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Abstract

This work presents a method for incorporating GPS (Global Positioning System) and

standard roll stability control (RSC) sensors into the electronic stability control (ESC) and

RSC systems. It is an adaptation of the very well known loosely-coupled GPS/INS (Inertial

Navigation System) integration strategy which has been modified for the purposes of ESC

systems. The first modification is the removal of the pitch rate gyroscope, a sensor which

is unavailable on commercial vehicles. The second modification deals with the observability

problems of the standard loosely coupled filter by adding heading constraints when the ve-

hicle is not turning. The structure and algorithm of this method is presented. Observability

conditions are evaluated, and the convergence of the estimates are analyzed via simulations.

The conclusions from these simulations are compared with the expectations from the lit-

erature and observability condition checks. An experiment which illustrates the long term

performance of the bias estimation was performed, followed by an experiment showing the

roll and sideslip estimation performance during dynamic events. It is shown that over the

long term the inertial bias estimates will converge if the vehicle experiences adequate dy-

namics, and that the system is able to accurately estimate sideslip and roll during dynamic

maneuvers. The system is also able to estimate slow sideslip buildup, an important capabil-

ity for ESC systems. The unified system is compared with a less integrated or “modular”

approach for both experiments.

Furthermore, a method for using GPS to detect tire pressure changes is presented based

on the hypothesis that the tire effective radius varies according to tire pressure. A technique

using GPS and wheel speed signals to estimate the effective radius of the tires is discussed
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and validated in simulation and experiment. Experiments are given to show how the ra-

dius estimate varies according to tire pressure, and a simple pressure loss detection law is

discussed. A method to detect steering misalignment is also presented.
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Chapter 1

Introduction and Background

Intelligent safety systems are an increasing focal point in today’s automotive industry.

The motivation for these systems stems from the tragic reality that tens of thousands of

people are killed in motor vehicle accidents every year. For example, over 37,000 people

were killed in vehicle accidents in 2008. Rollover accounted for 33% of these deaths. In fact,

motor vehicle crashes are the leading cause of death among Americans between the ages

of 1 and 34 [17]. The problem has received so much attention that Congress has enacted

legislation requiring all new vehicles after 2012 to include certain intelligent safety systems

as standard features such as electronic stability control (ESC).

Electronic stability control systems and roll stability control (RSC) systems are key

elements of the modern effort to improve and increase the safety capabilities of passenger

vehicles. ESC systems seek to control unsafe yaw and lateral motions of the vehicle. These

motions can occur when the vehicle begins to lose traction and a dangerous over steer

situation arises. One extreme example would be the back end of the vehicle “sliding out” or

“fish-tailing” during a turn. ESC systems apply control in these situations via differential

braking of the individual tires to create the desired control moment. This is also true of RSC

systems, which as their name suggests seek to minimize unsafe levels of vehicle roll. Both of

these systems utilize feedback control systems, requiring information about particular states

of the vehicle. Two of the most critical states for these systems are the sideslip and roll

angles, which are also two of the most expensive to directly measure. In order to obtain

accurate information about these states without greatly increasing the production cost of

the vehicle, state estimation theory must be applied with the sensors which are already on

board. This is the goal of this thesis.
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Figure 1.1: Sideslip Definitions in the Navigation and Body Coordinate Frames.

Now consider the two definitions of sideslip followed by a discussion of the vehicle

coordinate frame. Figure 1.1 shows a simple diagram of a single track vehicle situated in

the North-East plane of the North-East-Down (NED) coordinate frame. Not shown is the z

axis of the NED frame, which goes into the page to complete a right handed system. The

blue dashed lines show the body coordinate frame, with the x axis aligned with the forward

direction of the vehicle, the y axis perpendicular to right side, and the z axis pointing into

the page to complete the right handed system. For the purposes of this diagram, the two z

axes are collinear, but this is not true generally. In Figure 1.1, the bold vector V represents

the velocity vector of the vehicle’s center of gravity, while the blue vectors Vx, Vy represent

the components resolved into the body frame. The angle ν is defined as the “course” angle,

and represents the angle of V from North. The angle ψ is defined as the “heading” angle
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or yaw angle and represents the angular direction that the vehicle is facing from North.

Both angles are positive in the clockwise direction. The angle β is the sideslip angle, which

can now be defined in two ways. First, it can be thought of as the difference between the

direction that the vehicle is moving and the direction that it is facing as described in (1.1).

β = ν − ψ (1.1)

Sideslip can also be thought of as the ratio of the lateral and forward velocities, as in (1.2).

β = atan(
Vy
Vx

) (1.2)

In both definitions, the sideslip angle is positive in the clockwise direction. Equation (1.2)

is more suitable to intuition, because it basically shows that sideslip is simply an angular

representation of the vehicle’s lateral velocity, scaled according to forward speed. If the

sideslip angle is large, it means that the vehicle is sliding no matter what the forward speed

is. While there is always a small amount of sideslip during any turn, it holds true that cars

are not intended to go sideways. Therefore the goal for safety systems is to keep sideslip

angles low.

Now consider the definitions of the attitude angles and the body fixed coordinate axis.

Figure 1.2 shows the SAE coordinate axis for the body frame (original image courtesy of [32]).

It is a right handed system, with the X axis pointing in the forward direction, the Y axis to

the right of the vehicle, and the Z axis pointing down. The angle φ marks the positive roll

angle direction, θ the positive pitch angle direction, and ψ the positive yaw angle direction.

An interesting side note involving the pitch angle is that if the vehicle is driving on a road

with a positive grade (pitch) angle, the Z velocity will actually be negative and vice versa.

This is a point of potential confusion which should be remembered when considering road

grades.

3



Figure 1.2: SAE Coordinate System, Body Frame [32].

1.1 Literature Review

State estimation approaches for vehicle dynamics can be broadly categorized into two

groups: model-based approaches and kinematic approaches. Both approaches use some sort

of “model”, but the difference lies in what parameterizes the equations which make up the

model. In the model-based case, the model parameters correspond to vehicle parameters such

as mass, inertia, wheel base, tire stiffness, etc. Strictly speaking, model based estimators

might even employ some kinematic equations in the model. What matters, however, is that

these equations are inevitably parameterized by vehicle parameters. By contrast “kinematic

estimators” do not use any vehicle parameters. Instead all terms in their “model” equations

are constituted by sensor signals such as acceleration, rotation rate, velocity, or position.

Many of these accelerations and rotation rates are directly measurable with common ESC

sensors, while GPS provides information about the velocities and positions. Kinematic

estimators do rely on knowledge of sensor location, although this has been shown possible to

estimate accurately when it is difficult to measure. This distance known as the “lever arm”

does not change, making it a relatively easy problem to overcome [27]. Kinematic estimators

also rely on parameters of the sensors, such as bias time constants and noise variances, yet

these are possible to identify off line. Furthermore, these parameters do not change. While it
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is true that some of these sensor parameters are a function of temperature, this relationship

can be accounted for as well. The primary advantage, then, of “kinematic estimators” is that

they do not rely on changing vehicle parameters. The system is robust to different loadings,

after market suspension modifications, tire wear, or even a completely different set of tires.

The significance of the roll and sideslip angles has led to many publications documenting

various methods of their estimation. This includes a large body of research involving the use

of GPS to estimate sideslip kinematicly, as opposed to using vehicle models. An important

distinction among these is the number of GPS antennas used, as many current vehicles

are already instrumented with a single antenna system as opposed to double or even triple

antenna systems. Several researchers have proposed using single antenna GPS systems to

improve sideslip estimation methods. A simple approach is presented in [2] and contrasted

with results from a model based estimator. A more cascaded approach is presented in [8],

where a sideslip estimate is first obtained with a yaw rate gyroscope. This estimate is

used to aid sideslip estimation with a lateral accelerometer. This approach is expanded

even further in [6]. Even more authors approach kinematic sideslip estimation using dual

antenna GPS systems. Ryu uses a dual antenna GPS receiver with INS to estimate vehicle

velocities, sideslip, roll, and road grade [40]. In [9], Bevly and Ryu present Kalman filtering

methods for vehicle state estimation using both single and dual antenna GPS/INS systems.

A planar model is no longer assumed, as the inertial measurements are compensated for the

roll effects [9]. In [7] and [15], the authors use a dual antenna system to obtain estimates

of the lateral states, including sideslip. These estimates are then used to determine tire

parameters.

The kinematic approach to state estimation has also been a popular way to approach

roll angle estimation. Tseng [44] presents a novel method of estimating both roll and pitch

based on the inertial mechanization equation without using GPS at all. Yet far more authors

elect to take advantage of GPS information. The previously referenced works [9], [6], and [40]

focus on roll estimation as well sideslip. In [6] the lumped effects of roll and the accelerometer
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bias are estimated using a single antenna GPS and then separated using a low pass filter.

The approach in [9] first uses a single antenna system. The estimate of the roll is then

extrapolated from the estimate of the lateral accelerometer bias. Since the accelerometer

is not compensated for roll, the roll effects dominate the bias estimate and therefore this

provides a good method for approximating roll. The authors then compare this method

with results from integration with a dual antenna GPS system. Dual antenna systems can

measure roll directly, and as a result GPS/INS integrations which use such systems can

produce more accurate roll estimates. The dual antenna approach is also adopted in [40],

which was one of the first papers to demonstrate this potential. The roll information can

also be used with a vehicle model to separate suspension roll from the road bank, as done

in [38]. Those authors go on to show in [39] that roll and pitch have significant effects on

sideslip estimation. It follows then that it is important to include pitch information into the

estimation algorithm. In urban areas the design limit for road grade can be up to 9% at

speeds of 60 mph, and up to 12% for lower speeds around 30 mph. Rural roads can go up to

10% at design speeds of 40 mph and 8% for 60 mph design speeds [33]. Therefore knowledge

of the pitch will be necessary to fully exploit these GPS/INS estimation schemes on steeper

roadways.

Jansson estimates the road grade by combining GPS information with barometer and

torque measurements into a Kalman filter [29]. Sahlholm and Johansson take a similar

model based approach using drive line sensors and GPS; however they additionally present

a method for recursively improving the grade estimate with new passes over the same road

[41]. Lingman and Schmidtbauer also use a longitudinal vehicle model and Kalman filtering

techniques to estimate both vehicle mass and road grade. This is done without any GPS

information [30]. All of these are done under the context of longitudinal vehicle control, as

opposed to lateral dynamic control applications. Bae and Ryu describe two methods for road

grade estimation using GPS that are much more suitable for lateral estimation and control

purposes [3]. These methods involve measuring total pitch directly with a dual antenna
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GPS receiver or taking the arctangent of the ratio of the vehicle up and forward velocities

obtained from a single antenna [3]. This method is expanded in [4], where the up and forward

velocities are estimated using a simple Kalman filter. Since pitch rate sensors are uncommon

on most commercial vehicles, the road grade estimate affords the opportunity of replacing

the pitch rate gyro with the increasingly common single antenna GPS unit.

All of the above authors use “modular” sensor fusion approaches as opposed to those

that are “unified” to estimate the roll, pitch, and sideslip angles. Speaking very specifically,

the term “unified” is meant to signify a filter which incorporates all position, velocity, and

attitude information of the three dimensional, six degree-of-freedom (DOF) model into one

single filter. The term “modular” is meant to signify two things. First, it means that all of

the states are not coupled together into one single filter, rather there are separate or cascaded

filters for various sets of states. These separate filters may or may not be coupled together

indirectly, sharing information about certain variables, but the distinction here is that this

sharing is done outside of the filter. An example of a modular approach is [39], where the

authors use one filter for the heading state and gyro bias and another for the forward and

lateral velocities and accelerometer biases. Second, the term modular conveys that although

there might be one single filter in the overall estimator, this filter does not include states for

all six degrees of freedom. An example of this would be [15], where the filter is based on a

planar model (the authors compensate for roll effects outside of the filter).

The following works consider approaches which are based on a unified integration

scheme. The authors of [10] present a navigator based on a single antenna GPS integrated

with a low cost INS in a loosely coupled integration. They evaluate its performance for

positioning and present some experimental results. The authors of [16] use vehicle con-

straints, such as assuming no lateral or vertical velocity, to improve a standard loosely cou-

pled GPS/INS implementation. These assumptions are used for performance improvement

by many authors. In [18] the authors apply the constraints to a tightly coupled GPS/INS

architecture. The authors of [20] also apply to velocity constraints to the loosely coupled
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filter and evaluate its performance. The difference between these works and this thesis is

three-fold. First, all of these works use a 6 DOF IMU/INS, whereas this work only uses a

5 DOF INS. Second, all of these works assume that the lateral velocity is zero at all times,

whereas that assumption is made in this thesis only on the basis of certain conditions. Fi-

nally, all of these works evaluate the performance primarily with regard to position, velocity,

or attitude as opposed to sideslip. Indeed they make the assumption of zero sideslip at

all times, whereas in this thesis the sideslip estimation performance is the chief objective.

In [26] the authors perform an observability analysis on the loosely coupled GPS/INS filter

and find that under certain maneuvers, all states can be observed. It is also possible to use

magnetometers and magnetic sensors embedded into the roadway to aid the filter. Yang and

Farrell demonstrate this in [45] by creating a vehicle state estimation system having three

layers of redundancy which uses magnetometers, GPS, and INS to determine the vehicle

states. The accuracies and observabilities of the different estimates are discussed regarding

the availability of each of the sensors. They show that adding the magnetometers increases

the observability and eliminates the acceleration requirements.

The performance of the loosely coupled filter for position and velocity determination

is well studied. However, the loosely coupled filter uses a pitch rate gyroscope which is

not available on commercial vehicles. Therefore the filter’s performance must be evaluated

in light of this sensor reduction. Furthermore, the sideslip estimation performance of the

loosely coupled filter is not well documented, because the loosely coupled filter is usually

employed for general navigation purposes. The potential for sideslip estimation using this

filter is briefly discussed in [19], but the performance is not analyzed. Some example plots

of sideslip estimates are indeed shown, although these were not generated using a loosely

coupled filter, rather they are estimates from the method presented in [15]. There is even less,

if any, documented studies on the sideslip estimation performance of the loosely coupled filter

when the pitch rate gyroscope is removed. Evaluating this performance is a primary goal

of this thesis. The yaw information which is added to the filter based on certain conditions

8



(as described later) is also a new element. This constraint is practically the same as the

one added to the estimators in [8], [2], but there is no documentation regarding how this

additional yaw information affects the performance of the loosely coupled filter. Such analysis

is an important part of understanding the sideslip estimation performance, and it is included

in this thesis. Finally, there is a fair amount of literature documenting the observability

characteristics of the system described by the loosely coupled filter, specifically noting that

the observability of the system depends on the dynamics. Yet these results cannot be taken

for granted regarding the filter used in this thesis, because of the aforementioned changes

to the system. This thesis presents a summary of the observability results of the loosely

coupled system, followed by an observability analysis of the presented system. Therefore

this thesis is distinguished from the previous works by the lack of the pitch rate gyroscope,

the sideslip estimation performance analysis, the conditionally included yaw constraint, and

the observability analysis of this new system.

1.2 Contributions

The goal of this work is to achieve good sideslip, attitude, and velocity estimation

in addition to inertial sensor bias identification by combining GPS with sensors which are

already present in current RSC system sensor clusters. Furthermore, the operating window

of the system needs to be expanded by making the system robust to all road geometries.

The sensors used in this work are the GPS (single-antenna, 1Hz), accelerometers in x, y, z,

a roll rate gyroscope, and a yaw rate gyroscope. There is no pitch rate gyroscope, because

these are not present on commercial vehicles. Additionally, this work shows the capability

of using GPS to identify changes in tire pressure without using pressure sensors. A method

of using the yaw rate signal, improved with the bias estimates from the state estimator, and

the steer angle sensor to estimate steering misalignment is also presented. All of these goals

seek to use GPS to increase the intelligent safety capabilities of commercial vehicles without

any additional sensor costs. Following are the contributions contained in this thesis:

9



• Development of an algorithm (initial results presented by the author in [37]) to provide

sideslip and attitude estimates using ESC sensors and single antenna GPS.

• Analysis of sideslip and roll estimation performance of the algorithm.

• Analysis of performance improvements provided by conditionally added course mea-

surements.

• Observability analysis of the algorithm.

• Performance analysis of modified “modular” method (initial results presented by the

author in [36]).

• Development of a method to detect tire pressure changes using GPS and wheel speed

sensors.

• Development of a method to detect steering misalignment using bias estimates from

the state estimator, a yaw rate sensor, and the steer angle sensor.

The first contribution of this work is the development of a fully integrated state esti-

mation algorithm, for the specific purpose of estimating sideslip, roll, and inertial biases,

which uses only GPS and sensors present in RSC systems. The algorithm will be referred

to throughout the thesis as the (au)tomotive (nav)igation (AUNAV) estimator. The AU-

NAV estimator is originally based on the well known “loosely coupled” GPS/INS integration

scheme [19], [23]. The differences between the AUNAV estimator and the basic loosely cou-

pled filter are that the AUNAV estimator does not use pitch rate gyroscope information and

that it incorporates course information from the GPS, when it detects that the vehicle is not

turning, in order to improve the sideslip estimation performance. The “navigation” term

in the acronym points back to the original loosely coupled filter’s purpose, and to the fact

that the AUNAV estimator still possesses the same navigation functionality even though

navigation is not its primary purpose. The AUNAV algorithm was first presented in [37],
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showing initial sideslip and roll estimation results. Experimental data from two tests on low

friction surfaces was used to compare the sideslip and roll estimates from the AUNAV filter

with those produced by the commercially available Oxford RT3000 GPS/INS unit. It was

shown that for both maneuvers the AUNAV filter produced roll angle estimates within one

degree of the RT estimate. The sideslip estimate was within one degree of the RT estimate

for the first run and within 2 degrees on the second run, which was much more challenging

from an observability standpoint.

In this thesis the estimation performance of the AUNAV filter for sideslip, roll, and

inertial bias estimation is analyzed with experimental data. The observability of the AU-

NAV filter is also analyzed, and the convergence expected from this analysis is studied by

simulation and experiment. A comparison of the estimation performance of the modified

“modular” estimator (MME) with the AUNAV filter is also given. The modular filter was

developed by Bevly in [6] and represents a different approach to GPS/INS sensor fusion.

