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Abstract

Wavelets have been widely used lately in many areas such as physics, astronomy, bi-

ological sciences and recently to statistics. The main goal of this dissertation is to provide

a new contribution to an important problem in statistics and particularly nonparametric

statistics, namely estimating the optimal score function from the data with unknown un-

derlying distribution. This problem naturally arises in nonparametric linear regression

models and could be important in order to have a better insight on more important and

actual problems in longitudinal and repeated measures analysis through mixed models.

Our approach in estimating the score function is to use suitable compactly supported

wavelets like the Daubechies, Symlets or Coiflets family of wavelets. The smoothness

and time-frequency properties of these wavelets allow us to find an asymptotically effi-

cient estimator of the slope parameter of the linear model. Consequently, we are also able

to provide a consistent estimator of the asymptotic variance of the regression parameter.

For related mixed models, asymptotic relative efficiency is also discussed.
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Chapter 1

Introduction

One of the most widely used models in statistical modeling is the linear regres-

sion model where a hyperplane that ’best’ describes the relationship between a response

variable Y and a vector of covariates x is constructed. Typically, one has a set of data

measured on, say, n subjects (Y1,x1), . . . , (Yn,xn) and the construction of the hyperplane

involves errors since not all the data points fall on a plane. These errors are assumed to

be random.

The classical approach to estimating the hyperplane is using the least squares (LS)

procedure where the hyperplane is taken to be the column space spanned by the columns

of the matrix (xT1 , . . . ,x
T
n )T that is the closest in terms of the Euclidean distance to the

vector (Y1, . . . , Yn)T . It turns out, by the Gauss-Markov Theorem, that the LS procedure

gives the model that is the best linear unbiased estimator (BLUE) if the errors have

expectation zero, are uncorrelated, and have equal variances. However, the LS procedure

is not robust in the presence of outliers and other violations of underlying assumptions.

There are a several number of approaches one can follow to achieve robustness. One

of the more popular techniques is the technique of M -estimation (Huber, 1964) which

includes the LS procedure as a subset. Another approach was the method of R-estimation

which is based on ranks of the data. This was initially proposed for the simple linear

model by Adichie (1967) based on simple Hodges-Lehmann type location estimators. This

was later generalized for the multiple regression model by Jureckova (1971) and Jaeckel

(1972). In subsequent works, Hettmansperger and McKean Naranjo and McKean (1997),

and colleagues developed methods for testing general linear hypotheses, construction of
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confidence intervals, etc. to make R-estimation of linear models a complete treatment

(Hettmansperger and McKean, 1998). As a result, the approach is also known as the

Jaeckel-Hettmansperger-McKean approach of model fitting (Hollander and Wolfe, 1999).

1.1 Contribution of the Dissertation

One of the difficulties of using M - and R-estimators is that they depend on an

unknown function (a score function) that needs to be chosen by the investigator. This is

just about all the control the investigator has so it is a very critical activity. However, it

is usually not very clear which score functions to use. A common approach is to choose

the function on the basis of a heuristic investigation of a fit based on a chosen (usually

simple such as linear) score function. Another common approach is to go for robustness

by sacrificing efficiency and use score functions that contain some form of trimming or

Winsorization.

It is of interest to choose score functions that maximize the efficiency of the resulting

estimator. The efficiency of an estimator depends on the underlying distribution of the

random error terms and this distribution is unknown. One approach is to use certain

density estimators (e.g. kernel density estimator) to estimate the score function and

use the estimated score function to estimate the regression parameters. Such estimators,

known as adaptive estimators, are discussed in Stone (1975) and Koul and Susarla (1983)

among others.

A different approach that uses the underlying structure of R-estimators to determine

the score function that maximizes efficiency was given by Dionne (1981) and Naranjo

and McKean (1997). They employed Fourier series approximation based on a first order

Taylor expansion to determine the score function that maximizes the efficiency of the

R-estimator. However, this lacked the flexibility that is required for certain underlying
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distribution. This was especially evident at the two extremes of the domain of the score

function.

In this dissertation, we propose a Wavelet based approximation of the score function

based on a second order Taylor series approximation. As it turns out the second order

Taylor approximation is ideal under the smoothness considerations of the score function.

We will provide a theoretical investigation of the optimality of this approach as well as

establish the asymptotic properties of the resulting estimator. We will also consider the

mixed model and investigate how our approach can be used to estimate the fixed-effects

parameters. Moreover, we will take on the task of determining the function space that is

most suited for such Wavelet-based approximation. This leads us to consider the problem

with greater generality from the perspective of harmonic analysis.

1.2 Organization

This dissertation is organized as follows. Chapter 2 contains a brief review of rank

based analysis of linear models and wavelet theory. In Chapter 3, we consider the problem

of estimation of score functions and give the main results of the dissertation. Chapter 4

gives an adaptive estimator of the slope parameter as well as the scale parameter. These

are then used to construct Wald type tests for general linear hypotheses on the slope

parameter. Chapter 5 provides a brief discussion on some issues related to computations

and includes proposals to include dependent error structure as well as the spaces of score

functions that are suitable for wavelet approximation.
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Chapter 2

Preliminaries: Review of Rank Based Analysis and Wavelet Theory

In this chapter, we review basic notions of rank based analysis for linear models and

basic facts about wavelet theory.

2.1 Rank Based Analysis

We consider the following model:

Yi = xTi β + e∗i , 1 ≤ i ≤ n, (2.1.1)

where Yi denotes the ith response and xi denote a p× 1 vector of explanatory variables,

β is a p×1 vector of unknown regression parameters and e∗i is the ith random error with

distribution F .

Our interest is to estimate β and to test linear hypotheses about it. Note that we

could also have a model with intercept parameter. Indeed, let µ = L(e∗i ) be a location

functional and let ei = e∗i − µ. Then L(ei) = 0 and the model can be written as

Yi = µ+ xTi β + ei, 1 ≤ i ≤ n, (2.1.2)

Remark 2.1.1. β does not depend on the location functional used if F is a member of

the location family of distributions.

Proof. Consider any location functional L of the distribution of ei and let µ = L(F )

where F is the common distribution of the ei’s for 1 ≤ i ≤ n. Then e∗i has distribution
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F ∗(x) = F (x− µ) and L(F ∗) = 0. We then have that F (x) = F ∗(x− µ), so L(F ) = µ is

the location functional for xi.

Furthermore, Yi has a distribution H(x) = F (x−(xTi β+µ)). Thus L(H) = xTi β+µ

is a location functional for Yi and consequently β = (xix
T
i )−1(L(H)− L(F )).

Definition 2.1.2. Let Y = (Y1, · · · , Yn)T denote the vector of observations, let X denote

the n× p matrix whose ith row is xTi and let e = (e1, · · · , en). The model in (2.1.2) can

be expressed as

Y = 1µ+ Xβ + e, (2.1.3)

where 1 is a n× 1 vector of ones, 1µ is a vector of reals representing the intercept and β

is a p× 1 vector of unknown regression parameters.

Note that the model

Y = 1µ+ η + e (2.1.4)

is called Coordinate Free Model, where η = Xβ ∈ ΩF with ΩF being the column

space spanned by the columns of X.

In addition to estimating the parameter of interest β, we will also be interested in

general linear tests of the form

H0 : Mβ = 0 versus HA : Mβ 6= 0, (2.1.5)

where M is q × p matrix of full row rank.

2.1.1 Estimation of regression parameters

Definition 2.1.3. An operator || · ||∗ is called a pseudo-norm if it satisfies the following

conditions
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1. ||x||∗ ≥ 0 , for all x ∈ Rn

2. ||x||∗ = 0 if and only if x1 = · · · = xn

3. ||αx||∗ = |α|||x||∗, for all α ∈ R, x ∈ Rn

4. ||x+ y||∗ ≤ ||x||∗ + ||y||∗, for all x, y ∈ Rn.

Consider the function

||x||∗ =
n∑
i=1

a(R(xi))xi, (2.1.6)

where x = (x1, · · · , xn) is a vector in Rn, the a(i) are called scores and are such that

a(1) ≤ · · · ≤ a(n),
n∑
i=1

a(i) = 0 and a(i) = −a(n + 1 − i), R(xi) is the rank of xi

among x1, · · · , xn.

Theorem 2.1.4. The function || · ||∗ in (2.1.6) is a pseudo norm.

Proof. 1. Positivity.

Using the connection between ranks and order statistics, we can write

||x||∗ =
n∑
i=1

a(i)x(i).

Suppose that x(i0) is the last order statistics with a negative score. Since
n∑
i=1

a(i) =

0, we have

||x||∗ =
n∑
i=1

a(i)(x(i) − x(i0))

=
∑
i≤i0

a(i)(x(i) − x(i0)) +
∑
i≥i0

a(i)(x(i) − x(i0)).

Since both terms on the right are nonnegative, we have ||x||∗ ≥ 0.
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2. Furthermore, if ||x||∗ = 0, then both terms in the last equality must be zero. Since

a(1) < a(n) and a(1) = −a(n), we must have a(1) < 0 and a(n) > 0. Therefore

the first term on the right can be written as

∑
1≤i≤i0

a(i)(x(i) − x(i0)).

Thus, ∑
1≤i≤i0

a(i)(x(i) − x(i0)) = 0 implies x(1) = x(2) = · · · = x(i0).

Likewise, we have x(i0) = x(i0+1) = · · · = x(n).

This shows that ||x||∗ = 0 implies that x1 = · · · = xn.

3. Homogeneity.

For some positive real α, we know thatR(αx(i)) = R(x(i)) andR(−x(i)) = R(x(n+1−i)).

Clearly, for a positive real α, one has:

||αx||∗ =
n∑
i=1

a(R(αxi)(αxi)

= α
n∑
i=1

a(R(xi))xi

= |α|||x||∗.
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If α < 0, then

||αx||∗ =
n∑
i=1

a(R(αxi))(αxi)

=
n∑
i=1

a(R(−(−αxi))(−(−αxi))

= −α
n∑
i=1

a(R(xn+1−i))(−xi)

= |α|
n∑
i=1

−a(n+ 1− i)(x(i))

= |α|
n∑
i=1

a(i)x(i)

= |α|||x||∗.

