
Adaptive Scheduling Using Support Vector Machine on Heterogeneous
Distributed Systems

by

Yongwon Park

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 6, 2011

Keywords: Heterogeneous Computing, Task mapping, Support Vector Machine

Copyright 2011 by Yongwon Park

Approved by

Sanjeev Baskiyar, Chair, Associate Professor of Computer Science and Software
Engineering

Cheryl Seals, Associate Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering



Abstract

Since the advent of the modern von Neumann computer in the 1940s, startling advances

have been made in computing technology with the creation of innovative, reliable, and faster

electronic components, from vacuum tubes to transistors. Computing power has risen expo-

nentially over relatively brief periods of time as Moore’s law projected a salient trend for the

growth in memory-chip performance, estimating the capacity of the integrated circuit to dou-

ble every 18 months. Although these developments were essential in solving computationally

intensive problems, faster devices were not the sole contributing factor to high performance

computing. Since electronic processing speeds began to approach limitations imposed by

the laws of physics, it became evident that the performance of uniprocessor computers was

limited. This has led to the prominent rise of parallel and distributed computing. Such sys-

tems could be homogeneous or heterogeneous. In the past decade homogeneous computing

has solved large computationally intensive problem by harnessing a multitude of computers

via a high-speed network. However, as the amount of homogeneous parallelism in appli-

cations decreases, the homogeneous system cannot offer the desired speedups. Therefore,

heterogeneous architectures to exploit the heterogeneity in computations came to be a crit-

ical research issue. In heterogeneous computing (HC) systems consisting of a multitude of

autonomous computers, a mechanism that can harness these computing resources efficiently

is essential to maximize system performance. This is especially true in mapping tasks to

heterogeneous computers according to the task computation type, so as to maximize the

benefits from the heterogeneous architecture.

The general problem of mapping tasks onto machines is known to be NP-complete, as

such, many good heuristics have been developed. However, the performance of most heuris-

tics is susceptible to the dynamic environment, and affected by various system variables.
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Such susceptibility makes it difficult to choose an appropriate heuristic. Furthermore, an

adaptable scheduler has been elusive to researchers. In this research, we show that using a

support vector machine (SVM) an elegant scheduler can be constructed which is capable of

making heuristic selections dynamically and which adapts to the environment as well. To

the best of our knowledge, this research is the first use of SVM to perform schedule selec-

tions in distributed computing. We call the novel meta-scheduler, support vector scheduler

(SVS). Once trained, SVS can perform the schedule selections in O(n) complexity, where n

is the number of tasks. Using rigorous simulations, we evaluated the effectiveness of SVS

in making the best heuristic selection. We find that the average improvement of SVS over

random selection is 29%, and over worst selection is 49%. Indeed, SVS is only 5% worse

than the theoretical best selection. Since SVS contains a structural generalization of the

system, the heuristic selections are adaptive to the dynamic environment in terms of task

heterogeneity and machine heterogeneity. Furthermore, our simulations show that the SVS

is highly scalable with number of tasks as well as number of machines.
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Chapter 1

Introduction

Since the advent of the modern von Neumann computer in the 1940s, startling ad-

vancements have been made in computing technology with the availability of innovative,

reliable, and fast electronic components, from vacuum tubes to transistors. The clock speed

of early computers in the millisecond level increased up to a factor of a million in fifty

years; accordingly, uniprocessors’ speed increased by a factor of 10 every seven years. The

technical advancement achieved in the development of memory-chip performance, roughly

followed Moore’s law, which projected the capacity of the integrated circuit double every 18

months. Concurrent with these developments, there has been increasing demand for com-

puting resources. Since computers make it possible to perform scientific computations in far

less time than would otherwise be possible, its use extended greatly to various areas, and

the dependence on computers increased rapidly. High performance computing has a history

that has been developed within crisis management, placing demand on high-performance

computations for modeling natural phenomenon relevant to crises, such as severe storms,

earthquakes, and atmospheric dispersion of toxic substances [110]. Similarly, there have

been various efforts for improving the performance of computers to meet diverse needs for

computing resources, giving rise to great interests in high-performance computing. In one

such effort, the desire to speed up computation led to the development of a variety types

of supercomputers. They were usually devised for highly calculation-intensive tasks, grand

challenge problems such as weather forecasting, climate research, biological macromolecules,

and so forth. When speculating on the evolution of supercomputers, we can find a certain

trend in speed-gains of computers. In early supercomputers, the speed-up was achieved by

the development of fast scalar processors, serial processors that operated in the simplest
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operation mode. The next powerful form of multiprocessing was provided by vector proces-

sors, which are particularly good at performing vector and matrix operations, and further

by parallelizing computations through the connection of a massive collection of processing

units. The computer architecture based on a uni-processor in which its performance mainly

depends on its clock speed has been changed to the form of multi-processor. Also, as the

commodity development of computers with powerful micro-processor is available, relatively

inexpensive computers such as personal computers and workstations came to be exploited

in high-performance computing by combining these computing resources in a cooperative

way using software technique to create a computing power required for computation inten-

sive tasks, e.g., Beowulf clustering system [101] was able to create a great computing power

needed by connecting personal computers via widely available networking technology running

any one of several open-source operating system such as Linux. Nowadays, high-performance

computing seems to continue to favor such an integration of existing computing resources, in-

fluenced by the fact that electronic processing speeds began to approach limitations imposed

by the laws of physics, rather than develop a new fast processor. Furthermore, the advent

of high-speed networks such as Fiber Distributed Data Interface made the construction of

large scale of parallel and distributed (PDC) systems with the least communication overhead

possible. Thus, even computers placed a physically long distance apart can be seamlessly

connected with the help of data communication and system operating technology. Therefore,

it is expected in the future that the main method of obtaining computing power needed for

computation demanding tasks will be an integrated collection of computing resources using

high-speed network. In this sense, PDC is currently considered a promising technique that

can provide a vast amount of computing power in a cost-effective way, and is able to provide

an underlying environment on which high-profile technologies such as pervasive and nomadic

computing [99] can flourish. For example, millions of computers can be harnessed coopera-

tively with the dedication of part of their computing resources via the Internet. The collected

2



computing power can be an amount so formidable that it would surpass even the fastest su-

percomputers. With this gradual change in the computing paradigm, it is tempting to think

that PDC is such a magical technology that it can solve computational demanding prob-

lems by connecting a multitude of computers via a high-speed network, and further breach

barriers which would be posed by the physical limitations of single processor. However, the

optimistic vision may not be achievable by just connecting a multitude of computers; in fact,

beyond this vision we are faced with many challenging problems to be solved in order to

make it a reality

PDC has been developed in the form of homogeneous and heterogeneous computing

architectures. Homogeneous computing, which uses one or more machines of the same type,

has provided adequate performance for many applications in the past. Many of these appli-

cations had more than one type of embedded parallelism, such as single instruction, multiple

data (SIMD) and multiple instruction, multiple data (MIMD). Most of the current paral-

lel machines are suited only for homogeneous computing, however, numerous applications

that have more than one type of embedded parallelism are now being considered for parallel

implementations. As the amount of homogeneous parallelism in applications decreases, the

distributed homogeneous system cannot offer the desired speedups. Therefore, a suit of het-

erogeneous architecture to exploit the heterogeneity in computations came to be a critical

research issue [5]. Heterogeneous computing (HC) is the well-orchestrated and coordinated

effective use of a suite of diverse high-performance machines, including parallel machines to

provide super speed processing for computationally demanding tasks with diverse computing

needs. Vision processing that has different computation requirements at each processing level

can be an example of the effective use of heterogeneous computing [1]. HC systems include

heterogeneous machines, high-speed networks, interfaces, operating systems, communication

protocols, and programming environments, all combining to produce a positive impact on

ease of use and performance. Heterogeneous computing should be distinguished from net-

work computing or high-performance distributed computing, which have generally come to
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mean either clusters of workstations or ad hoc connectivity among computers using little

more than opportunistic load-balancing. HC is a plausible, novel technique for solving com-

putationally intensive problems that have several types of embedded parallelism. However, in

order to best use heterogeneous computers to our advantage, a well constructed mechanism

that orchestrates the heterogeneous computing resources effectively is essential, especially if

the purpose of the system is to minimize total completion time (called “makespan”). There-

fore, the problem of mapping and scheduling tasks to heterogeneous machines is important

in order to maximize system throughput in an HC system [3][12][11].

The general problem of assigning independent tasks onto heterogeneous computers is

known to be NP-complete. Thus, most of approaches so far have developed new heuristics,

which have been specifically tailored to the problem [12][109][93][10][104][3]. Researchers

have developed a variety of heuristic algorithms. However, often a heuristic, by its very

nature, which works well in a specific environment does not work as well in another. This

effect is amplified in a dynamic system where new machines may join or depart the system [3].

The performance of heuristic algorithms is influenced by dynamic system variables including

system heterogeneity. Therefore, the choice of a mapping heuristic in a dynamic system

environment remains a difficult problem.

In this research, rather than create another new heuristic, we develop a method of

dynamically selecting a heuristic among a group of conventional heuristics. The conventional

heuristics should be chosen in a way that is suited for the particular system. We propose

a support vector scheduler (SVS) framework, which is based on support vector machine

(SVM), that selects a heuristic from available heuristics to map independent tasks onto

heterogeneous machines. In this dissertation, we use the finish time on the objective function;

however, our research is easily extensible to other objective functions. We generalize the

correlation between system variables and heuristics’ performance through learning, resulting

in a parameterized quadratic function, namely support vector (SV) model. The SVS is able

to make a heuristic selection using the SV model. To the best of our knowledge, such an
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approach to heuristic selection for task mapping that accounts for dynamic system variables

has not been studied before.

The remainder of the dissertation is structured as follows. Chapter 2 describes back-

ground. Chapter 3 discusses related work. In Chapter 4 we address PDC systems. Chapter 5

addresses heterogeneous computing. Chapter 6 introduces the SVM. Chapter 7 gives the de-

scriptions of the design and mechanism of Particle Swarm Optimization & SVMpso, which is

implemented here. Chapter 8 presents the SVS framework. In Chapter 9 the simulation pro-

cedure is presented. Chapter 10 shows results with analysis. Chapter 11 has the concluding

remarks.
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Chapter 2

Background

In this chapter, we will introduce a variety of heuristic and machine learning algorithms

to solve the task mapping problem.

2.1 Heuristic algorithm

First, heuristic algorithms can be categorized into batch mode and immediate mode

algorithm. In immediate-mode, the task is mapped onto the machine immediately upon

arrival, but in batch mode the task is not scheduled until a mapping event occurs.

2.1.1 Immediate mode mapping heuristics

Minimum completion time (MCT) heuristic is a variant of fast-greedy heuristic. It

has been used as a benchmark for the immediate mode [3]. MCT assigns each task to the

machine on which to complete the task the earliest. Braun et al. [20] compared 11 heuristic

algorithms and found MCT to perform around the median of heuristics. MCT requires O(m)

time to find the machine that can finish a task earliest, where m is the number of machines.

In minimum execution time (MET) heuristic, as a job arrives, each task is assigned to the

machine that provides the least execution time for that task. Although MET heuristic is very

simple with complexity O(m), it may result in severe imbalance in load across the machines

[20]. All of the computing nodes in the cluster are examined to determine the node that

gives the best execution time for the job. As mentioned, MET may result in load imbalance

at some point because it does not consider the ready time of each machine. With respect to

this, switching algorithm (SA) alternates from MET to MCT at the sense of load imbalance.

