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Abstract

One important application of gene expression microarray data is classification of

samples into categories, such as types of tumor. Gene selection procedures become

crucial since gene expression data from DNA microarrays are characterized by thou-

sands measured genes on only a few subjects. Not all these genes are thought to

determine a specific genetic trait. In this dissertation, I develop a novel nonparamet-

ric procedure for selecting such genes. This rank-based forward selection procedure

rewards genes for their contribution towards determining the trait but penalizes them

for their similarity to genes that are already selected. I will show that my method

gives lower misclassification error rates than the dimension reduction methods such

as principal component analysis and partial least square analysis. I also explore more

properties of Wilcoxon-Mann-Whitney (WMW) statistic and propose a new classifier

based on WMW to reduce the misclassification error rate. Real data analysis and

Monte Carlo simulation demonstrate the superiority of the proposed methods to the

classical methods in several situations.
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Chapter 1

Introduction

1.1 Nonparametric Methods

Originally nonparametric methods were introduced in the mid-1930. The rank

correlation without normality assumption was discussed in Hotelling and Past (1936)

which was considered as the the true beginning of topic of nonparametric statistics.

Friedman (1940) developed the Fried test which was a nonparametric statistical test

to detect differences in treatments across multiple test attempts in the complete block

design. Durbin (1951) proposed the nonparametric test for the incomplete block de-

sign that reduces to the Friedman test in the case of a complete block design. Benard

and Elteren (1953) generalized Durbin test to the case in which several observations

are taken on some experimental units. During the same period, Wilcoxon (1945)

proposed the signed-rank statistic named Wicoxon statistic to test the significance of

the location differences of two samples. Later Mann and Whitney (1947) introduced

the Mann-Whitney test statistic which is equivalent to Wilcoxon rank test statistic.

Wilcoxon statistic played a central role in many nonparametric approaches in 1950s

and 1960s.

Nonparametric methods have emerged as the preferred methodology in many

scientific areas due to their outstanding advantages:

• Nonparametric procedures require fewer assumptions than the traditional meth-

ods so that they can be used more widely than the corresponding parametric

methods. In particular, nonparametric procedures are applicable and more ef-

ficient in many situations where normality assumption is violated.
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• Nonparametric methods are distribution-free methods, which do not rely on

assumptions that the data are drawn from a certain probability distribution.

So they can be used in many complicated situations where the distribution

theory is not achievable.

• Nonparametric methods are resistant to outliers. When the data contain some

outliers or the longer tail than the normal distribution, some traditional sta-

tistical procedures are inefficient, even though they can perform well when the

error in the model follow a normal distribution.

• Another advantage for the use of non-parametric methods is simplicity. In some

cases, even when the use of parametric methods is justified, non-parametric

methods may be easier to use. Due both to this simplicity and to their greater

robustness, non-parametric methods are preferred by some statisticians.

In recent years, nonparametric analysis has gained its popularity in the analysis

of linear model (Sievers and Abebe, 2004), non-linear model (Abebe and McKean,

2007), classification (Nudurupati and Abebe, 2009; Montanari, 2004), generalized

estimating equations (Abebe et al., 2011), etc because it leaves less room for the

improper use and misunderstanding.

1.2 Classification

Some of the basic ideas and history in classification is discussed in the following.

Consider we have two populations, and the main goal of classification is to determine

the membership of a new observation based on the training data set. A discriminant

function is needed to find the criterion in order to assign the new observations and it

generally projects the multidimensional real space into one dimension real line such

that a clear cutting value of discriminant function can be applied to determine which

class the new observation probably belongs. Fisher (1936) gave the linear discriminant
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classifier. He found the optimal projection direction by maximizing the two-sample t-

statistic and allocated the new observations based on the Euclidian distance between

the new observations and the centers of populations. If the covariance matrices of

populations are not equal, quadratic discriminant classifier is preferred. Bickel and

Levina (2004) proposed the independence classifier by setting the non-diagonal entries

of the common covariance matrix to be zero.

However those methods above are adversely inefficient in many circumstances

where the normality assumption is not proper because of their sensitivity to the

skewness and outliers. Their limitations call for some robust rank-based classifiers

which are highly related to the idea of transvariation probability given in Gini (1916).

Transvariation probability is originally defined for the univariate case and can be

extended to the multivariate case by following a certain projection pursuit. Monta-

nari (2004) proposed transvariation-distance classifier to allocate a new observation

according to the Euclidian distance to population centers in the projected space.

He found the optimal projection direction that maximizes the two-sample Mann-

Whitney-Wilcoxon (WMW) statistic (Lehmann, 2006). He also proposed the point-

group classifier to determine the likelihood of the new observation belonging to which

population based on the same projection pursuit. The results by using point-group

classifier, however can be biased when two sample sizes are too different. An im-

proved allocation method was proposed by Nudurupati and Abebe (2009). They put

the new observation in two samples separately to smooth the data depth. We can

also use some depth functions to measure the group separation in order to classify a

new observation as shown in Liu et al (1999). A few popular depth functions are Ma-

halanobis depth (Mahalanobis, 1936; Liu and Singh, 1993), halfspace depth (Tukey,

1974), simplicial depth (Liu, 1990), majority depth (Singh, 1991), projection depth

(Donoho, 1982), and spatial or L1 depth (Vardi and Zhang, 2000).
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1.3 Dimension Reduction

However the gene expression data are usually ultrahigh dimensional such that

sample size N is far smaller than the data dimension p which can make some clas-

sifiers not applicable. As we know high dimension can easily cause overflow in the

calculation of inverse matrices that is required by some classifier, such as the ones

involving the projection pursuit. Typically, the calculation working load can be in-

creased dramatically by even adding one more gene if a projection pursuit is needed.

Besides, it is well known that only few genes carry the useful information which can

determine a specific genetic trait, such as susceptibility to cancer while most of genes

carry nothing useful but the noises. Taking all the genes instead of the most informa-

tive ones in to account in the process of classification can’t provide a better accuracy

but result in the widely inefficiency. Usually, a smaller set of genes are selected based

the amount of the information in terms of the group separation to be considered as

the most important genes in the process of classification. Basically, there are two

ways to reduce the dimension of data:

• Select a subset of the original variables (genes) based on the power of class

determination;

• Create new variables by combining the information of all the variables (genes)

without loss much information from the original variables.

Many statisticians prefer that firstly a smaller set of variables are selected by

following a certain variable screening method and then some optimal linear combi-

nations of the selected variables are finally created to proceed the classification while

some directly perform the classification after the variable screening.

Dudoit et al (2002) performed gene screening based on the ratio of between-group

and within-group sums of squares. Many statisticians (Fan and Fan, 2008; Nguyen

and Rocke, 2002; Ding and Gentleman, 2005) applied two-sample t-statistic which
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measures the distance between two populations and can be used as the criterion to

preliminarily select the most important genes while other people (Liao et al , 2007)

picked up the variables based on Wilcoxon-Mann-Whitney statistic which is also good

measurement in terms of group separation. Usually the variable screening method

using WMW statistic is only slightly less efficient than the one using t-statistic when

the underlying populations are normal, and it can be mildly or wildly more efficient

than its competitors when the underlying populations are not normal.

Because of the sensitivity of some classifiers to the dimension, the dimension is

needed to be reduced further even though the initial variable screening is applied.

Based on the genes selected by the variables screening procedures, some dimension

reduction methods can be introduced to reduce the dimension by performing a linear

mapping of data to a lower dimensional space, such as principle component analysis

(PCA) and partial least square analysis (PLS). In PCA (Massey, 1965; Jolliffe, 1986),

a small set of orthogonal linear combinations of the original predictor variables can be

found by maximizing the variance of these linear combinations matrix. In practice,

the correlation matrix of the data is constructed and the eigenvectors on this matrix

are computed. The eigenvectors that correspond to the largest eigenvalues can now

be used to reconstruct a large fraction of the variance of the original data. Then

the first few eigenvectors are selected and can often be considered as the optimal

linear combinations and used in classification. Thus the original space is reduced

to the lower dimensional space spanned by a few eigenvectors without loss of the

information carried by the original variables.

