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Abstract

Let G be a simple graph and f(v) a positive integer for each vertex v of G. Form Gf

by replacing each v by a set F (v) of f(v) vertices, and each edge uv by complete bipartite

graph on bipartition (F (u), F (v)). Can we partition Gf into paths of length 2 which are

gregarious, that is, meet three different F (u)’s?
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Chapter 1

Introduction

Let G = (V, E) be a simple graph and f : V → N, where f(v) is a positive integer for

each vertex v of G. Form the graph Gf by replacing each v by a set F (v) of f(v) vertices,

and each edge uv by a complete bipartite graph on bipartition (F (u), F (v)). Our question

is: “Can we partition Gf into paths of length 2, P3, which are gregarious, that is, each vertex

of P3 is in a different F (u)?”

Example 1.1. Let G = (V,E) be a graph where |V | = 5 and f : V (G) → P such that

f : (v1, v2, v3, v4)→ (2, 3, 2, 2).

2

v1

3

v2

2

v3

2

v4

G
Gf

Gf

Figure 1.1: Example of Gregarious Path Decomposition

Each color represents a different class of P3’s.
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1.1 History of the problem

Non-Gregarious Case:

In a recent paper [3], the complete solution is given for a decomposition of any complete

multipartite graph into paths of lengths 3 and 4. Dr. Hoffman & Dr. Billington introduce

the problem “what if we try to solve the same problem with gregarious paths?”

Previous work in Gregarious Decompositions:

1. In [5], Dean G. Hoffman & Elizabeth Billington give necessary and sufficient conditions

to decompose a complete tripartite graph into gregarious 4-cycles. They use the notion

of gregarious decompositions as “a cycle is said to be gregarious if its vertices occur in

as many different parts of the multipartite graph as possible”.

2. In [6], Dean G. Hoffman & Elizabeth Billington give the necessary and sufficient con-

ditions for gregarious 4-cycle decompositions of the complete equipartite graph Kn(m)

(with n > 4 parts of size m) whenever a 4-cycle decomposition (gregarious or not) is

possible, and also of a complete multipartite graph in which all parts but one have the

same size.

3. In [7], Benjamin R. Smith give necessary and sufficient conditions for the existence of

a gregarious 5-cycle decomposition of the complete equipartite graph Km(n).

4. In [8], Elizabeth J. Billington, Benjamin R. Smith & D.G. Hoffman give necessary and

sufficient conditions for gregarious cycle decomposition of the complete equipartite

graph Kn(m) (with n parts, n > 6 or n > 8, of size m) into both 6-cycles and 8-cycles.

5. In [9] Jung R. Cho & Ronald J. Gould give necessary and sufficient conditions for the

existence of decompositions of the complete multipartite graph Kn(2t) into gregarious

6-cycles if n ≡ 0, 1, 3 or 4 (mod 6) . They used the method of a complete set of

differences in Zn.
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6. In [10], Jung R. Cho gives another proof of the problem of decomposing the complete

multipartite graph Kn(2t) into gregarious 6-cycles for the case of n ≡ 0 or 3 (mod 6).

7. In [11], Benjamin R. Smith gives necessary and sufficient conditions for the existence

of gregarious k− cycle decomposition of a complete equipartite graph, having n parts

of size m, and either n ≡ 0, 1 (mod k), or k is odd and m ≡ 0 (mod k).

8. In [12], Elizabeth J. Billington , Dean G. Hoffman & Chris A. Rodger give necessary and

sufficient conditions for decomposing a complete equipartite graph Kn(m) with n parts

of size m into n-cycles in such a way that each cycle meets each part of Kn(m); that is,

each cycle is said to be gregarious. Furthermore, they give gregarious decompositions

which are also resolvable.

9. In [13], Saad I. El-Zanati, Narong Punnim & Chris A. Rodger give necessary and

sufficent conditions for the existence of Gregarious GDDs with Two Associate Classes

having block size 3.

Definition 1.2. Let G = (V, E) be simple graph and h : E → P. Define G[h] on vertex set

V as follows: if u, v ∈ V and uv = e ∈ E then put h(e) edges in between u and v in G[h].

Example 1.3. Let’s use the example 1.1 and define h(vivj) := f(vi)f(vj).

2

v1

3

v2

2

v3

2

v4

G
Gf

G[h] Gf

Figure 1.2: Example of Gf and G[h]

In G[h], any P3 will be a gregarious path of length two.
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Chapter 2

Tutte’s f-Factor Theorem

2.1 Tutte’s f−Factor Theorem

Definition 2.1. Let G = (E, V ) be a graph. G is called a k-regular graph if for every v ∈ V ,

deg(v) = k for some k ∈ N.

Definition 2.2. Let G = (V,E) be a graph, then

1. A factor of a graph G is a spanning subgraph of G.

2. A k−factor is a spanning k−regular subgraph.

3. Given a function f : V (G)→ Z, an f−factor of a graph G is a spanning subgraph H

such that dH(v) = f(v) for all v ∈ V .

Example 2.3. Let G = (V,E) be a graph with f : (v1, v2, v3, v4, v5, v6) → (3, 1, 1, 2, 3, 2),

then we can get the f − factor:

G

v1 v2

v3v4

v5 v6

1

f − factor

G

3 1

12

3 2

1

Figure 2.1: Example of an f-factor
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Definition 2.4. If f : V (G)→ Z, define f̄ : V (G)→ Z by f̄(v) = degG(v)− f(v).

Example 2.5. From the previous example f̄ : (v1, v2, v3, v4, v5, v6)→ (0, 2, 2, 1, 1, 2)

f − factor G

3 1

12

3 2

f̄ − factor
0 2

21

1 2

1

Figure 2.2: Example of an f̄ -factor

Definition 2.6. Let S, T ⊆ V (G), with S∩T = ∅, then λ(S, T ) = the set of edges with one end in S

and the other end in T .

G

S T
λ(S, T )

Figure 2.3: Definition of λ(S, T )

Definition 2.7. B = (S, T, U) is a G− triple if

1. S, T, U ⊆ V (G),

2. S ∪ T ∪ U = V (G)

5



3. S ∩ T = S ∩ U = T ∩ U = ∅

S T

U

1

Figure 2.4: Example of a G-triple

Definition 2.8. Let G = (V,E) be a graph and f : V → P be a function.

Then define f(S) =
∑
s∈S

f(s) for any S ⊆ V .

Definition 2.9. By a component of B, we mean a component of G \ (S ∪ T ).

S T

U

c

Figure 2.5: Component of B

1. If c is a component of B, let J(B, f, c) = f(c) + λ(c, T ).

2. c is called odd or even according to if J(B, f, c) is odd or even.

3. k(B, f) = # of odd components of B.

6



Theorem 2.10. [4] G has an f − factor, iff for each G− triple B = (S, T, U)

k(B, f) + λ(S, T ) 6 f(S) + f̄(T )

S T

U

1

Figure 2.6: Tutte’s f-factor Theorem

2.2 Applying Tutte’s f-Factor Theorem

Definition 2.11. The line graph of a graph G, written L(G), is the graph whose vertices

are the edges of G, with ef ∈ E(L(G)) whenever e and f are different edges of G having at

least one vertex of G in common.

Let G = (V, E) be a simple graph and f : V → N, where f(v) is a positive integer for

each vertex v of G. Then, let h : E → P where h(vivj) := f(vi)f(vj). In this way we can get

Gf and G[h] with given G and f .

7



Gf

B1 B2

B3

B4

⇒

G[h]

b1b2
b2b3

b3b4

b2b4

Figure 2.7: Gf and G[h]

Now, if we have a gregarious decomposition of Gf into P3’s (denoted by Gf g
↪→ P3), then

getting decomposition of G[h] into P3’s (denoted by G[h] ↪→ P3) is trivial.

So Gf g
↪→ P3 ⇒ G[h] ↪→ P3.

The opposite direction is not true, but it will still give us some of the necessary conditions

for Gf g
↪→ P3. We can apply Tutte’s f-factor theorem to solve G[h] ↪→ P3.

G[h]

B1 B2

B3

B4

e12
e23

e34

e24

⇒ L[h](G)

e12 e23

e34e24

x1

x2

x3

x4 x 5

Figure 2.8: G[h] and L[h](G)

In G[h], assume that there are eij = bibj edges in between any pair of sets of vertices

Bi and Bj where |Bi| = bi for any i. Firstly, get the line graph of G, L(G), then blow the

edges of L(G) in such a way that for each vertex eij ∈ V (L(G)), deg(eij) is bibj in the new

graph, L[h](G). In L[h](G), each edge will represent a P3 in G[h]. For example, in figure 2.8,

x1 represents the number of P3’s passing through sets B1 → B2 → B3 in G[h].

8



Therefore, if we find each xi, we can find the P3 decomposition of G[h]. To find the xi’s,

we will use Tutte’s f-factor theorem. Start with G, get L(G), let M be a sufficiently large

number, then get LM(G) by replacing every edge of L(G) with M edges (fig. 2.9). So if we

find an h−factor of LM(G) such that h(eij) = bibj, then we can get G[h] ↪→ P3.

e12 e23

e34e24

M

M

M

M
M

Figure 2.9: LM(G)

Theorem 2.12. LM(G) has an h− factor for all sufficiently large M , iff for each

L(G)− triple B = (S, T, U) where T is independent and λ(T, U) = 0,

k(B, h) + h(T ) 6 h(S).