SA has the same complexity with MCT and its performance is close to MCT. K-percent
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best (KPB) heuristic implements the idea that too much selection pressure may lead to

local optimum since it suppresses the diversity of search. The parameter K determines the

selection pressure. Therefore, in KPB, a subset of machines, in which K is less than 100,

is selected based on the earliest completion time. A task is assigned to the machine in the

reduced set whose completion time is the least. That is, KPB looks forward to achieving

the improvement in the long run as considering task heterogeneity instead of expecting the

current marginal improvement promptly. In a similar way, feasible robust k-percent best

(FRKPB) first finds the feasible set of machines for the newly arrived task. From this set,

the FRKPB identifies the k-percent that has the smallest execution times for the task [30]. In

opportunistic load balancing (OLB), which was known as a naive O(n) algorithm, it simply

places each job in order of arrival on the next available machine regardless of its completion

time. The performance of OLB is worse than other aforementioned algorithms.

2.1.2 Batch mode heuristics

Whereas tasks are mapped onto machines immediately upon arrival in immediate mode,

they are collected into a set that is examined for mapping at prescheduled times in batch

mode. This enables mapping heuristics to make better decisions because the heuristics have

the resource requirement information for a whole meta-task. When the task arrival rate is

high, there is a sufficient number of tasks to keep the machines busy between the mapping

events. Min-Min heuristic algorithm uses expected time to compute (ETC) matrix to make a

decision for mapping a task to a suitable machine. The expected completion time is defined

as:

Cij = Eij +Rj (2.1)

The completion time of task i in machine j is calculated by adding the ready time of machine

j to its expected completion time (2.1). Basically, a task is assigned to the machine that

provides minimum completion time. When there is contention for the same machine to which

two or more tasks are eligible, a task is assigned to the machine that should result in a change
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of the least amount of ready time, where ready time is the time when the machine becomes

available after having executed the tasks previously assigned to it. In this algorithm, it is

expected that a smaller makespan can be obtained if a larger number of tasks are assigned

to the machine that, not only completes them earliest, but also executes them fastest. Max-

Min heuristic is similar to Min-Min heuristic except that a task with maximum completion

time is chosen among the candidate tasks whose completion time is minimum for all the

machines. The Max-Min heuristic is likely to be better when there are more short tasks than

long tasks since it can execute many short tasks concurrently along with the long task. The

main idea of Sufferage heuristic is to assign a task to a machine that would suffer most if

it is not assigned to the machine. The Sufferage algorithm also uses the same ETC matrix

as it is used in Min-Min heuristic. An arbitrary task with ETC is selected and assigned to

a corresponding machine. If the machine, however, is already assigned a task, an old task

is replaced by a new one and returned to the task queue or it keeps its place by comparing

between both sufferage values, which is the difference between the earliest completion time

and the second earliest completion time.

2.2 GA(Genetic Algorithm)

Genetic Algorithms (GAs), devised by Holland [116], are adaptive heuristic search algo-

rithms based on the evolutionary ideas of Darwin’s principle of natural selection and genetics.

In GA, a group of solutions evolve towards the good area in the search space. A population–

(a group of individual solutions) evolves by surviving or dying through natural selection

using various operators. In its’ simple form, it recursively applies the concepts of selection,

crossover, and mutation to a randomly generated population of promising solutions as de-

scribed in Procedure 2. In [12] a GA was used to minimize the makespan, and the algorithm

outperformed six other heuristic algorithms, about 10% against Early First algorithm.
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Procedure 1 The Procedure of Genetic Algorithm

Initialize Population
Evaluate Population
while until stopping condition is met do

Select parent
Create offspring
Evaluate offspring
Select survivors

end while

2.3 Load sharing algorithm

In a heterogeneous computing environment with two processor classes, fast and slow,

a job migration mechanism can be used. This mechanism distributes loads fairly over all

processors from slow to fast using six scheduling strategies: probabilistic, probabilistic with

migration of generic jobs, shortest queue (SQ), shortest queue with migration of generic jobs

(SQM), least expected response time for generic jobs-maximum wait for dedicated jobs, least

expected response time for generic jobs-maximum wait for dedicated jobs with migration[9].

In overall performance, SQ and SQM methods were better than all other methods.

2.4 Machine Learning

Scheduling plays an important role in production control in flexible manufacturing sys-

tem (FMS), which involves several real-time decisions, such as part type and machine selec-

tion [13]. Consequently, a scheduled FMS is able to improve the machine utilization, enhance

throughput, reduce the number of work-in-process, mean flow time, and the number of tardy

parts. Assigning correct dispatching rules dynamically is critical for the scheduling problem.

After receiving useful information from an FMS, a good scheduler should be able to make

a right decision, i.e., output a right dispatching rule, for the next period to gain good per-

formance. It needs as much expert knowledge stored in the scheduler as possible. Due to

such reasons, Machine Learning, based on simulated sample data, has been used with good

results.
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Chapter 3

Related work

This chapter introduces conventional heuristics to solve the mapping problem and ma-

chine learning approaches to various scheduling problems as related to our work. Much

work has been done in the study of the dynamic task mapping problem for the distributed

computing systems [35][36][12][2][11][20][8]. A number of systems have been developed for

managing the execution of tasks on a network of machines, scheduling tasks in order to

evenly balance the load on the machines in the meta computer [32][33][34] [9][37][10]. The

Switching Algorithm (SA) [3] utilizes the MCT and MET heuristics in an alternating man-

ner, considering the load distribution across machines, which is determined by computing

the load balance index based on machine ready times. However, the performance of SA is

very close to MCT. The SmartNet scheduler [10] used a variety of scheduling algorithms

to obtain near optimal schedules for different problems. However, the selection was done

statically and was based upon whether the tasks had dependencies or not. It used MinMin

and MaxMin heuristics when all of the tasks are computationally intensive and independent,

and other heuristic algorithms when there are data dependencies among tasks. It does not

select between MinMin and MaxMin heuristics. Evolutionary Techniques approach the task

mapping problem by formulating the problem as an optimization problem in which an opti-

mal or near-optimal solution is sought by exploring the solution space to find best available

values of an objective function given a defined domain. Page & Naughton [12] used genetic

algorithms (GAs) to dynamically schedule heterogeneous tasks on non-identical processors

in a distributed system. However, the complexity of GA techniques is high and therefore

they are difficult to use at run time.
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Researchers have also attempted to apply machine learning technique to solve schedul-

ing problems arising in a variety of domains. Liu, Huang, and Lin [13] used a multi-class

SVM to schedule tasks in a flexible manufacturing system by dynamically applying a set of

dispatching rules according to real-time system attributes. Their scheduler outperformed all

static dispatching rules, with its mean throughput outperforming first-in-first-out scheduler

by about 7%. Park, Casey, and Baskiyar [114] used a multi-class SVM to dispatch tasks

dynamically onto heterogeneous machines by directly choosing appropriate machines to run

tasks. The approach proved plausible, with performance very close to Early First [12] algo-

rithm. However, it does not select heuristics, rather it directly maps tasks to machines –it

can not be used to synthesize heuristics in the same way as the work in this research. It also

functions in immediate mode whereas the research in this paper addresses tasks in batch

mode.

Burke, Petrovic, and Qu [38] built a case-based reasoning (CBR) knowledge based sys-

tem, to solve a timetabling problem, specifically a university course and exam timetabling

system which has various constraints. Their system operates by memorizing heuristics that

worked well in similar situations in a case base and retrieving the best heuristic for solving

any new problem by searching the knowledge database. It provides better quality solutions,

than a single heuristic by using different heuristics which were selected dynamically. In or-

der to evaluate the quality of solutions, they used the following formula: P =
∑

sWs × Ss

where Ss is the number of situations in which violation of constraint s occurred and Ws is

a weight that reflects the importance of constraint. We note that in the CBR System, a

knowledge database is updated with new cases, whereas SVM does not require update until

new training is needed. Arbelaez, Hamadi and Sebag [40] applied a combination of heuris-

tics dynamically using SVM to find a solution to a constraint satisfaction problem (CSP). It

outperformed a single heuristic solution in solving a collection of nurse scheduling problems

by solving on average 50% more instances than a single heuristic. The CSP problem was

solved by searching a tree using correctly chosen heuristics to find a solution. The selection
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of heuristic is based upon its execution time vis-a-vis a default heuristic. If worse, the default

is used. The domain of this problem is different from the research presented in this paper.

Also, the objective function in SVS is makespan and it schedules in batch mode rather than

immediate mode, SVS also addresses issues of adaptability, task and machine heterogeneity

and scalability.

Ravikumar and Vedi used a special class of neural networks, called Boltzmann Machines

for solving the problem of statically mapping tasks onto processors in a reconfigurable envi-

ronment [39]. The neural algorithm was much slower than heuristic algorithms, but provided

superior solutions than the heuristic algorithms. Their neural networks rely on the principle

of empirical risk minimization, whereas our approach develops a meta-scheduler based on

the principle of structural risk minimization making the latter adaptive. Beck and Siewiorek

represented a task allocation problem for bus-based multicomputers as a vector packing

problem. The goal was to obtain an assignment of tasks to nodes that is feasible in respect

to the constraints that minimize the number of processing nodes and the utilization level of

the broadcast bus. It was also further formulated as a multi-dimensional problem [91]. The

task allocation problem was formulated as the minimization of a quadratic pseudo-boolean

function with linear constraints [92]. Hong and Prasanna scheduled a large set of equal-

sized independent tasks on heterogeneous computing systems to maximize the throughput

of the system by using an extended network flow representation [93]. Khalifa et al. created

utlMinMin heuristics, which revised an original MinMin heuristics, that employs preemp-

tive mapping approach that allows tasks in execution to be interrupted, moved to another

processor, and resume execution in a different environment [94]. This algorithm was moti-

vated by the fact that the original MinMin algorithm can cause some tasks to be starved

of machines due to the expected heterogeneous nature of the tasks. That is, some tasks

may be remapped at each successive mapping event without actually beginning execution.

Meanwhile, other machines may remain idle during the whole mapping session. Braun et
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al. discussed the factors that makes it difficult to select the best heuristic in a given sce-

nario in a heterogeneous computing (HC) environment [11]. In [96], a heuristic algorithm

based on genetic algorithm for the task mapping problem was used in the context of local-

memory multiprocessors with a hypercube interconnection topology. Chen et al. solved a

task scheduling problem in grid environment as a task-resource assignment graph and thus

mapped the task scheduling problem into a graph optimal selection problem. They solved

the optimization problem using Particle Swarm Optimization [97]. Huang et al. solved a

task mapping problem as Master-Slave model in grid environment, where the master node

delivers a set of equal-sized and independent tasks to available slave nodes in a single-port

pattern which means tasks are transmitted sequentially. Each slave begins processing tasks

after receiving them, and then returns computation results upon completion[98]. In [95], the

mapping problem was solved based on randomized mapping whose key idea is to randomly

choose a valid mapping event and evaluate its performance. By repeating this process a large

number of times and picking the best solution that has been found over all iterations, it is

possible to achieve a good approximation to the global optimum. The intuition behind this

is that any algorithm that does not consider all possible solutions with a non-zero probability

might get stuck in a local optimum. With the randomized approach any possible solution

was considered and chosen with a small, but non-zero probability.
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Chapter 4

Parallel and Distributed Computing (PDC)

Although the essence of internal design of computer and the way information flows

within a computer have not changed since von Neumann computer [60], noticeable advance-

ments in computing technology have been made by the changes in implementation from

vacuum tubes to integrated circuits, and further the availability of fast, reliable, and cheap

electronic components, thus bringing revolutionary changes in computing paradigm. These

resolute developments in computing technology enabled the solution of a wide range of

computationally intensive problems requiring great computational speed such as numerical

modeling and simulation of scientific and engineering problems [58][59]. However, whatever

the computational speed of current processors, there are still many problems not possible to

process by single processor. For example, the SETI@home project [56] is the first attempt to

use large-scale distributed computing with over 3 million users to perform a sensitive search

for radio signals from extraterrestrial civilizations. Radio telescope signals consist primarily

of noise (from celestial sources and the receiver’s electronics) and man-made signals such

as TV stations, radar, and satellites. Modern radio SETI projects analyze the data digi-

tally. More computing power enables searches to cover greater frequency ranges with more

sensitivity. Radio SETI, therefore, has an insatiable appetite for computing power.