In PCA, however, the correlation between the predictor variables and the re-

sponse variable specifying the class of the observations is not considered, which may

be inefficient. Efficient one must not treat the predictors separately from the re-

sponse. Nguyen and Rocke (2002) proposed a new approach to obtain the optimal

combinations by maximizing the covariance between those linear combinations and
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response vector, which is referred to as partial least square analysis. PLS surpasses

PCA by taking the relation to response variable into account. A numerical algorithm

to obtain the components is also included in that paper.

1.4 Organization

In Chapter 2, I discuss seven different classification methods as well as several

dimension reduction methods and gene screening procedures. In Chapter 3, I prove

that the WMW can pick up all the important variables with the probability tending

to 1 followed by a comparison of the performances of WMW statistic on variable

screening and classification with the procedure given in Fan and Fan (2008) using two

real data sets and a large simulation study. Besides, a smoother is recommended when

two sample sizes are too different. In Chapter 4, I propose a new forward variable

selection method and demonstrate its superiority using some real data analysis and

simulation.

1.5 Notations

Here are some notations used throughout my dissertation:

• Consider two populations ΠX and ΠY with underlying distributions F and G

with common support Rp.

• µx and µy are the mean vectors of ΠX and ΠY

• Σx and Σy are the covariance matrices of ΠX and ΠY

• X and Y are two samples from ΠX and ΠY with sample sizes nx and ny respec-

tively.

• X and Y are the predictor matrices of two samples, and R is the response

vector (indictor of tumor versus normal tissue).
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Chapter 2

Background

During the past decade and a half, classification and clustering methods have

gained popularity for cancer classification based on gene expression profiles obtained

via DNA microarray technology. But the dimension of microarray data is usually

ultrahigh which makes some classifier inapplicable. Moreover we believe that a subset

of genes whose expression suffices for accurately predicting the response. Dimension

reduction allows us to replace a very large number of predictors with a small number

of linear combinations, and perform a better prediction based on those optimal linear

combinations. For the sake of simplicity, before I use some dimension reduction

approaches, some variable screening methods are applied to get rid of those irrelevant

variables which have smaller variation than noise measurement.

2.1 Variable Screening Procedures

Two sample t-statistic can be considered as a measurement of group separation

since it can evaluate the differences in means between two groups. Larger t-statistic

value implies the better group separation. Thus we firstly rank all the variables based

on their two sample t-statistic. The two-sample t-statistic for variable k is defined as

Tk =
xk − yk√

s2
xk/nx + s2

yk/ny

, k = 1, . . . , p (2.1)

where xk and yk are the means of two samples respectively for variable k. s2
xk

and s2
yk are variances of of two samples respectively for variable k. I select the ones

with the larger values of t-statistic to be the most informative variables.
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However, t-statistic is sensitive to the outliers and skewness, so the nonparametric

alternatives are recommended to be applied to measure the differences between two

groups when the normality assumption is violated. The most commonly used one is

WMW statistic which is robustly measuring the differences of two groups.

Rank the variables based on the two sample WMW statistic

Wk = 1− 2

nxny

nx∑
i=1

ny∑
j=1

φ
{
(xki − ykj) mk

xy

}
(2.2)

where mk
xy is the median of {xki − ykj} for k = 1, . . . , p. The function φ is defined

as

φ(x) =





1 if x < 0

0 if x ≥ 0 .

(2.3)

The most informative variables are the ones with the larger WMW statistic which

indicates the less overlapped area under the density curves of two populations. More

details are discussed in Chapter 3.

2.2 Dimension Reduction Methods

After initial variable screening procedure, most noninformative variables are elim-

inated and only few important ones left. But the dimension is still too high for some

classifiers, especially for the ones requiring the projection pursuit. I consider to apply

the dimension reduction approaches to reduce the dimension further. The purpose

of dimension reduction is to create a smaller set of linear combinations of original

variables without loss of too much information carried by the original ones. This is

achieved by optimizing a defined objective criterion. PCA and PLS are two well-

known dimension reduction methods.
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2.2.1 Principal Component Analysis

In PCA (Massey, 1965; Jolliffe, 1986), orthogonal linear combinations are con-

structed to maximize the variance of the linear combinations of the predictor variables

sequentially

ck = Argmax
c′c=1

V ar(Pc), where P = X ∪Y

subject to the orthogonality constraint

c′Scj = 0 for all 1 ≤ j ≤ k, where S = P′P

In fact, let n = nx + ny and V be the n× p matrix found by stacking X and Y;

that is

V =




x1

...

xnx

y1

...

yny




.

where xi and yj are the rows in X and Y respectively. Let λ1 ≥ λ2 ≥ · · · ≥ λr be the

eigenvalues of V′V and α1, . . . , αr be the corresponding eigenvectors, where r is the

rank of V′V. The ith principal component is then Vαi, which is a linear combination

of the original columns of V. The first principal component accounts the direction

of maximum variability in the data, and each succeeding component accounts for

increasingly smaller amounts of variability. Several optimal linear combinations can

be obtained by using the eigenvectors corresponding to the larger eigenvalues.

PCA, however, only measures the variability in the predictor data V without

any consideration to the contribution of variables towards the classification problem.

Ignoring the relation to the response variable may make the components selected
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by PCA short of the information in terms of the group separation and consequently

results in inaccuracy in classification. A dimension reduction approach considering

the correlation between predictors and response variables is needed.

2.2.2 Partial Least Square Analysis

Nguyen and Rocke (2002) proposed the method of PLS that sequentially max-

imizes the covariance between the response variable and a linear combinations of

predictor variables. In our case, the response variable R is made up of nx zeros and

ny ones as R = (0, . . . , 0, 1, . . . , 1)′. Thus in place of the eigenvectors used in PCA,

PLS uses

αi = Argmax
‖α‖=1

cov(Vα,R)

subject to the constraint (Vα)′(Vαi) = 0 for i = 1, . . . , r. This object criterion for

the dimension reduction may be more appropriate for the prediction since the relation

between predictors and response variable is considered. A basic algorithm implement-

ing PLS is given in Nguyen and Rocke (2002). For the details, see also Helland (1988),

Garthwaite (1994), Höskuldsson (1988), and Martens and Naes (1989).

2.3 Classification Methods

In general, classification is to solve the problem of classifying a new observation

z ∈ ΠX ∪ ΠY in either ΠX or ΠY. We need to define a discriminant function to

project the multidimensional data space into one dimensional real line such that we

can make the decision that where the new observation belongs:

Definition 2.1. A discriminant function D(z; F, G) : Rp → R is such that z is

classified in ΠX if D(z; F,G) > 0 and in ΠY otherwise.
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Discriminant function gives a linear combination of the predictor variables, whose

values are as close as possible within populations and as far apart as possible between

populations. Several popular classifiers are discussed in the following.

2.3.1 Non-Robust Classification

Linear Discriminant Analysis (LDA)

Fisher (1936) looked at a linear combination of the p-covariates that maximizes the

separation between the two populations ΠX and ΠY. This gives rise to the linear

discriminant function

L (z; F, G) ≡ (µx − µy)′Σ−1

[
z− 1

2
(µx + µy)

]
,

where µy and µy are as defined in Section 1.5, and Σ is the pooled covariance matrix

of F and G. A new observation z is classified in ΠX if L (z; F, G) > 0 and in ΠY

otherwise. Such classification is referred to as Linear Discriminant Analysis (LDA).

