

Analysis and Implementation of Built-In Self-Test for Block Random Access Memories in

Virtex-5 Field Programmable Gate Arrays

by

Justin Lewis Dailey

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

August 6, 2011

Keywords: Build-In Self-Test, Field Programmable Gate Array, Block RAM, Fault Coverage

Copyright 2011 by Justin Lewis Dailey

Approved by

Charles E. Stroud, Chair, Professor of Electrical and Computer Engineering

Victor P. Nelson, Professor of Electrical and Computer Engineering

Chwan-Hwa Wu, Professor of Electrical and Computer Engineering

ii

Abstract

 In order to ensure the proper operation of the embedded Block Random Access

Memories (BRAMs) in Xilinx Virtex-5 Field-Programmable Gate Arrays (FPGAs) a dependable

and resource efficient test is needed so that the integrity of the memory can be guaranteed in a

timely manner. The approach that is described in this thesis is based on a Built-In Self-Test

(BIST) approach initially proposed by Garimella in [1] for Xilinx Virtex-1 and Virtex-2 FPGAs.

It was later expanded upon by Milton in [2] for Xilinx Virtex-4 FPGAs. The work was continued

by Garrison as detailed in [3] for Virtex-4 in order to improve BIST generation and execution

time. Garrison also proposed a design for BRAM BIST for Virtex-5 FPGAs in [3]. Garrison‟s

proposal for Virtex-5 FPGAs is expanded upon and implemented in this thesis.

 The testing approach for these BRAMs is described along with testing configurations and

details. The BIST configurations are implemented using five unique Test Pattern Generators

(TPGs) running testing algorithms on a combination of 19 separate RAM configurations in order

to fully test the memories. All of the BIST configurations have been generated using two C

programs developed as part of this thesis which are capable of generating configurations for any

Virtex-5 device. These configurations were downloaded to various Virtex-5 FPGAs and tested

on these devices. The fault detection capabilities of the BIST have been verified by using fault

iii

injection within the BIST configurations that are downloaded to the FPGA to emulate physical

faults within the configuration memory bits of the BRAMs. With fault injection, it was verified

that this BIST approach was able to successfully detect 100% of detectable configuration

memory faults in the BRAMs present in Virtex-5 devices.

iv

Acknowledgments

 I would like to thank Dr. Charles Stroud for his guidance throughout my undergraduate

and graduate studies. He has helped me develop the skills I need to become a successful

engineer once I graduate through personal advice, class work, and research. I would also like to

thank Dr. Victor Nelson and Dr. Chwan-Hwa Wu for their guidance and for serving on my

graduate committee. I also owe a great deal of thanks to my research colleague Alex Lusco for

giving valuable help and advice on countless occasions throughout both my undergraduate and

graduate studies. I would like to thank my other research colleagues Neil Da Cunha and Jie Qin

as well. I would also especially like to thank my friends and family for supporting me

throughout my educational process and giving me the excellent opportunities I have been

fortunate enough to receive.

v

Table of Contents

Abstract ... ii

Acknowledgments.. iv

List of Tables ... viii

List of Figures ... x

List of Abbreviations .. xii

Chapter 1 Introduction ... 1

1.1 Field Programmable Gate Arrays ... 1

1.1.1 FPGA Architecture ... 2

1.1.2 Block Random Access Memory ... 3

1.1.3 Benefits and Drawbacks of FPGA Usage ... 4

1.2 Built-In Self-Test.. 5

1.2.1 Pros and Cons of a BIST Approach .. 6

1.2.2 BIST within FPGAs .. 8

1.3 Thesis Statement .. 9

Chapter 2 Background Information ... 10

2.1 Fault Modeling ... 10

2.2 Random Access Memories ... 13

2.2.1 SRAM Faults .. 16

vi

2.2.2 RAM Test Algorithms .. 17

2.3 Virtex-5 Architecture ... 28

2.3.1 Virtex-5 Configurable Logic Blocks .. 28

2.3.2 Virtex-5 Block RAMs ... 30

2.4 Virtex-4 Block RAM BIST .. 36

2.4.1 Dedicated Carry Chain .. 37

2.4.2 TPG Architecture .. 39

2.5 Thesis Statement .. 47

Chapter 3 Virtex-5 Block RAM BIST ... 48

3.1 Virtex-5 RAM BIST... 48

3.2 TPG Design and Implementation ... 49

3.2.1 BRAM ... 50

3.2.2 ECC ... 51

3.2.3 FIFO .. 52

3.2.4 FIFOECC .. 54

3.2.5 CASC .. 55

3.2.6 Test Configurations Summary .. 56

3.3 ORA Design ... 57

3.3.1 ORA Comparison Routing .. 58

3.4 BIST Implementation ... 65

3.4.1 Cascade Routing ... 67

3.5 Programming Tools .. 70

3.6 Configuration File Generation ... 71

vii

3.6.1 BIST Generation Program .. 72

3.6.2 Modification Program ... 72

3.7 Results and Analysis .. 73

3.7.1 Fault Detection .. 75

3.7.2 File Size Reduction ... 79

3.7.3 Timing Analysis .. 82

Chapter 4 Summary and Conclusions ... 86

4.1 Summary of Virtex-5 BRAM BIST ... 86

4.2 Future Work ... 87

Bibliography ... 88

Appendix ... 91

viii

List of Tables

Table 2-1 – 4-Bit BDS Components ... 21

Table 2-2 – 4-Bit BDS Sequence .. 21

Table 2-3 - CLB Resources in Virtex-5 [7] .. 28

Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7] .. 31

Table 2-5 – Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7] ... 31

Table 2-6 - FIFO Input and Output Ports [7] .. 34

Table 2-7 – Virtex-5 FIFO Port Aspect Ratio [7] ... 35

Table 2-8 – Virtex-5 FIFO Data Depth [7] ... 35

Table 2-9 - BRAM BIST Configurations [7] .. 41

Table 2-10 – Proposed Control String Values for BRAM TPG [3] ... 42

Table 2-11 - Proposed Configuration Settings for BRAM TPG [3] ... 42

Table 2-12 – Proposed Control String Values for ECC TPG [3] ... 44

Table 2-13 – Proposed Configuration Settings for ECC TPG [3] .. 45

Table 2-14 – Proposed Configuration Settings for FIFO TPG [3] ... 46

Table 2-15 – Proposed Configuration Settings for FIFOECC TPG [3].. 47

Table 3-1 - Final BRAM Configuration Settings ... 51

ix

Table 3-2 - Final ECC Configuration Settings ... 52

Table 3-3 - Final Control String Values for ECC TPG .. 52

Table 3-4 – Final FIFO Test Phases and Control String Values... 53

Table 3-5 – Final Configuration Settings for FIFO TPG .. 53

Table 3-6 - Final FIFOECC Test Phases .. 55

Table 3-7 – Final Configuration Settings for FIFOECC TPG .. 55

Table 3-8 – Final CASC Test Phases .. 56

Table 3-9 – Final Configuration Settings for CASC TPG .. 56

Table 3-10 - BIST TPG Resource Usage .. 56

Table 3-11 – Complete Virtex-5 BIST Procedure .. 57

Table 3-12 - Compared Outputs for Configuration Modes .. 58

Table 3-13 - ORA Input Routing Tables .. 61

Table 3-14 - Complete BRAM BIST .. 75

Table 3-15 - BIST Configuration File Sizes for LX30 ... 80

x

List of Figures

Figure 2-1 – Gate Level Stuck-at Fault Behavior for AND Gate ... 12

Figure 2-2 - Two-Dimensional SRAM Model [6] .. 14

Figure 2-3 - Functional model of a multi-port memory [6] .. 15

Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7] .. 29

Figure 2-5 - Virtex-5 Dual-Port Flow [7] ... 30

Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7] .. 33

Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7] ... 36

Figure 2-8 - BRAM BIST Architecture [2] .. 37

Figure 2-9 - Comparison Based ORA with Carry Chain [3] .. 38

Figure 2-10 - Additional Dummy ORAs [3] ... 38

Figure 2-11 - Iterative OR-Chain Functionality [3] .. 39

Figure 2-12 - Shift Register Control String for BRAM TPGs [3] .. 43

Figure 2-13 - Placement and Routing on TPGs in LX30 .. 43

Figure 3-1 - BRAM TPG Area Constraints in LX30 .. 50

Figure 3-2 - ORA Map .. 60

Figure 3-3 – BRAM BIST Configuration Routed on Virtex-5 LX30 .. 66

xi

Figure 3-4 – Virtex-5 Cascade ORA Routing... 69

Figure 3-5 - BIST Configuration Process [16] ... 71

Figure 3-6 - V5RAMBIST Command Line Instructions .. 72

Figure 3-7 - V5RAMMOD Command Line Instructions ... 73

Figure 3-8 – BRAM Configuration Mode Fault Detections ... 77

Figure 3-9 – Entire BIST Sequence Fault Detections ... 78

Figure 3-10 - BIST Configuration File Size Reduction for LX30 .. 81

Figure 3-11 - Maximum BIST Clock Frequencies for LX30T ... 84

Figure 3-12 – Maximum BIST Clock Frequency for select Virtex-5 Devices 85

xii

List of Abbreviations

ASIC Application Specific Integrated Circuit

BDS Background Data Sequence

BIST Built-In Self-Test

BRAM Block Random Access Memory

BSCAN Boundary Scan

CASC Cascade Configuration Mode

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide Semiconductor

CUT Circuit Under Test

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

ECC Error Correction Code

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Design Language

I/O Input/Output

xiii

LSB Least Significant Bit

LUT Look Up Table

MPGA Mask Programmable Gate Array

MSB Most Significant Bit

NMOS N-type Metal-Oxide Semiconductor

ORA Output Response Analyzer

PIP Programmable Interconnect Point

RAM Random Access Memory

SOC System-on-Chip

SRAM Static Random Access Memory

TDI Test Data In

TDO Test Data Out

TEMAC Tri-mode Ethernet Media Access Controller

TPG Test Pattern Generator

VHDL VHSIC Hardware Design Language

VHSIC Very-High-Speed Integrated Circuit

VLSI Very Large Scale Integration

1

Chapter 1 Introduction

1.1 Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit that can be

dynamically programmed by a user in the field rather than having permanent programming from

the manufacturer, like such devices as Mask Programmable Gate Arrays (MPGAs) or

Application Specific Integrated Circuits (ASICs) [4]. FPGAs contain programmable logic

blocks that allow a user to designate the functionality of the device with both combinational

logic using logic gates such as AND or XOR gates and sequential logic using elements such as a

flip-flop [4]. Many FPGAs also contain embedded components that provide users with a

convenient method for implementing more complicated circuits. Commonly included embedded

devices include digital signal processors (DSPs), random access memories (RAMs), and

embedded microprocessors [4]. FPGAs also contain configurable interconnection resources that

are user programmable. The configurable routing allows circuit elements to be placed and

routed in accordance with the user designed circuit. The functional behavior for a specific

design is usually created using a Hardware Design Language (HDL) such as VHDL or Verilog

which is then used to generate a configuration for the device [4].

2

FPGAs gained popularity due to their versatility for implementing circuit designs. FPGA

circuits can be designed, implemented, and tested very quickly and are also very forgiving of

design error because they can be easily reprogrammed repeatedly [4]. The complexity of FPGAs

has grown from only a few thousand logic gates in their infancy to tens of millions of logic gates

in modern chips [4].

An ASIC implementation is generally much smaller in size and much better in performance

than an FPGA implementation. The circuit design of an ASIC cannot be modified once it is

manufactured and must be specially designed. An ASIC circuit is expected to have a time delay

that is four to five times less than that of the same circuit implemented on an FPGA while also

consuming on average 14 times less power [5]. However, FPGAs offer the ability to reprogram

that an ASIC cannot. A design error in an ASIC means that an entirely new ASIC device must

be created where a design error in an FPGA only means the design must be modified and re-

downloaded into the FPGA. Use of an FPGA allows a designer to save time and costs

throughout the design process and reduces the penalty of having a design error in a prototype [4].

The extent to which an FPGA is programmable eliminates it from being able to compete with

ASICs and MPGAs in size and performance.

1.1.1 FPGA Architecture

The components generally contained within an FPGA are [4]:

 Configurable Logic Blocks (CLBs)

 Input/Output (I/O) Cells

 Programmable Interconnect Points (PIPs) and Wire Segments

 Special Cores

3

Each CLB is usually made up of multiple Look Up Tables (LUTs) and flip-flops. The LUTs

contain the binary data necessary to implement the combinational logic truth table of the

programmed design and the flip-flops are used in the implementation of sequential logic [4].

The I/O Cells allow the devices to connect peripherally, and special cores in the form of

microprocessors, RAMs, and DSPs are commonly included. All of these components are

interconnected internally by utilizing a system of PIPs and wire segments for signal connection.

1.1.2 Block Random Access Memory

With the inclusion of specialized cores, FPGAs have started to resemble a full System-

On-Chip (SOC) [4]. These specialized cores such as RAMs, DSPs, and microprocessors make

memory and arithmetic implementations less cumbersome to the user and reduce the

programmable logic resources demanded [4].

The two types of RAMs are Dynamic Random Access Memory (DRAM) and Static

Random Access Memory (SRAM) [6]. The Block Random Access Memories (BRAMs) within

a Xilinx FPGA are classified as SRAM. These memories require more area than DRAMs, but

provide the fastest possible access speed of any RAM (usually 2 nanoseconds) [6]. SRAM cells

have two separate stable states used to represent logic level zero and one [6]. The cells retain

their state as long as they remain connected to a power supply and do not require a periodical

refresh. However, the memory is volatile meaning if the power supply is disconnected from the

cell the logic state will be lost.