It is evident that the performance of single processor computer is limited, because pro-

cessor has its clock speed constrained by the limitation of device technology such as CPU

power and dissipation problem resulting in thermal hotspot by non-uniform temperature dis-

tribution across processor chip [21]. Therefore, the evolutionary transition from sequential

to parallel and distributed computing (PDC) is seen as inevitable flow in solving computing-

power demanding problems to overcome the limitation from the use of a single processor.
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Furthermore, PDC system is recognized as an important means for the solution of many

grand challenge problems [61] that refer to really difficult tasks that stretch the limits of

cognitive ability in science and engineering. These include climate modeling, human genome

mapping, semiconductor and superconductor modeling, pollution dispersion, and pharma-

ceutical design. It is common that these applications require computing power greater than

that is obtainable with many conventional computers. These applications are common to

exceed the computing power which is obtainable with many traditional computers. Although

this technology has risen to prominence during last decades, many relevant issues still remain

unresolved. The field is in a state of rapid flux where various applications are being made on

several subsequent issues. In this chapter we will review relevant subjects that are essential

to make it useful to use PDC systems.

4.1 Von Neumann computer

The overwhelming majority of today’s computers follow architectures and modes of

operation, the same basic design principles formulated in the late 1940s by John von Neu-

mann and coworkers [62]. The central idea of von Neumann computer is that it fetches an

instruction and its operands from a memory unit, and saves in memory the results from

the execution of the instruction in the processing unit. The von Neumann architecture is

depicted in the Fig. 4.1. In such a computer, the instructions are executed sequentially,

one operation at a time. One problem of conventional von Neumann machines is CPU to

memory bottleneck, which mainly results from the disparity between high CPU speeds and

much lower memory speeds. Over time, efforts to improve the early designs techniques were

introduced, such as cache memories and pipelining [64] [65]. Although these efforts concen-

trated on the improvement of single processor mechanism, the development of parallel and

distributed computing is slowly leading to the end of sequential processing depending on the

performance of single processor.
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Figure 4.1: The von Neumann computer

4.2 Parallel Processing Paradigms

Computers operate simply by executing instructions on data. A stream of instructions

informs the computer of what to do at each step. Flynn [44] created a classification for

the architecture of a computer on the basis of how the machine relates its instructions to

the data being processed. The multiplicity of instruction streams and data streams in the

system produced following four classifications:

• single instruction stream, single data stream (SISD)

• single instruction stream, multiple data stream (SIMD)

• multiple instruction stream, single data stream (MISD)

• multiple instruction stream, multiple data stream (MIMD)

All von Neumann machines belong to the SISD class. A SIMD machine consists of

N processors, N memories, an interconnection network, and a control unit. All the same

processing elements are supervised by the same control unit, and the processors operate

on different data sets from distinct data streams. For example, for a SIMD computer with
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Figure 4.2: Flynn’s taxonomy

N processors, each processor will be executing the same instruction at the same time,

but each on its own data. SIMD machines can be classified into two categories: shared-

memory (SM) and local memory (LM) [66]. High performance on SIMD machines requires

rewriting of conventional algorithms to manipulate many data simultaneously by sending

instructions to all processors. SIMD machine can solve efficiently the problems that require

parallel manipulations of large data sets, for example, algorithms based on vector and matrix

operations [78] [79], and image processing algorithms where operations are performed on a

large number of image pixels [80] [81] [1]. Furthermore, many large-scale SIMD parallel

machines have been implemented including:

• Illiac IV: Illiac IV SIMD machine was implemented with 64 processing elements (PEs)

with 64-bit words, an N-bit vector is used as the mask. Each vector bit represents the

state of one PE. If the bit is a 1, the corresponding PE will be active; otherwise, the
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PE will be inactive. While this scheme permits enabling and disabling of arbitrary PE

sets, it is prohibitively expensive for large N. It was used to run large-scale computa-

tions needed for climate simulations, signal processing, seismic research, and physics

calculations.

• Massively Parallel Processor (MPP): MPP, which incorporates 16,384 bit-serial PEs,

was designed for high-speed satellite imagery processing [82] , and was delivered to

NASA in 1982.

• The Connection machine CM-2: A fully configured CM-2 machine comprises 65,536

PEs that are divided into four groups. Each group of 16,384 PEs is controlled by a

sequencer, and the four sequencers are connected up to four front end computers via a

4 x 4 Nexus switch.

• The GF11 parallel computer: The GF11 SIMD machine, designed at the IBM T.J.

Watson Research Center, contains 566 very powerful processing elements.

• The MasPar MP-1 and MP-2: The machine built by MasPar Computer Corporation

contains up to 16,384 processing elements. The two machine types have the same basic

architecture and differ mostly in the processing element complexity; While the PEs in

the MP-1 are 4-bit wide, those of the MP-2 are 32-bit CPUs.

In a MISD computer, each of the processors has its own control unit and shares a common

memory unit where data reside. Therefore, parallelism is realized by enabling each processor

to perform different operations on the same datum at the same time. Systolic arrays are

known to belong to this class of architectures [67] [68]. In MIMD machines there are N

processors, N streams of instructions, and N streams of data. The processors of MIMD

machines are of the same type used in a SISD computer; that is each processor has its own

control unit in addition to its local memory and arithmetic and logic unit. A MIMD computer

is considered tightly coupled or loosely coupled according to the degree of interactions among
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processors. As an addition to Flynn’s taxonomy, another class known as single program,

multiple data (SPMD) can be included within the MIMD classification to describe the cases

where many programs that have the same process type are executed on different data sets,

synchronously or asynchronously, e.g., a single source program is written and each processor

will execute its personal copy of this program [69].

4.3 Organization of PDC systems

PDC systems can be organized in two folds: General purpose architecture and Special-

purpose architecture. Theoretically, PDC systems can be constructed with a general purpose

by building parallel computers for a wide variety of applications based on the MIMD model.

In practice, it is reasonable to assemble several processors in a configuration specifically

designed for the problem under consideration. Fig. 4.3 provides an overall organization

of parallel computers. In SIMD machines, the parallel operations are synchronized at the

machine language level, and scheduling and allocation need to be done by the programmer.

In MIMD machines, the processes that run in parallel need to be synchronized whenever

they communicate with each other. In general, paradigms for building parallel computers

can be divided into the following categories:

Figure 4.3: The organization of parallel computers
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• Pipelining : This is a classical way to exploit parallelism and concurrency in computer

architectures. Pipelining was stimulated by the need for faster and more cost-effective

systems. It refers to a segmentation of a computational process. Ramamoorthy et

al. [70] defined this technique as organizing repeated sequential processes in an over-

lapped mode. In a pipelining architecture, computational processes are decomposed

into several sub-processes, and processed in an overlapped mode by dedicated au-

tonomous modules. As an illustration, consider the process of executing an instruction

in computers. Processing instructions involve several repetitive processes: Fetching,

Decoding, and Execution. Thus, each process can be pipelined by a dedicated unit like

an industrial assemble line.

• Systolic Array processors: The word systolic has been borrowed from the medical

field;-just as the heart pumps blood, information is pumped through a systolic array in

various directions, and at regular intervals. These are systems that consists of a number

of processing elements with nearest-neighbor connection that operate in parallel under

the direction of a single control unit. Array processors can be viewed as a subclass of

SIMD computers in that each of the processing elements performs the same operation

at the same time, on different data elements. Fig. 4.4 shows a systolic array used

to multiply 4 x 4 matrices, A and B. The elements of A enter from the left and the

elements of B enter from the top. The final product terms of C will be held in the

processors as shown. Each processor, P i,j, repeatedly performs the same algorithm on

different data elements.

• Vector processors: A vector processor is a processor that can operate on an entire vector

in one instruction. The operands to the instructions are complete vectors instead of

one element. Therefore, vector architectures exhibit SIMD behavior by having vector

operations that are applied to all elements in a vector. Most vector machines have
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Figure 4.4: Matrix multiplication using a systolic array

a pipelined structure and specially designed register sets (vector-register architecture)

that can hold vectors.

• Multiprocessors: These are small scale MIMD machines. A single processor model is

extended to have multiple processors connected to multiple memory modules, such

that each processor can access any memory module in a so-called shared memory con-

figuration, as shown in Fig. 4.5. This architecture, which provides processors with

uniform memory access (UMA) structure, is attractive because of the convenience of

sharing data. However, it is especially difficult to implement the hardware to achieve

fast access to all the shared memory by all the processors. Hence, most large, practical
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shared model systems have some form of hierarchical or distributed memory struc-

ture, such that processors can access physically nearby memory locations much faster

than more distant memory locations, thus resulting in non-uniform memory access

(NUMA) structure. The NUMA model is described in Fig. 4.6. Message-passing

multiprocessors, which is an alternative form of multiprocessor system, is created by

connecting complete computers through an interconnection network, as shown in Fig.

4.7. In this architecture, a processor can only access a location in its own memory,

thus the interconnection network is provided for processors to send messages to other

processors.

Figure 4.5: Traditional shared memory multiprocessor model
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Figure 4.6: Shared memory multiprocessor implementation

• Dataflow machines & Reduction machines: Dataflow machines directly contrast with

the traditional von Neumann architecture in that instructions are executed in out of or-

der without both control flow and program counter. Normally instructions are sequen-

tially organized without recoding dependency information between them into binaries.

It is because binaries compiled for dataflow machine contain this dependency informa-

tion that enables out-of-order execution. Therefore, in dataflow machines scheduling

is based on the availability of data. Reduction machines are different from dataflow

machines in that scheduling is based on the need. Therefore, reduction machines are

known as demand-driven execution model, while dataflow machines are data-driven

execution model [71].
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Figure 4.7: Message-passing multiprocessor model(multicomputer)

• Neural networks: Neural computers learn or model the behaviors of complex systems

through the use of a large number of processors and interconnections.

• Clustering: This is a paradigm that enables multiple computers to cooperate simultane-

ously to solve a computationally intensive problem. The rapid increase in microproces-

sor performance and network bandwidth has made clustering a practical, cost effective

computing solution which is readily available to the masses. At the hardware level, a

cluster is simply a collection of independent systems, typically workstations, connected

via a commodity network. Cluster computers communicate through software methods

such as message passing and distributed shared memory. Mega problems, such as grand

challenge applications, that require all the computational capabilities of any available
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system, including memory and CPU, historically have been used as the principal justi-

fication for adoption of massively parallel processing (MPP) on such capability demand

problems. On the other hand, clusters are considered the most cost-effective solution

for capacity demand problems requiring substantial, but far from ultimate, performance

and making moderate demands on memory.

