Gregarious Path Decompositions of Some Graphs

by
Guven Yuceturk
A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
Auburn, Alabama
August 6, 2011

Keywords: gregarious, path, decomposition

Copyright 2011 by Guven Yuceturk

Approved by
Dean G. Hoffman, Chair, Professor of Mathematics \& Statistics Curt Lindner, Professor of Mathematics \& Statistics
Chris Rodger, Professor of Mathematics \& Statistics
Peter Johnson, Professor of Mathematics \& Statistics

Abstract

Let G be a simple graph and $f(v)$ a positive integer for each vertex v of G. Form G^{f} by replacing each v by a set $F(v)$ of $f(v)$ vertices, and each edge $u v$ by complete bipartite graph on bipartition $(F(u), F(v))$. Can we partition G^{f} into paths of length 2 which are gregarious, that is, meet three different $F(u)$'s?

Acknowledgments

I would first like to thank Dr. Dean G. Hoffman for his invaluable knowledge, guidance, and patience. I am indebted to him. I would also like to thank Dr. Chris Rodger and the rest of the Auburn faculty for guiding me throughout my graduate career.

I would like to thank Dan Roberts for his insightful comments. Finally, I would like to thank my family and my friends for their love and support throughout my life.

Table of Contents

Abstract ii
Acknowledgments iii
List of Figures vi
List of Tables viii
List of Abbreviations ix
1 Introduction 1
1.1 History of the problem 2
2 Tutte's f-Factor Theorem 4
2.1 Tutte's f-Factor Theorem 4
2.2 Applying Tutte's f-Factor Theorem 7
3 Parity Balanced Bipartite Graphs 12
3.1 Introduction 12
3.2 Bipartite Graphs with Four Degrees 13
3.3 Parity balanced Bipartite Graphs 18
4 Results 31
4.1 Complete Multipartite Graphs 31
4.1.1 Complete Tripartite Graph 31
4.2 Star Multipartite Graphs 32
4.3 Cycle Multipartite Graphs 35
4.3.1 Even Cycles 35
4.3.2 Odd Cycles 38
4.4 Path Multipartite Graphs 40
4.5 Some Tree Multipartite Graphs 42
4.5.1 Necessary And Sufficient Conditions for $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right) \ldots 46$
4.5.2 Necessary And Sufficient Conditions for $T\left(C_{1}, \ldots, C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right) 48$

Bibliography . 57

List of Figures

1.1 Example of Gregarious Path Decomposition 1
1.2 Example of G^{f} and $G^{[h]}$ 3
2.1 Example of an f-factor 4
2.2 Example of an \bar{f}-factor 5
2.3 Definition of $\lambda(S, T)$ 5
2.4 Example of a G-triple 6
2.5 Component of B 6
2.6 Tutte's f-factor Theorem 7
$2.7 G^{f}$ and $G^{[h]}$ 8
$2.8 G^{[h]}$ and $L^{[h]}(G)$ 8
$2.9 \quad L^{M}(G)$ 9
2.10 Example of how to apply Tutte's f-Factor Theorem 10
2.11 Counter Example 11
3.1 Bipartite Graph with Four Degrees 14
3.2 Adding balanced distributions 17
3.3 Example of a parity balanced bipartite graph 18
3.4 Example of a bipartite complement 19
3.5 Translating PBBG to a BGwFDs 22
3.6 Bipartite graphs with 2 edges 29
3.7 Exception for $b=2$ 29
$4.1 K(A, B, C)$ 31
4.2 Multipartite Star $S\left(A ; B_{1}, B_{2}, \ldots, B_{n}\right)$ 33
4.3 Multipartite Even Cycle $C_{2 n}$ 36
4.4 Multipartite Odd Cycle $C_{2 n+1}$ 38
4.5 Multipartite Path P_{n} 40
4.6 $T\left(C_{1}, \ldots C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$ 42
4.7 $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$ 43
4.8 Orientation of G 43
4.9 An Example for Theorem 4.10 46
4.10 How to get conditions 2-4 47
4.11 How to get conditions 2-4 50
4.12 Types of paths 51