The RAMs contained in a Virtex-5 FPGA can be configured to operate with a data width

from 1 bit to 72 bits corresponding with an address space ranging from 32K to 512 data words

[7]. The number of BRAMs supplied in a given Virtex-5 device spans from 26 in the smallest

4

device to 516 in the largest device [7]. The memories can be configured to function in different

operational modes including the ability to be connected together in order to extend the address

space to 64K. The BRAMs also have the ability to function with one address port and one data

port in single port mode, or they are capable of using a pair of address ports and a pair of data

ports to function in dual port mode. In dual port mode each port of the BRAM may be used to

write or read from the memory independently and concurrently as long as they are not attempting

to write to the same address simultaneously [7]. The BRAMs may also be configured to operate

in a First In, First Out (FIFO) mode. When operating in the FIFO mode the BRAM functions

similar to a queue line that is storing data. In this mode the BRAM has separate read and write

clocks. When a write operation is triggered a data word will be added to the end of the queue,

and when a read operation is triggered the data word at the front of the queue will be retrieved.

Each BRAM also contains Error Correction Code (ECC) circuitry which is capable of correcting

any single-bit error in the memory or detecting any double-bit error using Hamming code [7].

1.1.3 Benefits and Drawbacks of FPGA Usage

Use of FPGAs in circuit design and implementation gives the designer many advantages

but also has a few drawbacks. The advantages of FPGA use stem mostly from its flexibility [4]:

 User programmability and re-programmability

 Accelerated design implementation and prototyping process

The user programmability and re-programmability gives a designer the ability to easily create

a physical prototype of a digital circuit [4]. This allows users to comprehensively test their

design before spending time and money to have an ASIC created for the circuit, and eliminates

5

much of the risk of having an unanticipated error in the circuit show up in the ASIC that will

require refabrication of the entire device.

There are also some distinct disadvantages to FPGA usage compared to using an ASIC [4]:

 Higher production cost

 Higher power consumption

 Lower performance

 Volatile configuration memory

FPGA production is efficient for a low to medium volume design and expedited time-market-

systems [4]. However when mass production of a device is needed the cost of an FPGA cannot

compete with the cost of an equivalent ASIC [8].

1.2 Built-In Self-Test

As the complexity of Very Large Scale Integration (VLSI) devices continues to increase, the

need for an efficient and economical testing method such as Built-In Self-Test (BIST) grows as

well [4]. The general idea behind BIST is to design a circuit that is capable of verifying itself as

being either faulty or fault-free. A standard BIST architecture contains three major components

[9]:

 Test Pattern Generator (TPG)

 Circuit Under Test (CUT)

 Output Response Analyzer (ORA)

The TPG serves as a stimulus to the CUT, providing a set of inputs that will cause the CUT

to generate an expected output. The resulting data from the CUT is analyzed by the ORA and is

6

simplified into some sort of pass/fail status depending on whether the ORA saw the expected

output or an erroneous one [9]. Other components may be needed for system level

implementation of the BIST such as a testing controller and input isolation circuitry. The BIST

circuitry may contain an output bit to indicate success or failure to an external device and

optionally a BIST done flag to indicate a finished testing sequence. The effectiveness of a BIST

test is determined by the testing time and the number of faults that are detectable compared with

the total amount of faults possible in a system known as fault coverage.

1.2.1 Pros and Cons of a BIST Approach

Using a BIST approach has many advantages associated with it when compared to other

testing approaches such as external testing. These advantages include, but are not limited to [9]:

 Vertical Testability

 High Diagnostic Resolution

 At-Speed Testing

 Reduced Amount of External Testing Equipment

 Reduced Test Development Time and Effort

 Reduced Manufacturing Test Time and Cost

 Reduced Time-to-Market

Vertical testability means that a BIST can be applied to a device in any stage of production to

determine its validity. A BIST that is applied to a system that gives an incorrect result reveals

the system as faulty. It also inherently shows that a CUT associated with the device has faulty

operation. Additionally, many times the specific faulty CUT can be identified, meaning that

BIST has a high diagnostic resolution [9]. BIST is also able to use a system‟s internal clock for

7

at-speed testing which enables it to detect delay faults that are only visible when operating at

system speed. The need for expensive external testing equipment is also eliminated. The only

external I/O pins that must be provided are power, ground, a method for initializing the BIST, a

method for retrieving BIST results, and a clock [9]. The savings in time and cost on test

development resulting from internal TPG and ORA circuitry outweigh additional BIST design

time in most cases and, consequentially, a reduced overall time-to-market [9].

Using a BIST approach also has drawbacks [9]:

 Larger Area Overhead

 Performance Penalties

 Additional Design Time and Effort

 Additional Project Risk

The additional circuitry that must be included in the design to implement the BIST means

that the overall chip area will be larger, and therefore there will be a higher cost per chip as well

as an increased area for defects to occur. The incorporation of the BIST circuitry may also cause

the circuitry of the CUT to be spread out, or it may introduce additional gates into the CUT‟s

critical path [9]. These cases will result in increased signal delay due to a longer routing path

and increased gate delay which can be largely significant in some systems and negligible in

others [9]. Additional time must also be taken to design and implement the BIST circuitry and

testing technique. When using BIST another problem arises in design verification. By adding

another entire system on top of the already existing system the project risk is increased as proper

function of both of these systems is essential. Despite these drawbacks case studies have shown

8

that the benefits of using a BIST approach are more than enough to account for the costs incurred

in a majority of scenarios [9].

1.2.2 BIST within FPGAs

Using a BIST approach offers even more of an advantage due to the programmable

nature of FPGAs, making the BIST option even more enticing. In contrast, the implementation

of a BIST for an ASIC requires design of the circuitry as well as additional components being

added to the ASIC. FPGAs require testing in multiple configurations to achieve a high fault

coverage, meaning the device must be tested in all modes of operation [4]. This causes the

testing time to become mainly a function of the number of configurations that must be tested and

also the configuration time. In order to optimize the testing time it is critical that the number of

test configurations is kept at a minimum [4].

In an FPGA testing scenario the device inherently provides an abundance of configurable

hardware that can be utilized for implementing BIST circuitry. There will be no area overhead

or performance penalties present in the device after testing since the configuration is erasable [4].

However, the drawbacks associated with designing a functional test circuit are still applicable.

The testing circuitry consisting of TPGs and ORAs is created by programming the CLBs, I/O

cells, and routing resources within the FPGA in order to detect faults in the various components

of the device [4]. This approach may be used to detect faults within CLBs, routing resources,

and the specialized cores which may be found on the chip [4]. With respect to FPGAs, a BIST

approach proves to be an extremely practical and efficient testing approach for verifying the

integrity of the device and its individual components. The BIST method gains most of its

effectiveness from the inherently configurable nature of FPGAs and its ability to have no effect

on the device after testing has concluded.

9

1.3 Thesis Statement

This thesis will detail a testing approach derived from the BIST approach for FPGA

embedded memory resources proposed by Garimella in [1] and later referenced and improved

upon by Milton in [2] and later by Garrison in [3]. These previous FPGA BIST approaches were

targeted at BRAMs contained within the Xilinx Virtex [1], Virtex-2 [1], and Virtex-4 [2][3]

series of FPGAs, and an initial proposal for testing of the BRAMs within the Xilinx Virtex-5

series of FPGAs was provided by Garrison in [3]. The main focus of this thesis will be to

implement, expand, and improve upon Garrison‟s initial proposal for BIST testing of BRAMs

embedded in the Xilinx Virtex-5 devices and to detail a complete BIST approach and

implementation for these memories.

This thesis will discuss the background material for the BRAM BIST in Chapter 2.

Chapter 3 will detail the testing configurations for the BIST as well as the implementation of the

BIST within the FPGA architecture and the method of fault injection used to measure the

effectiveness of the test. Chapter 4 will present a summary and areas in which future research

may be made to improve this testing approach.

10

Chapter 2 Background Information

 This chapter will begin by discussing general fault detection techniques along with the

basics of fault modeling within a circuit. Next, the circuitry and fault types that may be present

within Static Random Access Memories (SRAMs) will be detailed. Then the different test

algorithms used to detect the various types of faults in these memories will be described. The

chapter will then describe the architecture of the Virtex-5 devices along with the embedded

BRAMs and their modes of operation. Finally, the various components of the BIST architecture

will be described along with previously proposed BIST configurations.

2.1 Fault Modeling

In order to test a circuit to determine its integrity a set of input stimuli is applied to the

circuit and the output produced as a result of the stimuli is then compared with the expected

output. A matching pair assumes the circuit as good while mismatched results will expose the

CUT as faulty [9]. The input stimuli that are applied to the CUT during the test are usually a set

of input vectors that are selected in order to ensure that the CUT performs as expected with no

structural or functional faults [9].

 In order to have an effective evaluation of the quality of a set of tests for a device and to

evaluate the effectiveness of a BIST as it applies to the device, fault models must be used for

11

emulation of faults or defects during simulation [9]. In order for a fault model to be beneficial it

must meet two requirements [9]:

 The model provides an accurate representation of the behavior of actual defects that may

occur during the fabrication, manufacturing, and system operation of the device.

 The model must be computationally efficient.

These two requirements are often contradicting and make the creation of useful fault models

difficult. Some of the most widely used fault models are the ones that can be emulated in a

simulation environment efficiently and that provide close approximations of actual faults which

may occur in a physical device are [9]:

 Gate-Level Stuck-at Faults

 Transistor-Level Faults

 Bridging Faults

 Delay Faults

The gate-level stuck fault model allows any of the inputs or outputs of a gate to be either

stuck-at-0 (sa0) or stuck-at-1 (sa1). The behavior of the gate is then determined by treating the

gate input or output which is being tested as either sa0 or sa1 as being disconnected and tied to

either a logic zero or a logic one [9]. The results of a fault-free AND gate are compared with the

results from each case of a sa0 or sa1 that may occur with that particular gate in the Figure 2-1.

The cases that will be detected as faults are highlighted with grey. In the case of an AND gate

each fault contains an instance where the output of the faulty gate differs from that of the fault

free gate so each fault will be detected if sufficient input combinations are tested [9].

12

AND A B Z

AB Z sa0 sa1 sa0 sa1 sa0 sa1

00 0 0 0 0 0 0 1

01 0 0 1 0 0 0 1

10 0 0 0 0 1 0 1

11 1 0 1 0 1 0 1
Figure 2-1 – Gate Level Stuck-at Fault Behavior for AND Gate

Only gate-level fault models are required to simulate N-type metal-oxide-semiconductor

(NMOS) circuits. However when using Complementary Metal-Oxide Semiconductor (CMOS)

circuits, a transistor-level fault model is needed to obtain accurate results [9]. Bridging fault

models are used to emulate shorted wire segments within a circuit [9]. Delay fault models are

used to represent the case of a circuit that performs logically correct operations but does not meet

the timing requirements [9].

 When performing fault emulation a set of input vectors are applied to a circuit for each of

a series of faults that have been artificially injected into the circuit [9]. With the fault injected

into the circuit, the circuit will behave as if this fault has actually occurred. The output of this

circuit will then be compared with the output of a fault free circuit. If a mismatch between the

two outputs is found using the test vectors then the fault injected circuit has produced an

erroneous result and the fault is considered to be detected [9]. If the complete set of test vectors

is applied to the pair of circuits without a mismatch occurring then the fault is considered to be

undetected [9]. The results of applying the entire set of test vectors to each of the possible faults

in a circuit will determine the fault coverage of the test vectors. The fault coverage for a set of

A

B
Z

13

vectors is a representation of the effectiveness of those vectors in detecting faults [9]. The

calculation for determining fault coverage is given by [9]:

2-1

2.2 Random Access Memories

Static Random Access Memories (SRAMs) are made up of bi-stable memory cells which

are capable of holding either a logic zero state or a logic one state. A memory cell holds only a

single bit of information and will retain its value as long as the power remains connected to the

cell without the need for a periodic refresh. However, the cells are volatile and will not retain

their logic value after the power has been disconnected [6]. A general SRAM will contain input

connections for controls, addresses, and data-in as well as output connections for data-out [6]. A

common model for representing an SRAM is the two-dimensional model shown in Figure 2-2.

This model displays the basic inputs for controls, addresses, and data-in and outputs for the data-

out bits [6]. The data-in and data-out ports will be N bits wide where N will be the width of the

data words in the RAM.

14

Figure 2-2 - Two-Dimensional SRAM Model [6]

 The RAMs contained within the Virtex-5 FPGAs function as multi-port SRAMs. A

multi-port RAM has multiple input and output ports. These ports may be read-only, write-only,

or capable of both read and write operations [6]. The detailed functional operating model of an

SRAM can be seen in Figure 2-3. This model illustrates how the row and column decoders will

be used in order to select the memory location [6]. The control circuitry, read/write circuits, and

data registers are then used to either extract or insert bits into the array [6]. In the multi-port

SRAM the ports are able to read and write simultaneously in all but a few circumstances in

which ports may be trying to read and write to the same address [6]. The ports share a common

memory cell array that is constructed of individual memory cells. The address inputs are used by

the row and column decoders in order to select a cell in the memory on which the read or write

operation will be executed. When a write instruction is executed the data word on the data-in

pins is written into the SRAM memory cells at the selected address. When a read instruction is

Memory

cell array

Memory Ports

C
o
n
tro

ls

A
d
d
resses

D
ata-in

D
ata-o

u
t

N N

Row Access

C
o
lu

m
n
 A

ccess

15

executed the data word saved at the selected address is retrieved from the memory and displayed

on the data-out pins [6].

