
 

 

 

 

 

 

Analysis and Implementation of Built-In Self-Test for Block Random Access Memories in 

Virtex-5 Field Programmable Gate Arrays 

 

by 

 

Justin Lewis Dailey 

 

 

 

 

A thesis submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Master of Science 

 

Auburn, Alabama 

August 6, 2011 

 

 

 

 

Keywords: Build-In Self-Test, Field Programmable Gate Array, Block RAM, Fault Coverage 

 

Copyright 2011 by Justin Lewis Dailey 

 

 

Approved by 

 

Charles E. Stroud, Chair, Professor of Electrical and Computer Engineering 

Victor P. Nelson, Professor of Electrical and Computer Engineering 

Chwan-Hwa Wu, Professor of Electrical and Computer Engineering



ii 

 

 

Abstract 

 

 

 In order to ensure the proper operation of the embedded Block Random Access 

Memories (BRAMs) in Xilinx Virtex-5 Field-Programmable Gate Arrays (FPGAs) a dependable 

and resource efficient test is needed so that the integrity of the memory can be guaranteed in a 

timely manner.  The approach that is described in this thesis is based on a Built-In Self-Test 

(BIST) approach initially proposed by Garimella in [1] for Xilinx Virtex-1 and Virtex-2 FPGAs. 

It was later expanded upon by Milton in [2] for Xilinx Virtex-4 FPGAs. The work was continued 

by Garrison as detailed in [3] for Virtex-4 in order to improve BIST generation and execution 

time.  Garrison also proposed a design for BRAM BIST for Virtex-5 FPGAs in [3].  Garrison‟s 

proposal for Virtex-5 FPGAs is expanded upon and implemented in this thesis. 

 The testing approach for these BRAMs is described along with testing configurations and 

details.  The BIST configurations are implemented using five unique Test Pattern Generators 

(TPGs) running testing algorithms on a combination of 19 separate RAM configurations in order 

to fully test the memories.  All of the BIST configurations have been generated using two C 

programs developed as part of this thesis which are capable of generating configurations for any 

Virtex-5 device.  These configurations were downloaded to various Virtex-5 FPGAs and tested 

on these devices.  The fault detection capabilities of the BIST have been verified by using fault 
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injection within the BIST configurations that are downloaded to the FPGA to emulate physical 

faults within the configuration memory bits of the BRAMs.  With fault injection, it was verified 

that this BIST approach was able to successfully detect 100% of detectable configuration 

memory faults in the BRAMs present in Virtex-5 devices. 
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Chapter 1 Introduction 

 

 

1.1 Field Programmable Gate Arrays 

A Field Programmable Gate Array (FPGA) is a prefabricated integrated circuit that can be 

dynamically programmed by a user in the field rather than having permanent programming from 

the manufacturer, like such devices as Mask Programmable Gate Arrays (MPGAs) or 

Application Specific Integrated Circuits (ASICs) [4].  FPGAs contain programmable logic 

blocks that allow a user to designate the functionality of the device with both combinational 

logic using logic gates such as AND or XOR gates and sequential logic using elements such as a 

flip-flop [4].  Many FPGAs also contain embedded components that provide users with a 

convenient method for implementing more complicated circuits.  Commonly included embedded 

devices include digital signal processors (DSPs), random access memories (RAMs), and 

embedded microprocessors [4].  FPGAs also contain configurable interconnection resources that 

are user programmable.  The configurable routing allows circuit elements to be placed and 

routed in accordance with the user designed circuit.  The functional behavior for a specific 

design is usually created using a Hardware Design Language (HDL) such as VHDL or Verilog 

which is then used to generate a configuration for the device [4]. 
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FPGAs gained popularity due to their versatility for implementing circuit designs.  FPGA 

circuits can be designed, implemented, and tested very quickly and are also very forgiving of 

design error because they can be easily reprogrammed repeatedly [4].  The complexity of FPGAs 

has grown from only a few thousand logic gates in their infancy to tens of millions of logic gates 

in modern chips [4]. 

An ASIC implementation is generally much smaller in size and much better in performance 

than an FPGA implementation.  The circuit design of an ASIC cannot be modified once it is 

manufactured and must be specially designed.  An ASIC circuit is expected to have a time delay 

that is four to five times less than that of the same circuit implemented on an FPGA while also 

consuming on average 14 times less power [5].  However, FPGAs offer the ability to reprogram 

that an ASIC cannot.  A design error in an ASIC means that an entirely new ASIC device must 

be created where a design error in an FPGA only means the design must be modified and re-

downloaded into the FPGA.  Use of an FPGA allows a designer to save time and costs 

throughout the design process and reduces the penalty of having a design error in a prototype [4].  

The extent to which an FPGA is programmable eliminates it from being able to compete with 

ASICs and MPGAs in size and performance.   

1.1.1 FPGA Architecture 

The components generally contained within an FPGA are [4]: 

 Configurable Logic Blocks (CLBs) 

 Input/Output (I/O) Cells 

 Programmable Interconnect Points (PIPs) and Wire Segments 

 Special Cores 
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Each CLB is usually made up of multiple Look Up Tables (LUTs) and flip-flops.  The LUTs 

contain the binary data necessary to implement the combinational logic truth table of the 

programmed design and the flip-flops are used in the implementation of sequential logic [4].  

The I/O Cells allow the devices to connect peripherally, and special cores in the form of 

microprocessors, RAMs, and DSPs are commonly included.  All of these components are 

interconnected internally by utilizing a system of PIPs and wire segments for signal connection. 

1.1.2 Block Random Access Memory 

With the inclusion of specialized cores, FPGAs have started to resemble a full System-

On-Chip (SOC) [4].  These specialized cores such as RAMs, DSPs, and microprocessors make 

memory and arithmetic implementations less cumbersome to the user and reduce the 

programmable logic resources demanded [4].   

The two types of RAMs are Dynamic Random Access Memory (DRAM) and Static 

Random Access Memory (SRAM) [6].  The Block Random Access Memories (BRAMs) within 

a Xilinx FPGA are classified as SRAM. These memories require more area than DRAMs, but 

provide the fastest possible access speed of any RAM (usually 2 nanoseconds) [6].  SRAM cells 

have two separate stable states used to represent logic level zero and one [6].  The cells retain 

their state as long as they remain connected to a power supply and do not require a periodical 

refresh.  However, the memory is volatile meaning if the power supply is disconnected from the 

cell the logic state will be lost. 

The RAMs contained in a Virtex-5 FPGA can be configured to operate with a data width 

from 1 bit to 72 bits corresponding with an address space ranging from 32K to 512 data words 

[7].  The number of BRAMs supplied in a given Virtex-5 device spans from 26 in the smallest 
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device to 516 in the largest device [7].  The memories can be configured to function in different 

operational modes including the ability to be connected together in order to extend the address 

space to 64K.  The BRAMs also have the ability to function with one address port and one data 

port in single port mode, or they are capable of using a pair of address ports and a pair of data 

ports to function in dual port mode.  In dual port mode each port of the BRAM may be used to 

write or read from the memory independently and concurrently as long as they are not attempting 

to write to the same address simultaneously [7].  The BRAMs may also be configured to operate 

in a First In, First Out (FIFO) mode.  When operating in the FIFO mode the BRAM functions 

similar to a queue line that is storing data.  In this mode the BRAM has separate read and write 

clocks.  When a write operation is triggered a data word will be added to the end of the queue, 

and when a read operation is triggered the data word at the front of the queue will be retrieved.  

Each BRAM also contains Error Correction Code (ECC) circuitry which is capable of correcting 

any single-bit error in the memory or detecting any double-bit error using Hamming code [7]. 

1.1.3 Benefits and Drawbacks of FPGA Usage 

Use of FPGAs in circuit design and implementation gives the designer many advantages 

but also has a few drawbacks.  The advantages of FPGA use stem mostly from its flexibility [4]: 

 User programmability and re-programmability 

 Accelerated design implementation and prototyping process 

The user programmability and re-programmability gives a designer the ability to easily create 

a physical prototype of a digital circuit [4].  This allows users to comprehensively test their 

design before spending time and money to have an ASIC created for the circuit, and eliminates 
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much of the risk of having an unanticipated error in the circuit show up in the ASIC that will 

require refabrication of the entire device. 

There are also some distinct disadvantages to FPGA usage compared to using an ASIC [4]: 

 Higher production cost 

 Higher power consumption 

 Lower performance 

 Volatile configuration memory 

FPGA production is efficient for a low to medium volume design and expedited time-market-

systems [4].  However when mass production of a device is needed the cost of an FPGA cannot 

compete with the cost of an equivalent ASIC [8]. 

1.2 Built-In Self-Test 

As the complexity of Very Large Scale Integration (VLSI) devices continues to increase, the 

need for an efficient and economical testing method such as Built-In Self-Test (BIST) grows as 

well [4]. The general idea behind BIST is to design a circuit that is capable of verifying itself as 

being either faulty or fault-free.  A standard BIST architecture contains three major components 

[9]: 

 Test Pattern Generator (TPG) 

 Circuit Under Test (CUT) 

 Output Response Analyzer (ORA) 

The TPG serves as a stimulus to the CUT, providing a set of inputs that will cause the CUT 

to generate an expected output.  The resulting data from the CUT is analyzed by the ORA and is 
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simplified into some sort of pass/fail status depending on whether the ORA saw the expected 

output or an erroneous one [9].  Other components may be needed for system level 

implementation of the BIST such as a testing controller and input isolation circuitry.  The BIST 

circuitry may contain an output bit to indicate success or failure to an external device and 

optionally a BIST done flag to indicate a finished testing sequence.  The effectiveness of a BIST 

test is determined by the testing time and the number of faults that are detectable compared with 

the total amount of faults possible in a system known as fault coverage. 

1.2.1 Pros and Cons of a BIST Approach 

Using a BIST approach has many advantages associated with it when compared to other 

testing approaches such as external testing.  These advantages include, but are not limited to [9]: 

 Vertical Testability 

 High Diagnostic Resolution 

 At-Speed Testing 

 Reduced Amount of External Testing Equipment 

 Reduced Test Development Time and Effort 

 Reduced Manufacturing Test Time and Cost 

 Reduced Time-to-Market 

Vertical testability means that a BIST can be applied to a device in any stage of production to 

determine its validity.  A BIST that is applied to a system that gives an incorrect result reveals 

the system as faulty. It also inherently shows that a CUT associated with the device has faulty 

operation. Additionally, many times the specific faulty CUT can be identified, meaning that 

BIST has a high diagnostic resolution [9].  BIST is also able to use a system‟s internal clock for 
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at-speed testing which enables it to detect delay faults that are only visible when operating at 

system speed.  The need for expensive external testing equipment is also eliminated.  The only 

external I/O pins that must be provided are power, ground, a method for initializing the BIST, a 

method for retrieving BIST results, and a clock [9].  The savings in time and cost on test 

development resulting from internal TPG and ORA circuitry outweigh additional BIST design 

time in most cases and, consequentially, a reduced overall time-to-market [9]. 

Using a BIST approach also has drawbacks [9]: 

 Larger Area Overhead 

 Performance Penalties 

 Additional Design Time and Effort 

 Additional Project Risk 

The additional circuitry that must be included in the design to implement the BIST means 

that the overall chip area will be larger, and therefore there will be a higher cost per chip as well 

as an increased area for defects to occur.  The incorporation of the BIST circuitry may also cause 

the circuitry of the CUT to be spread out, or it may introduce additional gates into the CUT‟s 

critical path [9].  These cases will result in increased signal delay due to a longer routing path 

and increased gate delay which can be largely significant in some systems and negligible in 

others [9].  Additional time must also be taken to design and implement the BIST circuitry and 

testing technique.  When using BIST another problem arises in design verification.  By adding 

another entire system on top of the already existing system the project risk is increased as proper 

function of both of these systems is essential.  Despite these drawbacks case studies have shown 
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that the benefits of using a BIST approach are more than enough to account for the costs incurred 

in a majority of scenarios [9]. 

1.2.2 BIST within FPGAs 

Using a BIST approach offers even more of an advantage due to the programmable 

nature of FPGAs, making the BIST option even more enticing.  In contrast, the implementation 

of a BIST for an ASIC requires design of the circuitry as well as additional components being 

added to the ASIC.  FPGAs require testing in multiple configurations to achieve a high fault 

coverage, meaning the device must be tested in all modes of operation [4].  This causes the 

testing time to become mainly a function of the number of configurations that must be tested and 

also the configuration time.  In order to optimize the testing time it is critical that the number of 

test configurations is kept at a minimum [4]. 

In an FPGA testing scenario the device inherently provides an abundance of configurable 

hardware that can be utilized for implementing BIST circuitry.  There will be no area overhead 

or performance penalties present in the device after testing since the configuration is erasable [4].  