Given samples X and Y from ΠX and ΠY, respectively, the discriminant func-

tion of LDA is estimated by L (z; Fnx , Gny), where Fnx is the empirical distribution

function of X obtained by putting mass 1/nx on each x sample point and Gny is

the empirical distribution function of Y. Henceforth, it will be assumed that esti-

mates of discriminant functions are obtained by replacing distribution functions by

the corresponding empirical distribution function.

Quadratic Discriminant Analysis (QDA)

In LDA, we assume two populations share the same covariance matrix. If this as-

sumption is not held, another commonly used classification method named Quadratic
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Discriminant Analysis (QDA) can be applied, which is based on the classical multi-

variate normal model for each class. Assume PX = PY be the equiprobable priors of

two populations. The quadratic discriminant function is defined as

Q(z; F,G) = Q(z; F )−Q(z; G) ,

where

Q(z; F ) = −1

2
(z− µx)′Σx

−1(z− µx)− 1

2
log

(∣∣Σx
−1

∣∣)

Q(z; G) = −1

2
(z− µy)′Σy

−1(z− µy)− 1

2
log

(∣∣Σy
−1

∣∣)

Here Σx and Σy are as defined in 1.5. A new observation z is classified in ΠX if

Q(z; F,G) > 0 and in ΠY otherwise.

Independence Classifier

Both LDA and QDA require the projection pursuit, which is not an option for the large

dimensional data. In particular, in order to evaluate some variable selection methods,

we usually need to add more and more variables into the classification model to find

the optimal number of variables for the prediction. Independence classifier can be

applied for this purpose:

I (z; F, G) ≡ (µx − µy)′ D−1

[
z− 1

2
(µx + µx)

]
,

where µx and µy are as defined in Section 1.5, and D = diag(Σ). A new observation

z is classified in ΠX if I (z; F,G) > 0 and in ΠY otherwise. As matter of fact,

linear discriminant function can be reduced to independence discriminant function
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by setting the non-diagonal entries of common covariance matrix to be zero. This

classifier is discussed in Bickel and Levina (2004). They also show that it is superior

to LDA when the number of variables is large.

2.3.2 Rank Based Classification using Projections

LDA amounts to finding u ∈ Rp, say û0, that maximizes the square of the two-

sample t-statistic between the two projected samples u′X = {u′x1, . . . ,u
′xnx} and

u′Y = {u′y1, . . . ,u
′yny}; that is

û0 = Argmax
‖u‖=1

[u′(x̄− ȳ)]2

u′Spu
(

nx+ny

nxny

) ,

where Sp is the pooled covariance matrix, and x̄ and ȳ are means of two samples. The

data are then reduced to one dimension by projecting them in the direction given by

û0 and one would classify a new observation z into ΠX if |z0 − x̄0| < |z0 − ȳ0|, where

x0i = û′0xi, y0j = û′0yj, and z0 = û′0z, i = 1, . . . , nx and j = 1, . . . , ny. Otherwise,

one classifies z into ΠY. Here x̄0 = n−1
x

∑nx

i=1 x0i and ȳ0 = n−1
y

∑ny

j=1 y0j.

When the underlying distributions are spherically symmetric, the direction of

maximum separation is along the line that connects the centers of the distributions.

LDA is equivalent to classifying z based on its Euclidean distance from the means.

In the case of the normal distribution, the projection direction can be obtained easily

as u0 = S
−1/2
p (x̄ − ȳ)/‖S−1/2

p (x̄ − ȳ)‖. In other situations, the projection direction

is not obvious and has to be determined numerically. This search for ”interesting”

low dimensional projection of high dimensional data is known as projection pursuit

(Friedman and Tukey, 1974). ”Interestingness” is measured through a suitable func-

tion known as the projection index. For LDA, this index is the two-sample t-statistic.

Montanari (2004) and Chen et al. (1994) used a two-sample WMW type statistic

as a projection index to measure group separation. They showed that their projection
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pursuit method is not sensitive to deviations from the homoscedasticity and normality

assumptions. Their method is related to the idea of transvariation probability given

in Gini (1916):

Definition 2.2. For univariate distributions F and G, the Transvariation Probability

is defined as

τ(F, G) =

∫

R

∫

R

φ((x− y)(µ(F )− µ(G)))d(F (x))d(G(y))

where µ(F ) and µ(G) are the medians of F and G.

This transvariation probability is the measure of common area under underlying

distribution curves of two populations. Of course, the smaller transvariation proba-

bility indicates the better group separation.

In practice, instead of using the theoretical underlying distributions of two pop-

ulations, we can use empirical distributions of X and Y to estimate τ

τ ∗ =
1

nxny

nx∑
i=1

ny∑
j=1

φ{(xki − ykj)(mx −my)}

where mx and my are medians of two samples.

However, this transvariation probability is only defined under univariate space, so

for the multidimensional data, we need to redefine a general transvariation probability.

This general transvariation probability can be redefined on a vector u through a

certain projection pursuit.

The direction of minimum overlap measured by the general transvariation prob-

ability is given by

û1 = Argmin
‖u‖=1

{∑
φ {[u′x− u′y][mx(u)−my(u)]}

}
, (2.4)
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where the sum is over the set {x ∈ X, y ∈ Y} and mx(u) and my(u) are medians of

two projected samples u′X and u′Y. The function φ is defined as in (2.3)

Once the direction of maximum separation is found, the next step is to project

all the data (including the new sample point) onto that direction and allocate the

new point to one of the two populations. Three allocation schemes are discussed in

the following.

Transvariation-Distance (TD) Classifier

Montanari (2004) proposed classifying a new observation z in ΠX if

|û′1z−mx(û1)| < |û′1z−my(û1)|

and in ΠY otherwise, where mx(û1) and my(û1) are medians of two projected groups.

Hereafter the classifier obtained by using this allocation method will be referred to as

Transvariation-Distance (TD) classifier. As shown in Nudurupati and Abebe (2009),

this method can be adversely affected by skewness and outliers.

Point-Group Transvariation (PGT) Classifier

Another allocation method suggested by Montanari (2004) is based on a comparison

of the ranking of the new observation z among X and among Y. This utilizes the

point-group transvariation. The observation z is classified in ΠX if T (z; F, G) ≡
T (z; F )− T (z; G) > 0, where

T (z; F ) =
1

nx

∑

x∈X
φ {[û′1x− û′1z][mx(û1)− û′1z]}
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and

T (z; G) =
1

ny

∑

y∈Y
φ {[û′1y − û′1z][mx(û1)− û′1z]} .

This allocation scheme is robust against skewness and outliers. However, it does not

perform well for data with unequal sample sizes. This is because the vote of each

member of X is either 0 or 1/nx whereas the vote of each member of Y is 0 or 1/ny.

This allocation scheme has also a problem of ties between T (·; F ) and T (·; G). The

likelihood of ties is the greatest in the case of equal sample sizes, which happens

to be the only situation where this scheme works efficiently. We will use random

tie breaking where a coin is flipped to decide allocation in the case of a tie. The

classifier obtained by using this allocation scheme will be referred to as Point-Group

Transvariation (PGT) classifier.