Figure 2-3 - Functional model of a multi-port memory [6]

SRAM

Memory Cell Array

Row

Decoder 0

Read/Write Circuits

and Data Registers

Read/Write Circuits

and Data Registers

Data Flow and

Control Circuitry

Data Flow and

Control Circuitry

Column Decoder 0 Column Decoder n

Row

Decoder n

R
o
w

 A
d
d
re

ss
es

A
d
d
re

ss
 0

A
d
d
re

ss
 n

D
at

a-
w

o
rd

 I
n

Column Address

D
at

a-
O

u
t

D
at

a-
w

o
rd

 O
u
t

D
at

a
In

C
o
n
tr

o
l

D
at

a-
O

u
t

D
at

a-
In

C
o
n
tr

o
l

16

2.2.1 SRAM Faults

In order to simplify fault testing in a memory a reduced functional memory model is used

to model the operation of the memory [6]. This reduced model only consists of the address

decoder, the memory cell array, and the read/write logic. These three subsystems are common to

almost all mainstream memory devices [6]. In order to describe failures within a memory a set

of functional fault models is defined. The functional models are described as the difference

between the observed behavior and the expected behavior under a set of performed operations

[6]. This means that to define any fault model two things are needed [6]:

 A list of performed memory operations

 A list of the differences in behavior observed when performing the operations

The behavior of these fault models is described by fault primitives. Each primitive is used in

order to describe a fault and consists of the pattern of inputs used to sensitize the fault and the

resulting faulty behavior [6]. An extremely limited subset of the most relevant primitives is

selected to describe the faulty behavior of the memory rather than testing all functional

specifications [6]. The fault primitives are classified according to four separate criteria, as

follows.

2.2.1.1 Static vs. Dynamic Faults

Static faults are fault primitives which only require a single read or write operation in

order to detect [6]. Examples of static faults are cell values being stuck-at-1 or stuck-at-0.

Dynamic faults require more than a single read or write operation to expose and can be classified

further by the number of operations required [6].

17

2.2.1.2 Simple vs. Linked Faults

Simple faults are faults that are unable to influence each other in any way. However,

when faults are able to influence the behavior of other faults they are classified as linked faults

[6]. This behavior means that linked faults are capable of masking each other [6]. When

masking occurs, the effect of one fault will result in the faulty result of another becoming

unobservable [6].

2.2.1.3 Single-port vs. Multi-port Faults

Single-port faults are fault primitives that only require usage of, at the most, one port of

the RAM. Multi-port faults require the use of two or possibly more ports in order to sensitize the

fault. These faults may be further classified based on the number of ports that are needed [6].

2.2.1.4 Single-cell vs. Multi-cell Faults

A fault is characterized as a single-cell fault if the cell that is used for sensitizing the fault

is also the same cell in which the fault is observed [6]. Multi-cell or coupling faults involve

more than a single cell to sensitize. For multi-cell faults the cell in which the operation is

performed is different than the cell in which the fault is observed [6].

2.2.2 RAM Test Algorithms

In the standard dual-port mode of operation of the BRAMs in Virtex-5 devices, two

known RAM tests are used to test the memories: March s2pf/d2pf and MATS+ [6]. These tests

are executed on the RAM with various port widths in this configuration.

18

The notation that will be used to describe the RAM test algorithms is as follows [6]:

 ↑,↓: Used to indicate the direction traveled through the address space (↕ indicates

that the address space may be traversed in either direction).

 r, w: Used to denote between read and write operations. These characters will be

directly follow by the values to be written or the values expected to be read.

 Each group of operations within parenthesis is known as a march element. All

operations in these parentheses will be performed on a single address.

 Example: ↓ (r0, w1) indicates that the test will traverse the address space from

the maximum address to the minimum. At each location address a Read – 0

operation will be performed followed by a Write – 1 operation.

Some additional notations are used for dual port RAM tests [6]:

 A colon (:) separates operations of the separate ports

 n : Used to indicate that no operation is to be applied on a port.

 - : Used to indicate that any operation may be used, as long as it is not in conflict

(i.e. dual write operations to the same address location with different values)

 n = 0
N-1

: Used to indicate that an operation is performed on either a row or

column range. Where N will be R for a row range and C for a column range.

 The MATS+ algorithm was chosen to be used on the various port widths of this RAM

configuration. It was selected because it is a simple algorithm which can quickly verify the

address and data widths and the programmable address decoding circuitry [4]. MATS+ is order

O(5N) and the full algorithm can be seen in Equation 2-2 [6]. This algorithm is used to test the

19

programmable address and data widths, write modes, the active levels of the clock, port enable,

output register clock, and the set/reset signals [3].

MATS+ =

{↕ (w0);

↑ (r0, w1);

↓ (r1, w0)}

 2-2

When testing word-oriented memories, such as the BRAMs in Virtex-5 devices,

background data sequences (BDS) are needed to detect faults within the memory words. The

number of BDS required for testing a memory can be seen in Equation 2-3 where K is the

number of bits in the data word [4].

2-3

 For example in order to incorporate a 4-bit BDS into the MarchLR algorithm, first

replace all single bit elements in Equation 2-4 with 4-bit words. The r0, r1, w0, and w1 elements

will be replaced with r0000, r1111, w0000, and w1111 respectively. Then by using Equations

2-5 and 2-6 along with Table 2-1 and Table 2-2, the BDS can be constructed using the following

process [10]:

20

MarchLR =

{↕ (w0);

↓ (r0, w1);

↑ (r1, w0, r0, w1);

↑ (r1, w0);

↑ (r0, w1, r1, w0);

↑ (r0)}

 2-4

2-5

 2-6

21

Table 2-1 – 4-Bit BDS Components

Normal Inverse

0000 1111

0101 1010

0011 1100

Table 2-2 – 4-Bit BDS Sequence

i D

0 0000

1 1111

2 0000

3 0101

4 1010

5 0101

6 0011
7 1100

8 0011

1. Starting with i = 0 in Table 2-2, use Equation 2-5 to get and the resulting

march element ↑ .

2. Using i = 1, the equation results in and the next march element is

 ↓ .

3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the first row of Table

2-1 to the second row. Therefore Equation 2-6 is used to create the march element rather

than Equation 2-5. The resulting equation is and the march element will

be ↑ . When a transition such as this occurs i will be

incremented by 2.

4. Using i = 4 Equation 2-5 is used because there is no transition of rows between i = 4 and i

= 5. The resulting equation will be and the march element will be

 ↓ .

5. Using i = 5, Equation 2-6 will be used due to the transition between i = 5 and i = 6, which

22

results in the equation and the march element

 ↑ .

6. Using i = 6, Equation 2-5 will be used to get and the march element will be

 ↓ .

7. The final march element will be a read operation of the final i value: ↑ .

The resulting MarchLR w/4-bit BDS algorithm is O(35N). However, the seventh and eight

march elements of this generated test algorithm repeat march elements contained within the

initial MarchLR algorithm [10]. In order to optimize our MarchLR w/BDS algorithm we may

eliminate these duplicated elements and we will be left with the optimized algorithm which is

O(30N). The optimized algorithm is shown in Equation 2-7 [10].

23

MarchLR w/4-bit BDS =

{↕ (w0000);

↓ (r0000, w1111);

↑ (r1111, w0000, r0000, r0000, w1111);

↑ (r1111, w0000);

↑ (r0000, w1111, r1111, r1111, w0000);

↑ (r0000, w0101, w1010, r1010);

↓ (r1010, w0101, r0101);

↑ (r0101, w0011, w1100, r1100);

↓ (r1100, w0001, r0011);

↑ (r0011)}

 2-7

The March Y algorithm is used in order to test the programmable address decoding circuitry

of the BRAM [4]. This algorithm will also detect destructive read faults within the BRAM [4].

The March Y algorithm is order O(8N) and can be seen in Equation 2-8 [4]. In order to test the

FIFO mode of operation, as well as the programmable flags in this mode, the March X algorithm

is used [4]. This algorithm is O(6N) and is shown in Equation 2-9 [4].

24

March Y =

{↕ (w0);

↑ (r0, w1, r1);

↓ (r1, w0, r0);

↑ (r0)}

2-8

March X =

{↕ (w0);

↑ (r0, w1);

↓ (r1, w0);

↑ (r0)}

2-9

 In order to fully test the programmable “almost” full and “almost” empty in the First-In-

First-Out (FIFO) mode of operation the RAM must be reconfigured multiple times as described

in [4]. The steps in the FIFOX algorithm are shown below:

Step 1. Reset the FIFO, check that Empty flag is active

Step 2. Repeat N times: write FIFO with all 0’s, check that Empty flag goes inactive after

first write cycle, Full flag goes active after last write cycle, and that Almost Empty flag

25

goes inactive and Almost Full flag goes active at the appropriate points in the sequence.

Perform one additional write if the FIFO has a Write Error signal to indicate an

attempted write when the FIFO is full.

Step 3. Repeat N times: read FIFO expecting all 0’s and write FIFO with all 1’s, check

that Full flag toggles after each read and write cycle.

Step 4. Repeat N times: read FIFO expecting all 1’s and write FIFO with all 0’s, check

that Full flag toggles after each read and write cycle.

Step 5. Repeat N times: read FIFO expecting all 0’s, check that Full flag goes inactive

after first read cycle, Empty flag goes active after last read cycle, and that Almost Empty

flag goes active and Almost Full flag goes inactive at the appropriate points in the read

sequence. Perform one additional read if FIFO has a Read Error signal to indicate an

attempted read when the FIFO is empty.

The March s2pf/d2pf algorithms were chosen because they are able to detect all realistic

single and double addressing faults within a dual port RAM [6]. March s2pf is order O(14N),

and March d2pf is order O(9N) where N represents the number of addresses in the memory. The

March s2pf and d2pf algorithms may be seen in Equation 2-10 and 2-11 respectively [6]. These

algorithms are responsible for testing the dual-port functionality of the BRAMs [6].

26

March s2pf =

{↕ (w0 : n);

↑ (r0 : r0, r0: -, w1 : r0);

↑ (r1 : r1, r1 : -, w0: r1);

↓ (r0 : r0, r0 : -, w1 : r0);

↓ (r1 : r1, r1 : -, w0 : r1);

↓ (r0 : -)}

2-10

March d2pf =

{↕ (w0 : n);

↑ c = 0
C-1

 (r = 0
R-1

 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c));

↑ c = 0
C-1

 (r = 0
R-1

 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c))}

 2-11

 The ECC (Write) and ECC (Read) algorithms both use an ECC testing algorithm

described in [4] which achieves 100% coverage of an XOR parity tree circuit which the ECC

circuitry is surmised to be. The ECC Write algorithm is responsible for testing the parity

generation circuitry while the ECC Read algorithm is responsible for testing the error detection

and correction circuitry [4].

27

ECC (Write) =

All 0‟s; walk 1-thru-0‟s

All 1‟s

Walk two 1‟s-thru-0‟s

2-12

ECC (Read) =

Output of ECC generate vectors

Init: Walk 1-thru-0‟s; all 1‟s; all hamming values w/data = 0‟s

Init: Walk two 1‟s-thru-0‟s

(Note: Init indicates that the test vectors are initialized in the ECC RAM during download)

2-13

28

2.3 Virtex-5 Architecture

This section will detail the structural architecture of the Virtex-5 devices. The

programmable logic resources available to the user will be discussed along with information

about the design and functionality of the BRAMs contained in the devices.

2.3.1 Virtex-5 Configurable Logic Blocks

The primary resources in the Virtex-5 for implementing sequential and combinational

logic circuits are the Configurable Logic Blocks (CLBs) [7]. The resource count within these

CLBs is shown in Table 2-3. Each CLB contains a pair of slices. These two slices are not

interconnected and are arranged in two columns containing a dedicated carry chain as

summarized in Figure 2-4. The slices are also connected to a switching matrix, granting them

access to the general routing matrix [7].

Table 2-3 - CLB Resources in Virtex-5 [7]

Component Virtex-5 CLB

Slices 2

Look-Up-Tables 8

(6-input)

Flip-Flips 8

Arithmetic and Carry Chains 2

Distributed RAM 256-bits

Shift Registers 256-bits

29

Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7]

30

2.3.2 Virtex-5 Block RAMs

Figure 2-5 - Virtex-5 Dual-Port Flow [7]

The BRAMs contained within Virtex-5 devices are capable of operating in two main

modes, single-port and dual-port [7]. The inputs and outputs available to the BRAMs can be

seen in Figure 2-5 [7]. Each RAM may be used as be used as two separate 18 K-bit RAMs or as

a single 36 K-bit RAM [7]. The RAMs contain two input ports, Port A and Port B. These two

ports may be used independently to synchronously read data from and write data to the RAM.

The RAMs may be configured to use one of three write configurations [7]. In the WRITE_FIRST

mode, data will be immediately displayed on the output of the RAM as it is written. The

31

READ_FIRST mode will display the previous contents of the RAM on the output as new data is

written. Finally, the NO_CHANGE mode will leave the outputs unchanged upon a write

operation. When using this mode the data output remains the last read data and is unaffected by

write operations [7]. Additionally, the RAMs may be used in either a single-port or dual-port

RAM mode [7]. This option is available whether the RAMs are being used as a single 36 K-bit

memory or two independent 18 K-bit memories [7]. The RAMs are also able to be configured

with various port sizes and depths. The different configuration types available to be used for the

independent 18 K-bit configurations are shown in Table 2-4 [7]. The configuration types

available for use with the single 36 K-bit configurations are shown in Table 2-5 [7]. An option is

also provided to enable a pipeline register on the output of a RAM, allowing a higher operating

frequency while sacrificing an additional clock cycle of latency [7].

Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7]

Address

Width

Address

Bits

Memory Depth Data

Width

Data-In/Out

Bits

Data-In/Out

Parity Bits

14 13:0 16K 1 0 n/a

13 13:1 8K 2 1:0 n/a

12 13:2 4K 4 3:0 n/a

11 13:3 2K 9 7:0 0

10 13:4 1K 18 15:0 1:0

9 13:5 512 36 31:0 3:0

Table 2-5 – Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7]

Address

Width

Address

Bits

Memory Depth Data

Width

Data-In/Out

Bits

Data-In/Out

Parity Bits

15 14:0 32K 1 0 n/a

14 14:1 16K 2 1:0 n/a

13 14:2 8K 4 3:0 n/a

12 14:3 4K 9 7:0 0

11 14:4 2K 18 15:0 1:0

10 14:5 1K 36 31:0 3:0

9 14:6 512 72 63:0 7:0

32

The RAMs also may be used with ECC parity bits. In this mode of operation an 8-bit

Hamming code is generated by the ECC circuitry present with each RAM which can be seen in

Figure 2-6 [7]. The ECC circuitry may be used fully or in an encoder-only or decoder-only

mode. The configurable EN_ECC_WRITE option allows the ECC bits to be provided on the

parity input pins of the RAM or optionally generated by the included encoding circuitry.