4. Triangle inequality.

||x+ y||∗ =
n∑
i=1

a(R(xi + yi))(xi + yi)

=
n∑
i=1

a(R(xi + yi))xi +
n∑
i=1

a(R(xi + yi))yi

≤
n∑
i=1

a(i)x(i) +
n∑
i=1

a(i)y(i) by Hardy’s Tauberian Theorem

= ||x||∗ + ||y||∗.

We now suppose that the scores are generated as a(i) = h(i/(n + 1)) for some

nondecreasing function h defined on the interval (0, 1) and such that

∫ 1

0

h(u)du = 0,

∫ 1

0

h2(u)du <∞.
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Consider the model in (2.1.4). Rewriting the pseudo-norm above as ||x||h =
n∑
i=1

a(R(xi))xi,

a Rank-estimate for η is a vector Ŷh such that

Dh(β) = Distance(Y,ΩF ) = ||Y − Ŷh||h = min
η∈ΩF

||Y − η||h.

The function Dh(β) is also called the dispersion function.

Once η has been estimated, β can be estimated by solving the equation Xβ = Ŷh,

hence the Rank-estimate of β is β̂R = (XTX)−1XT Ŷh. The intercept µ can be estimated

by a location estimate based on the residuals ê = Y − Ŷh. We could use the median of

residuals denoted by µ̂S = med
i=1,··· ,n

{Yi − xiβ̂R}. Geometrically, the Rank-estimate of η is

a vector that minimizes the normed difference between Y and ΩF as shown in Figure 2.1.

�

?
>

Ŷh

Y

||Y − Ŷh||h

ΩF

Figure 2.1: Geometry of Rank Estimation

The following result justifies the existence of the rank estimation and is due to Jaekel

Jaeckel (1972).
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Remark 2.1.5. The dispersion function Dh(β) is a continuous, convex, almost every-

where differentiable function.

Proof. Continuity follows from the the inequality |Dh(β1)−Dh(β1)| ≤ ||β1−β2||p||x||h,

for all x ∈ Rn, for all β1,β2 ∈ Rp.

Convexity follows from the equalities and inequality

Dh(αβ1 + (1− α)β2) = ||Y −X(αβ1 + (a− αβ2))||h

= ||αY + (1− α)Y + αβ1 + (1− α)β2||

≤ αDh(β1) + (1− α)Dh(β2), for some α ∈ (0, 1).

Differentiability follows from the equality ∇Dh(β) = −
n∑
i=1

xia(R(Yi − xTi β)).

Remark 2.1.6. The Rank-estimate β̂R of β is location and scale equivariant, that is

β̂R(kY) = kβ̂R(Y) and β̂R(Y + Xδ) = β̂R(Y) + δ, for k ∈ R and for δ ∈ Rp.

Proof. Dh(β̂R(Y)) = Dist(Y,ΩF ) = ||Y − Ŷh||h. Therefore,

Dh(β̂R(Y + Xδ)) = Dist(Y + Xδ,ΩF )

= ||Y + Xδ − Ẑh||h

= ||Y − (Ẑh −Xδ)||h

= Dist(Y,ΩF ).

So we must have Ẑh = Ŷh + Xδ. Thus,

β̂R(Y + Xδ) = (XTX)−1XT [Ŷh + Xδ]

= (XTX)−1XT Ŷh + δ

= β̂R(Y) + δ.
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In the same way, for any k 6= 0,

Dh(β̂R(kY)) = Dist(kY,ΩF )

= ||kY − Ŵh||h

= |k|||Y − 1

k
Ŵh||h

= |k|Dist(Y,ΩF ) = |k|Dh(β̂R(Y).

So we must have
1

k
Ŵh = Ŷh.

Thus,

β̂R(kY) = (XTX)−1XTŴh

= (XTX)−1XT (kŶh)

= k(XTX)−1XT (Ŷh)

= kβ̂R(Y).

As a consequence, without loss of generality, the theory we will develop will be

established under the assumption that the true β is 0 for simplicity.

We end this section with the following theorem proved in the appendix, on the

asymptotic properties of the Rank-estimator β̂R of β.

Theorem 2.1.7. µ̂S

β̂R

 ≈ Np+1


 µ

β

 ,

 n−1τ 2
S 0

0 τ 2
h(XTX)−1




where τh and τS will be defined later.
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2.1.2 Tests of linear hypothesis

Let’s consider the model (2.1.2). Note that Distance(Y,ΩF ) is the amount of residual

dispersion not accounted for in the model (2.1.2). Let ΩR
F be the subspace subject to H0,

that is, ΩR
F = {η ∈ ΩF : η = Xβ, for some β such that Mβ = 0}.

Clearly, ΩR
F is a subspace of ΩF and since MX = 0 is a system of q equations with

p unknowns, then Dim(ΩR
F ) = p− q.

If ŶR
h is the Rank-estimate when the reduced model is fitted, then the nonnegative

quantity

RDh = Dist(Y,ΩR
F )−Dist(Y,ΩF ) (2.1.7)

represents the Reduction in residual dispersion when we pass from the reduced

model to the full model as shown in Figure 2.2.

Thus, large values of RDh indicate HA while small values support H0. If RDh is

standardized, the ensuing asymptotic distribution theory suggests that Fh =
RDh/q

τ̂h/2

should be compared with the F -critical values with q and n− (p+ 1) degrees of freedom,

at least for small sample studies, where τ̂h is a consistent estimator of τh.

The rank analogue of Wald’s test for the full model is given by

Wh =
(Mβ̂R)[M(XTX)−1MT ]−1(Mβ̂R)/q

τ̂ 2
h

. (2.1.8)

It can be proved (Hettmansperger and McKean, 1983) that Wh has an asymptotic χ2(q)

distribution.
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Figure 2.2: Geometry of Rank Tests

2.2 Basic Wavelet Theory

In this section, we introduce the basics of wavelet and provide the motivation for

their invention.

2.2.1 A motivating example

The Fourier series of a square integrable function f can be obtained by dilating the

orthonormal basis {e−ikx}k∈Z. However, each element of the basis {e−ik(π
σ

)x}k∈Z obtained

by dilation is a complex sinusoidal wave which is global in x, hence the Fourier coefficients

do not provide information on the local behavior of the function f . For instance, consider

13



the 2π-periodic function

f(x) =


π/2, x ∈ (0, π)

0, x = 0

−π/2, x ∈ (−π, 0).

After computation of the Fourier coefficients, we have

f(x) = 2
∞∑
n=1

sin(2n− 1)x

2n− 1
, x ∈ (−π, π).

Clearly for any finite interval (a, b), the behavior of the function

floc(x) =

 f(x), x ∈ (a, b)

0, otherwise

cannot be directly obtained via the Fourier coefficients since f is local in the areas (−π, 0)

and (0, π).

Another shortcoming of the Fourier theory is the Gibbs’ Phenomenon. Indeed,

consider the previous function f . Since 2
∞∑
n=1

sin(2n− 1)x

2n− 1

∣∣∣∣
x=0

= 0, the Fourier series of

f also converges to f(x) at x = 0.

Let Sn(f, x) = 2
n∑
k=1

sin(2k − 1)x

2k − 1
. The jump of amplitude of f(x) at x = 0 is

f(0+)− f(0−) = π.

Moreover,

lim
n→∞

Sn

(
f,

π

2n

)
=

∫ π

0

sin t

t
dt ≈ 1.85193706
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and

lim
n→∞

Sn

(
f,− π

2n

)
= −

∫ π

0

sin t

t
dt ≈ −1.85193706.

Thus,

lim
n→∞

∣∣∣∣Sn(f, π2n)− Sn(f,− π

2n

)∣∣∣∣ ≈ 3.70387412

≈ 1.179π.

The latter means that the amplitude of Sn(f, x) around 0 is at least 1.179 multiple

of the jump of f at 0. This is the Gibbs’ phenomenon as seen in Figure 2.3.

Finally, another shortcoming of the Fourier analysis that is worth mentioning is

the problem of convergence. Indeed, in 1873, Paul Du Bois-Reymond constructed a

2π-periodic function whose Fourier series diverges at a given point.

Therefore, there is a natural need for an orthogonal system for which the local behav-

ior of a function can be recognized from its coefficients, for which the Gibbs’ Phenomenon

can be avoided or at least dealt with and for which the phenomenon discovered by Du

Bois-Reymond cannot happen. Wavelets provide an answer to those concerns.

Definition 2.2.1. A function ψ is called a wavelet function if {2j/2ψ(2jx− k)}j,k∈Z is

an orthonormal basis of L2(R).

Therefore, any function f in L2(R) can uniquely be represented as

f(x) =
∑
j∈Z

∑
k∈Z

Cjkψjk(x). (2.2.1)

Note that (2.2.1) is called the homogeneous wavelet expansion of the function

f . This is to say that there exists an inhomogeneous wavelet expansion for f defined
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Figure 2.3: Gibbs Phenomenon

as

f(x) =
∑
k∈Z

C0kφ0k(x) +
∞∑
j=0

∑
k∈Z

Cjkψjk(x), (2.2.2)

where φ and ψ are respectively called ”father wavelet or scaling function” and

”mother wavelet”. Besides, the ”mother wavelet” can be obtained from the ”father

wavelet” through the relation ψ(x) =
√

2
∑

k∈Z λkφ(2x− k), where the λk’s are some

carefully chosen coefficients. There are many examples of scaling functions.
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2.2.2 Examples of wavelets

1. Haar Wavelet

It’s the very first wavelet constructed. Its ”father wavelet” and ”mother wavelet”

are respectively defined as

φ(x) =

 1, x ∈ [0, 1)

0, otherwise
ψ(x) =


1, x ∈ [0, 1/2)

−1, x ∈ [1/2, 1)

0, otherwise.

The functions ψjk(x) = 2j/2ψ(2jx − k), j, k ∈ Z are called ”daughters wavelets”

and are compactly locally supported in diadic interval In = [k2−j, (k+ 1)2−j]. The

left and right panels in Figure 2.4 respectively depict φ and ψ for the Haar wavelet

system.

