
An Active and Hybrid Storage System for Data-intensive Applications

by

Zhiyang Ding

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
Aug 6th, 2011

Keywords: Active Storage, Parallel and Distributed Computing, Storage Systems

Copyright 2011 by Zhiyang Ding

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
Kai-Hsiung Chang, Chair and Professor of Computer Science and Software Engineering
David A. Umphress, Associate Professor of Computer Science and Software Engineering

Abstract

Since large-scale and data-intensive applications have been widely deployed, there is

a growing demand for high-performance storage systems to support data-intensive appli-

cations. Compared with traditional storage systems, next-generation systems will embrace

dedicated processor to reduce computational load of host machines and will have hybrid

combinations of different storage devices. We present a new architecture of active storage

system, which leverage the computational power of the dedicated processor, and show how

it utilizes the multi-core processor and offloads the computation from the host machine. We

then solve the challenge of applying the active storage node to cooperate with the other

nodes in the cluster environment by design a pipeline-parallel processing pattern and re-

port the effectiveness of the mechanism. In order to evaluate the design, an open-source

bioinformatics application is extended based on the pipeline-parallel mechanism. We also

explore the hybrid configuration of storage devices within the active storage. The advent of

flash-memory-based solid state disk has become a critical role in revolutionizing the storage

world. However, instead of simply replacing the traditional magnetic hard disk with the solid

state disk, researchers believe that finding a complementary approach to corporate both of

them is more challenging and attractive. Thus, we propose a hybrid combination of different

types of disk drives for our active storage system. An simulator is designed and implemented

to verify the new configuration. In summary, this dissertation explores the idea of active

storage, an emerging new storage configuration, in terms of the architecture and design,

the parallel processing capability, the cooperation of other machines in cluster computing

environment, and the new disk configuration, the hybrid combination of different types of

disk drives.

ii

Acknowledgments

I definitely could not have survived the Ph.D process without the guidance, friendship

and support of many people.

First and foremost, I will always be grateful to my advisers, Dr. Xiao Qin and Dr. Kai-

Hsiung Chang, for all invaluable guidance that they have given for me during my years in

Auburn University. Dr. Qin, in particular, poured uncountable hours into my development

ever since I started pursing the Ph.D degree. Under his supervision, I learned how to do

research in storage system arena from scratch. Without them, it would be impossible for me

to finish this dissertation.

I would gratefully thank my dissertation committee member, Dr. David A. Umphress.

Dr. Umphress not only provides me valuable academic advices for this dissertation, but he

also help and guide me in my entire Auburn life. I can still recall all that he have done for

me when I first came to US. I cannot appreciate it more. I also gratefully thank Professor

Wei Wang who is the Chair and Alumni Professor of Graphic Design program for serving as

the university reader.

The many hours at the office were made both bearable and enjoyable by all the members

of the research group. I would like to thank all my colleagues: Xiaojun Ruan, Shu Yin,

James Majors, Jiong Xie, Yun Tian, Yixian Yang, Jianguo Lu and my former colleague,

Adam Manzanares. As the neighbor in the office and research partner to me, Xiaojun, in

particular, help me to solve a lot of research problems. Do appreciate for all his help.

In addition, I would like to thank all my friends in Auburn, including Lei Chen, Bo

Dai, Wei Wang, Tianxia Li, Tianzi Guo, Bin Xu, Jiawei Zhang, Wei Yuan, Chen Chen, Wei

Huang, Chun Guo, Ying Zhu, Sihe Zhang, Rui Xu, Qiang Gu, Jingshan Wang, Lingzhao

iii

Kong, Jingyuan Xiong and etc. I will always miss the time we spent together and value our

friendship.

Last but not the least, my deepest gratitude goes to my family, especially my grandpa,

Qi Ding who passed away in 2009, my grandma Lizhi Deng, and my parents Yuming Ding

and Yan Bai for their years selfless support and unconditional love.

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . ix

List of Tables . xiii

1 Introduction . 1

2 Related Work . 4

2.1 The Next Generation Data Storage is Active/Smart 4

2.1.1 Smart Disk . 4

2.1.2 Active Storage . 5

2.2 Parallel Programming . 6

2.2.1 The MapReduce Programming Model 6

2.2.2 Parallel Processing for Scientific Applications 8

2.3 Solid State Disk and Hybrid Disk Combination 8

2.3.1 Hybrid Disk Combination . 9

2.3.2 Extended FTL . 10

3 McSD: Multicore-Enabled Smart Storage for Clusters 11

3.1 Motivation . 11

3.2 Smart Storage and MapReduce . 14

3.2.1 From Smart Disks to Smart Storage 14

3.2.2 Parallel Programming . 16

3.3 Design Issues . 18

3.3.1 Design of the McSD Prototype . 19

3.3.2 A Testbed for McSD . 19

v

3.3.3 A Programming Framework . 21

3.3.4 Putting It All Together - A Cluster with McSD 22

3.4 Implementation Details . 22

3.4.1 System Workflow and Configuration 22

3.4.2 Implementation of smartFAM . 24

3.4.3 Partitioning and Merging . 26

3.4.4 Incorporating the Partitioning Module into Phoenix 28

3.5 Evaluations . 31

3.5.1 Experimental Testbed . 31

3.5.2 Single-Application Performance . 32

3.5.3 Multiple-Application Performance . 33

3.6 Summary . 36

4 Using Active Storage to Improve the Bioinformatics Application Performance: A

Case Study . 38

4.1 Motivation . 38

4.1.1 Challenges . 39

4.1.2 Contributions . 39

4.2 Background . 40

4.2.1 Active Storage . 40

4.2.2 Parallel Bioinformatic Applications 41

4.3 Design and Implementation . 42

4.3.1 Active Storage for Clusters . 43

4.3.2 Parallel Pipelined System . 44

4.4 Modeling and Analysis . 48

4.5 Evaluations . 51

4.5.1 Evaluation Environment . 51

4.5.2 Individual Node Evaluation . 51

vi

4.5.3 System Performance Evaluation . 53

4.6 Summary . 59

5 HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems . . . 61

5.1 Motivation . 61

5.2 Background . 63

5.2.1 SSD and Hybrid Storage . 63

5.2.2 Internal Parallelism Processing on SSD 64

5.2.3 Data Duplication . 65

5.3 The Design of HcDD – a Hybrid Combination of Disk Devices 67

5.3.1 System Architecture . 67

5.3.2 Hybrid Combination of Storage Drives 69

5.3.3 Intra-parallelism buffer on SSD . 71

5.4 Evaluations . 74

5.4.1 The Evaluation Environment . 75

5.4.2 Internal Parallelism Supported Buffer for SSD 76

5.4.3 Deduplication . 79

5.4.4 System Performance Evaluation . 80

5.5 Summary . 83

6 Conclusion and Future Work . 86

6.1 McSD: Multicore-Enabled Smart Storage for Clusters 86

6.2 Using Active Storage to Improve the Bioinformatics Application Performance:

A Case Study . 87

6.3 HcDD: Hybrid Combination of Disk Drives in Active Storage 88

6.4 Future Work . 89

6.4.1 Memory Compression . 90

6.4.2 Wimpy System Board . 90

6.5 Conclusion . 92

vii

Bibliography . 94

viii

List of Figures

3.1 The work flow of MapReduce. 16

3.2 McSD - The prototype of multicore-enabled smart storage. Each smart storage

node in the prototype contains memory, a SATA disk drive, and a multicore-

processor. 18

3.3 A testbed for the McSD prototype. A host computing node and an McSD storage

node are connected via a fast Ethernet switch. The host node can access the disk

drives in McSD through the networked file system or NFS. 20

3.4 The programming framework for a host computing node supported by an McSD

smart storage node. 21

3.5 The implementation of smartFAM - an invocation mechanism that enables a host

computing node to trigger data-intensive processing modules in an McSD storage

node. 24

3.6 Workflow of the extended Phoenix model with partitioning and merging 27

3.7 The workflow diagram of integrity checking. 28

3.8 Performance Speedup. It depicts speedups of partition-enabled Phoenix vs. orig-

inal Phoenix and the sequential approach on both duo-core and quad-core ma-

chines. 29

3.9 Single Application Performance. The data size is scaling from 500MB to 1.25GB. 30

ix

3.10 Optional caption for list of figures . 34

3.11 Speedups of Matrix-multiplicy and String-match. Compared with the traditional

smart storage (SD) running sequentially, our McSD improves the overall perfor-

mance by 1.5x. When data size is increasing, McSD improves the performance

of the non-partitioning approaches (the DuoC-SD and Host-only) by 2x. 34

4.1 A cluster involves a collection of computing nodes and active storage nodes. . . 42

4.2 pp-mpiBlast Workflow . 44

4.3 Pipeline Tasks Scheduling . 45

4.4 The workflow diagram of sequence-integrity checking. 46

4.5 Workflow of the extended Phoenix model - intra-application pipeline 47

4.6 Time Consumption Trends Comparison: SSD vs. HDD. 52

4.7 System Evaluation Results I: Execution time comparison between pp-mpiBlast

system and native system (running on a computer cluster of 12 nodes). The

pp-mpiBlast system contains a twelve nodes computing cluster and one ASN.

Results are generated under 3 different partition sizes: 250 MB, 500 MB, and

1.25 GB, which are presented by three sub-figures, respectively from left to right. 54

4.8 System Evaluation Results II: Execution time comparison between pp-mpiBlast

system and native system (running on a computer cluster of 13 nodes). The

pp-mpiBlast system contains a twelve nodes computing cluster and one ASN.

Results are generated under 3 different partition sizes: 250 MB, 500 MB, and

1.25 GB, which are presented by three sub-figures, respectively from left to right. 55

x

4.9 Speedup Trends: As input data size grows larger, the performance speedups of

using pp-mpiBlast increase. Sub-figure on left is the comparison result between

pp-mpiBlast and the 12-node testbed. And the right one is the result compared

with the 13-node testbed. 57

4.10 Time Consumption Curves Comparison: Different Partition Size. 58

5.1 The System Configuration of HcDD – a hybrid active storage system. 68

5.2 The System Architecture of HcDD. There are three modules: a controller, a

deduplication engine, and some storage devices. 69

5.3 The Workflow of Hybrid Active Storage System. There are four steps: write to

the buffer disk, calculate a hash value, compare the value against a value store,

and write to the SSD or map to the table. 71

5.4 The Workflow of Hybrid Active Storage System. 72

5.5 The Workflow of On-board Buffer. 73

5.6 Performance Comparison of Iozone and Postmark 77

5.7 Performance Comparison of Random Write. 77

5.8 Performance Comparison of traceKernel. 78

5.9 Performance Comparison of tracePhoenix.. 79

5.10 The number of removed requests and the deduplication ratio. 80

5.11 Processing Time Comparison between HcDD and traditional hybrid storage. . . 81

5.12 Average Response Time Comparison between HcDD and traditional hybrid storage. 82

xi

5.13 Response Time Comparison between HcDD and SSD. 83

5.14 Average Response Time Comparison between HcDD and SSD. 84

6.1 The Work Flow of PASS . 92

xii

List of Tables

2.1 NAND Flash Memory Lifetime (P/E Cycles) 10

3.1 The Configuration of the 5-Node Cluster . 31

4.1 Running time (in seconds) of performing the Word-Count and String-Match
benchmarks w/ and w/o partition function under different input data size (in
GBytes) on single node. The testbed machine contains 2 GBytes main memory. 48

4.2 The Test Platform . 51

4.3 Time cost (in seconds) of performing mpiformatdb program under different input
data size (in MB) on an ASN. 52

5.1 NAND Flash Memory Lifetime (P/E Cycles) 64

5.2 Num of Read/Write Requests . 76

xiii

Chapter 1

Introduction

Since large-scale and data-intensive applications have been widely deployed, there is

a growing demand for high-performance storage systems to support data-intensive applica-

tions. Compared with traditional storage systems, next-generation data storage will embrace

computing capacity to reduce computational load of host processors in computing nodes. Ex-

isting hard disks have limited processing power, which can only be used to handle on-disk

scheduling and physical resource management. With the advance of processor and memory

technologies, future smart storage systems are promising devices to perform complex on-disk

operations [97].

Active disks (a.k.a., smart disks), in which processors are embedded, leverage the com-

putational power, available in commodity disk drives, to deal with application-level pro-

cessing [87]. Recently, smart disks coupled with embedded processors have been proposed

to address the needs of on-drive-data-intensive workloads. Active storage brings three key

advantages. First, the amount of data moved back and forth between computing nodes and

storage nodes in clusters can be significantly reduced, since large datasets can be locally pro-

cessed by storage nodes before being forwarded to computing nodes. Second, data-intensive

applications run faster, because active storage nodes accelerate data processing operations.

If computing nodes and active storage nodes efficiently coordinate, both computing nodes

and storage nodes can perform data processing in parallel. Third, network performance in

clusters can be improved due to reduced amounts of data moved into and out of storage

nodes.

In the past, single-core processors were integrated to smart disks to improve I/O perfor-

mance of data-intensive applications by manipulating data directly on the disks [38][48][69][97].

1

But, architecture of energy-efficient processors on a single chip does not necessary guarantee

high performance. Thus, improving utilization of advanced multi-core processors has been

a thorny subject in computer systems research. We design the architecture, programming

model and communication interface of a active/smart storage node. And to fully utilize

multi-core processors in our active storage, we incorporated a MapReduce programming

model with the active storage (see Chapter 3).

There are two main challenges in applying the active storage to support data-intensive

applications on clusters. The first challenge is to partition a parallel application into computation-

intensive and data-intensive tasks. If such a partition is successfully created, computing

nodes will handle computation-intensive tasks whereas active storage nodes will run data-

intensive tasks. The second challenge lies in the coordination between computing nodes

and active storage nodes. When it comes to applications where computation-intensive tasks

are independent of data-intensive tasks, computing nodes and active storage nodes are non-

blocking to each other, meaning that computing and storage nodes can easily operate in

parallel. However, if computing nodes have to wait for storage nodes to catch up, the

blocked computing nodes could slow down data-intensive applications.

In Chapter 4, to solve the blocking problem incurred by synchronized computing and

storage nodes, we developed a pipelining mechanism that exploits parallelism among data

processing transactions in a sequential transaction stream. We report the effectiveness of the

pipelining mechanism that leverage active storage to maximize throughput of data-intensive

applications on a high-performance cluster. To demonstrate the effectiveness of the pipelining

mechanism, we implemented a pipelined application called pp-mpiBLAST, which extends an

open-source parallel BLAST tool, mpiBLAST [34]. We also develop an analytic model to

study the scalability of pp-mpiBLAST on large-scale clusters.

The third part of this dissertation focuses on the configuration of storage devices within

the active storage node. Recently, the use of NAND-flash-based Solid State Devices (here-

inafter referred as SSDs) has evolved in the primary system storage of enterprise servers and

2

data centers. However, in those areas, users still hesitate a little bit to perform a large-scale

deployment of SSDs because of their poor reliability and the limited lifespan. As the cost of

NAND flash has declined with increased density, the number of erase cycles a flash cell can

tolerate, on which the number of write operations depends (because of the erase-before-write

characteristic), has suffered. Meanwhile, server applications such as OLTP (Online Trans-

action Processing) [44] normally demand a high-performance and highly reliable underlying

storage system. Thus, instead of simply replacing magnetic hard disk drives with SSDs, re-

searchers [49][68][51][80][33] believe that finding an appropriate, fittest and complementary

approach to balance the performance, reliability and cost is more challenging and attractive.

In Chapter 5, we propose a hybrid combination of disk arrays designed for active storage

system, which uses hard disk drives as a write buffer to cache write requests and de-duplicate

the redundant requests. This chapter also introduces an enhanced version of the on-SSD

buffer, which supports internal parallelism processing algorithm. Together, the goal is to

minimize the writes sent to the SSD without significantly impacting the performance; by

doing so, it reduces the number of erase cycles and thus extends SSDs lifetime.

In summary, this dissertation is organized into the following chapters: Chapter 3 pro-

poses and designs the new active storage architecture, the programming interface and the

explores the parallel processing potential; Chapter 4 presents a pipeline-parallel processing

pattern to cooperate the active node with other machines in the cluster computing envi-

ronment; and the exploration of the hybrid combination of different types of disk drives is

described in Chapter 5; and, finally, Chapter 6 summarizes this dissertation.

3

Chapter 2

Related Work

2.1 The Next Generation Data Storage is Active/Smart

Since large-scale and data-intensive applications have been widely deployed, there is

a growing demand for high-performance storage systems to support data-intensive applica-

tions. Compared with the CPU and memory, which are developing at a rapid speed, the

development of storage devices is behind the times. Five primary factors have catalyzed the

evolution of storage architectures: I/O-bound workloads, improved disk drive attachment

technologies, increased on-drive transistor density, emergence of new interconnects, and the

cost of storage systems [38]. Next-generation data storage may embrace computing capacity

to offload computation from host processors and improve the overall I/O performance. The

active or smart disk, which is empowered by assigning the dedicated on-board processor, is

introduced to be an aspiring attempt of a new storage model.

2.1.1 Smart Disk

Active/smart disks have been implemented in various forms. For example, in an ac-

tive disk model proposed by Uysal et al. , on-disk application processing becomes possible

because of large on-disk memory [97]. Another active disk model designed by Mustafa et

al. largely relies on stream-based programming, in which host-resident code interacts with

disk-resident code using streams and a code-partitioning scheme [70]. Memik et al. de-

veloped a smart disks architecture, where the operation bundling concept was introduced

to further optimize database query executions [69]. Chiu et al. investigated a fully dis-

tributed processor-embedded distributed smart disks [22]. Pushing computation workloads

to memory is another offloading choice [59].

4

The term smart disk may be used interchangeably with other terms such as intelligent

disk (IDISK) [55], SmartSTOR [48], processor-embedded disks [22], and semantically smart

disks [92]. Note that IDISK uses on-disk integrated processor-in-memory to exploit emerging

VLSI technologies [55]; SmartSTOR [48] consists of a processing unit coupled to one or more

disks [48]; and semantically smart disks [92] contains various high-level functionalities. The

interface of the object-based storage devices has been standardized recently [86]. Some

storage device manufacturers, such as Seagate [89], are also developing object-based storage

devices.

2.1.2 Active Storage

From the perspective of the cluster computing area, active storage can be implemented

at storage node levels [71][32][91]. Current practice for data-intensive applications on high-

performance clusters often result in high I/O communication overhead between computing

nodes and storage nodes in the cluster. When massive amounts of data must be transferred

back and forth between parallel computing nodes and storage systems, cluster computing

applications’ performance can suffer from network bandwidth saturation. One efficient ap-

proach to reducing network traffic caused by moving data between computing nodes and

storage systems is to incorporating computing capacities into storage systems, thereby of-

floading some data-intensive computing tasks from clusters to their storage nodes. ASF [35]

and FAWN [7] are two new examples of active storage implementations at storage node

levels. Fitch et al. developed the Active Storage Fabrics (ASF) model to address petascale

data intensive challenges [7]. ASF is aimed at transparently accelerating host workloads

by close integration at the middleware data/storage boundary or directly by data-intensive

applications [7]. FAWN - developed by Andersen et al. - couples embedded CPUs to small

amounts of local flash storage [7]. Andersen et al. used FAWN as a building block to con-

struct a cluster, in which computation and I/O capabilities are balanced to improve energy

5

efficiency of the cluster running data-intensive parallel applications. Active storage has also

been explored in terms of handling unstructured data [?] and working in a lustre system [79].