Similarly the EN_ECC_READ option may be used to bypass the decoding and correction

circuitry [7]. This ECC circuitry is capable of detecting and correcting any single-bit error or

detecting any double-bit error without correction in the data being read from the RAM [7].

33

Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7]

 The RAMs may also be configured in a First-In-First-Out (FIFO) mode of operation. In

this mode of operation the FIFO is equipped with the inputs and outputs shown in Table 2-6 [7].

The FIFO provides separate read and write enables as well as individual clocks for each

operation. The read and write addresses are displayed on outputs, and there are also flags

indicating a read error or a write error. A pair of flags indicating that the FIFO is full or empty is

present. Also, the FIFO features configurable almost full and almost empty flags which are

controlled via a 13-bit hexadecimal value [7]. A configuration option called

34

FIRST_WORD_FALL_THROUGH also optionally allows the first word written into the FIFO to

be immediately displayed on the output. If this option is selected the capacity of the FIFO will

be increased by one [7]. The FIFO may also be used with the same ECC circuitry that is

available to the standard BRAM configuration. This allows any single bit error in the FIFO data

to be detected and corrected or any double bit error in the FIFO data to be detected [7]. The

various port aspect ratios and memory depths that are available for use in this mode are shown in

Table 2-7 [7]. Additionally, the actual capacity of the FIFO when it is used with these different

port aspect ratios is shown in Table 2-8 [7].

Table 2-6 - FIFO Input and Output Ports [7]

 Port Width Description

Inputs

DI 32 Data input

DIP 4 Parity-bit input

RDEN 1 Read enable

RDCLK 1 Read domain clock

WREN 1 Write enable

WRCLK 1 Write domain clock

RST 1 Asynchronous reset

Outputs

DO 32 Data output

DOP 4 Parity-bit output

WRCOUNT 13 Data write pointer

RDCOUNT 13 Data read pointer

FULL 1 Full flag

EMPTY 1 Empty flag

ALMOSTFULL 1 Configurable almost full flag

ALMOSTEMPTY 1 Configurable almost empty flag

RDERR 1 Read error flag

WRERR 1 Write error flag

35

Table 2-7 – Virtex-5 FIFO Port Aspect Ratio [7]

18K-bit Mode 36K-bit Mode

Memory Depth Data Width Memory Depth Data Width

4K 4 8K 4

2K 9 4K 9

1K 18 2K 18

512 36 1K 36

- - 512 72

Table 2-8 – Virtex-5 FIFO Data Depth [7]

Data Width Block RAM

Memory

FIFO Capacity

18K-bit 36K-bit Standard FWFT

- 4 8192 8193 8194

4 9 4096 4097 4098

9 18 2048 2049 2050

18 36 1024 1025 1026

36 72 512 513 514

 Finally, the BRAMs are able to be configured in a cascade mode which allows two

adjacent RAMs to be connected together and used as one larger RAM. The circuitry which

allows this is shown in Figure 2-7 [7]. This option is available for any two adjacent RAMs in a

column on the device [7]. The only port width available for this operating mode is 64K x 1-bit

where two 32K x 1-bit RAMs are combined. The upper RAM has its RAM_EXTENSION

configuration bit set to UPPER (0) and the lower ram has its RAM_EXTENSION bit set to

LOWER (1) [7]. Output data is only displayed on the upper RAM. The data output of the RAM

configured as the lower RAM is routed into a multiplexer by connecting the CASCADEIN and

CASCADEOUT of the two RAMs as shown in Figure 2-7 [7]. This multiplexer is controlled by

address bit A15 which selects the appropriate output [7].

36

Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7]

2.4 Virtex-4 Block RAM BIST

This section will discuss the FPGA RAM BIST procedures developed by Milton in [2] and

by Garrison in [3] for Virtex-4 which are expanded upon in this work for a Virtex-5

implementation. Milton‟s original approach used the CLBs available within the FPGA to create

the TPG and ORAs while the BRAMs served as the Circuits Under Test (CUTs). Milton also

used a pair of identical TPGs which provide test vectors to alternating RAMs in the columns [2].

The ORAs are implemented using a circular comparison based approach that results in an

increase in fault detection capability and diagnostic resolution [2]. These ORAs are placed in the

CLB columns which neighbor the BRAMs. A layout of Milton‟s BIST architecture along with

the TPG, CUT, and ORA connections can be seen in Figure 2-8 [2].

37

Figure 2-8 - BRAM BIST Architecture [2]

2.4.1 Dedicated Carry Chain

Milton‟s original ORA design was improved upon by Dutton in [11] and later used by

Garrison in [3] to take advantage of the built in carry logic provided in the Configurable Logic

Blocks (CLBs) of Virtex-4 and Virtex-5 devices. In order to implement this, the ORA circuitry

was modified to that shown in Figure 2-9 [3]. To indicate a fault has been detected a Logic 0 is

latched into the flip-flop [3]. This bit is used to select the input of a multiplexor in the carry

chain which in turn provides a Logic 1 on the carry-out in the case of a failure. Alternatively,

the input that is provided from the previous multiplexor via carry-in is forwarded to the carry-

out [3].

ORAs ORAs

BRAMs BRAMs

TPG0 TPG1

38

Figure 2-9 - Comparison Based ORA with Carry Chain [3]

 In order to ensure the propagation of the test result through the entire built-in carry logic,

several dummy ORAs must be implemented in the ORA columns[3]. This is necessary because

some of the ORA columns do not span the entire height of the FPGA. In this case, the dummy

ORAs are added to the configuration to complete these columns as seen in Figure 2-10. No logic

is implemented in the dummy ORAs aside from the built-in carry chain [3].

Figure 2-10 - Additional Dummy ORAs [3]

B

R

A

M

Dummy

ORAs

ORAs

D

Ai

Bi

Clk

 0 1

1

carry-out

carry-in

39

 The functionality of the carry logic can be expressed as an iterative OR-chain as seen in

Figure 2-11 where the boxes containing „O‟s are the ORAs [3]. If no mismatch is detected

within the ORA then the input from the previous ORA will be selected. If a mismatch is detected

a Logic 1 will be output by the detecting ORA and propagated through the chain [3].

Figure 2-11 - Iterative OR-Chain Functionality [3]

The OR-chain is connected to the boundary scan interface provided on the device, with

the initial input being provided by the Test Data In (TDI) pin. The final output of the chain is

connected to the Test Data Out (TDO) pin of the interface [3]. The OR-chain effectively

provides a single Pass/Fail bit to observe the test result. Once the test has concluded the user is

able to toggle TDI and observe the behavior of TDO [3]. If TDO matches TDI during this

process then no fault has been detected by any of the ORAs, and it is unnecessary to perform a

configuration memory read back [3]. If TDO is observed as being constantly a Logic 1 through

this process, then a configuration memory read back may be performed in order to retrieve the

results from the flip-flops in the ORAs if desired [3]. If TDO is observed as being constantly a

Logic 0 while toggling TDI then it must be assumed that there is a fault within the logic used to

construct the OR-chain meaning TDI and the ORA comparison results are not being properly

propagated.

2.4.2 TPG Architecture

 The original designs for the Virtex-5 BRAM TPGs were proposed by Garrison in [3].

Garrison proposed that four different Xilinx BRAM primitive models be used in developing and

40

testing the TPGs. These models describe the operation of the BRAMs in different configuration

modes and behave exactly as the physical BRAMs in simulation [7]. The TPGs are created with

an aim to test the BRAMs in these modes of operation, and the operation of the TPGs is verified

with these models in simulation. The models for the first four test configurations are as follows

[3]:

1. BRAM (32K + 4K parity) – true dual-port BRAM that supports widths of x1, x2,

x3, x4, x9, x18, and x36.

2. ECC (512 x 72-bit) – simple dual-port BRAM with 64-bit ECC.

3. FIFO (32K + 4K parity) – synchronous/asynchronous FIFO BRAM that supports

widths x1, x2, x4, x9, and x18.

4. FIFOECC (512 x 72-bit) – synchronous/asynchronous FIFO with 64-bit ECC.

2.4.2.1 BRAM TPG

 The TPG proposed by Garrison for testing the RAM in the BRAM configuration is

responsible for testing the dual-port functionality of the BRAM and would require seven

different BIST configurations [3]. The proposed test algorithm, address space, and data width

used for each configuration can be seen in Table 2-9 [7]. The desired test to be run is selected by

a user-supplied control string that is shifted into the TPG using the boundary scan interface as

shown in Figure 2-12 [3]. The values proposed for the control strings for the various tests are

shown in Table 2-10 along with the configuration settings in Table 2-11 [3]. The three Mode bits

in the control string correspond to the BRAM Configuration Number and the Level Control bit

allows us to control the active level for the TPGs [3].

41

Execution of the RAM test algorithms is implemented using a Finite State Machine

(FSM) in a VHDL model for the BRAM TPG as well as the other BIST TPGs. The TPG model

is synthesized using area constraints to restrict the placement of the resources to the smallest area

possible in the lower left hand corner of the device [3]. In the BIST configurations, the TPG

designs will be offset from the bottom left hand corner to achieve the desired placement in the

six CLB columns directly to the right of the rightmost column of BRAMs, excluding the

columns of BRAMs located in a Tri-mode Ethernet Media Access Controller (TEMAC) column

in Virtex-5 devices that contain them [3]. The columns are selected for TPG placement because

they are not used for any other purpose in the Virtex-5 BRAM BIST [3]. In these columns, one

TPG will be placed at the bottom of the device and the other TPG will be placed exactly halfway

up the device [3]. The TPGs are placed in this manner in order to minimize routing distance

from each TPG to alternating BRAMs in columns spanning the entire height of the device. An

example of the TPG placement and routing on the LX30 device may be seen in Figure 2-13.

Table 2-9 - BRAM BIST Configurations [7]

BRAM

Config

Test

Algorithm

Address

Space

Data

Width

1 March s2pf 1K 36

2 March d2pf 1K 36

3

MATS+

2K 18

4 4K 9

5 8K 4

6 16K 2

7 32K 1

42

Table 2-10 – Proposed Control String Values for BRAM TPG [3]

BRAM

Config

Test

Algorithm

Address

Space

Level

Control
Mode 2 Mode 1 Mode 0

Hex

Control

String

1 March s2pf 1K 0 0 0 0 0x0

2 March d2pf 1K 0 0 0 1 0x1

3

MATS+

2K 1 0 1 0 0xA

4 4K 1 0 1 1 0xB

5 8K 1 1 0 0 0xC

6 16K 1 1 0 1 0xD

7 32K 1 1 1 0 0xE

Table 2-11 - Proposed Configuration Settings for BRAM TPG [3]

(a) Settings Part 1

BRAM

Config

Test

Algorithm

DO (A/B)

REG

READ

Width

(A/B)

WRITE

Width

(A/B)

WRITE Mode

(A/B)

SAVE

DATA

1 March s2pf 1 36 36 READ_FIRST FALSE

2 March d2pf 1 36 36 READ_FIRST FALSE

3

MATS+

0 18 18 READ_FIRST FALSE

4 0 9 9 WRITE_FIRST FALSE

5 0 4 4 NO_CHANGE FALSE

6 0 2 2 WRITE_FIRST FALSE

7 0 1 1 NO_CHANGE FALSE

(b) Settings Part 2

BRAM

Config

Test

Algorithm

CLK, EN,

SSR

REGCLK

(A/B)(U/L)

INV

RAM EXT INIT VAL SRVAL

INIT

(A/B)

VAL

1 March s2pf INV NONE AAAA 5555 0

2 March d2pf not INV NONE 5555 AAAA FFFF

3

MATS+

not INV NONE AAAA 5555 0

4 not INV NONE 5555 AAAA FFFF

5 not INV NONE AAAA 5555 0

6 not INV NONE 5555 AAAA FFFF

7 not INV NONE AAAA 5555 0

43

Figure 2-12 - Shift Register Control String for BRAM TPGs [3]

Figure 2-13 - Placement and Routing on TPGs in LX30

TPGs

BSCAN TDI

LEVEL

CTRL

MODE[2]

MODE[1]

MODE[0]

44

2.4.2.2 ECC TPG

 The proposed ECC TPG is responsible for testing the memory core and the ECC read and

write capabilities of the BRAM [3]. By using the largest data width available in this

configuration, all memory elements within the BRAMs may be accessed [3]. This TPG is

implemented using an FSM as well, and the algorithm to be run is also selected using a control

string shifted in via the boundary scan interface. The control values used for selecting the

algorithm are shown in Table 2-12 along with the entirety of the proposed configuration settings

in Table 2-13 [3]. The RAM test algorithm March LR w/72-bit BDS (described in the Appendix)

is used in this configuration since all memory elements are available. The background data

sequence is used to ensure that all intra-word coupling faults will be detected [6]. The

configurations labeled ECC (read) and ECC (write) are responsible for detecting any faults

within the ECC check and correction circuitry on the BRAMs [4]. This TPG is also synthesized

using area constraints to control TPG area and placement.