In [36], the author of this thesis modified the filter by removing the pitch gyroscope and

substituting the road grade estimate for the Euler pitch angle. The sideslip estimation per-

formance of the MME when in the presence of larger road grades was analyzed. In this

thesis, the MME estimation performance is analyzed for the same conditions as the AUNAV

system for comparison.

Another contribution is a method to indirectly detect changes in tire pressure using only

the sensors stated above in addition to wheel speed measurements, which are ubiquitous on

commercial vehicles today. The approach is based on the idea that the “effective” or “rolling”

radius of the tire will vary as a function of tire pressure. First, a simple method of estimating

the rolling radius using GPS and wheel speed sensors is discussed. This is a recursive version

of the batch least squares used in [13]. The effects of tuning and slip on the estimate are

investigated, and simulations are presented to validate the estimate. Further validation is

shown with experimental data. Next, experimental data is shown which illustrates how the

radius estimate varies according to tire pressure. The repeatability and potential problems
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of this method for inferring tire pressure are discussed. A simple method of detecting tire

pressure loss well within the TREAD Act requirements using only the estimate of the rolling

radius is put forward. The TREAD Act is a law requiring new vehicles to have Tire Pressure

Monitoring Systems (TPMS) as standard features, and it contains some required performance

specifications [1]. Future work to statistically improve the pressure loss detection algorithm

is also discussed.

The final contribution is a method of detecting steering misalignments using the yaw

rate sensor and the steering wheel angle sensor. The yaw rate signal is improved using the

yaw rate bias estimate produced by the AUNAV estimator. The premise of the detection

logic is that if the vehicle is driving straight, then the steer angle ought to be very close to

zero. Steering effects from road crown can cause an offset, but these are ignored in this work

as these effects remain the same throughout all experiments. It is shown that adjustments to

the front right tire toe angle, which cause a misalignment, are detectable using the corrected

yaw rate signal and the steering wheel angle signal.
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Chapter 2

GPS/INS Integration Algorithms

2.1 Background

2.1.1 Kalman Filtering

A linear Kalman filter is simply a classical estimator in state variable format that

incorporates the statistical knowledge of the system and sensors into the calculation of an

“optimal” estimator gain L. In doing so the Kalman filter also calculates an estimate of

the variances of the state estimation errors at each time step. This covariance matrix P

can provide reliable confidence bounds on the estimates under certain conditions. Kalman

filtering consists of two steps, referred to here as the measurement update and the time

update. For GPS/INS integration applications the measurement update usually runs at a

lower frequency than the time update. A new estimator gain L is calculated every time a

new measurement arrives. This is contrary to basic pole-placement estimation, where the

gain is constant. The innovations (the differences between the measurements and the state

estimates) are taken and multiplied by the estimator gain, and this new quantity is added

to the state estimate, just like a basic estimator. The covariance is updated at this time

interval as well. The following equations describe the measurement update step [14]:

L = Pk · CT ·
(
C · Pk · CT +R

)−1
(2.1)

Pk = (I − LC)Pk (2.2)
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X̂k = X̂k + L
(
Y − CX̂k

)
(2.3)

In Equations (2.1-2.3), C represents the measurement matrix, X̂k represents the current

state estimate, and Y represents the measurement vector. It should be noted that neither

the gain nor the covariance matrix depends on the measurement innovations or any inputs

to the system. This follows from the strict list of assumptions that must be true to satisfy

both the optimality of the Kalman filter and the accuracy of the covariance estimates. The

time update consists of taking a model of the system, in either continuous or discrete repre-

sentation, and propagating it forward in time just like a traditional estimator. Continuous

equations are used during the time update in this thesis, therefore the overall filter is a

continuous-discrete Kalman filter. At each time step the system input is measured, the rate

of change of the state estimate is calculated, and the result is integrated. The rate of change

of the variances must also be calculated and integrated. Trapezoidal integration is found to

be sufficient for this work. The following are the equations for the time update [14]:

˙̂
Xk = AX̂k +Buuk (2.4)

X̂k+1 = X̂k +
1

2
∆t
(

˙̂
Xk +

˙̂
Xk−1

)
(2.5)

Ṗk = APk + PkA
T +BwQB

T
w (2.6)

Pk+1 = Pk +
1

2
∆t
(
Ṗk + Ṗk−1

)
(2.7)

The matrices Bu and Bw are the system input and noise input matrices, respectively.

It can be seen here that other factors affect the quality of the estimates, the optimality

of the Kalman filter, and the accuracy of the error variance estimate P. First, the filter
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assumes a perfect model in A,Bu, and Bw. Absolute perfection in this regard is highly

unlikely. However, given that the models used for this work are kinematic sensor models,

modeling uncertainty is not a major problem. Second, it is assumed that the statistics

of the noise are perfectly known as well. This is not that bad of an assumption either,

since the process noise is actually sensor noise which can be approximated from sampled

data. Although such an approximation is not perfect, it is possible to achieve sufficient

accuracy by analyzing sampled data. Third, it is assumed that the measurement errors are

uncorrelated. The measurements in this work are the position and velocity solutions from

a stand alone GPS receiver. These are likely the outputs of Kalman filters themselves, and

would therefore have time correlated error, violating this assumption. Yet it has been shown

that the impact from this is minimal, and may be overcome by simply increasing the tuning

values for the measurements [23]. Therefore despite the stringent assumptions required to

satisfy the filter’s optimality and error variance estimation, the Kalman filter does perform

very well for this application. Furthermore the structure of the Kalman filter offers many

advantages for GPS/INS integration. GPS receivers offer highly accurate, unbiased estimates

of a vehicle’s velocity, but these are output at slower update rates on most receivers. They

can also suffer from loss of signal in certain environments such as “urban canyons” or heavily

wooded regions. INS systems boast much higher update rates but suffer from biases and

errors that grow over time. Combining the two truly offers the best of both: an accurate,

unbiased estimate of the vehicle states at a high update rate which can handle a loss of GPS

satellite coverage for short periods of time.

2.1.2 Sensor Rotations and Coordinate Frames

The accelerometers and the gyroscopes of the IMU provide measurements which are

resolved in the coordinate frame of the IMU (the sensor frame), and not the reference coor-

dinate frame (the navigation frame). The two methods of GPS/INS integration presented

in this work each use a different navigation frame. The MME filter uses the “local tangent”
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frame. This X axis of this system always points in the forward direction of the vehicle (see

Figure 1.1), but it is not aligned in the pitch direction with the X axis of the body frame.

The Z axis of the vehicle points to the center of the reference ellipsoid. The origin of this

frame is at projection of the center of gravity onto the local tangent plane. This frame can

be thought of as traveling with the vehicle, but it does not pitch or roll. It’s XY plane

is always aligned with the local tangent plane, and it yaws with the vehicle. The AUNAV

filter uses the North-East-Down frame. The X axis of this frame points due North, and the

Z axis points to the center of the reference ellipsoid. The only difference between the two

coordinate frames is a yaw angle rotation, specifically the yaw angle of the vehicle. In both

navigation frames the Y axis is chosen to complete the right-handed coordinate systems.

The body frame is in general not aligned with the navigation frame, potentially due to hills,

banked roads, or suspension deflections caused by dynamic maneuvers or vehicle loading. It

is important, then, to resolve both the IMU accelerometer and gyroscope signals into the

common navigation frame through a series of steps known as IMU mechanization.

The following equations show how to resolve the IMU into the navigation frame. The

accelerometers are rotated using the standard series of three body fixed Euler rotations. This

not only brings them into the common navigation frame but also removes the gravitational

effects present in the X and Y accelerometers. For rotations into the local tangent plane,

the yaw angle ψ in (2.10) is 0. For rotations into the NED frame, ψ represents the vehicle

heading. Equation (2.8) shows how the rotation matrix Rn
b is used to rotate the measured

acceleration signals ab from the body frame b into the navigation frame n.

an = Rn
b a

b (2.8)

Technically, the inertial sensors only provide measurements in the body frame if the IMU

is perfectly aligned with the vehicle body. This is rarely the case, however misalignments

are usually very small and are not a focus of this thesis. The rotation matrix Rn
b is formed

by a series of three body-fixed rotations which are yaw (ψ), pitch (θ), and roll (φ). Equation

16



(2.9) defines the rotation matrix in terms of the three individual rotations, while equations

(2.10 - 2.12) define the matrices for each of the three rotations.

Rn
b =

(
Rb
n

)−1
= (RφRθRψ)−1 (2.9)

Rψ =


cos (ψ) sin (ψ) 0

− sin (ψ) cos (ψ) 0

0 0 1

 (2.10)

Rθ =


cos (θ) 0 − sin (θ)

0 1 0

sin (θ) 0 cos (θ)

 (2.11)

Rφ =


1 0 0

0 cos (φ) sin (φ)

0 − sin (φ) cos (φ)

 (2.12)

The angular signals are resolved into navigation frame using the mechanization equa-

tions, expressed in the mechanization matrix Fψ. Equation (2.13) shows how the measured

gyroscope signals ωb are resolved from the body frame b into the navigation frame n.

ωn = Fψω
b (2.13)

The mechanization matrix is a function of the level angles (roll and pitch). It is defined

in equation (2.14).

Fψ =
1

cos (θ)


1 sin (φ) sin (θ) cos (φ) sin (θ)

0 cos (φ) cos (θ) − sin (φ) sin (θ)

0 sin (φ) cos (φ)

 (2.14)
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2.1.3 Inertial Sensor Models

Inertial sensors are advantageous in that they do not suffer from any sort of loss of signal,

as long as they don’t fail, and that they output signals at a very high update rate, which

is necessary for control. However they do have several disadvantages. Both accelerometers

and rate gyroscopes have static or “turn on” biases in addition to a moving bias which

is known as “drift”. The accelerometer (and gyroscope) drifts are modeled as first order

Markov processes [6], being driven by white noise µ and having a time constant τ . They

additionally suffer from noise which can be modeled as additive Gaussian white noise. The

sensors also potentially have a scale factor which scales the true value being measured [6].

It has been shown that this scale factor can be estimated, and the model assumed in this

work assumes that no scale factor error is present or that it has already been estimated.

Equations (2.15-2.18) show the inertial sensor models:

abmeas = abtrue +Rb
ng + δf + εaccel (2.15)

ωbmeas = ωbtrue + δω + εgyro (2.16)

δfi, δωi = b“turn−on′′ + bwalk (2.17)

ḃwalk ≈
1

τ
(µ− bwalk) (2.18)

Note that Equations (2.17-2.18) apply for the biases of both the accelerometers and gy-

roscopes. The vectors a and ω represent the acceleration and rotation rate vectors. The

vectors δf and δω are the accelerometer and gyroscope biases. The “b” terms represent

specific components of the biases, and the ε vectors represent the noise.

2.1.4 GPS Sensor Models

When only inertial sensors are available, their biases are usually compensated through

certain assumptions such as a flat road. If these do not hold, for example driving on a hill,
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other information such as GPS is needed to compensate for the biases. Even after all of

the biases are accounted for, the white noise remains and will still corrupt the solutions.

Integrating this noise will potentially result in unbounded error growth. An additional

sensor such as GPS is therefore necessary to bound the error growth. The GPS sensor model

highlights the well documented advantages of GPS [6]. In the GPS/INS integration strategy

used in this thesis, the GPS receiver outputs position solutions as latitude, longitude, and

altitude while the velocity solutions are output in the North-East-Down (NED) navigation

frame. The velocity signals are unbiased and contain no scale factor error. The errors present

on the GPS positions and velocities can be modeled as uncorrelated Gaussian random noise,

as seen in Equation (2.19).


λ

ϕ

h


meas

=


λ

ϕ

h

+ η
lla

V n
meas = V n + η

v
(2.19)

In this equation, λ represents the latitude, ϕ represents the longitude, and h represents

the altitude. V n
meas is the measured velocity, V n is the true velocity, and η

i
is the noise vector

for each solution. There do exist more detailed models of GPS errors, but this simplified

model is representative of the error behavior at the position and velocity level and is sufficient

for this work.
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Figure 2.1: Diagram of the Modified Modular Estimator.

2.2 GPS/INS: The Modified Modular Estimator

2.2.1 Estimation Strategy Overview

The modified modular estimator is an extension of the estimator presented in [6]. The

estimation strategy is largely directed by the sensors and corresponding measurements avail-

able. This thesis assumes the following sensors to be available: a five degree of freedom

(DOF) IMU consisting of accelerometers mounted in the body x, y, and z axes along with

roll rate and yaw rate gyroscopes, and a single antenna GPS receiver. While 5 DOF IMU

clusters are not ubiquitous in the automotive world, they can be found in certain production

vehicles with a roll stability control system or with a rollover curtain system. The following

paragraph gives a broad, big picture outline of the estimation strategy.

Figure 2.1 is a block diagram showing an overview of the process. First the IMU signals

are resolved into the navigation frame using the current attitude angle estimates. This

removes the biases resulting from gravity which are present in the x and y accelerometer

measurements. Second, Kalman filters are used to estimate the vertical and longitudinal

velocities as described in [4]. These velocities are then used to calculate an accurate estimate
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of the road grade, which is used as a substitute for the true pitch angle. Next, a Kalman

filter which estimates the vehicle heading and the yaw gyroscope bias is used, together

with the GPS course measurement, to obtain an initial estimate of the sideslip. Finally,

the initial sideslip estimate is combined with the GPS velocity measurement to produce a

derived “measurement” of the lateral velocity for a lateral state Kalman filter. This Kalman

filter estimates the vehicle’s lateral velocity, lateral accelerometer bias, roll angle, and roll

rate gyroscope bias. The final sideslip estimate is calculated in a straightforward manner

from the lateral velocity estimate [8], [9]. It is available at the frequency of the IMU, while

the initial sideslip estimate is only available at the frequency of the GPS.

2.2.2 Road Grade Estimation

The slope of the road in the forward direction is generally referred to as the road grade.

It can be presented in two forms: either as the actual slope of road (% grade) or as the

angle that the road makes with the horizon; where conversion between the two is a matter

of simple trigonometry. Determination of this angle can be accomplished using the ratio

of the vertical and horizontal speeds, assuming that the vehicle is moving (so as not to

have a zero in the denominator). GPS receivers output a vertical speed and a speed-over-

ground velocity vector, where the speed over ground is the vehicle velocity vector in the local

navigation frame. The magnitude of this vector can be taken to be the longitudinal speed of

the vehicle in the navigation frame, assuming little to no sideslip. Therefore the arctangent

of the two speeds can be taken to find the grade angle. This method has been proven to

produce high quality, unbiased estimates of the road grade, yet it should be noted that any

bounce motions that the vehicle experiences will affect the grade estimate. However, this

has been shown not to significantly diminish the estimator’s performance [4].

Coupling the GPS system and the IMU together in a Kalman filter structure offers

many advantages. The following equations, which are simply scalar versions of the vector

Equation (2.15) , show how this is possible:
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az ≈ V̇z + gz + δfz + εaccel (2.20)

ax ≈ V̇x + gz sin θ + δfx + εaccel (2.21)

where az, ax represent the accelerometer measurements in the z and x directions, V̇z and V̇x

are the true accelerations, gz is gravity, θ is the total Euler pitch, δfz,x is the inherent sensor

bias, and ε is the sensor noise. The Kalman filter now takes the following form, where the

accelerometer measurement is the input and the GPS velocity is the measurement:

 ˙̂
Vz

δ
˙̂
fz

 =

0 −1

0 − 1
Tm


 V̂z
δf̂z

+

1

0

 (az − gz) +

1 0

0 1
Tm

 ε (2.22)

y =

[
1 0

] V̂z
δf̂z

+ ηz (2.23)

 ˙̂
Vx

δ
˙̂
fx

 =

0 −1

0 − 1
Tm


 V̂x
δf̂x

+

1

0

 (ax − g sin θ)

1 0

0 1
Tm

 ε (2.24)

y =

[
1 0

] V̂x
δf̂x

+ ηx (2.25)

where η and ε are the measurement noise and process noises, respectively, V̂z,x represents

the velocity estimates, and δf̂z,x represent the bias estimates. Tm represents the bias time

constants. Both of these estimator models are observable. The road grade estimate is the

arctangent of the two speed estimates.

θ̂ = − arctan
V̂z

V̂x
(2.26)
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Since the input to the Kalman filter is an accelerometer, the process noise is taken to be

noise from the accelerometer where the noise driving the bias Markov process is included as

well. Both are taken to be Gaussian white noise, as shown below.

ε =

εaccel
µ

 (2.27)

εaccel ∼ N(0, σ2
accel) (2.28)

µ ∼ N(0, σ2
m) (2.29)

E{εεT} = Q =

σ2
accel 0

0 σ2
m

 (2.30)

The measurement noise is the noise on the GPS velocity signal, which is also assumed to

be Gaussian white noise. Due to satellite orientations the noise is generally higher on the

vertical speed measurement than on the speed over ground measurement. The measurement

noise is taken to be

ηx ∼ N(0, σ2
GPSx) (2.31)

ηz ∼ N(0, σ2
GPSz) (2.32)

E{ηxηTx } = Rx = σ2
GPSx (2.33)

E{ηzηTz } = Rz = σ2
GPSz (2.34)

This filter structure combines the advantages of the high accuracy, unbiased GPS velocity

measurements with the high update rate signals from the IMU, thereby offering high quality

velocity estimates (and therefore a high quality road grade estimate) at a frequency suitable

for control signals. The GPS measurement enables correction for any accelerometer biases,

while the accelerometer allows for continued velocity tracking during GPS outages over short

time intervals [4].
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2.2.3 Heading Estimation

Vehicle sideslip is defined in two ways. It is the difference between the vehicle course

(the direction that the vehicle is traveling) and the vehicle heading (the direction that the

vehicle is pointed). It is also the arctangent of the ratio of lateral speed to longitudinal speed

(all references to course and velocities “of the vehicle” are with respect to the IMU location,

which is near the center of gravity.) The vehicle course and longitudinal speed are readily

available with a single antenna GPS receiver, but neither heading nor lateral velocity are

measurable with only one antenna. This renders sideslip technically unobservable, but it

does not make it impossible to produce useful sideslip estimates under certain conditions. A

yaw rate gyro could be integrated to obtain a heading estimate which could be subtracted

from the course measurement to obtain sideslip. However doing so first requires overcoming

several problems resulting from integration. The first obstacle is any bias that may be present

in the sensor. This can be estimated and removed using a Kalman filter under the condition

that the vehicle is driving straight. When this is true, the course angle and the heading

angle are the same. A notable exception occurs on a banked road, causing a small steady

sideslip, although this would be a rare scenario for straight sections of roadway. Common

road crowns will yield on a very slight steady sideslip angle. Since GPS measures course

and the course is equal to heading when the vehicle is driving straight, the estimation can

be “switched on” during this scenario. The Kalman filter could then estimate any biases in

the gyroscope and remove them. When a turning maneuver is initiated the estimation is

“switched off” and the yaw gyro is integrated to determine heading. The difference in this

heading estimate and the course measurement becomes the sideslip estimate. This process

is seen the equations below, beginning with the gyroscope model, which is the scalar version

of (2.16).