However, the drawbacks associated with designing a functional test circuit are still applicable.  

The testing circuitry consisting of TPGs and ORAs is created by programming the CLBs, I/O 

cells, and routing resources within the FPGA in order to detect faults in the various components 

of the device [4].  This approach may be used to detect faults within CLBs, routing resources, 

and the specialized cores which may be found on the chip [4].  With respect to FPGAs, a BIST 

approach proves to be an extremely practical and efficient testing approach for verifying the 

integrity of the device and its individual components.  The BIST method gains most of its 

effectiveness from the inherently configurable nature of FPGAs and its ability to have no effect 

on the device after testing has concluded. 
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1.3 Thesis Statement 

This thesis will detail a testing approach derived from the BIST approach for FPGA 

embedded memory resources proposed by Garimella in [1] and later referenced and improved 

upon by Milton in [2] and later by Garrison in [3].  These previous FPGA BIST approaches were 

targeted at BRAMs contained within the Xilinx Virtex [1], Virtex-2 [1], and Virtex-4 [2][3] 

series of FPGAs, and an initial proposal for testing of the BRAMs within the Xilinx Virtex-5 

series of FPGAs was provided by Garrison in [3].  The main focus of this thesis will be to 

implement, expand, and improve upon Garrison‟s initial proposal for BIST testing of BRAMs 

embedded in the Xilinx Virtex-5 devices and to detail a complete BIST approach and 

implementation for these memories. 

This thesis will discuss the background material for the BRAM BIST in Chapter 2.  

Chapter 3 will detail the testing configurations for the BIST as well as the implementation of the 

BIST within the FPGA architecture and the method of fault injection used to measure the 

effectiveness of the test.  Chapter 4 will present a summary and areas in which future research 

may be made to improve this testing approach. 
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Chapter 2 Background Information 

 

 

 This chapter will begin by discussing general fault detection techniques along with the 

basics of fault modeling within a circuit.  Next, the circuitry and fault types that may be present 

within Static Random Access Memories (SRAMs) will be detailed.  Then the different test 

algorithms used to detect the various types of faults in these memories will be described.  The 

chapter will then describe the architecture of the Virtex-5 devices along with the embedded 

BRAMs and their modes of operation.  Finally, the various components of the BIST architecture 

will be described along with previously proposed BIST configurations. 

2.1 Fault Modeling 

In order to test a circuit to determine its integrity a set of input stimuli is applied to the 

circuit and the output produced as a result of the stimuli is then compared with the expected 

output.  A matching pair assumes the circuit as good while mismatched results will expose the 

CUT as faulty [9].  The input stimuli that are applied to the CUT during the test are usually a set 

of input vectors that are selected in order to ensure that the CUT performs as expected with no 

structural or functional faults [9].   

 In order to have an effective evaluation of the quality of a set of tests for a device and to 

evaluate the effectiveness of a BIST as it applies to the device, fault models must be used for 
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emulation of faults or defects during simulation [9].  In order for a fault model to be beneficial it 

must meet two requirements [9]: 

 The model provides an accurate representation of the behavior of actual defects that may 

occur during the fabrication, manufacturing, and system operation of the device. 

 The model must be computationally efficient. 

These two requirements are often contradicting and make the creation of useful fault models 

difficult.  Some of the most widely used fault models are the ones that can be emulated in a 

simulation environment efficiently and that provide close approximations of actual faults which 

may occur in a physical device are [9]: 

 Gate-Level Stuck-at Faults 

 Transistor-Level Faults 

 Bridging Faults 

 Delay Faults 

The gate-level stuck fault model allows any of the inputs or outputs of a gate to be either 

stuck-at-0 (sa0) or stuck-at-1 (sa1).  The behavior of the gate is then determined by treating the 

gate input or output which is being tested as either sa0 or sa1 as being disconnected and tied to 

either a logic zero or a logic one [9]. The results of a fault-free AND gate are compared with the 

results from each case of a sa0 or sa1 that may occur with that particular gate in the Figure 2-1.  

The cases that will be detected as faults are highlighted with grey.  In the case of an AND gate 

each fault contains an instance where the output of the faulty gate differs from that of the fault 

free gate so each fault will be detected if sufficient input combinations are tested [9]. 
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AND A B Z 

AB Z sa0 sa1 sa0 sa1 sa0 sa1 

00 0 0 0 0 0 0 1 

01 0 0 1 0 0 0 1 

10 0 0 0 0 1 0 1 

11 1 0 1 0 1 0 1 
Figure 2-1 – Gate Level Stuck-at Fault Behavior for AND Gate 

Only gate-level fault models are required to simulate N-type metal-oxide-semiconductor 

(NMOS) circuits.  However when using Complementary Metal-Oxide Semiconductor (CMOS) 

circuits, a transistor-level fault model is needed to obtain accurate results [9].  Bridging fault 

models are used to emulate shorted wire segments within a circuit [9].  Delay fault models are 

used to represent the case of a circuit that performs logically correct operations but does not meet 

the timing requirements [9]. 

 When performing fault emulation a set of input vectors are applied to a circuit for each of 

a series of faults that have been artificially injected into the circuit [9].  With the fault injected 

into the circuit, the circuit will behave as if this fault has actually occurred.  The output of this 

circuit will then be compared with the output of a fault free circuit.  If a mismatch between the 

two outputs is found using the test vectors then the fault injected circuit has produced an 

erroneous result and the fault is considered to be detected [9].  If the complete set of test vectors 

is applied to the pair of circuits without a mismatch occurring then the fault is considered to be 

undetected [9].  The results of applying the entire set of test vectors to each of the possible faults 

in a circuit will determine the fault coverage of the test vectors.  The fault coverage for a set of 

A 

B 
Z 
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vectors is a representation of the effectiveness of those vectors in detecting faults [9].  The 

calculation for determining fault coverage is given by [9]: 

 

                
                    

                 
 

2-1 

 

2.2 Random Access Memories 

Static Random Access Memories (SRAMs) are made up of bi-stable memory cells which 

are capable of holding either a logic zero state or a logic one state.  A memory cell holds only a 

single bit of information and will retain its value as long as the power remains connected to the 

cell without the need for a periodic refresh.  However, the cells are volatile and will not retain 

their logic value after the power has been disconnected [6]. A general SRAM will contain input 

connections for controls, addresses, and data-in as well as output connections for data-out [6].  A 

common model for representing an SRAM is the two-dimensional model shown in Figure 2-2.  

This model displays the basic inputs for controls, addresses, and data-in and outputs for the data-

out bits [6].  The data-in and data-out ports will be N bits wide where N will be the width of the 

data words in the RAM. 
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Figure 2-2 - Two-Dimensional SRAM Model [6] 

 The RAMs contained within the Virtex-5 FPGAs function as multi-port SRAMs.  A 

multi-port RAM has multiple input and output ports.  These ports may be read-only, write-only, 

or capable of both read and write operations [6].  The detailed functional operating model of an 

SRAM can be seen in Figure 2-3.  This model illustrates how the row and column decoders will 

be used in order to select the memory location [6].  The control circuitry, read/write circuits, and 

data registers are then used to either extract or insert bits into the array [6].  In the multi-port 

SRAM the ports are able to read and write simultaneously in all but a few circumstances in 

which ports may be trying to read and write to the same address [6].  The ports share a common 

memory cell array that is constructed of individual memory cells.  The address inputs are used by 

the row and column decoders in order to select a cell in the memory on which the read or write 

operation will be executed.  When a write instruction is executed the data word on the data-in 

pins is written into the SRAM memory cells at the selected address.  When a read instruction is 
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executed the data word saved at the selected address is retrieved from the memory and displayed 

on the data-out pins [6]. 

 

Figure 2-3 - Functional model of a multi-port memory [6] 
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2.2.1 SRAM Faults 

In order to simplify fault testing in a memory a reduced functional memory model is used 

to model the operation of the memory [6].  This reduced model only consists of the address 

decoder, the memory cell array, and the read/write logic.  These three subsystems are common to 

almost all mainstream memory devices [6].  In order to describe failures within a memory a set 

of functional fault models is defined.  The functional models are described as the difference 

between the observed behavior and the expected behavior under a set of performed operations 

[6].  This means that to define any fault model two things are needed [6]: 

 A list of performed memory operations 

 A list of the differences in behavior observed when performing the operations 

The behavior of these fault models is described by fault primitives.  Each primitive is used in 

order to describe a fault and consists of the pattern of inputs used to sensitize the fault and the 

resulting faulty behavior [6].  An extremely limited subset of the most relevant primitives is 

selected to describe the faulty behavior of the memory rather than testing all functional 

specifications [6].  The fault primitives are classified according to four separate criteria, as 

follows. 

2.2.1.1 Static vs. Dynamic Faults 

Static faults are fault primitives which only require a single read or write operation in 

order to detect [6].  Examples of static faults are cell values being stuck-at-1 or stuck-at-0.  

Dynamic faults require more than a single read or write operation to expose and can be classified 

further by the number of operations required [6]. 
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2.2.1.2 Simple vs. Linked Faults 

Simple faults are faults that are unable to influence each other in any way.   However, 

when faults are able to influence the behavior of other faults they are classified as linked faults 

[6].  This behavior means that linked faults are capable of masking each other [6].  When 

masking occurs, the effect of one fault will result in the faulty result of another becoming 

unobservable [6]. 

2.2.1.3 Single-port vs. Multi-port Faults 

Single-port faults are fault primitives that only require usage of, at the most, one port of 

the RAM.  Multi-port faults require the use of two or possibly more ports in order to sensitize the 

fault.  These faults may be further classified based on the number of ports that are needed [6]. 

2.2.1.4 Single-cell vs. Multi-cell Faults 

A fault is characterized as a single-cell fault if the cell that is used for sensitizing the fault 

is also the same cell in which the fault is observed [6].  Multi-cell or coupling faults involve 

more than a single cell to sensitize.  For multi-cell faults the cell in which the operation is 

performed is different than the cell in which the fault is observed [6]. 

2.2.2 RAM Test Algorithms 

In the standard dual-port mode of operation of the BRAMs in Virtex-5 devices, two 

known RAM tests are used to test the memories:  March s2pf/d2pf and MATS+ [6].  These tests 

are executed on the RAM with various port widths in this configuration. 
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The notation that will be used to describe the RAM test algorithms is as follows [6]: 

 ↑,↓:  Used to indicate the direction traveled through the address space (↕ indicates 

that the address space may be traversed in either direction). 

 r, w:  Used to denote between read and write operations.  These characters will be 

directly follow by the values to be written or the values expected to be read. 

 Each group of operations within parenthesis is known as a march element.  All 

operations in these parentheses will be performed on a single address. 

 Example:  ↓ (r0, w1) indicates that the test will traverse the address space from 

the maximum address to the minimum.  At each location address a Read – 0 

operation will be performed followed by a Write – 1 operation.   

Some additional notations are used for dual port RAM tests [6]: 

 A colon (:) separates operations of the separate ports 

 n : Used to indicate that no operation is to be applied on a port. 

 - : Used to indicate that any operation may be used, as long as it is not in conflict 

(i.e. dual write operations to the same address location with different values) 

  n = 0
N-1

:  Used to indicate that an operation is performed on either a row or 

column range.  Where N will be R for a row range and C for a column range. 

 

 The MATS+ algorithm was chosen to be used on the various port widths of this RAM 

configuration.  It was selected because it is a simple algorithm which can quickly verify the 

address and data widths and the programmable address decoding circuitry [4].  MATS+ is order 

O(5N) and the full algorithm can be seen in Equation 2-2 [6].  This algorithm is used to test the 
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programmable address and data widths, write modes, the active levels of the clock, port enable, 

output register clock, and the set/reset signals [3]. 

 

MATS+ = 

{↕ (w0); 

↑ (r0, w1); 

↓ (r1, w0)} 

          2-2 

 

When testing word-oriented memories, such as the BRAMs in Virtex-5 devices, 

background data sequences (BDS) are needed to detect faults within the memory words.  The 

number of BDS required for testing a memory can be seen in Equation 2-3 where K is the 

number of bits in the data word [4]. 

                      

2-3 

 For example in order to incorporate a 4-bit BDS into the MarchLR algorithm, first 

replace all single bit elements in Equation 2-4 with 4-bit words.  The r0, r1, w0, and w1 elements 

will be replaced with r0000, r1111, w0000, and w1111 respectively.  Then by using Equations 

2-5 and 2-6 along with Table 2-1 and Table 2-2, the BDS can be constructed using the following 

process [10]: 
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MarchLR = 

{↕ (w0); 

↓ (r0, w1); 

↑ (r1, w0, r0, w1); 

↑ (r1, w0); 

↑ (r0, w1, r1, w0); 

↑ (r0)} 

       2-4 

 

 

                       

2-5 

 

 

                             

 2-6 
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Table 2-1 – 4-Bit BDS Components 

Normal Inverse 

0000 1111 

0101 1010 

0011 1100 

 

Table 2-2 – 4-Bit BDS Sequence 

i D 

0 0000 

1 1111 

2 0000 

3 0101 

4 1010 

5 0101 

6 0011 
7 1100 

8 0011 

 

1. Starting with i = 0 in Table 2-2, use Equation 2-5 to get            and the resulting 

march element  ↑                   . 