Group-Group Transvariation (GGT) Classifier

An improved allocation method was proposed by Nudurupati and Abebe (2009) to

eliminate the problem caused by unequal sample sizes. Define two augmented samples

X∗ and Y∗ by including the new point z in the two samples; that is X∗ = X∪{z} and

Y∗ = Y ∪ {z}. The point z is then classified in ΠX if T ∗(z; F, G) ≡ T ∗
1 (z; F,G) −

T ∗
2 (z; F, G) > 0 where

T ∗
1 (z; F, G) =

1

(1 + nx)ny

∑
φ {[û′1x∗ − û′1y][mx(û1)− û′1z]}

and

T ∗
2 (z; F, G) =

1

nx(1 + ny)

∑
φ {[û′1x− û′1y

∗][my(û1)− û′1z]}

The two sums are over the sets {x∗ ∈ X∗, y ∈ Y} and {x ∈ X, y∗ ∈ Y∗}, respectively.
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The classifier obtained by using this allocation scheme will be referred to as

Group-Group Transvariation (GGT) classifier. Note that we do not have the un-

equal voting problem here. The vote of all observations is either 0 or approximately

(nxny)
−1. In essence, here we are smoothing one sample using the empirical distribu-

tion of the other before applying the PGT rule.

2.3.3 Maximum Depth Classifiers

In the univariate setting, statistical methods that use rank-based nonparametric

techniques do not depend on restrictive distributional assumptions and hence are

robust to deviations from these assumptions. For higher dimensions, statistical depth

functions give a multivariate version of ranks (Liu, 1992). Depth functions give a

measure of the “centrality” of a given multivariate sample point with respect to its

underlying distribution (Liu et al, 1999). In particular, a depth function assigns higher

values to points that are more central with respect to a data cloud. This naturally

gives a center-outward ranking of the sample points. A number of depth functions

are available in the literature. A few popular depth functions are Mahalanobis depth

(Mahalanobis, 1936; Liu and Singh, 1993), halfspace depth (Tukey, 1974), simplicial

depth (Liu, 1990), majority depth (Singh, 1991), projection depth (Donoho, 1982),

and spatial or L1 depth (Vardi and Zhang, 2000).

In this paper, I use the maximum depth (MaxD) classification method (Ghosh

and Chaudhuri, 2005) based on spatial (L1) depth function defined as

S (x; F ) = 1−
∥∥∥∥EF

{
x−X

‖x−X‖
}∥∥∥∥ , (2.5)

where X ∼ F and ‖ · ‖ is the Euclidean norm on Rp.

The classifier MaxD uses the discriminant function

S ∗(z; F, G) = S (z; F )−S (z; G)
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and classifies z in ΠX if S ∗(z; F,G) > 0. A major drawback of this classifier is

that it lacks affine invariance. Thus it is necessary to transform the data so that all

the variables are similarly scaled before using the spatial depth function. Vardi and

Zhang (2000) suggest to make the spatial depth function affine invariant by taking

Σx
−1/2(z − X) and Σy

−1/2(z − Y) in place of z − X and z − Y before computing

S (z; F ) and S (z; G), respectively, using equation (2.5). Note that one can use any

affine equivariant estimators of Σx and Σy when computing the discriminant function.

If the scatter estimator of Tyler (1987) is used, then the resulting maximum spatial

depth classifier resembles the classifier given by Crimin et al. (2007). An alternative

method of obtaining affine invariance is to scale the data along its principal component

directions (PCA-scaling) as given in Hugg et al (2006).

An estimate of the MaxD discriminant function S ∗(z; F, G) is given by

S ∗(z; Fnx , Gny) =

∥∥∥∥∥
1

ny

ny∑
j=1

z− yj

‖z− yj‖

∥∥∥∥∥−
∥∥∥∥∥

1

nx

nx∑
i=1

z− xi

‖z− xi‖

∥∥∥∥∥ .
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Chapter 3

Applications of Wilcoxon-Mann-Whitney Statistic (WMW)

3.1 Feature Annealed Independence Rules (Fan and Fan, 2008)

Two sample t-statistic can be applied as an initial variable screening index be-

cause of its contribution to the group separation. Fan and Fan (2008) proved that

theoretically t-statistic can pick up all the informative variables with probability ap-

proaching to 1.

They consider the p-dimensional classification problem between two populations

ΠX and ΠY. X and Y are two samples from ΠX and ΠY with sample sizes nx and ny

respectively. Write ith observation in ΠX as

xi = µx + εxi,

and ith observation in ΠY as

yi = µy + εyi,

where εxi = (εxij) and εyi = (εyij) are iid with mean 0 and covariance matrix Σx and

Σy respectively. They assume that all the observations are independent across sam-

ples and in addition, within one population, observations are identically distributed.

They also assume that the two classes have compatible sample size.

They first proved that without variable selection, discrimination based on linear

projections to almost all directions performs nearly the same as random guessing

under some assumptions. They then claim that using t-statistic defined in 2.1, all the
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informative variables can be selected in the below Theorem (3.1). In order to prove

their theorem, they need the following conditions.

Condition1

• Assume that the vector α = µx − µy is sparse and without loss of generality

only first s entries are nonzero.

• Suppose that εxij and ε2
xij − 1 satisfy the Cramér’s condition, that is there exist

constants ν1, ν2,M1 and M2, such that E|εxij|m ≤ m!Mm−2
1 ν1/2 and E|ε2

xij −
σ2

xj|m ≤ m!Mm−2
1 ν1/2 for all m = 1, 2, . . . where σxj is the diagonal entries of

Σx. Assumptions on εyij and ε2
yij−1 are the same as εxij and ε2

xij−1 respectively.

• Assume that the diagonal elements of both Σx and Σy are bounded away from

0.

Under Condition 1, they have the following theorem:

Theorem 3.1. Let s be a sequence such that log(p−s) = o(nγ) and logs = o(n1/2−γβn)

for some βn −→ ∞ and 0 < γ < 1
3
. Suppose that min1<j<s

|αj |√
σ2

xj+σ2
yj

= n−γβn.Then

for t ∼ cnγ/2 with c some positive constant, we have

P (min
j≤s

|Tj| ≥ t and max
j>s

|Tj| < t) −→ 1

where n = nx + ny.

Theorem 3.1 indicates that two sample t-statistic can potentially pick all the

important variables as long as the rate of decay is not too fast and the sample size is

not too small.

In order to demonstrate the performance of two sample t-statistic on the variable

screening, they then apply the independence classifier which is mentioned in the

Section 2.3 to calculate the misclassification error rate based on the most informative

variables selected by two sample t-statistic.
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They assume both populations are from Gaussian distributions and common

variance matrix is identity, that is Σx = Σy = I. Rank all the variables according to

two sample t-statistic and pick up the most informative m variables assuming that

those m variables are all the important variables in terms of classification. The theo-

retical misclassification error rate calculated by this truncated independence classifier

is given in the below theorem:

Theorem 3.2. Consider Σx = Σy = I and use a truncated independence classifier

δ̂mn(z) = (zmn − µ̂mn)(µ̂mn
1 − µ̂mn

2 )

for a given sequence mn. Suppose that n√
mn

Σmn
j=1α

2
j −→ ∞ as mn −→ ∞. Then the

classification error of δ̂mn is

= 1− Φ

(
(1 + oP (1))Σmn

j=1α
2
j + mn(n1 − n2)/(n1n2)

2{(1 + oP )Σmn
j=1α

2
j + nmn/(n1n2)}1/2

)

where Φ(·) is the standard Gaussian distribution function. They call this trun-

cated classifier as feature annealed independence rule (FAIR). We can have the precise

value of m by minimizing this theoretical misclassification error rate . In practice,

however, this equation is unsolvable and it can only be done numerically. Fan and

Fan (2008) used a simulation study and three real data analyses to demonstrate their

theoretical results and show the superiority of their method over the nearest shrunken

centroid method (Tibshirani et al, 2002).

3.2 WMW-Based Feature Annealed Classifier

As defined in Section 2.1, two sample Wilcoxon-Mann-Whitney statistic provides

more useful information than two sample t-statistic in terms of group separation un-

der some certain circumstances where the normality assumption is not achievable.
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Inspired by Fan and Fan (2008), I expect that using WMW statistic can also pick

up all the important variables. If so, then WMW will be used more widely than

t-statistic because most gene expression data present heavier tail than normal distri-

bution (Salas-Gonzalez et al, 2009).