2.2 Parallel Programming

The IT industry has improved the cost-performance of sequential computing by about

100 billion times over the past 60 years [78]. The approach, which increased transistor count

and power dissipation, worked fine until it hit the power limit a chip is able to dissipate. After

crashing into the power wall, the industry decided to replace the single power-inefficient pro-

cessor with multiple cores processor. Although the exponential processor transistor growth

still follows the prediction from Moore, a high transistor density in multi-core processors

does not always guarantee great practical performance on applications due to the lack of

parallelism. There are cases where a roughly 45% increase in processor transistors have

translated to roughly 10-20% increase in processing power [90]. Therefore, an open issue ad-

dressed in this study is how to enable data-intensive application to exploit parallelism both in

the single-node environment and the cluster computing area. We believe that well-designed

parallel programming APIs and models are critical players to benefit from multiple-machines

or multiple-core processors.

2.2.1 The MapReduce Programming Model

MapReduce is a parallel programming model developed by Google for simplified data

processing in data-intensive applications running on large clusters [26]. Map and Reduce -

two primitives in MapReduce - are brought from the idea of functional testing. When the

Map function is called, user’s input data is partitioned into M pieces, which is processed by

one copy of the program on each node in a cluster. One of the program copy becomes a master

program managing the entire execution. In each MapReduce program, the Map function

first takes an input data specified by the users, and outputs a list of intermediate key/value

pairs (key, value). Then, the Reduce function takes all intermediate values associated with

6

the same key and produces a list of result key/value pairs. The Reduce function typically

performs some kind of merging operation. Finally, the output pairs are sorted by their key

value.

Like the Google file system, MapReduce is not open source software. Google only de-

scribes the MapReduce idea without implementation details. Thus, various open source

implementations of MapReduce are available for different computing platforms like clus-

ters [9], multi-core systems [82], multiprocessor systems [82], and graphics processing units

(GPU) [46].

Haddoop [9]. Hadoop is a Java software framework implemented by Apache to support

data-intensive distributed applications. Inspired by Google’s MapReduce and the Google file

system, the Hadoop project created its own versions of MapReduce and Hadoop Distributed

File System. Hadoop applications can be deployed easily by configuring some variables–some

paths and nodes; Hadoop defines one master node that manages all systems and jobs, and

other worker nodes. Hadoop is so far the most complete quasi-open-source version of MapRe-

duce in the cluster arena. Mars [46].MapReduce has been implemented on NVIDIA GPUs

using CUDA in the Mars project. Mars takes advantage of GPUs by using the capability

of massive threading. In the Mars implementation, there are a large number of physically-

collocated mappers and reducers run in multiple threads. The functions in Mars are classified

in two categories: runtime system functions and user define functions. Our McSD is differ-

ent from Mars in the sense that McSD automatically coordinates data-processing activities

between host CPUs and multi-core processors embedded in smart disks. Phoenix [82].

Phoenix is an implementation of Google’s MapReduce for shared-memory multi-core and

multi-processor systems. There are two categories of functions in Phoenix: the first group is

provided by the Phoenix runtime environment; the second one is defined by programmers.

Ranger et .al concluded that Phoenix is a promising MapReduce implementation for scalable

performance on multi-core and multi-processor systems. Different from other MapReduce

implementations on clusters, Phoenix is independent of any parallelizing compiler. In our

7

study, we evaluated the suitability of the Phoenix implementation for multicore-embedded

smart disks.

2.2.2 Parallel Processing for Scientific Applications

Parallel computing can improve performance of scientific applications like sequence

database search tools in bioinformatic filed. For example, given a database and query se-

quences (e.g., DNA, amino-acid sequences), the search tools search for similarities between

the query sequences and known sequences in the database. The tools enable scientists to

quickly identify the function of newly discovered DNA sequences or to accurately identify

species of a common ancestor [64]. Among many sequence search tools, BLAST is one of

the most popular tools used on daily basis by bioinformatic researchers . MpiBlast [34]

is a promising, open source, parallel implementation of the BLAST toolkit [5]. Like other

bioinformatic applications, mpiBlast has to pre-process (e.g., format data) databases before

searching for similarities between query sequences and known sequences in the preprocessed

databases. Thus, in Chapter 4 we implement a pipelined application - pp-mpiBlast - to

demonstrate a way of employing active storage to improve performance of data-intensive

bioinformatic applications. Our pp-mpiBlast incorporates a data-processing pipeline with

mpiBlast on a high-performance cluster.

2.3 Solid State Disk and Hybrid Disk Combination

The NAND flash memory based SSD, which is used to be evolved in mobile devices

and laptops, plays a critical role in revolutionizing the storage system [21][52][54][56][67][81].

Tape is dead, disk is tape, flash is disk [39]. They are completely built on semiconductor

chips without any moving parts, which results in high random access performance and lower

power consumption. And the cost of commodity NAND flash – often cited as the primary

barrier to SSD deployment [73] – has dropped significantly, increasing the possibility for

dynastic changes in the storage arena. However, reliability and write performance are still

8

two major concerns against largely deployment of SSDs. Hybrid combinations of storage

devices and the enhanced Flash Translation Layer (FTL) are proposed to solve the issues.

2.3.1 Hybrid Disk Combination

San Diego Supercomputer Center (SDSC) has built a large flash-based cluster, which

adopts 256TB of flash memory, called Gordon [15]. This academic project is backed by a $20

million funding from the National Science Foundation. Different from the academic case,

however, enterprise users still hesitate a little bit to perform a large-scale deployment of SSDs

because of their relatively higher cost, poor reliability and the limited lifespan. In terms of

reliability and lifespan concerns, the challenge is each block on flash-based storage media

has limited erasure times and each block has to be erased before written. Erasure operation

reduces both performance, reliability and lifetime. Table5.1 shows the lifespan of the single-

level cell and the multiple-level cell NAND memory in terms of P/E (Program/Erase) cycles.

Based on the SSD lifetime calculator provided by Virident website [40], the lifetime of a

200GB MLC-based SSD could be only 160 days if the application write rate is 50MB/s.

Thus, HDDs are still regarded as indispensable in the storage hierarchy because of their

merits of low cost, huge capacity, above-average reliability, and fast sequential access speed.

Instead of simply replacing HDDs with SSDs, researchers [49][68][51][80][33] [95][102]believe

that finding a appropriate, fittest and complementary approach to balance the performance,

reliability and cost is more challenging and attractive. So far there are many hybrid combina-

tions of storage devices. Chang presented a hybrid approach to large SSDs, which combines

MLC flash and SLC flash [17]. Yoon and etc propose a high performance Flash/FRAM hybrid

SSD architecture, in which metadata used by the flash translation layer (FTL) is maintained

in a small FRAM which targets at processing small random writes [101]. Soundararajan

proposed a hybrid disk architecture which uses the magnetic hard disk as the write buffer

for the SSD [93].

9

Table 2.1: NAND Flash Memory Lifetime (P/E Cycles)

Generation SLC MLC eMLC
5X 100,000 10,000 N/A
3X 100,000 5,000 35,000
2X 100,000 2,500 N/A

2.3.2 Extended FTL

Unlike magnetic hard disk drives, SSDs have a Flash Translation Layer (or FTL) which

is implemented to emulate a hard disk drive by exposing an array of logical block addresses

(LBAs) to the host. FTL averagely spreads the erasure workload on flash-based storage.

A bad FTL algorithm not only reduces the SSDs performance, but also wears out SSDs

storage units rapidly. Chen and Zhang proposed CAFTL: a content-aware flash translation

layer enhancing the lifespan of flash memory based SSDs [20]. CAFTL removes unnecessary

duplicate writes to reduce write traffic to flash memory. Gupta and Urgaonkar proposed

Demand-based Flash Translation Layer (DFTL) which selectively caches page-level address

mappings [41] . A journal Remapping Algorithm JFTL was presented by Choi and Park [23].

JFTL writes all the data to a new region in a out-of-place update process by using an address

mapping method [23] .

Most current research attempts to design new Flash Translation Layer algorithms to im-

prove reliability and enhance performance by utilizing the built-on-board cache. Hence, many

research projects have been done for using cache as write buffer. Kang applied Non-Volatile

RAM (RAM) as write buffer for SSDs to improve overall performance [53]. Kim and Ahn

proposed a buffer management scheme called BPLRU for improving random writes in flash

storage. BPLRU buffers writes improve performance of random writes [57]. Soundararajan

and Prabhakaran presented Griffin, a hybrid storage device, to buffer large sequential writes

in Hard Drives [94]. Park and Jung also presented write buffer-aware address mapping for

flash memory devices [77].

10

Chapter 3

McSD: Multicore-Enabled Smart Storage for Clusters

3.1 Motivation

Since large-scale and data-intensive applications have been widely deployed, there is

a growing demand for high-performance storage systems to support data-intensive applica-

tions. Compared with traditional storage systems, next-generation data storage will embrace

computing capacity to reduce computational load of host processors in computing nodes. Ex-

isting hard disks have limited processing power, which can only be used to handle on-disk

scheduling and physical resource management. With the advance of processor and memory

technologies, future active storage systems are promising devices to perform complex on-disk

operations [97].

Smart disks (a.k.a., active disks), in which processors are embedded, leverage compu-

tational power available in commodity disk drives to deal with application-level process-

ing [28][30][87][66][50]. Recently, active disks coupled with embedded processors have been

proposed to address the needs of on-drive-data-intensive workloads. In the past, single-core

processors were integrated to active disks to improve I/O performance of data-intensive appli-

cations by manipulating data directly on the disks [38][69][48][97]. Smart disks avoid moving

data back and forth between storage devices and host processors. Since there is no smart

disk product on the market, we decided to investigate smart storage nodes rather than smart

disks in this study. The target areas to apply smart/active disks include the content-aware

service [24][45], unstructured data management [84][98], offloaded virus protections [25][75],

and etc.

For the past two decades, hardware designers have used the rapidly increasing tran-

sistor speed made possible by silicon technology advances to double performance every 18

11

months [11]. But the power consumption issue has been raised as a side effect [14][43][42][58].

Unfortunately, approaches to increasing transistor count and clock cycle crashed into the

power wall recently; increasing transistor count hits the power limit that a chip is able to

dissipate. The industry decided to replace single power-inefficient processors with multi-

core processors. There is an increasing need to integrate multi-core processors with devices

and peripherals. Thanks to the escalating manufacturing technology, it is feasible to embed

multi-core processors into storage nodes for high-performance computing. These demand

and trend motivate us to develop a programming framework and a prototype for Multicore-

enabled smart storage (hereinafter referred as McSD) for clusters in general and MapReduce

clusters in particular.

Architecture of energy-efficient processors on a single chip does not necessary guarantee

high performance. Thus, improving utilization of advanced multi-core processors has been a

thorny subject in computer systems research [60]. Phoenix–an implementation of the MapRe-

duce model–automatically manages thread creation, dynamic task scheduling, data partition-

ing, and fault tolerance in multicore processor systems [82]. Phoenix includes a programming

API and an efficient runtime system. Phoenix allows programmers to write functional-style

code that improves the utilization of multicore processors by automatically parallelizing and

scheduling. To fully utilize multi-core processors in McSD, we incorporated Phoenix into

multicore-embedded smart disks. Note that MapReduce is Google’s programming model for

scalable parallel data processing [26]. In addition to Phoenix, there exist a wide range of

MapReduce implementations tailored for various computing platforms [9][46][83].

The difference between our McSD approach and conventional smart disks is two-fold.

First, the focus of McSD is smart storage nodes rather than smart disks. Second, the goal

of McSD is to take performance benefits of multi-core processors not single-core processors

embedded in storage nodes.

Six New Features. When architecting an McSD smart storage system in a high-

performance cluster, the following six features will be implemented:

12

• A two-layer cluster computing architecture contains host computing nodes and smart

storage nodes.

• Improved I/O performance is achieved by combining processing capabilities of both

computing and storage nodes.

• The McSD storage system allows programmers to write MapReduce-like code that can

automatically offload data-intensive computation to smart storage.

• Smart storage nodes can communicate with their host computing nodes via a storage

interface.

• A programming framework of McSDs allows smart storage nodes to take full advantages

from multi-core processors in the storage nodes.

• The APIs and runtime environment in our McSD programming framework automati-

cally handles computation offload, data partitioning, and load balancing.

We will show how to use the McSD programming framework to implement a few real

world applications like word-count, string matching, and matrix multiplication.

Main Contributions. In summary, the four major contributions of this study are:

• A prototype of next-generation multicore-enabled smart data storage.

• A programming framework, which include MapReduce-like programming APIs and a

runtime environment for multicore-based smart storage in the context of clusters.

• Development of three benchmark applications to test McSD for clusters.

• Single-application experimental results and multiple-application performance evalua-

tion.

In the following Section 3.2, we review the background information and previous related

research that motivate and inspire this study. In Section 3.3, we describe the design issues

13

of the prototype of multicore-enabled smart storage. Section 3.4 presents implementation

details of the McSD runtime environment and McSD programming APIs. Experiment results

and performance evaluation are discussed in Section 3.5. Finally, Section 3.6 concludes the

chapter with future research directions.

3.2 Smart Storage and MapReduce

An increasing number of large-scale data-intensive applications impose performance

demands on storage systems, which are the performance bottleneck of various computing

platforms. One way to boost I/O performance is to embed processors into hard disk drives,

thereby offloading data-intensive computation from host CPUs to hard disks. While the

processing capacity in today’s disk drives is to manage on-disk scheduling and resource

management, future disks can be equipped with dedicated processors to perform complicated

data-intensive operations. We call disk drives in which processors are incorporated as smart

disks or active disks.

3.2.1 From Smart Disks to Smart Storage

Five primary factors have catalyzed the evolution of storage architectures: I/O-bound

workloads, improved disk drive attachment technologies, increased on-drive transistor den-

sity, emergence of new interconnects, and the cost of storage systems [38]. Existing smart disk

prototypes consist of, from hardware perspective, an embedded processor, a disk controller,

on-disk memory, local disk space, and a network interface controller (NIC). From software

perspective, a smart disk is comprised of an embedded operating system, a database engine,

programming APIs and the like.

Unlike stand-alone PCs, smart disks do not contain I/O components such as keyboard

and display. Smart drives may directly connect to their host processors through NICs. In

14

our prototype, smart disks or smart storage nodes are connected to host CPUs using a file-

alternation-monitor mechanism, which allows a smart storage node to communicate with its

host computing node without relying on a keyboard and display unit.

Single-core embedded smart disks have been implemented in various forms. For example,

in an active disk model proposed by Uysal et al. , on-disk application processing becomes

possible because of large on-disk memory [97]. Another active disk model designed by

Mustafa et al. largely relies on stream-based programming, in which host-resident code

interacts with disk-resident code using streams and a code-partitioning scheme [70]. Memik

et al. developed a smart disks architecture, where the operation bundling concept was

introduced to further optimize database query executions [69]. Chiu et al. investigated

a fully distributed processor-embedded distributed smart disks [22]. Pushing computation

workloads to memory is another offloading choice [59].

The term smart disk may be used interchangeably with other terms such as intelligent

disk (IDISK) [55], SmartSTOR [48], processor-embedded disks [22], and semantically smart

disks [92]. Note that IDISK uses on-disk integrated processor-in-memory to exploit emerging

VLSI technologies [55]; SmartSTOR [48] consists of a processing unit coupled to one or more

disks [48]; and semantically smart disks [92] contains various high-level functionalities. The

interface of the object-based storage devices has been standardized recently [86]. Some

storage device manufacturers, such as Seagate [89], are also developing object-based storage

devices.

Due to a combination of reasons, no out-of-shelf product of the smart/active disk is

available on the market. We aimed at implementing an active/smart storage system for clus-

ters [6] and; therefore, we decided to focus on active storage nodes rather than active/smart

disks in this section.

15

Split

Map

Map

worker 1

Map

Map

worker n

SortInput

Reduce
worker 1

worker n

Merge

Reduce

Reduce

Reduce

Output

Map Stage Reduce Stage

Figure 3.1: The work flow of MapReduce.

3.2.2 Parallel Programming

The IT industry has improved the cost-performance of sequential computing by about

100 billion times over the past 60 years [78]. A high transistor density in multi-core processors

does not always guarantee great practical performance on applications due to the lack of

parallelism. There are cases where a roughly 45% increase in processor transistors have

translated to roughly 10-20% increase in processing power [90]. Therefore, an open issue

addressed in this study is how to enable data-intensive application to exploit parallelism in

smart disks coupled with embedded multi-core processors. We believe that well-designed

parallel programming APIs must be implemented for future smart disks that can benefit

from multi-core processors.

MapReduce is a programming model developed by Google for simplified data processing

in data-intensive applications running on large clusters [26]. Map and Reduce - two primitives

in MapReduce - are brought from the idea of functional testing. When the Map function

is called, user’s input data is partitioned into M pieces, which is processed by one copy of

the program on each node in a cluster. One of the program copy becomes a master program

managing the entire execution. In each MapReduce program, the Map function first takes

an input data specified by the users, and outputs a list of intermediate key/value pairs (key,

value). Then, the Reduce function takes all intermediate values associated with the same

16

key and produces a list of result key/value pairs. The Reduce function typically performs

some kind of merging operation. Finally, the output pairs are sorted by their key value.

Fig. 3.1 illustrates the work flow of the MapReduce model. The main benefit MapReduce

lies in its simplicity. Programmers only provide a simple description of an algorithm that

focuses on functionality and leaves actual parallelization and concurrency management to a

MapReduce runtime system.

Like the Google file system, MapReduce is not open source software. Google only de-

scribes the MapReduce idea without implementation details. Thus, various open source im-

plementations of MapReduce are available for different computing platforms like clusters [9],

multi-core systems, multiprocessor systems [82] and graphics processing units (GPU) [46].

Hadoop [9] is a Java software framework implemented by Apache to support data-

intensive distributed applications. Inspired by Google’s MapReduce and the Google file

system, the Hadoop project created its own versions of MapReduce and Hadoop Distributed

File System. Hadoop applications can be deployed easily by configuring some variables–

some paths and nodes; Hadoop defines one master node that manages all systems and jobs,

and other worker nodes. Hadoop is so far the most complete quasi-open-source version of

MapReduce in the cluster arena.

Phoenix [82] is an implementation of Google’s MapReduce for shared-memory multi-

core and multi-processor systems. There are two categories of functions in Phoenix: the

first group is provided by the Phoenix runtime environment; the second one is defined by

programmers. Ranger et .al concluded that Phoenix is a promising MapReduce implemen-

tation for scalable performance on multi-core and multi-processor systems. Different from

other MapReduce implementations on clusters, Phoenix is independent of any paralleliz-

ing compiler. In our study, we deploy a extended Phoenix system implementation to our

multicore-embedded active/smart disks.

17

Memory

CPU

HDD

storage interface

Memory

CPU

HDD

Smart Disk

Memory

CPU

HDD

Smart Disk

Figure 3.2: McSD - The prototype of multicore-enabled smart storage. Each smart storage
node in the prototype contains memory, a SATA disk drive, and a multicore-processor.

3.3 Design Issues

A growing number of data-intensive applications coupled with advances in processors

indicate that it is efficient, profitable, and feasible to offload data-intensive computations

from CPUs to hard disks [87]. Our preliminary results show that we can improve perfor-

mance of cluster computing applications by offloading computations from computing nodes

to storage nodes.

To improve the performance of large data-intensive applications, we designed McSD

- a prototype of multicore-enabled smart data storage. Different from the existing smart-

disk solutions, McSD not only addresses the performance needs of data-intensive applications

using multi-core processors, but also focuses on smart storage nodes rather than smart disks.

Fig. 3.2 depicts the McSD prototype, where each smart storage node contains a multicore-

processor, memory, and a SATA disk drive. In what follows, let us address the following

design issues.

• How to build a testbed where an McSD smart storage node is connected to a host

computing node?

18

• How to evaluate the performance of McSD in the testbed and a cluster computing

environment?

