computing technology

and the sustainability of software. Today, even the low cost PCs are competent to handle high-

end computing visualization systems. Various concepts in computer science can be visually

represented using visualization technology. The main objective of developing visualizations is to

improve the understanding of the often non-trivial behavior of algorithms.

14

Figure 2.2: Visualizing Software Visualization [73]

2.1.2 Program Visualization

On the other side, Program Visualization is considered to be the dynamic graphical

representation of the execution of programs or code [33]. It is often a mixture of data animation,

code animation and visual programming. The main objective of program visualization is to

improve student‘s understanding of the execution of program. Some of the techniques in

program visualization include visualizing the call stack, code highlighting, supporting flexible

execution control of the code visualization, and presenting information of the variables.

2.2 Algorithmic animation as a subfield of software visualization

To improve the algorithm visualization it is important to explore different forms of

software visualization like program visualization and also to know the relationship among them

is very essential. This helps in understanding the division of subject that is to be visualized, for

15

instance program visualization consists of programming language code for a particular

implementation, where as in the algorithmic visualization the division will be more on the

subject related to a high-level view of computation.

The division of program visualization is the combination of both static and animated code

as well as data. For example, code can be viewed in an organized manner using Flow Charts

[59]. Visual Programming (VP) is a way for the programmers to reach the users by offering

computations using pictures that can be directly interacted with a computer [61, 62]. There are

few tools of program visualization with features where both the code and data can be animated

automatically. To observe the transformed variables, stepping through the code with a debugger

is a common technique. Subsequent to the two levels of division of algorithm visualization static

and animation, another important level is the static history. By seeing a pseudo code and the

diagram of the data structure, am algorithm can be visualized; therefore by animating this pseudo

code, the animation of an algorithm is feasible. The concept of static history is to produce a

history of pictures of the operation of the algorithm.

16

CHAPTER 3

LITERATURE REVIEW

3.1 Design of algorithm visualizations

There are many algorithm visualizations being developed, but the designers of these

visualization systems do not clearly specify their intention to support a particular task [Petre et

al. 98]. The designing phase requires not only a creative mind, but also a very good working

knowledge of any design framework for animation. According to Sami Khuri [32], visualizations

can be used by all types of users in all kinds of tasks. But, there is no perfect algorithm

visualization that universally satisfies all the requirements. A successful visualization should also

consider the design issues like impressive representation and presentation, environmental factors,

design and layout, color, graphics and user-interface, apart from the factors that make it more

educationally effective.

For designing educationally effective algorithm visualizations, a significant investment of

time, effort and resources is required. In fact, the process of designing visualizations needs to

follow the software development life cycle that involves analysis of requirements, design,

implementation, testing and maintenance. It is common to have these phases overlapping each

other during the entire process. For designing algorithm visualizations, analysis of requirements

is the most important phase as it decides on what and how to design. This key phase answers

most of the questions like: Who will be using the visualization? How do you fit this in the

curriculum? How to make it educationally effective? How can it be used as learning or teaching

17

tool? Is the system technically feasible? In order to design an effective visualization, it is

important to analyze all these requirements clearly before starting to design and incorporate

required features during the design phase. This avoids the wastage of extra time that is usually

spent on the overlapping phases.

3.2 Analysis of requirements for algorithm visualization development from literature

Sami Khuri advises the visualization designers to consider the following different parts of

the analysis of requirements for the development of algorithm visualizations [32]. These factors

must be considered in order to design effective visualizations.

3.2.1 Users’ Analysis

While developing algorithm visualizations, designers must know who the actual users

are. Understanding these users determines the system‘s content, breadth, depth, organization and

information presentation. These users can be divided into four roles which include students,

educators or faculty, researchers or developers. More than one of these roles can be assumed by

one individual.

These users can be further categorized into novice and experienced users. A system is

supposed to be developed keeping in mind both the novice and experienced users, but ideally

that would not be the case as it is difficult to develop a system for both the kinds of users. A

single system cannot satisfy different levels of expertise. Beginners find difficulty in learning the

system by trial and error method as they will have problems in mapping the real world entity into

a programming object, thus forming misconceptions. Having a clean design with relatively few

features is really essential for the beginning level users.

18

Expert users on the other hand, will like to play with the code to see how it works with

various experiments and will then try to modify it as required. For example, they would want to

see how the program works after modification, how the code really works when integrate these

modules with other tools. It is also interesting for them to understand the behavior of algorithms

which sometimes require their ability to switch between algorithm and program views.

3.2.2 Needs Analysis

The needs of the user group who use the algorithm visualizations must be addressed

carefully. Different users or students have different learning capabilities, so it is very important

to understand their needs individually. Some of the factors like the motivation, learner‘s

expectation and locus of control also play a significant role in learning. In this context, locus of

control refers to the extent to which the individuals can control the events on their own that

affect them.

Some students who tend to explore things more and learn independently would prefer the

―hands on‖ approach. While other students prefer to be led through the entire chapter by the

instructor or the computer that controls the flow of the lesson. For these types of users, graphical

demonstration of the effects and the animation are really useful. The algorithm visualizations

must graphically exhibit the effects of the algorithm on the data structures. It would be very

helpful for the students if they have animations shown directly with explanatory cues in various

forms like short, on screen, textual notes and also if they were given the control of the speed at

which the algorithm was animated.

The crucial part of the interaction design would be the ability to simultaneously view the

algorithm execution path and the data structure state. The users who prefer an active interaction

19

would need some toolset that would be similar to that found in the program development

environment. That is, ―debugging‖ style software that allows breakpoint setting, single step

execution and the monitoring of key variables is very essential for visualizing the algorithms.

But, before the implementation of the algorithm visualization system, the designers

should ask the users if they want the information to be presented in the same way, i.e. by

visualizing all the algorithms including the basic simple programs. Finding out this information

is essential because the effort or the time should not be wasted in visualizing simple algorithms.

If the amount of data is small, or if the data structure is simple, or if the relationship of the

objects is important when compared to their movement, then perhaps static pictures would be

sufficient. On the other hand, if the data is large, or if there are complex data structures, or if the

movement of the objects is required where the relationship of the objects changes over time,

animation would most likely be the correct choice for the presentation of the algorithms.

3.2.3 Task Analysis

While designing algorithm visualization system, designers have to mainly concentrate on

the system‘s intended goals and they have to select the required content accordingly. Different

users have different situations in which they will be using the visualization system, such as the

creation of new animations, interactions with existing visualizations to understand the

algorithm‘s behavior, or debugging the algorithms visually. Each of these situations would

require a different kind of visualization system and it would be difficult to develop a different

system for each situation.

Systems can be designed for classroom teaching which just shows the algorithm view and

by hiding the code view so that the students‘ attention can be kept away from the implementation

20

details. Students cannot do any kind of modifications to the settings or implementation data in

the case of the systems that are developed for classroom teaching. The other type of algorithm

visualization systems are the systems designed for user‘s exploration where they could change

the settings, input various data sets, change the speed, move one step backwards, or move

between algorithm-level display and the program-level display.

If the novice users use this system and find it difficult to make the animations and design

their visualizations, then their time and effort is all wasted. So, the systems that are developed for

this purpose must have a powerful editor that allows the students to map the graphical objects to

the data structures automatically.

3.2.4 Information Analysis

Information needs to be analyzed in order to determine in order to determine how

efficiently and effectively it could be visualized. Viewers or the users must concentrate more in

figuring out what the picture or the visual presentation is instead of having a regular set of visual

conventions such as denoting one item with one color, another item with another color. It would

be more feasible if one spends more time on the interaction among visual images rather than

trying to understand and follow the algorithms. The information which is graphically

represented is completely dependent on the concept that is being visualized.

In order to understand various characteristics of the information, it is often helpful in

providing the multiple views of the same system. These multiple views include the graphical

views of changing program data and also simultaneously its corresponding view of the

executable source code. For example, the figure 3.1 above gives the required information details

about the Quad tree compression algorithm for bitmap images.

21

Figure 3.1: Graphical representation of information in Quadtree Compression Algorithm [32]

3.2.5 Scope Analysis

The scope of the visualization system can range from single-purpose visualizations (e.g.,

a visualization of a specific algorithm), to specialized systems where algorithms are mainly

concentrated in a specific field of computer science (e.g., graph algorithms), and finally to the

general purpose systems that are designed to provide visualizations for programs or algorithms in

any domain. Single-purpose visualization systems exemplify one algorithm or a set of related

algorithms in detail. The general purpose visualization systems ideally include the animation of

any algorithm. It is tempting to believe that the greater the range of algorithms that are animated,

22

the more desirable the outcome is. This must be tempered with the reality that the increased

flexibility causes an increased level of complexity in the system.

In general, if a system confines its animations to the algorithms in one field, it would be

difficult to represent the algorithms in other fields. Designers of the algorithm visualization

systems typically follow the following recommendations:

 Design small systems first and do not try to provide everything that is possible in the

beginning. Provide whatever the designer can which has high quality, beneficial to the

users and is visually attractive.

 Designers must have to plan a phased growth. In this rapidly evolving world, the

visualization might change and grow over time. The development of these systems can be

well planned for growths with the help of object oriented design and careful

documentation of the programs.

Algorithm-specific visualization systems might not allow the addition of new features in

the system. So, this addition of new features must be planned to add the new features over time

and perform the upgrades whenever available.

3.2.6 Resources Analysis

Usually, designing a visualization system takes more time than expected. Designing these

systems is not as simple as we think, especially when designing the appearance of the

visualization. There is a great demand for visualizations in computer science and it demands

many computer resources like the CPU speed, networking, RAM and hard disk memory sizes,

monitor size, color display panel for output equipment and keyboard, audio and video input

23

devices. And if these visualization systems are over the internet, then it would require large

space and high speed internet too as resources.

Selection of the specification method is also another important purpose of resource

analysis in designing the new algorithm visualizations. Some of the specifications are the

declaration, predefinition, annotation and manipulation. In the annotation method, the important

steps of the algorithms are annotated with attractive events which implicitly call the graphical

operations that finally execute the animations like the movement of items or rectangle, change of

colors etc. When the program pointer reaches the important steps of the algorithm that are

annotated during execution, the special events are created and then forwarded to the various

views of the animation. These views correspond to the interesting events by respective

animations. For example, the mapping between the algorithm/program‘s state and the final image

can be specified arbitrarily or by declaration. The changes in the program‘s state will be reflected

in the image immediately.

3.3 Academic experience with algorithmic animation

The majority of visualizations of algorithms available on-line are used by students for

their course work and as classroom supplements. As an example of evaluating the impact of

algorithmic animation in an educational setting, consider an evaluation conducted at Auburn

University [69]. In this evaluation students were divided into two groups, an animation group

and a control group. They were given the same set of algorithms to both the groups in a different

manner, in animation group the algorithms were given in an animation written with the Toolbox

system and for the control group the same algorithms were given in a textbook fashion with

pictures. The performance results from the pre-test for both the groups were same and the post-

24

test results confirmed that the animation group was more proficient than the control group. These

are the following observations made based on the post-test results.