Proof. Let M be a sufficiently large number. From Tutte’s f-factor theorem, for all

L(G)-triples B = (S, T, U):

k(B, h) + λLM (S, T ) 6 h(S) + h̄(T )

k(B, h) +MλL(S, T ) 6 h(S) +MdegL(T )− h(T )

k(B, h) + h(T )− h(S) 6 M(degL(T )− λL(S, T ))

Here, degL(T ) > λL(S, T ) for any L(G)−triple since degL(T ) =
∑
t∈T

deg(t) and

λL(S, T ) = number of edges in between S & T . In addition, when degL(T ) > λL(S, T )

the inequality holds since we can choose M sufficiently large and the left hand side of the

9



inequality doesn’t depend on M . So the only problem is when degL(T ) = λL(S, T ). Which

means T is independent and there is no edge in between T & U (λL(T, U) = 0). So the

condition we need to check for each L(G)−triple reduces to:

k(B, h) + h(T ) 6 h(S)

when T is independent and λL(T, U) = 0.

Example 2.13. Let G be the underlying graph in Figure 2.8. Let’s find the necessary

conditions for G[h] to have a gregarious P3 decomposition. We need to check

k(B, h) + h(T ) 6 h(S)

for all L(G) triples B = (S, T, U) where T is independent and λL(T, U) = 0.

S T

U

e23

e24

e12

e34

S T

U

e23

e24

e12

e34

S T

U

e23

e24

e34

e12

Figure 2.10: Example of how to apply Tutte’s f-Factor Theorem

where deg(eij) = bibj. So we can get conditions:

1. b1b2 + b3b4 6 b2b3 + b2b4

2. b1b2 6 b2b3 + b2b4

3. b3b4 6 b2b3 + b2b4

10



Therefore the necessary condition to decompose G[h] into gregarious P3’s is:

b1b2 + b3b4 6 b2b3 + b2b4

since 1 is stronger than 2 and 3.

In summary, if we have a gregarious decomposition of Gf into P3’s (Gf g
↪→ P3), then

getting a decomposition of G[h] into P3’s is trivial (G[h] ↪→ P3). So Gf g
↪→ P3 ⇒ G[h] ↪→ P3.

The opposite direction is not true (G[h] ↪→ P3 ; Gf g
↪→ P3, see the following counter

example), but it will still give us some of the necessary conditions for Gf g
↪→ P3.

Example 2.14. Let G = S3 be a tristar and define f : V (G)→ P by

f : (a, v1, v2, v3)→ (2, 1, 1, 1).

S3

Gf

G[h]

Figure 2.11: Counter Example

Gf doesn’t have a gregarious P3 decomposition since both vertices in the root have odd

degree. On the other side, G[h] has a gregarious P3 decomposition, each color gives a different

gregarious P3.
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Chapter 3

Parity Balanced Bipartite Graphs

Let a, b ∈ P and e ∈ N , and let εa, εb ∈ {0, 1}. We say the simple bipartite graph

G on bipartition (A,B), where |A| = a and |B| = b, with e edges, is parity balanced with

parameters (a, b, e, εa, εb) if

∀u ∈ A, deg(u) ≡ εa (mod 2), and further ∀v ∈ A, |deg(u)− deg(v)| 6 2,

∀u ∈ B, deg(u) ≡ εb (mod 2), and further ∀v ∈ B, |deg(u)− deg(v)| 6 2.

We will give necessary and sufficient conditions on the parameters (a, b, e, εa, εb) for the

existence of such graphs.

3.1 Introduction

All the graphs are simple, i.e., they have no loops or multiple edges. Let P be the set

of positive integers and N be the set of non-negative integers.

Definition 3.1. The integer vector (x1, x2, ... , xt) is said to be balanced if |xi − xj| 6 1

for all 1 6 i, j 6 t. Two vectors are equivalent if one can be obtained from the other by

permuting the entries.

Definition 3.2. Let G be a bipartite graph on bipartition (A, B). If for all v ∈ A, degG(v) =

d1 and for all w ∈ B, degG(w) = e1, then we will call G a (d1, e1)− regular bipartite graph.

The following lemmas are proved in [1], p. 399.

Lemma 3.3. Let v and w be balanced vectors with the same number of coordinates. Then,

for some vector w′ equivalent to w, v + w′ is balanced.

Lemma 3.4. Let a, b ∈ P, and let e 6 ab be a non-negative integer. Then there is a bipartite

graph G on bipartition (A, B) with both (degG(v) | v ∈ A) and (degG(y) | y ∈ B) balanced.

12



3.2 Bipartite Graphs with Four Degrees

The theorems we will be proving here can be proven by using the Ryser-Gale theorem

([2], p. 185), but the proof is much harder.

Theorem 3.5. Let a1, a2, b1, b2, d1, d2, e1, e2 be non-negative integers. Then:

There is a simple bipartite graph on bipartition (A, B), where A consists of a1 vertices of

degree d1 and a2 vertices of degree d2, and B consists of b1 vertices of degree e1 and b2 vertices

of degree e2, if and only if

(∗) a1d1 + a2d2 = b1e1 + b2e2

1. a1d1 6 a1b1 + b2e2, or, equivalently, b1e1 6 a1b1 + a2d2

2. a1d1 6 a1b2 + b1e1, or, equivalently, b2e2 6 a1b2 + a2d2

3. b1e1 6 a2b1 + a1d1, or, equivalently, a2d2 6 a2b1 + b2e2

4. b2e2 6 a2b2 + a1d1, or, equivalently, a2d2 6 a2b2 + b1e1

5. either a1 = 0, or d1 6 b1 + b2

6. either a2 = 0, or d2 6 b1 + b2

7. either b1 = 0, or e1 6 a1 + a2

8. either b2 = 0, or e2 6 a1 + a2

Necessity:

Proof. Each side of (∗) counts the total number of edges, hence they must be equal. Condi-

tions 5 - 8 come from the fact that maximum degree of any vertex is less than the number

of vertices in the other part. Now for conditions 1 - 4:
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A

d1
A1

d2
A2

x

B

e1
B1

e2
B2

Figure 3.1: Bipartite Graph with Four Degrees

For i = 1, 2, let Ai (resp. Bi) be the vertices of degree di (resp. ei) in Ai (resp. Bi). In

addition, let’s assume that there are x edges in between vertices of A1 and B1. If we look at

the other pairs, we will get:

B1 B2

A1 x a1d1 − x

a2d2 − b1e1 + x

A2 b1e1 − x =

b2e2 − a1d1 + x

Table 3.1: Distribution of the edges

Using table 3.1, we can get the following inequalities:

0 6 x 6 a1b1

0 6 a1d1 − x 6 a1b2

0 6 b1e1 − x 6 a2b1

0 6 a2d2 − b1e1 + x 6 a2b2

14



So, we can get:

0 6 x 6 a1b1

a1d1 − a1b2 6 x 6 a1d1

b1e1 − a2b1 6 x 6 b1e1

b1e1 − a2d2 6 x 6 a2b2 − a2d2 + b1e1

We can get sixteen inequalities on the variables (a1, a2, b1, b2, d1, d2, e1, e2) from above since

we have x in the middle of all of the four inequalities. If we use the left side of the first

inequality and right sides of the all them, then we can get:

0 6 a1b1

0 6 a1d1

0 6 b1e1

0 6 a2b2 − a2d2 + b1e1 ⇒ a2d2 6 a2b2 + b1e1 , cond. 4 X

From the second one:

a1d1 − a1b2 6 a1b1 ⇒ d1 6 b1 + b2

a1d1 − a1b2 6 a1d1 ⇒ 0 6 a1b1

a1d1 − a1b2 6 b1e1 ⇒ a1d1 6 a1b2 + b1e1 , cond. 2 X

a1d1 − a1b2 6 a2b2 − a2d2 + b1e1 ⇒ a1d1 + a2d2 6 a2b2 + b1e1 + a1b2

If we use (∗), we will get a1d1 + a2d2 = b1e1 + b2e2 6 a2b2 + b1e1 + a1b2, so this reduces to

e1 6 a1 + a2.
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From the third one:

b1e1 − a2b1 6 a1b1 ⇒ e1 6 a1 + a2

b1e1 − a2b1 6 a1d1 ⇒ b1e1 6 a2b1 + a1d1 , cond. 3 X

b1e1 − a2b1 6 b1e1 ⇒ 0 6 a2b1

b1e1 − a2b1 6 a2b2 − a2d2 + b1e1 ⇒ d2 6 b1 + b2

From the fourth one:

b1e1 − a2d2 6 a1b1 ⇒ b1e1 6 a1b1 + a2d2 , cond. 1 X

b1e1 − a2d2 6 a1d1 ⇒ b1e1 6 a1d1 + a2d2

b1e1 − a2d2 6 b1e1 ⇒ 0 6 a2d2

b1e1 − a2d2 6 a2b2 − a2d2 + b1e1 ⇒ 0 6 a2b2

In the second equation, if we use a1d1 + a2d2 = b1e1 + b2e2, then we will get

b1e1 6 b1e1 + b2e2 ⇒ 0 6 b2e2.
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Sufficiency:

Proof. Assume there is bipartite graph (A, B) satisfying the necessary conditions and there

are x edges in between the vertices of A1 and B1 like in figure 3.1. Therefore, we can find

the number of edges in between other vertices using the remaining edges like in table 3.1.

Now using the construction in [1] on pg. 399,

1. distribute x edges on a1 vertices with balanced degrees.