Table 2-12 – Proposed Control String Values for ECC TPG [3]

ECC

Config

Test

Algorithm

Level

Control
Mode 1 Mode 0

Hex

Control

String

1 MarchLR w/BDS 0 0 0 0x0

2 ECC (read) 0 0 1 0x1

3 ECC (write) 1 1 0 0x6

45

Table 2-13 – Proposed Configuration Settings for ECC TPG [3]

(a) ECC Settings Part 1

ECC

Config

Test

Algorithm

DO

REG

EN_ECC

READ

EC_ECC

WRITE

EN_ECC

SCRUB

INIT

VAL

SR

VAL

INIT

(A/B)

VAL

SAVE

DATA

1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE

2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE

3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE

(b) ECC Settings Part 2

ECC

Config

Test

Algorithm

RDCLK

(U/L)

INV

RDEN

(U/L) INV

RDRCLK

(U/L) INV

WRCLK

(U/L) INV

WREN

(U/L)

INV

SSR

(U/L)

INV

1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV

2 ECC (read) not INV not INV not INV not INV not INV not INV

3 ECC (write) INV INV INV INV INV INV

2.4.2.3 FIFO TPG

 The TPG for testing the BRAM in the FIFO configuration mode is responsible for testing

all the FIFO functionality and is designed like the previously described BRAM and ECC TPGs.

This TPG will use the RAM test algorithm FIFOX [4]. The proposed configuration settings for

this mode can be seen in Table 2-14 [3].

46

Table 2-14 – Proposed Configuration Settings for FIFO TPG [3]

(a) FIFO Settings Part 1

ECC

Config

Test

Algorithm

DO

REG

DATA

WIDTH
EN SYN FWFT

RDCLK

(U/L)

INV

RDEN INV
RST

INV

1

FIFOX

1 36 TRUE TRUE INV INV INV

2 1 18 FALSE FALSE not INV not INV not INV

3 0 9 TRUE TRUE not INV not INV not INV

4 0 4 FALSE FALSE not INV not INV not INV

(b) FIFO Settings Part 2

ECC

Config

Test

Algorithm

WRCLK

(U/L) INV
WREN INV

ALMOST

FULL

OFFSET

ALMOST

EMPTY

OFFSET

1

FIFOX

INV INV 5555 AAAA

2 not INV not INV AAAA 5555

3 not INV not INV 5555 AAAA

4 not INV not INV AAAA 5555

2.4.2.4 FIFOECC TPG

 The TPG for this mode is responsible for testing the ECC circuitry of the BRAM when it

is configured for FIFOECC operation. This TPG will be designed similar to the previously

described TPGs. The proposed test algorithm that will be used in this TPG is FIFOX [4]. The

proposed configuration settings may be seen in Table 2-15.

47

Table 2-15 – Proposed Configuration Settings for FIFOECC TPG [3]

(a) FIFOECC Settings Part 1

FIFOECC

Config

Test

Algorithm

DO

REG

EN_ECC

READ

EN_ECC

WRITE
EN SYN FWFT RST INV

1 FIFOX 1 TRUE FALSE FALSE TRUE INV

2 FIFOX 0 FALSE TRUE TRUE FALSE not INV

(b) FIFOECC Settings Part 2

FIFOECC

Config

Test

Algorithm

ALMOST

EMPTY

OFFSET

ALMOST

FULL

OFFSET

RDCLK

(U/L)

INV

RDRCLK

(U/L)

INV

RDEN

INV

WRCLK

(U/L)

INV

WREN

INV

1 FIFOX 5555 AAAA INV INV INV INV INV

2 FIFOX AAAA 5555 not INV not INV not INV not INV not INV

2.5 Thesis Statement

 This chapter has presented the basics of fault modeling in SRAM memories. It has also

shown and detailed the various test algorithms used when testing these memories. An overview

of the architecture of Virtex-5 devices is also given along with a description of the embedded

BRAMs and their modes of operation. The components of the BIST structure are also described

with proposed configuration modes and settings for the BRAMs.

 This thesis aims to implement and expand upon the configurations proposed by Garrison

in [3] for the Virtex-5. Garrison‟s proposed configuration settings to test the first four

configuration modes of the BRAMs are shown in this chapter, but the design was not

implemented in his work. In Chapter 3, this thesis will describe the implementation of BIST for

the Virtex-5 BRAMs which includes Garrison‟s proposed configurations and settings which have

been expanded upon to completely test the embedded BRAMs in these devices.

48

Chapter 3 Virtex-5 Block RAM BIST

 This chapter will describe the design and implementation of the BIST for Virtex-5

BRAMs and the results obtained from actual generation and execution of the BIST sequence.

This will include TPG development for all BIST configurations as well as the configuration

settings for each of the operating modes. The design, placement, and routing of the ORAs is also

shown along with an overview of the complete Virtex-5 BIST architecture. The process for

generation and modification of the BIST configurations and the software tools used are also

described. Finally the results and analysis will be presented including optimization, timing

analysis, and fault coverage results.

3.1 Virtex-5 RAM BIST

 The BIST architecture builds upon the architecture used by Milton and Garrison for

Virtex-4 as described in Section 2.4. The same basic architecture is used where a pair of

identical TPGs is used to drive the alternating BRAMs in the columns as shown in Figure 2-8.

All BRAMs will be configured identically so any mismatch detected by an ORA is known to be

a fault in a BRAM. The redundancy of the TPGs prevents fault aliasing that may occur when

using a single TPG that has been synthesized containing a fault [12]. In the case of a fault being

present in a TPG it will produce failures. These failures will be detected when the results of the

49

BRAMs being driven by the faulty TPG are compared with those from the BRAMs being driven

by the fault-free TPG [12]. A circular comparison architecture which will be described later in

this chapter is used for the ORA routing in order to prevent additional fault aliasing that may

occur if adjacent BRAMs have identical faults.

3.2 TPG Design and Implementation

The TPGs for the five BIST configuration modes were designed as Finite State Machines

(FSMs) to accommodate the multiple test phases that each TPG must run. The TPG designs

were written as VHDL models and synthesized for insertion into the BIST configurations. Area

constraints were used during synthesis of all the TPG models in order to minimize the resource

usage of each one and restrict placement to the lower left hand corner of the device as shown in

Figure 3-1. Designs are offset from this position to specify placement as described in Section

2.4.2. Prior to running the BIST procedure it is necessary to shift in the appropriate control

string value for the desired phase of the test to be run. This is done via the BSCAN interface of

the device. The data shifted in is consists of a level control value to specify the active level of

the clocks and mode values to specify the phase of BIST the TPG will execute.

The TPG models for the BRAM, ECC, FIFO, and FIFOECC test configurations were all

implemented based on the TPG models proposed by Garrison in [3] which are described in

Chapter 2.

50

Figure 3-1 - BRAM TPG Area Constraints in LX30

3.2.1 BRAM

The final implementation of the BRAM TPG was based on Garrison‟s design in [3] with

some minor modifications. The BIST configurations and control string values proposed by

Garrison are used, but the proposed configuration settings were modified slightly by changing

Constrained

TPG

Placement

Area

51

the write mode of the last configuration to READ_FIRST. The final configuration settings for the

BRAM TPG can be seen in Table 3-1. Prior to the BIST being run a control string value must be

shifted in via the BSCAN interface in order to specify which phase of the test is to be run. For

the BRAM TPG, the appropriate value for each test phase is shown in Table 2-10.

Table 3-1 - Final BRAM Configuration Settings

 (a) Settings Part 1

BRAM

Config

Test

Algorithm

DO (A/B)

REG

READ

Width

(A/B)

WRITE

Width

(A/B)

WRITE Mode

(A/B)

SAVE

DATA

1 March s2pf 1 36 36 READ_FIRST FALSE

2 March d2pf 1 36 36 READ_FIRST FALSE

3

MATS+

0 18 18 READ_FIRST FALSE

4 0 9 9 WRITE_FIRST FALSE

5 0 4 4 NO_CHANGE FALSE

6 0 2 2 WRITE_FIRST FALSE

7 0 1 1 READ_FIRST FALSE

(b) Settings Part 2

BRAM

Config

Test

Algorithm

CLK, EN,

SSR

REGCLK

(A/B)(U/L)

INV

RAM EXT INIT VAL SRVAL

INIT

(A/B)

VAL

1 March s2pf INV NONE AAAA 5555 0

2 March d2pf not INV NONE 5555 AAAA FFFF

3

MATS+

not INV NONE AAAA 5555 0

4 not INV NONE 5555 AAAA FFFF

5 not INV NONE AAAA 5555 0

6 not INV NONE 5555 AAAA FFFF

7 not INV NONE AAAA 5555 0

3.2.2 ECC

 The ECC TPG was created directly from the design proposed by Garrison. This

configuration mode uses a fixed 72-bit data word length for each configuration with a fixed

address space of 512. The final configuration settings used in this TPG are shown in Table 3-2.

52

The remaining specifications are implemented directly from those proposed by Garrison which

are shown in Chapter 2. The ECC TPG also requires that a control string be shifted in via the

BSCAN interface prior to beginning to test. The final control strings for this configuration are

shown in Table 3-3.

Table 3-2 - Final ECC Configuration Settings

 (a) ECC Settings Part 1

ECC

Config

Test

Algorithm

DO

REG

EN_ECC

READ

EC_ECC

WRITE

EN_ECC

SCRUB

INIT

VAL

SR

VAL

INIT

(A/B)

VAL

SAVE

DATA

1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE

2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE

3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE

(b) ECC Settings Part 2

ECC

Config

Test

Algorithm

RDCLK

(U/L)

INV

RDEN

(U/L) INV

RDRCLK

(U/L) INV

WRCLK

(U/L) INV

WREN

(U/L)

INV

SSR

(U/L)

INV

1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV

2 ECC (read) not INV not INV not INV not INV not INV not INV

3 ECC (write) INV INV INV INV INV INV

Table 3-3 - Final Control String Values for ECC TPG

ECC

Config

Test

Algorithm

Level

Control
Mode 2 Mode 1 Mode 0

Hex

Control

String

1 MarchLR w/BDS 0 0 0 0 0x0

2 ECC (read) 0 0 0 1 0x1

3 ECC (write) 0 0 1 0 0x2

3.2.3 FIFO

 The FIFO TPG is an FSM developed from Garrison‟s initially proposed FIFO TPG.

However an additional fifth test phase has been added. This additional phase is required in order

to test the most significant bit of the configurable almost empty and almost full flags. When the

BRAM is configured as a FIFO with data width 4 it is the only time the most significant bit of

53

the flag configuration is used. To detect faults for the MSB being stuck-at-0 and stuck-at-1 two

separate test phases for this data width are necessary. The final test phases and the

corresponding control string values of this TPG are shown in Table 3-4. The final test

configuration settings along with the modified almost empty and almost full configuration values

are shown in Table 3-5.

Table 3-4 – Final FIFO Test Phases and Control String Values

FIFO

Config

Test

Algorithm

Address

Space

Data

Width

Level

Control
Mode 2 Mode 1 Mode 0

Hex

Control

String

1

FIFOX

1K 36 1 0 0 0 0x8

2 2K 18 0 0 0 1 0x1

3 4K 9 0 0 1 0 0x2

4 8K 4 0 0 1 1 0x3

5 8K 4 0 0 1 1 0x3

Table 3-5 – Final Configuration Settings for FIFO TPG

(a) FIFO Settings Part 1

ECC

Config

Test

Algorithm

DO

REG

DATA

WIDTH
EN SYN FWFT

RDCLK

(U/L)

INV

RDEN INV
RST

INV

1

FIFOX

1 36 TRUE TRUE INV INV INV

2 1 18 FALSE FALSE not INV not INV not INV

3 0 9 TRUE TRUE not INV not INV not INV

4 0 4 FALSE FALSE not INV not INV not INV

5 0 4 FALSE FALSE not INV not INV not INV

(b) FIFO Settings Part 2

ECC

Config

Test

Algorithm

WRCLK

(U/L) INV
WREN INV

ALMOST

EMPTY

OFFSET

ALMOST

FULL

OFFSET

1

FIFOX

INV INV 2AA 155

2 not INV not INV 555 2AA

3 not INV not INV AAA 555

4 not INV not INV 1555 AAA

5 not INV not INV AAA 1555

54

3.2.4 FIFOECC

 The FIFOECC TPG has been improved from Garrison‟s initially proposed design. The

testing algorithm used by the FIFOECC TPG is a modified version of the FIFOX algorithm

designated FIFOD. This algorithm forces toggling of all of the ECC bits as it is executed by

writing changing values to the FIFO. The value that is written into each address of the FIFO is a

write or read count value which is repeated as many times as necessary to fill the data width

being tested. This count value is incremented upon each write or read operation performed and

reset at the beginning of each step. This algorithm is executed as follows:

Step 1. Reset the FIFO.

Step 2. Repeat N times: write FIFO with count value repeated to match data width, check

that Almost Empty flag goes inactive and Almost Full flag goes active at the appropriate

points in the sequence.

Step 3. Repeat N times: read FIFO expecting repeated count value and write FIFO with

the inversion of repeated count

Step 4. Repeat N times: read FIFO expecting inverted repeated count value, check that

Almost Full flag goes inactive and Almost Empty flag goes active at the appropriate

points in the read sequence.

 The final test phases for this test mode and the final configuration settings may be seen in

Table 3-6 and Table 3-7. Control string values are not necessary for this TPG because the same

algorithm is executed for both test phases and only the BRAM configuration is modified.

55

Table 3-6 - Final FIFOECC Test Phases

FIFOECC

Config

Test

Algorithm

Address

Space

Data

Width

Level

Control

1 FIFOD (read) 512 72 0

2 FIFOD (write) 512 72 0

Table 3-7 – Final Configuration Settings for FIFOECC TPG

(a) FIFOECC Settings Part 1

ECC

Config

Test

Algorithm

DO

REG

EN_ECC

READ

EN_ECC

WRITE
EN SYN FWFT RST INV

1 FIFOD (read) 1 TRUE FALSE FALSE TRUE not INV

2 FIFOD (write) 0 FALSE TRUE TRUE FALSE not INV

(b) FIFOECC Settings Part 2

ECC

Config

Test

Algorithm

ALMOST

EMPTY

OFFSET

ALMOST

FULL

OFFSET

RDCLK

(U/L)

INV

RDRCLK

(U/L)

INV

RDEN

INV

WRCLK

(U/L)

INV

WREN

INV

1 FIFOD (read) 155 AA not INV not INV not INV not INV not INV

2 FIFOD (write) AA 155 not INV not INV not INV not INV not INV

3.2.5 CASC

 The CASC TPG executes a March Y based algorithm designed strictly to test the

functionality of the cascade circuitry. The March Y algorithm simply performs the algorithm

operations on one address in the UPPER BRAM and one address in the LOWER BRAM. By

doing this all the cascade circuitry can be verified quickly.