3.2.1 Variable Selection Based on WMW Statistic

Using the similar strategy given in Fan and Fan (2008), I also prove that theoreti-

cally in the infinitely multidimensional data space, Wilcoxon-Mann-Whitney statistic

can pick up all the informative variables with probability approaching to 1. The result

is given in the following theorem:

Theorem 3.3. Assume that the vector α = µx − µy is sparse and without loss of

generality only first s entries are nonzero. Let s be a sequence such that log(p− s) =

o(nγ) and log s = o(n1/2−γβn) for some βn →∞ and 0 < γ < 1
3
. For w ∼ cnγ/2 with

some constant c > 0, we have

P (min
j≤s

|Wj| ≥ w and max
j>s

|Wj| < w) → 1.

Proof. I divide the proof into two parts.

(a) Let us first look at the probability P (maxj>s |Wj| > w). Clearly,

P (max
j>s

|Wj| > w) ≤
p∑

j=s+1

P (|Wj| ≥ w)

By the Corollary 3.2 proved in Froda and Eeden (2000), there exist a α > 0,

such that , for M0 < x < αn1/6,

P (|Wj| ≥ w) = (1− Φ(w))(1 + O(w3/n1/2))
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where M0 > 1. For the normal distribution, we have the following tail probability

inequality

1− Φ(x) ≤ 1√
2π

1

w
e−w2/2

Combining with the symmetry of Wj, if we let w ∼ cnγ/2, then we have

p∑
j=s+1

P (|Wj| ≥ w) ≤ (p− s)
2√
2π

1

w
e−w2/2(1 + O(w3/n1/2) → 0.

since log(p− s) = o(nγ) with 0 < γ < 1
3
. Thus, we have

P (max
j>s

|Wj| > w) → 0

(b) Next, we consider P (minj≤s |Wj| ≤ w). Let ηj =
αj√

n1n2(n1+n2−1)/12
and define

W̃j = Wj − ηj.

Then clone the lines in (a), we have

∑
j≤s

P (|W̃ | ≥ w) ≤ s
2√
2π

1

w
e−w2/2(1 + O(w3/n1/2) → 0

Let α0 = minj≤s ηj. Then it follows that

P (min
j≤s

|Wj| ≤ w) ≤ P (max
j≤s

|W̃j| ≥ min
j≤s

|ηj| − w)

≤ P (max
j≤s

|W̃j| ≥ α0 − w)

If w ∼ cnγ/2 and α0 ∼ n−γβn for some βn → ∞, then similarly to part (a), we

have

P (min
j≤s

|Wj| ≤ w) → 0.

Combination of Part (a) and (b) completes the proof.
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Compare to Fan and Fan (2008), Theorem 3.3 requires fewer assumptions. For

example, there are no assumption on random errors and no assumptions on covariance

matrices of two population, which makes WMW statistic more efficiently to identify

the minimal subset of variables that succinctly predict the categories of the new

observations.

3.2.2 Projection-free WMW-based Classifier

Fan and Fan (2008) used minimal misclassification error rate to explicitly the per-

formance of two sample t-statistic. They named their procedures as Feature Anneal

Independence Rule (FAIR), that is, allocate the new observations using independence

classifier based on the variables chosen by t-statistic. However independence classifier

is strongly related to the t-statistic which is not appropriate where normality assump-

tion isn’t held. That is the reason I propose this new nonparametric classifier which

is simply based on WMW statistic.

Even though WMW statistic measures the group separation very well, itself can’t

be used as a classifier directly. Here I borrow the idea of Group-Group Transviation

classifier (Nudurupati and Abebe, 2009) to translate the measure of group separation

to a discriminant function.

To classify a new observation z, define X∗ = X∪{z} and Y∗ = Y∪{z}. z
∈∼ ΠX

if
p∑

k=1

wk(X∗,Y) >

p∑

k=1

wk(X,Y∗)

where wk(X∗,Y) is WMW statistic of variable k based on X∗ and Y while

wk(X,Y∗) is WMW statistic of variable k based on X and Y∗.

This classifier indicates that I classify this new observation z into ΠX if a better

group separation can be achieved by adding this new observation z into ΠX, otherwise

into ΠY.
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The advantage of this classifier is that it is robust to deviations from the usual

assumptions. The other hand it’s projection free classifier such that it can be used to

numerically find the minimal misclassification error rate by picking the proper number

of informative variables. The combination of WMW statistic variable screening and

WMW-based classifier results in the WMW-based feature annealed classifier (WFAC).

3.3 Results

Two real data analyses and a Monte Carlo simulation are provided to demon-

strate the superiority of WFAC compared to FAIR.

3.3.1 Lung Cancer

I first use Lung Cancer data to compare the performances of WFAC and FAIR

by classifying between two types of lung cancer: malignant pleural mesothelioma

(MPM) and adenocarcinoma (ADCA). In total, the data set contains 181 sample,

with 31 from MPM and 150 from ADCA. The training set contains 32 samples, with

16 from MPM and 16 from ADCA while the testing set contains 149 samples, with

15 from MPM and 134 from ADCA. Each sample is described by 12533 genes. This

data is available at http://www.chestsurg.org.

Fan and Fan (2008) set the classification rule by using independence classifier

with t-statistic variable screening based on the training data and predict each sample

in the testing data to be MPM or ADCA by following this rule.

I, instead set the classification rule by using WMW-based classifier with WMW

statistic variable screening based on the training data and predict each sample in the

testing data to be MPM or ADCA by following this new classifier proposed above.

Numbers of incorrect classification out of 149 testing samples are given in the

Table 3.1.
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Table 3.1: Lung Cancer data. The minimum number of incorrectly classified samples
out of 149 testing data

Method Test Error No. of Selected Genes
FAIR 11/149 26
WFAC 0/149 78

Figure 3.1: Scree Plot of WFAC for Lung Cancer Data
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Apparently, FAIR reaches the minimal misclassification error rate (11) by select-

ing 26 genes while WFAC achieves zero misclassification error by picking 78 genes.

In the sense of misclassification error rate, our method is superior to FAIR. However

it seems WFAC needs to select much more genes to have this desirable result, which

makes our method inefficient. For this reason, a scree plot is drawn to show how the

misclassification error rate changes when more and more genes are added.

Plot 3.1 shows that 1 testing sample is misclassified based on top 17 selected

genes. As shown in Table 3.1, using FAIR the minimum number of misclassified

samples is 11 by selecting 26 variables, which indicates that FAIR use more genes but

achieves large number of misclassified samples than WFAC.
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Table 3.2: Prostate Cancer data. The minimum number of incorrectly classified
samples out of 102 samples using leave-one-out cross validation

Method Training Error No. of Selected Genes
Fan and Fan 10/102 2
Our 5/102 4

3.3.2 Prostate Cancer

I then use Prostate Cancer data, which is available at http://www.broad.mit.edu/cgi-

bi/cancer/datasets.cgi. The prostate cancer data contains 102 patient samples, 52 of

which are prostate tumor samples and 50 of which are normal prostate samples.

Each sample contains 12600 genes. The minimum number of misclassified samples is

calculated by FAIR and WFAC respectively using leave-one-out cross validation.

Numbers of incorrect classification out of 102 testing samples are given in the

Table 3.2.

It shows that by selecting top 2 genes, FAIR gives 10 misclassified samples while

by selecting top 4 genes, WFAC only gives 5 misclassified samples. It still seems

WFAC sacrifices the efficiency to obtain the accuracy. For the same reason, a scree

plot is drawn to illustrate the efficiency of WFAC.

As shown in Plot 3.2, WFAC gives 7 misclassified samples if only selecting top

2 genes, which implies that WFAC uses the same number of genes to obtain lower

misclassification error rate.