 The students in the animation group had 74% correct answers in the test, compared with

43% in the control group.

 When two sorting algorithms were learned, the percentages of correct answers were 63%

and 44% for the animation and the text group, respectively.

 Only when the control group had to solve additional homework questions did the

proficiency of both groups become comparable.

In the above evaluation, in spite of getting good results for the animation group, the

actual number of sorting algorithms used is just four and comparison was just between the two

groups. To get the actual comprehensive results, there are lot of measures need to be included

like teaching of complete courses in similar fashion that dividing the students into control and

animation groups, all the different possible characteristics need to be included, and the quality of

teaching in each group should be same. Consequently, there is a need to have wide-range of

studies to evaluate the effectiveness of algorithmic animations over students. It is important that

students need to make a mental connection between conceptual features of the algorithm with the

algorithm itself, and there is always a chance that an intelligent student can recognize these

connections compared to a normal one. Stasko and his colleagues [39] have studied and

concluded that the above mentioned method of evaluating is not very helpful for the students in

the educational field as expected. Another observation from [18] explains how the complexity of

an algorithm can vary the results between the groups, for instance while learning a simple

algorithm the results were much better for animation group than the control group, and in the

case of complex algorithms the results between the two groups were similar.

25

The extant research literature suggests that an animation is more understandable for a

student if it is involved with other communication system like an audio explanation. This can be

easily implemented in a class room where an instructor can act as another communication system

with clear explanation of each step, while playing the animation.

Another research project [70] observed a visualization-based learning process in a

classroom using an entirely different approach. This project required students to write their own

algorithm visualizations as a part of assignments. Through such assignments students are made

to visualize the algorithm with suitable models, granularities, and steps which, to the student,

demonstrate the algorithm in a best possible way. The data suggested that students benefit from

these kinds of constructions in visualizing an algorithm. Furthermore, studies from Hubscher-

Younger [71] have supported the notion that the advancement of understanding algorithms can

be better if the students are able to describe and script their own visualizations. Another research

project called ―active algorithm learning‖ [72] reported on a system that presents animations and

asks questions in such a manner that the nature of the animation is based on the user‘s answers.

Two underlying theories that play a major role in learning algorithms through animations

are epistemic fidelity [54] and the dual coding hypothesis [54]. In epistemic fidelity the

visualization emphasizes the mental models of the physical and logical world, under the

assumption that humans intrinsically have these mental and relational models. In the dual code

hypothesis, data can be coded in either verbal or non-verbal way that would make the knowledge

transfer efficient from teacher to student [29].

26

CHAPTER 4

BEST PRACTICES FOR EFFECTIVE VISUALIZATIONS

In this chapter, the best practices or the key requirements that an effective visualization

system should possess are discussed in detail. After a thorough literature review, a set of

pedagogically essential features are captured in nine best practices.

In the earlier stages of development in the field, the main focus of the research of

algorithm visualization is on the design and development of the algorithm visualization systems

or the tools. Now, however, the primary focus of the research is oriented more towards how to

design effective visualizations, how to effectively use existing visualizations, how to engage

students efficiently with the systems and how can this technology be best adopted into

computing education [29, 33, 34, 35, 36, 37].

Educators are constantly exploring new ways of engaging students with algorithm

animations and finding solutions to hold the learners‘ interest and attention with the

visualization, and to improve instruction. Though this process requires time and effort, according

to [11, 33], most of the teachers find it satisfactory and convenient for explaining algorithms

through animations, when compared to traditional teaching. Algorithm animations have been

helping not only the teachers in illustrating algorithm operations effectively, but also a vast

number of students in learning the difficult parts of algorithms and data structures. Some studies

reported significant improvement in learning by using visualizations; whereas others indicated

no difference in the improvement of students‘ knowledge after using visualizations when

27

compared to traditional learning. Hundhausen et al. have shown in their meta-study of algorithm

visualization effectiveness [29] that the students‘ interaction and involvement in the visualization

is more important than just viewing it.

In 2002, the ACM conference ITiCSE sponsored a working group that proposed a

research framework [11], with lot of open questions for researchers in the field including

interaction taxonomy, and number of testing strategies for the evaluations of visualizations. It

has proposed six levels of student engagement in learning: no viewing, viewing, responding,

changing, constructing and presenting. Much research has been carried out within this area over

past few years.

The following sections discuss one of the nine best practices distilled from the literature.

4.1 Need to support flexible execution control of the algorithm visualization

In order to provide smooth execution while playing the visualization, visualization

systems should support a few mandatory execution controls on the user interface that allows the

users to interact with the visualization by controlling animation steps, start/stop, speed, etc.

Whenever the user wants to review any random step or to pause the animation for detailed

understanding, these controls help in performing user specific actions. The design of the user

interface is highly important for a good animation. It has to be designed in a way that is not

confusing or clumsy to the user. All the controls and required data should be presented in an

organized and appealing way so that it not only enhances user interaction but also has attractive

look. The graphical user interface consists of simple widgets such as input fields and controls

that enable the user to control the flow of the animation. These controls should be flexible which

includes the ability to move through the visualization both forwards and backwards (for example,

28

[38, 39]). The visualizations can also be run automatically based on adjustable speed. The

execution controls on an effective visualization are more similar to the ones on a video player,

which has controls for the following actions: play, stop, pause, single step forward and single

step backward, continuous advance, advance to the end at once and backtrack to the beginning at

once. A similar user interface is shown in figure 4.1 below from the ANIMAL visualization tool.

Figure 4.1: ANIMAL‘s animation display control tool bar [13]

Different users have different levels of interpreting, grasping and understanding the

content provided in visualizations. Even a single user may want to use the visualization at

different rate or speed while working at different stages of it depending on his understanding

capability. All the users may not adapt to it or grasp the information the first time. So, an

effective visualization may also have to have control to vary the speed of presentation, and the

learners should be able to run their test cases again and again if needed. Below is the figure that

shows the speed control tool bar from the ANIMAL system.

Figure 4.2: ANIMAL‘s speed control tool bar [49]

29

Visualizations are more effective and efficient when the user has enough options to steer

through the steps in appropriate directions. While designing algorithm visualizations, the

designers should make sure to include interactive controls for the user.

4.2 Visualizations prompt users for answers to questions, predictions, etc.

To enhance the student‘s learning, this practice is one of the best approaches in the design

of visualizations. The support of dynamic stop-and-think questions allows the users to check

his/her understanding of the execution, description and behavior of an algorithm [11, 40, 29, 43].

The use of probes or pop-up questions also promotes high interaction of the user with the

visualizations that greatly stimulates thinking and fosters self-explanations [22]. A built-in editor

can allow the developers to create multiple choice questions for the learner and to set them to be

triggered periodically at specific stages. At the same time, it can help the learners to self-evaluate

their performance and knowledge of the algorithm. Designers are thinking of ways to engage

learners and retain their interest and enthusiasm throughout the visualization. Visualizations are

more effective when there is high interaction between the animation and the users through non-

trivial questions that force them to answer content related to the algorithm and predict the future

behavior. There can be two kinds of questions for the learners [11]. The first type of it is random

questions that pop-up any time at an appropriate context. This type focuses on improving

learner‘s understanding on specific issues, challenge their understanding and promotes self-

evaluation on how they perform. The second type of question is given at some critical points

during the visualization execution where the learners cannot proceed further until they answer

these questions right.

30

Figure 4.3 shows a screenshot of dynamic question pop-up from JHAVE for a Binary

Search Tree. This is a first kind of question where it allows the user to self-evaluate in order to

enhance learning and encourage student participation. Other systems like HalVis also pose

similar interactive pop-up questions to the user periodically during the execution of the

visualization.

Figure 4.3: Representation of dynamic questions during algorithm execution from

JHAVE [50]

If the visualizations support prompt and dynamic feedback [11, 42], they can have more

positive effect on student‘s learning. For example, when the questions are answered wrong,

immediate feedback about their mistake gives good understanding on their current knowledge.

Other kinds of feedback systems are well illustrated in [41] by Korhonen and Malmi. The

visualization system they presented has graphical representations of algorithms and during

31

execution; the learners are required to manipulate the visual representation for algorithm

simulation. The visualization is designed to produce automatic and prompt feedback on the

learner‘s performance explaining the correctness of the simulations. Sami Khuri says that the

user should be forced to interact with the visualization at least every 45 seconds during the

execution. This kind of interaction helps the learners understand every step of the algorithm or

data structure better before proceeding further.

4.3 Provide a context for users to interpret the visualization

Though the basic purpose of visualizations is to provide a friendly user-interface that

assists learners in understanding concepts behind it, sometimes visualizations are difficult to

interpret. Designers need to plan well in order to provide a good interface that helps the users to

interpret it at first glance without any ambiguity for it to be an effective visualization. The

common difficulty for the learners using visualizations is mapping that visualization to the

underlying data structure or algorithm it is developed for.

This mapping content and the underlying meaning of the animated representations can be

clearly explained to the learners in two different ways [11]. One of it is to embed text description

or narration into the visualization against each step during the execution. It can dynamically

describe the relationship between the visualization and the concept behind it for every step so

that the user understands the flow and algorithm clearly and will be able to predict the next

algorithm steps. Before the visualizations starts, it can also briefly describe the theoretical

concept and purpose of the algorithm that helps the learner to interpret the visualization in right

sense.

32

 Figure 4.4 below shows a graphical representation of the longest common sequence

algorithm using AlViE (Algorithm and data structure Visualization Environment) tool. Below

the visualization is a separate window for the messages that clearly describes the operation of

algorithm in every step in the form of text. The corresponding source code description for the

text described is also highlighted in order to match both of them for better understanding.

Figure 4.4: Representation of textual description for easy interpretation of the visualization

The second way to enable easy interpretation and understanding of the visualization is to

allocate sufficient time for explaining the general and basic concepts of a particular algorithm or

data structure during the course instruction. This can be achieved in different ways like having

33

text description in the corresponding visualization website link or in lectures, labs; just before the

learners open/click the visualization needed.

 All the algorithm visualizations operate on different state changes of the data structures

used. For better interpretation, algorithm visualizations need to be presented in discrete segments

with each state or state changes shown along with the explanations of particular operations.

4.4 Provide multiple views or representations

Often it is beneficial to provide different views of an algorithm simultaneously [11, 22,

42, 74], like the animation of algorithm, pseudo-code or source code view, textual description

view, physical implementation of algorithm and logical view. These views can be shown on the

visualization simultaneously with appropriate synchronization for clear and better understanding.

The user can also be given a choice to page the windows to avoid complexity so that only one or

more windows can be seen at a time. But the designer should make sure that all these windows

are properly visible to the user when he starts the visualization and that the actions in one

window are appropriately related to the corresponding actions in other windows. All the

windows should be coordinated well to display consistent information. Multiple views of an

algorithm to the user can facilitate in-depth and better understanding of the algorithm logic and

operation. This practice highly adds advantages in the educational perspective.