 The final CASC test phases can be seen in Table 3-8. No control string values are

necessary for this TPG as the same test is run for both phases. The final configuration settings

for this TPG can be seen in Table 3-9.

56

Table 3-8 – Final CASC Test Phases

CASC

Config

Test

Algorithm

Address

Space

Data

Width

Level

Control

1
March Y

1K 64 0

2 1K 64 0

Table 3-9 – Final Configuration Settings for CASC TPG

CASC

Config

Test

Algorithm

DOA/B

REG

RD

WIDTH

A/B

WR

WIDTH

A/B

RAM

EXT A

RAM

EXT B

1
March Y

1 1 1 UPPER LOWER

2 1 1 1 LOWER UPPER

3.2.6 Test Configurations Summary

 Each of these TPGs is FSM based and is restricted to the smallest area possible on the

FPGA devices. The resource usage for all the TPGs after synthesis can be seen in Table 3-10. It

is important to note that each TPG is placed twice in each BIST configuration and that the

resource usage per is independent of the device being tested. The 19 phases of the BIST

sequence for the Virtex-5 devices are displayed in Table 3-11. The various configuration

address spaces and data widths are shown along with the hexadecimal representation of the 4-bit

control string required to run each test phase.

Table 3-10 - BIST TPG Resource Usage

TPG Slices Slice Registers Slice LUTs
CLB Area

(column x row)

BRAM 148 242 587 8 x 20

ECC 205 566 808 8 x 30

FIFO 34 58 135 8 x 5

FIFOECC 43 162 122 8 x 10

CASC 4 10 9 8 x 1

57

Table 3-11 – Complete Virtex-5 BIST Procedure

BIST

Config

BRAM

Mode

Test

Algorithm

Address

Space

Data

Width

Control

String

1

BRAM

March s2pf 1K 36 0x0

2 March d2pf 1K 36 0x1

3

MATS+

2K 18 0xA

4 4K 9 0xB

5 8K 4 0xC

6 16K 2 0xD

7 32K 1 0xE

8

ECC

MarchLR w/BDS 512 72 0x0

9 ECC (read) 512 72 0x1

10 ECC (write) 512 72 0x2

11

FIFO FIFOX

1K 36 0x8

12 2K 18 0x1

13 4K 9 0x2

14 8K 4 0x3

15 8K 4 0x3

16
FIFOECC

FIFOD (read) 512 72 0x0

17 FIFOD (write) 512 72 0x0

18
CASC March Y

1K 64 0x0

19 1K 64 0x0

3.3 ORA Design

 The ORAs are designed to use a double comparison of BRAM outputs and a circular

comparison routing architecture. The iterative OR-chain described in Section 2.4.1 is also

implemented to accommodate results retrieval and an instantaneous Pass/Fail indicator. The

ORAs in the BIST are placed in two columns of five CLBs immediately adjacent to the BRAMs.

Each of these groups of 10 CLBs is responsible for comparing all the outputs of two distinct

BRAMs as shown in Figure 2-8 where each ORA block represents one group of CLBs. Each

58

ORA slice is equipped with four 6-input LUTs that are used to compare the outputs of the

BRAMs. The inputs to these LUTS are used for comparison of up to two pairs of BRAM

outputs. This architecture provides a total of up to 160 possible comparisons per BRAM.

 The number of observed outputs for the BRAM, ECC, FIFO, and CASC configurations is

less than 80 (half of the total comparisons) as shown in Table 3-12. This means that each ORA

performs a comparison of a single pair of BRAM outputs. The number of observed outputs for

the FIFOECC is greater than 80 such that some ORAs perform a comparison of two pairs of

outputs. A failure in an ORA making a double comparison is only traceable to be one of the two

outputs that are routed to it.

Table 3-12 - Compared Outputs for Configuration Modes

Configuration

Mode

Compared

Outputs

BRAM 72

ECC 74

FIFO 68

FIFOECC 106

CASC 4

3.3.1 ORA Comparison Routing

 The outputs of each pair of BRAMs to be compared are routed to a group of two columns

of five CLBs immediately to the left of one of the BRAMs. Each of these groups contains 20

slices organized as shown in Figure 3-2. Each one of these slices contains ORAs designated A

through D. Table 3-13 summarizes the routing of the BRAM outputs to the ORAs within these

groups. Each configuration mode of the BIST is shown in this table, and this routing is

59

consistent for each group of ORAs in a BIST configuration as they span the entire height of the

device. This routing information may be used in order to diagnose a fault location by using

configuration memory read back to locate the flip-flop which has latched a fault. Once the

failing flip-flop(s) is located it can be matched to a specific ORA whose inputs are known.

60

Figure 3-2 - ORA Map

SLICE 1

SLICE 2

SLICE 3

SLICE 4

SLICE 5

SLICE 6

SLICE 7

SLICE 8

SLICE 9

SLICE

10

SLICE

11

SLICE

12

SLICE

13

SLICE

14

SLICE

15

SLICE

16

SLICE

17

SLICE

18

SLICE

19

SLICE

20

ORA

Column 2
ORA

Column 1

61

Table 3-13 - ORA Input Routing Tables

(a) BRAM ORA Routing

Output Slice ORA Output Slice ORA Output Slice ORA

DOA0

1

A DOA24

7

A DOB12

14

A

DOA1 B DOA25 B DOB13 B

DOA2 C DOA26 C DOB14 C

DOA3 D DOA27 D DOB15 D

DOA4

2

A DOA28

8

A DOB16

15

A

DOA5 B DOA29 B DOB17 B

DOA6 C DOA30 C DOB18 C

DOA7 D DOA31 D DOB19 D

DOA8

3

A DOPA0

9

A DOB20

16

A

DOA9 B DOPA1 B DOB21 B

DOA10 C DOPA2 C DOB22 C

DOA11 D DOPA3 D DOB23 D

DOA12

4

A DOB0

11

A DOB24

17

A

DOA13 B DOB1 B DOB25 B

DOA14 C DOB2 C DOB26 C

DOA15 D DOB3 D DOB27 D

DOA16

5

A DOB4

12

A DOB28

18

A

DOA17 B DOB5 B DOB29 B

DOA18 C DOB6 C DOB30 C

DOA19 D DOB7 D DOB31 D

DOA20

6

A DOB8

13

A DOPB0

19

A

DOA21 B DOB9 B DOPB1 B

DOA22 C DOB10 C DOPB2 C

DOA23 D DOB11 D DOPB3 D

62

(b) ECC ORA Routing

Output Slice ORA Output Slice ORA Output Slice ORA

DO0

1

A DO24

7

A DO48

14

A

DO1 B DO25 B DO49 B

DO2 C DO26 C DO50 C

DO3 D DO27 D DO51 D

DO4

2

A DO28

8

A DO52

15

A

DO5 B DO29 B DO53 B

DO6 C DO30 C DO54 C

DO7 D DO31 D DO55 D

DO8

3

A DO32

9

A DO56

16

A

DO9 B DO33 B DO57 B

DO10 C DO34 C DO58 C

DO11 D DO35 D DO59 D

DO12

4

A SBITERR 10 A DO60

17

A

DO13 B DO36

11

A DO61 B

DO14 C DO37 B DO62 C

DO15 D DO38 C DO63 D

DO16

5

A DO39 D DOP0

18

A

DO17 B DO40

12

A DOP1 B

DO18 C DO41 B DOP2 C

DO19 D DO42 C DOP3 D

DO20

6

A DO43 D DOP4

19

A

DO21 B DO44

13

A DOP5 B

DO22 C DO45 B DOP6 C

DO23 D DO46 C DOP7 D

 DO47 D DBITERR 20 A

63

 (c) FIFO ORA Routing

Output Slice ORA Output Slice ORA Output Slice ORA

DO0

1

A DO24

7

A WRCOUNT10

14

A

DO1 B DO25 B WRCOUNT11 B

DO2 C DO26 C WRCOUNT12 C

DO3 D DO27 D RDCOUNT0 D

DO4

2

A DO28

8

A RDCOUNT1

15

A

DO5 B DO29 B RDCOUNT2 B

DO6 C DO30 C RDCOUNT3 C

DO7 D DO31 D RDCOUNT4 D

DO8

3

A DOP0
9

A RDCOUNT5

16

A

DO9 B DOP1 B RDCOUNT6 B

DO10 C DOP2

11

A RDCOUNT7 C

DO11 D DOP3 B RDCOUNT8 D

DO12

4

A WRCOUNT0 C RDCOUNT9

17

A

DO13 B WRCOUNT1 D RDCOUNT10 B

DO14 C WRCOUNT2

12

A RDCOUNT11 C

DO15 D WRCOUNT3 B RDCOUNT12 D

DO16

5

A WRCOUNT4 C FULL

18

A

DO17 B WRCOUNT5 D EMPTY B

DO18 C WRCOUNT6

13

A ALMOSTFULL C

DO19 D WRCOUNT7 B ALMOSTEMPTY D

DO20

6

A WRCOUNT8 C RDERR
19

A

DO21 B WRCOUNT9 D WRERR B

DO22 C

DO23 D

64

(d) FIFOECC ORA Routing

Output Slice ORA Output Slice ORA Output Slice ORA

DO0

1

A DO32

5

A DOP6

12

A

DO1 A DO33 A DOP7 B

DO2 B DO34 B SBITERR C

DO3 B DO35 B DBITERR D

DO4 C DO36 C FULL

13

A

DO5 C DO37 C EMPTY B

DO6 D DO38 D ALMOSTFULL C

DO7 D DO39 D ALMOSTEMPTY D

DO8

2

A DO40

6

A RDERR

14

A

DO9 A DO41 A WRERR B

DO10 B DO42 B RDCOUNT0 C

DO11 B DO43 B RDCOUNT1 D

DO12 C DO44 C RDCOUNT2

15

A

DO13 C DO45 C RDCOUNT3 B

DO14 D DO46 D RDCOUNT4 C

DO15 D DO47 D RDCOUNT5 D

DO16

3

A DO48

7

A RDCOUNT6

16

A

DO17 A DO49 A RDCOUNT7 B

DO18 B DO50 B RDCOUNT8 C

DO19 B DO51 B RDCOUNT9 D

DO20 C DO52 C RDCOUNT10

17

A

DO21 C DO53 D RDCOUNT11 B

DO22 D DO54

8

A RDCOUNT12 C

DO23 D DO55 B WRCOUNT0 D

DO24

4

A DO56 C WRCOUNT1

18

A

DO25 A DO57 D WRCOUNT2 B

DO26 B DO58

9

A WRCOUNT3 C

DO27 B DO59 B WRCOUNT4 D

DO28 C DO60 C WRCOUNT5

19

A

DO29 C DO61 D WRCOUNT6 B

DO30 D DO62

10

A WRCOUNT7 C

DO31 D DO63 B WRCOUNT8 D

DOP0 C WRCOUNT9

20

A

DOP1 D WRCOUNT10 B

DOP2

11

A WRCOUNT11 C

DOP3 B WRCOUNT12 D

DOP4 C

DOP5 D

65

 (e) CASC ORA Routing

Output Slice ORA

DOA0
1

A

DOPA0 B

DOB0
11

A

DOPB0 B

3.4 BIST Implementation

 The fully routed BIST configuration on a physical device is shown in Figure 3-3. This

design was created for the LX30, one of the smaller devices in the Virtex-5 family, and is for the

BRAM configuration mode. In this device there are two columns of BRAMs running vertically

on the device. The ORAs are placed directly to the left of the BRAMs in the immediately

adjacent CLB columns, and the BRAM outputs are routed directly to the appropriate ORAs. The

two TPGs are visible on the right side of the device. The bottom TPG is placed on the lowest

row of CLBs available and in the six columns of CLBs to the right of the rightmost BRAM

column. The second TPG is placed in these same six columns above the first TPG, beginning

exactly half way up the device. The TPG outputs are then each routed to alternating BRAMs in

the columns. The routing from the boundary scan interface is located directly in the center of the

device.

66

Figure 3-3 – BRAM BIST Configuration Routed on Virtex-5 LX30

RAMs

&

ORAs

TPGs

67

3.4.1 Cascade Routing

 The cascade configuration mode presents a unique situation for ORA routing. When the

BRAMs are functioning in this mode of operation two of the memories are cascaded together in

order to form one larger memory, and the output of this memory is only displayed on the output

port of the BRAM configured in the UPPER mode. The output of the BRAM configured in the

LOWER mode is routed to the output of the UPPER memory as shown in Figure 2-7. This

means that the outputs of every other BRAM in a column will be identical, rather than all BRAM

outputs being identical. Therefore, the outputs of each BRAM are routed to properly reflect this

change, and every other BRAM will be compared.

 Using this approach presents another problem during the second cascade testing phase.

In the first testing phase BRAMs are configured as LOWER and UPPER alternating starting at

the bottom of the column. In the second testing phase these configurations will be reversed such

that the bottom BRAM will be configured as an UPPER, and the configurations will alternate

from there up the column. When this occurs the BRAMs located without another BRAM

directly beneath them are configured as UPPER and are used to output data, but will not output

any data that is expected from the LOWER memory because there is no CASCADEIN routing

available for these components. This will produce failures, even with fault free circuitry, if the

cascade routing approach described above is used.