• How to fully utilize a multi-core processor available in McSD?

• What is the programming framework for McSD?

• How to pass input parameters from a host computing node to its McSD - a smart

storage node?

• How to return results from the McSD storage node to the host computing node?

3.3.1 Design of the McSD Prototype

In our McSD prototype, we integrate multi-core processor, a disk controller, main mem-

ory, a local disk drive, and a network interface controller (NIC) into a smart storage node.

The storage interface of existing smart-disk prototypes (see Section 3.2.1 for details on exist-

ing smart disks) is not well designed, because the existing prototypes simply represented a

case where host CPUs and embedded processors are coordinated through the network inter-

faces or NICs in smart disks. To fully utilize the storage-interface in smart data storage, we

designed a communication mechanism similar to the file alteration monitor. In our McSD

prototype, a host computing node communicates with a disk drive in McSD via its storage

interface rather than the NIC. In doing so, we made smart disk prototypes cost-effective since

no NIC is needed. Without using NICs, the McSD prototype can adequately represent all

the important features of our proposed smart data storage. The design details are described

in the following two subsections.

3.3.2 A Testbed for McSD

Recall that although a few smart disk prototypes have been developed, there is no off-

the-shelf commodity smart disks. Instead of simulating a smart storage system, we built

a testbed for the McSD prototype. Fig. 3.3 briefly outlines the McSD testbed, where two

19

Memory

CPU

HDD

Host Node
SD Node

MemoryCPU HDD

N

I

C

N

I

C

SD Node

MemoryCPU HDD

N

I

C

Figure 3.3: A testbed for the McSD prototype. A host computing node and an McSD storage
node are connected via a fast Ethernet switch. The host node can access the disk drives in
McSD through the networked file system or NFS.

computers are connected through the fast Ethernet. The first computer in the testbed plays

the role of host computing node, whereas the second one performs as the McSD smart

storage node. The host computing node can access the disks in the McSD node through the

networked file system or NFS, which allows a client computer to access files on a remote

server over a network interconnect. In our testbed the host computing node is the client

computer; the McSD node is configured as an NFS server. We chose to use NFS as an

efficient means of connecting the host computing node and the smart storage node, because

data transfers between the host and smart storage nodes are handled by NFS.

We run three real-world applications as benchmarks on this testbed to evaluate the

performance of the McSD prototype. The benchmarks considered in our experiments (see

Section 3.5) include word count, string matching, and matrix-multiplication.

20

Program

McSD Runtime System

Host
Machine

McSD McSD
storage

interface

Host program SD program (data-intensive)

Figure 3.4: The programming framework for a host computing node supported by an McSD
smart storage node.

3.3.3 A Programming Framework

Fig 3.4 shows a programming framework for a host computing node supported by an

McSD smart storage node. The framework generates an optimized operation plan for data-

intensive programs running on the McSD testbed (see Section 3.3.2 for the description of

the testbed), where there is a host computing node and an McSD smart storage node. The

framework automatically assigns general purpose operations to the host computing nodes

and offloads data-intensive operations to the McSD storage node, in which Phoenix (see

Section 2.2.1 for the description of Phoenix) handles parallel data processing. Although ap-

plying Phoenix in the McSD node can not increase performance for all applications running

in our testbed, Phoenix can substantially boost performance of data-intensive applications

(see Section 3.5). Because this programming framework provides a relatively flexible auton-

omy, data processing modules (e.g., word-count, sort, and other primitive operations) can

be readily added into an McSD smart storage node.

To seamlessly integrate Phoenix into an McSD smart system, we addressed the issue of

limited embedded memory in McSD by implementing new functions like data partitioning,

which split input data files whose memory footprints exceed the memory capacity of the

21

McSD smart data storage. The implementation details of the new functions in the McSD

programming framework can be found in Section 3.4.

3.3.4 Putting It All Together - A Cluster with McSD

We can build both stand-alone computing systems and active storage farms using McSD.

Stand-Alone Computing Systems. A set of McSD nodes can be connected together

to serve as a stand-alone data-intensive computing system, where each McSD node is running

data intensive applications whose data are locally stored in each storage node. The cluster

of McSD can connect to back-end storage servers supporting data services such as data

deduplication, data backup and recovery.

Smart Storage Farm. McSD can be used to build a smart storage farm that is

connected to a front-end high-performance computing cluster. In this case, data-intensive

applications are running on the front-end cluster and data processing services are supported

by McSD nodes of the smart storage system. The smart McSD storage nodes can improve

the front-end clusters I/O bandwidth by greatly reducing data movement between the front-

cluster and the McSD storage system.

3.4 Implementation Details

3.4.1 System Workflow and Configuration

Unlike the previous network-attached smart storage, the McSD smart storage uses the

SATA interface to transfer data. We implemented the McSD prototype using a host com-

puting node and a multicore-enabled storage node (see Section 3.3.1 and 3.3.2 for the design

issues of the prototype). In the prototype, the multicore storage node has no keyboard,

mouse, and display unit. It is worth noting that storage nodes in other existing smart-disk

prototypes have keyboard and mouse activities. Compared with the other earlier prototypes,

our McSD prototype better resembles next-generation multicore-enabled smart storage sys-

tems for clusters. Smart storage nodes connected to cluster computing nodes only needs to

22

process on-node data-intensive operations. In other words, smart storage nodes only pro-

vide some primitive functions termed as data-intensive processing modules (or processing

modules for short) in the McSD prototype.

Fig. 3.3 shows the hardware configuration of the McSD prototype where a host com-

puting node is connected to an McSD storage node through the SATA bus interface. One

of the most important implementation issues is to allow a host computing node to offload

data-intensive computations to McSD. There are two general approaches to implementing

computation offloading. First, each offloaded data-intensive operation or module are de-

livered from a host node to an McSD storage node (hereinafter refered to as McSD or

McSD node) when the operation or module needs to be processed by McSD. Second, all

data-intensive operations and modules are preloaded and stored in the McSD storage node.

Although the first approach can handle the dynamic environment problem where data-

intensive operations/modules are not predictable, the downside of the first approach lies

in high communication overhead between host computing nodes and McSD storage nodes.

The second approach reduces the communication overhead caused by moving data-intensive

operations/modules, because the operations/modules are residing in McSD prior to the ex-

ecution of the data-intensive programs.

In the process of implementing the McSD prototype, we took the second approach -

preloading data-intensive modules. We believe that the preloading approach is practical for

a vast variety of real-world applications, where data-intensive processing modules can be

determined before the programs are executed in a host computing node accompanied by

an McSD smart storage node. In our preloading approach, the program running on the

computing node has to invoke the processing modules preloaded to the McSD node. An

invocation mechanism, called smart-file-alternation monitor (smartFAM), was implemented

to enable the host node to readily trigger the processing modules in the McSD node. The

implementation issues of smartFAM are addressed in the next subsection.

23

smartFAM

Active Node

Daemon

inotify

NFS

Log files
Module Log

& Result data smartFAM

Host node

Daemon

inotify

Data-
intensive
function

Merge Results

Pre-assembled

Modules

...

1
1

4

3

2 Main Program

General
functions

2

3

4

Figure 3.5: The implementation of smartFAM - an invocation mechanism that enables a
host computing node to trigger data-intensive processing modules in an McSD storage node.

3.4.2 Implementation of smartFAM

Fig. 3.5 illustrates the implementation of smartFAM - an invocation mechanism that

enables a host computing node to trigger data-intensive processing modules in an McSD

storage node. smartFAM mainly contains two components: (1) the inotify program - a Linux

kernel subsystem that provides file system event notification; and (2) a daemon program that

invokes on-node data-intensive operations or modules.

To make our McSD prototype closely resemble future multicore-enabled smart storage,

we connected the host node with the McSD smart-storage node using the Linux network

file system or NFS. In the NFS configuration, the host node plays a client role whereas

the McSD node performs as a file server. A log-file folder, created in NFS at the server

side (i.e., the McSD smart-storage node), can be accessed by the host node via NFS. Each

data-intensive processing module/operation has a log file in the log-file folder. Thus, when

a new data-intensive module is preloaded to the McSD node, a corresponding log-file is

24

created. The log file of each data-intensive module is an efficient channel for the host node

to communicate with the smart-storage node (McSD node). For example, let us suppose

that a data-intensive module in the McSD node has input parameters. The host node can

pass the input parameters to the data-intensive module residing the McSD node through

the corresponding log file. Thus, the host writes the input parameters to the log file that

is monitored and read by the data-intensive module. Below we address the following two

questions related to usage of log files in McSD:

• (1) How to pass input parameters from a host node to an McSD storage node?

• (2) How to return results from an McSD storage node to a host?

Passing input parameters from a host node to an McSD smart-storage node.

When an application running on the host node offloads data-intensive computations to the

McSD node, the following five steps are performed so that the host node can invoke a data-

intensive module in the smart-storage node via the module’s log file (see Fig. 3.5):

Step 1: The application on the host node writes input parameters of the module to its log

file on in McSD. Note that NFS handles communications between the host and McSD via

log files.

Step 2: The inotify program in the McSD node monitors all the log files. When the data-

intensive module’s log file in McSD is changed by the host, inotify informs the Daemon

program in smartFAM of McSD.

Step 3: The Daemon program opens the module’s log file to retrieve the input parameters

passed from the host. Note that this step is not required if no input parameter needs to be

transmitted from the host to the McSD node.

Step 4: The data-intensive module is invoked by the Daemon program; the input parameters

are passed from Daemon to the module.

Step 5: Go to Step 1 is more data-intensive modules in the McSD node are invoked by the

application on the host.

25

Returning results from an McSD smart-storage node to a host node. Results

produced by a data-intensive module in the McSD node must be returned to the module’s

caller - a calling application that invokes the module from the host node. To achieve this

goal, smartFAM takes the following four steps (see Fig. 3.5):

Step 1: Results produced by the module in the McSD node are written to the module’s log

file.

Step 2: The inotify program in the host node monitors the log file, checking whether or not

the results have been generated by McSD. After the module’s log file is modified by McSD

(i.e., the results are available in the log file), This inotify program informs the Daemon

program in the host node.

Step 3: The Daemon program in the host notifies the calling application that the results

from the McSD node are available for further process.

Step 4: The host node accesses the module’s log file and obtain the results from the McSD

node. Note that this step can be bypassed if no result should be returned from McSD to the

host.

3.4.3 Partitioning and Merging

A second implementation issue that has not been investigated in the existing smart-

storage prototypes is how to process large data sets that are too large to fit in on-node

memory. In one of our experiments, we observed that the Phoenix runtime system does

not support any application whose required data size exceeds approximately 60% of a com-

puting node’s memory size. This is not a critical issue for Phoenix, because Phoenix is a

MapReduce framework on shared-memory multi-core processor or multiple processors sys-

tems where memory size are commonly larger than those residing in smart storage nodes.

On-node memory space in smart storage nodes is typically small compared with front-end

high-performance computing nodes. Thus, before we attempted to apply Phoenix in McSD

26

Split

Map

Map

worker 1

Map

Map

worker n

Sort

Input

Reduce
worker 1

worker n

Merge

Reduce

Reduce

Reduce

Output 1

Map Stage Reduce Stage

Partition 1

Partition

1

Partition

n

Output

1
Output

Output

n

MergePartition

Figure 3.6: Workflow of the extended Phoenix model with partitioning and merging

smart disks, we had to address this out-of-core issue - data required for computations in

McSD is too large to fit in McSD memory.

Our solution to the aforementioned out-of-core issue is to partition a large data set into

a number of small fragments that can fit into on-node memory before calling a MapReduce

procedure. Once a large data set is partitioned, the small fragments can be repeatedly

processed by the MapReduce procedure in McSD. Intermediate results obtained in each

iteration can be merged to produce a final result. Our partitioning solution has two distinct

benefits:

• Supporting huge datasets whose size may exceed the memory capacity of an McSD

storage node.

• Boosting performance of data-intensive applications (e.g., word-count) by improving

the memory usage of McSD (see Fig. 3.9 in Section 3.5).

27

Start

Starting Point

space, return, or
other delimited
characters

Starting Point ++

N

new Partition size

Stop

draft number

Y

manuallyautomatic

Figure 3.7: The workflow diagram of integrity checking.

Because both input data sets and emitted intermediate data are located in memory

during the MapReduce stage, the memory footprint is at least twice of input data size.

The partitioning solution, of course, is only applicable for data-intensive applications whose

input data can be partitioned. In our experiments, we evaluated the impact of fragment size

on the performance of applications. Evidence (see Fig. 3.9 in Section 3.5) shows that data

partitioning can improve performance of certain data-intensive applications.

3.4.4 Incorporating the Partitioning Module into Phoenix

Fig. 3.6 depicts the work flow of the modified version of Phoenix; it can be considered as

a two-stage MapReduce process. The Partition function is provided by the runtime system,

while the Merge function needs to be programmed by the user to support different applica-

tions. Take an example of a Word-count command: wordcount [data-file] [partition-size].

Fragment sizes of every new partitions are determined by (1) the number of [partition-size]

28

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

$!!")*" +$!")*" %",*" %#&$",*"

-
.
/
/
0
1
.
"

23.14"5646"-78/"

9160:";<"

51=:";<"

9160:"-)"

51=:"-)"

Figure 3.8: Performance Speedup. It depicts speedups of partition-enabled Phoenix vs.
original Phoenix and the sequential approach on both duo-core and quad-core machines.

provided by the programmer/system and (2) the extra displacements from integrity-check

function in order to make sure the new partition is ended correctly. If there is no [partition-

size] parameter, the program will run in native way. Otherwise, the number of [partition-size]

can be manually filled in by the programmer or automatically determined by the runtime

system (e.g., Phoenix). In order to achieve a better performance, the empirical data or the

details of operator may be required for the automatic approach. The integrity-check func-

tion will automatically return the extra displacements by scanning from the starting point

of [partition-size] till the first space, return or the symbol defined by the programmer. The

reason we involved the integrity-check procedure to the Partition function is there exists

the consistency issue of partitioned data files; the content of the source data file could be

broken in shatters (e.g. a word could be cut and placed into two slitted files not on purpose).

Fig. 3.7 describes the integrity-check procedure.

29

Input Data Size

T
im
e
 (
s
e
c
o
n
d
s
)

(a) Growth curve of WC on Duo and Quad. It draws the growth curves of elapsed time
on duo-core and quad-core machines in terms of Word-Count.

Input Data Size

T
im
e
 (
s
e
c
o
n
d
s
)

(b) Growth curve of SM on Duo and Quad. It draws the growth curves of elapsed time
on duo-core and quad-core machines in terms of String-Match.

Figure 3.9: Single Application Performance. The data size is scaling from 500MB to 1.25GB.

30

3.5 Evaluations

3.5.1 Experimental Testbed

We performed our experiments on a 5-node cluster, whose configuration is outlined

in Table 1. There are three types of nodes in the cluster: one of host computing node,

one of smart storage nodes, and three other general purpose computing nodes. Operating

system running on the cluster is Ubuntu 9.04 64-bit version. The nodes in the cluster are

connected by Ethernet adapters, Ethernet cables, and one 1Gbit switch. All the general

purpose computing nodes share disk space on the host node through Network File System

(NFS), while the host node is sharing one folder on the McSD node. The processing modules,

extended Phoenix system and SmartFAM have been set up on both the host and SD nodes.

Then in order to emulate the routine work, we run the Sandia Micro Benchmark (SMB)

among all the nodes except the McSD smart-storage node. We choose MPICH2-1.0.7 as our

message passing interface (MPI) on the cluster. All benchmarks are compiled with gcc 4.4.1.

We briefly describe the benchmarks running on our testbed in the following sub-section.

Table 3.1: The Configuration of the 5-Node Cluster

Host SD Nodes ×3
CPU Intel Core2 Intel Core2 Intel

Quad Q9400 Duo E4400 Celeron 450
Memory 2GB

OS Ubuntu 9.04 Jaunty Jackalope 64bit version
Kernel version 2.6.28-15-generic

Network 1000Mbps

31

• Word Count (WC): It counts the frequency of occurrence for each word in a set of

files. The Map tasks process different sections of the input files and return intermediate

data 〈key, value〉 that consist of a word and a value of 1. Then the Reduce tasks add

up the values for each identity word. Finally, the words are sorted and printed out in

accordance with the frequency in decreasing order.

• String Match (SM): Each Map searches one line in the “encrypt” file to check

whether the target string from a “keys” file is in the line. Neither sort or the reduce

stage is required.

• Matrix Multiplication (MM): Matrix multiplication is widely applicable to analyze

the relationship of two documents. Each Map computes multiplication for a set of rows

of the output matrix. It outputs multiplication for a row ID and column ID as the

key and the corresponding result as the value. The reduce task is just the identity

function.

• Sandia Micro Benchmark (SMB): It is developed by Sandia National Labora-

tory to evaluate and test high-performance networks and protocols. We use it in our

experiment to emulate the routine work.

3.5.2 Single-Application Performance

Fig. 3.9 shows the speedup achieved by using the Partition-enabled programming model,

relative to the no-partition version and sequential implementation, respectively. In terms of

single application benchmarks, we observed that the traditional Phoenix cannot support the

Word-count and the String-match for data size larger than 1.5G, because of the memory

overflow. From Fig. 3.9, when the data size is in a reasonable interval (say, less than half of

the memory size), the traditional parallel approach provides almost the same performance.

However, in terms of Word-count, when the data size is huge (compared with the memory

size), the elapsed time of Partition-enabled approach is only 1/6 of the traditional one.

32

When comparing with the sequential approach, both the benchmarks can achieve a 2X

speedup, which proves the fully utilization of duo-core processor. Fig. 3.9(a) and Fig. 3.9(b)

show the plots of the execution time versus the size of the input data file on the two SD

platforms. Since we can observe that the performance curve has linear-like growth, our

methodology provides scalability performance for its audience objective. We can summarize

that: (1) for data-size sensitive applications, such as Word Count, the Partition procedure

can not only support data size which cannot fit in the physical memory but also improve the

performance; (2) for applications that are not data-intensive, the Partition model can only

enhance their supportability of data-size range. Of course, all those observations are based

on the assumption that the applications are partition-able; (3) the last but not the least, the

use of our Partition-enabled approach can fully utilize the multicore processor in almost all

subjects in this test.

3.5.3 Multiple-Application Performance

When multiple applications are running concurrently–following the McSD framework,

the system should exhibit the basic properties: (1) the system overall throughput can be

increased, and (2) the overall performance of the application set can be improved. In order

to evaluate our McSD execution framework, we create two multiple-application benchmarks,

each of which contains : a computation-intensive function and a data-intensive one. To ex-

plore how well our system meets the performance expectations, we report two pairs of appli-

cation benchmarks: Matrix-multiplicity/Word-count and Matrix-multiplicity/String-match.

The first pair is very data-intensive, or memory-consuming, since the memory footprint of

Word-Count is around three times of the input data size. On the other hand, the memory

footprint of String-Match is around two times of the input data size. Thus, those two are

representatives of two levels of data-intensive applications.

33

500M 750M 1G 1.25G
0

2

4

6

8

10

12

14

16

18

20

S
pe

ed
up

(a) Host Node Only

500M 750M 1G 1.25G
0

0.5

1

1.5

2

2.5

S
pe

ed
up

(b) Tradtional SD

500M 750M 1G 1.25G
0

2

4

6

8

10

12

14

16

S
pe

ed
up

(c) McSD without Partition

Figure 3.10: Speedups of Matrix Multiplicity and Word-count. Trad SD - traditional
smart storage (SD) with single-core processor embedded. DuoC SD-nopar - duo-core proces-
sor embedded smart storage operating in a parallel way without the partitioning function.
The benchmarks are running on the multicore host node only in the Host-only scenario.
The last one, Host-part, is partitioning-enabled on the Host node. Compared with the tra-
ditional smart storage (running sequentially), our McSD improves the overall performance
by 2x. With the data size increasing, the elapsed time of non-partitioned approaches (the
DuoC-SD and Host-only) can cost 16 to 18 times more than that of the McSD approach.