For algorithm visualizations to be effective, they need to have a program animation view,

that has either pseudo-code or source code with code highlighted as the animation executes [11].

Or they can have program animation view showing just part of the code that is getting executed

right then and this view keeps changing for every step. A mandatory view is the algorithm or

data structure animation view that can be accompanied by textual explanations of the steps, that

34

provides bridge between the algorithm animation view and the program animation view.

Visualizations can also have views that show the input data sets allowing users to input values

and display the output in another view either graphically or in text depending on the algorithm

and its visualization. Many of the visualizations have a physical view and a logical view for

those using data structures such as heap. Heap can be shown as an array in physical view and as

a tree in logical representation. These different views need to clearly show the inter-relations and

connections amongst each other. An example of this can be seen in the figure below that

represents multiple views of Huffman Coding algorithm visualization. Other systems like HalVis

are also designed similarly to show multiple views.

Figure 4.5: Representing multiple views [23]

35

 It is important to make sure that each of these views must be easy to comprehend when

viewed separately and each view needs to show only few aspects of the algorithm [23]. This

approach helps the learner by avoiding the need to remember the algorithm states from previous

steps. Also the designers should carefully synchronize the display by clearly distinguishing each

view‘s matching content. This can be attained by choosing same color, size and shape (circle,

square etc.) for the related data in different views.

4.5 Allow user-specified data sets

It is assumed that the concept of active learning is superior and more effective than

passive learning [29]. In order to actively engage learners in the visualization, designers have to

make sure to include the option where the users can construct their own sets of input data (for

example [2, 41]). This practice allows the user to deeply explore the algorithm behavior and

discover how it behaves for different input sets. The user is free to test the algorithm for its best

and worst performances and roughly determine its complexity based on results of the range of

input data. By allowing the learners to use their own test cases on the algorithm, he or she can

get important questions on the algorithm‘s behavior and execution clarified. This may ultimately

improve the self-efficacy of the student and encourage further learning. The figure below is an

example of allowing user specific input data set in Quicksort algorithm from AIA (Algorithms In

Action) system.

36

Figure 4.6: Allowing the user to input any data set to explore algorithm behavior

During the design phase, designers of the visualizations should consider the validation of

the user specified input data. The input tool for inputting self-constructed data set needs to

validate for errors and invalid input and report it back to the user. Also these input tools should

be designed as simple as possible in order to avoid interface complications. This feature might

also augment the understanding of step-by-step or procedural behavior of any given algorithm. A

given test case might help the learners trace the algorithm‘s variables and data structures in detail

for a valid input data set. A high level of conceptual knowledge is indeed required to understand

the procedural behavior of an algorithm.

37

4.6 Provide underlying source code and program execution

Software visualization includes both algorithm and program visualization as discussed

earlier. In order to strengthen student‘s learning, program execution view or presenting source

code or pseudo code is equally important while viewing the visualization [42, 74]. This is similar

to providing a context for the user to interpret the visualization better, as discussed in section 4.3.

Typical program visualization view includes code-highlighting, showing program variables

information and call-stack [40]. The main objective of presenting the environment with program

execution features and underlying source code is to understand the execution of programs line-

by-line and simultaneously explore the state changes in data structures used by the programs.

This approach is highly accepted as it not only has the above important features but also helps

increasing knowledge of the students even with no prior programming experience. This indicates

that providing underlying source code and program execution enhances novice students‘ learning

too [40]. The figure below shows the source code behind Huffman Coding using the Auckland

visualization system and highlighting the statement that is currently executed along with the

textual description, which allows the user to interpret the visualization accurately.

38

Figure 4.7: Representation of program visualization and code highlighting

Tracing the execution also helps the user learn better, but very few visualization systems

show the call-stack information and state changes of data structures during visualization.

jGRASP [95, available at http://jgrasp.org] is one of the few exceptions, as shown in figure 4.8

below. This information helps the learner keep track of variables and data and can predict future

steps and state changes. The call stack is the view of what is executed in the program previously

showing the function calls and the returns between different methods. The call stack is also

useful for understanding recursive programs. It is important to keep all these program

visualization techniques synchronized and co-ordinated with the algorithm visualization.

39

Figure 4.8: Representation of the view of call stack during a program execution

40

4.7 Can it be used as a lecture aid?

One of the main purposes of developing algorithm and data structure visualizations is to

enhance student‘s learning either by teaching them in lectures or by self-learning. Most of the

designers start developing visualizations with a notion of serving the students in their learning

and design with a purpose of using them as a lecture aiding tool or a self-learning tool.

Animations are the software media that depict the execution of a program dynamically

and are designed to assist learners improve their understanding of algorithms and teachers in

facilitating learning. Preliminary results have shown encouraging and supporting results on the

effectiveness of visualization systems on students‘ learning. Nevertheless, application of it in

computing education is not that widespread. This disappointing result may depend on the usage

of visualization systems as pedagogical tools by the teachers [45].

The results from literature propose that the use of such tools by teachers can be increased

either by integrating other learning materials with these tools or by specifying the importance of

the use of visualization of software to the students. As teachers are the primary connecting link

between pedagogical tools such as algorithm and data structure visualization systems and the

students, it is believed that the teachers need to have more important role and innovation in

adapting them as teaching aid for students. Though the basic idea of developing visualizations is

to augment student‘s learning, there are mixed results based on the experimental studies of

pedagogical effects of algorithm visualization. Few studies show that visualization technology

has positive effect as pedagogical tools on student‘s learning [21, 18, 16], while other studies do

not encourage visualizations to be used for learning as their results had no effect on students‘

ability to learn algorithms [17, 19, 20]. Kann, Lindeman and Heller [46] propose an effective

41

way of imbibing algorithm animation into teaching as to have the coders implement the

algorithm or any program as part of the overall learning experience.

The influence of visualization on education depends primarily on how well it is used and

how widely the instructors use it for pedagogical purposes. Though instructors are constructive

and innovative in trying to use visualizations in lectures, they are not highly encouraged due to

the following five impediments that are based on a survey of SIGCSE members done by 2002

working group [11]:

 93%: time needed for searching effective examples

 90%: time taken to learn and familiarize with the new visualization tools

 90%: time required to design and develop new visualizations

 83%: lack of effective visualization tools for development

 79%: time needed to adapt or integrate the developed visualizations to respective

course content or to the teaching field.

Based on these results, it is clear why an instructor is not very likely to adopt

visualization technology in teaching. The factors like amount of time and effort needed and the

unavailability of efficient resources badly influenced the use of visualizations in teaching

environment. It is discouraging to the teacher for using the visualizations when a significant

amount of time is needed for learning the tool and then developing demonstrations and

interactive lab exercises for the students. To overcome this, Naps et al. [14] have proposed an

idea to provide high quality support manuals for the instructors. The availability and use of these

materials may increase the satisfaction level of the instructors and ultimately increases the use of

visualizations in teaching. After the usage, the instructor may highly recommend visualizations

42

into teaching seeing students‘ improvement in learning and performance. And the above

mentioned impediments may also be minimized in the future.

4.8 Can it be used for self-study?

Many algorithm visualizations are designed so as to allow students to learn the material

themselves by viewing and interacting with it. For the visualizations to be effective, designers

have to spend time developing very friendly user interface that should not need any extra

assistance to get acquainted. Students do not like to put much effort learning how to use

algorithm visualization when their main focus is on learning algorithm behavior.

Visualizations interest the students more when they are actively engaged with the

activities like allowing students to provide input data sets to explore the behavior of algorithms,

providing dynamic stop-and-think questions about the visualizations, providing opportunity to

make predictions about future algorithm behavior or state changes, and having chance to develop

their own animations as one learns by practically working on it than just by viewing it [43]. Such

kind of interactive exercises during the learning process not only keeps the students‘ interest in

the visualization but also helps them to improve their knowledge significantly.

As the students try to learn about the algorithm by their own, it would be highly

beneficial to the students if the visualization designers incorporate some kind of textual or audio

descriptions and explanations about the algorithm and the basic theory behind it prior to the

visualization view. Algorithm visualization can just show the execution of a given algorithm but

the students should know why that is happening too, for which they need prior knowledge about

the algorithm.

43

4.9 Can it be used as a debugging aid?

Visualizations can also be used as debugging tools where the users can verify whether

their implementations of structures are working correctly. Apart from serving as learning

systems, visualizations are also used for debugging programs and research in the analysis of

algorithms. In the debugging context, data structure and algorithm visualizations and visual

debuggers operate in a similar fashion in that they visually show the information about data paths

and contents in the memory step-by-step [47]. Debugging requires overall understanding of the

algorithm and its specific components. Through debugging, the software developers can get deep

knowledge of the structures of classes and packages of object-oriented software and also details

of the state of the program. Visualizations help the users debug their programs in terms of logical

debugging and performance debugging.

Debugging is an important phase to have for those visualizations that allow learners to

create their own visualizations. This approach helps the student designers to easily know the

implementation flaws and can be fixed soon and simultaneously learn a lot through the mistakes

as their incorrect approach visually shows them what happens if wrongly coded. The algorithm

visualization clearly illustrates the steps that the user‘s code should follow or depicts the

expected results of student‘s code visually. Having theoretical knowledge of the concepts, the

student can then debug the output accordingly comparing it to the visualization. Algorithm

visualizations focus more on the implementation; but their output is still conceptual and

machine-oriented.

44

CHAPTER 5

DIFFERENT VISUALIZATION SYSTEMS

Algorithm visualization is a sub-part of software visualization that dynamically visualizes

high level abstractions of the software. Many algorithm visualization systems have been

developed over the past three decades. In computing education, students usually find it difficult

to understand the dynamic behavior of data structures and algorithms that is often tough to

explain in classrooms using blackboard. Many visualization systems have been developed to

explain such concepts and make these easy to understand. A few significant visualization

systems are described in detail in this section with their advanced features. Of course there are

many other visualization systems and similar description could be given for them as well.

5.1 ANIMAL

ANIMAL is an interesting tool for developing algorithm animations that can also be used

in lectures for teaching students and enhance their learning. Some of the visualizations developed

[48] display only the animation without any active engagement of the user. Some of the

visualizations require the knowledge of creating animations using API calls, because of which

some computer laypersons may not be comfortable developing them. To avoid this problem,

current visualization systems have taken the approach of using scripting languages to create

visualizations. But even this may be challenging to the non-programmers to explicitly generate

the scripts. The development of the ANIMAL tool erased these shortcomings of other

45

visualization tools. It is user-friendly to use ANIMAL as it offers visual editing during

development of the animation. It has simple scripting language called ANIMALSCRIPT that is

provided with animation generation API.