2. Using i = 1, the equation results in            and the next march element is 

 ↓                   . 

3. Using i = 2, notice that from i = 2 to i = 3 there is a transition from the first row of Table 

2-1 to the second row.  Therefore Equation 2-6 is used to create the march element rather 

than Equation 2-5.  The resulting equation is               and the march element will 

be  ↑                         .  When a transition such as this occurs i will be 

incremented by 2. 

4. Using i = 4 Equation 2-5 is used because there is no transition of rows between i = 4 and i 

= 5.  The resulting equation will be            and the march element will be 

 ↓                   . 

5. Using i = 5, Equation 2-6 will be used due to the transition between i = 5 and i = 6, which 
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results in the equation               and the march element 

 ↑                         . 

6. Using i = 6, Equation 2-5 will be used to get            and the march element will be 

 ↓                   . 

7. The final march element will be a read operation of the final i value:  ↑       . 

 

The resulting MarchLR w/4-bit BDS algorithm is O(35N).  However, the seventh and eight 

march elements of this generated test algorithm repeat march elements contained within the 

initial MarchLR algorithm [10].  In order to optimize our MarchLR w/BDS algorithm we may 

eliminate these duplicated elements and we will be left with the optimized algorithm which is 

O(30N).  The optimized algorithm is shown in Equation 2-7 [10].   
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MarchLR w/4-bit BDS = 

{↕ (w0000); 

↓ (r0000, w1111); 

↑ (r1111, w0000, r0000, r0000, w1111); 

↑ (r1111, w0000); 

↑ (r0000, w1111, r1111, r1111, w0000); 

↑ (r0000, w0101, w1010, r1010); 

↓ (r1010, w0101, r0101); 

↑ (r0101, w0011, w1100, r1100); 

↓ (r1100, w0001, r0011); 

↑ (r0011)} 

  2-7 

 

The March Y algorithm is used in order to test the programmable address decoding circuitry 

of the BRAM [4].  This algorithm will also detect destructive read faults within the BRAM [4].  

The March Y algorithm is order O(8N) and can be seen in Equation 2-8 [4].  In order to test the 

FIFO mode of operation, as well as the programmable flags in this mode, the March X algorithm 

is used [4].  This algorithm is O(6N) and is shown in Equation 2-9 [4]. 
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March Y = 

{↕ (w0); 

↑ (r0, w1, r1); 

↓ (r1, w0, r0); 

↑ (r0)} 

2-8 

 

March X  =  

{↕ (w0); 

↑ (r0, w1); 

↓ (r1, w0); 

↑ (r0)} 

2-9 

 In order to fully test the programmable “almost” full and “almost” empty in the First-In-

First-Out (FIFO) mode of operation the RAM must be reconfigured multiple times as described 

in [4].  The steps in the FIFOX algorithm are shown below: 

Step 1. Reset the FIFO, check that Empty flag is active 

Step 2. Repeat N times: write FIFO with all 0’s, check that Empty flag goes inactive after 

first write cycle, Full flag goes active after last write cycle, and that Almost Empty flag 
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goes inactive and Almost Full flag goes active at the appropriate points in the sequence.  

Perform one additional write if the FIFO has a Write Error signal to indicate an 

attempted write when the FIFO is full. 

Step 3. Repeat N times: read FIFO expecting all 0’s and write FIFO with all 1’s, check 

that Full flag toggles after each read and write cycle. 

Step 4. Repeat N times: read FIFO expecting all 1’s and write FIFO with all 0’s, check 

that Full flag toggles after each read and write cycle. 

Step 5. Repeat N times: read FIFO expecting all 0’s, check that Full flag goes inactive 

after first read cycle, Empty flag goes active after last read cycle, and that Almost Empty 

flag goes active and Almost Full flag goes inactive at the appropriate points in the read 

sequence.  Perform one additional read if FIFO has a Read Error signal to indicate an 

attempted read when the FIFO is empty. 

 

The March s2pf/d2pf algorithms were chosen because they are able to detect all realistic 

single and double addressing faults within a dual port RAM [6].  March s2pf is order O(14N), 

and March d2pf is order O(9N) where N represents the number of addresses in the memory.  The 

March s2pf and d2pf algorithms may be seen in Equation 2-10 and 2-11 respectively [6].  These 

algorithms are responsible for testing the dual-port functionality of the BRAMs [6]. 
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March s2pf = 

{↕ (w0 : n); 

↑ (r0 : r0, r0: -, w1 : r0); 

↑ (r1 : r1, r1 : -, w0: r1); 

↓ (r0 : r0, r0 : -, w1 : r0); 

↓ (r1 : r1, r1 : -, w0 : r1); 

↓ (r0 : -)} 

2-10 

 

March d2pf = 

{↕ (w0 : n); 

↑ c = 0
C-1

 (r = 0
R-1

 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c)); 

↑ c = 0
C-1

 (r = 0
R-1

 (w1r,c : r0r+1,c, r1r,c : w1r+1,c, w0r,c : r1r+1,c, r0r,c+1 : w0r+1,c))} 

  2-11 

 

 The ECC (Write) and ECC (Read) algorithms both use an ECC testing algorithm 

described in [4] which achieves 100% coverage of an XOR parity tree circuit which the ECC 

circuitry is surmised to be.  The ECC Write algorithm is responsible for testing the parity 

generation circuitry while the ECC Read algorithm is responsible for testing the error detection 

and correction circuitry [4]. 
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ECC (Write) = 

All 0‟s; walk 1-thru-0‟s 

All 1‟s 

Walk two 1‟s-thru-0‟s 

2-12 

 

ECC (Read) = 

Output of ECC generate vectors 

Init: Walk 1-thru-0‟s; all 1‟s; all hamming values w/data = 0‟s 

Init: Walk two 1‟s-thru-0‟s 

(Note: Init indicates that the test vectors are initialized in the ECC RAM during download) 

2-13 
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2.3 Virtex-5 Architecture 

This section will detail the structural architecture of the Virtex-5 devices.  The 

programmable logic resources available to the user will be discussed along with information 

about the design and functionality of the BRAMs contained in the devices. 

2.3.1 Virtex-5 Configurable Logic Blocks 

The primary resources in the Virtex-5 for implementing sequential and combinational 

logic circuits are the Configurable Logic Blocks (CLBs) [7].  The resource count within these 

CLBs is shown in Table 2-3.  Each CLB contains a pair of slices.  These two slices are not 

interconnected and are arranged in two columns containing a dedicated carry chain as 

summarized in Figure 2-4.  The slices are also connected to a switching matrix, granting them 

access to the general routing matrix [7]. 

 

Table 2-3 - CLB Resources in Virtex-5 [7] 

Component Virtex-5 CLB 

Slices 2 

Look-Up-Tables 8 

(6-input) 

Flip-Flips 8 

Arithmetic and Carry Chains 2 

Distributed RAM 256-bits 

Shift Registers 256-bits 
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Figure 2-4 - Slice arrangement within Virtex-5 CLBs [7] 
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2.3.2 Virtex-5 Block RAMs 

 

Figure 2-5 - Virtex-5 Dual-Port Flow [7] 

The BRAMs contained within Virtex-5 devices are capable of operating in two main 

modes, single-port and dual-port [7].  The inputs and outputs available to the BRAMs can be 

seen in Figure 2-5 [7].  Each RAM may be used as be used as two separate 18 K-bit RAMs or as 

a single 36 K-bit RAM [7].  The RAMs contain two input ports, Port A and Port B.  These two 

ports may be used independently to synchronously read data from and write data to the RAM.  

The RAMs may be configured to use one of three write configurations [7].  In the WRITE_FIRST 

mode, data will be immediately displayed on the output of the RAM as it is written.  The 
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READ_FIRST mode will display the previous contents of the RAM on the output as new data is 

written.  Finally, the NO_CHANGE mode will leave the outputs unchanged upon a write 

operation.  When using this mode the data output remains the last read data and is unaffected by 

write operations [7].  Additionally, the RAMs may be used in either a single-port or dual-port 

RAM mode [7].  This option is available whether the RAMs are being used as a single 36 K-bit 

memory or two independent 18 K-bit memories [7].  The RAMs are also able to be configured 

with various port sizes and depths.  The different configuration types available to be used for the 

independent 18 K-bit configurations are shown in Table 2-4 [7].  The configuration types 

available for use with the single 36 K-bit configurations are shown in Table 2-5 [7].  An option is 

also provided to enable a pipeline register on the output of a RAM, allowing a higher operating 

frequency while sacrificing an additional clock cycle of latency [7]. 

Table 2-4 - Virtex-5 BRAM Port Aspect Ratio (18K-bit RAM) [7] 

Address 

Width 

Address 

Bits 

Memory Depth Data 

Width 

Data-In/Out 

Bits 

Data-In/Out 

Parity Bits 

14 13:0 16K 1 0 n/a 

13 13:1 8K 2 1:0 n/a 

12 13:2 4K 4 3:0 n/a 

11 13:3 2K 9 7:0 0 

10 13:4 1K 18 15:0 1:0 

9 13:5 512 36 31:0 3:0 

 

Table 2-5 – Virtex-5 BRAM Port Aspect Ratio (36K-bit RAM) [7] 

Address 

Width 

Address 

Bits 

Memory Depth Data 

Width 

Data-In/Out 

Bits 

Data-In/Out 

Parity Bits 

15 14:0 32K 1 0 n/a 

14 14:1 16K 2 1:0 n/a 

13 14:2 8K 4 3:0 n/a 

12 14:3 4K 9 7:0 0 

11 14:4 2K 18 15:0 1:0 

10 14:5 1K 36 31:0 3:0 

9 14:6 512 72 63:0 7:0 
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The RAMs also may be used with ECC parity bits.  In this mode of operation an 8-bit 

Hamming code is generated by the ECC circuitry present with each RAM which can be seen in 

Figure 2-6 [7].  The ECC circuitry may be used fully or in an encoder-only or decoder-only 

mode.  The configurable EN_ECC_WRITE option allows the ECC bits to be provided on the 

parity input pins of the RAM or optionally generated by the included encoding circuitry.  

Similarly the EN_ECC_READ option may be used to bypass the decoding and correction 

circuitry [7].  This ECC circuitry is capable of detecting and correcting any single-bit error or 

detecting any double-bit error without correction in the data being read from the RAM [7]. 



33 

 

Figure 2-6 - Top Level View of Virtex-5 BRAM ECC [7] 

 

 The RAMs may also be configured in a First-In-First-Out (FIFO) mode of operation.  In 

this mode of operation the FIFO is equipped with the inputs and outputs shown in Table 2-6 [7].  

The FIFO provides separate read and write enables as well as individual clocks for each 

operation.  The read and write addresses are displayed on outputs, and there are also flags 

indicating a read error or a write error.  A pair of flags indicating that the FIFO is full or empty is 

present.  Also, the FIFO features configurable almost full and almost empty flags which are 

controlled via a 13-bit hexadecimal value [7].  A configuration option called 
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FIRST_WORD_FALL_THROUGH also optionally allows the first word written into the FIFO to 

be immediately displayed on the output.  If this option is selected the capacity of the FIFO will 

be increased by one [7].  The FIFO may also be used with the same ECC circuitry that is 

available to the standard BRAM configuration.  This allows any single bit error in the FIFO data 

to be detected and corrected or any double bit error in the FIFO data to be detected [7].  The 

various port aspect ratios and memory depths that are available for use in this mode are shown in 

Table 2-7 [7].  Additionally, the actual capacity of the FIFO when it is used with these different 

port aspect ratios is shown in Table 2-8 [7]. 