PDC systems are created by connecting multiple computers, using various forms of local

area networks (LANs) and wide area networks (WANs) to provide high performance that

approaches supercomputer levels [72]. The type and topology of inter connection network,

therefore, is an important design issue in parallel processor and multicomputer systems.

Many network topologies, such as bus architectures, ring networks, crossbars, meshes, shuffle

exchanges network, and hypercube ensembles, are described in the literature [73]. Choosing

an appropriate parallelizing algorithms that can make excellent use of a certain network

topology is essential for achieving high performance, as well as the availability of more

efficient and reliable networks. Important factors that characterize a parallel algorithm

in relation to the host parallel architecture are the number of processors, capabilities of

these processors, and so forth. In addition to a parallel algorithm, a parallel architecture is

characterized by the control mode in which computers within the architecture operate. In

most computers, the control mode is command driven, which means that different events

are driven by the sequence of instructions. Other computers employ a data-driven approach

(e.g., data flow machines). In this case, the control-flow mechanism is triggered by the

availability of data. Another mode of control is demand driven, whereby computations take

place only if their results are requested by other events. Alternate modes of control are based

on combinations of these approaches.

4.4 PDC Systems performance

With respect to system performance, PDC systems have several issues to be solved in

relation to parallelization that do not arise in sequential systems. One of these issues is

25



task allocation, which is the breakdown of the total workload into smaller tasks assigned

to different processors, and the proper sequencing of the tasks when some of them are

interdependent and cannot be executed simultaneously. A PDC system can achieve the

highest level of performance when it sustains high per-processor utilization through the

process of proper scheduling or load balancing. The scheduling problem belongs to an NP-

complete problem [74] [75] [76] [77].

4.5 Partitioning and Scheduling

Partitioning deals with how to detect embedded parallelism in the program. For this,

the program is first analyzed to determine the ideal parallelism revealed by the control and

data dependences. Two operations which are not related by control or data dependences can

potentially be executed in parallel. This kind of parallelism is usually referred to as fine grain

parallelism because the unit of parallelism is normally an operation or a single statement.

Several operations or statements may be combined into a larger grain to reduce communi-

cation overhead. The problem is to find the best grain size that maximizes parallelism while

reducing overhead. In the context of parallel and distributed computing, partitioning must

be followed by scheduling in which the concurrent parts of a parallel program are arranged in

time and space so that the overall execution time of the program is minimized. The problem

of scheduling program tasks onto multiprocessor systems is known to be NP-complete in

general. The intractability of the scheduling problem has led to a large number of heuristics,

each of which may work under different circumstances. Partitioning and scheduling can be

conducted implicitly or explicitly. In the implicit approach, compilers are required to ana-

lyze the application to explore embedded parallelism and perform partitioning, for example,

when the underlying computing environment is entirely concealed from the programmer.

On the other hand, in the explicit approach, the programmer is responsible for identifying

parallelism within the application. In this case, existing languages are extended, or entirely

new languages are required to express parallelism directly.
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4.5.1 Dynamic scheduling

Dynamic scheduling is any runtime technique for placing tasks onto processors and

deciding when is best to execute them so that parallel programs finish in the earliest possible

time. The most elementary approach to dynamic scheduling attempts to balance processor

load across m processors using very local information. In its simplest form, m + 1 processors

are used: one processor runs a scheduler that dispatches tasks on a first-in-first-out (FIFO)

basis to all other m processors as shown in Fig. 4.8. Each of the m processors maintains a

private list of waiting tasks called the waiting queue. This FIFO list holds all tasks assigned

to the processor. As soon as one task is finished, the processor takes the next waiting task

from its queue and processes it to completion. As tasks are processed, they may require

the services of other tasks. Thus, requests for new tasks are made by the m processors as

they do their work. These requests are placed on the scheduler queue, maintained by the

scheduler processor. The scheduler processor also dispatches tasks in first-come-first-severed

order. However, deciding which waiting queue to select is made by various heuristics. The

simplest heuristic attempts to balance the load on all processors.

Figure 4.8: Dynamic scheduling
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4.5.2 Static scheduling

Static scheduling of nondeterministic programs requires the use of a different program

model that distinguishes between conditional branching and precedence relations among par-

allel program tasks. The branch graph represents the control dependences and the different

execution instances of the program, while the precedence graph represents the data depen-

dence among tasks. An execution instance of a program can be defined as the set of tasks

that are selected for execution at one time for some input. For scheduling, all execution

instances within a program are first defined by the branch graph. Precedence graphs are

used to construct task graphs based on execution instances from the branch graph, each of

which consists of the nodes given in the corresponding execution instance and the precedence

relations among them. Each task graph also shows the amount of computation needed at

each node as well as the size of the data messages passed among the nodes. Each task graph

is scheduled independently using one of the techniques used in scheduling branch-free task

graphs. Given a task graph and a target machine description, a schedule is created in the

form of Gantt chart [100]. Finally, a number of Gantt charts are combined into a unified

schedule. The schedule is given in the form of processor allocation and execution order of

the tasks allocated to the same processor.

4.5.3 Task Allocation

In a distributed computing system made up of several processors, the interacting tasks

constituting a distinguished program must be assigned to the processors so as to make use

of the system efficiently. To improve the performance of a distributed system, it is necessary

that task allocation be performed with minimal inter-processor communication between tasks

and the execution cost. Thus, the purpose of task allocation technique is to find some task

assignment in which the total cost due to inter-processor communication and task execution

is minimized.
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Chapter 5

Heterogeneous Computing

Homogeneous computing usually uses one mode of parallelism in a given machine (like

SIMD, MIMD, or vector processing) and thus cannot adequately meet the requirements of

applications that require more than one single type of machine. Therefore, homogeneous sys-

tems consisting of a single type of machine architecture might suffer from inherent limitations.

For example, vector machines employ interleaved memory with a pipelined arithmetic logic

unit, leading to performance in high million floating-point operations per second (Mflops).

However, if the data distribution of an application and the resulting computations cannot

exploit these features, the performance degrades severely.

In general, it is known that a single machine architecture is not able to satisfy all the

computational requirements of various subtasks in certain applications in a feasible amount

of time[24]. Thus, the limitation of homogeneous computing from the use of single machine

architecture can be overcome by constructing a heterogeneous computing environment. A

heterogeneous computing (HC) system provides a variety of architectural capabilities, or-

chestrated to perform an application whose subtasks have diverse execution requirements.

Fig. 5.1 shows an example of a heterogeneous computing environment. HC systems can be

constructed with two different modes. A mixed-mode HC system is a single parallel process-

ing machine that is capable of operating in either the synchronous SIMD or asynchronous

MIMD mode of parallelism, and can dynamically switch between modes at instruction-level

granularity. In a mixed-mode the HC system, a single machine operates with multiple-mode,

dynamically switching between different modes at instruction-level granularity with generally

negligible overhead [84]. In a A mixed-machine mode, HC system consists of a heterogeneous

suite of independent machines of different types interconnected by a high-speed network [85].
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Figure 5.1: An example heterogeneous computing environment

To fully exploit HC systems, a task must be decomposed into subtasks, which may have dif-

ferent machine architectural requirements. Fig. 5.1 helps support the notion that the system

performance in a system running a hypothetical application which contains diverse computa-

tional types is distinctly different according to the system architecture. Executing the whole

program on a vector super computer only gives twice the performance achieved by a baseline

serial machine due to the speedup of the vector portion of the program, but slight improve-

ment in the non-vector portion. However, the use of five different machines, each matched

with the computational requirements of the subtasks for which it is used, can execute 20

times as fast as the baseline serial machine.
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Figure 5.2: A hypothetical example of the advantage of using heterogeneous computing

5.1 Heterogeneous Systems

MIMD and SIMD machine are the most common heterogeneous systems [86].

5.1.1 Heterogeneous problem model

To exploit the HC system, application tasks should be decomposed into subtasks. Fig.

5.3 has described the decomposition of the task into subtasks, code segments, and code

blocks. The parallel task T is divided into subtasks ti, 1 ≤ i ≤ N . Each subtask ti is

further divided into code segments tij, 1 ≤ j ≤ S , which can be executed concurrently. Each

code segment within a subtask can belong to a different type of parallelism (i.e., SIMD,

MIMD,vector, and so forth) and should be mapped onto a machine with a matching type

of parallelism. Each code segment may further be decomposed into several concurrent code

blocks with the same type of parallelism. These code blocks tijk, 1 ≤ k ≤ B , are suited for

parallel execution on machines having the same type of parallelism.
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Figure 5.3: Heterogeneous application model

Table 5.1: Trade-offs between SIMD and MIMD
Operation SIMD MIMD

Synchronization overhead No Yes
Data parallelization No Yes
Control parallelism No Yes

Memory cost Low High

5.1.2 SIMD VS MIMD mode

A comparison of SIMD and MIMD machines is shown in Table 5.1. In SIMD mode,

processing elements are implicitly synchronized at the instruction level. While implicit syn-

chronization scheme is required in MIMD mode, it generally incurs overhead. MIMD allows

different operations to be performed on different processing elements simultaneously through

multiple threads of control, thus enabling independent functional parallelism, while the SIMD

machine might result in time-delay for a sequence of data-dependent instructions due to the

lack of concurrent operations.
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5.2 Task Profiling and Analytical Benchmarking

To execute a task on a mixed-machine HC system, the task must be decomposed into

a collection of subtasks, where each subtask is a homogeneous code block, such that the

computations within a given code block has similar processing requirements (see Fig. 5.3).

These homogeneous code blocks are then assigned to different types of machines to minimize

the overall execution time. Task profiling is a method used to estimate the code’s execution

time on a particular machine and also to identify the code’s type [87]. Code types that

can be identified include vectorizable, SIMD/MIMD parallel, scalar, and special purpose

(such as fast Fourier transform). Traditional program profiling involves testing a program

assumed to consist of several modules by executing it on suitable test data. The profiler

monitors the execution of the program and gathers statistics, including the execution time

of each program module. This information is then used to modify the modules to improve

the overall execution time.

Analytical benchmarking is a test procedure that measures how well the available ma-

chines in the heterogeneous suite performs on a given code-type [87]. While code-type

profiling identifies the type of code, analytical benchmarking ranks the available machines

in terms of their efficiency in executing a given code type. Experimental results obtained by

analytical benchmarking show that SIMD machines are well suited for operations such as ma-

trix computations and low-level image processing, while MIMD machines are most efficient

when an application can be partitioned into a number of tasks that have limited intercom-

munication [5]. It can be noted that analytical benchmark results are used in partitioning

and mapping.

5.3 Matching and Scheduling for HC systems

For HC systems, matching involves deciding on which machines each code block should

be executed, and scheduling involves deciding when to execute a code block on the machines
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in which it was mapped. Mapping and scheduling for general distributed computing systems

has focused on how to effectively execute multiple subtasks across a network of sequential

processors. In such an environment, a load balancing scheme can be an effective way to

improve system throughput. However, there is a fundamental distinction between mapping

and scheduling for distributed systems consisted of sequential processors and mapping and

scheduling for an HC systems consisting of various types of heterogeneous computers. In the

latter case, a subtask may execute most effectively on a particular type of parallel architecture

and matching subtasks to machines of the appropriate type is a more important factor than

merely balancing the load across systems.

Matching and scheduling also can be viewed as a mechanism which is used to efficiently

and effectively manage the access and use of a resource by its various consumers under

specific policies [88]. In the context of HC systems, the consumers are represented by the

code blocks. The resources include the suite of computers, the network that interconnects

these computers, and the I/O devices. The policy is the set of rules used by the scheduler

to determine how to allocate resources to consumers based on knowledge of the availability

of the resources and the suitability of the available resources for each computer.
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Chapter 6

Support vector machine

In this chapter, we introduce the central ideas of Support Vector Machine (SVM) and

describe the support vector machine-particle swarm optimization (SVMpso) we implemented

using the Java programming language.