500M 750M 1G 1.25G
0

0.5

1

1.5

2

2.5

S
pe

ed
up

(a) Host Node Only

500M 750M 1G 1.25G
0

0.5

1

1.5

2

2.5

S
pe

ed
up

(b) Tradtitional SD

500M 750M 1G 1.25G
0

0.5

1

1.5

2

2.5

S
pe

ed
up

(c) McSD without Partition

Figure 3.11: Speedups of Matrix-multiplicy and String-match. Compared with the tra-
ditional smart storage (SD) running sequentially, our McSD improves the overall perfor-
mance by 1.5x. When data size is increasing, McSD improves the performance of the non-
partitioning approaches (the DuoC-SD and Host-only) by 2x.

34

For each pair of applications, we set up four scenarios to execute the program: (1)

the benchmarks running on the traditional single-core SD mode (a combination of host

and single-core SD node), (2) the benchmarks running on the duo-core embedded SD mode

without Partition function, (3) the programs running on the host node only, and (4) the

programs follow the McSD execution framework; the host machine handles the computation-

intensive part and the SD machine processes the on-node data-intensive function. Each of

the solutions performs three tests: parallel processing without partition, parallel processing

with partition and the sequential solution.

Fig. 3.10 and Fig. 3.11 illustrate the performance improvement of using the optimized ap-

proach, the parallel-enabled one with 600MB partition, against the other scenarios. Fig. 3.10

and Fig. 3.11 show speedups on the pair of MM/WC and MM/SM, respectively. We defined

the performance speedup to be the ratio of the elapsed time without the optimization tech-

nique to that with the McSD technique. From both of figures, we observe a common point:

compared with the traditional (single-core processor equipped) SD, the McSD (duo-core pro-

cessor embedded) averagely improves the overall performance by 2X for both two pairs of

applications. Thus it illustrates the utilization of the duo-core processor. Also, the difference

between those two sets of figures is obvious. In terms of the MM/WC, the elapsed time of

non-partitioned parallel approaches, host node only and McSD without Partition, increase

nonlinearity. When the data size exceeds a threshold, the speedups averagely achieve 6.8X

and 17.4X. On the other hand, the McSD can only make slightly improvement when the

data size are 500MB and 750MB (below the threshold). In contrary, the speedups of the

MM/SM, which represents less data-intensive applications, are both averagely 2X speedup.

As we can see, using our methodology gives better speedups compared with the tradi-

tional SD (averagely 2X) and parallel processing without Partition (maximum to 17X). While

the SD being widely considered to be one of the heterogeneous computing platforms, the

frameworks like ours will be considered to manage the system and improve the performance.

35

3.6 Summary

Processor-enabled smart storage can improve I/O performance of data-intensive appli-

cations by processing data directly using storage nodes, because smart nodes avoid moving

data back and forth between storage and host computing nodes. Thanks to the escalating

manufacturing technology, it is possible to integrate multi-core processors into smart stor-

age nodes. In this study, we implemented a prototype called McSD for multicore-enabled

smart storage that can improve performance of data-intensive applications by offloading data

processing to multicore processors employed in storage nodes of computing clusters.

Our McSD system differs from conventional smart/active storage in two ways. First,

McSD is a smart storage nodes rather than a smart disk. Second, McSD can leverage

multi-core processors in storage nodes to improve performance of data-intensive applications

running on clusters.

McSD along with its programming framework enables programmers to write MapReduce-

like code that can automatically offload data-intensive computation to multicore processors

residing in smart storage nodes. The McSD programming framework allows smart stor-

age nodes to take full advantages from embedded multi-core processors. The APIs and a

runtime environment in this programming framework automatically handles computation

offload, data partitioning, and load balancing. The McSD prototype was implemented in

a testbed–a 5-node cluster containing both host computing nodes and McSD smart-storage

nodes. Our experimental results were taken by running three real-world applications on the

testbed. The tested data-intensive applications include Word Count, String Matching, and

Matrix Multiplication. Our multicore-enabled smart storage system - McSD - significantly

reduces the execution time of the three applications. Overall, we conclude that McSD is a

promising approach to improving I/O performance of data-intensive applications.

Our prototype for multcore-enabled smart storage was built in a MapReduce cluster.

The performance of the benchmark applications largely depends on the testbed. Therefore,

we will upgrade our testbed (e.g., replace Ethernet with Infiniband) to evaluate the impact of

36

fast network interconnects on McSD. Perhaps the most exciting future work lies in exploring

(1) the extensibility of data-processing modules and operations (i.e. data-intensive appli-

cations and database operations) that are preloaded into McSD smart-disk nodes, (2) the

parallelisms among multiple McSD smart disks, and (3) a mechanism in McSD to support

fault tolerance and improve reliability.

37

Chapter 4

Using Active Storage to Improve the Bioinformatics Application Performance: A Case

Study

4.1 Motivation

Processing massive amounts of data has resulted in a mushrooming of data-intensive

applications like bioinformatics data processing. Evidence shows that the collective amount

of genomic information doubles every 12 months [63]. Most bioinformatics applications

have to deal with the I/O bottleneck issue. Processing huge datasets in a high-performance

cluster normally requires copying data from storage nodes to computing nodes, thereby

leading to a large number of I/O operations. Active storage is an effective technique to

improve applications’ end-to-end performance by offloading data processing from computing

nodes to storage nodes.

Active storage brings three key advantages. First, the amount of data moved back and

forth between computing nodes and storage nodes in clusters can be significantly reduced,

since large datasets can be locally processed by storage nodes before being forwarded to

computing nodes. Second, data-intensive applications run faster, because active storage

nodes accelerate data processing operations. If computing nodes and active storage nodes

efficiently coordinate, both computing nodes and storage nodes can perform data processing

in parallel. Third, network performance in clusters can be improved due to reduced amounts

of data moved into and out of storage nodes.

38

4.1.1 Challenges

There are two main challenges in applying active storage to support data-intensive appli-

cations on clusters. The first challenge is to partition a parallel application into computation-

intensive and data-intensive tasks. If such a partition is successfully created, computing

nodes will handle computation-intensive tasks whereas active storage nodes will run data-

intensive tasks.

The second challenge lies in the coordination between computing nodes and active stor-

age nodes. When it comes to applications where computation-intensive tasks are independent

of data-intensive tasks, computing nodes and active storage nodes are non-blocking to each

other, meaning that computing and storage nodes can easily operate in parallel. However, if

computing nodes have to wait for storage nodes to catch up, the blocked computing nodes

could slow down data-intensive applications.

4.1.2 Contributions

In this chapter, we address the partitioning and synchronization issues in the context of

active storage supporting bioinformatic applications. To solve the blocking problem incurred

by synchronized computing and storage nodes, we developed a pipelining mechanism that

exploits parallelism among data processing transactions in a sequential transaction stream.

We report the effectiveness of the pipelining mechanism that leverage active storage to

maximize throughput of data-intensive applications on a high-performance cluster.

To demonstrate the effectiveness of the pipelining mechanism designed for active storage,

we implemented a pipelined application called pp-mpiBLAST, which extends mpiBLAST,

which is an open-source parallel BLAST tool. pp-mpiBLAST deals with a sequential data

processing transactions, each of which contains a filtering/formatting task and a mpiBLAST

task. The mechanism overlaps data filtering/formatting in active storage with parallel

BLAST computations in computing nodes, thereby allowing clusters and their active storage

nodes to perform data processing in parallel. The pp-mpiBLAST application relies on active

39

storage to filter unnecessary data and to format databases, which are then forwarded to the

cluster running mpiBLAST.

We develop an analytic model to study the scalability of pp-mpiBLAST on large-scale

clusters. This model allows us to study the performance of pp-mpiBLAST on a cluster using

active storage. This performance model is ideal for application developers who have limited

computing resources to test the scalability of their parallel applications using active storage.

Furthermore, programmers can use the analytic model to explore the design space related to

the number of computing nodes, active storage speed, data processing capacity, and input

data size. The model shows the behavior of pp-mpiBLAST under different configurations of

the cluster coupled with active storage.

Measurements made from a working implementation and a modeling study suggest that

this method not only improves mpiBLAST’s overall performance by up to 75%, but also

achieves high scalability on clusters coupled with active storage.

In the Section 4.2, we review the background information and previous related research.

In Section 4.3, we describe the design and implementation details of the active storage

node. The analytical model is presented in Section 4.4. Experiment results and performance

evaluation are discussed in Section 4.5. Finally, Section 4.6 provides conclusions and future

research directions.

4.2 Background

4.2.1 Active Storage

Current practice for data-intensive applications on high-performance clusters often re-

sult in high I/O communication overhead between computing nodes and storage nodes in

the cluster. When massive amounts of data must be transferred back and forth between

parallel computing nodes and storage systems, cluster computing applications’ performance

can suffer from network bandwidth saturation. One efficient approach to reducing network

40

traffic caused by moving data between computing nodes and storage systems is to incor-

porating computing capacities into storage systems, thereby offloading some data-intensive

computing tasks from clusters to their storage nodes. That inspired researchers to make the

storage more “active”, or “smart”.

Active storage can be implemented at storage node levels [71][32][91]. ASF [35] and

FAWN [7] are two new examples of active storage implementations at storage node levels.

Fitch et al. developed the Active Storage Fabrics (ASF) model to address petascale data

intensive challenges [7]. ASF is aimed at transparently accelerating host workloads by close

integration at the middleware data/storage boundary or directly by data-intensive applica-

tions [7]. FAWN - developed by Andersen et al. - couples embedded CPUs to small amounts

of local flash storage [7]. Andersen et al. used FAWN as a building block to construct a

cluster, in which computation and I/O capabilities are balanced to improve energy efficiency

of the cluster running data-intensive parallel applications. Active storage has also been ex-

plored in terms of handling unstructured data [?] and working in a lustre system [79]. In

this study, we focus on active storage like ASF and FAWN. We implemented the pipelining

technique in an active storage testbed that is similar to ASF and FAWN.

4.2.2 Parallel Bioinformatic Applications

Parallel computing can improve performance of bioinformatic applications like sequence

database search tools. Given a database and query sequences (e.g., DNA, amino-acid se-

quences), the search tools search for similarities between the query sequences and known

sequences in the database. The tools enable scientists to quickly identify the function of

newly discovered DNA sequences or to accurately identify species of a common ancestor [64].

Among many sequence search tools, BLAST is one of the most popular tools used on

daily basis by bioinformatic researchers . MpiBlast [34] is a promising, open source, parallel

implementation of the BLAST toolkit [5]. Like other bioinformatic applications, mpiBlast

41

SSD

Mass��Storage

Active�Storage�Node

SSD

N
e

tw
o

rk
��

sw
it

ch

C
o

m
p

u
ti

n
g

��
N

o
d

e
s

controller

Buffer�Storage

Figure 4.1: A cluster involves a collection of computing nodes and active storage nodes.

has to pre-process (e.g., format data) databases before searching for similarities between

query sequences and known sequences in the preprocessed databases.

We implemented a pipelined application - pp-mpiBlast - to demonstrate a way of employ-

ing active storage to improve performance of data-intensive bioinformatic applications. Our

pp-mpiBlast incorporates a data-processing pipeline with mpiBlast on a high-performance

cluster.

4.3 Design and Implementation

In this section, we describe the system from the top down: an overview of the system, a

hybrid mix of storage devices, and the parallel pipelined processing. Hereinafter, the active

storage node is refereed to as ASN for short.

42

4.3.1 Active Storage for Clusters

A typical high-performance cluster consists of computing nodes and storage nodes.

Data-intensive applications on clusters can cause heavy I/O traffic between the computing

and storage nodes in the cluster. To achieve high performance for data-intensive applications,

we aim to reduce network traffic caused by moving massive amounts of data from/to storage

systems in clusters. This goal can be accomplished by offloading data-intensive computations

from computing nodes to active storage nodes.

Fig. 4.1 illustrates a cluster that involves a collection of computing nodes coupled with

active storage nodes. Storage nodes become active if they can handle application-level data

processing offloaded from computing nodes.

The storage devices can be further divided into two categories: the mass storage and

the buffer storage. Benefiting from the non-volatile memory store, Solid state disk (SSD) is

a new option to fill the latency gap, which is around 5-order-of-magnitude, between main

memory and spinning disks [47]. Thus in our system, SSDs are used as the buffer disk drives:

large-scale data is moved from mass storage to buffer drives before processing. The results

of experiments in Section 4.5 show that SSDs not only speed up the I/O but also provide

a better scalability performance. The advantage of using the hybrid mix of both the solid

state disk and the magnetic hard disk is mutual complementarity: the fast and expensive

cooperates with the large-capacity and cost-efficiency.

In this chapter, we use a commodity computer as the computing end. The “channel”

formed by the computing nodes of cluster and the ASN is considered as a pipeline, or as-

sembly line. In other words, by applying the active storage, applications containing multiple

stages are capable to extend to a parallel pipelined implementation. The exploration of par-

allelism improve the performance data-intensive applications. As a case study, we extend the

mpiBlast, a well-know parallel BLAST application, to a parallel pipelined implementation,

called pp-mpiBlast.

43

Active Storage Node Computing Nodes

Input
File

1

2

3

Partition
n

1

2

3

Inter-
data n

1

2

3

Sub-
output

Output
File

Partition
format

db
mpiBlast Merge

(n-1) times (n-1) times

n times

Figure 4.2: pp-mpiBlast Workflow

4.3.2 Parallel Pipelined System

Native mpiBlast application can be easily considered as two steps: format the raw

database file (corresponding to the query request) and run the parallel BLAST functions to

do the comparison. Thus, the pre-cook (i.e. format) phase and the parallel computation

phase are handled by the ASN and computing nodes, respectively.

How to utilize the active storage device has always been another critical issue. In general,

all cases can fall into two scenarios. The first is that tasks are independent (i.e. computing

nodes and active storage nodes are non-blocking to each other), meaning that computing and

storage nodes can easily can operate in parallel. However, if computing nodes have to wait

for storage nodes to catch up, the blocked computing nodes can slow down data-intensive

applications. For instance, in terms of mpiBlast, the parallel comparison step requires the

formated database file from the previous step. The assembly line pattern is a one of the

solutions for the second scenario.

As a case study, we extend the mpiBlast to a parallel pipeline implementation (here-

inafter refereed to as pp-mpiBlast). The pp-mpiBlast system consists two tasks: 1) raw

database formating, and 2) genome or protein sequences comparison. Further subdividing

44

ASN:

Computing Nodes:

format db 1 format db 2 format db n

mpiBlast 1 mpiBlast 2

…

… mpiBlast n

Figure 4.3: Pipeline Tasks Scheduling

the pipeline patterns, there are inter- and intra-application pipeline processing. The pp-

mpiBlast is intra-application parallel processing, which means that, as the name - ‘intra-’

- suggests, one native sequential transaction is partitioned into multiple parallel pipelined

transactions. The system performance is improved by fully exploiting the parallelism. The

workflow of pp-mpiBlast is depicted in Fig. 4.2.

Intra-application Pipeline Processing

As we mentioned in the previous section, in order to extend a sequential transaction to

multiple pipelined parallel transactions, both partition and merge functions are introduced

in the pp-mpiBlast system. Fig. 4.3 illustrates the two-task two-stage pipeline processing

workflow. The pipeline pattern no only improves the performance by exploiting the par-

allelism, but also can solve the out-of-core processing issue, which means required amount

of data are too large to fit in the ASN’s main memory. In pp-mpiBlast, partition function

is implemented within mpiformatdb fucntion running on ASN. And the merge function is a

separate one running on the front node of the cluster.

When partitioning the source data, an assistant function - the integrity-check - automat-

ically returns the extra displacements by scanning the return or the symbol defined by the

programmer. The reason we involved the integrity-check procedure to the partition function

is that there exists the consistency issue of partitioned data files; the content of the source

45

Start

Starting Point

space, return, or
other delimited
characters

Starting Point ++

N

new Partition size

Stop

draft number

Y

manuallyautomatic

Figure 4.4: The workflow diagram of sequence-integrity checking.

data file could be broken in shatters (e.g. a sequence could be cut and placed into two slitted

fragments not on purpose). Fig. 4.4 describes the integrity-check work flow.

Pipeline parallelism is an important processing pattern and we are interested in provid-

ing models and guidance for tuning the scalability and the performance using this pattern.

In Section 4.4, we develop a mathematics model for analysis.

Preliminary Result

In order to prove the feasibility of the partition-based intra-application pipeline de-

sign, a preliminary test on a single-node with 2GB memory environment is performed. We

extended Word-Count and String-Match benchmarks of Phoenix system [82], which is a

shared-memory implementation of MapReduce, to intra-application pipeline editions using

partition and merge runtime functions we developed under Phoenix system. Fig. 4.5 depicts

the work flow of the extended approach. After the input data is partitioned into fragments

in size of 600 MB, each of them is processed sequentially using native word-count or string-

match applications. And then, the generated sub-results are merged at the end. The control

46

Split

Map

Map

worker 1

Map

Map

worker n

Sort

Input

Reduce
worker 1

worker n

Merge

Reduce

Reduce

Reduce

Output 1

Map Stage Reduce Stage

Partition 1

Partition

1

Partition

n

Output

1
Output

Output

n

MergePartition

Figure 4.5: Workflow of the extended Phoenix model - intra-application pipeline

test is that we run the native applications to process the input data without the partition

and merge functions.

Table 4.1 shows the results. We can observe that in terms of data-intensive, especially

memory-intensive, applications, partitioning can significantly reduce the running time. For

example, in terms of word-count application results, an average 2.4X speedup of time con-

sumption can be achieved. To the contrary, partitioning does not benefit the speed of the

string-match application. But, it can make the large-scale data-intensive applications run-

ning on limited memory machines. For example, when executing the string-match application

without the help of partition function, the native system does not support the case that the

input data size is more than two times of the local memory size. Thus, the preliminary

results show that the partition-enabled design can (1) improve data-intensive applications’

performance, (2) adapt the data-intensive applications to limited memory machines, or both.

47

Table 4.1: Running time (in seconds) of performing the Word-Count and String-Match
benchmarks w/ and w/o partition function under different input data size (in GBytes) on
single node. The testbed machine contains 2 GBytes main memory.

WordCount (s) StringMatch (s)
1 GB 1.25 GB 1 GB 1.25 GB

w/ partition 40.50 50.91 17.76 20.61
w/o partition 85.71 139.54 17.62 21.00

4.4 Modeling and Analysis

We develop in this section an analytic model to study performance and scalability of the

parallel pipelined BLAST on large-scale cluster computing platforms. The analytic model

has the following three key advantages:

• Performance Evaluation: The model allows us to study the performance (i.e.,

speedup and throughput) of parallel pipelined BLAST system with active storage.

• Scalability Analysis: The performance model is ideal and suitable for bioinformatics

application developers who have limited local computing resources to test the scalabil-

ity of their parallel applications using active storage.

• Design-Space Exploration: Application programmers can use the model to explore

the design space related to the number of computing nodes, active storage speed, data

processing capacity, and input data size. The model shows the behavior of the parallel

pipelined BLAST under different configurations of a high-performance cluster coupled

with active storage.

Section 4.3 describes the parallel pipelined implementation of a basic local alignment

search tool or BLAST. Our pipelined BLAST has two data processing stages: (1) formatting

data and (2) retrieving and processing formatted data. The first stage of the pipeline pre-

process is the input of a data set before passing on to the second stage that run mpiBLAST

- a parallel implementation of BLAST.