2. distribute a1d1 − x on a1 vertices with balanced degrees.

So we will get two balanced vectors with the same number of entries.

Balanced Distrubution of x edges on a1 vertices

Balanced Distrubution of a1d1 − x edges on a1 vertices

1 less 1 more Equal

Balanced Balanced Balanced

Figure 3.2: Adding balanced distributions

At the end, we will have one of these three cases from figure 3.2 and all of them will still

have balanced distributions since both distributions were balanced to begin with. However,

the first two cases are impossible, since we have a balanced distribution of a1d1 edges on a1

vertices, this means that each vertex will be incident with d1 edges. In the same manner we

can prove that we can distribute the remaining edges with the desired degrees.
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3.3 Parity balanced Bipartite Graphs

Definition 3.6. Let a, b ∈ P and e ∈ N , and let εa, εb ∈ {0, 1}. We say the bipartite graph

G with e edges on bipartition (A,B), with |A| = a and |B| = b, is parity balanced with

parameters (a, b, e, εa, εb) if

1. ∀u ∈ A, deg(u) ≡ εa (mod 2) and further ∀ v ∈ A, |deg(u)− deg(v)| 6 2.

2. ∀u ∈ B, deg(u) ≡ εa (mod 2) and further ∀ v ∈ B, |deg(u)− deg(v)| 6 2.

Example 3.7. Let |A| = a = 6, |B| = b = 5, e = 14, εa = 1 and εb = 0.

e = 14
A

deg = 1

εa = 1

deg = 3

|A| = a = 6

B

deg = 2

εb = 0

deg = 4

|B| = b = 5

Figure 3.3: Example of a parity balanced bipartite graph

Definition 3.8. If A and B are disjoint sets, we denote KA,B to be the complete bipartite

graph on bipartition (A, B).

Definition 3.9. Let KA,B be a complete bipartite graph on bipartition (A,B). A bipartite

complement of a bipartite graph G on bipartition (A, B) with edge set E is the bipartite

graph G′ on bipartition (A, B) with the edge set E ′ where E ′ = E(KA,B)\E.

Fact 3.10. If G is a parity balanced bipartite graph with parameters (a, b, e, εa , εb), then

G′ is a parity balanced bipartite graph with parameters (a, b, e′ = ab − e, ε′a , ε
′
b) where

εa + ε′a ≡ b (mod 2) and εb + ε′b ≡ a (mod 2)
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Example 3.11. The bipartite complement of G is G′ with parameters (a = 6, b = 5, e′ =

ab− 14 = 30− 14 = 16, ε′a = 0, ε′b = 0):

e′ = 16
A

deg = 4

ε′a = 0

deg = 2

|A| = a = 6

B

deg = 4

ε′b = 0

deg = 2

|B| = b = 5

Figure 3.4: Example of a bipartite complement

where εa + ε′a = 1 + 0 = 1 ≡ 5 (mod 2) and εb + ε′b = 0 + 0 ≡ 6 (mod 2).

Theorem 3.12. Let a, b ∈ P, e ∈ N, εa, εb, ε
′
a, ε

′
b ∈ {0, 1},

εa + ε
′
a ≡ b (mod 2), εb + ε

′
b ≡ a (mod 2).

Then, there is a parity balanced bipartite graph G on bipartition (A, B) with parameters

(a, b, e, εa, εb) if and only if

εaa 6 e 6 ab − ε′aa , εbb 6 e 6 ab − ε′bb, and all of these are congruent (mod 2), with the

following exceptions:
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e a b εa ε′a εb ε′b

2

2 2 0 0 0 0

2 3 0 1 0 0

3 2 0 0 0 1

odd> 3 odd> 3 0 1 0 1

odd> 3 even> 3
0 0 0 1

0 0 1 0

even> 3 odd> 3
0 1 0 0

1 0 0 0

even> 3 even> 3
1 1 1 1

0 0 0 0

ab−2

2 2 0 0 0 0

2 3 1 0 0 0

3 2 0 0 1 0

odd> 3 odd> 3 1 0 1 0

odd> 3 even> 3
0 0 1 0

0 0 0 1

even> 3 odd > 3
1 0 0 0

0 1 0 0

even> 3 even > 3
1 1 1 1

0 0 0 0

Table 3.2: Exceptions for Theorem 3.12
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Necessity:

Proof. For any u ∈ A we have degG(u) + degG′(u) = b so degG(u) + degG′(u) ≡ b (mod 2)

where degG(u) ≡ εa (mod 2) and degG′ (u) ≡ ε
′
a (mod 2) by definition, and εa + ε

′
a ≡ b

(mod 2) follows. In the same way, we can get εb + ε
′
b ≡ a (mod 2).

To get εaa 6 e 6 ab− ε′aa and εbb 6 e 6 ab− ε′bb, if one of εa, ε
′
a, εb, ε

′
b is 1, then we have to

have enough edges in either G or G′.

Finally, to get εaa, e, ab− ε′aa, εbb, ab− ε′bb all congruent (mod 2);

e =
∑
u∈A

degG(u) ≡ aεa (mod 2),and

εa + ε
′
a ≡ b (mod 2)⇒ aεa + aε

′
a ≡ ab (mod 2)⇒ aεa ≡ ab− aε′a (mod 2).

In the same way we can get the other conditions. For the exceptions, it is easy to prove

that there is no parity balanced bipartite graph with parameters given in table 4.1. Figure

3.6 shows all possible parity balanced bipartite graphs with 2 edges and and the ones with

ab− 2 edges will be bipartite complement of these graphs.

Sufficiency:

Proof. We can use theorem 3.5 for this proof. Define n, m, qa, ra, qb, rb ∈ N by,

e = 2n+ εaa = 2m+ εbb

n = aqa + ra, m = bqb + rb

0 6 ra 6 a− 1, 0 6 rb 6 b− 1.

So e = 2aqa + 2ra + εaa = 2bqb + 2rb + εbb.

qa =
e− εaa− 2ra

2a
=
e− εaa

2a
− ra
a

=

⌊
e− εaa

2a

⌋
. In the same way, qb =

⌊
e− εbb

2b

⌋
.

Now let’s translate this problem into“bipartite graphs with four degrees” since we already

know NASCs for those graphs (figure 3.5).
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A

a1 = a− ra
d1 = 2qa + εa

a2 = ra

d2 = 2qa + εa + 2

B

b1 = b− rb
e1 = 2qb + εb

b2 = rb
e2 = 2qb + εb + 2

Figure 3.5: Translating PBBG to a BGwFDs

Note that (∗) holds since:

(a− ra)(2qa + εa) + ra(2qa + εa) = (b− rb)(2qb + εb) + rb(2qb + εb)

Case 1: Assume a2 = 0 = b2, then we will get a (d1, e1)−regular bipartite graph. Since

a2 = 0, and b2 = 0, we only need to prove 1, 5 and 7 in theorem 3.5. Let’s start proving

conditions 5 and 7 which say:

d1 6 b1 + b2

2qa + εa 6 b− rb + rb = b

and

e1 6 a1 + a2

2qb + εb 6 a− ra + ra = a

So for 5 if we prove 2qa + εa 6 b, we are done. Using 2qa =
e− εaa− 2ra

a
=
e

a
− εa −

2ra
a

;

we can get 2qa + εa =
e

a
− εa −

2ra
a

+ εa =
e

a
− 2ra

a
6 b − 2ra

a
< b. We can prove 7 in the

same way.
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Now, let’s prove 1:

a1d1 6 a1b1 + b2e2

a1d1 6 a1b1 since b2 = 0

d1 6 b1

2qa + εa 6 b and we just proved this in 5

Case 2: Assume a2 = 0 and b2 6= 0 (a2 6= 0 and b2 = 0 is just the symmetric case). Since

a2 = 0, we only need to prove 1, 2, 5, 7 and 8 in theorem 3.5. 5 and 7 are the same as in

Case 1. 1 and 2 will reduce to 7 and 8, respectively since a2 = 0. So just proving 8 is enough

which says:

e2 6 a1 + a2

2qb + εb + 2 6 a1 = a since a2 = 0

So 2qb =
e

b
− εb −

2rb
b

, using this:

2qb + εb + 2 =
e

b
− εb −

2rb
b

+ εb + 2 =
e

b
− 2rb

b
+ 2 6 a− ε′b −

2rb
b

+ 2 < a+ 2.

The only problem is when a = 2qb + εb + 1, then εb + ε
′
b ≡ a = 2qb + εb + 1 (mod 2).

So ε
′
b = 1. In this case:

2qb + εb + 2 =
e

b
− εb −

2rb
b

+ εb + 2 =
e

b
− 2rb

b
+ 2 6 a− ε′b −

2rb
b

+ 2 < a+ 1.

Case 3: We can assume a2 6= 0 6= b2. Let’s start proving conditions 5 through 8 in theorem

3.5. So 5 and 6 say:

d1 6 b1 + b2

2qa + εa 6 b− rb + rb = b
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and

d2 6 b1 + b2

2qa + εa + 2 6 b− rb + rb = b

If we prove 2qa + εa + 2 6 b, this will cover both cases. However, this is the same as (8) in

Case 2, just switch a and b. We can prove (7) and (8) in the same way.

Now let’s prove conditions 1 through 4 of theorem 3.5.