List of Tables

3.1 Distribution of the edges 14
3.2 Exceptions for Theorem 3.12 20
4.1 Exceptions for Theorem 4.13 49

List of Abbreviations

PBBG Parity Balanced Bipartite Graph

BGwFD Bipartite Graph with Four Degrees

L(G) Line Graph of G

GDDs Group Divisible Designs

NASCs Necessary and Sufficient Conditions

TFAE The following are equivalent

Chapter 1

Introduction

Let $G=(V, E)$ be a simple graph and $f: V \rightarrow \mathbb{N}$, where $f(v)$ is a positive integer for each vertex v of G. Form the graph G^{f} by replacing each v by a set $F(v)$ of $f(v)$ vertices, and each edge $u v$ by a complete bipartite graph on bipartition $(F(u), F(v))$. Our question is: "Can we partition G^{f} into paths of length $2, P_{3}$, which are gregarious, that is, each vertex of P_{3} is in a different $F(u)$?"

Example 1.1. Let $G=(V, E)$ be a graph where $|V|=5$ and $f: V(G) \rightarrow \mathbb{P}$ such that $f:\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \rightarrow(2,3,2,2)$.

Figure 1.1: Example of Gregarious Path Decomposition

Each color represents a different class of $P_{3}{ }^{\prime}$ s.

1.1 History of the problem

Non-Gregarious Case:

In a recent paper [3], the complete solution is given for a decomposition of any complete multipartite graph into paths of lengths 3 and 4. Dr. Hoffman \& Dr. Billington introduce the problem "what if we try to solve the same problem with gregarious paths?"

Previous work in Gregarious Decompositions:

1. In [5], Dean G. Hoffman \& Elizabeth Billington give necessary and sufficient conditions to decompose a complete tripartite graph into gregarious 4-cycles. They use the notion of gregarious decompositions as "a cycle is said to be gregarious if its vertices occur in as many different parts of the multipartite graph as possible".
2. In [6], Dean G. Hoffman \& Elizabeth Billington give the necessary and sufficient conditions for gregarious 4-cycle decompositions of the complete equipartite graph $K_{n(m)}$ (with $n \geqslant 4$ parts of size m) whenever a 4-cycle decomposition (gregarious or not) is possible, and also of a complete multipartite graph in which all parts but one have the same size.
3. In [7], Benjamin R. Smith give necessary and sufficient conditions for the existence of a gregarious 5-cycle decomposition of the complete equipartite graph $K_{m(n)}$.
4. In [8], Elizabeth J. Billington, Benjamin R. Smith \& D.G. Hoffman give necessary and sufficient conditions for gregarious cycle decomposition of the complete equipartite graph $K_{n(m)}$ (with n parts, $n \geqslant 6$ or $n \geqslant 8$, of size m) into both 6 -cycles and 8-cycles.
5. In [9] Jung R. Cho \& Ronald J. Gould give necessary and sufficient conditions for the existence of decompositions of the complete multipartite graph $K_{n(2 t)}$ into gregarious 6 -cycles if $n \equiv 0,1,3$ or $4(\bmod 6)$. They used the method of a complete set of differences in \mathbb{Z}_{n}.
6. In [10], Jung R. Cho gives another proof of the problem of decomposing the complete multipartite graph $K_{n(2 t)}$ into gregarious 6 -cycles for the case of $n \equiv 0 \operatorname{or} 3(\bmod 6)$.
7. In [11], Benjamin R. Smith gives necessary and sufficient conditions for the existence of gregarious k - cycle decomposition of a complete equipartite graph, having n parts of size m, and either $n \equiv 0,1(\bmod k)$, or k is odd and $m \equiv 0(\bmod k)$.
8. In [12], Elizabeth J. Billington, Dean G. Hoffman \& Chris A. Rodger give necessary and sufficient conditions for decomposing a complete equipartite graph $K_{n(m)}$ with n parts of size m into n-cycles in such a way that each cycle meets each part of $K_{n(m)}$; that is, each cycle is said to be gregarious. Furthermore, they give gregarious decompositions which are also resolvable.
9. In [13], Saad I. El-Zanati, Narong Punnim \& Chris A. Rodger give necessary and sufficent conditions for the existence of Gregarious GDDs with Two Associate Classes having block size 3 .