ωr ≈ ψ̇ + δωr + εgyro (2.35)
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The previous equation, along with (2.17), now yields the Kalman filter.

 ˙̂
ψ

δ ˙̂ωr

 =

0 −1

0 − 1
Tm


 ψ̂

δω̂r

+

1

0

 (ωr) +

1 0

0 1
Tm

 εr (2.36)

When driving straight:

y =

[
1 0

] ψ̂

δω̂r

+ ην = νGPS (2.37)

Otherwise, the estimation is switched off:

y =

[
0 0

] ψ̂

δω̂r

+ ην = νGPS (2.38)

When the vehicle is driving straight, the C matrix is set to [1 0] and measurement updates

are performed. The C matrix is set to [0 0] when turning. In both cases the sideslip estimate

is the difference between the course measurement and the heading estimate:

β̂0 = νGPS − ψ̂ (2.39)

As in the case of the road grade estimation filters, the input to the system is an inertial

sensor measurement. The process noise is the noise on the gyroscope signal and the noise

driving the random walk. Both are assumed to be zero mean Gaussian white noise:

εr =

εgyro
µ

 (2.40)

εgyro ∼ N(0, σ2
gyro) (2.41)

µ ∼ N(0, σ2
m) (2.42)
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E{εrεTr } = Q =

σ2
accel 0

0 σ2
m

 (2.43)

The measurement noise is the noise on the GPS course measurement, and is assumed to

be zero mean Gaussian white noise as well. However, the accuracy of this measurement

increases with speed, giving a variance that is a function of speed.

ην ∼ N(0, σ2
GPSν) (2.44)

E{ηνηTν } = Rν = σ2
GPSν (2.45)

σ2
GPSν =

σ2
ν

V
(2.46)

The second problem lies in determining whether or not the vehicle is going straight. It

is imperative to the estimator performance that the biases are estimated accurately prior

to periods of integrating the gyroscope signal. This makes it necessary to include logic

statements to determine whether or not the vehicle is driving straight, which is done using

the the yaw gyro signal. The basic logic is that if the absolute value of the yaw rate is less

than some threshold then the vehicle is deemed to be driving straight. Complications arise,

however, from the noise on the signal. The resulting situation becomes a trade-off in the

sensitivity to turning motion verses false alarms caused by the noise. If the thresholds are

set too close to the noise floor the estimator will “believe” the vehicle is turning during many

time instances in which it is not. This means that the heading estimation is turned off, and

no gyro bias correction is done. In this work the GPS measurement only comes in at 1Hz, so

losing that measurement can be very costly. The primary limitation of this sideslip estimator

is its dependency on periods of straight driving to zero out the gyro bias, and every missed

course measurement results in a lost second of straight driving. At moderate speeds on

winding roads, for example, one second of straight driving can be rare. Therefore the tuning

of these thresholds plays an important role in the overall performance of the estimator.
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The other obvious problem with this method comes from integrating a noisy sensor

signal. Some improvement could be found by low pass filtering the signal, but all of the

noise cannot be removed. Therefore this estimation scheme is limited as well in terms of the

amount of time that the gyro can be integrated before the error grows too large.

2.2.4 Lateral Velocity

As previously noted, sideslip can be defined as the arctangent of the ratio of the lateral

speed of the vehicle to its longitudinal speed. The longitudinal speed can be estimated

accurately by combining wheel speed sensors, longitudinal accelerometers, and GPS, but the

lateral speed is not measurable with only a single antenna GPS system. Using the sideslip

estimate from the heading Kalman filter described above, a lateral velocity “measurement”

can be generated and therefore a lateral state estimator can be introduced in the form of a

Kalman filter. The following equations form the foundation of this estimator.

ay ≈ V̇y + Vxψ̇ + gz sinφ+ δfy + εaccel (2.47)

ωp ≈ φ̇+ δωp + εgyro (2.48)

As was the case before, this sensor model assumes no scale factor error. The biases for both

the lateral accelerometer and the roll rate gyro are taken to be Markov random process driven

by Gaussian white noise as described previously. There are two sources of bias in the lateral

accelerometer measurement, one being the roll component of gravity and the other being the

sensor’s random walk. Both of these influences have the exact same effect on the velocity

error, therefore the filter will not be able to distinguish the two. If a direct measurement

of roll were available, from a double antenna GPS system for example, the two would be

independently observable. Yet since roll is not measurable with a single antenna, the two

states must be lumped together into one. The resulting simplification of the equation follows

from using the small angle approximation and lumping the two terms together.
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ay ≈ V̇y + Vxψ̇ + gz (φ+ δfy) + εaccel (2.49)

This results in an estimator in the form:


˙̂
Vy(

˙̂
φ+ δ

˙̂
fy

)
δ ˙̂ωp

 =


0 −gz 0

0 0 −1

0 0 −1/Tm




V̂y(
φ̂+ δf̂y

)
δω̂p



+


1 0

0 1

0 0


 ay − V̂x (ωr − δω̂r)

ωp



+


1 0 0

0 1 0

0 0 1/Tm



εaccel

εgyro

µ

 (2.50)

y =

[
1 0 0

]
V̂y(

φ̂+ δf̂y

)
b̂p

+ ηy = V GPS sin
(
β̂0

)
(2.51)

β̂ = arctan

(
V̂y

V̂x

)
(2.52)

The process noise for the system arises from the IMU measurements. Since the measurement

is constructed using the sideslip estimate from the heading filter, the measurement noise is

approximated as the noise on the GPS course measurement.

E
{
ωωT

}
= Q =


σ2
accel + V 2σ2

gyro 0 0

0 σ2
gyro 0

0 0 σ2
m

 (2.53)
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E{ηνηTν } = Rν = σ2
GPSν (2.54)

It was stated above that the Kalman filter cannot separate the roll and the lateral accelerom-

eter bias. The reason is because the two states look exactly the same in terms of velocity

errors. However, they do not share the same frequency characteristics. That is, they do not

change in the same way. This difference can be exploited using complimentary low and high

pass filters as shown in [6]. The following equations show the Laplace representation of the

complimentary filters.

φ̂ =
Tms

Tms+ 1

(
φ̂+ δf̂y

)
δf̂y =

1

Tms+ 1

(
φ̂+ δf̂y

)
(2.55)

Since the roll angle changes much faster than the bias, this filtering approach yields an

accurate estimate of both states independently.

2.3 GPS/INS: The Automotive Navigation (AUNAV) Estimator

The AUNAV estimator is most easily understood as a modified version of the generic

loosely coupled GPS/INS blending strategy. Therefore this section is divided into two sub-

sections, the first of which details the standard loosely coupled algorithm. After this, the

modifications which are made to complete the AUNAV filter are discussed.

2.3.1 The Loosely Coupled Algorithm

The “loosely coupled” GPS/INS method of integration is a well documented technique

for blending the GPS and INS navigation solutions [19]. Figure 2.2 gives a high level view

of the integration. The INS and GPS position and velocity solutions are compared, and

the difference is input into the extended Kalman filter (EKF) as a measurement. This is
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because the states of the filter are the differences between the true states and INS estimates,

as opposed to actual position and velocity states. The filter outputs estimated corrections

to the INS solution, which are added to the INS solution. The corrected INS solution serves

as the final estimate. The EKF also estimates the inertial errors of the INS, which are

fed back into the INS to continuously improve the estimation process. The system functions

basically as two independent navigators (the GPS and INS) and one EKF. When using lower

grade inertial navigation systems, the loosely coupled approach treats the GPS solutions as

truth [19]. Therefore the states of the EKF practically become the differences between the

INS and GPS solutions. It should be noted that the inertial bias estimates are not error

states, but rather they represent estimates of the actual biases themselves.

Figure 2.2: Diagram of the Standard Loosely Coupled Integration Strategy.

The details are of the loosely coupled approach are described as follows. The states

of the Kalman filter, δX̂ =

[
δr̂, δV̂ , δψ̂, δf̂ , δω̂

]′
, are the estimates of the errors

in the INS position-velocity-attitude (PVA) solution and the biases of the inertial sensors.

The first step of the overall system is to calculate the INS solution. The inertial sensors

are rotated into the navigation frame and then propagated forward in time via trapezoidal
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integration to obtain the PVA estimates as in Equations (2.56-2.62), a process also known

as IMU mechanization.

˙̂
ψ
k

= Fψ(ωINS − δω̂) (2.56)

˙̂
V k = Rn

b (aINS − δf̂)− g (2.57)

˙̂rk = T V̂ k (2.58)

ψ̂
k+1

= ψ̂
k

+
1

2
∆t
(

˙̂
ψ
k

+
˙̂
ψ
k−1

)
(2.59)

V̂ k+1 = V̂ k +
1

2
∆t
(

˙̂
V k +

˙̂
V k−1

)
(2.60)

r̂k+1 = r̂k +
1

2
∆t
(

˙̂rk + ˙̂rk−1

)
(2.61)

T =


1

Rn+h
0 0

0 1
(Re+h) cos(λ)

0

0 0 −1

 (2.62)

In Equations (2.56-2.57), Rn
b represents the rotation matrix from the body frame to the

NED frame, and Fψ represents the mechanization matrix to align the gyroscopes with the

NED frame. These are outlined in Section 2.1.2 in more detail. The matrix T transforms

the velocities from the NED frame into rates of latitude, longitude, and altitude. Re and

Rn are parameters of the reference ellipsoid. During this step the EKF also propagates the

uncertainty of the error estimates forward using standard Kalman filter covariance update

equations linearized about the current state estimates. This is shown in Equation (2.63),
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where J is the Jacobian (defined later), and Bw is simply a 15× 15 matrix with the vector

([03x3, R
n
b , R

n
b , R

n
b , R

n
b ]) on the diagonal and 0’s everywhere else.

Ṗk = JPk + PkJ
T +BwQB

T
w (2.63)

Equation (2.63) is then integrated according to Equation (2.7) to complete the covariance

propagation. Equations (2.56-2.63) are done at the update rate of the INS. The error esti-

mates are not propagated during this time, because they are reset to zero each time they

are added to the INS solutions. When GPS measurements arrive, the difference between the

GPS and INS position and velocity solutions are taken in Equation (2.64).

Y =

 r

V


GPS

−

 r̂

V̂

 (2.64)

This difference serves as measurement for the error state Kalman filter. At this point the

Kalman filter calculates the gain L, error residuals, and the covariance matrix as per the stan-

dard Kalman filter measurement equations outlined in Section 2.1.1; followed by updating

the error states as in Equation (2.65).

δX̂k = δX̂k + L
(
Y − CδX̂k

)
(2.65)

The term C in Equation (2.65) represents the measurement model. It comes from the fact

that the GPS outputs position and velocity measurements. The C matrix is defined below.

C =

[
I6x6 06x9

]
6x15

(2.66)

The estimates of the INS velocity and attitude errors are then added to the current INS

solution, as per Equations (2.67-2.69), and are subsequently reset to zero.

r̂ = r̂ − δr̂ (2.67)
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V̂ = V̂ − δV̂ (2.68)

(Rn
b )k =

(
I +

(
δψ̂×

))
(Rn

b )k (2.69)

The notation (δψ̂×) indicates the skew symmetric form of the vector δψ̂. The Euler angles

are computed from Rn
b as in (2.70-2.72) [19].

φk = arctan

(
Rn
b (3, 2)k

Rn
b (3, 3)k

)
(2.70)

θk = − arcsin (Rn
b (3, 1)k) (2.71)

ψk = arctan

(
Rn
b (2, 1)k

Rn
b (1, 1)k

)
(2.72)

At each time step, whether during the INS estimate propagation or during a GPS update,

the sideslip estimate is calculated in Equation (2.73) [19].

β̂ = arctan

(
V̂east

V̂north

)
− ψ̂yaw (2.73)

Finally, the estimated inertial sensor errors δf̂ and δω̂ are fed back into the INS (the sub-

tracted terms in Equations (2.56-2.57). This is not necessary for high grade inertial units,

but it is absolutely imperative in this work due to the relatively large errors in the automo-

tive grade sensors. This feedback is known as a closed loop implementation as opposed to

open loop.

The extended Kalman filter is based on the inertial sensor error models, Equations

(2.15-2.18), and on the error propagation equations of the INS position, velocity, and attitude

solutions which are Equations (2.74-2.76), which are simplified versions of those found in [19].

These are the equations used to form the Jacobian matrix which is required to update the

covariances. δ signifies INS estimation error.

33



δṙ ≈ TδV (2.74)

δV̇ ≈
((
Rn
b · aINS

)
×
)
· δψ +Rn

b · δf (2.75)

δψ̇ ≈ −Rn
b · δω (2.76)

J =



03 T 03 03 03

03 03

((
Rn
b · aINS

)
×
)

Rn
b 03

03 03 03 03 −Rn
b

03 03 03 − 1
τ
· I3 03

03 03 03 03 − 1
τ
· I3


(2.77)

2.3.2 Modifications to the Loosely Coupled Algorithm

There are two primary changes that need to be made to the loosely coupled filter in order

to accurately estimate sideslip and roll using only sensors available on current vehicles. First,

the pitch rate gyroscope must be removed, as these are not currently available on commercial

vehicles. Therefore the impact of this sensor reduction on the estimation performance of

the loosely coupled estimator must be studied. It is hypothesized that the AUNAV filter

will be able to accurately estimate the sideslip and roll despite this sensor reduction. It

is also expected that even without the pitch rate gyroscope the AUNAV estimator will be

able to estimate the low frequency component of pitch. This is important since the road

grade is the low frequency component and it has much higher amplitudes than the higher

frequency suspension pitch changes. Both of these expectations are confirmed in Chapter

4. Additionally, the observability of the new system requires evaluation. This is done in

Chapter 3. It is also important to note that because the pitch rate gyroscope bias is one

of the states of the EKF in the loosely coupled filter, the number of states of the AUNAV
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estimator is reduced by 1. The AUNAV estimator has 14 states, therefore all of the EKF

matrices must be resized accordingly.

The second change that is made to the loosely coupled estimator is that a measurement

of the vehicle’s course angle from the GPS is added when the vehicle is driving straight.

The loosely coupled estimator suffers from observability issues when there is little excitation

present [19,28]. Many authors seek to overcome the problem by adding velocity constraints

[16, 18, 20]. They make the assumptions that the vehicle’s lateral and vertical velocities in

the vehicle frame are both zero at all times. These constraints are then added in the form

of a virtual measurement update. Practically speaking, the latter assumption simply means

that the vehicle is constrained to the road. The former assumption, however, is tantamount

to assuming that there is no sideslip. This is acceptable for navigation purposes, but it will

obviously not do given the explicit goal of estimating sideslip. So in order to add constraints

that do not violate the estimation of sideslip, a virtual measurement of the course angle is

created when the vehicle is driving straight. Recall the definition of vehicle sideslip given by

Equation (1.1). If the vehicle is driving straight, and assuming that the side slope (bank) of

the road is small, then the sideslip will be practically zero. If this is true, then from Equation

(1.1) it is clear that the course ν and yaw ψ angles are equivalent. The course angle can be

calculated from the GPS north and east velocities as shown in Equation (2.78).

νGPS = arctan

(
Veast
Vnorth

)GPS
(2.78)

When the vehicle is driving straight, the course angle measurement is used as a measurement

of the yaw angle. The new measurement vector is shown below.

Y =


r

V

ν


GPS

−


r̂

V̂

ψ̂yaw

 (2.79)
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It is important that the filter not use the course measurement when the vehicle is

turning, because the sideslip will cause the necessary assumptions to be violated, resulting

in the course angle being unequal to the yaw angle. Using the course measurement under

these circumstances will result in the filter falsely attributing the inevitable error to other

sources, thereby corrupting the other state estimates. Therefore a means of switching is

required for the filter to toggle between using the course measurement and not using it. This

is done simply by setting the term in C corresponding to the course measurement to 1 or 0,

depending on whether or not the measurement is being used. When the vehicle is turning,

the course measurement is not used and the C matrix is defined as shown below.

C =

 I6x6 06x2 06x1 06x5

01x6 01x2 0 01x5


7x14

(2.80)

When the vehicle is driving straight, the course measurement is used and the C matrix is

defined as shown below.

C =

 I6x6 06x2 06x1 06x5

01x6 01x2 1 01x5


7x14

(2.81)

Note that the column dimension of the C matrix is now 14 instead of 15, because of the

reduction of the pitch rate gyroscope bias state. Adding the course measurement keeps the

attitude errors bounded during periods of straight driving, as there is no lateral excitation

with which to relate the north and east velocities to the accelerations.

It is not trivial to determine whether or not the vehicle is turning. At first glance, it

may seem simple enough to use the steering angle. A simple law could perhaps be used that

says if the steer angle is above a certain threshold, then the vehicle is turning. The problem

with this is that if the wheels are misaligned, or if there is a large enough road crown (a slight

road bank that improves water drainage), then the steer angle will have some constant offset

from zero. The lateral accelerometer could also potentially be used, but it is potentially
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subject to gravitational effects resulting from inaccurate roll angle compensation. In this

thesis, the yaw rate gyroscope is used to determine whether or not the vehicle is driving

straight. A flag is set if the yaw rate signal has been within 3 deg/s, consecutively, for a

certain period of time. If this flag is “true”, then the vehicle is assumed to be driving

straight. If the absolute value of the yaw rate signal rises above the threshold even once,

then the flag is reset to false. The detection logic requires that the absolute value yaw rate

signal be below the threshold consecutively for a certain period of time in order to toggle

the flag to true (driving straight), as opposed to simply setting the flag to true upon the

first yaw rate signal below the threshold. This is done to avoid the problem of zero crossings

of the yaw rate during a turning maneuver. The yaw rate will be zero for a short period

of time, for example, during a sinusoidal steering maneuver. The vehicle is still turning in

this case, therefore it would be an error to assume straight driving conditions. The time

requirement on the detection logic helps mitigate this effect. There is no corresponding time

requirement to toggle the flag back to false (turning). This is in order to be conservative, so

as not to introduce error into the states by assuming that there is no sideslip when in fact

there is. The threshold of 3 deg/s was chosen as a conservative value, because experimental

tests showed that sideslip was generally extremely close to zero for yaw rates below this.