For 1, we need to prove:

a1d1 6 a1b1 + b2e2

(a− ra)(2qa + εa) 6 (a− ra)(b− rb) + rb(2qb + εb + 2)

First, suppose rb 6 b− 2qa − εa, then we get:

(a− ra)(2qa + εa) 6 (a− ra)(b− rb) + rb(2qb + εb + 2)

(a− ra)(2qa + εa − b+ rb) 6 rb(2qb + εb + 2)

(a− ra)(rb − (b− 2qa − εa)) 6 rb(2qb + εb + 2)

So rb− (b− 2qa− εa) 6 0 and the inequality is automatically satisfied since a− ra > 0, rb >

0, 2qb + εb + 2 > 0.

So we can assume rb > b−2qa−εa+1. In addition, recall that e = 2n+εaa = 2aqa+2ra+εaa.
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Need to prove:

a1d1 6 a1b1 + b2e2

(a− ra)(2qa + εa) 6 (a− ra)(b− rb) + rb(2qb + εb + 2)

2aqa + aεa − ra(2qa + εa) 6 ab− arb − bra + rarb + rb(2qb + εb + 2)

2aqa + aεa − ra(2qa + εa) + 2ra − 2ra 6 ab− arb − bra + rarb + rb(2qb + εb + 2)

(2aqa + aεa + 2ra)− ra(2qa + εa + 2) 6 ab− arb − bra + rarb + rb(2qb + εb + 2)

e+ ra(b− (2qa + εa + 2)) + rb(a− (2qb + εb + 2))− rarb 6 ab

So if we show e + ra(b − (2qa + εa + 2)) + rb(a − (2qb + εb + 2)) − rarb 6 ab , we are done.

Using rb > b− 2qa − εa + 1, we can get ra(b− (2qa + εa + 2)) < rarb. So

e+ ra(b− (2qa + εa + 2)) + rb(a− (2qb + εb + 2))− rarb < e+ rarb + rb(a− (2qb + εb + 2))− rarb

= e+ rb(a− (2qb + εb + 2))

where we can use, e = (b− rb)(2qb + εb) + rb(2qb + εb + 2).

= e+ rb(a− (2qb + εb + 2))

= (b− rb)(2qb + εb) + rb(2qb + εb + 2) + rb(a− (2qb + εb + 2))

= (b− rb)(2qb + εb) + arb

here using the fact that 2qb + εb 6 a (which we just proved in 7), we will get:

= (b− rb)(2qb + εb) + arb

< (b− rb)a+ arb = ab.
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Now let’s prove 2:

a1d1 6 a1b2 + b1e1

(a− ra)(2qa + εa) 6 (a− ra)rb + (b− rb)(2qb + εb)

First suppose 2qa + εa 6 rb, then we get:

(a− ra)(2qa + εa) 6 (a− ra)rb + (b− rb)(2qb + εb)

(a− ra)(2qa + εa − rb) 6 (b− rb)(2qb + εb).

So 2qa + εa− rb 6 0 and the inequality is automatically satisfied since a− ra > 0, (b− rb) >

0, 2qb + εb ≥ 0.

We can assume 2qa + εa + 1 > rb. We need to prove:

a1d1 6 a1b2 + b1e1

(a− ra)(2qa + εa) 6 (a− ra)rb + (b− rb)(2qb + εb)

2aqa + aεa − ra(2qa + εa) 6 arb − rarb + 2bqb + bεb − rb(2qb + εb)

2aqa + aεa − ra(2qa + εa) + 2ra − 2ra 6 arb − rarb + 2bqb + bεb − rb(2qb + εb) + 2rb − 2rb

(2aqa + aεa + 2ra)− ra(2qa + εa + 2) 6 arb − rarb + (2bqb + bεb + 2rb)− rb(2qb + εb + 2)

e− ra(2qa + εa + 2) 6 arb − rarb + e− rb(2qb + εb + 2)

rarb + rb(2qb + εb + 2) 6 arb + ra(2qa + εa + 2)

If we show rarb + rb(2qb + εb + 2) 6 arb + ra(2qa + εa + 2), then we have shown (2). Using

2qa + εa + 1 > rb we can get rarb < ra(2qa + εa + 2). In addition, we can use the previously
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proved fact in 8 that 2qb + εb + 2 6 a. So

rarb + rb(2qb + εb + 2) 6 ra(2qa + εa + 2) + rb(2qb + εb + 2)

6 ra(2qa + εa + 2) + rba

= arb + ra(2qa + εa + 2)

The proof of 3 is exactly the same as the proof of 2, if we switch parts A←→ B.

Now, let’s prove the last condition, 4.

We need to prove b2e2 6 a2b2 + a1d1, or, equivalently, a2d2 ≤ a2b2 + b1e1.

b2e2 6 a2b2 + a1d1

rb(2qb + εb + 2) 6 rarb + (a− ra)(2qa + εa)

rb(2qb + εb + 2− ra) 6 (a− ra)(2qa + εa)

which is equivalent to

a2d2 6 a2b2 + b1e1

ra(2qa + εa + 2) 6 rarb + (b− rb)(2qb + εb)

ra(2qa + εa + 2− rb) 6 (b− rb)(2qb + εb).

First, assume 2qb + εb + 2 6 ra or 2qa + εa + 2 6 rb.

Then b2e2 6 a2b2 + a1d1 or a2d2 ≤ a2b2 + b1e1 will be automatically satisfied.

So we can assume 2qb + εb + 2 > ra and 2qa + εa + 2 > rb ⇒ 2qa + εa + 1 > rb.

If we turn back to the problem and use the fact, which follows from 8, that 2qb + εb + 2 6 a,
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then:

rb(2qb + εb + 2) 6 rba

= rarb + (a− ra)rb

6 rarb + (a− ra)(2qa + εa + 1)

So the only problem is when rb = 2qa + εa + 1. Similarly, we can assume ra = 2qb + εb + 1.

Need to show:

b2e2 6 a2b2 + a1d1

rb(2qb + εb + 2) 6 rarb + (a− ra)(2qa + εa)

(2qa + εa + 1)(2qb + εb + 2) 6 (2qa + εa + 1)(2qb + εb + 1) + (a− ra)(2qa + εa)

2qa + εa + 1 6 (a− ra)(2qa + εa)

1 6 (a− ra − 1)(2qa + εa)

1 6 (a− ra − 1)(rb − 1)

Here rb > 1 since ra 6= 0 6= rb. In this case both are positive and we can assume a− ra > 1

since 0 6 ra < a. Therefore, we only need to prove rb 6= 1 or a − ra 6= 1. First, suppose

rb = 1, then rb = 2qa + εa + 1 = 1 so qa = 0 and εa = 0.

e = 2aqa + 2ra+ aεa = 2bqb + 2rb + bεb

2ra = 2bqb + 2 + bεb

2(2qb + εb + 1) = b(2qb + εb) + 2

2(2qb + εb) = b(2qb + εb)

0 = (b− 2)(2qb + εb)

0 = (b− 2)(ra − 1)
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Therefore, in this case, either b = 2 or ra = 1. If ra = 1, then e = 2ra = 2 and this is

not possible since when e = 2 there are only two bipartite graphs with 2 edges (see figure

3.6) and both of them have either b2 = 0 or a2 = 0 = b2, which contradicts the assumption

a2 6= 0 6= b2.

We can get the exceptions in table 4.1 with parameters (a, b, e = 2, εa, ε
′
a, εb, ε

′
b) easily since

no other bipartite graphs exist with 2 edges but the ones in figure 3.6.

A B

A B

Figure 3.6: Bipartite graphs with 2 edges

Now, assume b = 2 where rb = 1 and ra > 2.

BA

d2 = 2

d1 = 0

Figure 3.7: Exception for b = 2

There are only two vertices in B and d2 = 2 which means every vertex in a2 will be adjacent

to the vertices in B. This implies b1 = 2, and b2 = 0, and contradicts the assumption b2 6= 0.

So we finished proving the case where rb 6= 1. Therefore we can assume rb ≥ 2.
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Now assume a = ra + 1:

If ra = 1, then a = 2 and it will be the same case as b = 2. Assume ra > 2, so a > 3 where

ra = 2qb + εb + 1 = a− 1.

e = 2bqb + 2rb + bεb

= b(2qb + εb) + 2rb

= b(a− 2) + 2rb

= ab− 2(b− rb)

On the other side,

e = 2bqb + 2rb + bεb = 2aqa + 2ra + aεa

(b− rb)(2qb + εb) + rb(2qb + εb + 2) = 2aqa + 2(a− 1) + aεa

(b− rb)(a− 2) + arb = a(2qa + εa + 2)− 2

(b− rb)(a− 2) + arb = a(rb + 1)− 2

(b− rb)(a− 2) + arb = arb + a− 2

(b− rb)(a− 2) = a− 2

(b− rb − 1)(a− 2) = 0

We know a > 3, b = rb + 1, which means e = ab− 2(b− rb) = ab− 2, which is the bipartite

complement of the exception e = 2. So we proved rb 6= 1 or a− ra 6= 1. This completes the

proof.
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Chapter 4

Results

4.1 Complete Multipartite Graphs

4.1.1 Complete Tripartite Graph

Theorem 4.1. For a complete tripartite graph K(A,B,C) with |A| = a, |B| = b and |C| = c,

assume a > b > c, then the NASCs are:

1. 2 | (ab+ ac+ bc)

2. ab 6 ac+ bc

A

BC

Figure 4.1: K(A,B,C)

Necessity:

Proof. 2 | (ab+ac+ bc) comes from the fact that the total number of edges must be divisible

by 2 since there are two edges in P3. For ab 6 ac+ bc:

We have three kinds of paths, let x, y, z be the number of the paths C → A → B,

A→ B → C and A→ C → B respectively, then
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x+ y = ac

x+ y = ab

y + z = bc

So

x =
1

2
(ac+ ab− bc)⇒ bc 6 ac+ ab

y =
1

2
(ab+ bc− ac)⇒ ac 6 ab+ bc

z =
1

2
(ac+ bc− ab)⇒ ab 6 ac+ cb

So if we have ab 6 ac+ cb, the other two follow easily since a > b > c.