Definition 1.2. Let $G=(V, E)$ be simple graph and $h: E \rightarrow \mathbb{P}$. Define $G^{[h]}$ on vertex set V as follows: if $u, v \in V$ and $u v=e \in E$ then put $h(e)$ edges in between u and v in $G^{[h]}$.

Example 1.3. Let's use the example 1.1 and define $h\left(v_{i} v_{j}\right):=f\left(v_{i}\right) f\left(v_{j}\right)$.

Figure 1.2: Example of G^{f} and $G^{[h]}$

In $G^{[h]}$, any P_{3} will be a gregarious path of length two.

Chapter 2

Tutte's f-Factor Theorem

2.1 Tutte's f-Factor Theorem

Definition 2.1. Let $G=(E, V)$ be a graph. G is called a k-regular graph if for every $v \in V$, $\operatorname{deg}(v)=k$ for some $k \in \mathbb{N}$.

Definition 2.2. Let $G=(V, E)$ be a graph, then

1. A factor of a graph G is a spanning subgraph of G.
2. A k-factor is a spanning k-regular subgraph.
3. Given a function $f: V(G) \rightarrow \mathbb{Z}$, an f-factor of a graph G is a spanning subgraph H such that $d_{H}(v)=f(v)$ for all $v \in V$.

Example 2.3. Let $G=(V, E)$ be a graph with $f:\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right) \rightarrow(3,1,1,2,3,2)$, then we can get the f-factor:

Figure 2.1: Example of an f-factor

Definition 2.4. If $f: V(G) \rightarrow \mathbb{Z}$, define $\bar{f}: V(G) \rightarrow \mathbb{Z}$ by $\bar{f}(v)=\operatorname{deg}_{G}(v)-f(v)$.

Example 2.5. From the previous example $\bar{f}:\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right) \rightarrow(0,2,2,1,1,2)$

Figure 2.2: Example of an \bar{f}-factor

Definition 2.6. Let $S, T \subseteq V(G)$, with $S \cap T=\emptyset$, then $\lambda(S, T)=$ the set of edges with one end in S and the other end in T.

Figure 2.3: Definition of $\lambda(S, T)$

Definition 2.7. $B=(S, T, U)$ is a G - triple if

1. $S, T, U \subseteq V(G)$,
2. $S \cup T \cup U=V(G)$
3. $S \cap T=S \cap U=T \cap U=\emptyset$

Figure 2.4: Example of a G-triple

Definition 2.8. Let $G=(V, E)$ be a graph and $f: V \rightarrow \mathbb{P}$ be a function.
Then define $f(S)=\sum_{s \in S} f(s)$ for any $S \subseteq V$.
Definition 2.9. By a component of B, we mean a component of $G \backslash(S \cup T)$.

Figure 2.5: Component of B

1. If c is a component of B, let $J(B, f, c)=f(c)+\lambda(c, T)$.
2. c is called odd or even according to if $J(B, f, c)$ is odd or even.
3. $k(B, f)=\#$ of odd components of B.

Theorem 2.10. [4] G has an f - factor, iff for each G - triple $B=(S, T, U)$

$$
k(B, f)+\lambda(S, T) \leqslant f(S)+\bar{f}(T)
$$

Figure 2.6: Tutte's f-factor Theorem

2.2 Applying Tutte's f-Factor Theorem

Definition 2.11. The line graph of a graph G, written $L(G)$, is the graph whose vertices are the edges of G, with ef $\in E(L(G))$ whenever e and f are different edges of G having at least one vertex of G in common.

Let $G=(V, E)$ be a simple graph and $f: V \rightarrow \mathbb{N}$, where $f(v)$ is a positive integer for each vertex v of G. Then, let $h: E \rightarrow \mathbb{P}$ where $h\left(v_{i} v_{j}\right):=f\left(v_{i}\right) f\left(v_{j}\right)$. In this way we can get G^{f} and $G^{[h]}$ with given G and f.