ANIMAL is more famous for having a set of powerful features that can be used as

different mixtures for creating and displaying animations of data structures, algorithms and many

other computer science related topics. By using various other visualizations, the users have

always been showing interest in having textual descriptions accompanying the animation.

ANIMAL satisfies this requirement by providing both source or pseudo code and textual

comments with the animations. The main focus of this ANIMAL tool is to provide an easy

learning and animation development tool to the users with wide acceptance of it in teaching and

learning.

The full feature set of ANIMAL and its acceptance by a large audience positions it as a

significant animation tool. It is a platform independent installation that runs in both Windows

and Linux/Unix platforms. It is freely available to teachers and students and very easy to use as it

does not need any programming skills to display or generate animations. More importantly it

doesn‘t require network access for using it as students and teachers may not always have access

to the network in labs, classrooms or at home. As mentioned earlier, this tool supports the

provision of source or pseudo code along with textual descriptions. For easy understandability, it

also includes the support for code highlighting and clearly shows the execution of the program. It

also provides wide applicability to create animations in various other topics apart from

algorithms and data structures. The figure below is an example animation of Linked Lists using

ANIMAL.

46

Figure 5.1: Algorithm animation using ANIMAL [49]

ANIMAL stands for ―A New Interactive Modeler for Animations in Lectures‖, which is

written using Java‘s Swing library. Animations are drawn and edited on a drawing pane for it to

be easily usable. Thus the animation designers can create good animations even without

knowledge in programming. More specific objects are created from a generalized set of given

objects and they can also be reused for further animations. It takes much less time for a novice

developer to familiarize themselves with the tool and the drawing interface. Developers,

depending on their level of programming expertise, may choose to use either the scripting

interface or the ANIMAL API that automatically generates required files into the ANIMAL‘s

47

built-in scripting language. Both the approaches are the same in functionality. The animations

have video-player like user controls and can also be scaled up or down. The added advantage to

this tool is that the storage format is simple and easy to read. Based on the evaluation in [49],

most of the students want to continue the use of animations in teaching.

5.2 JHAVE

JHAVE was developed to not only be graphically impressive but to also be an effective

pedagogical tool. The figure below shows the execution of Binary Search Tree from JHAVE.

Studies based on engagement taxonomy from a working group report on algorithm visualization

effectiveness [11], have helped in designing effective activities in the visualization systems for

more active engagement of the students.

Figure 5.2: Representation of algorithm execution from JHAVE [50]

48

Graphics or the animations alone do not make the student understand the visualization

completely. To make visualizations more effective, it needs engagement hooks that actively

involve students in the visualization activities. But this is achievable at the cost of more effort

during development. To overcome this, a new tool JHAVE (Java-Hosted Algorithm

Visualization Environment) was developed. JHAVE is not only an algorithm visualization

system, but it also provides a support environment for many algorithm visualization systems,

called AV engines by JHAVE. The system is provided with lot of interesting features (described

below) that synchronize well with the student‘s understanding. The interface consists of a

standard control set like that of VCR‘s with navigation controls to allow students to step through

the execution of the algorithm visually. Hence the GUI is not dependent on the AV engine that is

used for the graphics.

The tool also provides information and source/pseudo code windows. These are the

HTML windows controlled by the visualization designers to display either the static or

dynamically generated significant explanation on what the student is seeing in specific. The

information pane briefly explains the high level theoretical information while the pseudo code

window displays the respective pseudo code of the algorithm with code-highlighting as the

algorithm is executed in the animation. The students or the users are also allowed to input their

own data set to explore the algorithm behavior and test against their anticipated output using the

visual display. The designer also has the option to pop-up random and dynamic stop-and-think

questions (as shown in figure 5.3 below) in terms of fill-in-the-blanks, true/false, multiple choice

questions and can also make them mandatory so that student can proceed further only if he

answers them right. This would facilitate them to make predictions about future steps or state

49

changes. JHAVE also provides a set of class libraries to help the designers develop their

visualizations.

Figure 5.3: JHAVE representing algorithm visualization with pop-up questions [50]

 As JHAVE has the client-server architecture, the script-producing programs are

controlled by a central server. Hence, the developers are free to develop visualizations using any

programming language and can be viewed in JHAVE environment.

5.3 jGRASP

In order to effectively use the visualizations during the development of code, multiple

views are to be automatically generated in a synchronized way without leaving the Integrated

50

Development Environment (IDE). The jGRASP IDE, available at http://jgrasp.org, is developed

to provide effective, dynamic and state-based visualizations of various objects and variables

created for development in Java. It is a programming environment for Java that helps students

with its powerful visualization features like source code multiple views, lower level objects and

higher level visualizations. As jGRASP is used widely in changing environment [33], it is

essentially a program visualization tool, although the object viewers have the potential to

approach the functionality of an algorithm visualization tool. It supports the viewing, presenting

and constructing engagement levels [95]. The toolbars and interactive design of jGRASP is

shown in the figure below.

Figure 5.4: Simple representation of jGRASP tool

51

jGRASP is developed by the GRASP (Graphical Representation of Algorithms,

Structures and Processes) research team at Auburn University as a lightweight development

environment. The main idea behind the development is to enhance the understanding and clarity

of software by supporting automatic generation of software visualizations. It is implemented in

Java and can thus be deployed on all the platforms that have a JVM (Java Virtual Machine) of

1.5 version or higher. It supports the generation of Control Structure Diagrams (CSDs), UML

class diagrams, Complexity Profile Graphs (CPGs) and has distinct features like viewing objects

dynamically integrated with debugger and workbench for Java. These object viewers have

mechanism for showing the objects behavior that represent general data structures like stacks,

queues, linked lists, binary trees, hash tables etc.. The latest version includes the feature to

interpret statements using Interactions window for Java. All these innovative and interactive

features are shown in the figure below.

52

Figure 5.5: Representation of jGRASP features

The Control Structure Diagram (CSD) is generated for various languages like Ada, C,

C++, Java, Objective-C, and VHDL as an algorithmic level diagram. It helps the user to

understand the comprehensibility of programs by clearly interpreting the behavior, paths and

structure of each control unit. The UML class diagram is automatically generated for the

programs written in Java using its class and jar files that helps in understanding its object-

oriented behavior. The programmer can generate dynamic viewers for primitive types and objects

that helps in visualizing a program in steps while in debug mode or when methods are invoked

53

for an object on the workbench. This object workbench along with CSD, UML class diagram and

interactions helps the user to invoke methods from instances created in workbench. The

integrated debugger allows the user to understand each execution step, view the call-stack and

local variables data. Interactions feature is newly added in the tool where the users have the

feasibility to execute their own Java statements and expressions.

5.4 JELIOT

JELIOT is another program visualization system for helping students learn and

understand introductory computer science programs [38]. This animation system represents the

behavior of a program graphically. Its main aim is to make the novices better understand the in-

depth concepts of algorithms and data structures by following the control paths, variable

assignments etc. Such concepts are tough to understand while reading through the code using

static representation. Various experiments [10] have proved this animation system a concrete

tool that augments the grasping capability of a student in understanding the logic and the abstract

behavior of software.

The Jeliot program animation system is designed in Java and more widely used for

teaching Java programs. It was originally developed by the research team at Helsinki University.

Different versions of this system have been released over past ten years that include Eliot, Jeliot

I, Jeliot 2000 and Jeliot 3 in the order of their release. The main idea of developing Jeliot system

is to actively engage students in the construction of programs and have the students

simultaneously understand the execution and behavior of programs through visual

representations. This helps them to build a mental model of the software that can be used to

know new things and improve the vocabulary about programming concepts.

54

The user interface has two main panels describing source code used for animation in one

of the panels and the corresponding animation on the other. It also has the control toolbar at the

bottom of the frame that controls the execution of the program. The output generated by the

program can also viewed dynamically on the lower right of the tool. The user can create

constants and also manage the execution speed of the animation. The animation is directly

constructed from the Java program code without any additional effort from the user. Many

dynamic features like memory allocation, code highlighting, variables loading and storing,

evaluation of Java expressions, method calls and control statements can be visualized

continuously. These features can be seen from a screenshot of Jeliot below that is captured

during the animation execution.

Figure 5.6: Representation of Jeliot System

55

Figure 5.7: Representation of JELIOT 2000 System with more views [45]

 Several experiments were conducted for a year to see the effect of Jeliot system on the

learning of beginner students. Based on the results from [38], students had better understanding

of the concepts, control flow and call-stack by using the vocabulary provided by Jeliot for

explanations, than compared to those who have not used the animation system for learning.

Another study [79] demonstrated that the Jeliot animation system has increased its capability to

grab the attention of students and retain it by using various characteristics.

Ronit Ben-Bassat Levy, during her research has showed that the use of Jeliot animation

system enhances the student‘s learning of programming and concepts [38]. In her further

research, she has studied over the reasons for teachers not accepting it as an efficient tool to

communicate its use to the students and then proved the improved acceptance of this tool by

teachers. Ebel and Ben-Ari have proved the improved acceptance of Jeliot by students in their

56

research as it has well-designed acceptance-directing features that attracts student‘s attention

[79].

5.5 MATRIXPRO

 As we have seen, many algorithm animation systems have been developed over past three

decades. However, most of them are still considered as research prototypes and almost none of

them have achieved wide acceptance by instructors to use them in the classrooms. The key

reason behind this has been that it takes lot of time and effort for the teachers to understand and

develop animations. MatrixPro is developed to simplify this laborious work for the teachers in

which they can generate animations based on visual algorithm simulation. The procedure of

producing algorithm animations by directly manipulating available library data structures

without the need to code anything is termed as visual algorithm simulation [89]. The user has the

option to graphically invoke the operations from library that are readily available in order to

simulate the behavior and execution of real algorithms. As this tool is equipped with pre-loaded

operations, it can understand the semantics of user‘s operations that greatly helps the instructors

to explore the behavior of algorithms with various data input sets and simultaneously work with

different scenarios like ―what-if‖ questions that the students can ask in labs or lectures. This

approach of the system design can motivate instructors or students to use the tool efficiently

when compared to regular pedagogical tools for classroom demonstration. The main focus of

MatrixPro is to show and manipulate algorithms and data structures ―on-the-fly‖ in a classroom

without any prior preparation by the lecturers. The figure below shows an illustration of red-

black tree using this system.

57

Figure 5.8: Red-Black Tree illustration in MatrixPro

 MatrixPro is developed based on the Matrix algorithm simulation application framework

[90], that provides the basic animation and visualization features for the tool. It has a toolbar and

menu bar that share the functionalities of GUI like inserting structures and animation control and

modification. The main window has the visualization area where the user can interact with it to

understand the execution. The important feature of this tool is its ex tempore usage where the

system can be used on-the-fly basis. It gives the user an option to apply automatic animation or

construct animation using algorithm simulation by hand. It includes the support of custom input

data sets by dragging elements from one data structure and dropping into another one. It also

allows customization of the level of visualized execution history shown while looking for

animation sequence. Using MatrixPro, customized animations can be stored and retrieved for

later use. The user can change the menu bar and the pop-up menu options, just by changing the

configuration file. MatrixPro has a library of pre-defined data structures that can be used to work

58

on animations. It includes a set of exercises where it compares the user generated simulation

sequence with that of the actual algorithm and gives feedback on it.