3.3.3 Simulation

I perform a large Monte Carlo simulation to study the optimality (in terms of

misclassification error) of FAIR and WAFC under a variety of distributional set-

tings. To that end, I generated two classes of data from normal, Cauchy, and

t with two degrees of freedom (t2) distributions with dimension p = 200. I set

the center of one class at the origin (0, 0, . . . , 0) and the center of second class

at (1/4, 1/2, 3/4, 1, 5/4, 3/2, 0, 0, . . . , 0). I considered variance-covariance matrices
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Figure 3.2: Scree Plot of WFAC for Prostate Cancer Data
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Σ1 = I200 and

Σ2 =




1 −1/2 −1/2 . . . −1/2

−1/2 1 −1/2 . . . −1/2

−1/2 −1/2 1 . . . −1/2

. . . . . . . . . . . . . . .

−1/2 −1/2 −1/2 . . . 1




.

In the simulation, training samples of sizes 20 and 30 were generated as well as

testing samples of size 1000 for each group are generated. Use FAIR and WFAC to

set the classification rule based on the training data and calculate the minimum mis-

classification error rate by computing the proportion of misclassified testing samples

in each group respectively. Use the Monte Carlo simulation to generate 50 different

training and testing data having the same structure for each distributional setting

and apply the same procedure to all those different samples separately. Comparison

boxplots containing the misclassification error rates are given in Figure 3.3.

It is clear from the plots that WFAC provides lower misclassification error rates

for the heavier tailed distributions (Cauchy, t2). In particular, for Cauchy data, FAIR
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leads to misclassification error rates consistently around 50% which is nearly as same

as guessing. This is somewhat improved for the t2 distribution even though WFAC is

still better than FAIR. As expected, for normal data FAIR gives better performance

than WFAC.

3.4 Smoothed Projection-Free WMW-Based Classifier

3.4.1 Description

As discussed above, WFAC provides an improvement over FAIR in dealing with

non-normal distributed data. As shown in (2.2), in the calculation of WFAC, sign

function φ is used to count the number of transvariated observations. In order to

simplify the following discussion, let us assume the median of the differences of all

the observations from ΠX and ΠY respectively is positive. Thus two observations x

and y from ΠX and ΠY respectively are treated as transvariation as long as x < y

regardless of whether y is barely greater than x or much greater than x. A weight

associated with the magnitude of difference is needed and I will assign such weight s

by replacing φ with a [0, 1]-valued and non decreasing function that is continuously

differentiable on an interval (−δ, δ) for some δ > 0. Inspired by Abebe and Nudurupati

(2011), a continuous cumulative distribution functions defined on R are applied.

Using smoothed WFAC, I will classify z to Πx if

p∑

k=1

wk(X∗,Y) >

p∑

k=1

wk(X,Y∗)

where

wk(X∗,Y) = 1− 2

nxny

∑

x∗∈X∗

∑

y∈Y
Kα

{
(xki − ykj) mk

xy

}

and

wk(X,Y∗) = 1− 2

nxny

∑

x∈X

∑

y∗∈Y∗
Kα

{
(xki − ykj) mk

xy

}
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Figure 3.3: Misclassification Error Rate
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Here Kα is [0, 1]-valued functions that are non decreasing on R, where α is

smoothing parameter. For example, one could take cumulative density function of

N(0, α). Here I use cumulative density function of t-distribution with α degrees of

freedom.

For the data with training and testing samples, the training samples are used

to find the best smoother for each group. Similarly as mentioned in Abebe and

Nudurupati (2011), I use a bivariate grid (α1, α2) and apply a leave-one-out cross

validation to the training samples to find the misclassification error for each possible

pairs of degrees of freedom. The combination with the least misclassification error is

then selected as the pair of smoothing constants.

3.4.2 Monte Carlo Simulation

To demonstrate the optimality of smoother, several common simulation set-

ting are used: normal distribution, t distribution (heavy tail distribution), and log-

normal distribution (skewed distribution). I set the center of one class at the origin

(0, 0, . . . , 0) and the center of second class at (1/4, 1/2, 3/4, 1, 5/4, 3/2, 0, 0, . . . , 0). I

considered variance-covariance matrices Σ1 = I200.

I consider normal, t2 and log-normal distribution to generate 200-dimensional

data. In the simulation, training samples of sizes 30 and 30 as well as testing sam-

ples of size 100 for each group were generated by following the distributional settings

mentioned above. We use WFAC to set the classification rule based on the training

data and calculate the minimum misclassification error rate by computing the pro-

portion of misclassified testing samples in each group respectively. I then calculate

the minimum misclassification error rate for the testing sample by including the op-

timal smoother determined by training data. We use the Monte Carlo simulation

to generate 10 different training and testing data having the same structure for each
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distributional setting and apply the same procedure to all those different samples sep-

arately. Comparison boxplots containing the misclassification error rates are given in

Figure 3.4.

It shows that with the equal sample sizes, the smoother doesn’t improve the

performance of WFAC very well.

I then change the training samples sizes to 20 and 30 respectively and proceed

the same simulation as described above to show how the smoother behaves for the

different sample size case. Comparison boxplots containing the misclassification error

rates are given in Figure 3.5.

Figure 3.5 shows that the one with smoother works much better for the skewed

data (log-normal) while it is slightly more efficient for the heavy tailed data (t2).

3.5 Conclusion

Both two real data analysis shows the better efficiency and accuracy of WFAC

than FAIR. A large Monte Carlo simulation study further demonstrates the obvi-

ous advantage of WFAC for heavier tailed data and slight disadvantage of normally

distributed data. Then the necessity of smoothed WFAC under some circumstance

where two sample sizes are unequal, is discussed in a Monte Carlo simulation study.
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Figure 3.4: Misclassification Error Rate (Smoothed with equal Size)
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Figure 3.5: Misclassification Error Rate (Smoothed with Unequal Size)
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Chapter 4

WMW Forward Variable Selection Method

Two sample t-statistic and WMW statistic can be used as variable screening

index and their properties are discussed in Chapter 3. But both variable selection

procedures fail to take the correlations among predictor variables into account. They

are not recommended when there are many variables that are dependent on each other.

As shown in Section 2.2, two popular dimension reduction methods, PCA and PLS can

also be used to reduce the dimension by finding a smaller set of uncorrelated linear

combinations of the original variables. However, the problem with both methods

is that they use the linear combinations to combine all the predictor variables to

create new variables. Those created variables contain the information of all predictor

variables and they are very hard to be interpreted, especially in biological study.

That is the reason I propose this new WMW forward variable selection procedure to

improve those existing methods.

4.1 Descriptions

Consider two populations ΠX and ΠY. X and Y are two samples from ΠX and ΠY

with sample sizes nx and ny respectively. X = {xij} and Y = {yij} are the predictor

matrices of two samples. Write V as a matrix of column vectors V = [v1 v2 · · · vp]

where each vi is an n × 1 vector, where n = nx + ny. I would like to order the

variables v1, . . . ,vp in a decreasing order according to the amount of information

they provide for class determination, v[1] ≥ · · · ≥ v[p] say. The most informative

variable is the one that gives maximum separation between the two groups. As the

second most informative variable, it seems reasonable to pick the variable that is
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the most dissimilar to v[1] while at the same time giving the highest contribution to

distinguishing between the two groups.