Sufficiency:

Proof. Let A, B, C be sets of size a, b, c respectively. Assume the necessary conditions are

satisfied, then we can find proper x, y, z. Find subgraphs S1 of K(C,A) and S2 of K(A,B)

with x edges, as in Lemma 3.4, so that their degrees agree on A (thus S1 ∪ S2 is a union

of x gregarious paths). Do the same for y paths in K(A,B) ∪ K(B,C) and z paths in

K(A,C) ∪K(C,B). Now we take the union of these three collections of paths, taking care

to rename vertices as in Lemma 3.3. Thus the resulting graph will be the required complete

tripartite graph.

4.2 Star Multipartite Graphs

Definition 4.2. A star is a tree consisting of one vertex (called the root) adjacent to the

all others. So a star multipartite graph S = (A;B1, B2, . . . , Bn) has |A| = a non-adjacent
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vertices in the root which are adjacent to all the other sets of vertices (B1, B2, . . . , Bn) where

|Bi| = bi for any i.

Theorem 4.3. Let S = (A;B1, B2, . . . , Bn) be a star multipartite graph and assume

b1 > b2 > · · · > bn. The NASCs are:

1. 2 | (b1 + b2 + · · ·+ bn)

2. b1 6 b2 + b3 + · · ·+ bn

A

B1 B2 · · ·

· · ·

Bn

Figure 4.2: Multipartite Star S(A;B1, B2, ..., Bn)

Necessity:

Proof. Let v be a vertex in A. So all the gregarious paths passing through v have both ends

in B1 ∪ B2 ∪ · · · ∪ Bn. So 2 | (b1 + b2 + · · · + bn). For the second condition, the number

of the vertices in any bi should be less than the number of remaining vertices, because if

you fix a vertex, say v in a, then the gregarious paths passing through v gives a one-to-one

matching in between vertices. So the number of vertices in any part, bi, should be less

than the sum of the number of vertices in the remaining parts. So for any 1 6 i 6 n,

bi 6 b2 + · · ·+ bi−1 + bi+1 + · · ·+ bn. Therefore, if b1 6 b2 + b3 + · · ·+ bn is true, then for any

1 6 i 6 n, bi 6 b2 + · · ·+ bi−1 + bi+1 + · · ·+ bn is also true since b1 > b2 > · · · > bn.

Sufficiency:
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Proof. First, take any vertex v in a, then find the gregarious decomposition of (v; b1, b2 , ..., bn).

Afterwards, we put the copies of this decomposition on the remaining vertices in A (every

vertex in a has the same degree). To find the gregarious decomposition of (v; b1, b2 , ..., bn):

1. take a P3 between the first (biggest) two parts.

2. reorder (b1 − 1, b2 − 1, ..., bn) so it is non-increasing.

3. repeat steps 1 and 2 until there are no edges left.

Now we need to prove that in each step the graph we get still satisfies the necessary

conditions. The proof of the first condition is easy since we start with an even number of

vertices and in each step we just remove two vertices, so in the next step we should still have

an even number of vertices.

Now we need prove that in each step we preserve the second condition. We will use

induction. Assume that in the kth step we have (b
(k)
1 , b

(k)
2 , . . . , b

(k)
n ). For k = 1 the second

condition holds since (b
(1)
1 , b

(1)
2 , . . . , b

(1)
n ) = (b1, b2, . . . , bn) and

for any 1 6 i 6 n, bi 6 b2 + · · ·+ bi−1 + bi+1 + · · ·+ bn .

To use induction, assume the condition holds for k:

for any 1 6 i 6 n, b
(k)
i 6 b

(k)
2 + · · ·+ b

(k)
i−1 + b

(k)
i+1 + · · ·+ b

(k)
n .

So, we need to prove it holds for k + 1:

for any 1 6 i 6 n, b
(k+1)
i 6 b

(k+1)
2 + · · ·+ b

(k+1)
i−1 + b

(k+1)
i+1 + · · ·+ b

(k+1)
n

Fix i, 1 6 i 6 n.

Case 1: b
(k+1)
i = b

(k)
i − 1:

If we remove one vertex from bki , there exists an m with 1 6 m 6 n such that b
(k+1)
m = bkm−1.

In addition, b
(k+1)
j = bkj for any j except j = m, i. So,

b
(k+1)
i = b

(k)
i − 1 6 b

(k)
1 + · · ·+ b(k)m − 1 + · · ·+ b(k)n

6 b
(k+1)
1 + · · ·+ b(k+1)

m + · · ·+ b(k+1)
n
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Case 2: b
(k+1)
i = b

(k)
i :

Since we removed two vertices in each step, there exist b
(k)
p and b

(k)
q such that b

(k)
p > b

(k)
q > b

(k)
i .

If b
(k)
i > 2, then b

(k+1)
i = 2 6 b

(k+1)
p + b

(k+1)
q + · · · .

If b
(k)
i = 1 and b

(k)
p = b

(k)
q = 1, then we should have at least one more b

(k)
w = 1 since we have

an even number of vertices in each step. So

b
(k+1)
i = 1 6 b(k+1)

p + b(k+1)
q + b(k+1)

w + · · ·

6 b(k)p − 1 + b(k)q − 1 + b(k)w + · · ·

6 1− 1 + 1− 1 + 1 + · · ·

6 1 + · · ·

Note that the following are equivalent:

1. There is a gregarious P3 decomposition of S(A;B1, B2, . . . , Bn).

2. There is a loopless multigraph with degree sequence (b1, b2, . . . , bn).

3. The complete multigraph K(B1, B2, . . . , Bn) has a perfect matching.

4.3 Cycle Multipartite Graphs

4.3.1 Even Cycles

Theorem 4.4. For an even cycle multipartite graph C(B1, . . . , B2n), the NASCs are:

1. b1b2 + b3b4 + · · ·+ b2n−1b2n = b2b3 + b4b5 + · · ·+ b2nb1

2. for any 1 6 i 6 2n, bibi+1 6 bi−1bi + bi+1bi+2

35



C2n

B1 B2

B3

B4B2n−1

B2n

· · ·

Figure 4.3: Multipartite Even Cycle C2n

Necessity:

Proof. For any 1 6 i 6 2n let xi be the number of gregarious paths that have their middle

vertex in Bi. Then,

x1 + x2 = b1b2

x2 + x3 = b2b3

...

x2n−1 + x2n = b2n−1b2n

x2n + x1 = b2nb1

If we add the first, third, fifth, ..., and (2n− 1)th equations, we get,

x1 + x2 + · · ·+ x2n = b1b2 + b3b4 + · · ·+ b2n−1b2n
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and if we add the second, fourth, sixth, ..., and (2n)th equations and rearrange the xi’s, we

get:

x1 + x2 + · · ·+ x2n = b2b3 + b4b5 + · · ·+ b2nb1

So these two equations give the first condition. For the second condition, let x1 = x and

x > 0, then:

x2 = b1b2 − x

x3 = b2b3 − x2

x4 = b3b4 − x3
...

x2n = b2n−1b2n − x2n−1

and if we get all equations in terms of x,

x2 = b1b2 − x

x3 = b2b3 − b1b2 + x

x4 = b3b4 − b2b3 + b1b2 − x
...

x2n = b2n−1b2n − b2n−2b2n−1 + · · ·+ x

If we use x > 0 and the equations we have above, then we get:

bibi+1 6 bi−1bi + bi+1bi+2 for any 1 6 i 6 2n.

Sufficiency:
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Proof. If the necessary conditions are satisfied, we can find all the xi’s for 1 6 i 6 2n, then

we use the same technique that we used in the proof of Theorem 4.1 to find gregarious a P3

decomposition.

4.3.2 Odd Cycles

Theorem 4.5. For an odd cycle multipartite graph C(B1, . . . , B2n+1), the NASCs are:

1. 2 |
i=2n∑
i=1

bibi+1 (# of the edges)

2. for any 1 6 i 6 2n+ 1, bibi+1 6 bi−1bi + bi+1bi+2

3. for any 1 6 i 6 2n+ 1,

bi+1bi+2 + bi+3bi+4 + · · · + bi+2n−2b(i+1)+2n−2 6 bibi+1 + bi+2bi+3 + · · · + bi+2nb(i+1)+2n

where the subscripts of the b’s are taken (mod 2n+ 1).

C2n+1

B0

B1

Bi−1

BiBi+1

Bi+2

B2n

· · ·· ·
·

Figure 4.4: Multipartite Odd Cycle C2n+1

Necessity:

Proof. The first condition comes from the fact that the total number of edges is divisible by

2. To get the second condition, for any 1 6 i 6 2n + 1 let xi be the number of gregarious
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paths that have their middle vertex in Bi . Then

x1 + x2 = b1b2

x2 + x3 = b2b3

...

x2n + x2n+1 = b2nb2n+1

x2n+1 + x1 = b2n+1b1

To find x1;

(+)x1 + x2 = b1b2

(−)x2 + x3 = b2b3

...