59

CHAPTER 6

PROBLEM STATEMENT

As discussed previously, the field of algorithm visualization has been undertaking a lot of

research in order to increase the use of visualization systems among different kinds of users. It is

known to be educationally effective when it is made highly interactive [29]. Thus, researchers

are trying to make effective visualizations systems for the users so that they can easily build,

learn or teach the abstract concepts of computer science algorithms and data structures. But the

current visualization systems do not allow great flexibility for the educators to develop

animations without spending much time and they do not have enough time to understand the

system and build the animations [11]. Furthermore, the availability of ready-made, highly

recommended, good quality animations that can be used for teaching is less [28].

6.1 Motivation and associated research questions

Several attempts have been made over the past three decades to use animations widely in

computing education. But the results have been underwhelming. Having worked with jGRASP

for about two years now, my interest in researching the reason behind these disappointing results

has grown. When the users search for animations, they look for the best ones that not only can

teach the concepts well but also use advanced visualization system having most of the best

features in it. This can help the users interact well with the system and simultaneously

understand the algorithm execution. This provoked me to research the literature to know what

60

they consider as the prominent practices of visualization systems and see if these best practices

are incorporated in today‘s visualization systems. This could be one of the reasons for the

inconsistent usage and declining interest of visualization systems among the users. So my

research has started to see if the current visualization systems have all the needed requirements

and hence my thesis addresses the question whether the currently used algorithm and data

structure visualization systems adhere to these practices advocated in the literature.

The primary question that my research addresses is the extent to which current,

commonly available algorithm and data structure visualization systems adhere to these best

practices advocated in the extant literature. The hypothesis that my research investigates is:

Hypothesis: Most current visualization systems do not support most best practices.

The primary thesis question and the research hypothesis are supported by four specific research

questions.

RQ1: To what extent do current visualization systems adhere to the best practices?

RQ2: Which best practices are most commonly supported by current visualization

systems?

RQ3: Is there a set of visualization systems that, as a group, adhere to more best

practices than visualization systems in general?

RQ4: What portion of visualization systems are recommended for use in the classroom?

6.2 Methodology

After an extensive review of the literature, nine characteristics are determined to be the

best common practices that are categorized based on the type of users and the usage, domain,

need, task and resources. They are listed below:

61

1) Need to support flexible execution control of the algorithm visualization

2) Visualizations prompt users for answers to questions, predictions etc.

3) Provide a context for users to interpret the visualization

4) Provide multiple views or representations

5) Allow user-specified data sets

6) Provide underlying source code and program execution

7) Can be used as a lecture aid

8) Can be used for self-study

9) Can be used as a debugging aid

These best practices are used to evaluate current algorithm and data structure

visualization systems and understand the extent to which these systems adhere to the best

practices defined.

62

CHAPTER 7

DATA COLLECTION, ANALYSIS, AND RESULTS

7.1 Use of Algoviz.org

The AlgoViz portal (www.algoviz.org) provides information to users and developers of

algorithm visualizations through a software environment that is much like a digital library. To

make it more effective, both users and developers can review, discuss, and rate the content of

this portal so that the instructors are likely to use algorithm visualization more efficiently than

the regular practice. The primary focus of the AlgoViz portal is to provide the collected and

organized data from various educational communities to users through an online tool where the

users will have access to the videos and animations to illustrate the algorithm visualizations in

addition to the other sources of information. Furthermore, marketing the content of the AlgoViz

portal to users through social networking sites helps to keep up the communication with a larger

number of users in an innovative way. The hope is that by increasing the number of ways to

communicate and interconnect with the users, the contribution to the community will be

improved. This will help in broadcasting the community-driven content to the users and

developers through the AlgoViz portal.

The AlgoViz portal is an excellent repository of algorithm visualization information. The

key informational resource at the AlgoViz portal is the Algorithm Visualization Catalog, which

has hundreds of algorithm visualizations developed by designers using various visualization

tools. All these are evaluated and rated based on their use as teaching aid, self-learning or

63

debugging aid, as shown in the recommendation section of figure below from the AlgoViz

catalog.

Figure 7.1: Representation of recommended rating for a given visualization

In addition to the above features, AlgoViz also offers the community of developers to

have a connection with the users in order to develop more useful algorithm visualizations. In

order to reduce the problems and the present challenges in building up algorithm visualizations,

it is important to have a reachable resource through this portal where developers and users can

64

communicate. To facilitate this feature, the AlgoViz portal provides a complete collection of

links to algorithms through AV Catalog where both users and developers can view the topics in

the catalog, submit new algorithm visualization, and also browse this catalog provided by many

options. The algorithm visualization will be categorized as either recommended, not

recommended or has potential and also this particular section will give the user brief information

related to topic name, activity level, and delivery method as shown in figure 7.2. By having this

information, the user can filter out algorithm visualizations according to the requirement.

Figure 7.2: Representation of Algoviz Catalog

After selecting particular algorithm visualization it is further organized with more

information like the description, evaluation, usage notes, references, ratings, screenshots and

videos as shown in figure 7.3. The idea of choosing any topic or feature based on substantiation

65

of data and not by assumption definitely helps developers and educators to improve the quality

of algorithm visualizations. By sharing this portal as a common platform a developer can find

valuable comments from forums and can get reports from both fellow developers and users about

the working condition and drawbacks of the available algorithm visualizations.

Figure 7.3: Representation of fields for a visualization entry

Another important aspect of the AV Catalog is its collection of URLs or links to

algorithm visualizations online and therefore this is the base of the catalog entry structure where

66

each catalog entry channel contains important information about the visualization such as

delivery mechanism, details of the developers, description, and an evaluation of the pedagogical

value of the algorithm visualization. To express and report the experiences of the instructors with

specific algorithm visualizations in specific course settings, the AlgoViz portal provides a

mechanism called the field report that is shown in figure 7.4. Also these field reports will be

useful for educators or developers to get feedback from the fellow instructors, teaching

techniques and also helps in writing conference papers.

Figure 7.4: Field Reports entry in the AlgoViz portal

Another major resource of AlgoViz portal is its Annotated Bibliography which lists over

500 publications based on the research work related to algorithm visualization.

67

Figure 7.5: Representation of bibliography collection in AlgoViz portal

The collection of curate links to research literature on topics related to algorithm

visualizations as shown in figure 7.5 is the Annotated Bibliography index page. As a reference to

both the users and developers who intend to develop and explore more on algorithm visualization

techniques will have great opportunity to know and learn about the existing technologies from

referenced publications provided in this section.

To incorporate one of the other key factors of keeping the communication channel

between the learner and expert, AlgoViz portal provides a resource called Forums. This section

emphasizes on general discussion on algorithm visualization related topics, educator‘s forum

which helps in teaching techniques in the class rooms, developers forum to pertain discussions

related to programming and software development issues, and field reports. The forums

overview pages in figure 7.6 shows the title of each thread, number of replies, and number of

views with last updated information as well.

68

Figure 7.6: Snapshot of Forum discussions in AlgoViz portal

The requirements to build and develop new effective algorithm visualizations are

constantly increasing and it is important to make this information available to the users,

developers, and researchers. The algorithm visualization community comprised of both experts

and learners who come together and contribute to the collective knowledge through the AlgoViz

portal, benefits computer education in general. Specifically for this research, however, all the

essential features required for the study and development of algorithm visualizations are

available in AlgoViz in a well-organized manner. Thus, the AlgoViz portal served as the data

collection source for this thesis.

7.2 Summary of the data collection process

As discussed in the Section 7.1, the data to address the primary thesis question and the

supporting four research questions are collected from Algoviz.org. The complete information

and details about the AlgoViz portal are mentioned in the above Section 7.1. In this section, the

process of the data collection is explained in detail.

69

7.2.1 Data collection process

As the AlgoViz portal unifies the existing collection of online resources to most available

algorithm visualizations under the same portal, this feels to be the best repository to collect the

data needed for this research. Significant effort has been made to catalog as many existing

software visualization systems as possible concentrating in the field of algorithms and data

structures. As analysis on large set of data tends to give more accurate results, unique

visualization systems with mostly different visualizations are collected. The installation and

implementation of each of these systems with a given visualization, has given detailed

knowledge about its characteristics and response towards the algorithm. Each of the systems is

properly examined and evaluated against the nine best practices collected from the literature.

There is a huge collection of links to algorithm visualizations, using which any selected

visualization can be redirected. The Description and Usage Notes tags of the visualization also

help the user in running the system and the AV with no difficulty. The execution of each

visualization resulted in the evaluation of the system against the first six dimensions out of the

nine best practices categorized. This can be viewed in the figure 7.7 below for a sample AV

system ANIMAL on the Linked Lists data structure.

70

Figure 7.7: Description of a particular visualization in AlgoViz

The data for the remaining three practices is collected based on the ‗recommendation‘

rating for a given visualization in the AlgoViz portal. Recommendation of particular algorithm

visualization is considered as its overall assessment that is given by the AlgoViz wiki project

editors, managers and other raters. This category is divided into four aspects: Is this AV suitable

to be used as a Lecture Aid, or Self-study Supplement, or Standalone treatment of that topic, or a

Debugging Aid. These aspects are described in Section 7.1. The last three of nine best practices

are dealing with the AV rating on Lecture Aid, Self-study Supplement and Debugging Aid.

Based on the recommendation rating of visualization in each of the currently available software

visualization systems collected, data for the last three practices is collected and analyzed for

further evaluation. An example recommendation rating is shown in the figure below.

Figure 7.8: Recommendation rating based on various categories for a visualization entry

71

After the entire data set was collected for currently available software visualization

systems against the best practices in a spreadsheet, it was analyzed to address the primary thesis

question and related research questions.

7.3 Summary of the data collected

 Through the process described in the Section 7.1, the data needed for the analysis is

collected. Extensive research is performed to gather a significant number of currently used

algorithm and data structure visualization systems, result of which is the collection of 30 systems

from the AlgoViz portal. These 30 systems are individually examined and a detailed analysis

about their functionality is performed. Each of those is examined with an example algorithm

using the links provided in Algoviz.org. The algorithm visualizations required for the research

are chosen based on the overall recommendation shown in the catalog against each entry as

shown in the figure below from Algoviz.org catalog for ANIMAL – Linked Lists. This overall

rating is of three types: ‗Recommended‘, ‗Not Recommended‘, and ‗Has Potential‘. All the

algorithm visualizations chosen to run on the 30 visualization systems are ‗Recommended‘

overall rating. The data is selected this way to run the analysis on today‘s highly recommended

visualizations to see if they adhere to the best practices defined.