The approach I propose uses the WMW statistics to measure overlap and dis-

similarity in the sense of classification. For k = 1, . . . , p, define

tkij = xki − ykj , i = 1, . . . , nx; j = 1, . . . , ny

and, as a measure of overlap between ΠX and ΠY, consider the two sample WMW

statistic based on vk

w(vk) = 1− 2

nxny

nx∑
i=1

ny∑
j=1

φ(tkij)mk , (4.1)

where mk = median
{
tkij : 1 ≤ i ≤ nx, 1 ≤ j ≤ ny

}
. It can be seen that 0 ≤ w(vk) ≤

1. Higher values of w(vk) indicate smaller overlap between {xk1, . . . , xknx} and

{yk1, . . . , ykny}. The most informative variable is the one with the the least over-

lap and hence the highest w(·).
To measure the dissimilarity between two variables vr and vs I use

d(vr,vs) =
1

nxny

nx∑
i=1

ny∑
j=1

φ
{(

trijmr

) (
tsijms

)}
, (4.2)

where r, s = 1, . . . , p. This quantity d(vr,vs) resembles the measure of dissimilarity

studied by Sokal and Michener (1958) and Rand (1971) (see discussion in Albatineh

et al , 2006) that is given by (nxny)
−1

∑∑
trijt

s
ij. The measure d(vr,vs) counts how

often observations i and j in vr and vs behave in an opposite direction with respect

to their medians for i = 1, . . . , nx; j = 1, . . . , ny. It is clear that 0 ≤ d(vr,vs) ≤ 1

where large values of d(vr,vs) indicate large dissimilarity between vs and vr. It is

also easily observed that d(v,v) = 0 = d(v,−v). Moreover, d(vr,vs) = 1 if trijmr < 0

whenever tsijms > 0, for all i and j, and vice versa. In such cases, variables vr and vs
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are totally dissimilar in the sense that they provide opposing information about class

membership.

4.2 Algorithm

An algorithm to implement WFS is as follows:

Algorithm 4.1.

Step 1: Let

v[1] = Argmax
k=1,...,p

w(vk) ,

where w is defined in (4.1).

Step 2: Use (4.2) to compute d(vs,v[1]) for s 6= [1]. Let

v[2] = Argmax
k=1,...,p

k 6=[1]

{w(vk)d(vk,v[1])} .

Step 3: For c = 2, . . . , p, find direction of maximum separation û1 ∈ Rc given

in (2.4) using v[1], . . . ,v[c] and set

v[c+1] = Argmax
k=1,...,p

k/∈{[1],...,[c]}

w(vk)d(vk, û
′
1[v[1] · · ·v[c]]) .

One may use stability of the misclassification error rate as a stopping crite-

rion. The downside of Algorithm 4.1 is that one needs to search higher and higher

dimensional spaces as the value of c in Step 3 increases. This introduces a huge com-

putational burden. The following modification avoids high dimensional projections

by combining selected variables using the direction of maximum separation:
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Algorithm 4.2.

Step 1: Set c = 1. Let

v[1] = Argmax
k=1,...,p

w(vk) ,

where w is defined in (4.1).

Step 2: If c ≥ p, then STOP. Otherwise use (4.2) to compute d(vs,v[1]) for

s ∈ {[c + 1], . . . , [p]}. Let

v[2] = Argmax
k∈{[c+1],...,[p]}

{w(vk)d(vk,v[1])} .

Step 3: Find direction of maximum separation û1 ∈ R2 given in equation (2.4)

using [v[1] v[2]] and set

v[1] ← û′1[v[1] v[2]]

c ← c + 1

Go back to Step 2.

This algorithm is convenient for selecting variables in high dimensional data

since it only requires two dimensional projections. This is especially useful when

performing classification based on gene expression data. Besides, forward selection

allows one to start with fewer variables and proceed to higher dimensions if necessary.

As a stopping rule, one may use predetermined dimensions (Nguyen and Rocke, 2002)

or cross validation using the misclassification error rate.
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4.3 Results

One real data analysis demonstrates the advantage of WFS over both simple

t-statistic and WMW statistic variable screening. Then two real data analyses and

a Monte Carlo simulation are used to compare the performances among PCA, PLS

and WFS.

4.3.1 Caribbean Food Data

Caribbean food data is applied to compare the performance among t-statistic,

WMW statistic and WFS. This data set contains information from Food and Drug

Administration (FDA) and U.S. Department of Agriculture (USDA) on the number

of rejections by country for certain Latin American and Caribbean (LAC) countries

for the years 1992 to 2003. This data set was investigated in Jolly et al. (2007) using

zero-inflated count data mixed models. The variables considered in the current study

are

• t = year (1992 - 2003)

• FDI = Foreign direct investment, net inflows (Balance of Payments (BoP),

current US $ )

• Fertcons = Fertilizer consumption (metric tons)

• USImp = U.S. Imports by Country, (1985-03; Millions of Dollars)

• AgImp = Total Agricultural Import to the US (million $)

• GNI = Gross national income per capita, Atlas method (current US $)

• Y = Detention Status (Y=0 no detention; Y=1 detention)

Consider variable Y as response variable and the other six variables as predictor

variables. I first select top 2 variables based on t-statistic, WMW statistic and WFS.
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Table 4.1: Caribbean food data. Misclassification error rates using leave-one-out cross
validation.

t Selection WMW Selection WFS Without Selection
LDA 0.4155 0.3873 0.3873 0.3803
MaxD 0.3873 0.3170 0.3169 0.3170
PGT 0.3944 0.3099 0.3028 0.3592
GGT 0.3803 0.3099 0.3028 0.3451
TD 0.3732 0.3310 0.3310 0.3310

Variables USImp and AgImp are selected by t-statistic while WMW statistic chooses

variables FDI and USImp. WFS, instead, picks the variables FDI and Fertcons. Then

classifiers LDA, TD, MaxD, PGT, and GGT discussed in Section 2.3 are applied to

calculate the proportion of the misclassified samples by using leave-one-out cross val-

idation based on the top 2 variables selected by t-statistic, WMW statistic and WFS

respectively. I also calculate the corresponding misclassification error rate based on

all those six predictor variables to show the necessity of variable selection procedure.

Misclassification error rates are given in the Table 4.1

It is clear that using t-statistic to select the variables gets the worse classifica-

tion than without any variable selection, which indicates that it fails to identify the

most informative variables. The results can be improved when I apply PGT and

GGT to determine the class membership based on the important variables (FDI and

Fertcons) selected by WMW. Finally WFS followed by PGT and GGT gives the min-

imal misclassification error rate (0.3028). In the sense of classification, variables FDI

and Fertcons chosed by WFS should be considered as the most informative ones in

prediction of food detention.

4.3.2 Colon Data

A two way cluster study is conducted by Alon et al. (1999) using a data set com-

posed of 40 colon tumor samples and 22 normal colon tissue samples, analyzed with

an Affymetrix oligonucleotide array complementary to more than 6,500 human genes.
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Table 4.2: Colon data. The number of incorrectly classified samples out of 62 samples
using leave-one-out cross validation. Screening for PCA and PLS uses WMW and
t statistics. The numbers in parentheses are the number of genes kept after the
screening.

WMW Selection t Selection
PCA PLS PCA PLS PCA PLS PCA PLS WFS
(50) (50) (100) (100) (50) (50) (100) (100)

LDA 10 8 8 8 9 8 8 7 5
QDA 10 8 10 7 10 8 9 8 11
MaxD 9 12 10 11 10 12 12 11 10
PGT 8 8 8 8 8 8 8 8 5
GGT 9 9 9 9 9 10 9 9 5
TD 8 8 8 8 8 8 8 9 7

Alon et al. (1999) used an algorithm based on deterministic-annealing algorithm to

cluster the data set into two clusters. One cluster consisted of 35 tumor and 3 normal

samples while the other cluster contained 19 normal and 5 tumor samples.

A leave-one-out cross validation is used to determine the misclassification error

rates based on 4 genes selected by WFS and 4 gene components selected by PCA and

PLS. Prior to using PCA and PLS, the top 50 and 100 genes were selected based on

the values of WMW and t statistics. Numbers of incorrect classification out of 62

samples are given in the Table 4.2.