48

Response time, speedup, and throughput are three critical performance measures for

the pipelined BLAST. Denoting T1 and T2 as the execution times associated with the first

stage and second stage in the pipeline, we can calculate the response time Tresponse for

processing each input data set as the sum of T1 and T2. Thus, we have

Tresponse = T1 + T2. (4.1)

The throughput (see Eq. 4.2) of the two-stage pipelined system is inversely proportional

to the maximum of the two execution times T1 and T2.

Throughput =
1

max (T1, T2)
. (4.2)

The speedup for the pipelined BLAST is:

Speedup =
Tunpipelined

Tpipelined

, (4.3)

where Tunpipelined is the data processing time for the unpipelined BLAST and Tpipelined is

the processing time of the pipelined BLAST. If n is the number of input data sets to be

processed by a cluster with active storage, then processing time of the unpipelined BLAST

is the product of n and Tresponse (see Eq. 4.1), leading to

Tunpipelined = n× Tresponse = n× (T1 + T2). (4.4)

The processing time for the pipelined BLAST is:

Tpipelined = T1 + (n− 1)×max (T1, T2) + T2

= Tresponse + (n− 1)×max (T1, T2) , (4.5)

49

where T1 is the processing time of stage 1 for the first data set, T2 is the execution time of

stage 2 for nth data set, (n − 1) × max(T1, T2) is the time spent on n − 1 data sets when

the two stages are carried out is parallel. Applying Eqs. 4.4 and 4.5 to Eq. 4.3, we obtain

speedup as:

Speedup =
n

1 + (n− 1)× max(T1,T2)
Tresponse

. (4.6)

Now we are positioned to model execution times T1 and T2 for the two stages in the

pipeline. The processing time of the first stage is the sum of (1) data input/output times

and (2) filtering/formatting time T1,comp. Input time is proportional to unformatted input

data size su and inversely proportional to disk read bandwidth bi. Similarly, output time

is proportional to formatted output data size sf and inversely proportional to disk write

bandwidth bo. This leads to:

T1(su, sf , bi, bo) =
su

bi
+ T1,comp(su) +

sf

bo
. (4.7)

The execution time T2 of stage two is the sum of (1) input time of formatted data and

(2) processing time T2,comp. The input time depends on data size sf , disk input bandwidth

bi, and the number m of computing nodes in a cluster. Assuming that the formatted data

size sf is uniformed distributed among the m computing node, we can express the input

data as
sf

m×bi
. Thus, the execution time T2 for the second stage is given below:

T2(sf , bi, m) =
su

m× bi
+ T2,comp(sf , m), (4.8)

where T2,comp(sf , m) is affected by the formatted data size sf and the cluster size (i.e., number

of computing nodes m).

50

4.5 Evaluations

4.5.1 Evaluation Environment

We implemented the pp-mpiBlast in a 14-node cluster (1 node works as ASN), whose

configuration is outlined in Table 4.2. The nodes in the cluster are connected by Ethernet

adapters, Ethernet cables, and one 1Gbit switch. We choose an Intel X-25M 80GB solid

state disk, and a SATA Raid tower with four WD50000AAKS disks as a RAID 0 array.

The MPICH2-1.0.7 is chosen as the message passing interface (MPI) in the cluster. The

pp-mpiBlast is extended from mpiBlast-1.5.0, in which NCBI Blast 2.2.24 is the comparison

tool. All applications are compiled with gcc 4.4.1.

Table 4.2: The Test Platform
Computing Nodes ASN

CPU Intel Xeon X3430 Intel Q9400
Memory 2GB

OS Ubuntu 9.04 Jaunty Jackalope 64bit version
Kernel version 2.6.28-15-generic

Network 1000Mbps

4.5.2 Individual Node Evaluation

We perform mpiformatdb program under different storage disk schemes: w/ SSD as the

buffer disk and w/o buffer disk. Since the data pre-fetching is out of the scope of this chapter,

when we test the SSD cases, we modify the program to move the data from mass storage

devices to the SSD and then trigger the format function. That means the time consumption

of SSD contains both the data-transfer and data-format phases. Table 4.3 shows the results.

Observed from the table, the case of SSD (e.g.the second row) always perform better than

the HDD since it benefits from large amount of random read and write when the function

is reordering the sequence in a descending order based on entry length. After balancing the

disk capacity, storage reliability, I/O speed, and random w/r speed, the hybrid mix of mass

storage and buffer disk is a promising choice. Fig. 4.6 shows the comparison of trends of

51

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

3500
mpiformatdb 12 nodes

Input Data Size (MB)

T
im

e
C

on
su

m
pt

io
n

(s
)

SSD Modeling Data
HDD Modeling Data

Figure 4.6: Time Consumption Trends Comparison: SSD vs. HDD.

using SSD and HDD. We can observe that the scalability of using HDD for mpiformatdb

function is not good, compared with the SSD one. Thus in the following experiments, we

use the SSD as the buffer disk.

Table 4.3: Time cost (in seconds) of performing mpiformatdb program under different input
data size (in MB) on an ASN.

Running time (seconds)
Devices 500 MB 750 MB 1 GB 1.25 GB 1.5 GB 1.75 GB
HDD 108.4 369.5 639.1 945.6 1385.0 1845.1
SSD 101.9 164.4 225.9 291.1 369.5 441.1

52

4.5.3 System Performance Evaluation

Figure 4.7 shows the system performance evaluation. The pp-mpiBlast testbed, which

is configured by 12 computing nodes and 1 ASN (follows the pipelined processing pattern),

is compared with two control experiments (native systems with different number of nodes)

: the native mpiBlast running on 1) 12 nodes cluster (equals to the number of computing

nodes in pp-mpiBlast testbed), and 2) 13 nodes cluster (equals to the total number of nodes

in pp-mpiBlast testbed). The reason to choose two competitors is to present the performance

improvement comprehensively.

In Fig. 4.7 and Fig. 4.8, the testbed with native mpiBlast contains 12 and 13 nodes,

respectively. In each figure, results generated by pp-mpiBlast are using 3 different partition

sizes: 250 MB, 500 MB, and 750 MB, which are presented by three sub-figures, respectively

from left to right. Observed from the figures, the time consumption comparison results show

that the performance of pp-mpiBlast beat both control testbeds: averagely reducing the

execution time by 50% (i.e. 2X speedup). And Fig. 4.9 shows that: the improvement is

greater when the input data size increase within a certain range of the input size, which is

relative to the main memory size.

53

0

325

650

975

1300

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

0

325

650

975

1300

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

0

325

650

975

1300

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

(a) Partition Size: 250 MB

Data Size (GB)

(b) Partition Size: 500 MB

(c) Partition Size: 750 MB

Data Size (GB)

Data Size (GB)

native

pp-mpiBlast

native

pp-mpiBlast

native

pp-mpiBlast

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

Figure 4.7: System Evaluation Results I: Execution time comparison between pp-mpiBlast
system and native system (running on a computer cluster of 12 nodes). The pp-mpiBlast
system contains a twelve nodes computing cluster and one ASN. Results are generated under
3 different partition sizes: 250 MB, 500 MB, and 1.25 GB, which are presented by three sub-
figures, respectively from left to right.

54

0

300

600

900

1200

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

0

300

600

900

1200

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

0

300

600

900

1200

1 GB 1.25 GB 1.5 GB 1.75 GB 2 GB

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

(a) Partition Size: 250 MB

Data Size (GB)

(b) Partition Size: 500 MB

(c) Partition Size: 750 MB
Data Size (GB)

Data Size (GB)

native

pp-mpiBlast

native

pp-mpiBlast

native

pp-mpiBlast

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

S
p
e
n
d
in
g
 T
im
e
 (
s
e
c
o
n
d
s
)

Figure 4.8: System Evaluation Results II: Execution time comparison between pp-mpiBlast
system and native system (running on a computer cluster of 13 nodes). The pp-mpiBlast
system contains a twelve nodes computing cluster and one ASN. Results are generated under
3 different partition sizes: 250 MB, 500 MB, and 1.25 GB, which are presented by three sub-
figures, respectively from left to right.

55

We also compare the performance in terms of different partition size. Fig. 4.10 presents

that 500 MB partition provides a better performance in general. Based on the data, the

reason can be summarized as followings. 1) The smaller the better is not true because small

partitions always generate more overheads. And 2) the larger the better is also not convinced

since the . It means that a partition-size-threshold exists for optimal performance. The issue

of measuring the threshold in quantity will be dug in our future work.

Based on the test results, we can see that using intra-application pipeline parallel pro-

cessing model to extend mpiBlast improves the performance and scalability. However, as we

mentioned in the previous sections, the approach is not general; it requires that the target

application can be decomposed into stages, such as streaming and RMS applications. Also,

applications parallelized using pipeline model are very sensitive to load balancing. In order

to avoid bubbles or reduce their side effect, how to balance the heterogeneity issue between

the ASN and computing nodes will be our next topic.

56

1.200

1.425

1.650

1.875

2.100

1G 1.25 G 1.5 G 1.75 G 2G

500 MB

750 MB

S
p
e
e
d
u
p

Data Size (GB)

250 MB

Results Comparison:

pp-mpiBlast and 12-node testbed

1.2

1.4

1.6

1.8

2.0

1G 1.25 G 1.5 G 1.75 G 2G

500 MB

750 MB

S
p
e
e
d
u
p

Data Size (GB)

250 MB

Results Comparison:

pp-mpiBlast and 13-node testbed

Figure 4.9: Speedup Trends: As input data size grows larger, the performance speedups of
using pp-mpiBlast increase. Sub-figure on left is the comparison result between pp-mpiBlast
and the 12-node testbed. And the right one is the result compared with the 13-node testbed.

57

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
300

350

400

450

500

550

600

650

Database Size(GB)

T
im

e(
s)

Time Comparison of Stystems with Different Partition Sizes

Partition Size: 250MB

Partition Size: 500MB

Partition Size: 750MB

Figure 4.10: Time Consumption Curves Comparison: Different Partition Size.

58

4.6 Summary

We have presented a pipelining technique that allows computing nodes and active stor-

age nodes in a cluster to perform CPU-intensive and data-intensive computing in parallel.

The technique exploits parallelism among data processing transactions in a sequential trans-

action stream, where each transaction is sequentially handled by computing and storage

nodes in the cluster.

One central trait of the pipelining technique is that it makes use of active storage

to maximize throughput of data-intensive applications (e.g., bioinformatic applications) on

high-performance clusters. We have showed that the synchronizations among computing

and storage nodes can hinder active storage nodes from accelerating data processing opera-

tions. Our technique solves the blocking problem that prevents active storage and computing

nodes from processing data in parallel. The implementation of pp-mpiBLAST demonstrates

that active storage is an effective approach to improving data-intensive applications’ overall

performance by offloading data processing to storage nodes in clusters.

We implemented the pipelining technique in a bioinformatic application called pp-

mpiBLAST, which incorporates mpiBLAST - an open-source parallel BLAST tool. The

pipeline in pp-mpiBLAST processes a sequential transaction stream, in which each transac-

tion contains a filtering/formatting task and a mpiBLAST task. The pipelining technique

overlaps data filtering/formatting in active storage with parallel BLAST computations in

computing nodes. Measurements made from a working implementation and analytic model

have been encouraging. The pipeline and active storage not only reduce mpiBLAST’s overall

execution time by up to 50%, but they also achieved high scalability on large-scale clusters.

There are three directions to pursue future work. First, we intend to explore the extensi-

bility of data-processing modules and operations that are preloaded into active storage. The

modules and operations are likely to be application domain specific. Second, we will study the

parallelisms among multiple active storage nodes. Third, we intend to investigate whether

59

similar partitioning and synchronization schemes can be applied to both read-intensive and

write-intensive applications.

60

Chapter 5

HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems

5.1 Motivation

Previous two chapters propose the architecture of a new active storage system and the

pipeline parallelism processing pattern for applying the active storage system in a computing

cluster. The new architecture helps in achieving the performance improvement by offloading

the computation to the active storage, especially when read requests are performed on storage

nodes. In this chapter, hybrid storage devices in an active storage system are introduced to

boost write performance and to extend disk reliability.

Recently, the use of NAND-flash-based Solid State Devices (hereinafter referred to as

SSDs) has evolved from specialized applications in mobile devices [18] and laptops to primary

system storages in general-purpose computers and even data centers [72]. Evidence shows

that Tape is dead; disk is tape; flash is disk [39]. Different from HDDs (magnetic hard disk

drives) which rely on mechanical moving parts, SSDs are completely built on semiconductor

chips resulting in high random access performance and lower power consumption. And the

cost of commodity NAND flash – often cited as the primary barrier to SSD deployment [73] –

has dropped significantly, increasing the possibility for dynastic changes in the storage arena.

Although, today, flash disks have not dominated the whole storage market, SSDs begin to

be deployed in enterprise servers and data centers. But, in data centers, engineerings still

hesitate somehow to perform a large-scale deployment of SSDs due to their poor reliability

and the limited lifespan issues [8].

As the cost of NAND flash has declined with increased density, the number of erase cycles

that a flash cell can tolerate, on which the number of write operations depends (because of

the erase-before-write characteristic), has suffered. Meanwhile, server applications, such

61

as OLTP (Online Transaction Processing) [44], normally demand a high-performance and

highly reliable storage system. Some researchers believe that the stressful workload and fewer

available erase cycles may further reduce lifetimes of SSDs, in some cases, even to less than

one year [93]. From another perspective, when building terascale or petascale servers and

data centers using only SSDs rather than HDDs, the cost – even though with the decreasing

price of SSDs – is often beyond the acceptable budgets in most cases. Thus, HDDs are still

regarded as indispensable components in the storage hierarchy because of their merits of

low cost, huge capacity, above-average reliability, and fast sequential access speed. Instead

of simply replacing HDDs with SSDs, researchers [49][68][51][80][33] believe that finding a

complementary approach balancing the performance, reliability and cost is more attractive

and challenging.

In this chapter, we propose a hybrid combination of disk arrays for active storage sys-

tems. The hybrid-disk design involves an enhanced duo-buffer design, which consists (1) a

HDD-write buffer to server and de-duplicate write requests and an on-SSD buffer to pro-

vide parallel write processing. Read requests are all served by SSDs directly. But writes to

an active storage are first transferred to its HDD buffer and perform de-duplication before

migrating to the SSD. The de-duplication computation and I/O operations from the buffer

disk to the major storage disk are offloaded to the dedicated processor in the active storage.

This chapter also introduces an enhanced version of SSD’s buffer, which supports internal

parallelism processing. Together, the goal of this part of study is to minimize the number of

writes sent to SSDs without significantly affecting the performance; by doing so, it reduces

the number of erase cycles and thus extends SSDs lifetime.

We have made the following contributions in this chapter:

• We design and simulate a hybrid combination of storage devices for active storage

systems.

• A HDD in our design is first assigned as a write buffer to SSDs, thereby supporting

deduplication service.

62

• We design and simulate the internal-parallelism supporting cache on SSDs.

• A system simulator is built to evaluate the hybrid drives combination in active storage

systems.

The rest of this chapter is organized as follows. Section 5.2 briefly introduces the

background and related work. Then, the design and the implementation details are described

in Section 5.3. It is followed by experimental results and the performance evaluation in

Section 5.4. Last but no the least, Section 5.5 is the conclusion of this chapter.

5.2 Background

5.2.1 SSD and Hybrid Storage

NAND-flash-memory based SSDs, which used to be evolved in mobile devices and lap-

tops, play a critical role in revolutionizing storage systems [21][52][54][56][67][81]. SSDs are

completely built on semiconductor chips without any moving parts, giving rise to high ran-

dom access performance and lower power consumption. And the cost of commodity NAND

flash – often cited as the primary barrier to SSD deployment [73] – has dropped significantly,

increasing the possibility for dynastic changes in the storage arena. In order to improve

the storage performance, the San Diego Supercomputer Center (SDSC) has built a large

flash-based cluster called Gordon, which adopts 256TB of flash memory [15]. This research

project is backed by a $20 million grant from the U.S. National Science Foundation.

Different from the research case, however, enterprise data centers still are unable to

adopt a large-scale deployment of SSDs due to high cost, poor reliability and limited lifespan

of SSDs. In the perspective of the limited lifespan, the challenge is each block on flash-based

storage media has limited erase times and each block has to be erased before being written.

Thus erase-before-write operations not only degrade SSD performance, but also shorten SSD

lifespan. Table 5.1 shows the lifespan of a single-level cell and a multiple-level cell NAND

memory in terms of P/E (Program/Erase) cycles. Based on the SSD lifetime calculator

63

provided by the Virident website [40], the lifetime of a 200GB MLC-based SSD could be

only 160 days if the write rate performing on the SSD is 50MB/s.

Thus, traditional magnetic hard disks are still regarded as indispensable in the stor-

age hierarchy because of their merits of low cost, huge capacity, above-average reliabil-

ity, and fast sequential access speed. Instead of simply replacing HDDs with SSDs, re-

searchers [49][68][51][80][33][95][102]believe that it is attractive and chanllenging to investi-

gate a cogent and complementary approach balancing the performance, reliability and cost.

Table 5.1: NAND Flash Memory Lifetime (P/E Cycles)

Generation SLC MLC eMLC
5X 100,000 10,000 N/A
3X 100,000 5,000 35,000
2X 100,000 2,500 N/A

5.2.2 Internal Parallelism Processing on SSD

The inter-disk parallelism technique has been well explored since decades ago. Data

striping is the basic idea of inter-disk parallelism. However, even for Hard Drives, inter-

disk parallelism just start to be considered recently [88]. Since (1) there is no mechanical

movements in SSDs and (2) an SSD has one or multiple identical elements which can work

in parallel [4], we have better chance to improve internal parallelisms in SSDs than Hard

drives. Park points out that intra-SSD parallelism is possible on die-level, package-level,

and plane-level. Furthermore, parallelism-aware request processing is an effective solution

to enhance intra-SSD parallelisms [100]. Chen and Zhang analyzed the essential roles of

exploiting internal parallelism SSDs in high-speed data processing [19].

Unlike Hard Drives, SSDs have a Flash Translation Layer (or FTL) implemented to

emulate a hard disk drive by exposing an array of logical block addresses (LBAs) to the host.

FTL averagely spreads erase workloads on flash-based storage. A ill-designed FTL algorithm

not only reduces the SSDs performance, but also wears out SSDs storage units rapidly. Chen

and Zhang proposed CAFTL – a content-aware flash translation layer enhancing the lifespan

64

of flash memory based SSDs [20]. CAFTL removes unnecessary duplicate writes to reduce

write traffic to flash memory. Gupta and Urgaonkar proposed the Demand-based Flash

Translation Layer (DFTL), which selectively caches page-level address mappings [41] . A

journal Remapping Algorithm JFTL was presented by Choi and Park [23]. JFTL writes all

the data to a new region in an out-of-place update process by using an address mapping

method [23] .

Reliability and performance are two major research challenges of Solid State Drives.

Most current research attempts to design new Flash Translation Layer algorithms to im-

prove reliability and enhance performance by utilizing the built-on-board cache. Hence,

many research projects have been focused on using cache as write buffers. Kang applied

Non-Volatile RAM (RAM) as write buffer for SSDs to improve overall performance [53].

Kim and Ahn proposed a buffer management scheme called BPLRU for improving random

writes in flash storage. BPLRU buffers writes improve performance of random writes [57].

Soundararajan and Prabhakaran designed Griffin, a hybrid storage device, to buffer large

sequential writes in Hard Drives [94]. Park and Jung also studied write buffer-aware address

mapping for flash memory devices [77].