(−)x2n + x2n+1 = b2nb2n+1

(+)x2n+1 + x1 = b2n+1b1

then we get

x1 =
b1b2 − b2b3 + b3b4 − · · · − b2nb2n+1 + b2n+1b1

2

=
b1b2 + b3b4 + · · ·+ b2n+1b1 − (b2b3 + · · ·+ b2nb2n+1)

2

Using the same technique we can get all the xi’s along with condition 3 since each xi > 0.

Condition 2 is the same as the even cycle case.

Sufficiency:

Proof. After finding xi, constructing the gregarious P3 decomposition is the same as for the

even cycle case.
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4.4 Path Multipartite Graphs

Theorem 4.6. For a path multipartite graph P (B1, B2, . . . , Bn), the NASCs are:

1. b3 > b1 and bn−2 > bn

2. b1b2 + b3b4 · · ·+ bk−1bk = b2b3 + b4b5 + · · ·+ bl−1bl

3. for any 2 6 i 6 n− 2, bibi+1 6 bi−1bi + bi+1bi+2

where k is the largest even number such that k 6 n and l is the largest odd number such

that l 6 n.

Pn

· · ·B1 B2 B3 Bn−2 Bn−1 Bn

Figure 4.5: Multipartite Path Pn
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Necessity:

Proof. For any 2 6 i 6 n− 1 let xi be the number of gregarious paths that have the middle

vertex in Bi .

x2 = b1b2

x2 + x3 = b2b3

x3 + x4 = b3b4

...

xn−2 + xn−1 = bn−2bn−1

xn−1 = bn−1bn

The first condition comes from the fact that x3 = b2b3−x2 = b2b3− b1b2 = b2(b3− b1). So we

get b3 > b1 since x2 > 0. We can get bn > bn−2 in the same way. We can find the remaining

xi’s easily.

If we add the first, third, fifth,... , and (k − 1)th equations, we get,

x2 + x3 · · ·+ xn−1 = b1b2 + b3b4 + · · ·+ bk−1bk

and if we add the second, fourth, sixth,... , and (l − 1)th equations, we get:

x2 + x3 + · · ·+ xn−1 = b2b3 + b4b5 + · · ·+ bl−1bl

So these two equations give the second condition. The third condition is the same as the

condition in the cycle case.
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Sufficiency:

Proof. If the necessary conditions are satisfied, we can find all the xi’s for 2 6 i 6 n − 1,

then we use the same technique that we used in the proof of Theorem 4.1 to find gregarious

a P3 decomposition.

4.5 Some Tree Multipartite Graphs

Definition 4.7. Let T (C1, . . . Cm;A1, A2;B1, . . . , Bn) be a multipartite graph such that two

multipartite stars S(A1;C1, . . . , Cm) and S(A2;B1, . . . , Bn) are attached to each other via

putting a complete bipartite graph on bipartition (A1, A2). See figure 4.6.

C1

C2

Cm

A1 A2

B1

B2

Bn

Figure 4.6: T (C1, . . . Cm;A1, A2;B1, . . . , Bn)

Definition 4.8. Define T (A1, A2, A3;B1, . . . , Bn) by using definition 4.7 as T (A1;A2, A3;B1, . . . , Bn).

See figure 4.7.
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...

A1 A2 A3

B1

B2

Bn

Figure 4.7: T (A1, A2, A3;B1, . . . , Bn)

Lemma 4.9. Let G = (E, V ) be a graph. There is an orientation of G such that for all

v ∈ V , |out(v)− in(v)| 6 1.

Proof. We can assume that G is connected.

Case 1: If all vertices have even degree, then there exists an Euler trail, we can orient the

graph this way.

Case 2: If G has some vertices with odd degree, make an extra vertex u and connect all

those vertices to u, then find an Euler trail on G ∪ {u} and remove the edges at the end.

For all v ∈ V , we still have |out(v)− in(v)| 6 1 since we remove one edge from each vertex

with odd degree .

G

odd

u

Figure 4.8: Orientation of G
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Theorem 4.10. [14] Let A,B, I be finite non-empty sets, let f : B× I → N be such that for

all t ∈ B,
∑

i∈I f(t, i) = |A|. Then the edges of K(A,B) can be partitioned into spanning

subgraphs Gi, i ∈ I, such that for each i ∈ I, Gi is balanced on A, and for each t ∈ B, the

degree of t in Gi is f(t, i).

Proof. If |A| = 1, then the proof is trivial.

Now suppose |A| = 2. Let A = {s1, s2}. Form a graph H on vertex set I as follows:

For each t ∈ B, H has an edge et: If f(t, i) = 2, (and so f(t, j) = 0 for all other j ∈ I) then

et is a loop at vertex i of H. If f(t, i) = 1 = f(t, j), i 6= j, (f(t, k) = 0 for the other k ∈ I),

then et joins the vertices i and j in H.

Orient H so that at each vertex of H the indegree and outdegree differ by at most 1

using Lemma 4.9. For each t ∈ B, if et is directed from i to j in the oriented H, place the

edge between t and s1 in Gi, and the edge between t and s2 in Gj (see example 4.11).

If |A| > 3, then partition the edges of K(A,B) into spanning subgraphs Gi whose

degrees on B are given by f (this is certainly possible by the sum condition on f). If

everything is balanced on |A|, then we are done. Otherwise degrees in some Gi differ by 2 or

more. Fix i, and let s1, s2 be two vertices in A, whose degrees differ by 2 or more in Gi. So

use the previous case where |A| = 2 on this graph to find the balanced distribution. Using

this method repeatedly for each unbalanced pair of vertices of Gi in A, finally we can get

the balanced distribution on A. Afterwards, we can repeat the same process for the other

Gj for each j ∈ I.

Now we need to prove that this process will stop after finitely many steps. Let V1 =

(a1, . . . , ai, . . . , aj, . . . , an) be a integer vector with fixed sum
∑
ai = a. So the shortest

integer vector with respect to the Euclidean metric with the fixed sum of the entries is the

balanced one. To see this assume aj > ai + 2, then if we balance ai and aj, we get
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V2 = (a1, . . . , ai + 1, . . . , aj − 1, . . . , an) and |V2|2 6 |V1|2 − 2 since,

|V2|2 = a21 + · · ·+ (ai + 1)2 + · · ·+ (aj − 1)2 + · · ·+ a2n

= a21 + · · ·+ a2i + 2ai + 1 + · · ·+ a2j − 2aj + 1 + · · ·+ a2n

= (a21 + · · ·+ a2i + · · ·+ a2j + · · ·+ a2n) + 2(ai − aj) + 2

= |V1|2 + 2(ai − aj) + 2

6 |V1|2 + 2(−2) + 2

6 |V1|2 − 2

This means that when we balance a pair of entries in the vector at a time, the vector gets

shorter, and after finitely many steps we will find the shortest one. This completes the

proof.

Example 4.11. Let G be a bipartite graph on bipartition (A,B) where A = {s1, s2} and

B = {v1, v2, v3, v4}. Let I ={green, blue, red}. We want to get green and blue balanced on

A without changing the color census on B (see the first picture in Figure 4.9). Then using

the method defined in Theorem 4.10 build a graph H (see the second picture in Figure 4.9)

and orient H so that |in(w) − out(w)| 6 1 for every vertex w in H. Finally, we can swap

edges of G with respect to the orientation on H to get a balanced coloring on A.
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s1

s2

v1

v2

v3

v4
G

v2

v4
v1

v3

H

v2

v4
v1

v3

Oriented H

s1

s2

v1

v2

v3

v4
Colors are balanced on A

Figure 4.9: An Example for Theorem 4.10

4.5.1 Necessary And Sufficient Conditions for T (A1, A2, A3;B1, . . . , Bn)

Theorem 4.12. For a graph T (A1, A2, A3;B1, . . . , Bn) assume bn 6 · · · 6 b2 6 b1, the

NASCs are:

1. 2 | [a2(a1 + a3) + a3(b1 + b2 + · · ·+ bn)]

2. a1 6 a3

3. a1a2 + b1a3 6 a3(a2 + b2 + b3 + · · ·+ bn)

4. a2a3 6 a1a2 + a3(b1 + b2 + · · ·+ bn)

5. If

• a2 + (b1 + · · ·+ bn) is even, then a1a2 is even.

• a2 + (b1 + · · ·+ bn) is odd, then a1a2 − a3 is even and non-negative.
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Necessity:

Proof. Let G = T (A1, A2, A3;B1, . . . , Bn). Condition 1 comes from the fact that the number

of edges is even. We can get conditions 2 - 4 using Tutte’s f-factor Theorem on L(G).

L(G) is union of a complete graph on n + 1 vertices and an edge attached at the vertex

A2A3. If we check all the possible L(G) triples B = (S, T, U) where T is independent and

λ(T, U) = 0 from theorem 2.12, all will reduce to the the following three cases in figure

4.10. We need to check k(B, h) + h(T ) 6 h(S) for each case. From the first picture in the

figure 4.10, we will get a2a3 6 a1a2 which gives condition 2. From the second picture, we

get a1a2 + b1a3 6 a2a3 + b2a3 + · · ·+ bna3 which gives condition 3. From the last picture, we

get a2a3 6 a1a2 + a3b1 + a3b2 + · · ·+ a3bn which gives condition 4.