Figure 7.9: Overall recommendation rating for a visualization entry

72

The data collected is listed in a spreadsheet where each software visualization system is

associated with algorithm visualization and the corresponding website link from Algoviz.org.

Each visualization system is evaluated based on the nine best practices described in Chapter 4,

and have 1-9 dimension numbers associated with them. The data collected is listed in two tables

below (Table 7.1 and 7.2) that have to be coupled together to understand the data significance.

The dimension number that each visualization system is measured with in table 7.1 is described

in with one of the nine practices in table 7.2. The visualization systems are rated based on two

factors: YES or NO. A ‗YES‘ on the cell is that the corresponding software visualization system

supports the given best practice and ‗NO‘ is the vice-versa of it. The entire data collected is

provided in the Appendix A. Only part of the data is shown in the Table 7.1 below. But the

research and analysis for the hypothesis including other related research questions is performed

on the entire data collected.

Table 7.1: Representation of the data collected based on the AlgoViz portal

73

Table 7.2: Representing best practices as stated in this thesis

 The data collected here is the core information for examining the visualization systems

and to evaluate them based on different types of analysis performed to address various research

questions. This is explained in detail in the Section 7.4.

7.4 Data analysis

 To address the primary thesis question: ‗To what extent do current, commonly available

visualization systems adhere to the best practices advocated in the literature?‘ a hypothesis has

been proposed saying that most current software visualization systems do not adhere to most the

best practices reported in the literature. Series of steps have been performed to address the

problem in order. It comprises of literature review in the beginning that involves gathering much

information about the respective topic. Based on the research of the literature, the common best

practices are sorted out, that are essential for any visualization for it to be considered as useful

learning material. Several currently available software visualization systems are then evaluated

against these best practices and the analytical data is extracted. This is analyzed in depth to

address several questions that are discussed below. It helps the developers to know how to

74

develop high quality algorithm visualizations, the users on how to use them effectively, and the

educators on how to find an effective AV.

 The data analysis is divided into five sub sections comprising of analysis on the collected

data to address the hypothesis and four related research questions (RQs). The overall analysis

from these five steps (refer sections below) helps the current research to focus on existing AV

problem. Though only part of data collected is shown in the chapter here and entire data in the

Appendix, the data analysis is performed on the whole data collected. It helps in achieving more

accurate and less precision results from the large dataset analysis.

7.4.1 Data analysis to address the hypothesis

The data collected is employed for analyzing the software visualization systems based on

the number of best practices they support. Depending on the results, the hypothesis that most

currently available software systems do not adhere to most best practices from literature is

assessed. A numerical analysis has been performed on the gathered data to check on how many

practices or features are supported by a given visualization system out of the 9 best practices.

The statistical data for this is also calculated and all this analytical data is represented in the table

7.3 below. Based on the analysis of 30 different currently available visualization systems from

the table below, it is clearly seen that none of these systems support all of the best practices.

Only 33% support more than half of the best practices. This refutes the null hypothesis (viz.,

most visualization systems support most of the best practices), and thus we can claim that our

hypothesis is supported by the data.

75

Table 7.3: Data analysis to address the hypothesis

The algorithms and data structures used in the visualizations for analysis are common

ones in CS2 and CS3 courses. Also, all these visualizations are recommended by the AlgoViz

active committee. Evaluating such visualizations would give more practical and better results.

The results are listed in a spreadsheet and shown as a table above (in Table 7.3) with the

visualization systems in the decreasing order of the practices supported. The percentage of the

best practices supported in a given software visualization system is calculated based on the data

analyzed and is tabulated to determine the strength of each system in the current period. For

example, the data from the Table 7.3 can be interpreted saying that the jGRASP visualization

system supports 8 of the 9 best practices; i.e., it supports 88.9% of the common practices today.

76

The higher the number of practices supported, the more is the chance of improving the use of

visualizations by various types of users (discussed in the section 1.4) and overcoming the

existing problems. Depending on the rating provided in the table as percentage, the system or

visualization developer could easily understand the flaws in it and would be able to build new

solution. More number of effective visualizations would ultimately help the students learn better

and improve their understanding of algorithms and data structures.

7.4.2 Data analysis to address RQ1

 The current research is assisted with four related research questions that can further

address the primary thesis question and the associated the hypothesis. The first of them is to what

extent does currently available software visualization systems adhere to the best practices as

reported in literature. It is important to understand the extent to which the visualization systems

promote learning by supporting the best practices. This research question is addressed by

performing quantitative analysis on the data collected from Algoviz.org (shown below) and

calculating the overall percentage of the number of commonly available software visualization

systems that support a given practice, out of the 9 best practices. For each practice, the

percentage of how many systems meet that practice is calculated by counting the number of

‗YES‘ fields from the Table 7.4 (same as Table 7.1, but shown again for easy reference with

Table 7.5) for each dimension number 1 through 9. The results can be seen from the Table 7.5

while each dimension number is clearly described in the Table 7.6 (same as Table 7.2).

77

Table 7.4: Representation of the data collected based on the AlgoViz portal

Table 7.5: Data analysis to address research related question 1

Table 7.6: Representing best practices as stated in this thesis

It is easy to understand the analysis when seen in numbers or in a relative comparison.

For example, the data can be interpreted saying that only 46.67% of the currently available

78

visualizations support the 5
th

 practice which allows user-specified data input while running the

visualization. By examining the analysis for this question, it is important to note that none of the

practices is supported by all the available visualizations. Or in other words, it can be said that

none of the current visualization systems have all the common features or practices (as defined in

chapter 4) that make them effective. This could be one of the reasons for the decline in the use of

visualizations by the users. But positively, there are several systems supporting most of the best

practices (can be seen from the Table 7.4), which makes them more established today when

compared to the others.

7.4.3 Data analysis to address RQ2

 The second research question related to the hypothesis is which best practices are most

commonly present in currently available software visualization systems. It is true that a small

number of practices featured by algorithm visualizations have significant impact on its effective

usage.

 To address this related research question, the analyzed data from Section 7.4.2, Table 7.5

is taken to perform further analysis. The analyzed data has the percentage calculated on how

many commonly available software visualization systems support a given best practice.

Table 7.7: Data analysis to address research related question 2

79

Table 7.8: Representing best practices as stated in this thesis

To see the commonly supported best practices from the Table 7.5, it is clearly the highest

percentage value among the nine. As we see here, the most commonly present characteristics in

all the currently available algorithms and data structure visualizations are practices 1 and 3 from

the Table 7.8. So, most of the existing visualizations have user controls like start/stop,

forward/backward direction control, speed etc. to help the users interact with the visualization

easily. This number comes up to be 96.67%, which means visualizations developed by 29

systems out 30 support this respective practice. It is good to know that most of the visualization

developers understand the importance of user interaction and incorporated interactive designs for

better learning. This is the primary step from the visualizations to have an impact on the

student‘s learning. The next practice that the most common visualizations support is that they

provide the users a context to interpret the visualizations better. It is 66.67% of the current

visualization systems support this feature, which means 20 out of 30 systems from the dataset

have this characteristic available for their visualizations. It is exciting to know that 2/3
rd

 of the

existing systems have the option to add this feature to their visualizations. The developers need

to understand the novice user‘s perspective and provide efficient resources using the

80

visualization systems like text description explaining the algorithm, source or pseudo code

compatibly shown next to the animation in order to assist the learner‘s understanding.

7.4.4 Data analysis to address RQ3

 The third research related question is whether any set of software visualization systems

that support more number of best practices fall into a certain category or is it whether certain

types of software visualization systems more likely to support the 9 best practices. To address

this question, data analyzed for the hypothesis is taken from the Table 7.3 and sorted the

visualization systems based on the number of best practices supported. The list of systems that

have 50% or greater percentage of best practices supported is shown in the Table 7.9 below.

While the remaining systems with less than 50% of practices supported are shown in the next

Table 7.10. This part of analysis comprises of 3 different categories where the visualization

systems supporting more number of best practices come into.

Table 7.9: Data showing SV systems supporting more practices in order to address research

related question 3

81

1
st
 Category: The systems that possess more practices are jGrasp, JHave, AlViE, Uuhistle,

Jeliot, AIA, Auckland, JFlap, Trakla and Virginia Tech AV. Most of these systems from Table

7.9 are well established software visualization groups like jGRASP, JHAVE, TRAKLA,

JELIOT, AlViE, Algorithms In Action, Auckland etc. when compared to the list from Table 7.10

that have established groups like ANIMAL, JAWAA. This can be interpreted saying that most of

the established groups are likely to exhibit more number of best practices when compared to

others from Table 7.10.

2
nd

 Category: When a particular visualization is run using any of these 30 systems, it is clearly

noticed from the design view that some systems concentrate exclusively on a certain set of

algorithms like sorting algorithms while some of them are designed for general purpose to

support any given random algorithm. It can be inferred from here that systems that support a

particular set of algorithms tend to support more practices than those designed for general

purpose use.

82

Table 7.10: Data showing SV systems supporting fewer practices in order to address research

related question 3

3
rd

 Category: The AV Catalog from Algoviz.org has hundreds of visualizations listed. When

this data is sorted based on the recommendation level, the data obtained is as shown in the figure

7.10. The filtered data consists of visualizations developed by various algorithm visualization

systems. The visualizations can be either ‗algorithms‘ or ‗data structures‘. When the filtered data

is analyzed and examined, most of the recommended visualizations are different kinds of

‗algorithms‘. From this data analysis it can be suggested that visualizations that are focused more

on data structures generally exhibit fewer best practices than those focused on a particular

algorithm.

83

Figure 7.10: Data analysis to address research related question 3

84

7.4.5 Data analysis to address RQ4

 The fourth research related question is how many currently available software

visualization systems are recommended for use in the classroom. The primary use of algorithm

visualizations is to help learners understand the abstract computer science concepts better. The

effectiveness of a given algorithm visualization is measured by its pedagogical use [29]. It builds

upon not only on how well students acquire knowledge from the visualizations but also on how

widely instructors use them for pedagogical purposes. This question is addressed by analyzing

the data collected from the AlgoViz portal. It is sorted based on the 7
th

 practice (as seen from the

Table 7.12) which is if the visualization developed by one of the 30 systems collected can be

used as a lecture aid or not. The results are calculated by counting the number of systems that

can be used for instruction and are shown in the Table 7.11.

85

Table 7.11: Data analysis to address research related question 4

86

Table 7.12: Representing best practices as stated in this thesis

 It is observed that 53.33% of the currently available algorithm visualization systems are

recommended for use in the classroom, which means 16 out of 30 systems in the dataset

collected from AlgoViz portal support this practice. So it is more than 50% of the existing

systems or the visualizations developed by them are capable to be used for pedagogy purposes,

which is a positive note. But the impact they have on students is relatively low as they should

also be aware of how to use them effectively. It is equally difficult for the instructors too as they

would have to spend lot of extra time discovering the working of the system, understanding the

visualization, and learning to develop their own visualizations. This issue is discussed in detail in

the section 4.7. The developers have to always have students‘ perspective in mind while creating

new visualizations as the outcome needs to be pedagogy oriented.