Figure 2.4: The Haar Wavelet

2. Shannon wavelet

Consider the space V Sh
0 = {f ∈ L2(R) : Support(Ff)(ξ) ⊂ [−π, π]}.

Then,
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∀f ∈ V Sh
0 , f(x) =

∑
k∈Z

f(k)
sin π(x− k)

π(x− k)
. (2.2.3)

This result is also known as the Sampling Theorem (see Hong et al. (2005)) since

the function f can be recovered from its sample values f(k). It follows that the

Shannon ”father wavelet” and ”mother wavelet” are respectively given by

ψ(x) =
sin πx

πx
, ψ(x) =

sinπ(x− 1/2)− sin 2π(x− 1/2)

π(x− 1/2)
.

These are shown in Figure 2.5.

Figure 2.5: The Shannon Wavelet

3. Mexican Hat Wavelet

This is by far the most used wavelet in practice for its simplicity. Its name comes

from the resemblance of the graph of its ”mother wavelet” to a Mexican hat. The

”father wavelet” and ”mother wavelet” are given respectively by:
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φ(x) = e−x
2

, ψ(x) =
2√
3
π−1/4(1− x2)e−x

2

.

These are shown in Figure 2.6.

Figure 2.6: The Mexican Hat Wavelet

4. Daubechies Wavelet

Ingrid Daubechies Daubechies. (1992) was the first to introduce continuous com-

pactly supported wavelets. Indeed, she proved that there exists a scaling function

φ ∈ L2(R) such that

φ(x) =
√

2
∑
k∈Z

hkφ(2x− k),

where {hk}k∈Z is a sequence of real numbers such that

hk =
√

2

∫
φ(x)φ(2x− k)dx,

∑
k∈Z

|hk|2 <∞,

where φ is the complex conjugate of φ. Daubechies wavelets are classified as DN

for N = 2, · · · , 20 where N is even and represents the number of coefficients and
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N/2 the number of vanishing moments. Vanishing moments denote the ability of

the wavelets to encode a polynomial function or a signal. For example, D2 has

one vanishing moment so it’s good for encoding constant signals. Note that D2

coincides with the Haar wavelet. It’s actually the only explicit Daubechies wavelet

since the others do not have scaling functions that can be expressed in a closed form.

Daubechies wavelets can also be defined on any interval [a, b] and more information

can be found in Andersson et al. (1994) and Cohen et al. (1993).

These are shown in Figure 2.7.

Figure 2.7: The Daubechies Wavelet

20



We end this section by noting that one key difference between wavelet approximation

and Fourier approximation is that the Fourier approximation uses one function (called

window function) that is translated over the interval of definition whereas its wavelet

counterpart uses a function that is translated and dilated to adapt itself to the local

properties of the function.
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Chapter 3

Estimation of the Score Function

3.1 Introduction

In this chapter, we introduce the problem to be solved and put it into its historical

context.

Consider the linear model

Yi = µ+ xTi β + e∗i 1 ≤ i ≤ n, (3.1.1)

where e1, · · · , en are independent random variables with distribution function F and

density f .

It’s known that the least squares estimate β̂LS of β is the one that minimizes the

square distance ||Y−xβ||2Rn but fails to be robust, in the sense that it’s very sensitive to

departure from normality and to perturbations. Robust alternatives to the least squares

method include the M-estimation and Z-estimation.

M-estimation consists of finding an estimate β̂M of β that maximizes (hence the

term M-estimation) a criterion function Mn(β) =
1

n

n∑
i=1

mβ(Xi) where mβ : X 7→ R

are known functions. Z-estimation consists of finding an estimate β̂Z of β that almost

maximizes the criterion function Mn(β) or is one of its near Zeros (hence the term Z-

estimation). Note that popular choices for the criterion function include the so called

Huber function and the biweight function given respectively by
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M(u) =


1
2
u2, |u| ≤ k

k|u| − 1
2
k2, |u| > k

, M(u) =


1
6

[
1−

{
1− (u/k)2

}3
]
, |u| ≤ k

1
6
k2, |u| > k, k ∈ R.

Although the aforementioned methods solve the problem of robustness, they have

their own shortcomings. First, it may be hard to find zeros of (Mn(β))′. Second, the

existence of zeros near the boundary of the parameter set may make the estimation

problem become ill-posed. Third, consistency and uniqueness are not guaranteed.

Consider the estimator β̂R of β ∈ Rp that minimizes the dispersion function

Dh(β) =
n∑
i=1

a(R(Yi − xTi β))(Yi − xTi β), (3.1.2)

where R(yi − xTi β) is the rank of yi − xTi β among y1 − xT1 β, · · · , yn − xTnβ and a(1) ≤

· · · ≤ a(n) are some scores. The scores are usually chosen as a(j) = h(j/(n+ 1)), where

h : (0, 1)→ R+ is a nondecreasing score function.

Definition 3.1.1. The score function is the gradient with respect to some parameter

θ of the logarithm of the likelihood function, that is h(u) =
∂

∂θ
log f(θ;u).

Examples of score functions

1. Sign score function: h(u) = sign(u− 1/2).

2. Logistic score function: h(u) = 2u− 1.

3. Normal score function: h(u) = Φ−1(u) where Φ is the standard normal distribution.
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Remark 3.1.2. The mean of the score function given a parameter θ is zero, that is,

E(h|θ) = 0. This entails that the variance of the score function I(f), which is called the

Fisher Information, is given by I(f) =

∫ ∞
−∞

(
f ′(u)

f(u)

)2

f(u)du.

Proof.

E(h|θ) =

∫ ∞
−∞

∂ ln f(u; θ)

∂θ
f(u; θ)du

=

∫ ∞
−∞

∂f(u; θ)

∂θ
du

=
∂

∂θ

∫ ∞
−∞

f(u; θ)du

=
∂1

∂θ
= 0.

Definition 3.1.3. Given a score function h, we define the scale parameter as τh = 1/γ

where

γ =

∫ 1

0

h(u)hF (u)du and hF (u) = −f
′(F−1(u))

f(F−1(u))
.

Suppose that an estimate Tnν of T (β) based on n observations is such that as ν →∞,

√
nν(Tnν − T (β)) N(0, σ2(β)). (3.1.3)

Definition 3.1.4. Given two estimators Tnν,1 and Tnν,2 of T (β) , let nν,1, nν,2 be the num-

ber of observations needed to meet (3.1.3). Then the (Pitman) Asymptotic Relative

Efficiency(ARE) of the two estimators is defined as

ARE(Tnν ,2, Tnν,1) = lim
ν→∞

nν,1
nν,2

=
σ2

1(β)

σ2
2(β)

. (3.1.4)
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It follows from the above definition that an estimator Tnν,1 of T (β) is said to be as

asymptotically relatively efficient as an estimator Tnν,2 of T (β) if ARE(Tnν ,2, Tnν,1)→ 1.

Theorem 3.1 (Asymptotic Relative Efficiency). If the score function h is such that

h(u) = hF (u), then the resulting R-estimate β̂R of β in the linear model (3.1.1) is

asymptotically relatively as efficient as the least squares estimate β̂LS.

Proof. Since var(β̂LS) = σ2(XTX)−1 where σ2 is the variance of the underlying normal

distribution and var(β̂R) = τ 2
h(XTX)−1 by theorem 2.1.7, we have

ARE(β̂R, β̂LS) =
σ2

τ 2
h

= σ2

(∫ 1

0

h(u)hF (u))du

)2

= σ2
√
I(f)

√
Var(hF )

[
corr(h(u), hF (u))

]2
= σ2I(f)

[
corr(h(u), hF (u))

]2
So optimality is obtained when corr(h(u), hF (u)) = 1 that is, h(u) = hF (u).

In the sequel, we assume the scores are chosen so that a(j) = hF (j/(n+ 1)), where

hF (u) = −f
′(F−1(u))

f(F−1(u))
. (3.1.5)

In this case, the estimator β̂R of β is asymptotically efficient, that is, it is as efficient as

the least squares estimator β̂LS. The choice of the least squares estimator for comparison

is that by Gauss-Markov theorem, it achieves the uniform minimum variance among all

linear unbiased estimators.

Lemma 3.1.5. If the Fisher information I(f) is finite, then hF ∈ L2(0, 1).
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Proof.

I(f) =

∫ ∞
−∞

[
f ′(x)

f(x)

]2

f(x)dx

=

∫ 1

0

[
f ′(F−1)(u)

f(F−1)(u)

]2

du by change of variable u = F (x)

=

∫ 1

0

h2
F (u)du.

Hence, I(f) <∞ implies hF ∈ L2(0, 1).

Therefore, under I(f) <∞, there exist coefficients Cjk, such that

hF (t) =
∞∑

j=−∞

∑
k∈Z

Cjkψjk(t), (3.1.6)

where {ψjk}j,k∈Z, is an orthonormal system in L2(0, 1) with ψjk(t) = 2j/2ψ(2j/2t− k) for

some function ψ and

Cjk =

∫ 1

0

hF (s)ψjk(s)ds . (3.1.7)

An asymptotically efficient estimate of the coefficients Cjk will yield an asymptotically

efficient estimate of hF .

A common approach in rank regression is to fix the score function apriori on the

basis of robustness or simplicity considerations. However, for efficient results, a good

approximation of hF based on an approximate knowledge of F from a sample is of some

value. To that end, Van Eeden (1970) proposed an asymptotically efficient estimate of

location parameters using an estimate of hF based on a subset of the data. Dionne (1981)

used a similar subset-based technique to develop estimators of linear model parameters.

Beran (1974), for the location model, and Naranjo and McKean (1997), for the linear

model, provided Fourier series estimators of hF based on the whole sample. A different
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approach to aforementioned methods that uses density estimation and based on quantile

regression was proposed by Koenker and Basset (1978).

The estimator proposed in this dissertation also uses the whole sample to estimate

hF . Our approach differs from that of Naranjo and McKean (1997) in that:

1. we develop estimates of hF that provide asymptotically efficient estimators β̂R

based on a large class of orthonormal basis in L2(0, 1),

2. we develop estimates based on second order approximations (Beran (1974) and

Naranjo and McKean (1997) used first order approximations),

3. we eliminate restrictive assumptions on the data such as those in assumption (A6)

of Naranjo and McKean (1997) by using second order approximations, and

4. we provide a consistent, wavelet-based, estimator of the asymptotic variance of the

estimator β̂R.