Figure 2.7: G^{f} and $G^{[h]}$

Now, if we have a gregarious decomposition of G^{f} into P_{3} 's (denoted by $G{ }^{f} \stackrel{g}{\hookrightarrow} P_{3}$), then getting decomposition of $G^{[h]}$ into P_{3} 's (denoted by $G^{[h]} \hookrightarrow P_{3}$) is trivial.
So $G^{f} \stackrel{g}{\hookrightarrow} P_{3} \Rightarrow G^{[h]} \hookrightarrow P_{3}$.
The opposite direction is not true, but it will still give us some of the necessary conditions for $G \stackrel{g}{\hookrightarrow} P_{3}$. We can apply Tutte's f-factor theorem to solve $G^{[h]} \hookrightarrow P_{3}$.

Figure 2.8: $G^{[h]}$ and $L^{[h]}(G)$

In $G^{[h]}$, assume that there are $e_{i j}=b_{i} b_{j}$ edges in between any pair of sets of vertices B_{i} and B_{j} where $\left|B_{i}\right|=b_{i}$ for any i. Firstly, get the line graph of $G, L(G)$, then blow the edges of $L(G)$ in such a way that for each vertex $e_{i j} \in V(L(G)), \operatorname{deg}\left(e_{i j}\right)$ is $b_{i} b_{j}$ in the new graph, $L^{[h]}(G)$. In $L^{[h]}(G)$, each edge will represent a P_{3} in $G^{[h]}$. For example, in figure 2.8, x_{1} represents the number of P_{3} 's passing through sets $B_{1} \rightarrow B_{2} \rightarrow B_{3}$ in $G^{[h]}$.

Therefore, if we find each x_{i}, we can find the P_{3} decomposition of $G^{[h]}$. To find the $x_{i}{ }^{\prime}$ s, we will use Tutte's f-factor theorem. Start with G, get $L(G)$, let M be a sufficiently large number, then get $L^{M}(G)$ by replacing every edge of $L(G)$ with M edges (fig. 2.9). So if we find an h-factor of $L^{M}(G)$ such that $h\left(e_{i j}\right)=b_{i} b_{j}$, then we can get $G^{[h]} \hookrightarrow P_{3}$.

Figure 2.9: $L^{M}(G)$

Theorem 2.12. $L^{M}(G)$ has an h-factor for all sufficiently large M, iff for each $L(G)$ - triple $B=(S, T, U)$ where T is independent and $\lambda(T, U)=0$,

$$
k(B, h)+h(T) \leqslant h(S)
$$

Proof. Let M be a sufficiently large number. From Tutte's f-factor theorem, for all $L(G)$-triples $B=(S, T, U)$:

$$
\begin{aligned}
k(B, h)+\lambda_{L^{M}}(S, T) & \leqslant h(S)+\bar{h}(T) \\
k(B, h)+M \lambda_{L}(S, T) & \leqslant h(S)+M \operatorname{deg}_{L}(T)-h(T) \\
k(B, h)+h(T)-h(S) & \leqslant M\left(\operatorname{deg}_{L}(T)-\lambda_{L}(S, T)\right)
\end{aligned}
$$

Here, $\operatorname{deg}_{L}(T) \geqslant \lambda_{L}(S, T)$ for any $L(G)$-triple since $\operatorname{deg}_{L}(T)=\sum_{t \in T} \operatorname{deg}(t)$ and $\lambda_{L}(S, T)=$ number of edges in between $S \& T$. In addition, when $\operatorname{deg}_{L}(T)>\lambda_{L}(S, T)$ the inequality holds since we can choose M sufficiently large and the left hand side of the
inequality doesn't depend on M. So the only problem is when $\operatorname{deg}_{L}(T)=\lambda_{L}(S, T)$. Which means T is independent and there is no edge in between $T \& U\left(\lambda_{L}(T, U)=0\right)$. So the condition we need to check for each $L(G)$-triple reduces to:

$$
k(B, h)+h(T) \leqslant h(S)
$$

when T is independent and $\lambda_{L}(T, U)=0$.