87

CHAPTER 8

SUMMARY AND CONCLUSIONS

 Software visualization developers and researchers are constantly looking for new

approaches to grab students‘ attention for learning through visualizations and continuously

diagnosing the existing problems for better solutions that improves the use of algorithm

visualizations and student learning. While some studies indicated improvement in student

learning using visualization, others could hardly find differences between traditional teaching

and teaching through animation or even had contradictory results. There may be several reasons

for this, such as less student engagement in the visualization, inappropriate usage, less use in the

classroom, less interaction between the user and the animation etc.

Through this research we were able to clearly quantify the extent to which current

visualization systems support best practices from the literature. The results were not satisfactory,

as most systems do not exhibit the majority of the pedagogical features that help in learning

difficult concepts and improving the ability to understand algorithms and data structures. Indeed,

it is noteworthy that none of the 30 systems surveyed supported all nine best practices. Few

practices are supported commonly by all the existing visualizations, but the key feature that is

supported most widely is the level of engagement, which has higher chances to enhance student

learning. Another important feature is whether the visualizations can be used as learning aid. It

involves the satisfaction of both instructors and students.

88

The problems faced by students, teachers or programmers in understanding algorithms

are not all solved by visualization technology, of course. Even today, for certain complex

concepts in computer science, textual communication proved to be superior and effective when

compared to the visual programming languages and the visualizations [51, 52]. However, it is

clear that appropriate visualizations, particularly those that exhibit known best practices, can

have a positive impact on teaching and learning. The research reported in this thesis is an

important step forward in quantifying the maturation of the field. While current systems as a

whole are not mature (i.e., do not adhere to most best practices), there are selected groups of

visualization systems that are highly mature and have a great potential for positive impact.

89

REFERENCES

1) R. Baecker (1975) Two systems which produce animated representations of the execution

of computer programs. SIGCSE Bulletin 7, 158-167.

2) M. H. Brown (1988) Algorithm Animation. The MIT Press, Cambridge, MA.

3) J. T. Stasko (1990) TANGO: A framework and system for algorithm animation. IEEE

Computer 23, 27-39.

4) J.T. Stasko (1997) Using student-built animations as learning aids. In: Proceedings of the

ACM Technical Symposium on Computer Science Education. ACM Press, New York, pp.

25-29.

5) C. D. Hundhausen (1999) Toward effective algorithm visualization artifacts: designing

for participation and communication in an undergraduate algorithms course. Unpublished

Ph.D. dissertation, Department of Computer and Information Science, University of

Oregon.

6) P. Gloor (1998) Animated algorithms. In: Software Visualization: Programming as a

Multimedia Experience (M. Brown, J. Domingue, B. Price&J. Stasko, eds) The MIT

Press, Cambridge, MA, pp. 409-416.

7) J. S.Gurka, & W. Citrin (1996) Testing effectiveness of algorithm animation. In:

Proceedings of the 1996 IEEE Symposium on Visual Languages. IEEE Computer Society

Press, Los Alamitos, CA, pp. 182-189.

90

8) T. Naps (1990) Algorithm visualization in computer science laboratories. In: Proceedings

of the 21st SIGCSE Technical Symposium on Computer Science Education. ACM Press,

New York, pp. 105-110.

9) Akingbade, A., Finley, T., Jackson, D., Patel, P., and Rodger, S. H. JAWAA: Easy Web-

Based Animation from CS 0 to Advanced CS Courses. In Proceedings of the 34th ACM

SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2003), Reno,

Nevada (2003), ACM Press, New York, pp. 162-166.

10) Levy, R. B.-B., Ben-Ari, M., and Uronen, P. A. (2000). An Extended Experiment with

Jeliot 2000. In Proceedings of the First International Program Visualization Workshop,

Porvoo, Finland (July 2001), University of Joensuu Press, Finland, pp. 131-140.

11) T.L. Naps et al., ―Exploring the role of visualization and engagement in computer science

education‖, ACM SIGCSE Bulletin, Volume 35, Issue 2, ACM, New York USA, 2003,

pp. 131-152

12) Price, B., Baecker, R., and Small, I. An Introduction to Software Visualization. In

Software Visualization, J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, Eds. MIT

Press, 1998, ch. 1, pp. 3-27.

13) Robling, G., and Freisleben, B. ANIMAL: A System for Supporting Multiple Roles in

Algorithm Animation. Journal of Visual Languages and Computing 13, 2 (2002), 341-

354.

14) T.L. Naps et al., ―Evaluating the educational impact of visualization‖, Annual Joint

Conference Integrating Technology into Computer Science Education, ACM, New York

USA, 2003, pp 124-136.

91

15) M. H. Brown and R. Sedgewick. A system for algorithm animation. In SIGGRAPH ‘84:

Proceedings of the 11th Annual Conference on Computer Graphics and Interactive

Techniques, pages 177–186, New York, NY, USA, 1984. ACM Press.

16) S. R. Hansen, N. H. Narayanan, and D. Schrimpsher. Helping learners visualize and

comprehend algorithms. Interactive Multimedia Electronic Journal of Computer-

Enhanced Learning, 2, 2000.

17) J. S. Gurka and W. Citrin. Testing effectiveness of algorithm animation. In Proceedings,

IEEE Symposium on Visual Languages, pages 182–189, 1996.

18) M. D. Byrne, R. Catrambone, and J. T. Stasko. Do algorithm animations aid learning?

Technical Report GIT-GVU-96-18, Georgia Institute of Technology, 1996.

19) C. Hundhausen and S. Douglas. Using visualizations to learn algorithms: should students

construct their own, or view an expert‘s? In Proceedings, IEEE Symposium on Visual

Languages, pages 21–28, 2000.

20) D. J. Jarc, M. B. Feldman, and R. S. Heller. Assessing the benefits of interactive

prediction using web-based algorithm animation courseware. In SIGCSE ’00:

Proceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science

Education, pages 377–381, New York, NY, USA, 2000. ACM Press.

21) A. W. Lawrence, J. Stasko, and A. Badre. Empirically evaluating the use of animations to

teach algorithms. In Proceedings, IEEE Symposium on Visual Languages 1994, pages

48–54. IEEE Computer Society, 1994.

22) Hansen, S., Narayanan, N. H., and Hegarty, M. (2002). Designing Educationally

Effective Algorithm Visualizations. Journal of Visual Languages & Computing, 13(3),

pages 291-317, 2002.

92

23) Khuri, S., "Designing Effective Algorithm Visualizations", First International Program

Visualization Workshop, Porvoo, Finland, University of Joensuu Press, pp. 1–12,

02/2001.

24) Baker, A., and Milanovic, B. 2008. A Universal Extensible Architecture for Algorithm

Visualization Systems. In 2008 International Conference on Computer Science and

Software Engineering, Wuhan, China December 12-14, pages 1-4, 2008.

25) P. Ihantola et al., ―Taxonomy of effortless creation of algorithm visualizations‖,

International Computing Education Research Workshop, Proceedings of the 2005

International Workshop on Computing Education Research, ACM, Seattle USA, October

2005, pp 123-133.

26) Michal Mnuk, ―How helpful are systems for algorithm visualization?‖, Technical Report

TUM-I0303, Institut für Informatik TU München, München Germany, April 2003.

27) R. Fleischer, L. Kučera, ―Algorithm animation for teaching‖, Lecture Notes In Computer

Science; Vol. 2269, Springer Verlag, London UK, 2001, pp. 113-128.

28) C.A. Shaffer, M. Cooper, and S.H. Edwards, ―Algorithm visualization: a report on the

state of the field‖, ACM SIGCSE Bulletin, Volume 39, Issue 1, Section: Algorithm

Visualisation, ACM, New York USA, 2007, pp. 150-154.

29) Hundhausen et al., ―A meta-study of algorithm visualization effectiveness‖, Journal of

Visual Languages & Computing, Volume 13, Issue 3, June 2002, pp 259-290.

30) B. A. Price, R. M. Baecker, and I. S. Small, "A principled taxonomy of software

visualization", Journal of Visual Languages and Computing, England, 1993, pp. 211-266.

93

31) Bingyao Jin; Mingmei Jin; Xiaoqing Xue, "Algorithm animation and its applications in

instruction," Ubi-media Computing (U-Media), 2010 3rd IEEE International Conference

on , vol., no., pp.272-276, 5-6 July 2010.

32) Khuri, S. A user-centred approach for designing algorithm visualizations. Informatik /

Informatique, Special Issue on Visualization of Software (Apr 2001), 12--16.

33) Jaime Urquiza-Fuentes and J. Angel Velazquez-Iturbide. 2009. A Survey of Successful

Evaluations of Program Visualization and Algorithm Animation Systems. Trans.

Comput. Educ. 9, 2, Article 9 (June 2009), 21 pages.

34) Karavirta. V, "Facilitating algorithm animation creation and adoption in education",

Licentiate's thesis, Helsinki University of Technology, available at

http://www.cs.hut.fi/Research/svg/publications/karavirta-lis.pdf, 2007.

35) Colleen Kehoe, John Stasko, and Ashley Taylor, "Rethinking the evaluation of algorithm

animations as learning aids: an observational study", International Journal of Human

Computer Studies, Academic Press, Inc, Duluth, MN, USA, Feb. 2001, pp. 265-284.

36) M. D. Byrne, R. Catrambone, and J.T. Stasko, "Evaluating animations as student aids in

learning computer algorithms", Computer & Education, 1999, pp. 253-278.

37) Tobias Lauer, "When does Algorithm Visualization Improve Algorithm Learning?

Reviewing and Refining an Evaluation Framework", Proceedings of informatics

education Europe III, Venice, Italy, 2008, pp. 265-284.

38) Ben-Bassat Levy, R., Ben-Ari, M. & Uronen, P.A. (2003). The Jeliot 2000 program

animation system. Computers & Education, 40(1), 1-15.

94

39) Stasko, J., Badre, A., and Lewis, C. Do Algorithm Animations Assist Learning? An

Empirical Study and Analysis. Proceedings of ACM INTERCHI 1993 Conference on

Human Factors in Computing Systems (1993), 61-66.

40) Rajala, T., Laakso, M. J., Kaila, E., and Salakoski, T. 2008. Effectiveness of Program

Visualization: A Case Study with the ViLLE Tool. Journal of Information Technology

Education, Volume 7, 16-32.

41) Korhonen, A., and Malmi, L. Algorithm Simulation with Automatic Assessment. 5th

Annual ACM SIGCSE/SIGCUE Conference on Innovation and 152 Technology in

Computer Science Education (ITiCSE 2000), Helsinki, Finland (July 2000), 160-163.