There are several problems with the current method of turning detection. First, the

effects of the yaw rate bias need to be studied. For now, the threshold is simply set large

enough to accommodate the bias. The bias on the gyroscope used is quite small (on the

order of hundredths of a degree per second), so this is not a major problem. For lower quality

gyroscopes, however, it could be. There are potential problems as well with using the yaw

rate gyroscope bias estimate to try to mitigate the problem. For example, it could result in

an unstable feedback type of situation, where a large initial error in the bias estimate causes

yaw rate signal to always fail the test, thereby impeding the estimation of the bias. The other

problem is the sensor noise. If the noise on the gyro is too high it becomes difficult to estimate

slowly growing sideslip, because raising the detection threshold will mean that low rates of
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turning will fall into the zero sideslip assumption. Setting the threshold correctly is also

important. It makes sense to set it to some integer multiple of the noise standard deviation.

The problem is that drivers rarely drive perfectly straight, and setting the threshold in this

way would only trigger the yaw course measurement under perfectly straight conditions. In

effect, the threshold becomes a trade off between the sensitivity of the estimator and how

often the course measurements are applied. Furthermore, the time requirement is a tunable

parameter. Setting the value too low means that zero crossings which occur slowly will result

in the estimator assuming zero sideslip in the middle of the turn. Setting the value too large

limits the instances where the valuable course information is used. Therefore both the signal

threshold and the time threshold are important parameters of the overall AUNAV system

which must be tuned carefully.

2.3.3 Conclusion

In this chapter some fundamentals of GPS systems, inertial measurement units, and

Kalman filtering were discussed. Following this, the algorithm for the modified modular

estimator was presented. In contrast to the AUNAV estimator, the MME algorithm consists

of several distinct Kalman filters, each estimating states along different axes. Therefore there

is qualitatively less coupling between the states of all of the different filters in the MME when

compared with the coupling between the states of the AUNAV estimator. The MME is a

modified version of the estimator presented in [6]. The modification consists of the removal

of the pitch rate gyroscope. The pitch angle estimate in the MME comes from the road

grade estimate, which is a function of the vertical and horizontal velocity estimates.

Finally, the development of the algorithm for the AUNAV estimator was presented.

The AUNAV estimator is developed by making two important modifications to a loosely

coupled GPS/INS filter. The classic loosely coupled algorithm is first discussed, followed

by a discussion of the modifications. The first modification is the removal of the pitch rate

gyroscope (and its corresponding bias state in the EKF). This is necessary because pitch
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rate gyroscopes are not currently available on commercial vehicles. The second modification

is the GPS course measurement which is used when the vehicle is driving straight. This is

necessary to improve the observability when the vehicle is driving straight, because there is

no lateral acceleration with which to relate heading errors to velocity errors. Turn detection

is done using the yaw rate gyroscope.
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Chapter 3

Observability of the AUNAV Estimator

3.1 Definitions

The notion of observability for a particular system is obviously of great importance for

estimation algorithms. The observability of a system indicates whether or not it is possible

to estimate the states of the system based on the given sensor configuration. As an overly

simplistic example, consider the problem of determining the direction that a vehicle is facing

(also known as vehicle heading). Certainly this state could not be determined if the only

sensor available is a thermometer in the cabin of the vehicle. This is obvious, because

the cabin temperature information is utterly unrelated to the vehicle’s heading. Yet what

if GPS north and east velocity measurements were available? This information is much

more related to heading, but is it enough, and under what conditions? These questions of

relating the information from the sensors to knowledge of the desired states are at the heart

of observability. For linear, time invariant, deterministic systems, observability is simply a

function of the pair of the system dynamics matrix and the measurement matrix. Changing

the measurement matrix, which implies changing the sensor configuration, or changing the

system dynamics matrix, which defines how the states are related to one another dynamically,

will affect the observability properties. This is intuitive. For linear time-varying or non-

linear systems things become more complicated. Let’s begin the discussion by focusing first

on linear, deterministic systems which are not time invariant. The problems imposed by

non-linearity and by stochastic influences will be discussed afterward. A formal definition of

observability is given by [43].
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Definition 1. A system is said to be observable if the initial state x(t0) can be determined

from the output y(t) over the finite time interval [t0, tf ].

Definition 1 assumes that the input u(t) is known. This definition serves as a general

definition of what is meant by “observability” for all types of systems, yet it is far from

the only definition in the literature. In fact the researcher cannot be too careful when

considering the terminology of observability, as more specific definitions and conditions also

abound. Silverman and Meadows offer three more discriminating definitions of different types

of observability for linear time variant systems [42]. They are complete, total, and uniform

observability. It is worth noting, as an aside, an example of inconsistent terminology found

in the literature. In [35] the authors, while citing Silverman and speaking of the exact same

three observability definitions, refer to them as complete, differential, and instantaneous

observability. In this work, the author adopts the terminology of Silverman. Here, complete

observability carries the same definition of observability as Definition 1. Total and uniform

observability are defined as follows [42].

Definition 2. A system is said to be totally observable on an interval [t0, tf ] if it is completely

observable on all subintervals of [t0, tf ].

Definition 3. A system is said to be uniformly observable on an interval [t0, tf ] if the matrix

Q0(t) is full rank for all t on [t0, tf ].

Definition 3 is the strongest of the three conditions. The matrix Q0(t) is defined as

follows. If a linear, continuous system is given by (3.1), then the matrix Q0(t) is defined as

in (3.2).

ẋ (t) = A (t)x (t) +B (t)u (t)

y (t) = C (t)x (t) (3.1)
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Q0 (t) =

[
S0 (t) S1 (t) · · · Sn−1 (t)

]
Sk+1 (t) = A′ (t)Sk (t) + Ṡk (t)

S0 (t) = C ′ (t) (3.2)

The general observability condition (Definition 1) is a necessary one for estimation

purposes. For systems which are linear, deterministic, and time invariant, it is also sufficient,

but this is not true of the loosely coupled filter. It is important to remember moving forward

that proofs of convergence are not in view, rather the focus is on verifications that the system

meets the minimum condition for estimation. It will be seen that many times, the loosely

coupled filter does not. It will now be considered how these definitions have been applied in

the literature to the problem at hand, namely, the loosely coupled GPS/INS filter.

3.2 Applications in Literature

In [21] Goshen-Meskin and Bar-Itzhack develop a theoretical method of analyzing the

observability of linear time varying systems by considering them as piece-wise continuous

systems. They first show that often times it is valid to consider a time varying system as

a sequence of consecutive time invariant systems if the time varying system meets certain

conditions. This allows the authors to view the observability of the overall system as a simpler

function of the observability of each time segment. This idea is then applied in [22] to the in

flight alignment (IFA) problem for INS units in aircraft. Various maneuvers are reduced to

distinct and consecutive time segments of constant systems, such as a constant acceleration

or a constant radius turn, and the overall observability is studied. In this way it is possible

to consider whether certain maneuvers will result in an observable system. Said another

way, it makes it possible to theoretically decide what is an effective sequence of motions for

IFA. They conclude that, for the 12 state loosely coupled GPS/INS, any first segment has an
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observability matrix of rank 9. Adding another distinct segment increases the rank to 11, and

any third increases it to full rank. The order of the segments does not matter, and repeating

segments has no effect. All segments in that work consist of distinct, constant accelerations

in either the north, east, or down directions. This analysis is very similar in approach to

most other works in the literature. That is, researchers are not evaluating the observability

of the “system”, but rather asking whether or not the system is observable along certain

trajectories. The fact is, this system and those like it are neither linear nor time invariant,

so the analysis is restricted to local observability analyses of individual trajectories. Yet this

a very useful endeavor as an analysis or design tool, allowing the designer to draw conclusive

and defined operating boundaries outside of which the filter can be guaranteed to fail. Since

the system is actually non-linear, the results for the local trajectory represent a necessary

condition, not a sufficient condition. This analysis of the observability of the nonlinear

system along a certain trajectory will be referred to hereafter as the observability “of the

trajectory” for simplicity.

Another important work is that of Rhee et al. [35]. Here the authors look at the

observability of several trajectories using the definitions and conditions defined in [42]. First

they look at the case of constant linear acceleration, treating it as a time invariant system as

in [22]. Using well known observability tests such as the Hautus test and the standard LTI

observability matrix, they find that the total system is unobservable and that the attitude

angles are the unobservable modes. This brings up a very important discussion. In this case,

Rhee et al. found that the observability matrix was rank deficient by 3. This means that there

are 12 observable modes, which is not the same thing as 12 observable states. Modes may be

states or linear functions of states. In this case, the 3 unobservable modes correspond directly

to states (the 3 attitude angles). However, 6 of the 12 observable modes do not correspond

to individual states, rather they are a function of other states (specifically the attitudes and

inertial biases). While there are 12 observable modes, there are only 7 observable states.

These are position, velocity, and the vertical accelerometer bias. The remaining 5 observable
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modes are functions of the other 8 unobservable states. This means that the combination of

the remaining attitudes and inertial biases is observable, but that the filter is unable in this

case to separate them individually. This is consistent with [22], and is basically equivalent

to applying their test to just the one acceleration segment alone. In short, the filter cannot

distinguish between the attitudes and sensor biases (except for the vertical accelerometer

bias); however the combination of the attitude errors and the sensor biases is observable.

Yet it is extremely important for the filter to be able to distinguish sensor biases from

attitude, therefore knowing the circumstances under which the attitude and bias estimates

cannot be independently observed is crucial. Rhee also considers the uniform observability

of the case of non-constant linear acceleration or constant rotation. This is done by applying

the definition of uniform observability (Definition 3) found in [42]. In doing so they find

that maneuvers of either type increase the number of uniformly observable modes by two.

For the case of non-constant axial acceleration, two attitude angles are made observable.

The attitude angle around the jerk vector is the state which remains unobservable. For

the constant turn case, the authors find that the yaw angle remains unobservable. In each

case, the attitude angles which are made observable by the maneuver might also cause the

biases to become independently observable as well. Recall that for the case of no excitation

(driving straight) there are functions of the attitudes and biases which are observable, even

though the attitudes and biases aren’t observable independently. Making the attitude angles

observable effectively decreases the number of unknowns in the equations, making the biases

observable also. This makes sense intuitively. Consider the lateral accelerometer model,

Equation (2.47). If the only biasing effects are from the roll angle φ and the sensor bias

δfy, and if the roll angle is observable or known, then it follows that the bias likewise is

observable.

Uniform observability (Definition 3) is the strongest condition of the three, and the

authors do not address the general observability condition (Definition 1) for the time variant

case. This makes it difficult to quantitatively compare these results with others in the
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literature. Hong et al. [26] also examines the single antenna loosely coupled GPS/INS filter.

They find that the attitude and bias states are unobservable if the system can be represented

as being time-invariant (i.e. when only undergoing constant axial acceleration). Furthermore

they conclude that linear acceleration changes enhance the overall observability of these

states. These findings are qualitatively consistent with those previously mentioned, and

they also align with the intuitive presentation of observability given in [19].

3.3 Observability Simulations

The above findings in the literature paint a clear picture of the observability of the

loosely coupled filter concerning most of the relevant trajectories and operating conditions.

However these findings are all for the standard algorithm, and the observability of the modi-

fied algorithm in this work still needs to be considered. The modifications to the filter include

removing a state (the pitch rate gyro bias), an input (the pitch rate gyro), and adding a

measurement (the yaw/course measurement). Adding the measurement of yaw will certainly

improve the observability, and the degree to which it does so will be shown in this section.

When considering the observability of the modified algorithm, the general definition of

observability given by Definition 1 is used. As a means of evaluating a system’s observability,

Stengel [43] gives an equation for the observability matrix of a linear time-varying system.

OLTV (tf , t0) =

tf∫
t0

ΦT (τ, t0)H
THΦ (τ, t0) dτ (3.3)

The system is observable if OLTV (tf , t0) is non-singular, where OLTV (tf , t0) represents the

observability matrix for the system on the interval [t0, tf ], Φ (τ, t0) represents the state tran-

sition matrix from t0 to tf , and H represents the measurement matrix. The state transition

matrix is obtained by multiplying in series the state transition matrices of each discrete time

step.
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Φ (k, 0) = Jd(k)Jd(k − 1) · · · Jd(0) (3.4)

The state transition matrix of each time step is obtained by discretizing the Jacobian of

the system dynamics. This is done according to (3.5) using the matrix exponential function

provided by Matlab, expm()

Jd = e(J∗Ts) (3.5)

where Ts represents the sample time. The AUNAV estimator is a nonlinear system, therefore

it bears restating that the observability results are local to the trajectory about which the

system is linearized. It is also important to note that for the observability analysis the

system is linearized not about state estimates, but about the true trajectory. This is because

the problem is to determine whether or not a certain trajectory (maneuver) theoretically

results in an observable time varying system. The modified algorithm is investigated by

analyzing the rank of the matrix OLTV (tf , t0). If it is full rank, then it is also non-singular

and the trajectory of interest is fully observable on the time interval [t0, tf ]. If the trajectory

is observable, then the filter will converge if it is tuned appropriately. The analysis from

the literature provides further insight into the case where OLTV (tf , t0) is rank deficient. If

we first analyze the modified filter without including the yaw constraint (i.e. the standard

loosely coupled filter without having the pitch rate gyro or the pitch rate bias state), we

should expect to see results in accord with those discussed in Section 3.2. Several simulations

were performed in Carsim to validate this expectation. A note here regarding the following

results is necessary. The following plots show the rank of OLTV (tf , t0) over the course of

the simulations. In general, the rank test of OLTV (tf , t0) shows whether or not the system

is observable on the interval [t0, tf ]. This means that if a maneuver is performed which

increases the rank to full, during some time interval, then the rank will thereafter remain

full and the system will be declared observable until the end of that interval. What is really
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Figure 3.1: Observability of the Loosely Coupled and AUNAV Filters During Longitudinal
Dynamics.

of interest here is to show the impact of various maneuvers regarding observability. Because

of this, small intervals of one second were chosen to evaluate OLTV .

Two simulations were done in Carsim in order to test the observability of each trajectory.

All values from the simulations are true values, no noise or other errors were added, because

the analysis is done concerning the linearization about the true trajectory. The first test

involves the vehicle driving in a straight line with a period of forward acceleration followed

by deceleration. Figure 3.1 shows the rank of OLTV during this test, with subplots showing

the yaw rate and accelerations. Full rank is 15 for the standard loosely coupled filter and 14

for the modified filter. Figure 3.2 shows the results from a simulation in which the vehicle

drives straight, enters a steady state turn, and resumes straight driving. The rank of OLTV

during these tests confirms the findings in the literature. Specifically, the system is not fully

observable under constant acceleration, but requires changes in acceleration to reach full

observability. It can be seen in Figure 3.1 that as the vehicle begins to accelerate the system
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Figure 3.2: Observability of the Loosely Coupled and AUNAV Filters During Lateral Dy-
namics.

becomes observable, but as the acceleration becomes steady the rank drops back to 11. The

same is seen when the vehicle decelerates. Figure 3.2 confirms this also, showing the same

behavior in regard to lateral acceleration. Under constant acceleration, the observability

matrix is rank deficient by three. Constant acceleration in another direction increases the

rank by two, confirming the results in [21]. The filter only reaches full rank when a change

in acceleration occurs, confirming the results in [35]. These results show that the modified

system, without the extra yaw constraint, behaves just like the standard system in regards

to observability. Therefore the conclusions of Section 3.2 apply to the modified filter when

the yaw constraint is not applied. This gives some insight into the anticipated performance

of the filter during constant acceleration operation (straight steady driving). Rhee found

that in this situation the attitude and bias states are unobservable [35]. This means that

the estimates will likely be biased, yet because the combined effect of the leveling angles and
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Figure 3.3: Observability of the LC Filter Compared with the AUNAV Filter During Lon-
gitudinal Dynamics when the Course Measurement is Conditionally Added to the AUNAV
Filter.

the accelerometer biases is observable, the errors will be bounded. This cannot be said of

the yaw angle, which is known to exhibit drift during this time.

Figures 3.3 and 3.4 show the results from the same two simulations, only this time the

yaw constraint is imposed when the straight driving condition is met. There is no difference

in the rank of OLTV under dynamics, but the rank is closer to being full during straight

driving. In this case the observability matrix is only deficient by one, as opposed to being

deficient by three. The improvement of two more observable states is easily explained.

During this time, the filter has direct yaw information available (because sideslip is assumed

to be zero), which makes the yaw angle observable. Furthermore, since the integral of the

yaw rate gyroscope is measurable, the bias of this gyro becomes observable. In this way the

modification overcomes the problem of drifting yaw estimates.

While the previous simulation results show when the filter does and does not meet the

necessary conditions for estimation, the convergence of the filter still requires investigation.
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Figure 3.4: Observability of the LC Filter Compared with the AUNAV Filter During Lateral
Dynamics when the Course Measurement is Conditionally Added to the AUNAV Filter.

If the system were in fact linear and deterministic, observability would imply convergence.

However large initial errors or unmodeled disturbances could cause convergence to an in-

correct local minimum. What’s more, it has been shown in [5] that the stochastic elements

by themselves can cause the filter to diverge if the filter is improperly tuned. The authors

there describe the distinction that results between standard observability and “stochastic”

observability. The system can meet the necessary conditions for observability and yet diverge

due to poor tuning of P,Q,R, due to too large values of P0, or due to large errors in the

initial estimates. So filter convergence of the nonlinear estimator can only be expected if the

trajectory is observable, the tuning is appropriate, and the initial error is not too large.

The following simulations demonstrate the behavior of the filter under such conditions.