Table 2-6 - FIFO Input and Output Ports [7] 

 Port Width Description 

Inputs 

DI 32 Data input 

DIP 4 Parity-bit input 

RDEN 1 Read enable 

RDCLK 1 Read domain clock 

WREN 1 Write enable 

WRCLK 1 Write domain clock 

RST 1 Asynchronous reset 

Outputs 

DO 32 Data output 

DOP 4 Parity-bit output 

WRCOUNT 13 Data write pointer 

RDCOUNT 13 Data read pointer 

FULL 1 Full flag 

EMPTY 1 Empty flag 

ALMOSTFULL 1 Configurable almost full flag 

ALMOSTEMPTY 1 Configurable almost empty flag 

RDERR 1 Read error flag 

WRERR 1 Write error flag 
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Table 2-7 – Virtex-5 FIFO Port Aspect Ratio [7] 

18K-bit Mode 36K-bit Mode 

Memory Depth Data Width Memory Depth Data Width 

4K 4 8K 4 

2K 9 4K 9 

1K 18 2K 18 

512 36 1K 36 

- - 512 72 

 

Table 2-8 – Virtex-5 FIFO Data Depth [7] 

Data Width Block RAM 

Memory 

FIFO Capacity 

18K-bit 36K-bit Standard FWFT 

- 4 8192 8193 8194 

4 9 4096 4097 4098 

9 18 2048 2049 2050 

18 36 1024 1025 1026 

36 72 512 513 514 

 

 Finally, the BRAMs are able to be configured in a cascade mode which allows two 

adjacent RAMs to be connected together and used as one larger RAM.  The circuitry which 

allows this is shown in Figure 2-7 [7].  This option is available for any two adjacent RAMs in a 

column on the device [7].  The only port width available for this operating mode is 64K x 1-bit 

where two 32K x 1-bit RAMs are combined.  The upper RAM has its RAM_EXTENSION 

configuration bit set to UPPER (0) and the lower ram has its RAM_EXTENSION bit set to 

LOWER (1) [7].  Output data is only displayed on the upper RAM.  The data output of the RAM 

configured as the lower RAM is routed into a multiplexer by connecting the CASCADEIN and 

CASCADEOUT of the two RAMs as shown in Figure 2-7 [7].  This multiplexer is controlled by 

address bit A15 which selects the appropriate output [7]. 
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Figure 2-7 - Virtex-5 BRAMs in Cascade Configuration [7] 

2.4 Virtex-4 Block RAM BIST 

This section will discuss the FPGA RAM BIST procedures developed by Milton in [2] and 

by Garrison in [3] for Virtex-4 which are expanded upon in this work for a Virtex-5 

implementation.  Milton‟s original approach used the CLBs available within the FPGA to create 

the TPG and ORAs while the BRAMs served as the Circuits Under Test (CUTs).  Milton also 

used a pair of identical TPGs which provide test vectors to alternating RAMs in the columns [2].  

The ORAs are implemented using a circular comparison based approach that results in an 

increase in fault detection capability and diagnostic resolution [2].  These ORAs are placed in the 

CLB columns which neighbor the BRAMs.  A layout of Milton‟s BIST architecture along with 

the TPG, CUT, and ORA connections can be seen in Figure 2-8 [2]. 
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Figure 2-8 - BRAM BIST Architecture [2] 

2.4.1 Dedicated Carry Chain 

Milton‟s original ORA design was improved upon by Dutton in [11] and later used by 

Garrison in [3] to take advantage of the built in carry logic provided in the Configurable Logic 

Blocks (CLBs) of Virtex-4 and Virtex-5 devices.  In order to implement this, the ORA circuitry 

was modified to that shown in Figure 2-9 [3].  To indicate a fault has been detected a Logic 0 is 

latched into the flip-flop [3].  This bit is used to select the input of a multiplexor in the carry 

chain which in turn provides a Logic 1 on the carry-out in the case of a failure.  Alternatively, 

the input that is provided from the previous multiplexor via carry-in is forwarded to the carry-

out [3]. 

ORAs ORAs 

BRAMs BRAMs 

TPG0 TPG1 
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Figure 2-9 - Comparison Based ORA with Carry Chain [3] 

 

 In order to ensure the propagation of the test result through the entire built-in carry logic, 

several dummy ORAs must be implemented in the ORA columns[3].  This is necessary because 

some of the ORA columns do not span the entire height of the FPGA.  In this case, the dummy 

ORAs are added to the configuration to complete these columns as seen in Figure 2-10.  No logic 

is implemented in the dummy ORAs aside from the built-in carry chain [3]. 

 

Figure 2-10 - Additional Dummy ORAs [3] 
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 The functionality of the carry logic can be expressed as an iterative OR-chain as seen in 

Figure 2-11 where the boxes containing „O‟s are the ORAs [3].  If no mismatch is detected 

within the ORA then the input from the previous ORA will be selected. If a mismatch is detected 

a Logic 1 will be output by the detecting ORA and propagated through the chain [3]. 

 

Figure 2-11 - Iterative OR-Chain Functionality [3] 

The OR-chain is connected to the boundary scan interface provided on the device, with 

the initial input being provided by the Test Data In (TDI) pin.  The final output of the chain is 

connected to the Test Data Out (TDO) pin of the interface [3].  The OR-chain effectively 

provides a single Pass/Fail bit to observe the test result.  Once the test has concluded the user is 

able to toggle TDI and observe the behavior of TDO [3].  If TDO matches TDI during this 

process then no fault has been detected by any of the ORAs, and it is unnecessary to perform a 

configuration memory read back [3].  If TDO is observed as being constantly a Logic 1 through 

this process, then a configuration memory read back may be performed in order to retrieve the 

results from the flip-flops in the ORAs if desired [3].  If TDO is observed as being constantly a 

Logic 0 while toggling TDI then it must be assumed that there is a fault within the logic used to 

construct the OR-chain meaning TDI and the ORA comparison results are not being properly 

propagated. 

2.4.2 TPG Architecture 

 The original designs for the Virtex-5 BRAM TPGs were proposed by Garrison in [3].  

Garrison proposed that four different Xilinx BRAM primitive models be used in developing and 



40 

testing the TPGs.  These models describe the operation of the BRAMs in different configuration 

modes and behave exactly as the physical BRAMs in simulation [7].  The TPGs are created with 

an aim to test the BRAMs in these modes of operation, and the operation of the TPGs is verified 

with these models in simulation.  The models for the first four test configurations are as follows 

[3]: 

1. BRAM (32K + 4K parity) – true dual-port BRAM that supports widths of x1, x2, 

x3, x4, x9, x18, and x36. 

2. ECC (512 x 72-bit) – simple dual-port BRAM with 64-bit ECC. 

3. FIFO (32K + 4K parity) – synchronous/asynchronous FIFO BRAM that supports 

widths x1, x2, x4, x9, and x18. 

4. FIFOECC (512 x 72-bit) – synchronous/asynchronous FIFO with 64-bit ECC. 

 

2.4.2.1 BRAM TPG 

 The TPG proposed by Garrison for testing the RAM in the BRAM configuration is 

responsible for testing the dual-port functionality of the BRAM and would require seven 

different BIST configurations [3].  The proposed test algorithm, address space, and data width 

used for each configuration can be seen in Table 2-9 [7].  The desired test to be run is selected by 

a user-supplied control string that is shifted into the TPG using the boundary scan interface as 

shown in Figure 2-12 [3].  The values proposed for the control strings for the various tests are 

shown in Table 2-10 along with the configuration settings in Table 2-11 [3].  The three Mode bits 

in the control string correspond to the BRAM Configuration Number and the Level Control bit 

allows us to control the active level for the TPGs [3]. 
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Execution of the RAM test algorithms is implemented using a Finite State Machine 

(FSM) in a VHDL model for the BRAM TPG as well as the other BIST TPGs.  The TPG model 

is synthesized using area constraints to restrict the placement of the resources to the smallest area 

possible in the lower left hand corner of the device [3].  In the BIST configurations, the TPG 

designs will be offset from the bottom left hand corner to achieve the desired placement in the 

six CLB columns directly to the right of the rightmost column of BRAMs, excluding the 

columns of BRAMs located in a Tri-mode Ethernet Media Access Controller (TEMAC) column 

in Virtex-5 devices that contain them [3].  The columns are selected for TPG placement because 

they are not used for any other purpose in the Virtex-5 BRAM BIST [3].  In these columns, one 

TPG will be placed at the bottom of the device and the other TPG will be placed exactly halfway 

up the device [3].  The TPGs are placed in this manner in order to minimize routing distance 

from each TPG to alternating BRAMs in columns spanning the entire height of the device.  An 

example of the TPG placement and routing on the LX30 device may be seen in Figure 2-13. 

Table 2-9 - BRAM BIST Configurations [7] 

BRAM 

Config 

Test 

Algorithm 

Address 

Space 

Data 

Width 

1 March s2pf 1K 36 

2 March d2pf 1K 36 

3 

MATS+ 

2K 18 

4 4K 9 

5 8K 4 

6 16K 2 

7 32K 1 
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Table 2-10 – Proposed Control String Values for BRAM TPG [3] 

BRAM 

Config 

Test 

Algorithm 

Address 

Space 

Level 

Control 
Mode 2 Mode 1 Mode 0 

Hex 

Control 

String 

1 March s2pf 1K 0 0 0 0 0x0 

2 March d2pf 1K 0 0 0 1 0x1 

3 

MATS+ 

2K 1 0 1 0 0xA 

4 4K 1 0 1 1 0xB 

5 8K 1 1 0 0 0xC 

6 16K 1 1 0 1 0xD 

7 32K 1 1 1 0 0xE 

 

Table 2-11 - Proposed Configuration Settings for BRAM TPG [3] 

(a) Settings Part 1 

BRAM 

Config 

Test 

Algorithm 

DO (A/B) 

REG 

READ 

Width 

(A/B) 

WRITE 

Width 

(A/B) 

WRITE Mode 

(A/B) 

SAVE 

DATA 

1 March s2pf 1 36 36 READ_FIRST FALSE 

2 March d2pf 1 36 36 READ_FIRST FALSE 

3 

MATS+ 

0 18 18 READ_FIRST FALSE 

4 0 9 9 WRITE_FIRST FALSE 

5 0 4 4 NO_CHANGE FALSE 

6 0 2 2 WRITE_FIRST FALSE 

7 0 1 1 NO_CHANGE FALSE 

 

(b) Settings Part 2 

BRAM 

Config 

Test 

Algorithm 

CLK, EN, 

SSR 

REGCLK 

(A/B)(U/L) 

INV 

RAM EXT INIT VAL SRVAL 

INIT 

(A/B) 

VAL 

1 March s2pf INV NONE AAAA 5555 0 

2 March d2pf not INV NONE 5555 AAAA FFFF 

3 

MATS+ 

not INV NONE AAAA 5555 0 

4 not INV NONE 5555 AAAA FFFF 

5 not INV NONE AAAA 5555 0 

6 not INV NONE 5555 AAAA FFFF 

7 not INV NONE AAAA 5555 0 
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Figure 2-12 - Shift Register Control String for BRAM TPGs [3] 

 

Figure 2-13 - Placement and Routing on TPGs in LX30 
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2.4.2.2 ECC TPG 

 The proposed ECC TPG is responsible for testing the memory core and the ECC read and 

write capabilities of the BRAM [3].  By using the largest data width available in this 

configuration, all memory elements within the BRAMs may be accessed [3].  This TPG is 

implemented using an FSM as well, and the algorithm to be run is also selected using a control 

string shifted in via the boundary scan interface.  The control values used for selecting the 

algorithm are shown in Table 2-12 along with the entirety of the proposed configuration settings 

in Table 2-13 [3].  The RAM test algorithm March LR w/72-bit BDS (described in the Appendix) 

is used in this configuration since all memory elements are available.  The background data 

sequence is used to ensure that all intra-word coupling faults will be detected [6].  The 

configurations labeled ECC (read) and ECC (write) are responsible for detecting any faults 

within the ECC check and correction circuitry on the BRAMs [4].  This TPG is also synthesized 

using area constraints to control TPG area and placement. 

Table 2-12 – Proposed Control String Values for ECC TPG [3] 

ECC 

Config 

Test 

Algorithm 

Level 

Control 
Mode 1 Mode 0 

Hex 

Control 

String 

1 MarchLR w/BDS 0 0 0 0x0 

2 ECC (read) 0 0 1 0x1 

3 ECC (write) 1 1 0 0x6 
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Table 2-13 – Proposed Configuration Settings for ECC TPG [3] 

(a) ECC Settings Part 1 

ECC 

Config 

Test 

Algorithm 

DO 

REG 

EN_ECC 

READ 

EC_ECC 

WRITE 

EN_ECC 

SCRUB 

INIT 

VAL 

SR 

VAL 

INIT 

(A/B) 

VAL 

SAVE 

DATA 

1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE 

2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE 

3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE 

 

(b) ECC Settings Part 2 

ECC 

Config 

Test 

Algorithm 

RDCLK 

(U/L) 

INV 

RDEN 

(U/L) INV 

RDRCLK 

(U/L) INV 

WRCLK 

(U/L) INV 

WREN 

(U/L) 

INV 

SSR 

(U/L) 

INV 

1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV 

2 ECC (read) not INV not INV not INV not INV not INV not INV 

3 ECC (write) INV INV INV INV INV INV 

 

 

2.4.2.3 FIFO TPG 

 The TPG for testing the BRAM in the FIFO configuration mode is responsible for testing 

all the FIFO functionality and is designed like the previously described BRAM and ECC TPGs.  