 A solution used by Milton and Garrison for Virtex-4 devices in a similar cascade mode of

operation is described in [2] and [3]. The solution used by them accounts for these expected

failures by using clock enable controls in the ORAs to avoid clocking the result from an expected

68

failure into the flip-flips of the ORAs. This approach required tedious modifications to the TPG

in order to enable the ORA flip-flops during some clock cycles and disable them during others

when the failures were expected. It also requires that the ORA design be modified to include

these clock enables. A simpler solution is implemented for the Virtex-5 devices which

eliminates any expected failures from the design.

 The solution requires modification to the initial routing from the BRAMs to the ORAs.

Instead of routing all BRAM outputs to ORAs, the routing from any BRAM that does not have

an available CASCADEIN input is omitted completely as shown in Figure 3-4. Additionally, the

output of the BRAM that would normally be compared to these outputs to complete the circular

comparison is routed to the next ORA in the column to maintain the circular comparison. This

situation occurs for any BRAMs located at the bottom of columns, directly above a PowerPC

module, or some BRAMs in the special TEMAC columns which are present in some Virtex-5

devices [13]. This omission of routing will not result in any reduction in fault coverage because

there is no need to observe the outputs of these BRAMs in the cascade mode. When they are

configured in the LOWER mode the output is routed to the UPPER BRAM and displayed on its

outputs. These specific BRAMs do not need to be observed when configured in the UPPER

mode because should never be used with this configuration in practice because there is no

available CASCADEIN routing.

 The ORAs located at the bottom of these columns that do not have BRAM outputs routed

to them still retain their OR-chain routing. In this case, these ORAs are made into dummy ORAs

that simply propagate the carry chain result. This solution eliminates the need for special

modifications to the TPG or ORAs for the cascade BIST configuration by eliminating the

69

expected failures all together. All fault detection and diagnosis ability is retained and the circular

comparison ORA architecture is maintained.

Figure 3-4 – Virtex-5 Cascade ORA Routing

U
p

p
er

L
o

w
er

U
p

p
er

L
o

w
er

U
p

p
er

L
o

w
er

BRAMs ORAs

Dummy

ORA

70

3.5 Programming Tools

 A series of programming tools are used to aid in the development, implementation, and

simulation of the BRAM BIST configurations. The way in which each of these tools is used in

the BIST development will be described in subsequent sections. A brief statement on the

capabilities of these tools is given below:

 ISE – a Xilinx design suite for creating, synthesizing, and implementing VHDL

models for use in Xilinx FPGAs. Allows area constraints to be created to specify

placement of a design [14].

 FPGA Editor – a Xilinx tool that provides of graphical user interface (GUI) for

visual examination and editing of designs on the FPGA [14].

 Place and Route (PAR) – a Xilinx tool that performs placement and routing of FPGA

designs [14].

 XDL – a Xilinx tool which converts between Xilinx file formats: NCD (FPGA

Editor files) and XDL (Xilinx netlist description files) [14].

 BitGen – a Xilinx tool which generates BIT or RBT files from NCD files. These

BIT and RBT files contain the configuration information which is downloaded into

the FPGA [14].

 TRCE – A Xilinx tool for timing analysis of a design. Specifically, it determines the

maximum clock frequency at which a design may be run [14].

 ModelSim Xilinx Edition – A simulator made by Mentor Graphics which is able to

simulate VHDL models using Xilinx primitives [15].

71

3.6 Configuration File Generation

 The entire generation procedure using the two BIST generation programs and the tools

mentioned in Section 3.5 is diagramed in Figure 3-5 [16]. The initial generation of all the

Virtex-5 BRAM BIST configurations is done using two separate programs which are both

written in the C programming language. These two programs are responsible for the creation of

the XDL files containing exact placement and routing information for the entire BIST

configuration [16]. The synthesized VHDL models of the TPGs are converted into XDL format

and inserted into the generated XDL file. The XDL file is then converted into an NCD file which

is able to be graphically displayed within FPGA Editor. FPGA Editor is used in order to

automatically route the unrouted nets which have been designated in the design [16]. After the

design has been completely routed it will be converted into a configuration BIT file capable of

being downloaded directly into the FPGA device [16].

Figure 3-5 - BIST Configuration Process [16]

72

3.6.1 BIST Generation Program

 The program responsible for the generation of the XDL file containing the BIST design is

called V5RAMBIST.exe. This program is run by the user and several parameters are provided in

order to specify the target device and type for the BIST as well as several other details. The

exact command line formatting may be seen in Figure 3-6.

V5RAMbist (v1.6) - generates template file for block RAM BIST config in any Virtex 5
command line format:
V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <type> [n,a,p]
 where type = bram (RAMB36 mode BIST)
 fifo (FIFO36 mode BIST)
 ecc (RAMB36SDP mode BIST)
 fifecc (FIFO36_72 mode BIST)
 casc (Cascade RAM mode BIST)
 dev part rows cols dev part rows cols dev part rows cols
 lxt 20 60 33
 lx/t 30 80 38 sxt 35 80 50 fxt 30 80 50
 lx/t 50 120 38 sxt 50 120 50 fxt 70 160 50
 lx/t 85 120 64 sxt 95 160 68 fxt 100 160 73
 lx/t 110 160 64 sxt 240 240 104 fxt 130 200 70
 lx/t 155 160 87 fxt 200 240 87
 lx/t 220 160 121 txt 150 200 70
 lx/t 330 240 121 txt 240 240 91
 n: this option runs xdl2ncd with -nodrc option
 a: runs 'n' option followed by FPGA Editor routing with no pinswap and converts back to XDL
 p: this option uses system-level pins instead of Boudary Scan interface
 PLUS runs xdl2ncd with -nodrc option
 note: all parameters can be upper or lower case (but not mixed)

Figure 3-6 - V5RAMBIST Command Line Instructions

3.6.2 Modification Program

 The second C program called V5RAMMOD.exe is responsible for the modification of the

configuration settings in the XDL files. In order to run this program the user specifies the generic

73

input XDL file which has been generated using the generation program and the name of the

desired output file. The BRAM configuration mode must also be specified along with the phase

of the test and several other parameters seen in Figure 3-7.

V5RAMmod (ver 1.2) - modifies routed XDLs for Block RAM to subseuqent BIST configs
command line format:
V5RAMmod <xdl_in> <xdl_out> <phase> <type> [ncd,bit]
where the type is defined as:
 Type: bram(RAMB36) ecc(RAMB36SDP) fifo(FIFO36) fifecc(FIFO36_72) casc(RAMB36)
--
 Phase 1: S2PF MarchLR FIFOx 1K FIFOx_ECC_RD CASC_RD
 Phase 2: D2PF ECC_RD FIFOx 2K FIFOx_ECC_WR CASC_WR
 Phase 3: MATS+ 2K ECC_WR FIFOx 4K
 Phase 4: MATS+ 4K FIFOx 9K
 Phase 5: MATS+ 8K FIFOx 9K-SWAP
 Phase 6: MATS+ 16K
 Phase 7: MATS+ 32K
--
Generation Options:
- ncd option runs XDL -XDL2NCD
- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS
- if no option is selected, only the XDL file will be generated

Figure 3-7 - V5RAMMOD Command Line Instructions

3.7 Results and Analysis

 In this section the results of the BRAM BIST will be presented. This will include the

fault detection capabilities of the BIST, size optimizations for the configurations, and analysis of

the timing capabilities of the configurations. The complete BIST procedure consists of 19

separate configurations. All configurations were generated for all Virtex-5 devices using the

BIST programs, and the configurations for LX30T, LX50T, SX35T, SX50T, FX30T, and FX70T

74

FGPAs were downloaded to and verified on actual devices. All 19 test phases are displayed in

Table 3-14. The number of clock cycles required to run each phase of the test is also shown in

the table in terms of the total number of clock cycles for the BIST. These running times are

negligible when compared to the time taken to download the configurations to the devices, which

becomes the dominant factor in total test time. This places a high emphasis on reducing

configuration file size to improve test time.

75

Table 3-14 - Complete BRAM BIST

BIST

Config

BRAM

Mode

Test

Algorithm

Address

Space

Data

Width

Clock

Cycles

1 (C)

BRAM

March s2pf 1K 36 20,000

2 (P) March d2pf 1K 36 15,000

3 (P)

MATS+

2K 18 25,000

4 (P) 4K 9 45,000

5 (P) 8K 4 85,000

6 (P) 16K 2 165,000

7 (P) 32K 1 330,000

8 (C)

ECC

MarchLR w/BDS 512 72 23,000

9 (P) ECC (read) 512 72 7,000

10 (P) ECC (write) 512 72 7,000

11 (C)

FIFO FIFOX

1K 36 8,500

12 (P) 2K 18 34,000

13 (P) 4K 9 66,000

14 (P) 8K 4 131,500

15 (P) 8K 4 131,500

16 (C)
FIFOECC

FIFOD (read) 512 72 10,000

17 (P) FIFOD (write) 512 72 10,000

18 (C)
CASC March Y

1K 64 36

19 (P) 1K 64 36

Total BIST Clock Cycles = 1,113,572

(C) = Compressed Configuration (P) = Partial Configuration

3.7.1 Fault Detection

 The most important factor when evaluating the effectiveness of a test procedure is the

fault coverage. In order to evaluate the fault coverage of the BRAM BIST physical fault

injection was applied to the bits in the configuration memory of the BRAMs. There are a total of

488 possible configuration memory faults associated with each of the BRAMs. This number

results from each BRAM having 244 total configuration bits which may each either be stuck-at-0

or stuck-at-1. Each of these faults was emulated by overwriting the desired configuration bit

76

with the stuck-at value of the desired fault before performing the entire BIST sequence. This

process is repeated for each of the 488 configuration memory bit faults. The Pass/Fail result of

each test phase was recorded after the injection of each fault.

 The individual and cumulative fault coverage for the seven BRAM BIST configurations

is shown in Figure 3-8. This graph displays the individual number of fault detections from each

of BRAM test phases. The line displayed above the bars is a representation of the cumulative

fault coverage of the phases. Each of the phases detects between 100 and 200 of the

configuration memory bit faults. The sequence results in a fault coverage of 84% from running

only the BRAM BIST configurations.

 The overall fault coverage of configuration memory bits obtained from running the entire

BIST sequence is shown in Figure 3-9. This graph also shows both the faults detected by each

phase of the test and the cumulative detections. The entire test was able to detect 481 of the

configuration memory faults resulting in a fault coverage of 98.57%. The other seven undetected

faults are non-functional faults, which gives the BIST a 100% fault coverage of detectable faults

in the BRAM configuration memory.

 Fault injection with the configuration memory bits was used to verify the fault detection

capabilities of the BIST since it is not possible to emulate actual SRAM faults that may occur

within the BRAMs of a Virtex-5 device such as those described in Section 2.2.1. The injected

configuration memory faults produce faulty outputs on the BRAMs that mimic those that would

be produced by a BRAM containing SRAM faults. Thus, the fault coverage of the configuration

memory bit faults gives an accurate representation of the fault coverage of the BIST for SRAM

faults [17].

77

Figure 3-8 – BRAM Configuration Mode Fault Detections

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

300

350

400

450

March s2pf- March d2pf MATS+ 2k MATS+ 4k MATS+ 8k MATS+ 16k MATS+ 32k

F
a
u

lt
 C

o
v

er
a

g
e

P
er

ce
n

ta
g

e

N
u

m
b

er
 o

f
F

a
u

lt
s

D
et

ec
te

d

Faults Detected Cumulative Detections

78

Figure 3-9 – Entire BIST Sequence Fault Detections

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 1 2 1 2

BRAM ECC FIFO FIFOECC CASC

F
a

u
lt

 C
o

v
er

a
g

e
P

er
ce

n
ta

g
e

N
u

m
b

er
 o

f
F

a
u

lt
s

D
et

ec
te

d

Faults Detected Cumulative Detections

79

3.7.2 File Size Reduction

 Once the fully routed NCD files for each BIST configuration have been generated, the

Xilinx BitGen.exe tool mentioned in Section 3.5 is then used to create the configuration BIT file

that will be downloaded directly to the FPGA. This tool is capable of generating three different

types of configuration files: full, compressed, and partial [14]. The full configurations have no

compression and contain values for every configuration memory bit within the device.

Compressed configuration files take advantage of a feature in the Virtex-5 FPGAs called

multiple frame writing. This feature allows identical frames of data to be stored as a single

frame in the configuration file and written to multiple addresses in the configuration memory

[14]. This allows for a significant reduction in configuration file size for designs containing

many identical components, such as the BRAM BIST. The Virtex-5 device also supports partial

reconfiguration, which can be utilized to provide the greatest reduction in configuration file size.

These partial reconfiguration files are created by comparing two NCD file designs and the partial

reconfiguration file will be created that details only the differences between the two designs [14].

Knowing this, the BIST configurations were designed in an extremely regular manner in order to

minimize the differences between sequential configurations and configuration file size. Only

compressed configurations and partial reconfigurations are used for the BIST in order to fully

minimize download size. A compressed configuration is used for the first test phase of each of

the five configuration modes, and partial reconfiguration is used for the remaining phases. The

final file sizes of the BIST generated for the LX30 are shown in Table 3-15. The file size

reduction achieved from the use of the compression methods mentioned is shown in Figure 3-10.