These simulations consist of the combination of the two prior simulations. That is, the

vehicle enters a steady state turn, disengages from the turn, and accelerates and decelerates

while driving straight. The simulation is run first without the yaw constraint, followed by
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Figure 3.5: Speed and Yaw Rate Profile of Convergence Test Simulation.

Figure 3.6: Convergence of the AUNAV Accelerometer Bias Estimates During Simulation.
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Figure 3.7: Convergence of the AUNAV Gyroscope Bias Estimates During Simulation.

a run with the constraint. Figure 3.5 shows the speed and yaw rate for the simulations.

Figures 3.6-3.11 show the estimates of the bias states and the leveling angles, where the

blue signal represents the estimates without the yaw constraint and the cyan represents the

estimates with the constraint.

Let’s first consider the case without the yaw constraint (blue). It can be seen in Figure

3.6 that the x and y accelerometer bias estimates do in fact converge toward the true value

during periods where the observability test is full rank (during acceleration changes). The

y accelerometer bias shows in particular that bias convergence is strongest when the accel-

eration change is along the axis collinear with that bias. It is also observed that the z axis

accelerometer bias converges regardless of the dynamics. Both of these results are in accord

with the results in [22], [26] and [35]. Figure 3.7 shows the behavior of the gyroscope biases.

The yaw rate gyro bias (ωz bias) also behaves as expected, converging toward the true value

during changes in acceleration. By contrast, the roll rate gyroscope bias (ωx bias) converges

rapidly, regardless of the dynamics. This result is in disagreement with the results in [35].
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There the authors find that when there is no excitation (straight driving at a constant speed),

an unobservable mode is given by

x3x = δωp − Ωzδθ + Ωyδψ (3.6)

where x3x is the particular unobservable mode in question (using the author’s notation),

δωp is the roll rate gyroscope bias, and δθ and δψ are the pitch and yaw errors respectively

(using the notation of this thesis). The terms Ωz and Ωy relate to the Earth’s rotation rate,

see [35] for details. It is observed that if the second two terms in Equation (3.6) are small,

then

x3x ≈ δωp (3.7)

Since x3x is an observable mode even with no excitation, then the roll rate gyroscope

bias is observable under these conditions. While in reality it is the sum of the bias and the

Earth rotation terms which is observable, the rotational terms are small enough compared

with the bias that they can be disregarded. Carsim does not include any simulated effects

from the Earth’s rotation, which explains the convergence in simulation. In order to verify

that the bias estimate converges using the true sensors, experimental data was analyzed.

In this experiment, the vehicle is driven on a mostly straight road at close to a constant

speed. Details of the sensors and vehicle are given in Chapter 4. Figure 3.8 shows the roll

rate gyroscope bias estimates. Analysis of static data for this run reveals a bias of 0.139

deg/sec. This was found by taking the mean of the roll rate signal over 25 seconds of static

data (collected at 100Hz). Is is observed that even during periods of very little excitation,

the bias estimate converges to very near 0.14 deg/sec, confirming the simulation results and

the hypothesis that the Earth rotational terms are small enough to neglect. Figure 3.9

is included to show the forward speed and yaw rate, showing that apart from the period

500s < t < 700s there is very little excitation.
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Figure 3.8: Convergence of the AUNAV Gyroscope Bias Estimates During Experimental
Testing with Limited Dynamics.

Figure 3.9: Velocity and Yaw Rate from Experimental Testing.

54



Figure 3.10: AUNAV Roll Angle Estimate Convergence During Simulated Test.

Figure 3.11: AUNAV Pitch Angle Estimate Convergence During Simulated Test.
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Figure 3.12: AUNAV Yaw Angle Estimate Convergence During Simulated Test.

Since the combined effect of the leveling angles and the x and y accelerometer biases

is observable, it is expected that the leveling angle estimates would converge as the bias

estimates converge. In particular, it is expected to see this kind of coupling between the roll

angle estimate and the y accelerometer bias, and between pitch angle and the x accelerometer

bias. Figures 3.10 and 3.11 show that this is the case. The roll angle, like the y accelerometer

bias, converges most rapidly during changes in lateral acceleration, while the pitch angle

converges most rapidly when its bias counterpart does as well. Let’s now consider the

simulations which include the yaw constraint (cyan). It can be seen in Figures 3.6 and 3.7

that the x and y biases show better convergence this time, as do the roll and yaw gyro

biases. In fact convergence for the yaw gyro bias is no longer a function of the dynamics,

as expected. A slight improvement is seen in the roll angle, while no improvement can be

detected in the pitch angle. Figure 3.12 offers a comparison of the yaw angle estimation

performance with and without the yaw constraint. It can be seen that the yaw angle does in

fact drift when the constraint is not imposed and the yaw gyro bias remains unobservable.
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This drift diminishes as dynamics occur to enable an accurate estimation of the bias. Despite

this, the performance with the yaw constraint is far superior, showing no drift whatsoever

during the run. However, a very slow drift would occur during a sustained steady state turn.

3.4 Conclusion

Several key states are unobservable for the loosely coupled filter when the vehicle is

undergoing limited dynamics. While this represents the chief limitation of the filter, it is

far from a death blow to its potential. The unobservable states in question are the attitude

states and the bias states. The bias states by nature change very slowly over time, relative

to changes in the level angles, making it possible to broadly define two general operating

scenarios of the filter: an “initialization” stage and a “tracking stage”. The initialization

stage represents the period before the bias estimates converge to near the true values. For

the purpose of illustration, the biases could be thought of as static during this phase, and

once they are acceptably identified the attitude and sideslip estimates become trustworthy.

This marks the transition into the tracking phase. During this phase, since the bias estimates

are close enough to the true values, the filter outputs good attitude and sideslip estimates.

Furthermore, the slowly changing bias can now be viewed basically as a slow drift with a

small initialization error. Normal driving conditions likely provide enough dynamics to track

these small changes, thereby keeping bias estimate errors from growing dangerously large.

This is a good avenue for future research.

It is also important to reconsider a result detailed in [35] regarding the difference between

the observability of a function of several states which are not independently observable. The

authors showed that in the scenario of constant acceleration the combination of the attitude

and the inertial sensor biases remains observable despite the fact that these states are not

independently observable. This means that if the filter has already entered the “tracking

phase”, meaning it has already identified the biases, then it follows that the attitude states

will also be known, even though they are technically unobservable. Said another way, once
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the biases have been identified, there is no danger filter from the vehicle entering into the

unobservable scenario of simple straight driving for a period of time. The amount of time

for which the attitude will remain known is a function of how quickly the sensor biases

drift relative to how much dynamics the vehicle experiences. It is also a function of tuning.

Poor tuning could cause the bias estimate to change rapidly, even though the true bias does

not. From this it is possible to infer a problematic scenario. If the vehicle is traveling cross

country through a region like Texas, there will likely be very prolonged periods of driving

straight without lane changes, braking, forward accelerations (or anything even remotely

interesting in general) . Such a scenario would likely send the filter back to the initialization

phase. However it may be possible to consider additional constraints, such as a flat road

assumption, to mitigate this effect and perhaps even prevent it. It may also be possible to

use the drift rate characteristics of the IMU to quantify how long it is safe to remain in the

unobservable state once the biases have been identified.
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Chapter 4

Experimental Validation of the AUNAV Estimator

In order to validate the algorithm, tests were performed in a 2007 Infiniti G35 at Auburn

University’s National Center for Asphalt Technology, or NCAT. NCAT offers a couple of

valuable resources to this project. The first is a skid pad area for high dynamic testing. This

region is a large, approximately flat, section of asphalt where maneuvers such as double lane

changes or J-turns are safe to conduct. The other, primary resource of NCAT is the 1.7

mile oval loop. The oval has two straight segments and two segments of banked (8 degree)

turns. The track provides the ability to collect data on longer experiments which is especially

important for bias estimation validation.

The G35 is outfitted with several sensors including a Novatel Propak V3 antenna and

receiver, a Septentrio PolaRx2 three-antenna GPS attitude determination system, a Cross-

bow IMU 440, and a CAN reader which provides access to the vehicle’s on board wheel

speed and steer angle signals. Although the Crossbow is a six degree of freedom IMU, the

pitch rate gyro is not used in this work. The Crossbow is of higher quality than automotive

inertial sensors, and this difference is discussed later in this chapter. The Novatel receiver

is capable of receiving differential corrections, however corrections were not used in order

that the experiment might more closely resemble the sensor suite of a market vehicle. The

Novatel and Crossbow are the sensors used for the estimator, while the Septentrio provides

reference “truth” values for sideslip, roll, pitch, and yaw. The Novatel provides position

and velocity measurements, while the Crossbow provides accelerations and rotation rates in

the frame of the IMU. Sideslip is obtained from the Septentrio via its velocity and heading

solutions. Equation (4.1) is used to calculate the reference sideslip
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β = arctan(
V Sep
y

V Sep
x

) (4.1)

The main Septentrio antenna is located near the rear axle of the vehicle (along the X

axis). Therefore V Sep
y must be translated to the Novatel antenna location via Equation (4.2).

V Sep
y = −V Sep

n sin(ψ) + V Sep
e cos(ψ) + ∆xωr (4.2)

In this equation ∆x represents the distance in the body frame from the Novatel antenna

to the Septentrio main antenna. There is a slight yaw angle alignment difference between

Septentrio and the body frame. This is found by comparing the course measurement from

the Novatel, which is an unbiased measure of the velocity vector, and the yaw measurement

from the Septentrio. If the Septentrio is aligned perfectly, then the yaw measurement should

match the course measurement when the vehicle is driving straight. It was found that there is

a difference of one half of a degree between the two, and the Septentrio heading measurement

was adjusted accordingly. Since the sideslip is a function of heading, this adjustment also

pertains to the sideslip. All plots of the Septentrio sideslip are of the adjusted values.

The conclusions from Chapter 3 motivate two separate experiment scenarios: one for

the “initialization” phase and one for the “tracking” phase. The tracking phase is mainly

concerned with state estimation under ESC type conditions, which by nature last over short

time durations, while the initialization phase is concerned with long term bias estimation.

4.1 Initialization

Figures 4.1 and 4.2 show the trajectory, speed, and yaw rate of the initialization experi-

ment. The purpose of this test is to validate the results of the observability theory and show

that under sufficient dynamics the filter can estimate both the attitude and the bias states

accurately. Two scenarios were created during this test in order to show this. One scenario

has minimal dynamics and the other has exciting dynamics. This was done by varying how
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Figure 4.1: Vehicle Trajectory During Initialization Experiment.

Figure 4.2: Profile of Dynamic Conditions During Initialization Experiment.
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the vehicle was driven during the straightaways. The vehicle was driven normally around

the turns every time. During several laps at the beginning and the end of the experiment

the vehicle was driven straight and at a nearly constant speed, as much as possible, on the

straightaways. These laps serves as a comparison for the behavior of the filter under dy-

namics. The dynamic laps occur during the time t ≈ 200− 400s. Here a sinusoidal steering

input was applied on the straight sections. Intermittent braking and acceleration were also

applied, but these were relatively fewer and less exciting than the steering inputs. The yaw

rate signal in Figure 4.2 shows the lateral excitation, while the spikes in the velocity signal

show the braking and acceleration inputs.

It is necessary to show that the AUNAV estimator can accurately estimate the ac-

celerometer and gyroscope biases. However, obtaining a “true” value for the accelerometer

biases is difficult. An accurate value for gyroscope biases can be obtained by analyzing static

data from either before or after an experiment. This is because, as shown in Equation (2.16),

the sensor bias is the only biasing element corrupting the sensor. It can therefore be isolated

by taking the mean of the static data. The difficulty for the accelerometers lies in the fact

that the gravitational effects appear exactly like biases. Simply taking the mean of static

data would include the effects of any roll and pitch. The Septentrio can be used to estimate

the accelerometer biases, because the attitude measurements which it provides cause the

AUNAV estimator to be fully observable. This is precisely how the “reference” values of the

accelerometer biases were obtained. The attitude measurements from the Septentrio were

included in the AUNAV estimator for the purpose of obtaining the reference accelerometer

biases. The addition of the attitude measurements was only for this purpose; the AUNAV

estimator does not use these measurements in general. One more detail should be noted

regarding the reference accelerometer biases. The Septentrio roll and pitch measurements

have errors in them also, and these errors will corrupt any estimates of the accelerometer

biases. Therefore an artificial bias of 0.6 m/s2 was added to all three accelerometer signals

in order that the bias effects would be relatively much larger than the Septentrio errors.
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The purpose of the initialization test was to emulate the long term bias estimation

performance of the AUNAV estimator. The sinusoidal steering was done in order to accelerate

the convergence so as not to need an extraordinarily long data set. The idea was to provide as

much dynamics within the data set and to show the biases converging to the true values. To

this end the tuning was also modified. If the filter could be tuned more aggressively during

the favorable dynamic conditions, the convergence could potentially be accelerated further.

This was done by scaling the values of the Q matrix which correspond to the accelerometer

bias states according to the yaw rate, as in Equation (4.3).

Qii =
Qiiωz
1deg/s

(4.3)

The notation Qii refers to the Q matrix values which correspond to the accelerometer

bias driving noise. This equation simply scales the Q value according to the current yaw

rate signal, normalized to 1deg/s. The adaptive scaling did in fact prove to accelerate the

convergence time. Figure 4.3 shows the lateral accelerometer bias estimation converging to

the reference value during the period of lateral excitation (t ≈ 200− 400s). Recall that the

reference accelerometer bias values were obtained in the manner described previously in this

section using the Septentrio. This result is in accord with the observability results discussed

in Section 3.2. It shows that under dynamic maneuvers corresponding to the direction of

the accelerometer of interest, the bias estimate for that accelerometer will be observable. It

is also important to consider the affect this has on the attitude estimates. As was previously

stated, it is expected that if the bias estimates are correct, then the attitude estimates

will likewise be correct because the combination of the two are observable together. All of

the states are on some level coupled in the filter, but the strongest coupling between the

lateral accelerometer and attitude is with the roll angle. This is because errors in the roll

angle estimate cause the exact same effect in the velocity and position estimates as lateral

accelerometer bias.
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Figure 4.3: AUNAV Accelerometer Bias Estimation and Convergence During Initialization
Experiment.

Figure 4.4: AUNAV Roll Angle Estimation and Convergence During Initialization Experi-
ment.
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Figure 4.5: AUNAV Gyroscope Bias Estimation and Convergence During Initialization Ex-
periment.

Figure 4.4 shows the roll angle estimate, which is initially very biased. This demonstrates

the filter’s inability to separate it’s effects from those of the accelerometer bias during periods

of low dynamics, rendering it an unobservable state. However, recall that the net effect of

the two states remains observable, thus the estimates do not drift off. As soon as the vehicle

experiences lateral excitation the roll angle begins to converge to the true value. It continues

to do so until the excitation subsides. This is to be expected according to the theory, because

the lateral accelerometer bias estimate is also converging towards its true value.

The gyroscope biases are also an important part of the initialization process. Figure 4.5

shows the estimates compared with the empirically obtained values. The roll rate gyroscope

bias estimate converges to the empirical value. This confirms the results from Section 3.3.

The yaw rate gyroscope bias estimate does not display the same convergence as the roll rate

bias estimate. Nor does it exhibit the same convergence here as it does in simulation in

Section 3.3. This is because in the real world experiment the bias estimate is also capturing
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Figure 4.6: Vehicle Trajectory for Dynamic Test on the NCAT Skid Pad.

any unmodeled scale factor or misalignment errors. These are not present in simulation.

Nevertheless, the error in the bias estimate remains very small, and the overall filter operation

is not greatly affected by it. Future work will examine means of capturing scale factor and

misalignment errors properly, so that they do not appear in the bias estimate.

4.2 Tracking

Figures 4.6 and 4.7 show the trajectory and some general dynamics of the experiment

for the tracking phase. The third subplot in Figure 4.7 simply indicates when the yaw

constraint condition is triggered; it is included because the constraint condition plays a large

role in the overall operation. The results from this run are seen in Figures 4.8-4.11, starting

with the velocity estimates. The velocity estimates follow the true values well, which is not

surprising, given that each has a direct measurement for correction. These estimates are

also smooth, as opposed to being jagged and having a sawtooth like appearance, which is a
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Figure 4.7: Profile of Dynamic Conditions During Dynamic Test on the NCAT Skid Pad.

good initial indication that the rest of the estimates are also tracking well. The presence of

jagged features in the velocity estimates would indicate that either the attitude states, the

accelerometer bias states, or both, were not being estimated properly. A histogram of the

velocity residuals is shown in Figure 4.9. The velocity residuals are mostly white Gaussian,

another sign indicating proper Kalman filter operation. Although the East velocity residuals

do not appear perfectly Gaussian, they do appear close to Gaussian and they are of very

small magnitudes. The red line represents the normal probability density function given by

the mean and standard deviations of the residuals.

Figure 4.10 displays the sideslip estimate in blue with the Septentrio reference in black.

It is observed from the plot that overall the AUNAV estimator accurately estimates the

sideslip angle. Yet it is also observed that a large error in the estimate appears at t ≈ 84.5s.

This error occurs during a GPS update, and the filter subsequently corrects for it. It takes

the AUNAV estimator 2 seconds to bring the error to within 1 degree and close to 5 seconds

to bring the error near zero. The error occurs at a time when the vehicle is experiencing
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Figure 4.8: AUNAV Velocity Estimates for Dynamic Test.

Figure 4.9: Velocity Estimation Residuals for Dynamic Test.
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Figure 4.10: AUNAV Sideslip Estimation During Dynamic Test.

Figure 4.11: Velocity Innovations During Dynamic Test.
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very heavy roll dynamics, suggesting that the lever arm could be a factor. The effects of the

lever arm in terms of m/s follow the relationship given by Equation (4.4).

δV = ω × δl (4.4)

Here, δV represents the difference between the velocities at the Novatel antenna and the

IMU location, ω is the rotation rate vector, and δl is the vector from the IMU to the antenna

in the body frame. The yaw dynamics will not cause any noticeable effect through the lever

arm, since the Novatel is mounted almost directly over the IMU when considered in the XY

plane. However the pitch and roll dynamics interact with the Z displacement, which is in

this case approximately 1 meter. For this data run the roll rate at t ≈ 84.5s is -0.31rad/s.