This TPG will use the RAM test algorithm FIFOX [4].  The proposed configuration settings for 

this mode can be seen in Table 2-14 [3]. 
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Table 2-14 – Proposed Configuration Settings for FIFO TPG [3] 

(a) FIFO Settings Part 1 

ECC 

Config 

Test 

Algorithm 

DO 

REG 

DATA 

WIDTH 
EN SYN FWFT 

RDCLK 

(U/L) 

INV 

RDEN INV 
RST 

INV 

1 

FIFOX 

1 36 TRUE TRUE INV INV INV 

2 1 18 FALSE FALSE not INV not INV not INV 

3 0 9 TRUE TRUE not INV not INV not INV 

4 0 4 FALSE FALSE not INV not INV not INV 

 

(b) FIFO Settings Part 2 

ECC 

Config 

Test 

Algorithm 

WRCLK 

(U/L) INV 
WREN INV 

ALMOST 

FULL 

OFFSET 

ALMOST 

EMPTY 

OFFSET 

1 

FIFOX 

INV INV 5555 AAAA 

2 not INV not INV AAAA 5555 

3 not INV not INV 5555 AAAA 

4 not INV not INV AAAA 5555 

 

2.4.2.4 FIFOECC TPG 

 The TPG for this mode is responsible for testing the ECC circuitry of the BRAM when it 

is configured for FIFOECC operation.  This TPG will be designed similar to the previously 

described TPGs.  The proposed test algorithm that will be used in this TPG is FIFOX [4].  The 

proposed configuration settings may be seen in Table 2-15.  
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Table 2-15 – Proposed Configuration Settings for FIFOECC TPG [3] 

(a) FIFOECC Settings Part 1 

FIFOECC 

Config 

Test 

Algorithm 

DO 

REG 

EN_ECC 

READ 

EN_ECC 

WRITE 
EN SYN FWFT RST INV 

1 FIFOX 1 TRUE FALSE FALSE TRUE INV 

2 FIFOX 0 FALSE TRUE TRUE FALSE not INV 

 

(b) FIFOECC Settings Part 2 

FIFOECC 

Config 

Test 

Algorithm 

ALMOST 

EMPTY 

OFFSET 

ALMOST 

FULL 

OFFSET 

RDCLK 

(U/L) 

INV 

RDRCLK 

(U/L) 

INV 

RDEN 

INV 

WRCLK 

(U/L) 

INV 

WREN 

INV 

1 FIFOX 5555 AAAA INV INV INV INV INV 

2 FIFOX AAAA 5555 not INV not INV not INV not INV not INV 

 

2.5 Thesis Statement 

 This chapter has presented the basics of fault modeling in SRAM memories.  It has also 

shown and detailed the various test algorithms used when testing these memories.  An overview 

of the architecture of Virtex-5 devices is also given along with a description of the embedded 

BRAMs and their modes of operation.  The components of the BIST structure are also described 

with proposed configuration modes and settings for the BRAMs. 

 This thesis aims to implement and expand upon the configurations proposed by Garrison 

in [3] for the Virtex-5.  Garrison‟s proposed configuration settings to test the first four 

configuration modes of the BRAMs are shown in this chapter, but the design was not 

implemented in his work.  In Chapter 3, this thesis will describe the implementation of BIST for 

the Virtex-5 BRAMs which includes Garrison‟s proposed configurations and settings which have 

been expanded upon to completely test the embedded BRAMs in these devices. 
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Chapter 3 Virtex-5 Block RAM BIST 

 

 

 This chapter will describe the design and implementation of the BIST for Virtex-5 

BRAMs and the results obtained from actual generation and execution of the BIST sequence.  

This will include TPG development for all BIST configurations as well as the configuration 

settings for each of the operating modes.  The design, placement, and routing of the ORAs is also 

shown along with an overview of the complete Virtex-5 BIST architecture.  The process for 

generation and modification of the BIST configurations and the software tools used are also 

described.  Finally the results and analysis will be presented including optimization, timing 

analysis, and fault coverage results. 

3.1 Virtex-5 RAM BIST 

 The BIST architecture builds upon the architecture used by Milton and Garrison for 

Virtex-4 as described in Section 2.4.  The same basic architecture is used where a pair of 

identical TPGs is used to drive the alternating BRAMs in the columns as shown in Figure 2-8.  

All BRAMs will be configured identically so any mismatch detected by an ORA is known to be 

a fault in a BRAM.  The redundancy of the TPGs prevents fault aliasing that may occur when 

using a single TPG that has been synthesized containing a fault [12].  In the case of a fault being 

present in a TPG it will produce failures.  These failures will be detected when the results of the 
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BRAMs being driven by the faulty TPG are compared with those from the BRAMs being driven 

by the fault-free TPG [12].  A circular comparison architecture which will be described later in 

this chapter is used for the ORA routing in order to prevent additional fault aliasing that may 

occur if adjacent BRAMs have identical faults. 

 

3.2 TPG Design and Implementation 

The TPGs for the five BIST configuration modes were designed as Finite State Machines 

(FSMs) to accommodate the multiple test phases that each TPG must run.  The TPG designs 

were written as VHDL models and synthesized for insertion into the BIST configurations.  Area 

constraints were used during synthesis of all the TPG models in order to minimize the resource 

usage of each one and restrict placement to the lower left hand corner of the device as shown in 

Figure 3-1.  Designs are offset from this position to specify placement as described in Section 

2.4.2.  Prior to running the BIST procedure it is necessary to shift in the appropriate control 

string value for the desired phase of the test to be run.  This is done via the BSCAN interface of 

the device.  The data shifted in is consists of a level control value to specify the active level of 

the clocks and mode values to specify the phase of BIST the TPG will execute. 

The TPG models for the BRAM, ECC, FIFO, and FIFOECC test configurations were all 

implemented based on the TPG models proposed by Garrison in [3] which are described in 

Chapter 2. 
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Figure 3-1 - BRAM TPG Area Constraints in LX30 

3.2.1 BRAM 

The final implementation of the BRAM TPG was based on Garrison‟s design in [3] with 

some minor modifications.  The BIST configurations and control string values proposed by 

Garrison are used, but the proposed configuration settings were modified slightly by changing 
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the write mode of the last configuration to READ_FIRST.  The final configuration settings for the 

BRAM TPG can be seen in Table 3-1.  Prior to the BIST being run a control string value must be 

shifted in via the BSCAN interface in order to specify which phase of the test is to be run.  For 

the BRAM TPG, the appropriate value for each test phase is shown in Table 2-10. 

Table 3-1 - Final BRAM Configuration Settings 

 (a) Settings Part 1 

BRAM 

Config 

Test 

Algorithm 

DO (A/B) 

REG 

READ 

Width 

(A/B) 

WRITE 

Width 

(A/B) 

WRITE Mode 

(A/B) 

SAVE 

DATA 

1 March s2pf 1 36 36 READ_FIRST FALSE 

2 March d2pf 1 36 36 READ_FIRST FALSE 

3 

MATS+ 

0 18 18 READ_FIRST FALSE 

4 0 9 9 WRITE_FIRST FALSE 

5 0 4 4 NO_CHANGE FALSE 

6 0 2 2 WRITE_FIRST FALSE 

7 0 1 1 READ_FIRST FALSE 

 

(b) Settings Part 2 

BRAM 

Config 

Test 

Algorithm 

CLK, EN, 

SSR 

REGCLK 

(A/B)(U/L) 

INV 

RAM EXT INIT VAL SRVAL 

INIT 

(A/B) 

VAL 

1 March s2pf INV NONE AAAA 5555 0 

2 March d2pf not INV NONE 5555 AAAA FFFF 

3 

MATS+ 

not INV NONE AAAA 5555 0 

4 not INV NONE 5555 AAAA FFFF 

5 not INV NONE AAAA 5555 0 

6 not INV NONE 5555 AAAA FFFF 

7 not INV NONE AAAA 5555 0 

 

3.2.2 ECC 

 The ECC TPG was created directly from the design proposed by Garrison.  This 

configuration mode uses a fixed 72-bit data word length for each configuration with a fixed 

address space of 512.  The final configuration settings used in this TPG are shown in Table 3-2. 
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The remaining specifications are implemented directly from those proposed by Garrison which 

are shown in Chapter 2.  The ECC TPG also requires that a control string be shifted in via the 

BSCAN interface prior to beginning to test.  The final control strings for this configuration are 

shown in Table 3-3. 

Table 3-2 - Final ECC Configuration Settings 

 (a) ECC Settings Part 1 

ECC 

Config 

Test 

Algorithm 

DO 

REG 

EN_ECC 

READ 

EC_ECC 

WRITE 

EN_ECC 

SCRUB 

INIT 

VAL 

SR 

VAL 

INIT 

(A/B) 

VAL 

SAVE 

DATA 

1 MarchLR w/BDS 0 FALSE FALSE FALSE AAAA 5555 0 FALSE 

2 ECC (read) 1 TRUE FALSE FALSE AAAA 5555 0 FALSE 

3 ECC (write) 1 FALSE TRUE FALSE 5555 AAAA FFFF FALSE 

 

(b) ECC Settings Part 2 

ECC 

Config 

Test 

Algorithm 

RDCLK 

(U/L) 

INV 

RDEN 

(U/L) INV 

RDRCLK 

(U/L) INV 

WRCLK 

(U/L) INV 

WREN 

(U/L) 

INV 

SSR 

(U/L) 

INV 

1 MarchLR w/BDS not INV not INV not INV not INV not INV not INV 

2 ECC (read) not INV not INV not INV not INV not INV not INV 

3 ECC (write) INV INV INV INV INV INV 

 

Table 3-3 - Final Control String Values for ECC TPG 

ECC 

Config 

Test 

Algorithm 

Level 

Control 
Mode 2 Mode 1 Mode 0 

Hex 

Control 

String 

1 MarchLR w/BDS 0 0 0 0 0x0 

2 ECC (read) 0 0 0 1 0x1 

3 ECC (write) 0 0 1 0 0x2 

 

3.2.3 FIFO 

 The FIFO TPG is an FSM developed from Garrison‟s initially proposed FIFO TPG.  

However an additional fifth test phase has been added.  This additional phase is required in order 

to test the most significant bit of the configurable almost empty and almost full flags.  When the 

BRAM is configured as a FIFO with data width 4 it is the only time the most significant bit of 
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the flag configuration is used.  To detect faults for the MSB being stuck-at-0 and stuck-at-1 two 

separate test phases for this data width are necessary.  The final test phases and the 

corresponding control string values of this TPG are shown in Table 3-4.  The final test 

configuration settings along with the modified almost empty and almost full configuration values 

are shown in Table 3-5. 

Table 3-4 – Final FIFO Test Phases and Control String Values 

FIFO 

Config 

Test 

Algorithm 

Address 

Space 

Data 

Width 

Level 

Control 
Mode 2 Mode 1 Mode 0 

Hex 

Control 

String 

1 

FIFOX 

1K 36 1 0 0 0 0x8 

2 2K 18 0 0 0 1 0x1 

3 4K 9 0 0 1 0 0x2 

4 8K 4 0 0 1 1 0x3 

5 8K 4 0 0 1 1 0x3 

 

Table 3-5 – Final Configuration Settings for FIFO TPG 

(a) FIFO Settings Part 1 

ECC 

Config 

Test 

Algorithm 

DO 

REG 

DATA 

WIDTH 
EN SYN FWFT 

RDCLK 

(U/L) 

INV 

RDEN INV 
RST 

INV 

1 

FIFOX 

1 36 TRUE TRUE INV INV INV 

2 1 18 FALSE FALSE not INV not INV not INV 

3 0 9 TRUE TRUE not INV not INV not INV 

4 0 4 FALSE FALSE not INV not INV not INV 

5 0 4 FALSE FALSE not INV not INV not INV 

 

(b) FIFO Settings Part 2 

ECC 

Config 

Test 

Algorithm 

WRCLK 

(U/L) INV 
WREN INV 

ALMOST 

EMPTY 

OFFSET 

ALMOST 

FULL  

OFFSET 

1 

FIFOX 

INV INV 2AA 155 

2 not INV not INV 555 2AA 

3 not INV not INV AAA 555 

4 not INV not INV 1555 AAA 

5 not INV not INV AAA 1555 
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3.2.4 FIFOECC 

 The FIFOECC TPG has been improved from Garrison‟s initially proposed design.  The 

testing algorithm used by the FIFOECC TPG is a modified version of the FIFOX algorithm 

designated FIFOD.  This algorithm forces toggling of all of the ECC bits as it is executed by 

writing changing values to the FIFO.  The value that is written into each address of the FIFO is a 

write or read count value which is repeated as many times as necessary to fill the data width 

being tested.  This count value is incremented upon each write or read operation performed and 

reset at the beginning of each step.  This algorithm is executed as follows: 

Step 1. Reset the FIFO. 