42) Saraiya P, Shaffer CA, McCrickard DS, North C. Effective Features of Algorithm

Visualizations. In: SIGCSE '04: Proceedings of the 35th SIGCSE Technical Symposium

on Computer Science Education. Norfolk, VA: ACM; 2004. p. 382-6.

43) Naps, T., Rodger, S., Röbling, G., & Ross, R. (2006). Animation and visualization in the

curriculum: opportunities, challenges, and successes. In Proceedings of the 37th SIGCSE

technical symposium on Computer science education (2006), pp. 328 329.

44) B. Price, R. Baecker, and I. Small. A principled taxonomy of software visualization.

Journal of Visual Languages and Computing, 4:211–266, 1993.

45) Levy, R. B., & Ben-Ari, M. (2007). We work so hard and they don't use it: acceptance of

software tools by teachers. In Proceedings of the 12
th

 annual SIGCSE conference on

Innovation and technology in computer science education (2007), pp. 246-250.

46) C. Kann, R. Lindeman, and R. Heller. Integrating algorithm animation into a learning

environment. Computers & Education, 28:223–228.

95

47) M.L. Cooper. Algorithm visualization: The state of the field. Master‘s thesis, Virginia

Tech, April 2007.

48) Barbu, A., Dromowicz, M., Gao, X., Koester, M., and Wolf, C. Bubblesort-Animation,

1998. Available at http://olli.informatik.uni-oldenburg.de/fpsort/Animation.html

49) Guido Robling, Markus Schuer, and Bernd Freisleben. 2000. The ANIMAL algorithm

animation tool. SIGCSE Bull. 32, 3 (July 2000), 37-40.

50) Thomas L. Naps, "JHAVE: Supporting Algorithm Visualization," IEEE Computer

Graphics and Applications, pp. 49-55, September/October, 2005

51) Petre, M., & Green, T. (1993). Learning to read graphics: Some evidence that ―seeing‖ an

information display is an acquired skill. Journal of Visual Languages and Computing,

4(1), 55-70.

52) Petre, M. (1995). Why looking isn‘t always seeing: Readership skills and graphical

programming. Communications of the ACM, 38(6), 33-44.

53) Stasko, J. (1998). Building software visualizations through direct manipulation and

demonstration. In J. Stasko, J. Domingue, M. Brown, & B. Price (Eds.), Software

visualization - Programming as a multimedia experience (pp. 187-203). Cambridge, MA:

MIT Press.

54) Margarita Esponda-Argüero, 2008. Algorithmic Animation in Education - Review of

Academic Experience. J. Educational Computing Research, Vol. 39(1) 1-15, 2008

55) Sedgewick, R. (2003). Bundle of algorithms in Java: Fundamentals, data structures,

sorting, searching, and graph algorithms (3rd ed.), Reading, MA: Addison-Wesley.

56) Lohse, G., Biolski, K., Walker, N., & Rueter, H. (1994). A classification of visual

representations. Communications of the ACM, 12(12), 36-49

96

57) Dondis, D. (1973). A primer of visual literacy. Cambridge, MA: MIT Press.

58) Goodrich, M., & Tamassia, R. (1998). Teaching the Analysis of Algorithms with Visual

Proofs. Proceedings of the 29th SIGCSE Technical Symposium on Computer Science

Education.

59) Scanlan, D. (1999). Structured flowcharts outperform pseudocode: An experimental

comparison. IEEE Software, 6(5), 28-36

60) Knuth, D. (1984). Literate programming. The Computer Journal, 27(2), 97-111.

61) Glinert, E. (Ed.). (1990). Visual programming environments: Applications and issues.

New York: IEEE Computer Society Press

62) Chang, S. (1987). Visual languages: A tutorial and survey. IEEE Software, 4(1), 29-39

63) Ciesielski, V., & McDonald, P. (2001). Using animation of state space algorithms to

overcome student learning difficulties. In Proceedings of the 6th Annual Conference on

Innovation and Technology in Computer Science Education (pp. 97-100). Canterbury,

UK.

64) Stern, L., & Sterling, L. (1997). Teaching AI using animations reinforced by interactive

exercises. Proceedings of the Second Australasian Conference on Computer Science

Education (pp. 78-83). University of Melbourne, Australia

65) Jackson, D., & Fovargue, A. (1997). The use of animations to explain genetic algorithms.

Proceedings of the 28th SIGCSE Technical Symposium on Computer Science Education

(pp. 243-247). San Jose, CA

97

66) Selig, W., & Johannes, J. (1990). Reasoning visualization in expert systems: The

applicability of algorithm animation techniques. Proceedings of the Third International

Conference on Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems (Vol. 1, pp. 457-466). Charleston, SC

67) Domingue, J. (1998). Visualizing knowledge based systems. In J. Stasko, J. Domingue,

M. Brown, & B. Price (Eds.), Software visualization—Programming as a multimedia

experience (pp. 223-236). Cambridge, MA: MIT Press

68) Jackson, D., & Morton, I. (1996). Algorithm animation of neural networks. Proceedings

of the 1st Conference on Integrating Technology into Computer Science Education (pp.

39-41). Barcelona, Spain

69) Hansen, S., Schrimpsher, D., Narayanan N., & Hegarty, M. (1998). Empirical studies of

animation-embedded hypermedia algorithm visualizations. Department of CS and

Engineering, Auburn University. Technical Report CSE98-06

70) Stasko, J. (1997). Using student-built algorithm animations as learning aids. Proceedings

of the 1997 ACM SIGCSE Conference (pp. 25-29). San Jose, CA

71) Hübscher-Younger, T., & Narayanan, N. (2003b). Dancing hamsters and marble statues:

Characterizing student visualizations of algorithms. Proceedings of the 2003 ACM

Symposium on Software Visualization (pp. 95-104). San Diego, CA

72) Faltin, N. (2002). Strukturiertes aktives Lernen von Algorithmen mit interaktiven

Visualisierungen. Unpublished Ph.D. thesis. Computer Science Department. Oldenburg

University

73) Rajat Anantharam, ―Visualization of Software Engineering Diagrams Part – 1‖, Utrecht

University, available at http://www.slidefinder.net/r/rajat1/10189299, 2010

98

74) Brown, M., & Sedgewick, R. (1985). Techniques for Algorithm Animation. Software,

IEEE, 2(1), 28-39

75) Doyle M., Rawe, B., and Rogers, A. 2007. JDLX: Visualization of Dancing Links,

Northern Kentucky University, Highland Heights, KY

76) Building a Community and Establishing Best Practices in Algorithm Visualization

through the AlgoViz Wiki. http://research.cs.vt.edu/AVresearch/Documents/CCLI08.pdf,

May 2008.

77) Schweitzer, D., and Baird, L. 2006. The Design and Use of Interactive Visualization

Applets for Teaching Ciphers. In Proceedings of the 7
th

 IEEE Workshop on Information

Assurance, U.S. Military Academy, West Point, NY, 21-23 June 2006

78) Alon, A. 2010. The AlgoViz Project: Building an Algorithm Visualization Web

Community. Masters dissertation. Virginia Polytechnic Institute and State University,

Virginia.

79) Ebel, G., & Ben-Ari, M. (2006). Affective effects of program visualization. In

Proceedings of the second international workshop on computing education research (pp.

1-5). Canterbury, United Kingdom

80) Lauer, T. (2006). Learner interaction with algorithm visualizations: viewing vs. changing

vs. constructing. In Proceedings of the 11th annual SIGCSE conference on Innovation

and technology in computer science education (pp. 202-206). Bologna, Italy

81) Algoviz, 2006. Algoviz wiki. http://wiki.algoviz.org/AlgovizWiki/

82) Maravic Cisar, S.; Pinter, R.; Radosav, D.; Cisar, P.; , "Software visualization: The

educational tool to enhance student learning," MIPRO, 2010 Proceedings of the 33rd

International Convention , vol., no., pp.990-994, 24-28 May 2010

99

83) Hundhausen, C. 2003. Exploring Cognitive, Social, and Cultural Dimensions of

Visualization in Computer Science Education. In The Algorithms Studio Project,

Washington State University, Pullman, WA

84) Hübscher-Younger, T., and N. H. Narayanan, "Constructive and collaborative learning of

algorithms", ACM SIGCSE Bulletin, vol. 35, issue 1, pp. 6-10, 01/2003.

85) Virginia Tech Data Structures and Algorithm Visualization Research Group. Data

Structures and Algorithm Visualization Wiki. http://algoviz.cs.vt.edu, 2008.

86) Hundhausen, C. D., and Douglas, S. A. 2002. Low-fidelity algorithm visualization.

Journal of Visual Languages and Computing 13, 449–470.

87) Petri Ihantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. 2005. Taxonomy of

effortless creation of algorithm visualizations. In Proceedings of the first international

workshop on Computing education research (ICER '05). ACM, New York, NY, USA,

123-133.

88) Guido Robling, Mike Joy, Andres Moreno, Atanas Radenski, Lauri Malmi, Andreas

Kerren, Thomas Naps, Rockford J. Ross, Michael Clancy, Ari Korhonen, Rainer Oechsle,

and J. Angel Velazquez Iturbide. 2008. Enhancing learning management systems to

better support computer science education. SIGCSE Bull. 40, 4 (November 2008), 142-

166.

89) Karavirta, V., Korhonen, A., Malmi, L. and Stalnacke, K. MatrixPro - A Tool for On

The-Fly Demonstration of Data Structures and Algorithms. In Korhonen, A. Ed.

Proceedings of the Third Program Visualization Workshop. (Coventry, UK). The

University of Warwick, UK, 2004, 26-33.

90) Ari Korhonen. Visual Algorithm Simulation. Doctoral thesis, Helsinki University of

Technology, 2003.

100

91) The AlgoViz Portal: Lowering the Barriers for Entry into an Online Educational

Community. http://research.cs.vt.edu/AVresearch/Documents/NSDL.pdf, NSDL Annual

meeting 2009.

92) Arnheim, R. (1969). Visual thinking (1
st
 ed.). University of California Press; (2

nd
 ed.).

London: Faber and Faber.

93) Dunham, William (1974), The Mathematical Universe, John Wiley and Sons.

94) Ronald, B. Sorting Out Sorting: A Case Study of Software Visualization for Teaching

Computer Science. In Software Visualization: Programming as a Multimedia Experience,

chapter 24, Vol. 24 (1998), pp. 369-381.

95) Montgomery, L. N., Cross, J. H., Hendrix, T. D., & Barowski, L. A. (2008). Testing the

jGRASP Structure Identifier with Data Structure Examples from Textbooks. In

Proceedings of the 46th ACM Southeast Conference (pp. 198-203). Auburn, AL.

101

APPENDIX A

 The complete data set that is collected for the analysis and research of this thesis based on

the AlgoViz portal is listed below. Only part of this data is shown in the section 7.3, table 7.1.

But the research conducted and the results calculated are based on the entire dataset.