Zygmund (1945) pointed out that second differences of functions are much more

useful than first differences in estimating smooth functions. This motivates our use of

second order approximations. Also, the use of the second derivative gives us expressions

of coefficients that are easier to manipulate than the ones in Naranjo and McKean (1997).

This allows us to avoid making restrictive distributional assumptions such as assumption

(A6) of Naranjo and McKean (1997) that asserts that the first derivative of (φ(F ))′F−1

be bounded, where φ(t) = exp(−2πikt) and k is an integer. This excludes a wide range

of distributions such as the normal and the logistic.

In the following, we provide an asymptotically efficient estimate of the score function.

We begin by laying out the assumptions and discussing their consequences .
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3.2 General Assumptions

We will assume without loss of generality that µ = 0, β = 0 in view of remark

2.1.6, and that the xi’s are centered to have mean 0 in (3.1.1). We assume the following

conditions:

(H1) ψ has compact support in (0, 1) and is three times differentiable with bounded

derivatives.

(H2)
1√
n

max
1≤i≤n

‖xi‖p = o(1).

(H3)
1

n

n∑
i=1

‖xi‖2
p = O(1).

(H4) f is absolutely continuous with I(f) <∞ and
f ′

f
monotone.

(H5) There exists a sequence {β̂n} in Rp such that
√
nβ̂n = Op(1).

(H6) lim
n→∞

n−1XTX = Σ.

3.2.1 Discussion of the assumptions

(H1) assumes that ψ is the mother wavelet of a wavelet system with compact support.

There exist many such systems of wavelets satisfying (H1) among which the Daubechies

wavelets, Coiflets and Symlets . This assumption implies that the ”daughter” wavelets

ψjk satisfy

ψ
(l)
jk = O(22j) ∀k ∈ N and l = 0, 1, 2, 3. (3.2.1)

(H2) and (H3) guarantee that we can apply the Lindeberg-Feller Central Limit

Theorem. To see how that’s possible, let’s recall the Lindeberg-Feller Central Limit

theorem.
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Theorem 3.2.1 (Lindeberg-Feller Central Limit Theorem). Let (Ω,F ,P) be a probability

space and let xi : Ω → R, i ∈ N be independent random variables defined on that

probability space. Assume that E(xi) = µi and Var(xi) exist and are finite. Let S2
n =

n∑
i=1

Var(xi). If

lim
n→∞

1

S2
n

n∑
i=1

∫
{|xi−µi|>εSn}

(xi − µi)2dP = 0 ∀ε > 0,

then Zn =

∑n
i=1(xi − µi)

Sn
converges in distribution as n → ∞ to the standard normal

distribution.

Indeed for any ε > 0, we have

∫
{|xi−µi|>εSn}

(xi − µi)2dP ≤ max
1≤i≤n

|xi − µi|2
∫
{|xi−µi|>εSn}

dP.

Applying Tchebychev inequality to the integral on the right, we have

∫
{|xi−µi|>εSn}

dP ≤ Var(xi)

ε2S2
n

.

Hence, by applying the latter to the Lebesgue integral over Rp and considering the xi’s

to be centered, we have

1

S2
n

n∑
i=1

∫
{|xi−µi|>εSn}

(xi − µi)2dP ≤ 1

ε2

max
1≤i≤n

||xi||2p∑n
i=1 ||xi||2p

= o(1).

by (H2) and (H3). Thus, we have Lindeberg Condition

lim
n→∞

1

S2
n

n∑
i=1

∫
{|xi−µi|>εSn}

(xi − µi)2dP = 0, ∀ε > 0.
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For practical applications, this assumption means that the contribution of any individual

random variable xi for 1 ≤ i ≤ n to the variance S2
n is arbitrarily small, for sufficiently

large values of n.

Assumption (H4) implies that f is uniformly bounded, uniformly continuous and

square integrable on R.

Uniform boundedness.

f(x) = |f(x)| =
∣∣∣∣ ∫ x

−∞
f(t)dt

∣∣∣∣ by absolute continuity

=

∣∣∣∣ ∫ x

−∞

f ′(t)√
f(t)

√
f(t)dt

∣∣∣∣
≤

√∫ x

−∞

(
f ′(t)√
f(t)

)2

dt

√∫ x

−∞
f(t)dt by Cauchy-Schwartz inequality

≤

√∫ ∞
−∞

(
f ′(t)√
f(t)

)2

dt

=
√
I(f).

Uniform continuity.

|f(x)− f(y)| =

∣∣∣∣ ∫ y

x

f ′(t)dt

∣∣∣∣
≤

√∫ y

x

(
f ′(t)√
f(t)

)2

dt

√∫ y

x

f(t)dt

≤
√
I(f)

√
|F (x)− F (y)| by the Mean Value Theorem

≤
√
I(f)

√
fξ|x− y| where ξ is between x and y

≤ I(f)3/4
√
|x− y| by uniform boundedness.

Thus for any ε > 0,

|x− y| < ε2

[I(f)]3/2
⇒ |f(x)− f(y)| < ε.
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Square integrability.

∫ ∞
−∞

f 2(x)dx =

∫ ∞
−∞

(∫ x

∞
f ′(t)dt

)
f(x)dx

≤

√∫ ∞
−∞

(∫ x

−∞
f ′(t)dt

)2
√∫ ∞

−∞
f 2(x)dx by Cauchy-Schwartz inequality

≤

√∫ ∞
−∞

∫ x

∞

(
f ′(t)√
f(t)

)2

dt

√∫ ∞
−∞

∫ x

−∞
f(t)dt

√∫ ∞
−∞

f 2(x)dx

≤
√
I(f)

√∫ ∞
−∞

f 2(x)dx.

Thus, ∫ ∞
−∞

f 2(x)dx ≤ I(f).

Remark 3.2.2. Even if a function f is uniformly bounded, uniformly continuous, positive

almost everywhere, it is not guaranteed that I(f) is finite. An example is given by the

function

f(x) =



1−x
2
, 0 ≤ x ≤ 1

x−2j+1
2j+2 , 2j − 1 ≤ x ≤ 2j

2j+1−x
2j+2 , 2j ≤ x ≤ 2j + 1, j ≥ 1

f(−x), x ≤ 0.

Note that there are numerous estimators that satisfy assumption (H5) including the

least squares estimator and the general rank estimator with a specified score function h,

see Jureckova (1971); Jaeckel (1972).

We end this discussion by noticing that (H6) requires the design matrix X to be

such that the sample sizes go to infinity at the same rate.
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3.3 Estimation of the coefficients

The following lemma provides an alternative representation of the orthonormal basis

coefficients Cjk in the expansion of hF .

Lemma 3.3.1. Assume that (H1) and (H4) hold.Then

∫ 1

0

hF (t)ψ(t)dt = −
∫ ∞
−∞

d2

dz2

[
ψ
(
F (z)

)]
F (z)dz . (3.3.1)

Proof. Eq. (5) of Naranjo and McKean (1997) gives

∫ 1

0

hF (t)ψ(t)dt =

∫ ∞
−∞

d

dz
[ψ(F (z))] dF (z) . (3.3.2)

Integrating by parts the right-hand side of equation (3.3.2), we have

∫ ∞
−∞

d

dz
[ψ(F (z))] dF (z) =

[
F (z)

d

dz
[ψ (F (z))]

]∞
−∞
−
∫ ∞
−∞

d2

dz2
[ψ(F (z))]F (z)dz .

We can write

[
F (z)

d

dz
[ψ (F (z))]

]∞
−∞

= lim
z→∞

[F (z)f(z)ψ′(F (z))− F (−z)f(−z)ψ′(F (−z))] .

But

lim
z→∞

F (z) = 1, lim
z→−∞

F (z) = 0

and

lim
z→∞

ψ′(F (z)) = ψ′(1) = 0 = lim
z→−∞

ψ′(F (z)) = ψ′(0), since ψ is compactly supported.
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The Lemma follows.

Remark 3.3.2. If we replace assumption (H1) in Lemma 3.3.1 by the assumption that

f is absolutely continuous and

∫ ∞
−∞
|f ′(x)|dx <∞, then (3.3.1) still holds. In fact, these

two conditions insure that both lim
z→−∞

f(z) and lim
z→∞

f(z) exist and are both equal to zero.

They are restrictive though since they require a well behaved source for the sample data.

In comparison, we have numerous functions ψ satisfying (H1) such as the Daubechies

base functions, Symlets and coiflets.

In the remainder of the dissertation, for α ∈ Rp, we will let Fn(·; α) represent the

empirical distribution function of y1 − xT1 α, . . . , yn − xTnα; that is,

Fn(z; α) =
1

n

n∑
i=1

I(yi − xTi α ≤ z).

The following lemma is a combination of Lemma 1 and Lemma 2 of Naranjo and McKean

(1997) and gives the asymptotic linearity of Fn(w; αn) for αn converging to 0 at a suitable

rate. The proof follows from Section 2.3 of Koul (1992) and is given in the appendices.

Lemma 3.3.3. Assume (H1)− (H5). Then

sup
z∈R

√
n|Fn(z; β̂n)− F (z)| = Op(1) .

Characterizations of orthonormal basis systems of L2(0, 1) can be found in Meyer

(1991), Cohen et al. (1993) and Andersson et al. (1994). If the scaling function ϕ satisfies

conditions given in Theorem 9.6 of Härdle et al. (1998) (for example certain Daubechies

wavelets), then hF belongs to the Besov Space Bsq
2 (R). Besov spaces can be characterized

using wavelet coefficients; thus, they are the natural spaces for wavelet estimation of

functions. Moreover, in some Besov spaces, wavelet coefficients decay faster than Fourier

coefficients. For instance, it is shown in Zygmund (2002) that if a function belongs to
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the Zygmund space B1∞
∞ (0, 1), then its Fourier coefficients Cn are O(n−1). It was proved

in Meyer (1990) that the wavelet coefficients Wjk of such a function are O(2−3j/2).