Step 2. Repeat N times: write FIFO with count value repeated to match data width, check 

that Almost Empty flag goes inactive and Almost Full flag goes active at the appropriate 

points in the sequence. 

Step 3. Repeat N times: read FIFO expecting repeated count value and write FIFO with 

the inversion of repeated count 

Step 4. Repeat N times: read FIFO expecting inverted repeated count value, check that 

Almost Full flag goes inactive and Almost Empty flag goes active at the appropriate 

points in the read sequence. 

 

 The final test phases for this test mode and the final configuration settings may be seen in 

Table 3-6 and Table 3-7.  Control string values are not necessary for this TPG because the same 

algorithm is executed for both test phases and only the BRAM configuration is modified. 
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Table 3-6 - Final FIFOECC Test Phases 

FIFOECC 

Config 

Test 

Algorithm 

Address 

Space 

Data 

Width 

Level 

Control 

1 FIFOD (read) 512 72 0 

2 FIFOD (write) 512 72 0 

 

 

Table 3-7 – Final Configuration Settings for FIFOECC TPG 

(a) FIFOECC Settings Part 1 

ECC 

Config 

Test 

Algorithm 

DO 

REG 

EN_ECC 

READ 

EN_ECC 

WRITE 
EN SYN FWFT RST INV 

1 FIFOD (read) 1 TRUE FALSE FALSE TRUE not INV 

2 FIFOD (write) 0 FALSE TRUE TRUE FALSE not INV 

 

(b) FIFOECC Settings Part 2 

ECC 

Config 

Test 

Algorithm 

ALMOST 

EMPTY 

OFFSET 

ALMOST 

FULL 

OFFSET 

RDCLK 

(U/L) 

INV 

RDRCLK 

(U/L) 

INV 

RDEN 

INV 

WRCLK 

(U/L) 

INV 

WREN 

INV 

1 FIFOD (read) 155 AA not INV not INV not INV not INV not INV 

2 FIFOD (write) AA 155 not INV not INV not INV not INV not INV 

 

3.2.5 CASC 

 The CASC TPG executes a March Y based algorithm designed strictly to test the 

functionality of the cascade circuitry.  The March Y algorithm simply performs the algorithm 

operations on one address in the UPPER BRAM and one address in the LOWER BRAM.  By 

doing this all the cascade circuitry can be verified quickly. 

 The final CASC test phases can be seen in Table 3-8.  No control string values are 

necessary for this TPG as the same test is run for both phases.  The final configuration settings 

for this TPG can be seen in Table 3-9. 
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Table 3-8 – Final CASC Test Phases 

CASC 

Config 

Test 

Algorithm 

Address 

Space 

Data 

Width 

Level 

Control 

1 
March Y 

1K 64 0 

2 1K 64 0 

 

Table 3-9 – Final Configuration Settings for CASC TPG 

CASC 

Config 

Test 

Algorithm 

DOA/B 

REG 

RD 

WIDTH 

A/B 

WR 

WIDTH 

A/B 

RAM 

EXT A 

RAM 

EXT B 

1 
March Y 

1 1 1 UPPER LOWER 

2 1 1 1 LOWER UPPER 

 

3.2.6 Test Configurations Summary 

 Each of these TPGs is FSM based and is restricted to the smallest area possible on the 

FPGA devices.  The resource usage for all the TPGs after synthesis can be seen in Table 3-10.  It 

is important to note that each TPG is placed twice in each BIST configuration and that the 

resource usage per is independent of the device being tested.  The 19 phases of the BIST 

sequence for the Virtex-5 devices are displayed in Table 3-11.  The various configuration 

address spaces and data widths are shown along with the hexadecimal representation of the 4-bit 

control string required to run each test phase.   

 

Table 3-10 - BIST TPG Resource Usage 

TPG Slices Slice Registers Slice LUTs 
CLB Area 

(column x row) 

BRAM 148 242 587 8 x 20 

ECC 205 566 808 8 x 30 

FIFO 34 58 135 8 x 5 

FIFOECC 43 162 122 8 x 10 

CASC 4 10 9 8 x 1 
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Table 3-11 – Complete Virtex-5 BIST Procedure 

BIST 

Config 

BRAM 

Mode 

Test 

Algorithm 

Address 

Space 

Data 

Width 

Control 

String 

1 

BRAM 

March s2pf 1K 36 0x0 

2 March d2pf 1K 36 0x1 

3 

MATS+ 

2K 18 0xA 

4 4K 9 0xB 

5 8K 4 0xC 

6 16K 2 0xD 

7 32K 1 0xE 

8 

ECC 

MarchLR w/BDS 512 72 0x0 

9 ECC (read) 512 72 0x1 

10 ECC (write) 512 72 0x2 

11 

FIFO FIFOX 

1K 36 0x8 

12 2K 18 0x1 

13 4K 9 0x2 

14 8K 4 0x3 

15 8K 4 0x3 

16 
FIFOECC 

FIFOD (read) 512 72 0x0 

17 FIFOD (write) 512 72 0x0 

18 
CASC March Y 

1K 64 0x0 

19 1K 64 0x0 

 

3.3 ORA Design 

 The ORAs are designed to use a double comparison of BRAM outputs and a circular 

comparison routing architecture.  The iterative OR-chain described in Section 2.4.1 is also 

implemented to accommodate results retrieval and an instantaneous Pass/Fail indicator.  The 

ORAs in the BIST are placed in two columns of five CLBs immediately adjacent to the BRAMs.  

Each of these groups of 10 CLBs is responsible for comparing all the outputs of two distinct 

BRAMs as shown in Figure 2-8 where each ORA block represents one group of CLBs.  Each 
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ORA slice is equipped with four 6-input LUTs that are used to compare the outputs of the 

BRAMs.  The inputs to these LUTS are used for comparison of up to two pairs of BRAM 

outputs. This architecture provides a total of up to 160 possible comparisons per BRAM. 

 The number of observed outputs for the BRAM, ECC, FIFO, and CASC configurations is 

less than 80 (half of the total comparisons) as shown in Table 3-12.  This means that each ORA 

performs a comparison of a single pair of BRAM outputs.  The number of observed outputs for 

the FIFOECC is greater than 80 such that some ORAs perform a comparison of two pairs of 

outputs.  A failure in an ORA making a double comparison is only traceable to be one of the two 

outputs that are routed to it. 

 

Table 3-12 - Compared Outputs for Configuration Modes 

Configuration 

Mode 

Compared 

Outputs 

BRAM 72 

ECC 74 

FIFO 68 

FIFOECC 106 

CASC 4 

 

3.3.1 ORA Comparison Routing 

 The outputs of each pair of BRAMs to be compared are routed to a group of two columns 

of five CLBs immediately to the left of one of the BRAMs.  Each of these groups contains 20 

slices organized as shown in Figure 3-2.  Each one of these slices contains ORAs designated A 

through D.  Table 3-13 summarizes the routing of the BRAM outputs to the ORAs within these 

groups.  Each configuration mode of the BIST is shown in this table, and this routing is 
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consistent for each group of ORAs in a BIST configuration as they span the entire height of the 

device.  This routing information may be used in order to diagnose a fault location by using 

configuration memory read back to locate the flip-flop which has latched a fault.  Once the 

failing flip-flop(s) is located it can be matched to a specific ORA whose inputs are known. 
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Figure 3-2 - ORA Map 
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Table 3-13 - ORA Input Routing Tables 

(a) BRAM ORA Routing 

Output Slice ORA Output Slice ORA Output Slice ORA 

DOA0 

1 

A DOA24 

7 

A DOB12 

14 

A 

DOA1 B DOA25 B DOB13 B 

DOA2 C DOA26 C DOB14 C 

DOA3 D DOA27 D DOB15 D 

DOA4 

2 

A DOA28 

8 

A DOB16 

15 

A 

DOA5 B DOA29 B DOB17 B 

DOA6 C DOA30 C DOB18 C 

DOA7 D DOA31 D DOB19 D 

DOA8 

3 

A DOPA0 

9 

A DOB20 

16 

A 

DOA9 B DOPA1 B DOB21 B 

DOA10 C DOPA2 C DOB22 C 

DOA11 D DOPA3 D DOB23 D 

DOA12 

4 

A DOB0 

11 

A DOB24 

17 

A 

DOA13 B DOB1 B DOB25 B 

DOA14 C DOB2 C DOB26 C 

DOA15 D DOB3 D DOB27 D 

DOA16 

5 

A DOB4 

12 

A DOB28 

18 

A 

DOA17 B DOB5 B DOB29 B 

DOA18 C DOB6 C DOB30 C 

DOA19 D DOB7 D DOB31 D 

DOA20 

6 

A DOB8 

13 

A DOPB0 

19 

A 

DOA21 B DOB9 B DOPB1 B 

DOA22 C DOB10 C DOPB2 C 

DOA23 D DOB11 D DOPB3 D 
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(b) ECC ORA Routing 

 

Output Slice ORA Output Slice ORA Output Slice ORA 

DO0 

1 

A DO24 

7 

A DO48 

14 

A 

DO1 B DO25 B DO49 B 

DO2 C DO26 C DO50 C 

DO3 D DO27 D DO51 D 

DO4 

2 

A DO28 

8 

A DO52 

15 

A 

DO5 B DO29 B DO53 B 

DO6 C DO30 C DO54 C 

DO7 D DO31 D DO55 D 

DO8 

3 

A DO32 

9 

A DO56 

16 

A 

DO9 B DO33 B DO57 B 

DO10 C DO34 C DO58 C 

DO11 D DO35 D DO59 D 

DO12 

4 

A SBITERR 10 A DO60 

17 

A 

DO13 B DO36 

11 

A DO61 B 

DO14 C DO37 B DO62 C 

DO15 D DO38 C DO63 D 

DO16 

5 

A DO39 D DOP0 

18 

A 

DO17 B DO40 

12 

A DOP1 B 

DO18 C DO41 B DOP2 C 

DO19 D DO42 C DOP3 D 

DO20 

6 

A DO43 D DOP4 

19 

A 

DO21 B DO44 

13 

A DOP5 B 

DO22 C DO45 B DOP6 C 

DO23 D DO46 C DOP7 D 

   DO47 D DBITERR 20 A 
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 (c) FIFO ORA Routing 

Output Slice ORA Output Slice ORA Output Slice ORA 

DO0 

1 

A DO24 

7 

A WRCOUNT10 

14 

A 

DO1 B DO25 B WRCOUNT11 B 

DO2 C DO26 C WRCOUNT12 C 

DO3 D DO27 D RDCOUNT0 D 

DO4 

2 

A DO28 

8 

A RDCOUNT1 

15 

A 

DO5 B DO29 B RDCOUNT2 B 

DO6 C DO30 C RDCOUNT3 C 

DO7 D DO31 D RDCOUNT4 D 

DO8 

3 

A DOP0 
9 

A RDCOUNT5 

16 

A 

DO9 B DOP1 B RDCOUNT6 B 

DO10 C DOP2 

11 

A RDCOUNT7 C 

DO11 D DOP3 B RDCOUNT8 D 

DO12 

4 

A WRCOUNT0 C RDCOUNT9 

17 

A 

DO13 B WRCOUNT1 D RDCOUNT10 B 

DO14 C WRCOUNT2 

12 

A RDCOUNT11 C 

DO15 D WRCOUNT3 B RDCOUNT12 D 

DO16 

5 

A WRCOUNT4 C FULL 

18 

A 

DO17 B WRCOUNT5 D EMPTY B 

DO18 C WRCOUNT6 

13 

A ALMOSTFULL C 

DO19 D WRCOUNT7 B ALMOSTEMPTY D 

DO20 

6 

A WRCOUNT8 C RDERR 
19 

A 

DO21 B WRCOUNT9 D WRERR B 

DO22 C 
      

DO23 D 
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(d) FIFOECC ORA Routing 