6.1 Overview of Support Vector Machine

In this section, we present an overview of SVM, as related to this research, for solving

a binary classification problem. The SVM was originally proposed as a statistical learning

theory based on the principle of structural risk minimization, and has recently gained wide

acceptance especially in the area of pattern recognition [14], [19]. An example application

is recognizing a pattern in text documents, e.g., classifying text documents automatically

into pre-defined categories on the basis of previously seen patterns [102]. SVM is basically

a supervised learning method in which samples are required to learn a specific pattern. A

sample xi and its label yi are usually represented as a tuple (xi, yi), where xi ∈ RN has

N-dimensional attributes yi ∈ {−1, 1}, i = 1, · · · , l, and l is the number of samples. (A

list of relevant symbols has been presented in Table 6.1 for quick reference.) Learning from

these samples is to find a general function, which best estimates the pattern of the samples,

f : RN → {−1, 1} which can classify unknown samples (x, y) into +1 or -1, which are

generated from the same underlying probability distribution P (x, y). Such general functions

can be expressed in the hyperplane form as:

(w · x) + b = 0, w ∈ RN , b ∈ R (6.1)
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Figure 6.1: Example of large margin hyperplane with support vectors circled

where the vector w is orthogonal to the hyperplane, and varying b moves the hyperplane

along w. To classify an unknown input vector x, in a binary fashion, we define function f ,

as simply yielding the sign (+ or -) of the function defined above:

f(x) = sign((w · x) + b) (6.2)

Fig. 6.1 shows the hyperplanes separating two distinct classes of samples represented by

dots(�) and crosses (⊗). The support vectors are circled. There may exist infinite number

of hyperplanes separating the samples. The training of SVM is to find the optimal hyperplane

among these hyperplanes. The optimal hyperplane yields the maximal margin between two

distinct classes of samples, and is parallel to the two hyperplanes consisting of support vectors

as shown in Fig. 6.1. The optimal hyperplane can be directly found within the input space

if the samples are separable, otherwise in higher dimensional feature space where they may

be easily separable. Whether or not samples are separable is determined by the distribution

of samples. If the non linear samples are inseparable in the input space, we first transform

the coordinates via a mapping function φ to higher dimensional feature space as shown in

Fig. 6.2, and then find the optimal hyperplane in the feature space. In the feature space, the

dots and crosses represent the ‘+’ or ‘-’ outcomes of the evaluation of f in equation (6.2). In
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Table 6.1: List of relevant symbols
φ Function mapping from input to feature space
α Lagrange multiplier
K Radial Basis Function Kernel
x Input vector
y Label for input vector
n Number of tasks
X Support vectors
s Number of support vectors
l Number of samples
m Number of machines
p Number of tasks within a batch
q Number of batches
β Heterogeneity of negative samples
γ Heterogeneity of positive samples

order to find the optimal hyperplane we have to solve the constrained optimization problem

[19] which maximizes ||w|| subject to:

∀i yi(xi · w + b) ≥ 1 (6.3)

Using Lagrangian, one can reformulate this optimization problem as a convex optimiza-

tion problem, which consists of minimizing LD with respect to α:

LD =
1

2

l∑
i,j=1

αiαjyiyjxi · xj −
l∑

i=1

αi (6.4)

subject to the constraint:
l∑

i=1

αiyi = 0 (6.5)

where xi represents the sample vector, yi its class, αi the Lagrange multiplier of xi, and C

(0 ≤ αi ≤ C) is a parameter that determines the upper boundary for training errors (l is

the number of samples, as stated earlier). A larger C will result in more classification errors.

We used C = 1 which provides normalized values for α. Those training vectors for which

α > 0 are termed support vectors.
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6.2 Linear Support Vector Machines

Samples are linearly separable if it is possible to partition the space between two different

classes of samples using straight lines as shown in Fig. 6.3. For the linearly separable case,

the support vector algorithm simply looks for the separating hyperplane with the largest

margin as shown in Fig. 6.1.

6.2.1 Non-linear Support Vector Machines

Samples are non-linearly separable if two different classes of samples separable, but it

is not possible to partition them using straight lines as shown in Fig. 6.4. In the case where

the decision function is not a linear function of the sample data, a kernel trick can be used to

accomplish this in an astonishingly straightforward way. For the non-linearly separable case,

map the training data nonlinearly into a higher-dimensional feature space via a mapping

function φ, and construct a separating hyperplane with maximum margin there. This yields

a nonlinear decision function in input space. By the use of a kernel function, it is possible to

compute the separating hyperplane without explicitly carrying out the map into the feature

space

6.3 Kernels

The use of kernel functions provides a powerful and principled way of detecting nonlinear

relations using well-understood linear algorithms in an appropriate feature space. The Kernel

maps the data into some other dot product space F called the feature space via a nonlinear

map,

Φ : RN → F, (6.6)

and perform the linear algorithm in F. This only requires the evaluation of dot products.

K(x, y) := (φ(x) · φ(y)) (6.7)
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If F is high-dimensional, the evaluation of dot products will be very expensive. There is

a computational shortcut which makes it possible to represent linear patterns efficiently in

high-dimensional spaces to ensure adequate representational power. The shortcut is what

we call a kernel function. In some cases, we can use simple kernels that can be evaluated

efficiently. For example, the polynomial kernel

K(x, y) = (x · y)d (6.8)

can be shown to correspond to a map into the space spanned by all products of exactly d

dimensions of for d=2 and , for example, we have

(x, y)2 = ((x1, y1) · (y1, y2))2 = ((x21,
√

2x1x2, x
2
2) · (y21,

√
2y1y2, y

2
2))2 (6.9)

=(φ(x) · φ(y)), defining φ(x) = (x21,
√

2x1x2, x
2
2).

For every kernel we can construct a map φ such that Equation (6.7) holds. Radial Basis

Function (RBF) kernels and sigmoid kernels are defined as follows:

K(x, y) = exp(
−||x− y||2

2σ2
) (6.10)

Sigmoid kernels:

K(x, y) = tanh(K(x, y) + Θ) (6.11)

In input space, the hyperplane corresponds to a nonlinear decision function, whose form

is determined by the kernel (see Fig. 6.5).
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Figure 6.2: Non linear samples inseparable in the input space, rendered separable in feature
space

Figure 6.3: Linear samples
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Figure 6.4: Non-linear samples

Figure 6.5: Decision boundary and support vectors when using a Gaussian kernel
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Chapter 7

Support Vector Machine & Particle Swarm Optimization

In this chapter, we will introduce a Particle Swarm Optimization (PSO) method which

can be employed to solve the quadratic programming problem issued when creating a support

vector machine. We will also discuss a modification for preventing premature convergence,

a problem commonly observed in evolutionary computation algorithms such as PSO and

Genetic algorithms (GA).

7.1 Particle Swarm Optimization

Image synthesis of dynamic objects such as clouds, smoke, water, and fire are known

to be difficult to simulate due to their fuzziness. Researchers have studied particle systems

in which particles have their own behavior [41] and have tried to simulate such natural

dynamic objects. Many scientists have also been interested in the movement of a flock of

birds or a school of fish to discover underlying rules that make possible their aggregate

motion. The aggregate motion enables them to find food quickly, and protects them from

predators through early detection and the spread of information. Intrigued by such social

behavior, Kennedy and Eberhart [31] developed the particle swarm optimization (PSO)

method to apply their natural behavior to problem solving. In PSO, particles simulate the

social behavior of a flock of birds, which cooperate with one another to find food (goal), in

a way that each one remembers its own best location ever visited called “local best,” and

shares the local information with their neighbor to identify “global best” location within a

group. The local information refers to individual cognition and the global information to

social interaction. Using the local and global information a swarm of particles are able to

cooperate and explore the solution space effectively to find an optimal solution. One of

42



the advantages of PSO is the particle’s prompt convergence on solutions by exploring the

solution space in a fast speed like a flock of birds moving fast, but astonishingly perfect

harmony. However, the solution by early convergence may become a local solution if done

prematurely. This drawback of PSO can be contributed to its lack of capability to indicate

premature convergence. The premature convergence phenomenon is commonly observed in

evolutionary methods such as Genetic Algorithms (GA). In the case of a GA, it is known

that high selection pressure in choosing only superior offsprings for new generations results

in premature convergence. This is because the high selection pressure restricts diversity

of new population, making a search for solution space limited to local areas. Therefore, a

search may get stuck in a local optimum. Riget and Vesterstrlm attributed the premature

convergence of PSO to the fast information flow between particles, which causes particles to

cluster early around local minima [43]. Since little diversity among population is considered

the main cause of premature convergence, many researchers [105] [112] [103] have tried

to avoid premature convergence in a way that provides sufficient diversity for particles at

the indication of premature convergence. However, it remains a very difficult problem to

identify the sign of premature convergence. Furthermore, using such a reactive approach

may be difficult to escape local minima for optimization problems. In this research, we

propose a novel cluster-PSO (CPSO) using self organizing map (SOM), which is known

as an unsupervised learning method called “Kohonen vector” [45]. Mohan and Al-kazemi

[103], and Seo et al.[117] used clustered particles to search the solution space concurrently.

However, the search may not be adaptive to the type of solution space since the population

of group is static. On the other hand, CPSO using SOM technique is able to make the

search adaptive to the solution space by dynamically updating the population of clustered

particles. SOM, the unsupervised learning method is able to cover large solution space

effectively by periodically clustering particles around Kohonen vectors randomly created,

and thereby enables preventing particles from getting stuck in local optima.
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7.1.1 Background

The PSO model simulates a swarm of particles moving in a n-dimensional solution

space where a particle corresponds to a candidate solution characterized by n attributes. It

is represented in the solution space by its position vector ~xi, and a velocity represented by a

velocity vector ~vi. The velocity of ith particle of the swarm and its projected position in the

dth dimension are defined by the following two equations:

~vid = ~vid + c1 · rand() · (~lid − ~xid) + c2 · rand() · (~gid − ~xid) (7.1)

~xid = ~xid + ~vid (7.2)

where i = 1, · · · , n and n is the size of the swarm, d = 1, · · · ,m and m is the number

of dimension in the solution space. Each particle remembers its own best position in ~lid.