We now start the estimation process of the score function hF . The strategy consists

of first estimating the coefficients Cjk by some Ĉn
jk in the expansion (3.1.6) of hF and

then use them to provide an estimate ĥnF of hF , for some fixed n .

Let {θn}n∈N and {Mn}n∈N be sequences of real numbers such that Mn = O(nα), 0 <

α < 1/4 and Mn√
nθ2n
→ 0,Mnθ

2
n → 0 as n → ∞. This means that θn = O(nλ) where λ =

α/2−1/4−γ and α−1/4 < γ < 0. Given a scaling function ϕ with corresponding “mother

wavelet” ψ and a
√
n-consistent estimator β̂n of β, equation (3.3.1) in Lemma 3.3.1, using

second differences, suggests an estimator

Ĉn
jk :=

1

θ2
n

∫ ∞
−∞

[
2ψjk

(
Fn(z; β̂n)

)
−ψjk

(
Fn(z+θn; β̂n)

)
−ψjk

(
Fn(z−θn; β̂n)

)]
Fn(z; β̂n)dz

of Cjk =
∫ 1

0
hF (s)ψjk(s)ds.

Remark 3.3.4. Note that Ĉn
jk can be computed from the data as

Ĉn
jk =

2

nθn

n∑
i=1

i ·
[
2φ
(
Fn(ei; β̂n)

)
− φ
(
Fn(ei + θn; β̂n)

)
− φ
(
Fn(ei − θn; β̂n)

)]
, (3.3.3)

where ei = yi − xTi β̂n

Proof. In fact, let W (z) =

∫ z

η

F (s)ds, where η a zero of W . Then

−
∫ ∞
−∞

d2

dz2

[
φ(F (z))

]
F (z)dz = −

n∑
i=1

∫ ei+θn

ei−θn

d2

dz2

[
φ(Fn(z; β̂n))

]
dW (z) . (3.3.4)

For θn small enough so that there is only one ej between ei − θn and ei + θn, namely

ei, an approximation of the opposite of the integral on the right-hand side of equation
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(3.3.4) is

[
φ(Fn(ei + θn; β̂n))− 2φ(Fn(ei; β̂n)) + φ(Fn(ei − θn; β̂n))

θ2
n

][
W (ei + θn)−W (ei − θn)

]
=
[φ(Fn(ei + θn; β̂n))− 2φ(Fn(ei; β̂n)) + φ(Fn(ei − θn; β̂n))

θ2
n

][ ∫ ei+θn

ei−θn
Fn(z; β̂n)dz

]

=
2

nθn

[
φ(Fn(ei + θn; β̂n))− 2φ(Fn(ei; β̂n)) + φ(Fn(ei − θn; β̂n))

][ n∑
j=1

I(ej ≤ ξi)
]
,

where ξi ∈ [ei − θn, ei + θn]. Since we can replace ei by their order statistics, the form of

Ĉn
jk proposed in equation (3.3.3) follows.

The following lemma establishes the consistency of Ĉn
jk.

Lemma 3.3.5. Suppose that (H1)− (H5) are satisfied. Then |Mn(Ĉn
jk − Cjk)| = op(1)

Proof. Define C̃n
jk = −

∫∞
−∞

d2

dz2

[
ψjk
(
F (z)

)]
Fn(z; β̂n)dz. Now

C̃n
jk =

1

θ2
n

∫ ∞
−∞

[2ψjk (F (z))− ψjk (F (z + θn))− ψjk (F (z − θn))]Fn(z; β̂n)dz + O(Mnθ
2
n) .

Taking the difference Ĉn
jk − C̃n

jk and expanding ψjk(Fn) about ψjk(F ), we have

Mn(Ĉn
jk − C̃n

jk) =
2Mn

θ2
n

√
n

∫ ∞
−∞

[√
n(Fn(z; β̂n)− F (z))

]
ψ′jk(ξ1,n(z))Fn(z; β̂n)dz

− Mn

θ2
n

√
n

∫ ∞
−∞

[√
n(Fn(z + θn; β̂n)− F (z + θn))

]
ψ′jk(ξ2,n(z))Fn(z; β̂n)dz

− Mn

θ2
n

√
n

∫ ∞
−∞

[√
n(Fn(z − θn; β̂n)− F (z − θn))

]
ψ′jk(ξ3,n(z))Fn(z; β̂n)dz

+ O(Mnθ
2
n) ,

where ξ1,n(z) is between Fn(z; β̂n) and F (z), ξ2,n(z) is between Fn(z+ θn; β̂n) and F (z+

θn), ξ3,n(z) is between Fn(z− θn; β̂n) and F (z− θn). Since ψ′jk and Fn are bounded with
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respect to n and sup
z
|
√
n(Fn(z; β̂n)− F (z))| = Op(1), we have

|Mn(Ĉn
jk − C̃n

jk)| = Op(Mn/θ
2
n

√
n) +O(Mnθ

2
n). (3.3.5)

On the other hand,

Mn(Cn
jk − C̃n

jk) = −Mn

θ2
n

∫ ∞
−∞

(−θ2
n)(ψjk(F ))′′(z)Fn(z; β̂n)dz −

∫ ∞
−∞

(ψjk(F ))′′(z)F (z)dz

− Mn

θ2
n

∫ ∞
−∞

(
−θ

3
n

6

)
[(ψjk(F ))′′′(κ1(z)) + (ψjk(F ))′′′(κ2(z))]Fn(z; β̂n)dz

+ O(Mnθ
2
n)

= Mn

∫ ∞
−∞

[
Fn(z; β̂n)− F (z)

]
(ψjk(F ))′′(z)dz +Op(Mnθn) +O(Mnθ

2
n); ,

where κ1(z) ∈ (z − θn, z) and κ2(z) ∈ (z, z + θn).

Thus we have

Mn(Cn
jk−C̃n

jk) =
Mn√
n

∫ ∞
−∞

[√
n(Fn(z; β̂n)− F (z))

]
(ψjk(F ))′′(z)dz +Op(Mnθn) +O(Mnθ

2
n) .

But ∫ ∞
−∞

(ψjk(F ))′′(z)dz =

∫ ∞
−∞

f ′(z)ψ′′jk(F (z))dz +

∫ ∞
−∞

f 2(z)ψ′jk(F (z))dz) .

The two integrals on the right are bounded since f is absolutely continuous, f ∈ L2(R),

and ψjk has bounded derivatives. Therefore we have

|Mn(Cn
jk − C̃n

jk)| = Op(Mn/
√
n) +Op(Mnθn) +O(Mnθ

2
n). (3.3.6)

Equations (3.3.5) and (3.3.6) imply that

|Mn(Cn
jk − Ĉn

jk)| = Op(Mn/θ
2
n

√
n) +Op(Mn/

√
n) +O(Mnθ

2
n) = op(1) . (3.3.7)
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Remark 3.3.6. In view of (3.2.1), this means that there is a constant L > 0 such that

|Ĉn
jk − Cjk| ≤ L

22j

Mn

, ∀k ∈ N .

3.4 Estimation of the score function

Now define the wavelet estimator of hF as

ĥnF (t) =

j1∑
j=0

∑
k

Ĉn
jkψjk(t) ,

where j1 is some chosen resolution level in N∪{0}. Note that since we are using compactly

supported wavelets, the sum over k contains only a finite number of terms for a given

value of t (see Remark 10.1 on p. 127 of Härdle et al. (1998)).

Theorem 3.4.1. Under (H1)− (H5), we have E‖hF − ĥnF‖2
2 = o(1).

Proof. Let

hF (t) =

j1∑
j=0

∑
k

Ĉjkψjk(t) +
∑
j>j1

∑
k

Cjkψjk(t) ,

where the convergence is absolute in L2(0, 1). Thus

E‖hF−ĥnF‖
2
2 ≤ 2E

∫ 1

0

∣∣∣∣∣
j1∑
j=0

∑
k

(Cjk − Ĉn
jk)ψjk(t)

∣∣∣∣∣
2

dt

+2E

∫ 1

0

∣∣∣∣∣∑
j>j1

∑
k

Cjkψjk(t)

∣∣∣∣∣
2

dt

 .

The second term on the right is o(1) by absolute convergence in L2(0, 1).
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For the first term, we have

∫ 1

0

∣∣∣∣∣
j1∑
j=0

∑
k

(Cjk − Ĉn
jk)ψjk(t)

∣∣∣∣∣
2

dt ≤
∫ 1

0

j1∑
j=0

(j1 + 1)

(∑
k

|Cjk − Ĉn
jk| |ψjk(t)|

)2

dt .

But there is a positive constant L such that |Cjk− Ĉn
jk| ≤ L 22j

Mn
(see Remark 3.3.6). Thus

∫ 1

0

∣∣∣∣∣
j1∑
j=0

∑
k

(Cjk − Ĉn
jk)ψjk(t)

∣∣∣∣∣
2

dt ≤ L2(j1 + 1)

j1∑
j=0

24j

M2
n

∫ 1

0

(∑
k

|ψjk(t)|

)2

dt .

Since, by Proposition 8.3 of Härdle et al. (1998), the integral on the right hand side

is uniformly bounded in j, there is a constant C > 0 such that

∫ 1

0

∣∣∣∣∣
j1∑
j=0

∑
k

(Cjk − Ĉn
jk)ψjk(t)

∣∣∣∣∣
2

dt ≤ C

M2
n

(j1 + 1)

j1∑
j=0

24j ≤ L

M2
n

(j1 + 1)24j1+1.

Choosing j1 such that (j1 + 1)24j1+1 < M2
n completes the proof.
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Chapter 4

Estimation of the Slope Parameter

Define

Un(β) =
1√
n

n∑
i=1

xihF

(
R(yi − x′iβ)

n+ 1

)
.

Let Ûn(β) denote the same expression with hF replaced by ĥnF . Let X be the n × p

matrix with x′i as its ith row. Without loss of generality, we will assume that the design

matrix X is centered; i.e,
∑n

i=1 xi = 0.

Theorem 4.0.2. Under (H1) - (H5),

Ûn(0) ∼ AN(0,Σ) ,

where Σ = limn→∞(1/n)X′X.