S T

U

a1a2

a2a3

S

T

U

a1a2

b1a3

a2a3

b2a3

bna3

S

T

U

a1a2

b1a3
a2a3b2a3

bna3

Figure 4.10: How to get conditions 2 - 4

For condition 5, we need to consider all the types of paths we have and the degree of any

vertex in A3. Firstly, the degree of any vertex v in A3 is deg(v) = a2 + b1 + · · ·+ bn. Let x1

be the number of paths passing through the sets of vertices A1 → A2 → A3 so x1 = a1a2.

In the same way, yi : A2 → A3 → Bi for any 1 6 i 6 n, and wij : Bi → A3 → Bj

for any 1 6 i 6 j 6 n. Here, both yi and wij have their middle vertices in A3, so if

deg(v) is even, then x1 must be even. If deg(v) is odd, then we should have enough x1 type

paths which means a1a2 > a3. That gives a1a2 − a3 non-negative. To see that a1a2 − a3 is

even, consider the vertices in A3 and distribution of a1a2 edges on A3. There are αi’s for
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1 6 i 6 a3 such that

a3∑
i=1

αi = a1a2 where each αi = 2βi + 1, an odd number. βi =
αi − 1

2
.

a3∑
i=1

βi =

a3∑
i=1

αi − 1

2
=

1

2
(a1a2 − a3). Therefore a1a2 − a3 is an even number.

Sufficiency:

Proof. If the necessary conditions are satisfied we can find proper x1, yi’s and wij’s. In

between pairs of sets (A1, A2) and (A3, Bi) for any i, we can find balanced edge distributions

with the required numbers as we did for the sufficiency case of the Theorem 4.1. The

only problem is finding a construction for (A2, A3) since we need to find a parity balanced

distribution of x1 edges on A3 with respect to the parity of a2 + (b1 + · · ·+ bn) (see condition

5 in Theorem 4.12). We also need to find a balanced distribution for the remaining yi’s. To

be able to find this special distribution we can use theorem 4.10 and choose the degrees on

A3 to get balanced degrees on A2.

4.5.2 Necessary And Sufficient Conditions for T (C1, . . . , Cm;A1, A2;B1, . . . , Bn)

Theorem 4.13. For a graph T (C1, . . . , Cm;A1, A2;B1, . . . , Bn) assume cm 6 · · · 6 c2 6 c1

and bn 6 · · · 6 b2 6 b1, and let C = C1 ∪C2 ∪ · · · ∪Cm and |C| = c, B = B1 ∪B2 ∪ · · · ∪Bn,

|B| = b and d1 = c+ a2, d2 = b+ a1. The NASCs are:

1. 2 | [a1(c1 + c2 + · · ·+ cm) + a1a2 + a2(b1 + b2 + · · ·+ bn)]

2. c1 6 a2 + (c2 + · · ·+ cm) and b1 6 a1 + (b2 + · · ·+ bn)

3. a1c1 + a2b1 6 a1(c2 + · · ·+ cm) + a1a2 + a2(b2 + · · ·+ bn)

4. a1a2 6 a1(c1 + c2 + · · ·+ cm) + a2(b1 + b2 + · · ·+ bn)

5. If

• d1 and d2 are even, then a1a2 is even.

48



• d1 is even and d2 is odd, then either both a1 and a2 are odd, both even or a1 is

odd and a2 even. In addition, ca1 − a2 > 0.

• d1 is odd and d2 is even, then either both a1 and a2 are odd, both even or a1 is

even and a2 odd. In addition, ba2 − a1 > 0.

• d1 and d2 are odd, then both a1 and a2 are even. In addition, ca1 − a2 > 0 and

ba2 − a1 > 0.

with the following exceptions:

d1 d2 a1 a2 c1 & b1

even even

2 2 any c1 with 1 + (b2 + · · ·+ bn) 6 b1 6 2 + (b2 + · · ·+ bn)

even 1 any c1 with 1 + (b2 + · · ·+ bn) 6 b1 6 a1 + (b2 + · · ·+ bn)

1 even any b1 with 1 + (c2 + · · ·+ cm) 6 c1 6 a2 + (c2 + · · ·+ cm)

even odd
odd 1 any c1 with 1 + (b2 + · · ·+ bn) 6 b1 6 a1 + (b2 + · · ·+ bn)

1 even any c1 with b1 = 1 + (b2 + · · ·+ bn)

odd even
1 odd any b1 with 1 + (c2 + · · ·+ cm) 6 c1 6 a2 + (c2 + · · ·+ cm)

even 1 any b1 with c1 = 1 + (c2 + · · ·+ cm)

Table 4.1: Exceptions for Theorem 4.13

Necessity:

Proof. Let G = T (C1, . . . , Cm;A1, A2;B1, . . . , Bn). Condition 1 comes from the fact that

the number of edges is even. We can get conditions 2 - 4 using Tutte’s f-factor Theorem on

L(G). L(G) is union of two complete graphs on m and n vertices attached at the vertex

A1A2. If we check all the possible L(G) triples B = (S, T, U) where T is independent and

λ(T, U) = 0 from theorem 2.12, all will reduce to the the following three cases in figure 4.11.

We need to check k(B, h) + h(T ) 6 h(S) for each case. From the first picture in the figure

4.11, we will get c1 6 a2 + (c2 + · · ·+ cm) and in the same picture if we replace B’s with C’s
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and C’s with B’s then we get b1 6 a1 + (b2 + · · · + bn) which gives condition 2. From the

second picture, we get a1c1 + a2b1 6 a1(c2 + · · ·+ cm) + a1a2 + a2(b2 + · · ·+ bn) which gives

condition 3. From the last picture, we get a1a2 6 a1(c1 + c2 + · · ·+ cm)+a2(b1 + b2 + · · ·+ bn)

which gives condition 4.

S

T
A1C2

A1A2

A1C1

A1C3

U

A2B1

A2Bn

S

T

U

A1C2

A1C1

A2B1

A2Bn

A1A2

S

T

U

A1C1

A1Cm

A2B1

A2Bn

A1A2

Figure 4.11: How to get conditions 2 - 4

For condition 5, we need to consider all the types of paths we have and the degree of any

vertex in A1 and A2 . Firstly, the degree of any vertex v1 in A1 is:

d1 = deg(v1) = a2 + c1 + · · ·+ cm = a2 + c

and the degree of any vertex v2 in A2 is:

d2 = deg(v2) = a1 + b1 + · · ·+ bn = a1 + b.

Let xi be the number of paths passing through the sets of vertices Ci → A1 → A2 for any

1 6 i 6 m and let x =
∑m

i=1 xi. In the same way, yj : Bj → A2 → A1 for any 1 6 j 6 n

and y =
∑n

j=1 yj. So x + y = a1a2. In addition, we have wij : Ci → A1 → Cj for any

1 6 i 6 j 6 m and zkl : Bk → A2 → Bl for any 1 6 k 6 l 6 n. Here wij’s have their middle

vertex in A1 and zkl’s have their middle vertex in A2, so we have four cases with respect to

the parity of d1 and d2. So the parity of x and d2, and y and x1 must be consistent (see

figure 4.12).
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A1 A2

wij

xi

yj

zkl

C B

Figure 4.12: Types of paths

Case 1: If d1 and d2 are even, then y and x are even so a1a2 is even since x+ y = a1a2.

Case 2: If d1 is even and d2 is odd, then y is even and x ≡ a2 (mod 2) and x > a2. So we

can get ca1 − a2 > 0 since ca1 > x. To get either both a1 and a2 odd, both even or or a1 is

odd and a2 even, see:

x+ y = a1a2

x+ y ≡ a1a2 (mod 2)

x ≡ a1a2 (mod 2) since y is even

Case 3: If d1 is odd and d2 is even, then this is the same as case 2, just replace a2 with a1.

Case 4: If d1 is odd and d2 is odd, then y ≡ a1 (mod 2) and y > a1, and x ≡ a2 (mod 2)

and x > a2. We can get ca1 − a2 > 0 and ba2 − a1 > 0 in the same way as in case 2. To get

both a1 and a2 even, see:

x+ y = a1a2

x+ y ≡ a1a2 (mod 2)

a1 + a2 ≡ a1a2 (mod 2) since x ≡ a2 (mod 2) and y ≡ a1 (mod 2)
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a1 + a2 ≡ a1a2 (mod 2) is only satisfied when both a1 and a2 are even.

Note that theorem 4.12 is a special case of theorem 4.13. In theorem 4.13, if we get

c2 = c3 = · · · = cm = 0 and replace c1 with a1, a1 with a2 and a2 with a3 we will get exactly

the same conditions as in theorem 4.12.

Sufficiency:

Proof. If the necessary conditions are satisfied we can find proper xi’s, yj’s, wij’s and vkl’s.

First we find a proper x and y then we will find wij’s and vkl’s since we have more restriction

on x and y. In between pairs of sets (Ci, A1) for any 1 6 i 6 m, and (A2, Bj) for any

1 6 j 6 n, we can find balanced edge distributions with the required numbers as we did for

the sufficiency case of theorem 4.1. The only problem is finding a construction for (A1, A2)

since we need to find a parity balanced distribution of x+y edges on A1 and A2 with respect

to the parity of d1 and d2 (see condition 5 in theorem 4.13). To find this parity balanced

distribution, we will use theorem 3.12.