This means that in terms of general speed, not specifically North and East velocities, the

error introduced is ≈0.3m/s. The standard deviation of the noise on either the North or

East velocities is only 0.05m/s, meaning that the lever arm is having a relatively large effect

here. A plot of the velocity innovations is given in Figure 4.11, showing that at t ≈ 84.5s

the innovation on the East velocity is -0.49m/s, which is larger than the other innovations

for this state. This indicates that the lever arm is having an adverse effect and is the likely

culprit of the sideslip estimate jump at t ≈ 84.5s. It should be noted that at t ≈ 84.5s the

heading angle is 170 degrees, which means that this roll motion almost exclusively influences

the East velocity measurement.

The roll angle estimate is shown in Figure 4.12. The estimate closely follows the reference

value, with errors mostly staying within 1 degree in either direction. As was mentioned at the

beginning of this section, there is some drift in the reference attitude solution which needs

to be considered when comparing the AUNAV estimate with the Septentrio reference. It is

possible that the estimate is either slightly closer to or slightly further from the true value.

What is important here is to show comparable performance to the reference system. Future

work will lengthen the baseline of the Septentrio, increasing the accuracy of the reference

roll angle.
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Figure 4.12: AUNAV Roll Estimate for Dynamic Test.

Figure 4.13: AUNAV Pitch Estimate for Dynamic Test.
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The pitch estimate is unique among the attitude states, as there is no rate gyro to aid

the estimation process. The estimate therefore is only updated at the period of the GPS,

giving it a much lower bandwidth. This characteristic of the performance is clearly seen in

Figure 4.13. Despite the low bandwidth the filter tracks the general dynamics acceptably

well, albeit with a slight lag. The most obvious characteristic of the plot, however, is the

bias in the estimate of around two degrees. It is hypothesized that this is due to a mounting

angle difference between the Septentrio and the Crossbow, meaning that the estimate isn’t

biased at all. This hypothesis could be tested by using the Septentrio attitude solution

as a measurement to the filter and observing the bias states. Adding these measurements

makes the filter totally observable at all times. The pitch measurement would cause the

filter to interpret the relative pitch difference as a bias in the forward accelerometer by

essentially forcing the pitch estimate to the the Septentrio measurement. The resulting

forward accelerometer bias could then be interpreted as the relative pitch and solved for via

the simple relationship given in (4.5).

δfxgrav ≈ g sin (θ) (4.5)

This does assume that the relative pitch angle effects are much greater than the inherent

bias, which is a good assumption for the Crossbow. The Septentrio was used to identify

the bias resulting from the relative pitch mounting angle, and the result was a bias of

approximately −0.375m/s2. This was done using the nearly 50 seconds of static data from

the same data run. A plot of the pitch angle and the bias estimate is shown in Figure 4.14.

Computing a relative angle from this via Equation (4.5) yields an angle of −2 degrees, which

matches the “bias” in the pitch. Figure 4.15 shows two subplots, the first of which shows the

pitch estimate, the Septentrio measurement, and the road grade estimate. Recall that this

estimate, obtained as described in Chapter 2, is unbiased. Subplot 1 of Figure 4.15 shows

that the Septentrio is very close the road grade estimate. The second subplot shows the
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Figure 4.14: Pitch Estimate when Using Septentrio Pitch Information as an Extra Measure-
ment.

differences between the Septentrio measurement and each estimate (pitch and road grade).

The road grade difference is practically 0 degrees in steady state, while the pitch estimate is

very near 2 degrees. A line indicating the calculated relative pitch, obtained using Equation

(4.5), is shown in green. It is observed that the difference between the pitch estimate and

the Septentrio measurement matches the estimated relative pitch. It is concluded that the

Septentrio mounted pitch angle is level with the road. This does not mean that the suspension

pitch is necessarily zero, only the sum of the suspension pitch and the Septentrio mounting

angle is zero. Furthermore it is concluded that the Septentrio and Crossbow have a 2 degree

mounting angle difference, and that this mounting angle difference constitutes the majority

of the “error” between the AUNAV pitch angle estimate and the Septentrio measurement.

73



Figure 4.15: Comparison of the AUNAV Pitch Estimate with the Septentrio Measurement
and the Road Grade Estimate.

4.3 Slowly Growing Sideslip

One of the major limitations for ESC systems is detecting low rates of sideslip growth.

That is, it is difficult to estimate the sideslip angle when it builds up slowly over time.

The rate of sideslip growth presents a threshold of operation below which the ESC system

cannot detect. The cause of this can be understood by considering the noise of the sensors.

Many estimation schemes rely heavily on the lateral accelerometer for information. Recall

the definition of sideslip given by Equation (1.2), and that it is predominately related to the

lateral velocity. Therefore from this definition the sideslip growth rate will be predominately

related to the lateral velocity rate, i.e. lateral acceleration. Recall also that the lateral

accelerometer is subject not only to its own noise and moving bias, but also from biased effects

from incorrect roll angle compensation. These three error sources combine to effectively raise

the threshold below which true lateral accelerations cannot be detected. Said another way,

the error sources decrease the signal to noise ratio.
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Figure 4.16: Rate of Sideslip Growth During Simulated Test.

The AUNAV estimator avoids this problem by approaching sideslip using the definition

given by Equation (1.1), which is a function of the North and East velocity states and the

heading state. The velocity estimates are unbiased, and only contribute small amounts of

noise to the overall error of Equation (1.1). The main error source is the yaw angle, yet this is

precisely where the advantages of the AUNAV estimator and GPS are leveraged. With most

systems, the yaw rate bias would present a major problem here and cause rapid drift in the

yaw angle. This drift would be indistinguishable from slowly growing sideslip. However recall

that yaw information from GPS is applied when the vehicle is driving straight, resulting in

observability for the yaw gyro bias and allowing the system to effectively remove the bias.

Therefore practically the only source of drift in the yaw angle is noise, which causes a much

lower rate of drift than bias does, making it possible to estimate lower rates of sideslip

growth.

It is desirable to demonstrate the effectiveness of the AUNAV estimator to estimate

sideslip during slow rates of growth. Simulations were performed in Carsim in order to
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initially validate the estimation performance during slow sideslip buildup. Figure 4.16 shows

the slip rate for the simulation of the slow sideslip buildup. In this simulation, a 4WD vehicle

was briefly driven straight followed by a linearly increasing steering input. The slip rate peaks

at only 1.5deg/s. The estimation performance is shown in Figure 4.17. The estimator is in

fact able to estimate the slow sideslip buildup for a relatively long period of time in terms

of ESC events. Notice that the estimate does begin to drift as soon as the slip rate slows

down. The peak slip rate is extremely low in the first place, and once it decreases further the

filter cannot estimate it. Also notice that the error drift is still very slow. This is because

the drift is entirely due to drift in the yaw estimate, which is itself only due to drift from

noise integration. In this run the yaw constraint was true until t = 11.1s. The last GPS

update that occurred while the constraint was true occurred at t = 11.0s, which is after the

turning maneuver begins. In this case, the assumption of zero sideslip is technically false,

but applying the course measurement doesn’t introduce any noteworthy error. However this

does not guarantee that improperly applying the course measurement in other cases would

be equally harmless.

A closer examination of the sideslip shown in Figure 4.10 (the experimental data) reveals

that the slip rate during the third turn is relatively small. The average slip rate for the third

turn is 1.8deg/s. For reference, the average slip rates for turns 1 and 2 are −4deg/s and 4.5deg/s,

respectively. This is calculated by taking the slope of the black line (measured slip value) at

the points highlighted in Figure 4.18. There is some variation in this slope near the top of

the peak, but some of this is noise. Since the sideslip growth rate on this turn is very close to

that of the simulation, this portion of the run is further examined to validate the estimation

performance. Figure 4.18 shows that the estimator is able to estimate the sideslip during

this time, demonstrating the sideslip estimation performance during slow sideslip buildup.

Also note that the estimate is accurately maintained throughout the maneuver. This result

is in agreement with the simulation, because in simulation the estimate did not exhibit much

drift until after short periods of time. In Figure 4.18 there does not appear to be consistent
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Figure 4.17: AUNAV Sideslip Estimate During Simulated Test.

Figure 4.18: AUNAV Sideslip Estimate During Experimental Test with Slowly Growing
Sideslip.
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drift in the estimate, although certainly there is some noise. In conclusion, the AUNAV

estimator is able to accurately estimate sideslip growth rates as low as ≈ 1.5deg/s.

4.4 Conclusion

Experimental tests were performed to validate the estimation performance for the AU-

NAV estimator. The tests were divided into two phases. The initialization experiment was

performed on the NCAT loop. Laps were driven in which sinusoidal steering inputs were

provided in order to demonstrate the convergence of the bias and attitude states in the

presence of dynamics, even despite large initialization errors on the bias states. A reference

filter which incorporates the Septentrio attitude information was used for comparison of the

bias states. It was shown that given enough dynamics over time the filter will accurately

identify the biases. It was also shown that as the bias estimates converge, the corresponding

attitude estimates converge also. In effect, the AUNAV estimator accurately separates the

sensor biases from the attitudes. This result agrees with the conclusions from Chapter 3.

The dynamic estimation phase, where it was assumed that the biases had already been suffi-

ciently identified, was discussed second. Dynamic maneuvers producing sizable sideslip and

roll were performed in the tracking experiment, and it was shown that the AUNAV estimator

accurately estimates the vehicle states. An instance of lever arm effects negatively affecting

the estimation performance was discussed. Finally it was shown that the AUNAV estimator

can estimate slowly growing sideslip. In conclusion, the AUNAV estimator can provide the

state estimation performance necessary for ESC and RSC systems.
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Chapter 5

Experimental Comparison with the MME Estimator

The modular filter was also validated with experimental data, using the data from the

same two experiments already discussed in Chapter 4. This assures that the performance

of the two filters can be properly compared. It is worth noting that the two previous

experiments were designed specifically to address the nature of operation of the AUNAV

estimator. In particular, the first experiment was designed to validate the initialization

phase. The second experiment assumed that the “initialization” was successfully completed

and so the focus was on estimating states during dynamic events pertinent to ESC systems.

It may be asked if it is appropriate to use these same experiments to validate the modular

filter, as it may behave differently. In actuality, the modular filter suffers many of the

same weaknesses in terms of initial errors and bias estimation. Recalling the issue from the

AUNAV estimator, the need for the initialization time arises from the fact that if the biases

are not properly determined they will exert a negative impact on the estimation quality of

the other states. In fact this effect is even more pronounced for the modular case. It should

be no surprise to find this similarity in the behavior of the two filters, as they are based

on the same fundamental relationships. The only real differences between the two are the

coordinate frames into which the states are resolved, the inclusion of position states in the

AUNAV estimator, and in the relative level of coupling between all of the states. That is,

the AUNAV estimator includes more of the coupling relationships, whereas by definition the

modular filter does not.
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5.1 Initialization

In this section consideration is given to the bias estimation. For the AUNAV estimator

the discussion is grounded in the larger idea of observability, and this is also true here.

However, as the modular approach entails many separate filters as opposed to one large

filter, we cannot speak of the overall observability of the whole system. It can be said from

the start that the forward and vertical velocity filters are always fully observable, and that

when driving straight the heading filter is observable.

In terms of the biases, this means that there will always be reliable estimates of the

vertical accelerometer bias and that the yaw gyro bias will be reliable so long as the vehicle

does not undergo extremely long periods of uninterrupted turning. There is a caveat to

the observability of the forward accelerometer bias. Strictly speaking, this filter is always

observable. However, the filter does not include any pitch information inherently, rather

the accelerometer is rotated into the appropriate frame and gravity is removed in processes

outside of the filter. So any observability analysis of the forward velocity and forward

accelerometer bias is inherently decoupled from any notion of whether or not the pitch is

observable. In short, the net effect of the forward accelerometer bias and any pitch angle

estimation error is always observable, and this combined effect is what the forward velocity

filter estimates. Therefore if the pitch estimate is accurate, the filter’s estimate of the bias

will accurately represent the bias inherent in the sensor alone.

The lateral state filter is different from the other three in that at no time is a direct

measurement of the lateral velocity or roll available. The lateral velocity “measurement”

for this filter comes from the combination of the GPS velocity and the sideslip estimate

from the heading filter, as given in Equation (2.52). From this standpoint the accuracy

of the sideslip estimate from the lateral filter will never be more accurate than that of

the heading filter (although it is available at the INS frequency as opposed to the GPS

frequency). If the assumption is made that the sideslip estimate from the heading filter is
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accurate, meaning that the measurement for the lateral filter is accurate, then some valuable

conclusions regarding the observability of the other two states in the filter can be made.

The pair of the system matrix and the measurement matrix, each shown in Equations

(2.50) and (2.51), is linear, time invariant, and always observable for the lateral state filter.

This means that the roll rate gyroscope bias is always observable, and that the lumped effect

of the lateral accelerometer bias and the roll angle is always observable. This result is in

accord with intuition. Recall that for the AUNAV estimator the combination of the leveling

angles and the biases is observable when the INS is experiencing constant acceleration. It

is reasonable to expect a similar result here. Likewise, recall that for the AUNAV estimator

the leveling angles and the biases could be separated (independently observed) under enough

dynamics. The same is true here, only in this case additional low pass and high pass filtering

is applied to the output of the lateral filter externally. Therefore the expectation is that

if the heading filter estimate of sideslip is accurate, the lateral filter will produce accurate

estimates of the sideslip, the roll rate gyroscope bias, and the net accelerometer bias. If the

INS experiences dynamics, the net accelerometer bias can be separated into roll and true

bias.

A simulation was performed in Carsim to test this expectation. The vehicle was simu-

lated driving straight at 19.5 m/s on a flat road, followed by a prolonged period of sinusoidal

steering inputs, followed again by straight driving. This simulation is much like the actual

test performed to validate the initialization of the AUNAV estimator. Figure 5.1 shows

the yaw rate. Figure 5.2 shows the estimate of the lumped state (φ + by), along with the

true roll and the true bias in the bottom plot. It can be seen that the lumped state has

an approximately constant offset and a dynamic component. The offset corresponds to the

effects of the sensor bias, which is relatively constant over the run. The variation of the bias

shown in the figure is less than 0.02m/s2. The dynamic component is due to the changing

roll angle. The filtering of the lumped state is shown in Figures 5.3 and 5.4. First, in 5.3,

the roll angle is correctly filtered out during the transient maneuvers. Then in 5.4 the lateral
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Figure 5.1: Yaw Rate and Yaw Constraint Signals of Initialization Simulated Test.

Figure 5.2: MME Estimate of the Lumped State Compared with True Simulation Values.

82



Figure 5.3: Convergence of the MME Roll Angle Estimate During Simulated Initialization
Test.

Figure 5.4: Convergence of the MME Accelerometer Bias Estimates During Simulated Ini-
tialization Test.
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Figure 5.5: Convergence of the MME Gyroscope Bias Estimates During Simulated Initial-
ization Test.

Figure 5.6: Convergence of the Pitch Angle Estimate During Simulated Initialization Test.

84



accelerometer bias is seen converging to the true bias. This process takes much longer, as

the filter expects the bias to change very slowly. Figures 5.5 and 5.6 show that the gyroscope

biases and the pitch angle are tracked correctly.

Experimental validation was done by applying the filter to the same validation data used

for the AUNAV estimator. Figures 5.7 and 5.8 show the yaw rate and velocity estimates

for this run, while Figures (5.9 - 5.11) show the estimation results of the leveling angles and

the bias states. First, the forward and vertical velocity estimates show good performance in

Figure 5.8. It is expected that this would be the case, because both filters are observable all

the time. In order to compare these results with the AUNAV estimator, the AUNAV north

and east velocity estimates are converted into forward velocity by simply taking the vector

magnitude of the north and east velocities. There is no noticeable difference between the

AUNAV estimator and the MME for the velocity estimates. The roll estimate is shown in

Figure 5.9. Recall that the roll estimate is obtained by high pass filtering the lumped state

of the lateral filter, as described by Equation (2.55). The estimate requires time to converge

under dynamics because of this external filtering which is required to separate it out from the

lumped state. The MME estimate of roll behaves very much like the AUNAV roll estimate

in this case. However, it is observed that the AUNAV estimate is more accurate than the

MME estimate once the high dynamics have settled out.

The lateral accelerometer bias also requires time to converge. It is shown in Figure

5.10, where the reference values for the accelerometer biases are the same those described

in Section 4.1. Here the MME lateral accelerometer bias estimate is shown converging to

the reference bias estimate over time. These two figures demonstrate that the additional

filtering of the lumped state from the lateral state filter can be successfully used to isolate

the roll and lateral accelerometer bias under dynamic conditions. The MME lateral bias

estimate converges more slowly than the AUNAV estimate. This is because the filtering for

the MME estimate is strictly a low pass filter, while the AUNAV estimator takes advantage

of all of the relationships built into the system dynamics matrix. The vertical accelerometer
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Figure 5.7: Yaw Rate and Yaw Constraint Signals During Initialization Experiment.

Figure 5.8: Comparison of Velocity Estimates During Initialization Experiment.
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Figure 5.9: Comparison of Roll Angle Estimation Convergence During Initialization Exper-
iment.

Figure 5.10: Comparison of Accelerometer Bias Estimation Convergence During Initializa-
tion Experiment.
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bias in Figure 5.10 shows excellent performance, behaving just like the estimate from the

AUNAV estimator. The forward accelerometer bias estimate has a clear offset from the

reference. Recall that it was shown in Section 4.2 that there is a 2 degree pitch angle

mounting difference between Septentrio and Crossbow. When this 2 degrees of pitch is

converted into a gravitational bias according to Equation (4.5) it equates to 0.34m/s2, which is

almost exactly the difference between the reference forward accelerometer bias and the MME

bias estimate. Therefore it is concluded that the relative pitch angle accounts for practically

all of the difference between the reference forward accelerometer bias and the MME estimated

bias. The difference between the AUNAV estimate of forward accelerometer bias and the

MME estimate is that the MME estimator uses direct road grade information, from the

road grade estimate, and assumes that there is no suspension pitch. The AUNAV estimator

estimates the true pitch angle and does not make this assumption. The gravitational effects

from the suspension pitch account for the difference between the AUNAV and MME forward

accelerometer bias estimates. The pitch angle estimates are shown in Figure 5.11. The MME

estimate is closer to the Septentrio measurement than the AUNAV estimate, having a mean

difference of almost zero degrees. This is expected, given the findings shown in Section 4.2,

where it was shown that the Septentrio is almost perfectly aligned with the road grade. The

slight difference between the Septentrio measurement and the MME estimate is due to the

variability of the Septentrio pitch measurement. The Septentrio pitch angle solution has a

stated error standard deviation of 0.6 degrees. This does not mean that the error is zero

mean. Rather, the mean of the error has a standard deviation of 0.6 degrees. This means

that 95% of the time the pitch angle will be within plus or minus 1.2 degrees (2σ) of the

true value. This variability not only affects the analysis of the pitch estimates but also the

analysis of the forward accelerometer bias, because the Septentrio pitch information is used

to obtain the reference bias.