Output Slice ORA Output Slice ORA Output Slice ORA 

DO0 

1 

A DO32 

5 

A DOP6 

12 

A 

DO1 A DO33 A DOP7 B 

DO2 B DO34 B SBITERR C 

DO3 B DO35 B DBITERR D 

DO4 C DO36 C FULL 

13 

A 

DO5 C DO37 C EMPTY B 

DO6 D DO38 D ALMOSTFULL C 

DO7 D DO39 D ALMOSTEMPTY D 

DO8 

2 

A DO40 

6 

A RDERR 

14 

A 

DO9 A DO41 A WRERR B 

DO10 B DO42 B RDCOUNT0 C 

DO11 B DO43 B RDCOUNT1 D 

DO12 C DO44 C RDCOUNT2 

15 

A 

DO13 C DO45 C RDCOUNT3 B 

DO14 D DO46 D RDCOUNT4 C 

DO15 D DO47 D RDCOUNT5 D 

DO16 

3 

A DO48 

7 

A RDCOUNT6 

16 

A 

DO17 A DO49 A RDCOUNT7 B 

DO18 B DO50 B RDCOUNT8 C 

DO19 B DO51 B RDCOUNT9 D 

DO20 C DO52 C RDCOUNT10 

17 

A 

DO21 C DO53 D RDCOUNT11 B 

DO22 D DO54 

8 

A RDCOUNT12 C 

DO23 D DO55 B WRCOUNT0 D 

DO24 

4 

A DO56 C WRCOUNT1 

18 

A 

DO25 A DO57 D WRCOUNT2 B 

DO26 B DO58 

9 

A WRCOUNT3 C 

DO27 B DO59 B WRCOUNT4 D 

DO28 C DO60 C WRCOUNT5 

19 

A 

DO29 C DO61 D WRCOUNT6 B 

DO30 D DO62 

10 

A WRCOUNT7 C 

DO31 D DO63 B WRCOUNT8 D 

   
DOP0 C WRCOUNT9 

20 

A 

   
DOP1 D WRCOUNT10 B 

   
DOP2 

11 

A WRCOUNT11 C 

   
DOP3 B WRCOUNT12 D 

   
DOP4 C 

   

   
DOP5 D 
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 (e) CASC ORA Routing 

Output Slice ORA 

DOA0 
1 

A 

DOPA0 B 

DOB0 
11 

A 

DOPB0 B 

 

3.4 BIST Implementation 

 The fully routed BIST configuration on a physical device is shown in Figure 3-3.  This 

design was created for the LX30, one of the smaller devices in the Virtex-5 family, and is for the 

BRAM configuration mode.  In this device there are two columns of BRAMs running vertically 

on the device.  The ORAs are placed directly to the left of the BRAMs in the immediately 

adjacent CLB columns, and the BRAM outputs are routed directly to the appropriate ORAs.  The 

two TPGs are visible on the right side of the device.  The bottom TPG is placed on the lowest 

row of CLBs available and in the six columns of CLBs to the right of the rightmost BRAM 

column.  The second TPG is placed in these same six columns above the first TPG, beginning 

exactly half way up the device.  The TPG outputs are then each routed to alternating BRAMs in 

the columns.  The routing from the boundary scan interface is located directly in the center of the 

device. 
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Figure 3-3 – BRAM BIST Configuration Routed on Virtex-5 LX30 
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3.4.1 Cascade Routing 

 The cascade configuration mode presents a unique situation for ORA routing.  When the 

BRAMs are functioning in this mode of operation two of the memories are cascaded together in 

order to form one larger memory, and the output of this memory is only displayed on the output 

port of the BRAM configured in the UPPER mode.  The output of the BRAM configured in the 

LOWER mode is routed to the output of the UPPER memory as shown in Figure 2-7.  This 

means that the outputs of every other BRAM in a column will be identical, rather than all BRAM 

outputs being identical.  Therefore, the outputs of each BRAM are routed to properly reflect this 

change, and every other BRAM will be compared. 

 Using this approach presents another problem during the second cascade testing phase.  

In the first testing phase BRAMs are configured as LOWER and UPPER alternating starting at 

the bottom of the column.  In the second testing phase these configurations will be reversed such 

that the bottom BRAM will be configured as an UPPER, and the configurations will alternate 

from there up the column.  When this occurs the BRAMs located without another BRAM 

directly beneath them are configured as UPPER and are used to output data, but will not output 

any data that is expected from the LOWER memory because there is no CASCADEIN routing 

available for these components.  This will produce failures, even with fault free circuitry, if the 

cascade routing approach described above is used. 

 A solution used by Milton and Garrison for Virtex-4 devices in a similar cascade mode of 

operation is described in [2] and [3].  The solution used by them accounts for these expected 

failures by using clock enable controls in the ORAs to avoid clocking the result from an expected 
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failure into the flip-flips of the ORAs.  This approach required tedious modifications to the TPG 

in order to enable the ORA flip-flops during some clock cycles and disable them during others 

when the failures were expected.  It also requires that the ORA design be modified to include 

these clock enables.  A simpler solution is implemented for the Virtex-5 devices which 

eliminates any expected failures from the design. 

 The solution requires modification to the initial routing from the BRAMs to the ORAs.  

Instead of routing all BRAM outputs to ORAs, the routing from any BRAM that does not have 

an available CASCADEIN input is omitted completely as shown in Figure 3-4.  Additionally, the 

output of the BRAM that would normally be compared to these outputs to complete the circular 

comparison is routed to the next ORA in the column to maintain the circular comparison.  This 

situation occurs for any BRAMs located at the bottom of columns, directly above a PowerPC 

module, or some BRAMs in the special TEMAC columns which are present in some Virtex-5 

devices [13].  This omission of routing will not result in any reduction in fault coverage because 

there is no need to observe the outputs of these BRAMs in the cascade mode.  When they are 

configured in the LOWER mode the output is routed to the UPPER BRAM and displayed on its 

outputs.  These specific BRAMs do not need to be observed when configured in the UPPER 

mode because should never be used with this configuration in practice because there is no 

available CASCADEIN routing. 

 The ORAs located at the bottom of these columns that do not have BRAM outputs routed 

to them still retain their OR-chain routing.  In this case, these ORAs are made into dummy ORAs 

that simply propagate the carry chain result.  This solution eliminates the need for special 

modifications to the TPG or ORAs for the cascade BIST configuration by eliminating the 
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expected failures all together.  All fault detection and diagnosis ability is retained and the circular 

comparison ORA architecture is maintained. 

 

Figure 3-4 – Virtex-5 Cascade ORA Routing 
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3.5 Programming Tools 

 A series of programming tools are used to aid in the development, implementation, and 

simulation of the BRAM BIST configurations.  The way in which each of these tools is used in 

the BIST development will be described in subsequent sections.  A brief statement on the 

capabilities of these tools is given below: 

 ISE – a Xilinx design suite for creating, synthesizing, and implementing VHDL 

models for use in Xilinx FPGAs.  Allows area constraints to be created to specify 

placement of a design [14]. 

 FPGA Editor – a Xilinx tool that provides of graphical user interface (GUI) for 

visual examination and editing of designs on the FPGA [14]. 

 Place and Route (PAR) – a Xilinx tool that performs placement and routing of FPGA 

designs [14]. 

 XDL – a Xilinx tool which converts between Xilinx file formats: NCD (FPGA 

Editor files) and XDL (Xilinx netlist description files) [14]. 

 BitGen – a Xilinx tool which generates BIT or RBT files from NCD files.  These 

BIT and RBT files contain the configuration information which is downloaded into 

the FPGA [14]. 

 TRCE – A Xilinx tool for timing analysis of a design.  Specifically, it determines the 

maximum clock frequency at which a design may be run [14]. 

 ModelSim Xilinx Edition – A simulator made by Mentor Graphics which is able to 

simulate VHDL models using Xilinx primitives [15]. 
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3.6 Configuration File Generation 

 The entire generation procedure using the two BIST generation programs and the tools 

mentioned in Section 3.5 is diagramed in Figure 3-5 [16].  The initial generation of all the 

Virtex-5 BRAM BIST configurations is done using two separate programs which are both 

written in the C programming language.  These two programs are responsible for the creation of 

the XDL files containing exact placement and routing information for the entire BIST 

configuration [16].  The synthesized VHDL models of the TPGs are converted into XDL format 

and inserted into the generated XDL file.  The XDL file is then converted into an NCD file which 

is able to be graphically displayed within FPGA Editor.  FPGA Editor is used in order to 

automatically route the unrouted nets which have been designated in the design [16].  After the 

design has been completely routed it will be converted into a configuration BIT file capable of 

being downloaded directly into the FPGA device [16]. 

 

Figure 3-5 - BIST Configuration Process [16] 
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3.6.1 BIST Generation Program 

 The program responsible for the generation of the XDL file containing the BIST design is 

called V5RAMBIST.exe.  This program is run by the user and several parameters are provided in 

order to specify the target device and type for the BIST as well as several other details.  The 

exact command line formatting may be seen in Figure 3-6. 

 

V5RAMbist (v1.6) - generates template file for block RAM BIST config in any Virtex 5 
command line format: 
V5RAMbist <xdlfile> <startrow> <startcol> <endrow> <endcol> <dev> <part> <type> [n,a,p] 
 where type = bram (RAMB36 mode BIST) 
              fifo (FIFO36 mode BIST) 
              ecc  (RAMB36SDP mode BIST) 
              fifecc  (FIFO36_72 mode BIST) 
              casc (Cascade RAM mode BIST) 
   dev  part rows cols   dev part rows cols   dev part rows cols 
   lxt    20    60    33 
   lx/t   30    80    38     sxt   35    80    50     fxt   30   80   50 
   lx/t   50   120   38     sxt   50   120   50     fxt   70  160   50 
   lx/t   85   120   64     sxt   95   160   68     fxt  100  160   73 
   lx/t  110  160   64     sxt  240  240  104    fxt  130  200   70 
   lx/t  155  160   87                                      fxt  200  240   87 
   lx/t  220  160   121   txt  150   200   70 
   lx/t  330  240   121   txt  240   240   91 
 n: this option runs xdl2ncd with -nodrc option 
 a: runs 'n' option followed by FPGA Editor routing with no pinswap and converts back to XDL 
 p: this option uses system-level pins instead of Boudary Scan interface 
    PLUS runs xdl2ncd with -nodrc option 
 note: all parameters can be upper or lower case (but not mixed) 

 

Figure 3-6 - V5RAMBIST Command Line Instructions 

 

3.6.2 Modification Program 

 The second C program called V5RAMMOD.exe is responsible for the modification of the 

configuration settings in the XDL files.  In order to run this program the user specifies the generic 
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input XDL file which has been generated using the generation program and the name of the 

desired output file.  The BRAM configuration mode must also be specified along with the phase 

of the test and several other parameters seen in Figure 3-7. 

 

V5RAMmod (ver 1.2) - modifies routed XDLs for Block RAM to subseuqent BIST configs 
command line format:  
V5RAMmod <xdl_in> <xdl_out> <phase> <type> [ncd,bit] 
where the type is defined as: 
  Type:    bram(RAMB36) ecc(RAMB36SDP) fifo(FIFO36) fifecc(FIFO36_72) casc(RAMB36) 
---------------------------------------------------------------------------------- 
  Phase 1: S2PF  MarchLR FIFOx 1K     FIFOx_ECC_RD CASC_RD 
  Phase 2: D2PF  ECC_RD FIFOx 2K     FIFOx_ECC_WR CASC_WR 
  Phase 3: MATS+ 2K      ECC_WR        FIFOx 4K 
  Phase 4: MATS+ 4K                      FIFOx 9K 
  Phase 5: MATS+ 8K          FIFOx 9K-SWAP 
  Phase 6: MATS+ 16K 
  Phase 7: MATS+ 32K 
---------------------------------------------------------------------------------- 
Generation Options: 
- ncd option runs XDL -XDL2NCD 
- bit option runs XDL -XDL2NCD and BITGEN -D -B -G COMPRESS 
- if no option is selected, only the XDL file will be generated 

 

Figure 3-7 - V5RAMMOD Command Line Instructions 

 

3.7 Results and Analysis 

 In this section the results of the BRAM BIST will be presented.  This will include the 

fault detection capabilities of the BIST, size optimizations for the configurations, and analysis of 

the timing capabilities of the configurations.  The complete BIST procedure consists of 19 

separate configurations.  All configurations were generated for all Virtex-5 devices using the 

BIST programs, and the configurations for LX30T, LX50T, SX35T, SX50T, FX30T, and FX70T 
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FGPAs were downloaded to and verified on actual devices.  All 19 test phases are displayed in 

Table 3-14.  The number of clock cycles required to run each phase of the test is also shown in 

the table in terms of the total number of clock cycles for the BIST.  These running times are 

negligible when compared to the time taken to download the configurations to the devices, which 

becomes the dominant factor in total test time.  This places a high emphasis on reducing 

configuration file size to improve test time. 
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Table 3-14 - Complete BRAM BIST 

BIST 

Config 

BRAM 

Mode 

Test 

Algorithm 

Address 

Space 

Data 

Width 

Clock 

Cycles 

1 (C) 

BRAM 

March s2pf 1K 36 20,000  

2 (P) March d2pf 1K 36 15,000  

3 (P) 

MATS+ 

2K 18 25,000  

4 (P) 4K 9 45,000  

5 (P) 8K 4 85,000  

6 (P) 16K 2 165,000  

7 (P) 32K 1 330,000  

8 (C) 

ECC 

MarchLR w/BDS 512 72 23,000  

9 (P) ECC (read) 512 72 7,000  

10 (P) ECC (write) 512 72 7,000  

11 (C) 

FIFO FIFOX 

1K 36 8,500  

12 (P) 2K 18 34,000  

13 (P) 4K 9 66,000  

14 (P) 8K 4 131,500  

15 (P) 8K 4 131,500  

16 (C) 
FIFOECC 

FIFOD (read) 512 72 10,000  

17 (P) FIFOD (write) 512 72 10,000  

18 (C) 
CASC March Y 

1K 64 36  

19 (P) 1K 64 36  

Total BIST Clock Cycles = 1,113,572 

(C) = Compressed Configuration       (P) = Partial Configuration 

 

3.7.1 Fault Detection 

 The most important factor when evaluating the effectiveness of a test procedure is the 

fault coverage.  In order to evaluate the fault coverage of the BRAM BIST physical fault 

injection was applied to the bits in the configuration memory of the BRAMs.  There are a total of 

488 possible configuration memory faults associated with each of the BRAMs.  This number 

results from each BRAM having 244 total configuration bits which may each either be stuck-at-0 

or stuck-at-1.  Each of these faults was emulated by overwriting the desired configuration bit 
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with the stuck-at value of the desired fault before performing the entire BIST sequence.  This 

process is repeated for each of the 488 configuration memory bit faults.  The Pass/Fail result of 

each test phase was recorded after the injection of each fault. 