Proof. Heiler and Willers (1988) have shown that Un(0) ∼ AN(0,Σ). We will have

Ûn(0) ∼ AN(0,Σ), if it can be shown that Ûn(0) − Un(0) = op(1). Our approach

follows that of Naranjo and McKean (1997) closely with minor modifications to suit

wavelets.

It is enough to show that Ûn(0) − Un(0) = op(1) elementwise; so, assume that

Un ≡ Un is scalar. Suppose j1 is such that 24j1+1 < Mn. Note that 24j1+1 < Mn implies

that (j1 + 1)24j1+1 < M2
n as required by Theorem 3.4.1. Let t be a threshold such that
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Cjk = CjkI(max
k
|Cjk| < t). We have

Ûn(0)− Un(0) =
1√
n

n∑
i=1

xi

[
ĥnF

(
R(yi)

n+ 1

)
− hF

(
R(yi)

n+ 1

)]

=

j1∑
j=0

∑
k

(Cjk − Ĉn
jk)

1

n

n∑
i=1

xi√
n
ψjk

(
R(yi)

n+ 1

)

Since |Cjk − Ĉn
jk| = op(2

2j/Mn), it suffices to show that

n∑
i=1

xi√
n

∑
k

ψjk

(
R(yi)

n+ 1

)
= Op(2

2j) .

This follows from Chebychev’s inequality if

E

[
n∑
i=1

xi√
n

∑
k

ψjk

(
R(yi)

n+ 1

)]2

= O(24j) .

To that end, letting Kij =
∑

k ψjk {R(yi)/(n+ 1)}, we have

E

[
n∑
i=1

xi√
n

∑
k

ψjk

(
R(yi)

n+ 1

)]2

=
∑
i

(x2
i /n)E(K2

ij) +
∑
r 6=s

(xrxs/n)E(KrjKsj) .

But by Theorem 9.6 of Härdle et al. (1998), we have Kij = O(22j) and because (
∑

i xi)
2 =

0, we have by (H3) that
∑

i(x
2
i /n) =

∑
r 6=s(xrxs/n) = O(1). The proof is complete.

Given an initial estimator β̂n, define the one-step estimator as

β̂
∗
R = β̂n + τ

√
n(X′X)−1Û(β̂n) , (4.0.1)
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where τ−1 =

∫ 1

0

|hF (t)|2dt. The estimators β̂
∗
R and β̂R have the same asymptotic distri-

bution as given in the following theorem. The proof is direct and will not be given here

for the sake of brevity.

Theorem 4.0.3. If (H1)- (H5) are satisfied, then β̂
∗
R ∼ AN(0, τ 2Σ−1).

For practical applications of Theorem 4.0.3, one needs a consistent estimator of τ−1.

Koul et al. (1987) have given a consistent estimator of τ−1 for the case where the score

function is known. Their estimator is based on a kernel density estimator of the density of

the errors based on the residuals of the model. The following theorem gives a consistent

estimator of τ−1 for the case of estimated scores.

Theorem 4.0.4. Define (τ̂nF )−1 =

∫ 1

0

|ĥnF (t)|2dt. Then, under (H1) - (H5),

(τ̂nF )−1 − τ−1 P−→ 0 .

Proof. Note that

∣∣∣∣∫ 1

0

|ĥnF (t)|2 − |hF (t)|2dt
∣∣∣∣ ≤ ∫ 1

0

∣∣∣|ĥnF (t)|2 − |hF (t)|2
∣∣∣ dt ≤ ∫ 1

0

∣∣∣ĥnF (t)− hF (t)
∣∣∣2 dt .

Thus

P
(∣∣∣(τ̂nh )−1 − τ−1

∣∣∣ > ε
)
≤ P

(∫ 1

0

∣∣∣ĥnF (t)− hF (t)
∣∣∣2 dt > ε

)
,

which is bounded by ε−1E‖hF − ĥnF‖2
2 by Markov’s inequality. The desired result follows

from Theorem 3.4.1.

One may estimate (τ̂nh )−1 using numerical integration methods (such as Gaussian

quadrature) using some grid on (0, 1) since the ĥnF (t) can be computed for any given

t ∈ (0, 1).
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As one application, consider testing the general linear hypothesis

H0 : Mβ = 0 versus H1 : Mβ 6= 0 ,

where M is a q × p matrix of full row rank forming linear constraints. Under H0, the

quantity

BM =

(
Mβ̂

∗
R

)′
[M(X′X)−1M′]

−1
(
Mβ̂

∗
R

)
q(τ̂nh )2

.

is asymptotically χ2(q) by Theorem 4.0.3, Theorem 4.0.4, and Slutsky’s Lemma. Thus a

level-α Wald test rejects H0 if BM exceeds the (1−α) quantile of the χ2(q) distribution.
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Chapter 5

Discussion

In this dissertation, we developed an asymptotically efficient rank estimator based

on score functions estimated using wavelets. A consistent estimator for τ is given for the

asymptotic variance of the rank estimator. This can be used in constructing Wald tests

of general linear hypotheses.

5.1 Issues related to simulations

We consider the logistic density function f(x) =
e−x

(1 + e−x)2
Its cumulative density

function F is given by F (x) = 1
1+e−x

and its score function for the logistic distribution is

given by: hF (u) = 2u−1, u ∈ (0, 1). This is density function satisfies all the assumptions

(H1) − (H5). We then generate N = 10, 15, 75, 100 random points from this distribu-

tion. We will apply respectively the the classical Fourier approach denoted by (CF), the

first order estimate with Fourier basis functions denoted by (FOF) proposed by Naranjo

and McKean to estimate its score function. Our approach that uses the second order

estimations and compact supported wavelets is denoted by (SOW). Our method, even

though theoretical results show it is superior to both approaches in terms of flexibility

and precision has a shortcoming of its own. It’s very difficult to apply with the current

algorithms. The main reason for this complexity is the implicit nature of the compactly

supported wavelets used. An idea of the complexity of the use of these wavelets can be

seem in the cascade algorithm by Mallat (1989) which is the most used in applications

of compactly supported wavelets. Indeed this algorithm by Mallat (1989) requires to
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have a sample of points from the function to be estimated whereas our method does not

require such a sample, but is still very complex. We are working on an algorithm that

will address this issue in the future. The Figure 5.1 below show the issues related to the

Naranjo and McKean’s approach. Indeed the continuous curve for different values of N

seems to have less precision that the other one with + symbols. The dotted line is the

original score function.

Figure 5.1: Simulations

The Table 5.1 below represents a comparison of the different methods to approximate

score functions in terms of convergence, flexibility, applicability, Gibbs phenomenon,

precision.

44



CF FOF SOW
Convergence Yes Yes Yes
Flexibility No No Yes

Applicability Good Good No yet
Gibbs No Yes No

Precision Good Fair Best

Table 5.1: Comparison between the different methods

5.2 Simple Mixed Models with Dependent Error Structure

In our treatment we assumed that the errors are independent and identically dis-

tributed with a cdf F that has pdf f . Estimating the score function to maximize efficiency

is generally a very difficult problem for dependent error models. In simple dependent

data problems, however, this may be tractable using some of the methodology developed

earlier.

Consider the model

Yk = 1nkµ+ XT
kβ + ek 1 ≤ k ≤ m N =

m∑
k=1

nk. (5.2.1)

Suppose that ek = 1nkbk+εk where the εk are iid and bk is a continuous random variable,

independent of εk. We also assume the random effects b1, · · · , bm are iid. Then the errors

ek are exchangeable with the same marginal distribution F .

Then the asymptotic R-estimate of β is

√
N β̂R = τhN(XTX)−1UN(β) + op(1),

and from Brunner and Denker (1994), it follows that

β̂R ∼ Np(β, Vh)
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where

Vh = τ 2
h(XTX)−1

( m∑
k=1

XT
kCh,kXk

)
(XTX)−1

and

Ch,k = (1− ρh)Ink + ρhJnk ρh = cov{h(G(e11)), h(G(e12))}

where Ink and Jnk are respectively the nk × nk identity matrix and the nk × nk matrix

of ones. Assuming that X is centered, the asymptotic relative efficiency of the rank

estimator versus the least squares estimator is given by

ARE(β̂R, β̂LS) =
σ2(1− ρ)

τ 2
h(1− ρh)

,

where

ρ = Corr(ε1, ε2) σ2 = Var(ε1) ρh = Corr[h(F (ε1)), h(F (ε2))],

and

τ−1
h =

∫ 1

0

h(u)

{
−f

′(F−1(u))

f(F−1(u))

}
du.

We would like to find h that maximizes the ARE. This amounts to minimizing τh and

maximizing ρh. However, the function that minimizes τh does not necessarily maximize

ρh. Analytically finding h that would simultaneously do both is a difficult problem in

calculus of variations.

Simple case: the random error vector has a multivariate normal distribution

Kloke and McKean-2009 proved that if h(u) =
√

2(u− 1/2) (Wilcoxon score), then:

ARE(β̂R, β̂LS) = 12σ2

(∫
f 2(t)dt

)2
(1− ρ)

(1− ρh)
,
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where σ2 is the variance of the underlying normal distribution, ρ is the intra-class corre-

lation and ρh is the Spearman Correlation within each class. Hence

1. ARE(β̂R, β̂LS) ∈ [0.8660, 0.9549] if 0 < ρ < 1

2. ARE(β̂R, β̂LS) ∈ [0.9549, 0.9662] if −1 < ρ < 0.

However, for general score function , estimating the optimal score function is the

following problem in calculus of variations:

ĥ = Sup
h

{
τ−2
h

1− ρh

}
= Sup

h

{ [∫ 1

0
h(u)

{
− f ′(F−1(u))

f(F−1(u))

}
du

]2

1−
∫ ∫

R2 h(F (x))h(F (y))f(x, y)dxdy

}
(5.2.2)

The wavelet method developed earlier provides an approximation of the minimizer of τh.

The maximizer of ρh can also be found using the techniques in this dissertation since

the wavelet basis of L2(R2) can be given as a product of wavelet basis in L2(R). Indeed,

Consider the optimization problem

Sup
h

∫ ∫
R2

h(F (x))h(F (y))f(x, y)dxdy (5.2.3)

and let J(h) =

∫ ∫
R2

h(F (x))h(F (y))f(x, y)dxdy − 2

∫
R
g(y)h(F (y))dy where g is some

continuous function on R.