5.2.3 Data Duplication

Data deduplication is not a new problem; it is a specialized data compression technique

for eliminating coarse-grained redundant data, thereby improving improve storage utilization

in backup/archival systems [12][31][76][10][74][29][99] . Deduplication techniques are able to

reduce the required storage capacity; duplicate data are deleted, leaving only one copy of the

data to be stored, along with references to the unique copy of data. Different applications and

data types naturally have different levels of data redundancies. Data-backup applications

generally benefit the most from de-duplication due to the nature of repeated full backups of

an existing file system.

65

In order to show data duplication is common, researchers from Ohio State University

studied 15 disks installed on 5 machines, in which three kinds of file systems, (i.e., Ext2,

Ext3, and NTFS) can be found [20]. In terms of four different environments, the results show

that the duplication rate ranges from 7.9% to 85.9% across the 15 disks. The results show

that a well-designed approach to removing duplicate data is able to substantially extend

the available storage space. When we consider the characteristics of NAND flash memory,

such as no in-place overwrite and limited erase cycles, deduplication can further extend the

lifespan of the flash memory.

Traditionally, the deduplication can be performed either ”in-line” (i.e., as data is flow-

ing) or ”post-process” (i.e., after data have been written) [27]. Each of them cuts both

ways. The “post-process” scheme stores new data on the storage media first. Then, a pro-

cess initiated when disks are idle will analyze and delete duplicated data. There is no need

to wait for deduplication computation before storing the data. When it comes to SSDs, the

potential drawbacks include unnecessary storage space and write operations for duplicate

data. As we described earlier, duplicated data waste the expensive memory space and also

may reduce the lifespan of SSDs. On the other hand, the “in-line’ scheme is the process

where the deduplication calculations are handled in a real-time manner on the target device

as the data enters the device. If a deduplicate engine spots a block that it has been already

stored on the media, the engine just maps to the existing block without storing the new

block. The benefit is that it requires less storage as data is not duplicated. On the negative

side, however, “in-line” scheme is frequently suffered from the computation overhead, which

reduces the data throughput of the device.

In this chapter, we propose the use of hybrid disk systems to provide a deduplication

service in active storages. The deduplication service in this study is also hybrid – a com-

bination of both “in-line” and “post-process” styles. The design details can be found in

Section 5.3. The benefits of our design are: (1) in the perspective of a host machine, data

66

stores to an HDD-buffer in an active storage system directly without waiting for the dedu-

plication service to complete, (2) the deduplication computation is offloaded to a dedicated

processor in the active storage system, and (3) after the deduplication procedure, the unique

data (i.e., deduplicated data) are written to the SSD in the active storage system.

5.3 The Design of HcDD – a Hybrid Combination of Disk Devices

5.3.1 System Architecture

In order to (1) extend the lifespan and improve the reliability of SSDs, (2) save the

storage space and (3) boost the write performance of SSDs, we design two techniques (i.e.,

two buffers) – hybrid combination of disk drives and enhanced on-SSD buffer with internal

parallelism. As mentioned in previous sections, the benefits of the proposed schemes are:

• The elimination of duplicate writes and redundant data to SSDs via a hybrid dedupli-

cation mechanism combing both “in-line” and “post-process” approaches.

• The offloaded computation power for the deduplication calculation from host machines.

• The fast internal data transfer speed by parallel processing via an enhanced on-board

buffer of SSDs.

In this section, we describe the design of a simulated hybrid disk system (hereinafter

referred as HcDD), which stands for the hybrid combination of disk drives in an active storage

system. The reasons that we conducted this hybrid disks research using the simulation

are: (1) the modification of both the disk controller and the FTL module of SSDs are

impossible without the support from hardware vendors and (2) it is important to evaluate

the performance of an emerging architecture before its implementation.

Below are descriptions of modules that an active storage system consists.

• Disk Drive. The disk drive is a major component in any storage system, where data

are permanently stored.

67

 !"#$%&'(%)*

 !

+,*-.(/0)1,#
234/3,

&,)*#
&,5

$&/1,#
&,5

&,)*#%&#
$&/1,6

7,)*

8&/1,

"#$$%&'

(!!

901/:,#;1%&)4,

<%=1#>)0?/3,

Figure 5.1: The System Configuration of HcDD – a hybrid active storage system.

• Controller. The controller is a processing unit (i.e. data management unit) for disks

in a storage system. The controller communicates between disks and host machines,

manages disk drives, and distributes data among disks.

• Deduplication Engine. It is in charge of computing fingerprints for incoming re-

quests, looking the requests up in a fingerprint table, and deciding whether requests

should be written to SSDs.

Figure 5.1 depicts the architecture of a HcDD in an active storage system. As we

mentioned in previous chapters (see Chapter 3.3.1), the active node can be connected with

a host machine or a cluster by either network connections or I/O connections. The active

storage system has its own computation facilities (i.e., a dedicated processor), the memory

and storage facilities, including a disk controller, a deduplication engine as well as some disk

drives. And there is a hybrid combination of two kinds of storage devices – SSDs serving

68

 !"#$%&'(%)*

 !"#$!%&'

$$

+,*-.(/0)1/%2#
324/2,

&,)*#
&,56

$&/1,#
&,56

7%21&%((,&

 !"#$!%&'

()**+,' !"#

&,8%9,#
*-.(/0)1,6&,56

&,56

Figure 5.2: The System Architecture of HcDD. There are three modules: a controller, a
deduplication engine, and some storage devices.

as main data disks, and HDDs serving as the write buffers – in each HcDD. Further, we

enhance on-SSD buffer to support of internal parallelism processing.

5.3.2 Hybrid Combination of Storage Drives

Figure 5.2 is the configuration of the simulated hybrid combination of storage drives.

The HcDD system mainly contains three types of modules: a controller, a deduplication

engine, and storage devices. The controller module is in charge of managing and distributing

input I/O requests. The duplication engine compares the fingerprint of each write request

with existing ones in a fingerprint table. To simulate the storage system, we integrated

DiskSim in our system. DiskSim, developed by Ganger et al [37][36], is a well-known disk

simulator. DiskSim has been validated against several disk drives using the the published

disk specifications and I/O workload traces. Since DiskSim only support the storage-level

simulation, the developers also provide programming interfaces to integrate DiskSim with

any system-level simulator.

69

The proposed hybrid storage model integrates both cost-effective HDDs and high-speed

SSDs as a hybrid combination storage component in the active storage system. The controller

handles data distribution, which avoid undesirable significant changes to existing file systems

and applications. The controller directs write requests to a buffer disk (i.e., HDD) and sends

the read requests to the SSDs. Thus, in terms of read operations, the overhead caused by

the controller can be ignored; there is no performance interference since the controller simply

redirects requests without any computation overhead. Once a write request is issued by a host

machine, the data will be written on the buffer disk of the active storage node. As soon as the

data is buffed on the HDD, the data will be processed by the dedicated deduplication engine,

which calculates the hash value and looks the data up in the hash table – before sending the

data to the next step. Then, the deduplicated data will be written to SSDs. The duplicates

are mapped to existing ones and removed from the buffer disk. We consider the deduplication

process hybrid in nature because of the following reasons. From the perspective of the host

machine, all the request are handled “in-line”; meaning that there is no calculation workload

and thus no waiting time required. Meanwhile, within the active node, the deduplication is

handled more similar to the “post-process” pattern, which stores new data on the storage

media and then the deduplication engine will analyze the data looking for redundancy as

soon as possible.

The workflow of deduplication engine is introduced in Figure 5.3. When a write request

of the input workload trace is received at the buffer disk, the processing of deduplication can

be described in four steps:

1. Before data are written to the buffer disk, the incoming request triggers the dedupli-

cation engine in the active storage node.

2. Each updated page in the buffer is computed a hash value (i.e. hash fingerprint) by

the dedicated processor of the active storage node.

70

 !"#$%!&'($)*+,(

-(.'/&01!*0+2$32402(

 !"#$32402(

5,0*($6(7'("*

8+

9("

&++:'/

1+;/'*(
<'==(,$-0":$
> --?

5,0*(

@!//024$A!B&(
@!//024$A!B&("

))-
C,0*(

;!*1#D

.(.'/&01!*(
@!/

6(;+E($-'/&01!*("

Figure 5.3: The Workflow of Hybrid Active Storage System. There are four steps: write to
the buffer disk, calculate a hash value, compare the value against a value store, and write to
the SSD or map to the table.

3. Then each hash value is looked up against a hash table, which maintains the fingerprints

of data already stored in the SSD.

4. (a) If the hash value is fresh (i.e., it is not found in the table) the write is performed

as a regular operation in the SSD .

(b) Otherwise, if the fingerprint is found, the mapping tables are updated by mapping

the duplicate request to the physical location of the residing data. Then the write

operation to flash is canceled. The goal of this step is to minimize the number of

writes sent to the SSD without significantly impacting the performance; in doing

so, HcDD reduces the number of erase cycles, which is the performance bottleneck

to the NAND flash. In addition to improved perfrmance, extending SSDs’ lifetime

is a second benefit gained from the deduplication service.

5.3.3 Intra-parallelism buffer on SSD

71

...

...

...

...

Req 17

Req 9

Req 1

...

...

...

...

Req 18

Req 10

Req 2

...

...

...

...

Req 19

Req 11

Req 3

...

...

...

...

Req 20

Req 12

Req 4

...

...

...

...

Req 21

Req 13

Req 5

...

...

...

...

Req 22

Req 14

Req 6

...

...

...

...

Req 23

Req 15

Req 7

...

...

...

...

Req 24

Req 16

Req 8

S
D

R
A

M
 C

ach
e

L
ist #

0

L
ist #

1

L
ist #

2

L
ist #

3

L
ist #

4

L
ist #

5

L
ist #

6

L
ist #

7

P
ack

ag
e

#
2

P
ack

ag
e

#
5

P
ack

ag
e

#
0

P
ack

ag
e

#
4

P
ack

ag
e

#
3

P
ack

ag
e

#
1

P
ack

ag
e

#
7

P
ack

ag
e

#
6

F
igu

re
5.4:

T
h
e
W
ork

fl
ow

of
H
y
b
rid

A
ctive

S
torage

S
y
stem

.

72

File System

Flash Translation Layer

Flash Memory

SDRAM Buffer

Write Read

Page Write

Page Read

Page Write

Figure 5.5: The Workflow of On-board Buffer.

An SSD is built by arrays of NAND flash memory, which is a semiconductor storage

module [4][13]. Agrawal’s [4] describes that an SSD has one or multiple identical elements

(i.e. packages) and all of them can work in parallel. The challenge is which part of the

multiple elements should be in charge of handling data distribution and parallel processing.

Unlike traditional hard drives, the flash-based storage has a Flash Translation Layer

(FTL) which maps Logic Block Number (LBN) to Physical Block Number (PBN). Also, a

remapping algorithm is designed in FTL for wear leveling. Thus, the block number in file

system level is not the block number in flash memory level. Based on different remapping

algorithms, the same LBN may lead to different PBN at different time periods. Hence,

a buffer must be designed in the lower level of FTL to keep data consistency. Figure 5.4

presents our new architecture in a flash memory. We chose to use Synchronous Dynamic

Random Access Memory (or SDRAM) as an on-board buffer for its high performance. The

on-board buffer is the lower-level buffer in our “duo-buffer” design. Since the performance

of random writes, especially re-writes, is the Achilles’ heel in flash memory, the buffer is

designed for buffering only write requests.

Figure 5.5 presents the software structure of an enhanced SSD with SDRAM buffer. In

the buffer, the number of lists is the same as that of packages. Each list contains data for its

73

corresponding package. Since the buffer is built under FTL, the granularity in the buffer is 8

KB page. The size of pages can be tuned. Recall that all requests buffering in SDRAM are

writes. Once the buffer is full, our algorithm will assign the same number of pages to each

package in parallel since all packages are able to work independently. Below we presents an

algorithm to enhance parallelisms by buffering writes. Even though there are nested loops,

the number of parallelism pages and the number of packages are both small and fixed values,

the time complexity is still approximately O(n), where n is the number of packages.

Algorithm 1 Enhancing Package-Level Parallelism Algorithm. r represents one request. Li

represents the List stores the request in the buffer for the ith package. Pn represents the nth
package.

if rcurrent is a write request then
find its corresponding package Pi

for rj ← all requests in Li do
if rj = rcurrent then
remove rj

end if
add rcurrent to Ltail

i

end for
if buffer is full then
for m← number of parallelism pages do
for n ← number of packages do
issue Lhead

n to Pn

end for
end for

end if
end if

5.4 Evaluations

The HcDD storage system is implemented and evaluated based on a comprehensive

trace-driven simulator. In this section, I present the experiment environment and results

from the HcDD simulation studies under a variety of configurations.

74

5.4.1 The Evaluation Environment

Our HcDD is a simulator emulates the behaviors of a hybrid active storage systems.

There are two types of disk drive modules in the simulated system. The HDD module, a

15,000 RPM Seagate Cheetah 15.5K SAS hard disk drive, is provided by DiskSim 4.0 [36],

which emulates a hierarchy of storage components including buses, controllers, and disks.

The enhanced SSD module supporting internal-parallelism processing is implemented in a

sophisticated SSD simulator, from Microsoft Research SSD extension [85] for the DiskSim

simulation environment [36]. Although the Microsoft extension implements the major com-

ponents of FTL (i.e., indirect mapping, garbage collection and wear-leveling policies), it

does not have a on-board buffer, which is an essential facility in newly released commodities.

Thus, we designed and implemented an enhanced on-board buffer.

In this section, we mainly compare four different storage configurations: (1) HcDD,

which consists a deduplication engine and the hybrid combination of both a RAID 0 disk

array of two enhanced SSDs and a RAID0 disk array of two HDDs, (2) Hybrid Storage, which

stands for traditional hybrid storage with one RAID0 array of two SSDs and one write-buffer

RAID0 array of two HDDs (in the following figures, it is referred as Trad.Hybrid), (3) a

RAID0 array of two SSDs (hereinafter referred as SSDs), and (4) a RAID0 array of two

HDDs (hereinafter referred as HDDs).

We evaluate the HcDD deisgn by running simulations upon three real-world applica-

tion traces (see Table 5.2): traceKernel, tracePhoenix, and Finanical2 [61]. “traceKernel’

was collected while a target machine compiling the Linux kernel. “tracePhoenix” was col-

lected while the target machine running a MapReduce application, WordCount, provided

by the Phoenix MapReduce System [83]. “Financial” is from OLTP (Online Transaction

Processing) applications running at a large financial institution provided by the laboratory

for Advanced System Software of University of Massachusetts Amherst. “traceKernel” and

“tracePhoenix” are collected on a HP ProLiant ML110 G6 workstation with an Intel Xeon

X3430 processor, a 2GB main memory, and a 500GB 7,200 RPM Seagate Barracuda hard

75

disk drive. The operating system is Ubuntu 10.10 with the Ext3 file system. The logical

address of all traces were evenly shrunk so that each request’s address can be mapped to a

physical address within the scope of the SSD configuration (32GB in this study). Table 5.2

presents the statistics of three traces.

Table 5.2: Num of Read/Write Requests

Trace Read Requests Write Requests
traceKernel 84,847 70,243
tracePhoenix 822,909 155,413
Financial 2,252,549 480,127

5.4.2 Internal Parallelism Supported Buffer for SSD

An SSD has one or multiple identical elements (i.e. packages) and all of them can

work in parallel. In this section, we compare our internal-parallel SSD algorithm against

the classic LRU cache management algorithm. The performance impact of parallelism levels

and buffer size are presented and discussed as follows.

In the first test, two general purpose traces provided by the Microsoft Research SSD

extension [85], iozone and postmark, are evaluated. The size of write buffer scales from 1

MB to 64 MB. From Figure 5.6, we observe that when the buffer size is small (1 MB or

2MB), internal-parallelism scheme surpasses the LRU one. However, when as the buffer size

increases, the average response time of the internal-parallelism scheme is either similar to

the competitor or worse. Thus, in Section 5.4.4, we choose a 1 MB buffer in the HcDD

simulator.

In the second test, we use the random write trace. We do not provide the comparison

of reads, because the internal-parallelism does not affect read operations in SSDs. There are

two observations from Figure 5.7: (1) when the size of random write request is small (e.g.,

250 KB), the performance of both the internal-parallelism and LRU are similar, and (2) when

the request size is 5 MB, the response time is reduced by the virtue of the internal-parallelism

scheme compared with the LRU one.

76

!"

#"

$"

%"

&"

'"

("

)"

#" $" &" *" #(" %$" (&"

+
,
-
."
/
0
12
3
4
10
"5
67

0
"8
7
69
96
10
:3
4
;
1<
"

=>?0@"A6B0"8C=<"

D372E@6134F"63B340"E4;"231G7E@H"G@E:01"

IE@E9909617"J"*K"63B340"

IE@E9909617"J"*K231G7E@H"

L/MK"63B340"

L/MK"231G7E@H"

Figure 5.6: Performance Comparison of Iozone and Postmark

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!#'"

!#'$"

!#("

%" &" (")" %*" '&" *("

+
,
-
#"
.
/
01
2
3
0/
"4
56

/
"7
6
58
85
0/
92
3
:
0;
"

<=>/?"@5A/"7B<;"

C261D?5023E".D3:26"F?5G/0"7?H;""

ID?D88/8506"J")K"?H&$!L<"

ID?D88/8506"J")K"?H$B"

M.NK"?H&$!L<"

M.NK"?H$B"

Figure 5.7: Performance Comparison of Random Write.

77

!"#$%

!"#&%

!"#'%

!"#(%

!"$%

!"$$%

!"$&%

!"$'%

!"$(%

!")%

#% $% &% (% #'%)$% '&%

*
+
,
"%
-
.
/0
1
2
/.
%3
45

.
%6
5
47
74
/.
81
2
9
/:
%

;<=.>%?4@.%6A;:%

B.>2.7%C15047DE12%3>D8.%

FD>D77.74/5%G%(%

FD>D77.74/5%G%#'%

FD>D77.74/5%G%)$%

FD>D77.74/5%G%'&%

H-I%

Figure 5.8: Performance Comparison of traceKernel.

Besides the comparison between the internal-parallelism algorithm and the LRU scheme,

we evaluate the performance impact of interleaving levels (a.k.a, parallelism levels) in ad-

dition. Running two traces collected from real-world applications – traceKernel and tra-

cePhoenix, we scale the parallelism level in the buffer from 8 to 64 and the size of write

buffer from 1 MB to 64 MB. The result shows that (1) the internal-parallelism algorithm

outperforms LRU in most cases, (2) parallelism level 8 is slightly better than other three

levels. The optimal parallelism level depends on how many packages (elements) on a board,

bus bandwidth, data access patterns, and the like.

Overall, the internal-parallelism algorithm improves performance in most cases, espe-

cially in the random writes case (with no impact on read-only workload), compared with the

traditional LRU. As the on-board buffer becomes an essential component for the SSD, our

solution provides an approach to fully utilizing the buffer and boosting the performance of

the SSD.

78

!"#$%&

!"#'&

!"#'%&

!"#(&

!"#(%&

!"#%&

#& $& (&)& #*& '$& *(&

+
,
-
"&
.
/
01
2
3
0/
&4
56

/
&7
6
58
85
0/
92
3
:
0;
&

<=>/?&@5A/&7B<;&

CD2/35E&F2?:GH2=3I&4?J9/&

CJ?J88/8506&K&)&

CJ?J88/8506&K&#*&

CJ?J88/8506&K&'$&

CJ?J88/8506&K&*(&

L.M&

Figure 5.9: Performance Comparison of tracePhoenix..

5.4.3 Deduplication

We simulate the deduplication process within the HcDD storage system. The overhead

of deduplication are derived from a real-implement statistic from a previous research [20].