80

Table 3-15 - BIST Configuration File Sizes for LX30

BIST

Config

File Size

K-bytes

BIST

Config

File Size

K-bytes

BIST

Config

File Size

K-bytes

1 (C) 583 7 (P) 49 13 (P) 4

2 (P) 55 8 (C) 592 14 (P) 4

3 (P) 49 9 (P) 3 15 (P) 4

4 (P) 49 10 (P) 50 16 (C) 564

5 (P) 49 11 (C) 532 17 (P) 4

6 (P) 49 12 (P) 4 18 (C) 387

Total File Size = 3,034 K-bytes 19 (P) 3

81

Figure 3-10 - BIST Configuration File Size Reduction for LX30

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 1 2 1 2 3 1 2 1 2 3 4 5

BRAM CASC ECC FIFOECC FIFO

D
o

w
n

lo
a

d
 S

iz
e

(K
-b

y
te

s)

Compressed Partial Partial Compressed

82

3.7.3 Timing Analysis

 By using the Xilinx timing analysis tool trce.exe mentioned in Section 3.5 the maximum

BIST clock frequency for each of the BIST configurations on all Virtex-5 devices has been

determined. The results of this analysis on the LX30T device are shown in Figure 3-11. The

FIFOECC and the CASC configurations are able to be run at the fastest clock frequency in this

device. It can also be seen that for the different configurations the clock frequency remains in a

consistent range except for the third ECC configuration and the first FIFO configuration. This

results from the inversion of the BRAM clocks for testing in these two phases. When the clocks

are inverted it presents a case where opposite edge clocking occurs which effectively halves the

maximum BIST clock frequency.

 This problem is overcome by inverting the TPG and ORA clocks in the CLBs during

these two BIST configurations. These configurations with the inverted TPG and ORA clocks are

positioned at either the beginning or end of a configuration mode sequence so that the inversion

is only performed once. This is done to minimize download and test time.

 The final maximum clock frequencies obtained from the analysis of select devices in the

Virtex-5 family are shown in Figure 3-12. These frequencies reflect the speeds after the change

which accounts for opposite edge clocking was applied. For each of the five configuration

modes the lowest maximum BIST clock frequency is displayed in the figure. It can also be seen

that the larger devices have a much slower maximum clock frequency due to longer routing

requirements in these devices. By comparing the data in Figure 3-11 to the final data for the

LX30T device in Figure 3-12 it can be seen that after inverting the clocks to account for opposite

edge clocking the maximum speed of the ECC and FIFO configurations for the LX30T device

83

increases from just over 40 MHz to over 80 MHz, putting these configuration modes in a range

similar to the others.

84

Figure 3-11 - Maximum BIST Clock Frequencies for LX30T

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 1 2 3 1 2 3 4 5 1 2 1 2

BRAM ECC FIFO FIFOECC CASC

M
a

x
.
B

IS
T

 C
lo

ck
 F

re
q

u
en

cy
 (

M
H

z)

85

Figure 3-12 – Maximum BIST Clock Frequency for select Virtex-5 Devices

0

20

40

60

80

100

120

140

160

M
a

x
.
B

IS
T

 C
lo

ck
 F

re
q

.
(M

H
z)

BRAM ECC FIFO FIFOECC CASC

86

Chapter 4 Summary and Conclusions

4.1 Summary of Virtex-5 BRAM BIST

 This thesis presents the development and verification of a BIST for the BRAMs

contained in Virtex-5 FPGAs. The work done in this thesis is largely based on the BRAM BIST

designs for Virtex-4 presented by Milton in [2] and Garrison in [3]. This design of the Virtex-5

BRAM BIST builds directly on the test design proposed by Garrison in [3].

 In order to sufficiently test the embedded BRAMs, tests are run on the memories in five

separate configuration modes. The BRAM mode of operation requires seven total test

configurations. The ECC mode requires three test configurations. The FIFO mode demands five

separate test configurations. Finally, the FIFOECC and CASC modes require two configurations

each, for a total of 19 test configurations. These BIST configurations each contain a pair of

identical TPGs designed to perform the required tests on the RAM along with ORAs to observe

the results of the tests. The configurations also contain a boundary scan interface for

communication with the BIST circuitry and retrieval of the test results.

 By using the compressed configuration and partial reconfiguration features of the Virtex-

5 FPGAs, the BIST configurations have been optimized in terms of download size. This in turn

reduces the total testing time by a substantial amount as a majority of testing time is attributed to

87

configuration downloads. Timing analysis has also been performed on the configurations to

determine what the maximum BIST clock frequency is for each device.

 Each BIST configuration was generated for and tested on the LX30T, LX50T, SX35T,

SX50T, FX30T, and FX70T Virtex-5 devices. In order to verify the fault detection capability of

the BIST, faults were injected into the BRAM configuration memory of the devices and the

BIST was executed. The results of these fault injections show that the BRAM BIST detects 481

of the 488 possible BRAM configuration memory faults which gives a fault coverage of 98.57%.

The BIST configurations can be downloaded and executed in-system during off-line operation

and are applicable for high reliability/availability systems as well as fault-tolerant applications

4.2 Future Work

 For future work in this area, this BRAM BIST design could be applied to the Spartan 6

and other families of FPGAs. Additionally, some improvements that have been made with this

BIST approach may be applied to the previous approaches for the Virtex-4 device. The

modification to the BRAM output routing in the cascade mode of operation could be applied to

these previous test approaches. Using this improvement would simplify the TPG used for this

configuration mode. It would also allow the removal of the clock enables that had been added to

the Virtex-4 ORA flip-flops to prevent the expected faults from being recorded.

88

Bibliography

[1] S. Garimella, "Built-In Self Test for Regular Structure Embedded Cores in System-on-

Chip," Auburn University, MS Thesis 2005.

[2] D. Milton, "Built-In Self Test of Configurable Memory Resources in Field Programmable

Gate Arrays," Auburn University, MS Thesis 2007.

[3] B. Garrison, "Analysis and Improvement of Virtex-4 Block RAM Built-In Self-Test and

Introduction to Virtex-5 Block RAM Built-In Self-Test," Auburn University, MS Thesis

2009.

[4] L. Wang, C. Stroud, and N. Touba, System-On-Chip Test Architectures.: Morgan Kaufmann

Publishers, 2008.

[5] I. Kuon, "Measuring the Gap Between FPGAs and ASICs," IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, February

2007.

[6] S. Hamdioui, Testing Static Random Access Memories.: Kluwer Academic Publishers, 2004.

[7] "Virtex-5 FPGA User Guide," Xilinx Inc., 2010.

[8] M. Smith, Application-Specific Integrated Circuits.: Addison Wesley, 1997.

89

[9] C. Stroud, A Designer's Guide to Built-In Self-Test.: Kluwer Academic Publishers, 2002.

[10] A. van de Goor and I. Tlili, "March Tests for Word-Oriented Memories," Trans. Design,

Automation and Test in Europe, pp. 501-508, 1998.

[11] B. Dutton and C. Stroud, "Built-In Self-Test of Configurable Logic Blocks in Virtex-5

FPGAs," Proc. IEEE Southeastern Symp. on System Theory, pp. 230-234, 2009.

[12] M. Abromovici and C. Stroud, "BIST-Based Test and Diagnosis of FPGA Logic Blocks,"

IEEE Trans. on VLSI Systems, vol. 9, no. 1, pp. 159-172, February 2001.

[13] "Virtex-5 Family Overview," Xilinx Inc., 2009.

[14] "Xilinx Development System Reference Guide," Xilinx Inc., 2008.

[15] Xilinx Inc. ModelSim Xilinx Edition-III Details. [Online].

http://www.xilinx.com/ise/verification/mxe_details.html

[16] B. Garrison, D. Milton, and C. Stroud, "Built-In Self-Test for Memory Resources in Virtex-

4 Field Programmable Gate Arrays," Proc. ISCA International Conf. on Computers and

Their Applications, pp. 63-68, 2009.

[17] B. Dutton, A. Mustafa, C. Stroud, and J. Sunwoo, "Embedded Processor Based Fault

Injection and SEU Emulation for FPGAs," International Conf. on Embedded Systems and

Applications, pp. 183-189, 2009.

[18] "Virtex-5 FPGA Configuration User Guide," Xilinx Inc., 2010.

[19] S. Dhingra, D. Milton, and C. Stroud, "BIST for Logic and Memory Resources in Virtex-4

FPGAs," Proc. IEEE North Atlantic Test Workship, pp. 19-27, 2006.

[20] C. Stroud and S. Garimella, "A System for Automated Built-In Self-Test of Embedded

Memory Cores in System-on-Chip," Proc. IEEE Southeastern Symp. on System Theory, pp.

http://www.xilinx.com/ise/verification/mxe_details.html

90

50-54, 2005.

[21] C. Stroud and S. Garimella, "Built-In Self-Test and Diagnosis of Multiple Embedded Cores

in SoCs," Proc. International Conf. on Embedded Systems and Applications, pp. 130-136,

2005.

[22] M. Pulukuri, "Built-In Self Test for Digital Signal Processor Cores in Virtex-4 and Virtex-5

Field Programmable Gate Arrays," Auburn University, MS Thesis, 2010.

[23] A. Sarvi and J. Fan, "Automated BIST-based diagnostic solution for SOPC," Proc.

International Conf. on Design and Test of Integrated Systems in Nanoscale Technology, pp.

263-267, 2006.

[24] A. van de Goor, I. Tlili, and S. Hamdioui, "March LR: A Test for Realisted Linked Faults,"

Proc. IEEE VLSI Test Symp., pp. 272-280, 1996.

91

Appendix

 The following is the MarchLR testing algorithm with a 72-bit BDS sequence which is

used to test Virtex-5 BRAMs. This algorithm was developed using the BDS method described in

[10]. This sequence is created after optimizing the algorithm by removing duplicate elements as

described in [10]. This optimization will result in a reduction in test time from O(70N) to

O(64N), where N represents the number of address locations.

92

 March Element Address Direction RAM Operation Data Hex Value

MarchLR

1 up/down write 000000000000000000

2 down read

write

000000000000000000

FFFFFFFFFFFFFFFFFF

3 up read

write

read

write

FFFFFFFFFFFFFFFFFF

000000000000000000

000000000000000000

FFFFFFFFFFFFFFFFFF

4 up read

write

FFFFFFFFFFFFFFFFFF

000000000000000000

5 up read

write

read

write

000000000000000000

FFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFF

000000000000000000

6 up read 000000000000000000

BDS

7 up read

write

write

read

000000000000000000

555555555555555555

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

8 down read

write

read

AAAAAAAAAAAAAAAAAA

555555555555555555

555555555555555555

9 up read

write

write

read

555555555555555555

333333333333333333

CCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCC

10 down read

write

read

CCCCCCCCCCCCCCCCCC

333333333333333333

333333333333333333

11 up read

write

write

read

333333333333333333

0F0F0F0F0F0F0F0F0F

F0F0F0F0F0F0F0F0F0

F0F0F0F0F0F0F0F0F0

12 down read

write

read

F0F0F0F0F0F0F0F0F0

0F0F0F0F0F0F0F0F0F

0F0F0F0F0F0F0F0F0F

13 up read

write

write

read

0F0F0F0F0F0F0F0F0F

FF00FF00FF00FF00FF

00FF00FF00FF00FF00

00FF00FF00FF00FF00

14 down read

write

read

00FF00FF00FF00FF00

FF00FF00FF00FF00FF

FF00FF00FF00FF00FF

93

BDS

March Element Address Direction RAM Operation Data Hex Value

15 up read

write

write

read

FF00FF00FF00FF00FF

FF0000FFFF0000FFFF

00FFFF0000FFFF0000

00FFFF0000FFFF0000

16 down read

write

read

00FFFF0000FFFF0000

FF0000FFFF0000FFFF

FF0000FFFF0000FFFF

17 up read

write

write

read

FF0000FFFF0000FFFF

FF00000000FFFFFFFF

00FFFFFFFF00000000

00FFFFFFFF00000000

18 down read

write

read

00FFFFFFFF00000000

FF00000000FFFFFFFF

FF00000000FFFFFFFF

19 up read

write

write

read

FF00000000FFFFFFFF

00FFFFFFFFFFFFFFFF

FF0000000000000000

FF0000000000000000

20 down read

write

read

FF0000000000000000

00FFFFFFFFFFFFFFFF

00FFFFFFFFFFFFFFFF

21 up read 00FFFFFFFFFFFFFFFF

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Field Programmable Gate Arrays
	1.1.1 FPGA Architecture
	1.1.2 Block Random Access Memory
	1.1.3 Benefits and Drawbacks of FPGA Usage

	1.2 Built-In Self-Test
	1.2.1 Pros and Cons of a BIST Approach
	1.2.2 BIST within FPGAs

	1.3 Thesis Statement

	Chapter 2 Background Information
	2.1 Fault Modeling
	2.2 Random Access Memories
	2.2.1 SRAM Faults
	2.2.1.1 Static vs. Dynamic Faults
	2.2.1.2 Simple vs. Linked Faults
	2.2.1.3 Single-port vs. Multi-port Faults
	2.2.1.4 Single-cell vs. Multi-cell Faults

	2.2.2 RAM Test Algorithms

	2.3 Virtex-5 Architecture
	2.3.1 Virtex-5 Configurable Logic Blocks
	2.3.2 Virtex-5 Block RAMs

	2.4 Virtex-4 Block RAM BIST
	2.4.1 Dedicated Carry Chain
	2.4.2 TPG Architecture
	2.4.2.1 BRAM TPG
	2.4.2.2 ECC TPG
	2.4.2.3 FIFO TPG
	2.4.2.4 FIFOECC TPG

	2.5 Thesis Statement

	Chapter 3 Virtex-5 Block RAM BIST
	3.1 Virtex-5 RAM BIST
	3.2 TPG Design and Implementation
	3.2.1 BRAM
	3.2.2 ECC
	3.2.3 FIFO
	3.2.4 FIFOECC
	3.2.5 CASC
	3.2.6 Test Configurations Summary

	3.3 ORA Design
	3.3.1 ORA Comparison Routing

	3.4 BIST Implementation
	3.4.1 Cascade Routing

	3.5 Programming Tools
	3.6 Configuration File Generation
	3.6.1 BIST Generation Program
	3.6.2 Modification Program

	3.7 Results and Analysis
	3.7.1 Fault Detection
	3.7.2 File Size Reduction
	3.7.3 Timing Analysis

	Chapter 4 Summary and Conclusions
	4.1 Summary of Virtex-5 BRAM BIST
	4.2 Future Work

	Bibliography
	Appendix