The gyroscope bias estimates are shown in Figs. 5.12. The yaw rate gyroscope bias

estimate displays similar characteristics to the yaw rate bias estimate from the AUNAV
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Figure 5.11: Comparison of Pitch Angle Estimation Convergence During Initialization Ex-
periment.

Figure 5.12: Comparison of Gyroscope Bias Estimation Convergence During Initialization
Experiment.
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filter. The estimate is too large because the MME estimator does not include any models

of scale factor. Therefore these effects get lumped into the yaw rate bias estimate. These

errors are not as large as the errors in the AUNAV estimate. The roll rate bias estimate does

not converge to the empirically obtained reference, which is in contrast with the roll rate

bias estimate produced from the AUNAV estimator. Since the estimate from the AUNAV

estimator converges correctly, it is concluded that the error in the MME roll rate bias estimate

is not due to unmodeled scale factor or misalignment, because these effects would also corrupt

the AUNAV estimator. Rather, these errors arise from the fact that the lateral state filter

does not have a direct measurement of the lateral velocity or roll. Recall that the lateral

state filter uses an initial estimate of the lateral velocity, which is computed from the heading

estimate and the GPS velocity as described in Section 2.2.4, as a measurement. This lack of

a true measurement for any of the states of the lateral filter causes the error in the roll rate

bias estimate.

5.2 Tracking

Figure 5.13 shows the trajectory of the dynamic test, while Figure 5.14 shows the yaw

rate and the yaw constraint condition. Again, this is the same test from Section 4.2, con-

sisting of driving in a straight line, turning uphill onto the skid pad, and finally performing

a dynamic maneuver before returning to the starting location. The yaw constraint determi-

nation is the same for both algorithms. Figures 5.15 - 5.18 shows the results from this test,

starting with the velocity estimates in Figure 5.15. The velocity estimates show good perfor-

mance throughout the run, as would be expected due to the direct one second measurement

updates. The velocity curves also offer insight into the quality of the other state estimates.

Consistent drift in between updates, producing a sawtooth like appearance, would be sure

evidence that either the bias states or the attitude states were inaccurate. It would likely

indicate error in both, for reasons discussed in Sections 3.3 and 4.2. Some small drift in

between updates is noticeable in the both the MME forward and down velocity estimates,
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Figure 5.13: Vehicle Trajectory During Dynamic Test on NCAT Skid Pad.

Figure 5.14: Profile of Dynamic Conditions During Dynamic Test on NCAT Skid Pad.
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Figure 5.15: Comparison of Forward and Vertical Velocity Estimates During Dynamic Test.

but these are of a very small magnitude. Even though these errors are very small, they are

noticeably larger than any errors in the AUNAV estimates. The errors in the down velocity

occur during the high dynamic portions of the experiment, and are due to a combination of

the unmodeled lever arm effects and the roll error which also occurs at this time.

Figure 5.16 shows the estimate of the roll angle along with the difference between it

and the Septentrio reference. The MME roll angle estimate closely follows the reference

throughout most of the run. The main exception to this occurs at t ≈ 84s, where the error

drifts off to close to 4 degrees and slowly converges back. It is highly likely that this error

can be explained by precisely the same effect that causes the error in the sideslip estimates of

both the AUNAV and MME estimators at the same time in the run. It was shown in Section

4.2 that unmodeled lever arm effects come into play under high dynamics via the difference

between the velocity at the antenna and the velocity at the IMU. In the case of the modular

filter, this difference is going to show up in the course measurement which is a component of

the initial sideslip estimate, as in (2.39). The initial sideslip estimate serves to calculate the
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Figure 5.16: Comparison of Roll Angle Estimates During Dynamic Test.

input to the lateral state filter as in (2.51). The roll angle is a part of this filter, and thus

it will be impacted by errors coming in through the measurement. The AUNAV estimate is

much more accurate, by comparison, showing that the roll estimate of the AUNAV estimator

is less subject to the lever arm effects than the MME.

Figure 5.17 shows the pitch estimate tracking the reference admirably. In fact the only

instance of large error occurs at the same time where a problem arose in the roll estimate,

likely due to the lever arm effects as well. It is also instructive to consider how the pitch

estimate is calculated when analyzing these results. The pitch estimate for this filter is

strictly an estimate of the road grade, calculated according to (2.26), and it completely

neglects any effects of suspension pitch. The reference pitch angle is a measurement of the

total pitch, so it includes the suspension pitch. The error plot shown in Figure 5.17 represents

the difference between the pitch estimate and the reference pitch. This plot shows the same

data as Figure 4.15 in Section 4.2. Recall the primary conclusion from the discussion there,

which was that the Septentrio mounting angle is almost zero relative to the road grade.
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Figure 5.17: Comparison of Pitch Angle Estimates During Dynamic Test.

Figure 5.18: Comparison of Sideslip Angle Estimates During Dynamic Test.
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The sideslip angle is plotted in Figure 5.18. Conclusions regarding the estimation quality

shown here can be divided into two groups: the performance before t ≈ 84s and the per-

formance after. Before this time, the filter outputs a very nice estimate of sideslip. Figure

5.18 shows the estimate following the reference smoothly and accurately during this time.

This changes at t ≈ 84s. Previously in this section the roll error that occurs at this time is

discussed and attributed to the lever arm effects. The effects of this error show themselves

here also. The sideslip estimate is a function of the forward velocity estimate and the lateral

velocity estimate, per Equation (2.52). The lateral velocity estimate is coupled with the roll

estimate in the lateral filter, thereby subjecting it to negative impact from any errors in the

roll angle estimate. It has been mentioned several times now that an inaccurate roll angle

estimate or an inaccurate estimate of the lateral accelerometer bias produces the exact same

effect in the lateral velocity estimate, and that this effect is a sawtooth shaped structure. The

reason for the sawtooth is simply that the filter is integrating the true acceleration plus some

bias, either from roll and gravity or uncompensated sensor bias. This is what is happening

in the sideslip estimate for the time t > 84s. The roll angle error grows, creating an artificial

bias in the accelerometer, and the sawtooth shapes appear in the lateral velocity. As the roll

angle begins to converge again, the magnitude of the saw teeth diminishes. The AUNAV

estimator recovers more quickly from this problem than the MME does, and it produces in

general a smoother estimate of sideslip than the MME.

5.3 Conclusion

The same experimental tests which were performed to validate the performance of the

AUNAV estimator were used to validate modular filter. The tests were divided into two

phases as in the case of the AUNAV estimator. Simulations and experimental data were

used to validate the initialization phase of the modular filter. The experimental data comes

from the same run used to validate the AUNAV estimator initialization, and the simulation

was designed in Carsim to mimic the real world experiment. The results from the simulations
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and real data are in agreement and show that given dynamic conditions over time the modular

filter is able to accurately separate the bias and level angles despite large initial errors in the

bias state. The MME estimator performs well during the dynamic estimation phase of the

experiment, except for the instance where the lever arm effects come into play. The modular

filter is found to be more susceptible to these effects than the AUNAV estimator. In short,

the modular filter provides good estimation performance for ESC applications.

The AUNAV estimator performs better than the MME estimator by most comparisons.

The roll angle estimates from the AUNAV estimator were found to be more accurate than

the MME estimates in both tests. There is little performance difference when looking at the

forward and vertical accelerometer biases, but the AUNAV estimator converges faster when

estimating the lateral accelerometer bias. The velocity estimates are almost qualitatively the

same, although the AUNAV estimator is observed to be slightly more accurate. The pitch

angle estimates are also comparable, with the main difference being the suspension pitch.

In this case the MME estimate is probably preferable over the AUNAV estimate, because it

is always clear exactly what it is outputting. The MME, in steady state, always produces

an unbiased estimate of the road grade. The AUNAV estimator, by contrast, may not have

converged to the true pitch value. It was demonstrated in this thesis that the AUNAV pitch

estimate is close to the true pitch value, and that correspondingly the forward bias estimate

is close to the true value, but some ambiguity remains. This is of course due to the lack

of the pitch rate gyroscope. There is no ambiguity in the road grade estimate from the

MME estimator, making it the preferable pitch estimate on vehicles which have negligible

suspension pitch. The AUNAV estimator strongly out performs the MME in regards to roll

rate bias estimation, as shown in Section 5.1. On the other hand, the yaw rate bias is more

accurately estimated by the MME estimator. This is because this estimate is only a function

of the yaw rate signal and the course measurement. Therefore, misalignment errors in the

yaw direction do not affect the bias estimate. Unmodeled misalignment errors will affect
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the bias estimate of the AUNAV filter, as described in Section 4.1, although including these

effects in the AUNAV model could potentially mitigate these errors.

It is no surprise that the AUNAV estimator outperforms the MME. The reason is simply

that the AUNAV estimator is based on a more complete model of the underlying kinematic

relationships. The more accurate the model is, the more accurate the estimator will be. This

obvious conclusion actually draws a parallel with model based state estimation methods.

The performance of those methods is also primarily a function of the model accuracy. The

difference, however, is that the model parameters for the the kinematic AUNAV and MME

estimators are measurable and practically unchanging. This is the primary advantage of

the AUNAV and MME estimators. Finally, although the MME estimator is capable of

accurately estimating important vehicle states for ESC systems, it is outperformed by the

AUNAV estimator.
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Chapter 6

Other GPS Applications: Tire Radius Estimation, Tire Pressure Monitoring, and Steering

Misalignment Detection

6.1 Introduction

GPS information can be also be used to serve vehicle functions other than state esti-

mation and navigation. In this chapter, GPS information is used to estimate the effective

radius of the tires, to detect pressure drops in the tires, and to detect steering misalignment.

The state estimates from the AUNAV estimator can also be used to aid in these processes.

For example, road grade information is important for the pressure change detection system,

because large road grades affect the tire loading and may impact the radius estimate. Fur-

thermore, an accurate yaw rate signal is required for the steering misalignment detection

algorithm presented here. The yaw rate gyroscope bias estimate produced from the state

estimator can be used to remove the bias from the yaw rate signal in order to provide the

needed level of accuracy. In short, this chapter will show how both direct GPS information

and the state estimates produced from the AUNAV estimator can be used to aid in other

vehicle safety functions beyond dynamic state estimation.

6.2 Tire Rolling Radius

Combining GPS with on board ESC sensors can aid in estimating the tire’s rolling

radius, which is an important parameter for various vehicle systems. An approach based

on linear estimation techniques is presented in [31], where the authors combine GPS and

wheel speed information with a vehicle model to obtain estimates of the rolling radius and the

longitudinal stiffness of the driven wheels. In [11] the authors expand on the work done in [31]
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by considering the adverse properties of linear estimation methods. Finding that noise in the

measurement matrix (as opposed to merely having noise in the measurement vector) causes

a bias in the linear least squares estimate, the authors propose using nonlinear optimization

methods to solve the problem. Improvements to the nonlinear estimation strategy are given

in [12], [13]. The approaches in all of these are for finding the longitudinal stiffness and

rolling radius of the driven wheels. However, the rolling radius of the undriven wheels are

estimated and discussed also. Equation (6.1) is the simple, important governing relationship

which is exploited to produce the estimate of the undriven rolling radius.

Vx = Reffω (6.1)

Equation (6.1) describes the relationship between the forward velocity Vx, the rolling radius

Reff , and the wheel speed ω under the important condition that there is no slip. In [13] the

radius estimate is obtained by solving Equation (6.1) in matrix (batch) form. For reference,

Equation (6.2) expands the relationship to deal with slip by including the forward slip ratio

σ.

Vx =
Reffω

1− σ
(6.2)

All of the above references focus on methods for estimating the driven wheel radius together

with the longitudinal stiffness. These estimates are useful in themselves, however the authors

also focus on how the stiffness in particular might be an indicator of the tire-road friction

coefficient. This follows the hypothesis raised in [24], [25] that the longitudinal stiffness

value could be an accurate predictor of the friction even at low slip values. In pursuing this

investigation, the authors find that many things influence the stiffness estimate including

tire pressure [13]. Therefore much discussion is given to how the stiffness might also be an

indicator of tire pressure. In this thesis the focus is on how the estimate of the rolling radius

might accurately indicate tire pressure or pressure changes, as opposed to the stiffness. While
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minor consideration is given to this idea in [11], [12], and [13], this section of this thesis will

explore how the radius estimate alone might be a successful predictor of tire pressure.

If the rolling radius estimate of the undriven wheel can successfully predict tire pressure,

the method might be expanded to the driven wheels using relative radius estimation methods.

Therefore consider the case where there is no slip, then Equation (6.1) can be used to form a

linear Kalman filter. In this case the state estimate is held constant in between the recurring

measurements of Vx/ω. For comparison, this is simply the recursive version of the approach

shown in [13] for the undriven wheel radius. Equations (6.3) and (6.4) show the state vector

and the measurement vector for the filter.

X̂ =

[
Reff−fl Reff−fr Reff−rl Reff−rr

]T
(6.3)

Y =

[
Vx−fl

ωfl

Vx−fr

ωfr

Vx−rl

ωrl

Vx−rr

ωrr

]T
+ γ (6.4)

In (6.4), γ represents the measurement noise vector. The filter operates as a normal

Kalman filter according to Equations (2.1-2.3). Since the wheel speeds are by definition the

rotational speeds at the tire, the translational speeds also must be at the tire. These are

denoted in (6.4) by Vx−fl, Vx−fr, Vx−rl, Vx−rr. Calculating these velocities is straightforward,

and Equation (6.5) shows how this is done.

Vx−fl = Vx−rl = Vx +
1

2
ltwωz

Vx−fr = Vx−rr = Vx −
1

2
ltwωz (6.5)

In (6.5), ωz is the yaw rate, and ltw represents the track width.

Figure 6.1 shows the estimation performance in simulation. Carsim was used to simulate

a simple scenario where a front wheel drive sedan drives in a straight line for 10 minutes.

The estimate converges to the true value over time. Note that a small bias is present in the
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Figure 6.1: Undriven Wheel Effective Radius Estimate Convergence in Simulation.

Figure 6.2: Undriven Wheel Effective Radius Estimate Convergence with Faster Tuning in
Simulation.
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Figure 6.3: Driven Wheel Effective Radius Estimate Convergence in Simulation.

estimator. This is because even for the undriven wheel there exists a very tiny steady state

slip of around 0.04% (according to Carsim’s models). Yet the bias from this is miniscule, at

only 0.1mm. The convergence speed is a function of the tuning, although there is a trade

off between speed and smoothness. A faster tuning offers quicker convergence. This is also

seen in Figure 6.2, where the tuning has been “sped up” for the same run. That is, the

process noise covariance matrix (Q) value is larger. The sensor noise covariance matrix (R)

value is held constant. In this case the filter converges more quickly, but it is not as smooth.

Later discussions will focus on the importance of smoothness. Figure 6.3 shows the radius

estimate of a driven wheel. The transient performance is exactly the same, (since the slip is

constant), but the bias is larger because the slip is larger for the driven wheel. It violates the

no slip assumption stated previously, and the bias is around 1.5mm. Figure 6.4 shows the

radius estimate of the undriven wheel during a simulation of the vehicle driving in a figure 8

pattern at much lower speeds, demonstrating that the filter is able to operate under turning

conditions.
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Figure 6.4: Undriven Wheel Effective Radius Estimate Convergence During Figure-8 Turning
Maneuvers in Simulation.

6.3 Tire Pressure Monitoring

It is hypothesized that the effective rolling radius is a function of the tire pressure [11],

[12], [13]. Since it has now been shown that GPS offers a way to very accurately estimate

the effective radius, it is further hypothesized in this thesis that this estimate can be used to

estimate the tire pressure and detect changes. In order to validate this hypothesis, four sets

of data were collected on the loop at NCAT. The vehicle was driven at a nearly constant

speed of 50mph for 45 minutes. Before and after each run, the pressure of all four tires was

recorded. The G35 is a rear wheel drive vehicle, so the front tires are the undriven wheels.

The front left and rear right tires were chosen as the variable tires, and they were run with a

different pressure each time. While the other two tires were maintained at 33psi, the front left

and rear right tires were set to 36, 32, 28, and 24 psi for each respective run. Figure 6.5 shows

the estimates for the front left tire for each run. It should be noted that only the data from

the straightaways is processed in the estimate. This is to limit any effects of weight transfer
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Figure 6.5: Front Left Tire Radius Estimates for Different Pressures.

on the tires, as the steeply banked turns might result in small tire deformations. Recall

that the radius is specifically the effective or rolling radius, which means it is extremely

difficult measure the true value. Yet it is known that this value lies between the loaded and

unloaded radii [34]. The radius estimates were all found to lie within the measured loaded

and unloaded radii as expected.

It can be seen that changes in tire pressure do result in changes in the rolling radius.

The first pressure drop from 36 to 32 psi results in a radius change of 0.5mm. This might

seem too small to track, but the estimator is clearly able to do so given enough data to

average out the noise. This is because of the accuracy of the GPS velocity measurements,

which are unbiased and have noise characteristics of approximately 5 cm/s (1σ). The second

drop from 32 to 28 psi results in a change of 0.5mm. The last drop from 28psi to 24 psi

results in a change of 0.6mm. Figure 6.6 shows the estimates from the rear right tire. It

is observed from this graph that the pressure drops correspond with decreases in the radius

estimate of 0.5mm, 0.4mm, and 0.6mm. Recall that the method presented in this thesis
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Figure 6.6: Rear Right Tire Radius Estimates for Different Pressures.