Then for any integrable function ζ 6= 0,

J(h+ αζ)− J(h) = α

∫
R
ζ(F (y))

(∫
R
f(x, y)h(F (x))dx

)
dy

+ α

∫
R
ζ(F (x))

(∫
R
f(x, y)h(F (y))dy

)
dx

+ α2

∫ ∫
R2

f(x, y)ζ(F (x))ζ(F (y))dxdy

+ −2α

∫
R
g(y)h(F (y))dy − 2α

∫
R
g(y)ζ(F (y))dy.
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Thus, if f is a symmetric function of x and y, we have

J(h+ αζ)− J(h)

α
= 2α

∫
R
ζ(F (y))

[ ∫
R
f(x, y)h(F (x))dx− g(y)

]
dy

+ α

∫ ∫
R2

f(x, y)ζ(F (x))ζ(F (y))dxdy.

Hence,

lim
α→0

J(h+ αζ)− J(h)

α
= 0⇒

∫
R
f(x, y)h(F (x))dx = g(y).

Therefore, if f ∈ L2(R2), then (5.2.3) becomes the Homogeneous Fredholm Integral

Equation

∫
R
h(F (x))f(x, y)dx = g(y), for some continuous function g. (5.2.4)

1. If f(x, y) = k(y − x), for some function k, then (5.2.4) has a solution

h(F (x)) =

∫ ∞
−∞

Fy[g(y)](u)

Fy[k(y − x)](u)
e2iπuydu

where F is the Fourier transform of F .

2. In general, the solution to (5.2.4) can be written as

h(x) =
∞∑
i=1

< g(y), hi(y) >

ai
li(x)

where ai is a decreasing sequence of reals, hi, li are basis functions (Could be

wavelets) in L2(R) and <,> is the scalar product in L2(R) .

Thus, we have two approximations of h. The compromise is to use the estimated

score in one in the estimation of the other. This could be iterated until the difference

between the two approximations is below a specified level of tolerance. Either one or
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the average of the two approximations can be taken as the final approximation of h as

suggested by the algorithm below.

X Get residuals from an initial fit. Use them to get an estimate of F , say F̂ 0.

X Use wavelets and F̂ 0 to estimate the maximizer of τh, say ĥτF .

X Fit model using ĥτF and get new residuals and a new estimate of F , say F̂ τ .

X Use F̂ τ to estimate a maximizer of ρh, say ĥρF .

X Fit model using ĥρF and get new residuals and a new estimate of F , say F̂ ρ
F .

X Set F̂ 0 = F̂ ρ
F and go back to step 2 until

||ĥτF − ĥ
ρ
F ||2

1
2
(||ĥτF ||2 + ||ĥρF ||)

< ε. Otherwise stop.

X Take
ĥτF + ĥρF

2
as an estimate of h.

5.3 Adequate space for score functions

In the previous sections, it was assumed that the score function belongs to the space

of square integrable functions. Though this property of the score function is guaranteed

if its Fisher information is finite, it is worth mentioning that this space if very ”big”. In

fact, pinning down the adequate space where score functions could be approximated by

wavelets is of some value. The space of square integrable functions is contained in the

space of continuous functions which are nice for practical applications but rare in reality.

This space contains the Sobolev space which is nice for theory but also rare in reality.

So the compromise could be a space lying in between the continuous functions and the

Sobolev space, and contained in the space of square integrable functions. The Besov

space is such a space. Besov spaces can completely be characterized in terms of wavelets

in the sense that any function in this space has a wavelet decomposition and any function
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decomposition in terms of wavelets coefficients entails a function belonging to a Besov

space. As any space, Besov space have ”nice” and ”bad” functions. By ”bad” function,

we mean an analytic function that cannot be continued outside its disk of convergence.

They are also called lacunary functions. Though the results we found were a partial

answer to the problem of adequate space for score function, the techniques used made it

worthwhile.

Characterization of lacunary function in Bergman-Besov-Lipchitz Spaces

The space Bρ has been studied at length by various authors for various purposes.

This space first appears in its simplest form in De Souza (1980) where it was denoted

by B1. This was later generalized to a weighted version Bρ in De Souza (1985) and

De Souza (1983 ).It was shown in these papers that Bρ is the boundary value of those

functions F for which

∫ 1

0

∫ 2π

0

|F ′(reiθ)|(1 − r)
1
q
−1dθdr < ∞ for the weight function

ρ(t) = t1/q. It was shown in Bloom and De Souza (1989) that Bρ, for a general weight

function ρ, is a real characterization of analytic functions in the unit disc for which∫ 1

0

∫ 2π

0

|F ′(reiθ)|ρ(1− r)
1− r

dθdr <∞, generalizing the results obtained in De Souza (1985)

and De Souza (1983 ).The main result here is the analytic characterization of lacunary

functions in the spaces Bρ for ρ belonging to a class S of weights satisfying some condi-

tions that will be stated in the sequel.

Preliminaries

Definition 5.3.1. Lacunary functions are analytical functions F (z) =
∞∑
k=1

akz
nk for

which λ = inf
k

nk+1

nk
> 1.
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Definition 5.3.2. We define

Bρ =

{
F : D→ D, F analytic and

∫ 1

0

∫ 2π

0

|F ′(reiθ)|ρ(1− r)
1− r

dθdr <∞
}

and

bρ =

F : D→ D, F (z) =
∞∑
n=0

anz
n,

∞∑
n=0

2nK(n, ρ)

(∑
k∈In

|ak|2
)1/2

<∞

 ,

where In = {k ∈ N : 2n−1 ≤ k < 2n}.

Note that Bρ and bρ are endowed with norms ‖F‖Bρ =
∫ 1

0

∫ 2π

0
|F ′(reiθ)|ρ(1−r)

1−r dθdr

and ‖F‖bρ =
∑∞

n=0 2nK(n, ρ)
(∑

k∈In |ak|
2
)1/2

, respectively.

Notation: If ρ(t) = t1/q, q ≥ 1, in Definition 5.3.2, then we denote Bρ by Bq and bρ by

bq.

Definition 5.3.3. We say the weight function ρ : [0, 1]→ [0,∞) belongs to the class S

if ρ(0) = 0, ρ is nondecreasing, and there are positive constants C1, C2, K(n, ρ) satisfying

∫ 1

0

r2n−1−1ρ(1− r)
1− r

dr ≤ C1K(n, ρ), ∀n ≥ 1 (5.3.1)

and ∫ 1−2−n

1−2−(n−1)

r2n−1ρ(1− r)
1− r

dr ≥ C2K(n, ρ), ∀n ≥ 2 . (5.3.2)

Hereafter c and C denote generic positive constants and when there is no ambiguity,

we shall name all constants by c and C. Similar weight function classes can be found

in Mateljević and Pavlović (1984) where they were used to characterize weighted Hardy

spaces.

Lemma 5.3.4. The class S is not empty.
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Proof. Consider the family of weights defined by U = {ρ : ρ(t) = t1/q, 1 ≤ q < ∞} so

that
ρ(1− r)

1− r
= (1 − r)

1
q
−1. Clearly ρ(0) = 0 and ρ is a nondecreasing function of t so

that the weight function ρ satisfies the conditions stated in Bloom and De Souza (1989).

We will show that U ⊂ S.

Take ρ ∈ U. Using a result of Alzer (2001) and the facts that 1/q ≤ 1 and 2n ≥ 1

we have

∫ 1

0

r2(n−1)−1(1− r)
1
q
−1dr = B

(
2(n−1),

1

q

)
≤ 1

q−12(n−1)

≤ 2× 2−n/q, n ≥ 1, (5.3.3)

where B(·, ·) is the beta function defined by B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Also for 1 − 2−(n−1) ≤ r ≤ 1 − 2−n, we have 2n−12(1−n)/q ≤ (1 − r)
1
q
−1 ≤ 2n2−(n−1)/q.

Thus, since 21/q > 1 and 0 ≤ r ≤ 1, we obtain

∫ 1−2−n

1−2−(n−1)

r2n−1(1− r)
1
q
−1dr ≥ 2n−12−n/q

∫ 1−2−n

1−2−(n−1)

r2n−1dr

≥ 2n−12−n/q
∫ 1−2−n

1−2−(n−1)

r2ndr

=
2n−12−n/q

2n + 1

(
(1− 2−n)2n+1 − (1− 2−(n−1))2n+1

)
=

2n−12−n/q

2n + 1
(2−(n−1) − 2−n)

2n∑
k=0

(1− 2−n)2n−k(1− 2−(n−1))k
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But (1 − 2−n)2n−1(1 − 2−(n−1)) ≥ (1 − 2−(n−1))2n . So for 0 ≤ k ≤ 2n, (1 − 2−n)2n−k(1 −

2−(n−1))k ≥ (1− 2−(n−1))2n . Thus

2n∑
k=0

(1− 2−n)2n−k(1− 2−(n−1))k ≥ (2n + 1)(1− 2−(n−1))2n .

Therefore

∫ 1−2−n

1−2−(n−1)

r2n−1(1− r)
1
q
−1rdr ≥ 2n−12−n/q2−n(1− 2−(n−1))2n

≥ 2−52−n/q, n ≥ 2. (5.3.4)

Taking K(n, ρ) = 2−n/q, (5.3.3) and (5.3.4) imply that ρ ∈ S.

Theorem 5.3.5. Suppose ρ ∈ S . Then bρ is a Banach space. Moreover for any function

F (z) =
∑∞

n=1 anz
n belonging to Bρ, there is a constant C > 0 such that

‖F‖Bρ ≤ C‖F‖bρ .

If F (z) =
∑∞

k=1 akz
nk is lacunary and belongs to Bρ, then there is a constant c > 0 such

that

‖F‖Bρ ≥ c‖F‖bρ .