Furthermore, the best position found by any particle i is stored in ~gi to share the information

with neighbors within the swarm. New velocity of particles is determined by (7.1), where

c1 and c2 control learning rate of particles for individual cognition and social interaction,

respectively, and rand() is a random function in the range [0,1]. Shi and Eberhart [113]

introduced a parameter inertia weight ω into the basic PSO:

~vid = ω · ~vid + c1 · rand() · (~lid − ~xid) + c2 · rand() · (~gid − ~xid) (7.3)

where ω determines the magnitude of the old velocity ~vid. They found the range of [0.9,1.2]

a good area to choose ω from. Many researchers have tackled the premature convergence

problem in PSO. They tried to overcome the premature convergence problem in a reactive

way that provides diversity to particles at the indication of premature convergence so as

to escape a local optimum. Krink and Riget [105] provided diversity for particles when

indicating their collision, which was determined based on radius between particles, and

subsequently particles bounced away. The direction in which particles should bounce away
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was determined randomly or by simple velocity-line bouncing in which particles continue to

move in the direction of old velocity-vector with a scaled speed, resulting in U-turn. The

tailored PSO outperformed the basic PSO for several benchmark functions. However, the

reactive method may lead to trouble for multi-objective problems. Once converged at a

local optimum, clustered on local best by their nature, particles would struggle to escape

the local optimum without enormous diversity. On the other hand, CPSO explores solution

space concurrently by explicitly clustering particles around sample vectors randomly created,

thus being able to escape local optima for multi-objective problems. Wei et al. presented

Elite Particle Swarm with Mutation (EPSM) [111]. EPSM tried to take full advantage of

outstanding particles in order to avoid wasting a considerable amount of time visiting the

solution space with poor fitness values. To do this particles with poor fitness is substituted

by elite particles with better fitness. In the EPSM the diversity of particles will be decreased

due to the elitism. In order to cover the little diversity they employed a mutation operator

so that the global best individual may be mutated to generate a new particle. In contrast

to the elitism Wang and Qiu [112] tried to give inferior particles opportunities to search

solution space. Their approach was motivated by the observation that a search process is

very likely to be dominated by several super particles, which may usually be turned out not

really good in the long term. In order to alleviate the dominance by super particles, they

introduced roulette wheel selection operator in which the selection probability of a particle

was ensured to be in inverse proportion to its original fitness, and chosen a particle in the

roulette wheel manner, which is expected to mitigate the high selection pressure by super

particles. Their approach outperformed other published algorithms in terms of solution

quality with additional computational time for fitness scaling and roulette selecting process.

Veeramachaneni and Osadciw [106] claimed that particles by nature oscillate between local

optima and a global optimum, wasting most time moving in the same direction to converge at

a global optimum. They made particles attracted toward the best positions visited by their

neighbors, and thereby particles are influenced by successful neighbors to explore all other
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possible solution space. This algorithm was improved by concurrent PSO algorithms [107] in

which two particle groups worked concurrently, each group tracing particles independently

and sharing the information for the best particle. Multi-Phase Particle Swarm Optimization

algorithm employed multiple groups of particles, each changing a search direction every phase

to increase population diversity [103].

7.1.2 CPSO model

The CPSO is a modified version of PSO with an additional process of clustering particles.

In the CPSO model, particles are periodically clustered around sample vectors using SOM

to provide particles with enough diversity to prevent them from prematurely converging to

local optima.

The CPSO procedure is described in Procedure 2.

Procedure 2 The Procedure of CPSO
Step 1) Initialize particles
Step 2) Randomly create sample vectors (particles)~yi on the solution space, where 1 ≤ i ≤
k, k being the maximum number of sample vectors
Step 3) Traverse each particle ~pi, 0 ≤ i < n, to find the best matching particle (BMP)
for each sample vector by similarity between sample vector and particles using euclidean
distance.
Step 4) Update the velocity of particles in the neighborhood of BMP by pulling them
closer to sample vectors using the following formula:

V ~p(t+ 1) = V ~p(t) + Φ(p, t)α(t)(~y(t)− V ~p(t)) (7.4)

Step 5) Evolve particles using PSO.

In eq. 7.4, V ~p(t+1) is new velocity of particles, α(t) controls the learning rate where t is

the generation number of particles and Φ(p, t) is the neighborhood function which determines

the degree of neighborhood between BMP and particle p. We took a Gaussian function as

a neighborhood function for particles which denotes the lateral particle interaction and the

degree of excitation of the particle. The Gaussian function which returns values between

0 and 1 is commonly used a a simple model simulating a large number of random values.
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Gaussian function for particles returns a value close to 1 if the particle is close to BMP

(neighbors of BMP). Particles for which the Gaussian function returns values close to 1

are considered neighbors of BMP. The number of neighbors is reduced as the generation

number grows. From Step 1 through Step 4, particles are clustered around sample vectors.

This process enables particles to be relocated around sample vectors, thus giving them a

chance to explore a new possible solution space which may contain an optimal or near

optimal solution. In Step 5, each cluster of particles is evolved using PSO. These processes

of clustering and evolving particles are iterated until the generation number is exhausted or

a stopping condition which identifies no more improvements in fitness on objective functions

is met. Fig. 7.1 shows particles (clear circles) moving toward three randomly generated

sample vectors (dark circles) to form clusters.

7.1.3 Simulations & Results

To run the simulations, we implemented the PSO and CPSO using the Java program-

ming language. In the simulations, PSO and CPSO were run for three well known objective

functions namely DeJong’s F2, Schaffer F6 and Rastrigin’s functions (also used by Kennedy

[115]). The optimization performance of PSO and CPSO were compared. The objective

functions are described as follows:

f(x, y) = 100(x2 − y)2 + (1− x)2, (−2.048 < x, y < 2.048) (7.5)

f(x, y) = 0.5 +
(sin2(

√
x2 − y2 − 0.5)

(1 + 0.001(x2 + y2)2
, (−100 ≤ x, y ≤ 100) (7.6)

f(x) = 100 +
10∑
i=1

x2i − 10cos(2πxi) (7.7)

f(x) =
100∑
i=1

x2i
4000

−
100∏
i=1

cos(
xi√
i
) + 1 (7.8)

where −600 ≤ xi ≤ 600 De Jong’s F2 function, represented by Eq. (7.5), is a two dimen-
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Figure 7.1: Cluster particles using SOM. Particles (circles) move toward random vectors
(dark circles)

sional function with a deep valley with the shape of a parabola. The Schaffer F6 function

(7.6) is known to be very difficult to optimize, having infinite local minima and one global

minimum at (x, y) = (0, 0). Rastrigin (7.7) and Griewank (7.8) are multimodal functions

that have many local minima. Figs. 7.2 and 7.3 show Rastrigin’s function and Griewank

function, respectively, which have many local minima–the “valleys”. Both have the global

minimum at (0 . . . 0). Figs. 7.4-7.7 show minimum fitness values found by particles exploring

the solution space under the objective functions described above. Fig. 7.4 shows the results

of PSO and CPSO on the F2 function. For the F2 function, both CPSO and PSO performs

well, early finding a minimum. Both converge early to a minimum, but CPSO continues to

search a better solution (which in this case does not exist). In Fig. 7.5, it is shown that PSO
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Figure 7.2: Rastrigin’s Function

Figure 7.3: Griewank Function
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Figure 7.4: CPSO Vs PSO for De Jong’s F2

prematurely converges to a solution, whereas CPSO escapes several local optima to reach

global optima. Again, Fig. 7.6 shows that for the Rastrigin’s optimization problem (7.7),

CPSO enables particles to find a global solution, oscillating between local minima and global

minimum, whereas particles of PSO converge at a local minimum. Finally, Fig. 7.7 shows

CPSO outperforms PSO dramatically for very complex multimodal optimization problem.

PSO early converges at local minima, whereas CPSO quickly finds a global minimum. The

results clearly demonstrate that our approach is very effective for highly complex multimodal

optimization problems.

7.1.4 Conclusions

We addressed the problem of premature convergence observed in PSO. In this research,

we focused on providing enough diversity for particles to escape local minima. CPSO ex-

plicitly clusters particles around sample vectors to enable particles escape local minima,
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Figure 7.5: CPSO Vs PSO for Schaffer F6

Figure 7.6: CPSO Vs PSO for Rastrigin F1
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Figure 7.7: CPSO Vs PSO for Griewank

and explore new possible solution space which may contain better solutions. Simulation re-

sults show that CPSO outperforms PSO significantly for complex optimization problems and

avoids local minima yielding global solutions. Although CPSO makes an extensive search

within the solution space, it limits the search time by limiting the particles which explore

the solution space using self organizing map. The research strongly suggests that CPSO is

very effective for complex multimodal problems. In future work, we will study finding early

signs of premature convergence for preventing such premature convergence.

7.2 Implementing Support Vector Machine using Particle Swarm Optimization

We implemented an SVM using PSO, namely SVMPSO which is written in Java. SVM

is a parameterized function whose functional form is defined from training sample data.

In order to implement the SVM we have to solve a convex optimization problem on the

sample training data. Solving the convex optimization problem means finding an optimal

hyperplane that separates the sample training data with maximal margin. The training

sample data consists of a set of N examples. Each example consists of an input vector, xi,

and a label, yi, which describes whether the input vector is in a predefined category. There

are N free parameters in an SVM, each of which corresponds to N examples. SVM will fit

52



the function from a set of examples, that is to solve the convex optimization problem defined

in eq. 6.4 and 6.5. The convex optimization problem can be solved by deciding the α values

constrained to eq. 6.4. We solved the convex optimization problem using PSO by evolving

the α values. The PSO procedure has been defined as:

~vt+1 = ~vt + C1 ∗ rand() ∗ ~lbest− ~xt) + C2 ∗ rand() ∗ ( ~gbest− ~x) (7.9)

~xt+1 = ~xt + ~vt+1 (7.10)

The objective function used in PSO has been defined as:

1

2

N∑
i,j=1

αiQijyj −
N∑
i=1

αi (7.11)

The pseudo code for solving the convex optimization problem for SVMpso is described

in procedure 3. In order to construct an SVM (step 1) needs a matrix Q where Q is an N x N

Procedure 3 The procedure of SVMpso

(1) Construct matrix Q
(2) Initialize particles representing α
while until stopping condition is met do

for each particle do
(3) Calculate fitness value using the objective function (7.11)
(4) If the fitness value is better than the best fitness value (pBest) in history set
current value as the new pBest
(5) Choose the particle with the best fitness value of all the particles as the gBest
(6) Calculate particle velocity according to equation (7.9)
(7) Update particle position according to equation (7.10)

end for
end while

matrix that depends on training inputs xi, and labels yi. Furthermore, Qij refers to ith row

and jth column in the matrix and its value is computed by dot product between (xi and xj).

In step (2) we generate particles representing α values, each of which is multi-dimensional

vector, and initialize them. The α values are evolved iteratively through steps(3)-(7) until

stopping condition is met.
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7.3 Application of SVM

As a preliminary study we applied the SVMpso to the problem of categorizing text

documents, and compared its performance against SVM light written in C by Joachims [4].

Categorizing text documents means classifying text documents into predefined classes by

topic. In categorizing text documents, the documents should first be represented in vector

form based on the frequency of unique words within a document. The simplest representation

most commonly used to assess the topic of a document is known as the vector space model

(VSM). The simplest possible version of the VSM is the representation of a document as a

bag-of-words. In this model, a text document can be represented in the multi-dimensional

space as a vector which consists of the weight of unique words within the document. For the

training of SVM, text documents are to be first classified manually, and have a corresponding

label. The labeled documents are used to train the SVM. In order to construct an SVM

we have to find an optimal hyperplane that separates two different classes of documents

with maximal margin. The optimal hyperplane is perpendicular to the two hyperplanes

that connect the documents with maximal margin. These two hyperplanes and training

instances, lying on each hyperplane, called “support vectors”, serve as a decision model,

namely support vector (SV) model. Any decision model only consists of support vectors.

In this regard, we can say that support vectors are a reduced set of training instances.

They can also be seen as most informative among training instances in terms of information

retrieval. Therefore, whether unknown documents belong to a predefined category or not is

determined by these support vectors. We trained SVMpso with 2000 samples, 1000 positive

and 1000 negative samples and tested with 600 samples, 300 positive and 300 negative, for

four different kernels. The experiment results are shown in Fig. 7.8. From the results, it is

observed that the performance of SVMpso is very close to SVM light except with the RBF

kernel. The low performance found in SVMpso against SVM light for RBF kernel may be

contributed to parameters not properly set to control the RBF kernel.
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Figure 7.8: SVMpso Vs SVM light by kernel
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Chapter 8

Support Vector Scheduler (SVS) framework

The SVS meta-scheduler has been illustrated in Fig. 8.1. It shows m target machines.