The results show that WFS followed by PGT, LDA, or GGT gives the fewest

(5) misclassified samples of any combination of dimension reduction/selection and

classifier. MaxD results in between 9 and 12 misclassified samples. A misclassification

of 12 samples is the highest in the study. The fewest number of misclassified samples

by any classifier following PCA is 8 samples. The minimum number of samples

misclassified following PLS is 7 samples. This is achieved by LDA when 100 genes

were selected by the t-statistic and QDA when 100 genes were selected by the WMW

statistic.
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Table 4.3: Leukemia training data. The number of incorrectly classified samples out
of 38 training samples using leave-one-out cross validation. Screening for PCA and
PLS uses WMW and t statistics. The numbers in parentheses are the number of
genes kept after the screening.

WMW Selection t Selection
PCA PLS PCA PLS PCA PLS PCA PLS WFS
(50) (50) (100) (100) (50) (50) (100) (100)

LDA 1 1 1 2 1 2 1 2 4
QDA 2 2 2 0 3 2 2 3 5
MaxD 4 3 3 3 4 4 4 4 1
PGT 1 2 1 1 2 3 2 3 0
GGT 1 2 1 1 2 4 2 4 0
TD 1 2 2 1 1 1 2 2 3

4.3.3 Leukemia Data

Golub et al (1999) used a classification procedure to discover the distinction

between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL).

The original data set (training) used consisted of 38 bone marrow samples (27 ALL

and 11 AML) obtained from acute leukemia patients at the time of diagnosis. The

independent (testing) data set consisted of 24 bone marrow samples as well as 10

peripheral blood specimens from adults and children (20 ALL and 14 AML).

I first use the training data to apply a leave-one-out cross validation as described

earlier. Numbers of incorrect classification out of 38 samples based on WFS as well as

PCA and PLS based on four genes or gene components were calculated. The results

are shown in the Table 4.3.

The results show that WFS followed by PGT or GGT gave no misclassified

samples. The same result is attained by QDA using 100 genes selected by the t

statistic followed by PLS. The minimum number of samples misclassified following

PCA is 1.

I then calculated the number of misclassified samples out of testing samples by

using the variables selected by WFS and top 4 principal components obtained by

PCA and PLS based on training samples. The results are shown in the Table 4.4.
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Table 4.4: Leukemia training and testing data. The number of incorrectly
classified samples out of 24 testing samples based on training samples. Screening
for PCA and PLS uses WMW and t statistics. The numbers in parentheses are the
number of genes kept after the screening.

WMW Selection t Selection
PCA PLS PCA PLS PCA PLS PCA PLS WFS
(50) (50) (100) (100) (50) (50) (100) (100)

LDA 1 3 1 1 1 3 2 3 5
QDA 2 2 3 2 2 2 1 2 3
MaxD 5 3 2 2 3 2 3 3 3
PGT 2 3 1 1 2 2 1 2 3
GGT 2 3 1 1 2 2 1 3 3
TD 2 1 1 1 2 2 2 3 3

We note that WFS gives inferior performance to PCA and PLS for this experiment

involving training and testing data.

The results of the analyses on real data demonstrate the need to characterize cases

where WFS performs better than PCA and PLS and vice versa. This is investigated

in the following section using simulated data.

4.3.4 Monte Carlo Study

I perform a Monte Carlo simulation to study the optimality (in terms of misclas-

sification error) of PCA, PLS and WFS under a variety of distributional settings. Two

classes of data are generated from normal, Cauchy, and t with two degrees of freedom

(t2) distributions with dimension p = 200. Set the center of one class at the origin

(0, 0, . . . , 0) and the center of second class at (1/4, 1/2, 3/4, 1, 5/4, 3/2, 0, 0, . . . , 0). I
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then consider variance-covariance matrices Σ1 = I200 and

Σ2 =




1 −1/2 −1/2 . . . −1/2

−1/2 1 −1/2 . . . −1/2

−1/2 −1/2 1 . . . −1/2

. . . . . . . . . . . . . . .

−1/2 −1/2 −1/2 . . . 1




.

In the simulation, training samples of sizes 20 and 30 were generated. After the

initial screening of 50 variables using WMW and t-statistics, the samples were used to

determine the PCA and PLS loadings and set the classification rules based on the top

four components. Testing samples of size 1000 from each group were then generated

and the loadings found from the training samples are applied. The misclassification

error rate is calculated based on the top four components by computing the proportion

of misclassified testing sample observations in each group. For WFS, I directly selected

the top 4 variables without any screening. These same variables were retained for the

testing samples. The entire process is replicated 50 times.

For the sake of brevity, I only report the results of QDA, MaxD, and GGT. The

performance of LDA was similar to QDA and that of PGT and TD was similar to

GGT. Comparison boxplots containing the misclassification error rates are given in

Figure 4.1.

It is clear from the plots that WFS provides lower misclassification error rates for

the heavier tailed distributions (Cauchy, t2). For Cauchy data, PCA and PLS lead

to misclassification error rates consistently around 50%. This is akin to flipping a

coin to decide group membership without regard to the information contained in the

variables. This is somewhat improved for the t2 distribution even though WFS is still

the best among the methods considered. As expected, for normal data PCA and PLS

provide better performance than WFS. In the homoscedastic normal case, GGT is
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the classifier with the lowest misclassification error rate while for the heteroscedastic

normal case the best method is QDA. The latter is expected under normality.

4.4 Conclusion

Using two real data, it is shown that transvariation-based classifiers following the

rank-based forward variable selection procedure provide better class prediction than

LDA and QDA following dimension reduction using PCA and PLS. The forward

selection procedure also provides superior performance when the data come from

heavy-tailed distributions.

Because it starts with low dimensions, the use of forward selection makes intuitive

sense for variable selection in very high dimensional data. Even then the original

formulation of the proposed forward selection procedure required projection pursuit

in high dimensional spaces. This becomes computationally very expensive especially

for gene expression data that are ultra-high dimensional. Complicated methods of

mesh-generation and a large number of points are required to effectively cover high

dimensional spaces. In this paper, an alternative algorithm that sequentially combines

information in two variables using the most informative direction is given as a way to

optimize the computation. This modified algorithm only requires projections in two

dimensions which can be done by picking evenly spaced points on the unit circle.
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Figure 4.1: Misclassification error rates ( Black=QDA, Gray=MaxD, White=GGT )
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Chapter 5

Conclusion and Future Work

Gene expression data usually contains a large number of genes, but a small

number of samples. It is well known that not all these genes contribute to determining

a specific genetic trait. Feature selection for gene expression data aims at finding a

set of genes that best discriminate biological samples of different types.

In this dissertation, inspired by FAIR of Fan and Fan (2008), a new nonpara-

metric classifier (WFAC) is proposed to classify new observations based on the most

informative variables selected by Wilcoxon-Mann-Whitney statistic. Its similarity to

and differences with FAIR are discussed theoretically and using real data analysis

and a Monte Carlo simulation study. I also introduced a smoothed version of WFAC

to improve its performance when there is a large sample size discrepancy in the two

samples. I then developed a nonparametric forward selection procedure for selecting

features to be used for classification. This rank-based forward selection procedure re-

wards genes for their contribution towards determining the trait but penalizes them

for their similarity to genes that are already selected. Lower misclassification error

rates are achieved by WFS compared to the dimension reduction methods such as

PCA and PLS.

It is of interest to find a specific rule to determine the number of variables I need

to select by using WFS. This requires a theoretical description of the misclassification

error rate which can then be minimized with respect to the number of variables. So

far there is no clear stopping rule and I may only use the predetermined dimensions

or cross validation that uses the misclassification error rate. This is currently being

studied by the author.
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