Chen et al. run the deduplication function on the SimpleScalar-ARM simulator [65] to

extract the total number of cycles for executing the function. The result for running SHA-1

hashing function to process a 4KB page is 47,548 cycles. Thus, we generated the latency

by dividing the number of cycles by the processor frequency. In the HcDD simulator, we

assign a low-level 1GHz dedicated processor for an active storage node. The overhead can

be further minimize since even higher frequency processors are normal in the active storage

node.

HcDD provides the service of removing duplicated writes to SSDs. Let us denote

numtotal and numdeduplicated as the total number of requested writes and the number of

79

!"#$%&'

()#"*&'

!+#",&'

,#,,&'

$#,,&'

%,#,,&'

%$#,,&'

!,#,,&'

!$#,,&'

*,#,,&'

*$#,,&'

(,#,,&'

($#,,&'

$,#,,&'

,'

!,'

(,'

),'

+,'

%,,'

%!,'

%(,'

%),'

-./0121.314' -./015671389' :83/308/4'

;
1
<
=
>
48
0/
?
7
3
'@
/
-1
'

A
6
7
=
B/
3
<
B'
7
C'
@
1
D
7
E
<
1
''
@
1
F
=
1
B-
B'

G/E1<'@1FB'

;1<=>480/?73'@/-1'

Figure 5.10: The number of removed requests and the deduplication ratio.

deduplicated writes actually written to a SSD, respectively. We have

DeduplicationRate =
numtotal − numdeduplicated

numtotal

. (5.1)

Figure 5.10 shows the results of deduplication ratio and the number of “removed” re-

quests. We observe that the deduplication rates of traceKernel, tracePhoenix and Financial

are 29.15%, 46.93% and 28.9%, respectively. The number of removed write requests to the

flash memory are 20,731, 72,933, and 138,748, respectively. The decrease of Program/Erase

cycles can extend flash-memory’s lifespan.

5.4.4 System Performance Evaluation

In this section, we evaluate the overall system performance of HcDD. The goal is to

compare HcDD with three traditional storage architectures, Trad.Hybrid, SSDs, and HDDs.

80

!"!!#

$!!"!!#

%!!"!!#

&!!"!!#

'!!"!!#

(!!!"!!#

($!!"!!#

(%!!"!!#

)*+,-.-*/-0#)*+,-123-/45# 64/+/,4+0#

#7
-
89
3
/
8-
#:
4;

-
#<
8-
,3
/
=
8>
#

:*+,-8#

!"#$%&"'()*"'+%*$,-)#%&'

?,@@#

:*+="?AB*4=#

Figure 5.11: Processing Time Comparison between HcDD and traditional hybrid storage.

Response time (includes average response time) and number of write requests written to the

SSD are two major metrics in this set of experiments to measure the speed and reliability,

respectively. Before testing the system, we have two expectations: (1) In terms of response

time, the performance of HcDD should be better than those of Trad.Hybrid and HDDs

schemes but close to that of SSDs, and (2) in terms of reliability (we measure it using

numbers of requests written on the flash memory in this study), HcDD should be better

than SSDs and Trad.Hybrid. HcDD is not a “speed-oriented” design, because it targets at

enhancing the reliability of SSDs and while providing short response times.

When compared with Trad.Hybrid (see Figure 5.11 and Figure 5.12), the HcDD reduces

in both response time (averagely saved 12% of response time) and average response time

(averagely saved 13% of average response time). And as mentioned in the previous section,

there are 29.15%, 46.93% and 28.9% request respectively removed from being issued to the

SSD. Even though the deduplication process in HcDD brings in computation overhead, the

81

!"!!!#

!"$!!#

!"%!!#

!"&!!#

!"'!!#

("!!!#

("$!!#

)*+,-.-*/-0#)*+,-123-/45# 64/+/,4+0#

7
8
-
*+
9
-
#:
-
;<
3
/
;-
#=
4>

-
#?
>
40
04
;-
,3
/
@
;A
#

=*+,-;#

!"#$%&#'(#)*+,)#'-+.*%$/)+,'

B,CC#

BDE*4@#FFC#

Figure 5.12: Average Response Time Comparison between HcDD and traditional hybrid
storage.

performance of HcDD is still better because of fewer write requests forwarded to the SSD

and the internal parallel data transferring on the enhanced SSDs.

When comparing HcDD with the SSDs scheme, we observe intriguing results. When

it comes to traceKernel and tracePhoenix (see Figure 5.13), the response time of HcDD

takes 54 seconds and 123 seconds longer than the SSDs approach. But when it comes to the

Financial trace, HcDD outgoes the SSDs scheme by 50 seconds. This improvement depends

on the deduplicated number of writes, because the poor random write performance of the

flash memory can largely degrade the overall performance of data-intensive applications. We

do not show the total response time of the HDDs scheme, because HDDs’ performance is

much worse than that of HcDD (i.e., almost 3 times faster). Figure 5.14 presents the same

trend in terms of average response time of HcDD and the two competitors.

In summary, based on the evaluation results, we can see that HcDD fulfills the previ-

ous expectations. It not only responds I/O requests with a very competitive speed (better

82

!"!!#

$!!"!!#

%!!"!!#

&!!"!!#

'!!"!!#

(!!"!!#

)!!"!!#

*!!"!!#

+!!"!!#

,!!"!!#

$!!!"!!#

-./0121.314# -./015671389# :83/308/4#

;
1
<=
7
3
<1
#>
8?

1
#@
<1
07
3
A
<B
#

>./01<#

!"#$%&#"'()*"'+%*$,-)#%&'

C0DD#

EED<#

54s

123s

50s

Figure 5.13: Response Time Comparison between HcDD and SSD.

than the traditional hybrid disk), but it also removes duplicate writes, which normally oc-

cupies 30% to 46% of the total requests, to the SSD. It saves the storage space and extend

the lifespan. Thus, HcDD is a promising hybrid storage model, which balances the perfor-

mance, saves the storage space and extends the lifespan of the SSD, for data-intensive server

applications.

5.5 Summary

The use of NAND-flash-based Solid State Devices (hereinafter referred as SSDs) has

evolved in primary storage systems in enterprise servers and data centers. SSDs are com-

pletely built on semiconductor chips without any moving parts resulting in high random

access performance and lower power consumption. However, many engineers still hesitate to

perform a large-scale deployment of SSDs due to their poor reliability and limited lifespans.

83

!"!!#

!"$!#

!"%!#

!"&!#

!"'!#

("!!#

("$!#

("%!#

("&!#

("'!#

)*+,-.-*/-0#)*+,-123-/45# 64/+/,4+0#

7
8
-
*+
9
-
#:
-
;<
3
/
;-
#=
4>

-
#?
>
40
04
;-
,3
/
@
;A
#

=*+,-;#

!"#$%&#'(#)*+,)#'-+.*%$/)+,'
B,CC#

DDC;#

BCC;#

Figure 5.14: Average Response Time Comparison between HcDD and SSD.

In this chapter, we propose a hybrid combination of disk arrays designed for active

storage system, useing hard disk drives as a write buffer to cache write requests and de-

duplicate the redundant write requests to the SSD. Read requests are all served from SSDs

directly. Unlike reads, writes to the active storage are first processed by HDDs and per-

formed de-duplications before migrating to the SSDs. The de-duplication computation and

I/O operations are offloaded to a dedicated processor in the active storage system. This

chapter also introduces an enhanced FTL algorithm for SSD’s buffer, which supports inter-

nal parallelism processing. The proposed “duo-buffer” architecture minimizes the number of

writes issued to SSDs without significantly impacting the I/O performance, thereby extend-

ing the lifespan of flash memory. The new architecture also utilizes the parallel on-board

packages to boost the write performance of SSDs.

In order to evaluate the proposed architecture, we design and implement a trace-driven

storage system simulator for the hybrid active storage system. We compare our internal-

parallelism algorithm with the classic LRU scheme in terms of single-SSD drive performance.

84

The results shows that our proposed algorithm outgoes LRU in most cases, when the inter-

leaving level is 8 and buffer size is 1 MB or 2 MB. Then, we compare the overall performance

of HcDD with the other three storage configurations, including the traditional hybrid storage

scheme, the SSDs disk array and the HDDs disk array. The evaluation results are gener-

ated using several traces collected from daily usages and some applications in academic and

financial areas. In terms of the system response time, HcDD beats the traditional hybrid

disk array in all three tests and even performs slightly better than the SSD disk array in the

data-intensive trace test. Based on the evaluation, we can observe that HcDD is a promising

configuration for data-intensive applications because it (1) utilizes the parallel processing

capability of on-disk buffer, and (2) balances the system I/O performance and the SSD

lifespan.

85

Chapter 6

Conclusion and Future Work

In this dissertation, we have designed an active storage architecture, studied a pipeline-

parallel processing pattern to apply the active storage node in the cluster system, and ex-

plored a new disk configuration, the hybrid combination of disk devices, of the active storage

system. This chapter concludes the dissertation by summarizing the contributions and de-

scribing future directions.

6.1 McSD: Multicore-Enabled Smart Storage for Clusters

Processor-enabled smart storage can improve I/O performance of data-intensive appli-

cations by processing data directly using storage nodes, because smart nodes avoid moving

data back and forth between storage and host computing nodes. Thanks to the escalating

manufacturing technology, it is possible to integrate multi-core processors into smart stor-

age nodes. In this study, we implemented a prototype called McSD for multicore-enabled

smart storage that can improve performance of data-intensive applications by offloading data

processing to multicore processors employed in storage nodes of computing clusters.

Our McSD system differs from conventional smart/active storage in two ways. First,

McSD is a smart storage nodes rather than a smart disk. Second, McSD can leverage

multi-core processors in storage nodes to improve performance of data-intensive applications

running on clusters. The four major contributions of this study are:

• A prototype of next-generation multicore-enabled smart data storage.

• A programming framework, which include MapReduce-like programming APIs and a

runtime environment for multicore-based smart storage in the context of clusters.

86

• Development of three benchmark applications to test McSD for clusters.

• Single-application experimental results and multiple-application performance evalua-

tion.

McSD along with its programming framework enables programmers to write MapReduce-

like code that can be automatically offload data-intensive computation to multicore proces-

sors residing in smart storage nodes. The McSD programming framework allows smart

storage nodes to take full advantages from embedded multi-core processors. The APIs and

a runtime environment in this programming framework automatically handles computation

offload, data partitioning, and load balancing. The McSD prototype was implemented in

a testbed–a 5-node cluster containing both host computing nodes and McSD smart-storage

nodes. Our experimental results were taken by running three real-world applications on the

testbed. The tested data-intensive applications include Word Count, String Matching, and

Matrix Multiplication. Our multicore-enabled smart storage system - McSD - significantly

reduces the execution time of the three applications. Overall, we conclude that McSD is a

promising approach to improving I/O performance of data-intensive applications.

6.2 Using Active Storage to Improve the Bioinformatics Application Perfor-

mance: A Case Study

We have presented a pipelining technique that allows computing nodes and active stor-

age nodes in a cluster to perform CPU-intensive and data-intensive computing in parallel.

The technique exploits parallelism among data processing transactions in a sequential trans-

action stream, where each transaction is sequentially handled by computing and storage

nodes in the cluster.

One central trait of the pipelining technique is that it makes use of active storage

to maximize throughput of data-intensive applications (e.g., bioinformatic applications) on

high-performance clusters. We have showed that the synchronizations among computing

87

and storage nodes can hinder active storage nodes from accelerating data processing opera-

tions. Our technique solves the blocking problem that prevents active storage and computing

nodes from processing data in parallel. The implementation of pp-mpiBLAST demonstrates

that active storage is an effective approach to improving data-intensive applications’ overall

performance by offloading data processing to storage nodes in clusters.

We implemented the pipelining technique in a bioinformatic application called pp-

mpiBLAST, which incorporates mpiBLAST - an open-source parallel BLAST tool. The

pipeline in pp-mpiBLAST processes a sequential transaction stream, in which each transac-

tion contains a filtering/formatting task and a mpiBLAST task. The pipelining technique

overlaps data filtering/formatting in active storage with parallel BLAST computations in

computing nodes. Measurements made from a working implementation and analytic model

have been encouraging. The pipeline and active storage not only reduce mpiBLAST’s overall

execution time by up to 50%, but they also achieved high scalability on large-scale clusters.

6.3 HcDD: Hybrid Combination of Disk Drives in Active Storage

The use of NAND-flash-based Solid State Devices (hereinafter referred as SSDs) has

evolved in primary system storage in enterprise servers and data centers. SSDs are completely

built on semiconductor chips without any moving parts, which results in high random access

performance and lower power consumption. But, meanwhile, users still hesitate a little bit

to perform a large-scale deployment of SSDs because of their poor reliability and the limited

lifespan.

In this chapter, we propose a hybrid combination of disk arrays designed for active

storage system, which uses hard disk drives as a write buffer to cache write requests and

de-duplicate the redundant write requests to the SSD. Read requests are all served from

the SSDs directly. But writes to the active storage are first processed to the HDDs and

perform de-duplication before migrating to the SSDs. The de-duplication computation and

I/O operations are offloaded to the dedicated processor in active storage. This chapter also

88

introduces an enhanced FTL algorithm of SSD’s buffer, which supports internal parallelism

processing. Together, the proposed architecture minimizes the number of writes sent to the

SSD without significantly impacting the performance, which can extend the lifespan of flash

memory, and utilizes the parallel on-board packages to boost the write performance of the

SSD.

In order to evaluate the proposed architecture, we design and implement a trace-driven

storage system simulator, the hybrid combination of disk drives (HcDD), for the active

storage node. First, we compare our internal-parallelism algorithm with the classic LRU one

in terms of single SSD drive performance. The results shows that our proposed algorithm

outgoes the classic LRU algorithm in most cases, when the interleaving level is 8 and buffer

size is 1 MB or 2 MB. Then, we compare the overall performance of HcDD with the other

storage configurations, including traditional hybrid storage scheme, the SSDs disk array and

the HDDs disk array. The evaluation results are generated using several traces collected

from daily usages and some applications in academic and financial areas. In terms of the

system response time, HcDD beats the traditional hybrid disk array in all three tests and

even performs slightly better than the SSD disk array in the data-intensive trace test. Based

on the evaluation, we can observe that HcDD is a promising configuration for data-intensive

applications because it (1) utilizes the parallel processing capability of on-disk buffer, and

(2) balances the system I/O performance and the SSD lifespan.

6.4 Future Work

In the course of designing and implementing active and hybrid storage systems, we

have found two interesting techniques that may further improve the system in terms of

performance and energy-efficiency. This section overviews those two techniques: the memory

compression and the parallel processing using wimpy nodes.

89

6.4.1 Memory Compression

In many areas, the compression technology has been used in many settings to increase

the effective size of a storage device or to increase the effective bandwidth. Other researchers

have proposed to integrate compression into the memory hierarchy. It has been proved to be

a feasible approach to improve the I/O performance of data-intensive applications [96], [16];

the basic idea is to reserve some memory and use this memory region in compressed form

instead of holding pages. In general, the in-memory-compression approach creates RAM

based block device, which acts as swap region. Pages swapped to a disk are compressed and

stored in memory itself. Compressing pages and keeping them in RAM virtually increases

its capacity, which result in allowing more data to fit in given limited amount of the main

memory. Because of the increase of available memory capacity, accesses to local disk, i.e.,

the swap partition, are fewer. Thus, in a certain measure, the memory compression balances

the performance loss suffered from the data compression cost; the in-memory-compression

offers more available memory space at a affordable price.

Existing studies of memory compression only focus on general purpose usage, such as

the compcache [1]. Tuduce and Gross [96] mentions that the potential benefits of memory

compression depend on three issues: (a) the size of the compressed area, (b) an applica-

tion’s compression ratio, and (c) an application’s access pattern. In order to benefit the

wimpy machines, we are going to tailor the existing project in terms of (1) the hardware’s

characteristics and (2) data access pattern.

6.4.2 Wimpy System Board

For decades, the notion of ”performance” has been synonymous with ”speed. High-

performance supercomputers and clusters consume egregious amounts of electrical power

and produce so much heat that extravagant cooling facilities must be constructed to ensure

proper operation [2]. Recently, along with the reconsideration of the power-consumption,

“green” or energy-efficient computing becomes widespread not only in the personal devices

90

and appliances but also in supercomputers and cluster computers arena. For example, the

Green500 list [2], a complement to the Top500 supercomputers [3], was inaugurated on 2008.

Its unveiling ushered in a new era where supercomputers can be compared by performance-

per-watt.

FAWN [7] is an exploration of building well-matched cluster systems by fully utilizing

the low-power efficient embedded CPUs with flash storage. It is claimed to have the potential

of achieving high performance and be fundamentally more energy-efficient than conventional

architectures for serving massive-scale I/O and data-intensive workloads. Anderson et al.

proposed the principles of the FAWN architecture and the design and implementation of

FAWN-KV (key-value storage system).

FAWN has a few limitations, since the published results only focused on key-value

workloads, where near-perfect performance scaleup complements the poor performance of

individual wimpy nodes [62]. In our work, inspired by the FAWN, we want to apply the

wimpy system boards to general purpose unstructured data processing for some real-world

data-intensive applications.

Inspired by researches of using wimpy nodes, the energy-efficient parallel active storage

system (PASS) empowers the traditional storage node in the cluster with the parallel wimpy

data processing peripherals. Thus, the storage system is capable to process some data-

intensive tasks close to where the data stores in an energy-efficiency way.

The proposed architecture of PASS is depicted in Fig 6.1. The hardware testbed contains

four types of machines: a client PC, a front node of the cluster, several computation machines,

and a storage system. Note that the storage node is made up of a end-node connected

to the disk array and the computation module built by some wimpy system boards. We

consider the I/O path of the storage device as a programmable computational substrate,

which supports general purpose computing at certain points on the path. In the other words,

the computation module is considered within the I/O path. For example, in Fig 6.1, the red

line indicates a programmable I/O path. There are two levels of parallelism computation:

91

LAN/WANclient

Interconnection

network

Front node

End

node

Storage

Drives

Wimpy

node

fla
sh

PASS:
Parallel Active Storage System

… …

Computation

Node

Computation

Node

Computation

Node

… …

Wimpy

node

fla
sh

Wimpy

node

fla
sh

1

Wimpy

node

fla
sh

2

3

Figure 6.1: The Work Flow of PASS

(1) from the cluster perspective, the tasks are processed in a pipeline approach, and (2) the

data is processed in parallel under MPI standards within the computation module of the

storage system.

We will develop a benchmark suite in order to evaluate the PASS system. It will

include the cluster-level benchmarks, (e.g., the computation and the I/O benchmarks), and

real data-intensive applications, (e.g., BioParallel and mpiBLAST). Besides the“speed”, the

system will be evaluated in terms of new metrics, such as “performance per watt”, “energy

efficiency for improved reliability”, and etc.

6.5 Conclusion

This dissertation has presented an active and hybrid storage system designed for of-

floading data-intensive applications to where data stores. The experimental results reported

92

in the dissertation have shown that the proposed techniques can deliver promising perfor-

mance improvements by cooperating active storage system with host machines. We applied

our scheme to a real world bioinformatics application as a case study. In addition, the pro-

posed system utilizes the hybrid combination of storage devices in order to achieve a balance

between reliability and performance.

93

Bibliography

[1] Compcache project, 2010. http://code.google.com/p/compcache/.

[2] Green500 list, 2010. http://www.green500.org/.

[3] Top500 supercomputer sites, 2010. http://www.top500.org.

[4] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,
and Rina Panigrahy. Design tradeoffs for ssd performance. In ATC’08: USENIX 2008
Annual Technical Conference on Annual Technical Conference, pages 57–70, Berkeley,
CA, USA, 2008. USENIX Association.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, October 1990.