The SVM is trained using sample data to create a SV model. Once trained, the SV model

selects one of the two heuristics: MinMin or MaxMin to perform the scheduling. The input

to the SVS is a batch of tasks, whose characteristic can be represented by an ETC (Expected

Time to Compute) matrix as shown in Table 8.1. The ETC matrix indicates the estimated

expected execution time of tasks on different machines. The SVS operates in three phases

to make a heuristic selection:

• Phase 1: Generation of sample training data.

• Phase 2: Construction of a SV model.

• Phase 3: Heuristic selection.

In Phase 1, sample training data xi are generated randomly. In our experiments we used

uniform as well as Gaussian distribution function for random generation of data. The gen-

eration of training data has been discussed in detail in Section 4.1. Samples are assigned

labels yi based on the simulation results obtained upon running the MinMin and MaxMin

heuristics on the samples. If MaxMin produces lower makespan than MinMin, the sample

is labeled ‘+’ otherwise it is labeled ‘-’. In Phase 2, we train the SVM using the training

samples to generate an SV model. In Phase 3, the SVS makes a heuristic selection using

the SV model. It evaluates the properties of the batch of tasks, accordingly chooses either

the MinMin or MaxMin heuristic for scheduling. The selected heuristic eventually maps all

tasks within the batch onto machines. The phases of the SVS meta-scheduler have been

described in detail next.
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Figure 8.1: Support Vector Scheduler (SVS) Framework

8.1 Phase 1: Creating sample training data

The format of a single sample training data has been shown in Fig. 8.2. It starts with

a label field whose value could be plus (+) or minus (-), and is followed by task heterogene-

ity within the batch, machine heterogeneity, and machine ready times, respectively. The

machine ready times are not directly used by the SVM, rather they are used by MinMin

and MaxMin. The labels ‘+’ and ‘-’ represent the MaxMin and MinMin classes respectively.

The binary SVM classifies each input task into either of these two classes. Other fields of

the training data represent the statistical information of the tasks within the batch and the

machines. These fields represent the minimum, maximum, average and standard deviation

of task and machine heterogeneity.

In order to generate training data in the format of Fig. 8.2, we first generate the ETC

matrix randomly. A sample ETC matrix for a batch of ten tasks has been shown in Table

8.1. It represents the characteristics of tasks and machines that can be used to execute these

tasks. It lists tasks and their expected execution times on four different machines. The

expected execution times have been normalized within 1..999. The range is wide enough so

that it can represent sufficient heterogeneity. The variances of each row σi and each column

σj of ETC matrix were computed. The σi values represent machine heterogeneity whereas

σj values represent task heterogeneity. The task heterogeneity field values for the input data
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Table 8.1: ETC for a batch of tasks
Batch task Machine

m0 m1 m2 m3

t0 351 972 303 45
t1 948 892 891 767
t2 915 384 228 499
t3 915 166 36 597
t4 508 244 654 879
t5 836 27 935 872
t6 334 117 954 307
t7 86 535 993 195
t8 609 745 161 866
t9 126 701 295 782

(Fig. 8.2) are then avg (σi), std (σi), min (σi) and max (σi). The machine heterogeneity

values for the input data (Fig. 8.2) will then be: avg (σj), std (σj), min (σj) and max (σj).

The machine ready times, Rjwere randomly generated. Next, the label field was generated.

To do so, MinMin and MaxMin were run for each task. The MinMin and MaxMin heuristics

used the ETC matrix to compute the completion time of each task on different machines.

The completion time of task i on machine j can be defined as follows:

Cij = Eij +Rj (8.1)

where Rj is the ready time of machine j. The MinMin and MaxMin, after each assignment,

update the ready times. The ready times were also normalized. The training data were

labeled by classifying each sample into either of the two classes. It was labeled MinMin

class if its total completion time is shorter using the MinMin heuristic than the MaxMin

heuristic. Finally, we balance the number of samples such that half of the samples belongs

to MinMin class and another half to the MaxMin class. Using these balanced samples, we

train the SVM to create an SV model which is used later in SVS.
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Figure 8.2: The format of the input data

8.2 Phase 2: Constructing a SV model

Creating an SV model consists of a process of finding the optimal hyperplane that sepa-

rates the sample training data into two distinct regions by a maximal margin. The samples,

as represented in the vector form on the multi-dimensional input space, are not linearly sep-

arable. Therefore, they are transformed via a mapping function φ from the non-linear input

space into a higher dimensional linear feature space F where they are easily separable. The

mapping function φ can be described mathematically as:

φ : x→ φ(x) ∈ F (8.2)

It turns out, it is not necessary to explicitly compute φ to conduct the mapping. A kernel

function is a computational shortcut that can help achieve the mapping [108]. In general,

such a kernel function k can be mathematically described as follows.

k(x, z) = 〈φ(x) · φ(z)〉 (8.3)

where x, z ∈ RN represent input vectors and 〈·〉 represents their inner product. Usually z is

a reference point; in our case it represents a support vector, later represented by the symbol

Xi. In our simulations, we used the widely employed Radial Basis Function (RBF) kernel,
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which is a Gaussian kernel and is represented as:

K(x, z) = exp(
−||x− z||2

2σ2
) (8.4)

where σ controls the flexibility of the kernel. We can find the optimal hyperplane by solving

the convex optimization problem (6.4) for α. The convex optimization problem is parame-

terized with respect to α. The overall complexity of computing the vector α is O(l3) [108]

where l is the number of samples, since solving for α involves evaluating the inner products

of K and solving l linear equations with l unknowns. We solved the convex optimization

problem using particle swarm optimization [31], thus finding the α values denoting the sup-

port vectors. Finally loading the support vectors in the meta-scheduler, the SV model was

constructed. We note, that since the actual number of samples that were used is small (we

shall see later that l = 500 is sufficient), the actual training phase is quick.

8.3 Phase 3: Heuristic selection

The procedure of heuristic selection in the SVS has been described in Fig. 8.4. It consists

of computing the heterogeneity of the machines and heterogeneity of the tasks within the

batch and the machines’ normalized ready times. Based on this computation, an input vector

in the format of Fig. 8.2 is created. Next, the SV model evaluates the input vector. The

process of evaluating an input vector is described in Fig. 8.5. The input vector x and the

support vectors X = X1, X2, · · · , Xs are nonlinearly mapped by mapping function φ, into

a feature space F, where dot products φ(x) · φ(Xi) are computed. As shown in the figure,

support vectors X1 and X2 belong to the dot (�) class whereas Xs−1 and Xs belong to the

cross (⊗) class. The steps of mapping and dot products above were performed via a kernel

function in a single step as φ(x) · φ(Xi) = K(Xi, x). As stated earlier, the weights α1 · · ·αn

were computed using Particle Swarm Optimization. Next, the output was computed as the

sign (‘+’ or ‘-’) of the sum of weighted products. This process is in effect tantamount to the
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Figure 8.3: Several batches of n tasks

for each batch of tasks do

1. Compute machine heterogeneity

2. Compute task heterogeneity

3. Generate machine ready times

4. Create input vector x

5. Evaluate x and select heuristic

end for

Figure 8.4: The procedure of heuristic selection

input vector being compared against the support vectors for classification. Finally, the SVS

makes a heuristic selection based on the classification. Consequently, the selected heuristic

schedules tasks onto machines.

Evaluation of a new input vector costs O(spq), where s is the number of support vectors,

p is the number of tasks within a batch, and q is the number of batches as shown in Fig.

8.3. Since the number of tasks n = p ∗ q and s is constant, the complexity is O(n).
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Figure 8.5: Evaluation of an input vector x by the SV model
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Chapter 9

Simulation Procedure

To run the simulations, we implemented the SVS using the Java language. SVS includes

the implementation of SVM using particle swarm optimization and the two batch mode

heuristics, MinMin and MaxMin. In addition we simulated the performance of Random

which randomly chooses either the MinMin or the MaxMin heuristic. The input to SVS

consists of a batch of tasks that arrive following the last batch which was scheduled. In the

simulation, we measure the total completion times using MinMin, MaxMin, Random, and

SVS.

Using an appropriate sample size (no. of samples) for training is important in machine

learning. Therefore, we conducted experiments to determine the appropriate sample size.

The results of the experiments have been represented graphically in Fig. 9.1. The figure

shows the average improvement in makespan produced by SVS over MinMin and MaxMin

for different number of samples. From Fig. 9.1, we observe that a sample size of 500 is

appropriate in our problem domain, which is the size we used for our simulations. The input

parameters that were used to create test data for the simulation and their ranges are given

below:

• l = {500}, the number of samples used to construct a SVM.

• p = {10, 20, 50, 100}, the number of tasks within batch.

• m = {4, 8, 16, 32, 64, 128}, the number of machines.

• q = {100, 500, 1000, 2000, 5000, 10000}, the number of batches.

• β = {0.1, 0.2, 0.3, 0.4, 0.5}, the heterogeneity of the negative samples.

• γ = {0.1, 0.2, 0.3, 0.4, 0.5}, the heterogeneity of the positive samples.
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Figure 9.1: Average improvement in makespan from SVS

All possible combinations of parameters result in 4 × 6 × 6 × 5 × 5 = 3600 test sets. For

each test set, we created balanced input data as far as possible. All the simulations were

independently repeated 20 times, and their results were averaged. Thus, the results in the

next section summarize 3600 x 20 x 4 = 288000 data points for all four (4) of MinMin,

MaxMin, SVS and Random heuristics. In order to make a validation for the performance of

SVS we performed simulations for varied combinations of random number generator: Uni-

Uni, Uni-Norm, Norm-Uni, and Norm-Norm. Uni-Uni combination has both training data

and test data uniformly distributed and Uni-Norm combination has training data normally

generated and test data uniformly distributed. Norm-Uni combination has the training

data normally distributed and test data uniformly distributed. Norm-Norm combination
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has both training and test data normally distributed. The simulations for the validation

result in 3600× 4 = 14400 test sets, and data points were averaged to describe the average

improvement over MinMin and MaxMin.
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Chapter 10

Results and Discussion

In this chapter, the results of a preliminary study are shown and followed by the re-

sults of the simulation performed with the number of samples held constant at 500. Fig.

9.1 shows the average makespan by sample size. The average improvement goes up with

the increasing number of sample, having a peak at 500, and afterward it drops slightly. In

terms of probability, SVM created from large number of samples may lead to more accuracy

in classification than the SVM from small number of samples. From the results it can be

noted that SVM is able to improve its classification capability by creating its model from

the appropriate number of samples considering problem domain. In Figs. 10.1-10.17 the

performances of SVS are shown using the average improvement over MinMin and MaxMin

heuristics based on the normalized average makespan. Figs. 10.1-10.4 display improvements

for four different batch task sizes with respect to machine heterogeneity. It is observed in

common that the improvements increase with the increasing amount of machine heterogene-

ity. In addition, it is noticeable that the improvement rate increases as the batch task size

increases. The improvements can be attributed to the increased performance differences be-

tween two heuristics, thus resulting in a more accurate SVM with larger margin with which

samples are separated. Figs. 10.13-10.16 show average improvements with respect to task

heterogeneity.

It is very similar to the improvements by machine heterogeneity except there is no

improvement at the point where task heterogeneity is given 30%. The small improvement

may be due to imbalanced samples, causing the SV model to have a bias toward either class.