Figure 6.7: Estimates for All Four Tires for All Four Experiments.
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results in a biased estimate when it is applied to the driven wheels. However, this bias does

not affect the change in radius that results from the pressure. Therefore although the radius

estimates of the driven wheels are not as accurate as those of the undriven wheels, they are

still able to be used for pressure loss detection.

Looking at Figures 6.5 and 6.6 alone would suggest that these pressure ranges constitute

an easily dividable space for a lookup table or other classifier. Indeed the gaps between signals

is far larger than the noise, which is a good sign. However the repeatability of the estimates

must be considered. Speaking qualitatively, if there is much variation between the radius

estimates of a tire with a constant pressure, then it will be very difficult to isolate radius

changes which correspond to pressure changes. Figure 6.7 shows the estimates for all four

tires for all runs. Recall that the front right and rear left tires were maintained near 33psi

for all four runs. It appears that all of the estimates for the control tires lie within the range

331.1mm and 331.5mm. Furthermore, the estimates for the front left and rear right tires

lies within this range for the 32psi run. This indicates a degree of consistency across all four

tires. From Figure 6.7 it can be inferred that if the radius estimate is within this range, then

the tire pressure lies within 30psi to 34psi. Similar regions can be constructed for the other

pressure ranges. The space from 331.1mm to 330.7mm corresponds to a pressure between

30psi and 26psi. Below 330.7mm, the tire pressure can be considered to be less than 26psi.

Clearly these conclusions only apply to this particular data, and much more data would be

needed to construct a reliable tire pressure predictor. However, Figures 6.5 - 6.7 show that

indirect tire pressure monitoring is possible with GPS.

6.4 Steering Misalignment Detection

Steering misalignment is a problem because of the accelerated and irregular wear that

it causes on the tires. Large misalignments are obvious and easily noticed by the driver,

but smaller misalignment problems can be far more subtle. Even small misalignments have

negative effects on tire wear and gas mileage, therefore it would be advantageous if the
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vehicle were able to detect small misalignments and inform the driver, and GPS provides

the ability to do this.

The phrase “steering misalignment” is used here to describe any condition which causes

the steering system to produce an improper steer angle at the tires for a given steering wheel

input. This may be caused by a variety of problems in the suspension or steering systems,

but from a general standpoint the end effect is the same. The premise of the misalignment

detection strategy presented in this thesis is that if the vehicle is driving straight, then the

steer angle ought to be zero degrees. This is not exactly true, however, because of the

steering effects of road crown. Most roads generally have a very small side slope in order to

improve water drainage, and this slope will cause a very slight offset from zero in the steer

angle. In this thesis, all tests were done on the same section of roadway, so the effects of

road crown will be the same for all experiments. Therefore the road crown effects will be

ignored, although the accurate estimate of the vehicle roll angle produced by the AUNAV

estimator could be used to detect non standard road crowns.

The steering misalignment detection algorithm functions as follows. It requires the

steering wheel angle (SWA), an accurate yaw rate signal, noise characteristics for the yaw

rate sensor, and a baseline steer angle. The baseline steer angle is the steady state steer

angle for straight driving when the vehicle is perfectly aligned, which can be ascertained the

first time a production vehicle is driven. If there is no road crown, then the baseline steer

angle will be zero. For the experiments in this thesis, the baseline steer angle was found to

be approximately 2.25 degrees. The assumption is made that the Infiniti G35 was perfectly

aligned before the experiments were made. Since road crown is assumed to be constant, the

baseline steer angle is adjusted to be zero degrees, meaning that a constant 2.25 degrees

is subtracted from all SWA measurements. This is because it is the relative steer angle

compared to the baseline which is important, not necessarily the absolute steer angle. When

it is determined that the vehicle is driving straight, as described in Section 2.3.2, a moving

average (100 second window) of the SWA measurement is taken. The yaw rate gyroscope
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bias estimate from the AUNAV filter is subtracted from the raw yaw rate signal during the

process of determining straight driving conditions. If the average steer angle is offset from

zero, when the vehicle is driving straight, then it is concluded that there is a misalignment

problem.

Four experiments were conducted to validate the steering misalignment detection strat-

egy. These tests were conducted using the Infiniti G35, which is instrumented as described at

the beginning of Chapter 4. Each test consisted of driving 10 minutes north on I-85 towards

Atlanta while maintaining a steady speed and with minimal lane changes. The first test was

conducted without making any modifications to the vehicle, assuming that the alignment at

that time was very good. Thus the alignment for the first test was taken as the baseline.

For each subsequent test, misalignment error was manually introduced by adjusting the toe

angle of the front right tire. The toe was adjusted by screwing the tie road in or out of

the sleeve by some amount. In this experiment, the tie road was screwed into the sleeve,

thereby shortening the overall length. Since this linkage is located behind the center of the

tire, the change resulted in a toe out situation on the front right tire. The tie road was

adjusted by making two turns on the screw for the first experimental run, 1/2 turn for the

second, and 1 full turn for the final run. Figure 6.8 shows the raw SWA measurements and

the corresponding moving averages for the experiments. The baseline steer angle of 2.25

degrees is also observed in this plot. Notice that the magnitude of the steer angle increases

with the amount of alignment adjustments made. Figure 6.9 shows the moving averages

of the steering wheel angles, the yaw rate signals for each run, and the yaw rate detection

threshold for straight driving determination. It can be clearly seen that adjustments to the

toe angle of the tire results in non zero steering angles when the vehicle is driving straight.

Furthermore, the magnitude of the offset clearly corresponds with the degree to which the

toe angle is adjusted. The yaw rate threshold for straight driving detection is shown as a

reference. A threshold of 3σ was used, where the assumed standard deviation of the noise on

the yaw rate signal is σ = 0.5deg/s. The yaw rate signals have been improved by subtracting
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Figure 6.8: Steer Angle Signals for All Four Misalignment Experiments.

the estimates of the yaw rate bias provided by the AUNAV filter. In this case only a marginal

improvement was obtained because of the high quality of the Crossbow gyroscopes. However

less expensive sensors will have larger biases, making it necessary to use the bias estimate

in order to be able to detect straight driving. Based on Figure 6.9 it is concluded that it is

possible to detect even slight misalignments using GPS enhanced inertial sensor signals and

the steering wheel angle.

6.5 Conclusions

It has been shown that GPS information can be combined with wheel speeds to very

accurately estimate the rolling radius of the undriven wheels. The algorithm operates on the

assumption that there is no slip. This assumption is valid for the undriven wheels except in

the case of braking. This does not present an obstacle for the algorithm however, because

the braking signals are readily available on the CAN bus and can be used as a toggle on
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Figure 6.9: Averaged Steer Angle Signals and Yaw Rate Signals For All Four Misalignment
Experiments.

and off switch for the estimator. It has also been shown that the rolling radius varies with

tire pressure, presenting an opportunity for indirect tire pressure monitoring. That is, GPS

offers the possibility of detecting pressure losses without actually needing pressure sensors in

the tire. The TREAD act requires tire pressure monitoring systems (TPMS) to notify the

driver if the tire pressure has dropped by 25% of the recommended cold pressure [1]. The

recommended pressure for the G35 is 33psi, which means that any TPMS must be able to

detect pressure drops of 8.25 psi. The results from Figure 6.7 show that this is extremely

possible with the rolling radius estimate. Such a system would require many more data

sets for analysis to provide statistically significant detection and alarm thresholds. However,

the operation is simple: if the radius estimate drops below a certain value, then the system

interprets that to correspond with a drop of a certain pressure. Given the data presently

available, the design would be as follows. If the radius for one of the front tires drops below

331.1mm, then a drop of 4psi (12%) can be safely inferred. This is well within the accuracy
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requirements of the TREAD act. Again, more data needs to be collected to improve the

statistics of the detection algorithm, but the concept is shown feasible here. Future work

would also deal with studying and isolating the effects of pressure on the radius. For instance,

the effects of vertical loading conditions on the radius estimate needs to be studied, because

these effects must be isolated from the pressure detection algorithm. Yet it has been shown

that GPS can be used to accurately estimate the vehicle mass online [3]. If the mass is known,

and more importantly if the change in mass is known, this information can be included in the

process of inferring the pressure from the radius. Tire wear might also present a problem.

If the change in radius due to tire wear is in the same range as the change in radius due

to pressure, it may be very difficult to separate these effects. Yet for now it is concluded

that the GPS aided estimate of the undriven wheel rolling radius offers great potential in

determining pressure loss without needing tire pressure sensors. It has also been shown that

the yaw rate signal, aided with the bias estimate from the AUNAV estimator, can be used

with the steer angle sensor to detect steering misalignment. Data was collected on portions

of I-85 north with various alignment adjustments to the steering linkage. The data confirmed

the hypothesis that misalignment conditions result in steady state steer angle offsets when

the vehicle is driving straight. Therefore if the vehicle is known to be driving straight via

the yaw rate information and if there is a non zero steady state steering wheel angle, then

it is accurately inferred that there is an alignment problem.

111



Chapter 7

Conclusions and Future Work

This thesis has shown the advantages of combining the increasingly common single

antenna GPS systems with sensors which are already present on board vehicles equipped

with ESC and RSC systems. First, the Automotive Navigation (AUNAV) estimator was

presented. This estimator integrates GPS information with information from a 5 degree of

freedom inertial sensor cluster to produce accurate estimates of the vehicle sideslip, attitude,

velocity, and position along with accurate estimates of the inertial sensor biases. An analysis

of the observability of the AUNAV estimator was also presented, showing that this estimator

is fully observable under certain dynamic conditions. The AUNAV estimator was then

contrasted with the Modified Modular Estimator (MME), which is a different approach

to integrating the same sensors. Finally, methods of estimating the effective tire radius,

detecting tire pressure changes, and detecting steering misalignment were presented. These

methods all take advantage of GPS information and information provided by the AUNAV

estimator.

The AUNAV estimator is a specialized form of the generic loosely coupled GPS/INS

integration filter that is shown in [19]. It consists of the GPS and IMU functioning as two

independent navigation systems, with the GPS serving as truth, and one extended Kalman

filter. The states of the EKF are the errors in the INS solution, so the measurements used by

the filter are the differences between the GPS and INS solutions. The estimates of the INS

solution errors are added back to the original INS solutions and the corrected solution is used

as the final estimate. The EKF also produces estimates of the inertial sensor biases, and

these are used in the INS processing stage to improve the solutions. The AUNAV estimator

differs in its design from the loosely coupled filter in two ways. First, the AUNAV estimator
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does not use a pitch rate gyroscope because these are not available on modern commercial

vehicles. Second, the AUNAV estimator uses the GPS course measurement as a measurement

of heading (yaw) when the vehicle is driving straight. This is made possible because when

the course and heading are equivalent when there is no sideslip. The AUNAV estimator

also differs from the loosely coupled filter in that the AUNAV estimator is primarily used

to estimate sideslip, while the loosely coupled filter is primarily analyzed for its positioning

capabilities.

A study of the observability of the AUNAV estimator was conducted. Many authors

have analytically determined the observability of the loosely coupled filter under various

dynamic scenarios, making the important case that the observability is contingent on the

dynamics. It was hypothesized in this work that the same conclusions apply for the AUNAV

estimator, and this was tested using an observability test for linear time varying systems and

simulations. The observability tests confirmed the hypothesis that the AUNAV estimator has

the same observability characteristics as the loosely coupled filter. The AUNAV estimator

requires acceleration changes in order to be made fully observable, but combinations of the

attitude states and the inertial biases remain observable when the vehicle is not performing

any acceleration. This means that dynamics are required in order for the estimator to

be able to separate the attitude states from the bias states. Simulations were performed

which confirmed the results of the observability checks. It was also found that the roll rate

gyroscope bias converges when there are no dynamics. The yaw measurement gives the

AUNAV estimator an observability advantage over the loosely coupled filter by making the

yaw angle and the yaw rate gyroscope bias observable when the vehicle is driving straight.

The performance of the AUNAV estimator was demonstrated using experimental data

collected with an Infiniti G35 sedan which is instrumented with various GPS and inertial

sensors, along with an attitude determination system. It was shown that the AUNAV es-

timator is able accurately estimate the sideslip, roll, and pitch during dynamic maneuvers.

It was also shown that the estimator is able to accurately separate the attitude states and
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the biases when dynamic maneuvers are performed over time, confirming the observability

analysis. Finally, it was shown that the AUNAV estimator is able to accurately estimate

sideslip which is increasing a rates as slow a 1.5 deg/s.

The performance of the AUNAV estimator was also compared with the performance

of the MME estimator using the same data from the previously experiments. The MME

estimator is based on the approach presented in [6]. It consists of several independent

GPS/INS filters which estimate states along the different axes. The roll angle must be

additionally high pass filtered from a lumped state in the lateral filter. The pitch angle is

obtained by estimating the road grade as in [4]. The sideslip angle is computed from the

lateral and forward velocity estimates. It was found that in general the AUNAV estimator

outperforms the MME estimator in almost all cases. This is because the AUNAV estimator

uses a more complete model of the kinematic relationships than the MME does. However,

the MME does a better job of estimating the yaw rate gyroscope bias. This is because

its simplified model is more isolated from the effects of misalignment than the AUNAV

estimator. In fact, the MME heading filter is not subject to yaw angle misalignment effects

at all. The AUNAV filter combines all yaw rate errors, including misalignment, into the bias

estimate, making it a less accurate estimate of the pure sensor bias.

A simple method of using GPS and wheel speed sensors to estimate the absolute effective

rolling radius of the wheels was also shown. The method was demonstrated in simulation

to be unbiased if the no slip assumption holds. While the estimate for the driven wheels is

biased due to wheel slip, the estimate for the undriven wheels can serve as an absolute radius

for any relative calculations for the driven wheels. There is no reference method or “truth”

measurement for the effective radius with which to compare the estimate in real experiments,

yet it is known that the effective radius lies within the loaded and unloaded radii. Several

runs were performed on the G35 on the NCAT loop, and the radius estimates for all four tires

were within this range for all runs. This served as a sanity check, showing that while there

may not be an exact truth for comparison, the estimates from the experiment are reasonable.
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A method for inferring the tire pressure on the basis of the rolling radius estimate is also

proposed. Tests were conducted showing that the rolling radius estimate does vary according

to tire pressure, and that these changes are distinguishable from the noise on the estimates.

This leads to the conclusion that a simple hypothesis tester can be used to detect pressure

drops of half of the percentage required by the TREAD act [1]. Future work requires many

more data runs to improve the statistics of such a detector and to investigate other sources of

change in the radius estimate. This is because the radius is only a good indicator of pressure

if the changes resulting from pressure changes can be isolated.

A method of using the yaw rate bias estimate from the AUNAV estimator, the yaw

rate signal, and the steering wheel angle to detect steering misalignment was presented.

This method assumes that an aligned vehicle will have a zero steady state steer angle when

driving straight if there is no road crown. For this thesis, the effects of road crown are ignored,

although they could potentially be incorporating using the roll angle estimate provided by

the AUNAV estimator. Experiments were conducted by altering the toe angle of the front

right tire of the G35 and collecting data along a 10 minute section of I-85 north. It was found

that tire misalignment results in a non zero steady state steer angle when driving straight,

and that the corrected yaw rate signal and the steer angle signal can be used to accurately

detect even subtle steering misalignments. If a non zero steady state steering angle is present

when the corrected yaw angle is zero, then a flag is set indicating a misalignment condition.

There are many important avenues of future work stemming from this thesis. First, a

more detailed analysis on the sensitivity of the AUNAV estimator to sensor quality needs

to be done. The bias stability of the inertial sensors in particular plays an important role

in the overall observability and operation of the filter. It was claimed in this thesis that

once the biases are properly identified, the estimator can sustain accurate estimates of the

level angles and the biases for a period of time even when the vehicle is not undergoing any

dynamics. The bias stability is the main factor determining how long this period of time is.

Furthermore, the length of this period of time is an extremely important system parameter
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of the AUNAV estimator, and it would have to be accurately known in order to safely

implement the estimator in commercial vehicles. Sensor quality also affects the amount of

time that the estimator can sustain accurate state estimates during a GPS outage. This is

another very important system parameter because GPS outages are ultimately inevitable.

Another avenue of future work would be to investigate other methods of determining when

the vehicle is driving straight. One potential method would be to run a model switching

algorithm. The switching would be between an instance of the AUNAV filter which assumes

straight driving and one which does not. It currently remains to be seen whether there are

any advantages in using such a method or any other method beyond the current detection

strategy. The effects of the bias stability on the straight driving detection method also

requires additional study. It might be possible for the bias to cause the filter to never detect

periods of straight driving, making it even more difficult to estimate the bias. This could

potentially cause rapid degradation in the filter performance.

More data is required to improve the tire pressure detection algorithm, in order to

make the results statistically significant and to more accurately quantify the accuracy and

resolution. Another current problem is that there is no way to establish a baseline radius for

the tire. The absolute radius can be accurately estimated for the undriven wheels, but there

is no way of knowing as a baseline what pressure a given radius corresponds to. A solution to

this problem would be essential to real world implementation. The effects of tire loading on

the radius estimate also needs to be studied, as the pressure effects have to be isolated from

these. The radius estimates have a very fine resolution, and it is likely that large loading

variations could cause true deformations in the tires within the order of magnitude of the

estimation resolution. The steering misalignment algorithm would also benefit from more

data for the same reasons as the tire radius estimation algorithm. That is, more data is

required in order to statistically set detection thresholds. The effects of road crown also

need to be investigated. It is possible for non standard road crowns to cause the system to
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falsely detect a steering misalignment. The roll angle estimate could be used to mitigate this

problem, but this has not yet been studied.

This thesis has shown the benefits of combining single antenna GPS information with

the signals from standard ESC/RSC sensor clusters. These results can be applied today,

from the standpoint of sensor availability, to any vehicle equipped with a navigation pack-

age and ESC/RSC. Navigation packages are becoming increasingly ubiquitous on passenger

vehicles, making these solutions extremely cost effective. No additional sensors are required.

Furthermore these solutions offers the advantage of robustness to vehicle parameters, since

they does not use any such parameters. Neither changes in vehicle loading, new sets of tires,

nor after market sway bar installations will cause any problems for the systems presented

here. In conclusion, the solutions offered here present great opportunity to improve vehicle

safety without one cent of additional materials cost, and it is all made possible with the

Global Positioning System.
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