Proof. We will first show that bρ is a Banach space. First we show that bρ is a linear

space. Let α and β be two complex numbers and let f, g ∈ bρ. By Minkowski’s inequality

we have

(∑
k∈In

|αak + βbk|2
)1/2

≤ |α|

(∑
k∈In

|ak|2
)1/2

+ |β|

(∑
k∈In

|bk|2
)1/2

.

Thus αf + βg ∈ bρ.
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Now we show that bρ is complete. To that end let {F s}s∈N be a Cauchy sequence

in (bρ, ‖ · ‖bρ), where F s(z) =
∑∞

n=0 a
s
nz

n. We will show that there is some F ∈ bρ such

that F s → F in bρ. Given ε > 0, there is some S ∈ N such that for s, t ≥ S we have

‖F s − F t‖bρ < ε; that is,

∞∑
n=0

2nK(n, ρ)

(∑
k∈In

|ask − atk|2
)1/2

< ε

for s, t ≥ S. This implies that for all n ∈ N,

∑
k∈In

|ask − atk|2 <
ε2

2nK(n, ρ)

for s, t ≥ S. Therefore for all n ∈ N, {asn}s∈N is a Cauchy sequence in R, a complete

metric space. This implies that for all n ∈ N there exists some an ∈ R such that asn → an

in R. Now let F (z) =
∑∞

n=0 anz
n. We shall show that F ∈ bρ and that F s → F in bρ.

To that end, we will prove that F − F s ∈ bρ and use the linearity of bρ to conclude that

(F − F s) + F s = F ∈ bρ.

Given ε > 0, there exists S ∈ N such that

∞∑
n=0

2nK(n, ρ)

(∑
k∈In

|atk − ask|2
)1/2

< ε

whenever s, t ≥ S. Now let M > 0 be arbitrary. Then for s, t ≥ S

M∑
n=0

2nK(n, ρ)

(∑
k∈In

|atk − ask|2
)1/2

< ε .
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Fixing s ≥ S and letting t→∞, we have

lim
t→∞

M∑
n=0

2nK(n, ρ)

(∑
k∈In

|atk − ask|2
)1/2

=
M∑
n=0

2nK(n, ρ)

(∑
k∈In

|ak − atk|2
)1/2

< ε .

M being arbitrary, this shows that for a given ε > 0, there exists S ∈ N such that

∞∑
n=0

2nK(n, ρ)

(∑
k∈In

|ak − ask|2
)1/2

< ε

whenever s ≥ S. That is F −F s ∈ bp. This also proves that given ε > 0, ‖F −F s‖bρ < ε,

for s ≥ S and hence F s → F in bρ.

Let us now prove that there are constants C, c > 0 such that

‖F‖Bρ ≤ C‖F‖bρ

and, for lacunary functions,

‖F‖Bρ ≥ c‖F‖bρ .

Let

J =

∫ 1

0

∫ 2π

0

1

2π
|F ′(reiθ)|ρ(1− r)

1− r
dθdr .

Note that F ′(reiθ) =
∑∞

n=1 nanr
n−1einθ. By the Cauchy-Schwarz inequality and Parse-

val’s identity we have

J ≤ C

∫ 1

0

(
∞∑
n=1

|nanrn−1|2
)1/2

ρ(1− r)
1− r

dr .

55



But

∫ 1

0

(
∞∑
n=1

|nanrn−1|2
)1/2

ρ(1− r)
1− r

dr =

∫ 1

0

(
∞∑
n=1

∑
k∈In

k2|ak|2r2(k−1)

)1/2
ρ(1− r)

1− r
dr

and since 0 < r < 1 and 2n−1 ≤ k < 2n

J ≤ C

∫ 1

0

(
∞∑
n=1

∑
k∈In

k2|ak|2r2(2n−1−1)

)1/2
ρ(1− r)

1− r
dr .

Applying the Hardy-Littlewood Inequality to the right hand side and noting that 2n−1 ≤

k < 2n we have

J ≤ C
∞∑
n=1

2n

(∑
k∈In

|ak|2
)1/2 ∫ 1

0

r(2n−1−1)ρ(1− r)
1− r

dr .

Since ρ ∈ S we have

J ≤ C
∞∑
n=1

2nK(n, ρ)

(∑
k∈In

|ak|2
)1/2

.

On the other hand, from Zygmund (2002) we get

J ≥ c

∫ 1

0

(
∞∑
n=1

n2|an|2r2(n−1)

)1/2
ρ(1− r)

1− r
dr

≥ c

∞∑
n=1

2n
∫ 1−2−n

1−2−(n−1)

(∑
k∈In

|ak|2
)1/2

r2n−1ρ(1− r)
1− r

dr ,

where the last inequality is because 0 < r < 1 and 2n−1 ≤ k < 2n. Therefore

J ≥ c
∞∑
n=1

2nK(n, ρ)

(∑
k∈In

|ak|2
)1/2

since ρ ∈ S.
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Remark 5.3.6. Note that to obtain the upper bound in the main theorem, lacunary

sequences are not necessary. The inequality from Zygmund (2002) that allowed us to

obtain the lower bounds requires the sequence to be lacunary.

Remark 5.3.7. In the second part of the proof of the main theorem, our approach of

writing the interval [0, 1] as the union of non-overlapping intervals [1 − 2n−1, 1 − 2−n),

n ≥ 1, is similar to that in Blasco (2001).

Remark 5.3.8. Since the weight function ρ(t) = t1/q is in the class S, the main theorem

remains true for the spaces Bq and bq. This space has been studied extensively in Bloom

and De Souza (1989) for analytic functions on the unit complex disk.

Remark 5.3.9. A particular case of the main result of this paper can be obtained using

the results of Mateljević and Pavlović (1983) and Mateljević and Pavlović (1984). In

this case, we will be required to use lacunarity of the series to establish both sides of the

inequality. Such a result also appears in Proposition 1.7 of Jevtic and Pavlovic (1998).

Remark 5.3.10. Similar inequalities for the weight function ρ(t) = t1/q can be found in

Zhao (1996 ) but the weight functions used in there were quite different from the one we

used.
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Appendix

Proof of Theorem 2.1.7

We will assume without loss of generality that the true parameter β is 0. It is then

easier to work with the vector Tn = (τ−1
S

√
nµ̂S,

√
n(τ−1

h (n−1XTX)β̂h)
T )T , where τS =

(2f(θe))
−1 and θe denotes the median of the error distribution, that is, θe = F−1(1/2).

Let t = (t1, t
T
2 )T be an arbitrary, non zero vector in Rp+1. We need only to show that

Zn = tTTn has an asymptotic univariate normal distribution. Based on the asymptotic

representations of µ̂S given by

n1/2(µ̂S − µ) = τSn
−1/2

n∑
i=1

sgn(Yi − µ) + op(1),

and that of β̂h given by

n1/2(β̂h − β) = τh(n
−1XTX)−1n−1/2XTh(F (Y)) + op(1),

we have

Zn = n−1/2

n∑
k=1

(t1sgnYk) + (tT2 xk)h(F (Yk)) + op(1). (5.3.5)

Denoting the right side of 5.3.5 as Z∗n, we need only to show that Z∗n converges in distri-

bution to a univariate normal distribution. Let Z∗nk be the kth summand of Z∗n. We will

use the Lindenberg-Feller central Limit Theorem. First note that E(Z∗n) = 0.

Let B2
n = Var(Z∗n). Since the individual summands are independent, Yk are identically

distributed and the design is centered, then B2
n simplifies to
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B2
n = n−1

( n∑
k=1

t21 +
n∑
k=1

(tT2 xk)
2 + 2t1cov(sgn(Y1), h(F (Y1)))tT2

n∑
k=1

xk
)

= t21 + tT2 (n−1XTX)t2 + 0.

Hence by (H6), we have

lim
n→∞

B2
n = t21 + tT2 Σt2,

which is a positive number. To satisfy the Lindeberg-Feller condition, we need to show

that for any ε > 0

lim
n→∞

B−2
n

n∑
k=1

E[Z∗2nkI(|Z∗nk| > εBn)] = 0. (5.3.6)

Since B2
n converges to a positive constant, we need only to show that the sum converges

to 0. By definition of Z∗nk and Cauchy-Schwartz Inequality, we have

|Z∗nk| ≤ n−1/2|t1|+N−1/2|tT2 xk||h(F (Yk))|.

Hence

I(|Z∗nk| > εBn) ≤ I(n−1/2|t1|+ n−1/2|tT2 xk||h(F (Yk))| > εBn).

By Cauchy-Schwartz inequality,

n−1/2|tT2 xk| ≤ n−1/2||xk||n||t||p+1

=

[
n−1

p∑
j=1

x2
kj

]1/2

||t||p+1

≤
[
pmax

j
n−1x2

kj

]1/2

||t||p+1
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Let Kn =

[
pmax

j
n−1x2

kj

]1/2

. Kn is independent of k and converges to 0. Therefore we

have

I

(
|f(F (Yk))| >

εBn − n−1/2t1
Kn

)
≥ I(n−1/2|t1|+ n−1/2|tT2 xk||h(F (Yk))| > εBn)

Finally, we also have:

n∑
k=1

E

[
Z∗nkI

(
|f(F (Yk))| >

εBn − n−1/2t1
Kn

)]
= t1E

[
I

(
|f(F (Y1))| > εBn − n−1/2t1

Kn

)]
+

(2/n)E

[
sgn(Y1)h(F (Y1))I

(
|f(F (Y1))| > εBn − n−1/2t1

Kn

)]
tT2

n∑
k=1

xk +

E

[
h2(F (Y1))I

(
|f(F (Y1))| > εBn − n−1/2t1

Kn

)]
(1/n)

n∑
k=1

(tT2 xk)
2.

Note that the sum in (5.3.6) is less than or equal to the expression above. The design

matrix being centered, the middle term on the right side is 0.

In the expression
εBn − n−1/2t1

Kn

, the numerator converges to a positive constant as the

denominator converges to 0; hence the expression goes to ∞. Since h is bounded, the

indicator converges to 0. Using again the boundedness of h, the limit and the expectation

can be interchanged by the Lebesgue Dominated Convergence Theorem. This show that

(5.3.6) is true and hence Z∗n converges in distribution to a univariate normal distribution.

Therefore, Tn converges to a multivariate normal distribution.
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