Figs. 10.5-10.12 show improvements for the number of processor and task, respectively.

The improvement has a peak at the number of 16 processors, and afterward it decreases.
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Figure 10.1: Average improvement by machine heterogeneity in batch size 10

It is shown that there are no improvements at some points in Figs. 10.5-10.8. No

improvements found above for batch size 10 may be the samples not being properly created

as the MinMin heuristic outperforms the MaxMin heuristic overwhelmingly. Fig. 10.9 shows

that the improvements at batch size 10 fluctuate according to the size of task. On the other

hand, the improvements in the larger batch size shows stability throughout all periods as

seen in Figs. 10.9-10.12. The difference may be due to batch task size. The difference in

performance between two heuristics by their strategies may not be significant in the small

batch task size, whereas it is distinct as batch size increases. The average improvement

by batch task size is shown in Fig. 10.17. The overall average improvement increases

linearly with the increasing number of batch task size. The improvement is as much as 25%

on average. The results indicate that there is a link between the improvement and batch

task size. The improvements can be contributed to the increased margin of performance

differences by batch task size, thus maximizing the capability of SVM.

To discuss the results of the simulation in terms of capability of SVS, we define a param-

eter called Accuracy which represents the percentage of times the selection decisions made

by SVS were found to be correct. To compare the results of SVS, we also present the Best
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Figure 10.2: Average improvement by machine heterogeneity in batch size 20

and Worst makespans, where the Best and Worst refer to the makespans that can be the-

oretically achieved by making the best and worst selections between MinMin and MaxMin.

To compare and graphically present the result in a clear fashion, the measured makespans

were normalized in the range of 1..100. Since the makespans were also an average of several

experiments, they are referred as normalized average makespan. The heterogeneity of tasks

and machines were normalized between 1 and 5 according to the degree of heterogeneity,

where 1 is lowest and 5 is highest heterogeneity. We have graphically presented the simula-

tion results in Figs. 10.18-10.22 showing the Accuracy and normalized average makespans

for SVS, Best, Worst and Random against different parameters. Figs. 10.18 and 10.19 show

the average normalized makespans for different machine and task heterogeneity values. Figs.

10.20 and 10.21 show the performance of SVS for different number of machines and dif-

ferent number of tasks. We verified our results by independently computing Accuracy and

makespans. From the graphs, we observe that when Accuracy is high, the margin between

the average makespan produced by SVS and the best case is small compared to that when

Accuracy is low. This observation further verifies the simulation data. From the graphs,

it was found that the performance of SVS was very close to the best selection. We also
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Figure 10.3: Average improvement by machine heterogeneity in batch size 50

observe that SVS achieved 46% average improvement over the worst selection and 29% over

random selection. Indeed, it was within a margin 5% to the theoretical best selection. We

further observe that the performance of SVS is very stable, and is close to best selection,

regardless of the number of machines, number of tasks, machine heterogeneity or task het-

erogeneity. We found that the SVS did not need to be retrained when the heterogeneity of

tasks and/or the heterogeneity of machines changes. Thus we see that SVS is adaptive to

task heterogeneity and to machine heterogeneity and provides excellent performance under

varying circumstances. It also scales well with no. of tasks and no. of machines.
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Figure 10.4: Average improvement by machine heterogeneity in batch size 100

Figure 10.5: Average improvement by no. of processors in batch size 10
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Figure 10.6: Average improvement by no. of processors in batch size 20

Figure 10.7: Average improvement by no. of processors in batch size 50
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Figure 10.8: Average improvement by no. of processors in batch size 100

Figure 10.9: Average improvement by no. of tasks in batch size 10
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Figure 10.10: Average improvement by no. of tasks in batch size 20

Figure 10.11: Average improvement by no. of tasks in batch size 50
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Figure 10.12: Average improvement by no. of tasks in batch size 100

Figure 10.13: Average improvement by task heterogeneity in batch size 10
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Figure 10.14: Average improvement by task heterogeneity in batch size 20

Figure 10.15: Average improvement by task heterogeneity in batch size 50
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Figure 10.16: Average improvement by task heterogeneity in batch size 100

Figure 10.17: Average Improvement by batch task size
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Figure 10.18: Normalized makespan and Accuracy by machine heterogeneity

Fig. 10.23 shows the accuracy of SVS by random number generator combination. It

shows that Uni-Uni combination outperforms all other combinations with its accuracy close

to 95%, and is followed by Uni-Norm combination. Figs. 10.24 - 10.28 show the average

improvement of SVS over MinMin and MaxMin for Uni-Uni combination. From the results

it can be noted that SVS has more improvement over MaxMin than MinMin in most cases.

Fig. 10.27 shows SVS also achieves improvements for 16 and 128 machines although the

performance margin between MinMin and MaxMin heuristics is least. Figs. 10.29 - 10.33

show the average improvement over MinMin and MaxMin for Uni-Norm combination. In the

Uni-Norm combination most improvement is over MaxMin heuristic with low improvement

over MinMin heuristic. The results show that regardless of no. of tasks, no. of processors,

heterogeneity of tasks, heterogeneity of processors and batch sizes, SVS was able to select

the best heuristic with high accuracy. Furthermore, the performance was validated using

different combinations of input and training distributions functions as shown in Table 10.1.
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Figure 10.19: Normalized makespan and Accuracy by task heterogeneity

Table 10.1: Combinations of input and training distributions functions
Training distribution Input distribution

Uniform Uniform
Uniform Normal
Normal Normal
Normal Uniform

Figure 10.20: Normalized makespan and Accuracy by no. of machines
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Figure 10.21: Normalized makespan and Accuracy by no. of tasks

Figure 10.22: Normalized makespan and Accuracy by batch size
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Figure 10.23: Accuracy by random number generator

Figure 10.24: Average improvement over MinMin and MaxMin by Task Heterogeneity in
Uni-Uni
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Figure 10.25: Average improvement over MinMin and MaxMin by Machine Heterogeneity
in Uni-Uni

Figure 10.26: Average improvement over MinMin and MaxMin by No. of Task in Uni-Uni
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Figure 10.27: Average improvement over MinMin and MaxMin by No. of Machine in Uni-Uni

Figure 10.28: Average improvement over MinMin and MaxMin by Batch size in Uni-Uni
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Figure 10.29: Average improvement over MinMin and MaxMin by Task Heterogeneity in
Uni-Norm

Figs. 10.34 - 10.38 show the average improvement over MinMin and MaxMin for Norm-

Uni combination. In this combination no improvements over MinMin heuristic are found

since MinMin outperforms MaxMin for all criteria. Figs. 10.39 - 10.43 show the average

improvement over MinMin and MaxMin for Norm-Norm combination. Fig. 10.40 shows the

average improvement over MinMin and MaxMin by Machine heterogeneity where it is gained

ideally by best using of the performance difference between MinMin and MaxMin heuristics.
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Figure 10.30: Average improvement over MinMin and MaxMin by Machine Heterogeneity
in Uni-Norm

Figure 10.31: Average improvement over MinMin and MaxMin by No. of Task in Uni-Norm
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Figure 10.32: Average improvement over MinMin and MaxMin by No. of Machine in Uni-
Norm

Figure 10.33: Average improvement over MinMin and MaxMin by Batch size in Uni-Norm
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Figure 10.34: Average improvement over MinMin and MaxMin by Task Heterogeneity in
Norm-Uni

Figure 10.35: Average improvement over MinMin and MaxMin by Machine Heterogeneity
in Norm-Uni
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Figure 10.36: Average improvement over MinMin and MaxMin by No. of Task in Norm-Uni

Figure 10.37: Average improvement over MinMin and MaxMin by No. of Machine in Norm-
Uni
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Figure 10.38: Average improvement over MinMin and MaxMin by Batch size in Norm-Uni

Figure 10.39: Average improvement over MinMin and MaxMin by Task Heterogeneity in
Norm-Norm
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Figure 10.40: Average improvement over MinMin and MaxMin by Machine Heterogeneity
in Norm-Norm

Figure 10.41: Average improvement over MinMin and MaxMin by No. of Task in Norm-
Norm
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Figure 10.42: Average improvement over MinMin and MaxMin by No. of Machine in Norm-
Norm

Figure 10.43: Average improvement over MinMin and MaxMin by Batch size in Norm-Norm
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Chapter 11

Conclusion

Over the last four decades there have been many improvements in computing technol-

ogy with the availability of cheaper, faster, and more reliable electronic components. These

developments have enabled fast-processor computers to solve computation-demanding prob-

lems that would otherwise be impossible. However, since electronic processing speeds began

to approach limitations imposed by the laws of physics, a new computing paradigm of par-

allel and distributed computing (PDC), allowed the transition from sequential to parallel

processing, overcoming the limitations of a single processor. In this work, we addressed

mechanisms concerned with orchestrating computing resources in PDC system to maximize

system performance. We focused on describing the task mapping problem of mapping tasks

onto heterogeneous systems and relevant architectures of PDC systems. Mapping inde-

pendent tasks onto heterogeneous machines is known to be NP-complete. Therefore, most

approaches were to create specific new heuristics, or to tailor existing heuristics to fit the

problem. In this research, we applied machine learning techniques, particularly support vec-

tor machines (SVM), to solve the mapping problem. We formulated the mapping problem

into a binary classification problem in which either one of two available heuristics is selected

to map tasks onto machines. SVM is based on the principle of structural risk minimization,

and has shown better performance than empirical risk minimization-based learning machines

such as neural networks. We applied SVM to recognize certain patterns from a batch of tasks

represented in the form of an expected execution time table, and to classify the batch of tasks

into either class of the two heuristics. To do this, an SVM was implemented which is able

to learn how to classify unknown input into one of the predefined classes. The process of

implementing an SVM requires solving a convex optimization problem by finding an optimal

91



hyperplane separating the sample data with maximal margin. In order to find the optimal

hyperplane, we have to determine the value of parameters which correspond to each sam-

ple instance to result in maximal margin. Ultimately, the optimal hyperplane consisting of

support vectors serves as a decision boundary for any unknown input. We implemented an

SVM by solving the optimization problem using particle swarm optimization (PSO). It is

known that the accuracy of a SVM depends on the ability of adjusting its capacity to the

problem domain, thus resulting in its high accuracy. We achieved the best capacity of an

SVM for the problem domain using a PSO. CPSO is a modification of the PSO, tailored to

prevent particles from prematurely converging to local solutions by providing diversity so

that the particles can escape from local optima.

This work presented a novel support vector scheduler (SVS) which uses a SVM to

schedule tasks onto machines in a heterogeneous computing (HC) system. The SVS used

SVM to selectively choose either one of two available heuristics, the MinMin and MaxMin.

We have simulated the SVS consisting of the MinMin and MaxMin heuristics. The SVS

was compared against the best, the worst, and random selection. The results of simulation

show that the performance of SVS is very close to the best selection that can be achieved

theoretically, achieving high improvement over the random selection.

From this study, we strongly suggest that our approach using machine learning tech-

niques is plausible, and the SVS is very efficient for the following reasons. First, SVS is

adaptive to the dynamic environment since it considers the performance difference between

the MinMin and MaxMin by system variables. Next, the SVS is reliable since it has the

inherent reliability from the use of conventional heuristics which have been already verified

in many applications. Finally, the SVS is very effective in that it can create a new heuristic

quickly by combining existing heuristics.

In the future, we will extend SVS to a variety of problem domains that require various

objective functions and use more number of heuristics using a multi-class SVM.
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