Case 1: Assume d1 and d2 are even, then y and x are even so a1a2 is even since x+y = a1a2.

So there are three cases for (a1, a2): (even, even), (even, odd) and (odd, even).

If a1 and a2 are both even, then we need to find a parity balanced bipartite graph

(PBBG) with pararameters (a = a1, b = a2, e = x, εa = 0, εb = 0) with bipartite complement

(a = a1, b = a2, e = ab − x = y, ε′a = 0, ε′b = 0) so that the distribution of x on A2 has even

parity (εb = 0) and the distribution of y on A1 has even parity (ε′a = 0). We can we can find

such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 0 + 0 = 0 ≡ b (mod 2) and εb + ε′b = 0 + 0 = 0 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ 0 6 x 6 a1a2

εbb 6 e 6 ab− ε′bb⇒ 0 6 x 6 a1a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 0 (mod 2)
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For the exceptions in table 4.1 the only problem concerning this case is when a = a1 =even,

b = a2 = even, e = x = 2, εa = 0, ε′a = 0, εb = 0,ε′b = 0. We can solve this problem by

choosing x > 4 since a1 > 2 and a2 > 2 in the exceptions. In the case of a1 = 2 = a2,

we will not have any y’s which means we need to put a gregarious P3 decomposition of

star multipartite graph on S = (A2;B2, B2, . . . , Bn). The first condition of theorem 4.3 is

satisfied since 2 | b = b1 + b2 + . . .+ bn (d1 =even= a1 + b and a1 is even so b is even). For the

second condition of theorem 4.3, we can get b1 6 2+ b2 + . . .+ bn from condtion 2 of theorem

4.13. From here we get two exceptions: b1 = 1 + b2 + · · · + bn and b1 = 2 + b2 + · · · + bn.

So T (C1, . . . Cm; 2, 2;B1, . . . , Bn) doesn’t exist when either b1 = 1 + b2 + · · · + bn or b1 =

2 + b2 + · · ·+ bn.

If a1 is even and a2 is odd, then we need to find a PBBG with pararameters (a =

a1, b = a2, e = x, εa = 1, εb = 0) with bipartite complement (a = a1, b = a2, e = ab − x =

y, ε′a = 0, ε′b = 0) so that the distribution of x edges on a2 has even parity (εb = 0) and the

distribution of y edges on a1 has even parity(ε′a = 0). We can we can find such a PBBG

since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 1 + 0 = 1 ≡ b (mod 2) and εb + ε′b = 0 + 0 = 0 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ a1 6 x 6 a1a2

εbb 6 e 6 ab− ε′bb⇒ 0 6 x 6 a1a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 0 (mod 2)

If we check the exceptions in table 4.1, then we see (a = even > 4, b = odd > 3, e = 2, εa =

1, ε′a = 0, εb = 0, ε′b = 0). However, in this case e = x > a1 and a1 > 4 so we don’t have any

exception for e = 2. There are other exceptions coming from x > a1. If a2 = 1, then we don’t

have any y’s which means we need to put a gregarious P3 decomposition of a star multipartite

graph on S = (A2 = 1;B2, B2, . . . , Bn). The first condition of theorem 4.3 is satisfied since

2 | b = b1 + b2 + . . . + bn (d2 =even= a1 + b and a1 is even so b is even). For the second
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condition of theorem 4.3, we can get b1 6 a1 + (b2 + . . . + bn) from condition 2 of theorem

4.13. From here we get exceptions when 1 + (b2 + · · · + bn) 6 b1 6 a1 + (b2 + · · · + bn). So

T (C1, . . . Cm;A1, 1;B1, . . . , Bn) doesn’t exist when 1+(b2+· · ·+bn) 6 b1 6 a1+(b2+· · ·+bn).

If a1 is odd and a2 is even, then this case is the same as the previous case, just switch

a2 with a1.

Case 2: If d1 is even and d2 is odd, then y is even and x ≡ a2 (mod 2) and x > a2. So

there are three cases for (a1, a2): (even, even), (odd, odd) and (odd, even).

If a1 and a2 are both even, then x and y are both even. We need to find a PBBG with

parameters (a = a1, b = a2, e = x, εa = 0, εb = 1) with bipartite complement (a = a1, b =

a2, e = a1a2 − x = y, ε′a = 0, ε′b = 1) so that the distribution of x on A2 has odd parity

(εb = 1) and the distribution of y on A1 has even parity (ε′a = 0). We can we can find such

a PBBG since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 0 + 0 = 0 ≡ b (mod 2) and εb + ε′b = 1 + 1 = 0 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ 0 6 x 6 a1a2

εbb 6 e 6 ab− ε′bb⇒ a2 6 x 6 a1a2 − a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 0 (mod 2)

If we check the exceptions in table 4.1, we see that we don’t have any exception for this case.

If a1 and a2 are both odd, then x is odd and y is even. We need to find a PBBG with

parameters (a = a1, b = a2, e = x, εa = 1, εb = 1) with bipartite complement (a = a1, b =

a2, e = a1a2 − x = y, ε′a = 0, ε′b = 0) so that the distribution of x on A2 has odd parity

(εb = 1) and the distribution of y on A1 has even parity (ε′a = 0). We can we can find such
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a PBBG since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 0 + 1 = 1 ≡ b (mod 2) and εb + ε′b = 1 + 0 = 1 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ a1 6 x 6 a1a2

εbb 6 e 6 ab− ε′bb⇒ a2 6 x 6 a1a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 1 (mod 2)

If we check the exceptions in table 4.1, then we see (a = odd > 3, b = odd > 3, e = 2, εa =

1, ε′a = 0, εb = 1, ε′b = 0). However, in this case e = x > max{a1, a2} and a1, a2 > 3 so we

don’t have any exception for e = 2. There are other exceptions coming from x > max{a1, a2}.

If a2 = 1, then x = a1 = a1a2 so we don’t have any y’s which means we need to put a

gregarious P3 decomposition of a star multipartite graph on S = (A2 = 1;B2, B2, . . . , Bn).

The first condition of theorem 4.3 is satisfied since 2 | b = b1 + b2 + . . . + bn (d2 =odd=

a1 + b and a1 is odd so b is even). For the second condition of theorem 4.3, we can get

b1 6 a1 +(b2 + . . .+ bn) from condition 2 of theorem 4.13. From here we get exceptions when

1 + (b2 + · · · + bn) 6 b1 6 a1 + (b2 + · · · + bn). So T (C1, . . . Cm;A1, 1;B1, . . . , Bn) doesn’t

exist when 1 + (b2 + · · ·+ bn) 6 b1 6 a1 + (b2 + · · ·+ bn).

If a1 is odd and a2 is even, then x and y are both even. We need to find a PBBG with

parameters (a = a1, b = a2, e = x, εa = 0, εb = 1) with bipartite complement (a = a1, b =

a2, e = a1a2 − x = y, ε′a = 0, ε′b = 0) so that the distribution of x on A2 has odd parity

(εb = 1) and the distribution of y on A1 has even parity (ε′a = 0). We can we can find such

a PBBG since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 0 + 0 = 0 ≡ b (mod 2) and εb + ε′b = 1 + 0 = 1 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ 0 6 x 6 a1a2

εbb 6 e 6 ab− ε′bb⇒ a2 6 x 6 a1a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 0 (mod 2)
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If we check the exceptions in table 4.1, then we see (a = odd > 3, b = even > 3, e =

2, εa = 0, ε′a = 0, εb = 1, ε′b = 0). However, in this case e = x > a2 and a2 > 4 so we

don’t have any exception for e = 2. There is an exception coming from x > a2. If a1 = 1,

then x = a2 = a1a2 so we don’t have any y’s which means we need to put a gregarious P3

decomposition of a star multipartite graph on S = (A2;B2, B2, . . . , Bn). The first condition

of theorem 4.3 is satisfied since 2 | b = b1 + b2 + . . .+ bn (d2 =odd= a1 + b and a1 is odd so b

is even). For the second condition of theorem 4.3, we can get b1 6 a1 + (b2 + . . .+ bn) from

condition 2 of theorem 4.13. From here we get exceptions when b1 = 1 + (b2 + · · ·+ bn). So

T (C1, . . . Cm; 1, A2;B1, . . . , Bn) doesn’t exist when b1 = 1 + (b2 + · · ·+ bn).

Case 3: If d1 is odd and d2 is even, then this case is the same as case 2, just switch a1 and

a2.

Case 4: If d1 and d2 are both odd, then x, y, a1, a2 are even and y > a1, x > a2. We

need to find a PBBG with parameters (a = a1, b = a2, e = x, εa = 1, εb = 1) with bipartite

complement (a = a1, b = a2, e = a1a2− x = y, ε′a = 1, ε′b = 1) so that the distribution of x on

A2 has odd parity (εb = 1) and the distribution of y on A1 has odd parity too (ε′a = 1). We

can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

εa + ε′a = 1 + 1 = 0 ≡ b (mod 2) and εb + ε′b = 1 + 1 = 0 ≡ a (mod 2)

εaa 6 e 6 ab− ε′aa⇒ a1 6 x 6 a1a2 − a1

εbb 6 e 6 ab− ε′bb⇒ a2 6 x 6 a1a2 − a2

εaa ≡ ab− ε′aa ≡ e = x ≡ εbb ≡ ab− ε′bb ≡ 0 (mod 2)

If we check the exceptions in table 4.1, we see that we don’t have any exception for this

case.
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