[6] Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson. Dynamic
function placement for data-intensive cluster computing. In Proceedings of the an-
nual conference on USENIX Annual Technical Conference, ATEC ’00, pages 25–25,
Berkeley, CA, USA, 2000. USENIX Association.

[7] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence
Tan, and Vijay Vasudevan. Fawn: a fast array of wimpy nodes. In SOSP ’09: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
1–14, New York, NY, USA, 2009. ACM.

[8] D.G. Andersen and S. Swanson. Rethinking flash in the data center. Micro, IEEE,
30(4):52 –54, july-aug. 2010.

[9] Apache. Apache hadoop, 2006. http://lucene.apache.org/hadoop/.

[10] A. Arasu, C. Re, and D. Suciu. Large-scale deduplication with constraints using
dedupalog. In Data Engineering, 2009. ICDE ’09. IEEE 25th International Conference
on, pages 952 –963, 2009.

[11] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John
Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David
Wessel, and Katherine Yelick. A view of the parallel computing landscape. Commun.
ACM, 52(10):56–67, 2009.

94

[12] D. Bhagwat, K. Eshghi, D.D.E. Long, and M. Lillibridge. Extreme binning: Scalable,
parallel deduplication for chunk-based file backup. In Modeling, Analysis Simulation of
Computer and Telecommunication Systems, 2009. MASCOTS ’09. IEEE International
Symposium on, pages 1 –9, sept. 2009.

[13] Simona Boboila and Peter Desnoyers. Write endurance in flash drives: measurements
and analysis. In Proceedings of the 8th USENIX conference on File and storage tech-
nologies, FAST’10, pages 9–9, Berkeley, CA, USA, 2010. USENIX Association.

[14] Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving disk energy
in network servers. In Proceedings of the 17th annual international conference on
Supercomputing, ICS ’03, pages 86–97, New York, NY, USA, 2003. ACM.

[15] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive applications. SIG-
PLAN Not., 44:217–228, March 2009.

[16] R. Cervera, T. Cortes, and Y. Becerra. Improving application performance through
swap compression. In ATEC ’99: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 46–46, Berkeley, CA, USA, 1999. USENIX Asso-
ciation.

[17] Li-Pin Chang. Hybrid solid-state disks: combining heterogeneous nand flash in large
ssds. In Proceedings of the 2008 Asia and South Pacific Design Automation Conference,
ASP-DAC ’08, pages 428–433, Los Alamitos, CA, USA, 2008. IEEE Computer Society
Press.

[18] Feng Chen, Song Jiang, and Xiaodong Zhang. Smartsaver: Turning flash drive into a
disk energy saver for mobile computers. In Low Power Electronics and Design, 2006.
ISLPED’06. Proceedings of the 2006 International Symposium on, pages 412 –417, oct.
2006.

[19] Feng Chen, Rubao Lee, and Xiaodong Zhang. Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data processing. In
Proceedings of 17th International Symposium on High Performance Computer Archi-
tecture, ISCA ’11. IEEE Computer Society, 2011.

[20] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl: A content-aware flash translation
layer enhancing the lifespan of flash memory based solid state drives. In Proceedings of
the 9th USENIX Conference on File and Storage Technologies, FAST’11, pages 77–90.
USENIX Association, 2011.

[21] Shimin Chen. Flashlogging: Exploiting flash devices for synchronous logging perfor-
mance. In In Proceedings of SIGMOD’09, June 2009.

[22] Steve C. Chiu, Wei-keng Liao, Alok N. Choudhary, and Mahmut T. Kandemir.
Processor-embedded distributed smart disks for i/o-intensive workloads: architectures,
performance models and evaluation. J. Parallel Distrib. Comput., 65(4):532–551, 2005.

95

[23] Hyun Jin Choi, Seung-Ho Lim, and Kyu Ho Park. Jftl: A flash translation layer based
on a journal remapping for flash memory. Trans. Storage, 4:14:1–14:22, February 2009.

[24] Ritendra Datta, Jia Li, and James Z. Wang. Content-based image retrieval: approaches
and trends of the new age. In Proceedings of the 7th ACM SIGMM international
workshop on Multimedia information retrieval, MIR ’05, pages 253–262, New York,
NY, USA, 2005. ACM.

[25] Garth Gibson David, David F. Nagle, Khalil Amiri, Fay W. Chang, Eugene M. Fein-
berg, Howard Gobioff, Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg, and
Jim Zelenka. File server scaling with network-attached secure disks. In In Proceed-
ings of the 1997 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pages 272–284. ACM Press, 1997.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[27] S. DEBNATH, B. SENGUPTA and J. LI. Chunkstash: speeding up inline storage
deduplication using flash memory. In In Proceedings of USENIX’10, June 2010.

[28] David J. DeWitt and Paula B. Hawthorn. A performance evaluation of data base
machine architectures (invited paper). In Proceedings of the seventh international
conference on Very Large Data Bases - Volume 7, VLDB ’1981, pages 199–214. VLDB
Endowment, 1981.

[29] J. Dinerstein, S. Dinerstein, P.K. Egbert, and S.W. Clyde. Learning-based fusion for
data deduplication. In Machine Learning and Applications, 2008. ICMLA ’08. Seventh
International Conference on, pages 66 –71, dec. 2008.

[30] David H. C. Du. Intelligent storage for information retrieval. Next Generation Web
Services Practices, International Conference on, 0:214–220, 2005.

[31] A.K. Elmagarmid, P.G. Ipeirotis, and V.S. Verykios. Duplicate record detection: A
survey. Knowledge and Data Engineering, IEEE Transactions on, 19(1):1 –16, jan.
2007.

[32] E.J. FELIX, K. FOX, K. REGIMBAL, and J. NIEPLOCHA. Active storage processing
in a parallel file system. In In Proc. of the 6th LCI International Conference on Linux
Clusters: The HPC Revolution, 2006.

[33] Chen Feng, David Koufaty, and Xiaodong Zhang. Hystor: Making the best use of solid
state drives in high performance storage systems. In In Proceedings of International
Conference on Supercomputing, ICS 2011, ICS ’11, Tuscon, Aizona, 2011. ACM.

[34] Wu Feng and etc. mpiblast: Open-source parallel blast, 2010.
http://www.mpiblast.org/.

96

[35] Blake G. Fitch, Aleksandr Rayshubskiy, Michael C. Pitman, T. J. Christopher Ward,
and Robert S. Germain. Using the active storage fabrics model to address petas-
cale storage challenges. In PDSW ’09: Proceedings of the 4th Annual Workshop on
Petascale Data Storage, pages 47–54, New York, NY, USA, 2009. ACM.

[36] Greg Ganger. The disksim simulation environment, 2011.

[37] Gregory Robert Ganger. System-oriented evaluation of i/o subsystem performance.
Technical report, 1995.

[38] Garth A. Gibson and Rodney Van Meter. Network attached storage architecture.
Commun. ACM, 43(11):37–45, 2000.

[39] Jim Gray. Tape is dead, disk is tape, flash is disk. ram locality is king, 2007.

[40] Jim Gray. Flash memory pe cycles, 2011.

[41] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl: a flash translation layer
employing demand-based selective caching of page-level address mappings. In Pro-
ceeding of the 14th international conference on Architectural support for programming
languages and operating systems, ASPLOS ’09, pages 229–240, New York, NY, USA,
2009. ACM.

[42] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. Drpm: dynamic
speed control for power management in server class disks. In Computer Architecture,
2003. Proceedings. 30th Annual International Symposium on, pages 169 – 179, june
2003.

[43] Sudhanva Gurumurthi. Should disks be speed demons or brainiacs? SIGOPS Oper.
Syst. Rev., 41:33–36, January 2007.

[44] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
Oltp through the looking glass, and what we found there. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, SIGMOD ’08, pages
981–992, New York, NY, USA, 2008. ACM.

[45] James Hays and Alexei A. Efros. Scene completion using millions of photographs.
Commun. ACM, 51:87–94, October 2008.

[46] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang.
Mars: a mapreduce framework on graphics processors. In PACT ’08: Proceedings of
the 17th international conference on Parallel architectures and compilation techniques,
pages 260–269, New York, NY, USA, 2008. ACM.

[47] Jiahua He, Jeffrey Bennett, and Allan Snavely. Dash-io: an empirical study of flash-
based io for hpc. In TG ’10: Proceedings of the 2010 TeraGrid Conference, pages 1–8,
New York, NY, USA, 2010. ACM.

97

[48] Windsor W. Hsu, Honesty C. Young, and Alan Jay Smith. Projecting the performance
of decision support workloads on systems with smart storage (smartstor). In ICPADS
’00: Proceedings of the Seventh International Conference on Parallel and Distributed
Systems, page 417, Washington, DC, USA, 2000. IEEE Computer Society.

[49] An i A. Wang, Peter Reiher, and Gerald J. Popek. Conquest: better performance
through a disk/persistent-ram hybrid file system. In In Proceedings of the 2002
USENIX Annual Technical Conference, pages 15–28, 2002.

[50] Sami Iren and Steve Schlosser. Database storage management with object-based stor-
age devices. In Proceedings of the 1st international workshop on Data management on
new hardware, DaMoN ’05, New York, NY, USA, 2005. ACM.

[51] Yongsoo Joo, Youngjin Cho, Kyungsoo Lee, and Naehyuck Chang. Improving appli-
cation launch times with hybrid disks. In Proceedings of the 7th IEEE/ACM interna-
tional conference on Hardware/software codesign and system synthesis, CODES+ISSS
’09, pages 373–382, New York, NY, USA, 2009. ACM.

[52] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. Dfs: A file system
for virtualized flash storage. In Proceedings of the 8th USENIX conference on File and
storage technologies, FAST’10, Berkeley, CA, USA, 2010. USENIX Association.

[53] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki Shim, and Jaehyuk Cha. Perfor-
mance trade-offs in using nvram write buffer for flash memory-based storage devices.
IEEE Trans. Comput., 58:744–758, June 2009.

[54] S. KAWAGUCHI, A. NISHIOKA and H. MOTODA. A flash-memory based file system.
In In Proceedings of USENIX Winter, pages 155–164, Jan 1995.

[55] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for intelligent
disks (idisks). SIGMOD Rec., 27(3):42–52, 1998.

[56] H. KIM and S. AHN. Bplru: A buffer management scheme for improving random
writes in flash storage. In In Proceedings of FAST’08, Feb 2008.

[57] Hyojun Kim and Seongjun Ahn. Bplru: a buffer management scheme for improving
random writes in flash storage. In Proceedings of the 6th USENIX Conference on
File and Storage Technologies, FAST’08, pages 16:1–16:14, Berkeley, CA, USA, 2008.
USENIX Association.

[58] Youngjae Kim, S. Gurumurthi, and A. Sivasubramaniam. Understanding the
performance-temperature interactions in disk i/o of server workloads. In High-
Performance Computer Architecture, 2006. The Twelfth International Symposium on,
pages 176 –186, feb. 2006.

[59] Peter M. Kogge, Jay B. Brockman, Thomas Sterling, and Guang Gao. Processing in
memory: Chips to petaflops. In In Workshop on Mixing Logic and DRAM: Chips that
Compute and Remember at ISCA ’97, page pages, 1997.

98

[60] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas. Single-isa
heterogeneous multi-core architectures for multithreaded workload performance. In
Computer Architecture, 2004. Proceedings. 31st Annual International Symposium on,
pages 64 – 75, june 2004.

[61] University of Massachusetts Amherst Lab for Advanced System Software. Umass trace
repository, 2009.

[62] Willis Lang, Jignesh Patel, and Srinath Shankar. Wimpy node clusters: What about
non-wimpy workloads. In DAMON ’10:Proceedings of the Sixth International Workshop
on Data Management on New Hardware. ACM, 2010.

[63] H Lin, X Ma, W Feng, and N Samatova. Coordinating computation and i/o in mas-
sively parallel sequence search. Parallel and Distributed Systems, IEEE Transactions
on, PP(99):1 –1, 2010.

[64] Heshan Lin, Xiaosong Ma, Praveen Chandramohan, Al Geist, and Nagiza Samatova.
Efficient data access for parallel blast. In IPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium (IPDPS’05) - Papers,
page 72.2, Washington, DC, USA, 2005. IEEE Computer Society.

[65] SimpleScalar LLC. Simplescalar 4.0 simulator, 2010.

[66] Xiaonan Ma and A.L.N. Reddy. Mvss: an active storage architecture. Parallel and
Distributed Systems, IEEE Transactions on, 14(10):993 – 1005, oct. 2003.

[67] T. MAKATOS, Y. KIONATOS, M. MARAZAKIS, M. D. FLOURIS, and A. BILAS.
Using transparent compression to improve ssd-based i/o caches. In In Proceedings of
EuroSys’10, April 2010.

[68] Bo Mao, Hong Jiang, Dan Feng, Suzhen Wu, Jianxi Chen, Lingfang Zeng, and Lei
Tian. Hpda: A hybrid parity-based disk array for enhanced performance and reliability.
In Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1 –12, 2010.

[69] Gokhan Memik, Alok Choudhary, and Mahmut T. Kandemir. Design and evaluation
of smart disk architecture for dss commercial workloads. In ICPP ’00: Proceedings of
the Proceedings of the 2000 International Conference on Parallel Processing, page 335,
Washington, DC, USA, 2000. IEEE Computer Society.

[70] Anurag Acharya Mustafa, Mustafa Uysal, and Joel Saltz. Active disks: Programming
model, algorithms and evaluation. In In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 81–91, 1998.

[71] David Nagle, Denis Serenyi, and Abbie Matthews. The panasas activescale storage clus-
ter: Delivering scalable high bandwidth storage. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, SC ’04, pages 53–, Washington, DC, USA, 2004. IEEE
Computer Society.

99

[72] D. NARAYANAN, E. THERESKA, A. DONNELLY, S. ELNIKETY, and A. ROW-
STRON. Migrating enterprise storage to ssds:analysis of tradeffs. In In Proceedings of
EuroSys’09, March 2009.

[73] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony
Rowstron. Migrating server storage to ssds: Analysis of tradeoffs. In In EuroSys, 2009.

[74] Howard B. Newcombe and James M. Kennedy. Record linkage: making maximum use
of the discriminating power of identifying information. Commun. ACM, 5:563–566,
November 1962.

[75] Jon Oberheide, Evan Cooke, and Farnam Jahanian. Cloudav: N-version antivirus in
the network cloud. In Proceedings of the 17th conference on Security symposium, pages
91–106, Berkeley, CA, USA, 2008. USENIX Association.

[76] Nohhyun Park and D.J. Lilja. Characterizing datasets for data deduplication in backup
applications. In Workload Characterization (IISWC), 2010 IEEE International Sym-
posium on, pages 1 –10, 2010.

[77] Sungmin Park, Hoyoung Jung, Hyoki Shim, Sooyong Kang, and Jaehyuk Cha. Write
buffer-aware address mapping for nand flash memory devices. In Modeling, Analy-
sis and Simulation of Computers and Telecommunication Systems, 2008. MASCOTS
2008. IEEE International Symposium on, pages 1 –2, 2008.

[78] David A. Patterson and John L. Hennessy. Computer Organization and Design, Fourth
Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann
Series in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2008.

[79] Juan Piernas, Jarek Nieplocha, and Evan J. Felix. Evaluation of active storage strate-
gies for the lustre parallel file system. In Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, SC ’07, pages 28:1–28:10, New York, NY, USA, 2007. ACM.

[80] L. Prada, J.D. Garcia, J. Carretero, and F. Garcia. Saving power in flash and disk
hybrid storage system. In Modeling, Analysis Simulation of Computer and Telecom-
munication Systems, 2009. MASCOTS ’09. IEEE International Symposium on, pages
1 –3, 2009.

[81] T. PRITCHETT and M. THOTTETHODI. Sievestore: a highly-selective, ensemble-
level disk cache for cost-performance. In In Proceedings of ISCA’10, June 2010.

[82] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In HPCA
’07: Proceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer
Society.

100

[83] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos
Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In HPCA
’07: Proceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 13–24, Washington, DC, USA, 2007. IEEE Computer
Society.

[84] IBM Research. Ibm unstructured information management architecture.

[85] Microsoft Reserach. Ssd extension for disksim simulation environment, 2009.

[86] E. RIEDEL. Object based storage (osd) architecture and systems, 2006.

[87] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active disks for
large-scale data processing. Computer, 34(6):68–74, 2001.

[88] Sriram Sankar, Sudhanva Gurumurthi, and Mircea R. Stan. Intra-disk parallelism: An
idea whose time has come. In Proceedings of the 35th Annual International Symposium
on Computer Architecture, ISCA ’08, pages 303–314, Washington, DC, USA, 2008.
IEEE Computer Society.

[89] Seagate. The advantages of object-based storage secure, scalable, dynamic storage
devices., 2005.

[90] Anand Lal Shimpi. Anandtech: Intel’s 90nm pentium m 755: Dothan investigated,
Dec 2007. http://www.anandtech.com/cpuchipsets/.

[91] Muthian Sivathanu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Evolv-
ing rpc for active storage. In Proceedings of the 10th international conference on Archi-
tectural support for programming languages and operating systems, ASPLOS-X, pages
264–276, New York, NY, USA, 2002. ACM.

[92] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E. Denehy,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Semantically-smart disk
systems. In FAST ’03: Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, pages 73–88, Berkeley, CA, USA, 2003. USENIX Association.

[93] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber.
Extending ssd lifetimes with disk-based write caches. In Proceedings of the 8th USENIX
conference on File and storage technologies, FAST’10, pages 8–8, Berkeley, CA, USA,
2010. USENIX Association.

[94] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber.
Extending ssd lifetimes with disk-based write caches. In Proceedings of the 8th USENIX
conference on File and storage technologies, FAST’10, pages 8–8, Berkeley, CA, USA,
2010. USENIX Association.

[95] Guangyu Sun, Yongsoo Joo, Yibo Chen, Dimin Niu, Yuan Xie, Yiran Chen, and Hai
Li. A hybrid solid-state storage architecture for the performance, energy consumption,
and lifetime improvement. In High Performance Computer Architecture (HPCA), 2010
IEEE 16th International Symposium on, pages 1 –12, Jan 2010.

101

[96] Irina Chihaia Tuduce and Thomas Gross. Adaptive main memory compression. In
ATEC ’05: Proceedings of the annual conference on USENIX Annual Technical Con-
ference, pages 29–29, Berkeley, CA, USA, 2005. USENIX Association.

[97] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Evaluation of active disks for large
decision support databases. Technical report, Santa Barbara, CA, USA, 1999.

[98] C. WHITE. Consolidating, accessing, and analyzing unstructured data. 2005.

[99] William E. Winkler. The state of record linkage and current research problems. Tech-
nical report, Statistical Research Division, U.S. Census Bureau, 1999.

[100] Seon yeong Park, Euiseong Seo, Ji-Yong Shin, Seungryoul Maeng, and Joonwon Lee.
Exploiting internal parallelism of flash-based ssds. Computer Architecture Letters,
9(1):9 –12, 2010.

[101] Jin Hyuk Yoon, Eyec Hyun Nam, Yoon Jae Scong, H. Kim, B.S. Kim, Sang Lyul Min,
and Yookun Cho. Chameleon: A high performance flash/fram hybrid solid state disk
architecture. Computer Architecture Letters, 7(1):17 –20, jan. 2008.

[102] Jin Hyuk Yoon, Eyee Hyun Nam, Yoon Jae Seong, Hongseok Kim, Bryan Kim,
Sang Lyul Min, and Yookun Cho. Chameleon: A high performance flash/fram hy-
brid solid state disk architecture. IEEE Computer Architecture Letters, 7:17–20, 2008.

102