 The individual and cumulative fault coverage for the seven BRAM BIST configurations 

is shown in Figure 3-8.  This graph displays the individual number of fault detections from each 

of BRAM test phases.  The line displayed above the bars is a representation of the cumulative 

fault coverage of the phases.  Each of the phases detects between 100 and 200 of the 

configuration memory bit faults.  The sequence results in a fault coverage of 84% from running 

only the BRAM BIST configurations. 

 The overall fault coverage of configuration memory bits obtained from running the entire 

BIST sequence is shown in Figure 3-9.  This graph also shows both the faults detected by each 

phase of the test and the cumulative detections.  The entire test was able to detect 481 of the 

configuration memory faults resulting in a fault coverage of 98.57%.  The other seven undetected 

faults are non-functional faults, which gives the BIST a 100% fault coverage of detectable faults 

in the BRAM configuration memory. 

 Fault injection with the configuration memory bits was used to verify the fault detection 

capabilities of the BIST since it is not possible to emulate actual SRAM faults that may occur 

within the BRAMs of a Virtex-5 device such as those described in Section 2.2.1.  The injected 

configuration memory faults produce faulty outputs on the BRAMs that mimic those that would 

be produced by a BRAM containing SRAM faults.  Thus, the fault coverage of the configuration 

memory bit faults gives an accurate representation of the fault coverage of the BIST for SRAM 

faults [17]. 
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Figure 3-8 – BRAM Configuration Mode Fault Detections 
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Figure 3-9 – Entire BIST Sequence Fault Detections 
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3.7.2 File Size Reduction 

 Once the fully routed NCD files for each BIST configuration have been generated, the 

Xilinx BitGen.exe tool mentioned in Section 3.5 is then used to create the configuration BIT file 

that will be downloaded directly to the FPGA.  This tool is capable of generating three different 

types of configuration files: full, compressed, and partial [14].  The full configurations have no 

compression and contain values for every configuration memory bit within the device.  

Compressed configuration files take advantage of a feature in the Virtex-5 FPGAs called 

multiple frame writing.  This feature allows identical frames of data to be stored as a single 

frame in the configuration file and written to multiple addresses in the configuration memory 

[14].  This allows for a significant reduction in configuration file size for designs containing 

many identical components, such as the BRAM BIST.  The Virtex-5 device also supports partial 

reconfiguration, which can be utilized to provide the greatest reduction in configuration file size.  

These partial reconfiguration files are created by comparing two NCD file designs and the partial 

reconfiguration file will be created that details only the differences between the two designs [14].  

Knowing this, the BIST configurations were designed in an extremely regular manner in order to 

minimize the differences between sequential configurations and configuration file size.  Only 

compressed configurations and partial reconfigurations are used for the BIST in order to fully 

minimize download size.  A compressed configuration is used for the first test phase of each of 

the five configuration modes, and partial reconfiguration is used for the remaining phases.  The 

final file sizes of the BIST generated for the LX30 are shown in Table 3-15.  The file size 

reduction achieved from the use of the compression methods mentioned is shown in Figure 3-10. 
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Table 3-15 - BIST Configuration File Sizes for LX30 

BIST 

Config 

File Size 

K-bytes 

BIST 

Config 

File Size 

K-bytes 

BIST 

Config 

File Size 

K-bytes 

1 (C) 583 7 (P) 49 13 (P) 4 

2 (P) 55 8 (C) 592 14 (P) 4 

3 (P) 49 9 (P) 3 15 (P) 4 

4 (P) 49 10 (P) 50 16 (C) 564 

5 (P) 49 11 (C) 532 17 (P) 4 

6 (P) 49 12 (P) 4 18 (C) 387 

Total File Size = 3,034 K-bytes 19 (P) 3 
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Figure 3-10 - BIST Configuration File Size Reduction for LX30
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3.7.3 Timing Analysis 

 By using the Xilinx timing analysis tool trce.exe mentioned in Section 3.5 the maximum 

BIST clock frequency for each of the BIST configurations on all Virtex-5 devices has been 

determined.  The results of this analysis on the LX30T device are shown in Figure 3-11.  The 

FIFOECC and the CASC configurations are able to be run at the fastest clock frequency in this 

device.  It can also be seen that for the different configurations the clock frequency remains in a 

consistent range except for the third ECC configuration and the first FIFO configuration.  This 

results from the inversion of the BRAM clocks for testing in these two phases.  When the clocks 

are inverted it presents a case where opposite edge clocking occurs which effectively halves the 

maximum BIST clock frequency. 

 This problem is overcome by inverting the TPG and ORA clocks in the CLBs during 

these two BIST configurations.  These configurations with the inverted TPG and ORA clocks are 

positioned at either the beginning or end of a configuration mode sequence so that the inversion 

is only performed once.  This is done to minimize download and test time. 

 The final maximum clock frequencies obtained from the analysis of select devices in the 

Virtex-5 family are shown in Figure 3-12.  These frequencies reflect the speeds after the change 

which accounts for opposite edge clocking was applied.  For each of the five configuration 

modes the lowest maximum BIST clock frequency is displayed in the figure.  It can also be seen 

that the larger devices have a much slower maximum clock frequency due to longer routing 

requirements in these devices.  By comparing the data in Figure 3-11 to the final data for the 

LX30T device in Figure 3-12 it can be seen that after inverting the clocks to account for opposite 

edge clocking the maximum speed of the ECC and FIFO configurations for the LX30T device 
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increases from just over 40 MHz to over 80 MHz, putting these configuration modes in a range 

similar to the others. 
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Figure 3-11 - Maximum BIST Clock Frequencies for LX30T
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Figure 3-12 – Maximum BIST Clock Frequency for select Virtex-5 Devices 
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Chapter 4 Summary and Conclusions 

 

 

4.1 Summary of Virtex-5 BRAM BIST 

 This thesis presents the development and verification of a BIST for the BRAMs 

contained in Virtex-5 FPGAs.  The work done in this thesis is largely based on the BRAM BIST 

designs for Virtex-4 presented by Milton in [2] and Garrison in [3].  This design of the Virtex-5 

BRAM BIST builds directly on the test design proposed by Garrison in [3]. 

 In order to sufficiently test the embedded BRAMs, tests are run on the memories in five 

separate configuration modes.  The BRAM mode of operation requires seven total test 

configurations.  The ECC mode requires three test configurations.  The FIFO mode demands five 

separate test configurations.  Finally, the FIFOECC and CASC modes require two configurations 

each, for a total of 19 test configurations.  These BIST configurations each contain a pair of 

identical TPGs designed to perform the required tests on the RAM along with ORAs to observe 

the results of the tests.  The configurations also contain a boundary scan interface for 

communication with the BIST circuitry and retrieval of the test results. 

 By using the compressed configuration and partial reconfiguration features of the Virtex-

5 FPGAs, the BIST configurations have been optimized in terms of download size.  This in turn 

reduces the total testing time by a substantial amount as a majority of testing time is attributed to 
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configuration downloads.  Timing analysis has also been performed on the configurations to 

determine what the maximum BIST clock frequency is for each device.  

 Each BIST configuration was generated for and tested on the LX30T, LX50T, SX35T, 

SX50T, FX30T, and FX70T Virtex-5 devices.  In order to verify the fault detection capability of 

the BIST, faults were injected into the BRAM configuration memory of the devices and the 

BIST was executed.  The results of these fault injections show that the BRAM BIST detects 481 

of the 488 possible BRAM configuration memory faults which gives a fault coverage of 98.57%.  

The BIST configurations can be downloaded and executed in-system during off-line operation 

and are applicable for high reliability/availability systems as well as fault-tolerant applications 

4.2 Future Work 

 For future work in this area, this BRAM BIST design could be applied to the Spartan 6 

and other families of FPGAs.  Additionally, some improvements that have been made with this 

BIST approach may be applied to the previous approaches for the Virtex-4 device.  The 

modification to the BRAM output routing in the cascade mode of operation could be applied to 

these previous test approaches.  Using this improvement would simplify the TPG used for this 

configuration mode.  It would also allow the removal of the clock enables that had been added to 

the Virtex-4 ORA flip-flops to prevent the expected faults from being recorded. 
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Appendix 

 

 

 The following is the MarchLR testing algorithm with a 72-bit BDS sequence which is 

used to test Virtex-5 BRAMs.  This algorithm was developed using the BDS method described in 

[10].  This sequence is created after optimizing the algorithm by removing duplicate elements as 

described in [10].  This optimization will result in a reduction in test time from O(70N) to 

O(64N), where N represents the number of address locations. 
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 March Element Address Direction RAM Operation Data Hex Value 

MarchLR 

1 up/down write 000000000000000000 

2 down read 

write 

000000000000000000 

FFFFFFFFFFFFFFFFFF 

3 up read 

write 

read 

write 

FFFFFFFFFFFFFFFFFF 

000000000000000000 

000000000000000000 

FFFFFFFFFFFFFFFFFF 

4 up read 

write 

FFFFFFFFFFFFFFFFFF 

000000000000000000 

5 up read 

write 

read 

write 

000000000000000000 

FFFFFFFFFFFFFFFFFF 

FFFFFFFFFFFFFFFFFF 

000000000000000000 

6 up read 000000000000000000 

BDS 

7 up read 

write 

write 

read 

000000000000000000 

555555555555555555 

AAAAAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAA 

8 down read 

write 

read 

AAAAAAAAAAAAAAAAAA 

555555555555555555 

555555555555555555 

9 up read 

write 

write 

read 

555555555555555555 

333333333333333333 

CCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCC 

10 down read 

write 

read 

CCCCCCCCCCCCCCCCCC 

333333333333333333 

333333333333333333 

11 up read 

write 

write 

read 

333333333333333333 

0F0F0F0F0F0F0F0F0F 

F0F0F0F0F0F0F0F0F0 

F0F0F0F0F0F0F0F0F0 

12 down read 

write 

read 

F0F0F0F0F0F0F0F0F0 

0F0F0F0F0F0F0F0F0F 

0F0F0F0F0F0F0F0F0F 

13 up read 

write 

write 

read 

0F0F0F0F0F0F0F0F0F 

FF00FF00FF00FF00FF 

00FF00FF00FF00FF00 

00FF00FF00FF00FF00 

14 down read 

write 

read 

00FF00FF00FF00FF00 

FF00FF00FF00FF00FF 

FF00FF00FF00FF00FF 
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BDS 

March Element Address Direction RAM Operation Data Hex Value 

15 up read 

write 

write 

read 

FF00FF00FF00FF00FF 

FF0000FFFF0000FFFF 

00FFFF0000FFFF0000 

00FFFF0000FFFF0000 

16 down read 

write 

read 

00FFFF0000FFFF0000 

FF0000FFFF0000FFFF 

FF0000FFFF0000FFFF 

17 up read 

write 

write 

read 

FF0000FFFF0000FFFF 

FF00000000FFFFFFFF 

00FFFFFFFF00000000 

00FFFFFFFF00000000 

18 down read 

write 

read 

00FFFFFFFF00000000 

FF00000000FFFFFFFF 

FF00000000FFFFFFFF 

19 up read 

write 

write 

read 

FF00000000FFFFFFFF 

00FFFFFFFFFFFFFFFF 

FF0000000000000000 

FF0000000000000000 

20 down read 

write 

read 

FF0000000000000000 

00FFFFFFFFFFFFFFFF 

00FFFFFFFFFFFFFFFF 

21 up read 00FFFFFFFFFFFFFFFF 
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