Example 2.13. Let G be the underlying graph in Figure 2.8. Let's find the necessary conditions for $G^{[h]}$ to have a gregarious P_{3} decomposition. We need to check $k(B, h)+h(T) \leqslant h(S)$
for all $L(G)$ triples $B=(S, T, U)$ where T is independent and $\lambda_{L}(T, U)=0$.

Figure 2.10: Example of how to apply Tutte's f-Factor Theorem
where $\operatorname{deg}\left(e_{i j}\right)=b_{i} b_{j}$. So we can get conditions:

1. $b_{1} b_{2}+b_{3} b_{4} \leqslant b_{2} b_{3}+b_{2} b_{4}$
2. $b_{1} b_{2} \leqslant b_{2} b_{3}+b_{2} b_{4}$
3. $b_{3} b_{4} \leqslant b_{2} b_{3}+b_{2} b_{4}$

Therefore the necessary condition to decompose $G^{[h]}$ into gregarious P_{3} 's is:
$b_{1} b_{2}+b_{3} b_{4} \leqslant b_{2} b_{3}+b_{2} b_{4}$
since 1 is stronger than 2 and 3 .

In summary, if we have a gregarious decomposition of G^{f} into P_{3} 's $\left(G \stackrel{f}{\hookrightarrow} P_{3}\right)$, then getting a decomposition of $G^{[h]}$ into P_{3} 's is trivial $\left(G^{[h]} \hookrightarrow P_{3}\right)$. So $G^{f} \stackrel{g}{\hookrightarrow} P_{3} \Rightarrow G^{[h]} \hookrightarrow P_{3}$.

The opposite direction is not true $\left(G^{[h]} \hookrightarrow P_{3} \nRightarrow G G^{f} \stackrel{g}{\hookrightarrow} P_{3}\right.$, see the following counter example), but it will still give us some of the necessary conditions for $G^{f} \stackrel{g}{\hookrightarrow} P_{3}$.

Example 2.14. Let $G=S_{3}$ be a tristar and define $f: V(G) \rightarrow \mathbb{P}$ by
$f:\left(a, v_{1}, v_{2}, v_{3}\right) \rightarrow(2,1,1,1)$.

Figure 2.11: Counter Example
G^{f} doesn't have a gregarious P_{3} decomposition since both vertices in the root have odd degree. On the other side, $G^{[h]}$ has a gregarious P_{3} decomposition, each color gives a different gregarious P_{3}.

Chapter 3

Parity Balanced Bipartite Graphs
Let $a, b \in \mathbb{P}$ and $e \in \mathbb{N}$, and let $\epsilon_{a}, \epsilon_{b} \in\{0,1\}$. We say the simple bipartite graph G on bipartition (A, B), where $|A|=a$ and $|B|=b$, with e edges, is parity balanced with parameters $\left(a, b, e, \epsilon_{a}, \epsilon_{b}\right)$ if
$\forall u \in A, \operatorname{deg}(u) \equiv \epsilon_{a}(\bmod 2)$, and further $\forall v \in A,|\operatorname{deg}(u)-\operatorname{deg}(v)| \leqslant 2$,
$\forall u \in B, \operatorname{deg}(u) \equiv \epsilon_{b}(\bmod 2)$, and further $\forall v \in B,|\operatorname{deg}(u)-\operatorname{deg}(v)| \leqslant 2$.
We will give necessary and sufficient conditions on the parameters $\left(a, b, e, \epsilon_{a}, \epsilon_{b}\right)$ for the existence of such graphs.

3.1 Introduction

All the graphs are simple, i.e., they have no loops or multiple edges. Let \mathbb{P} be the set of positive integers and \mathbb{N} be the set of non-negative integers.

Definition 3.1. The integer vector $\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ is said to be balanced if $\left|x_{i}-x_{j}\right| \leqslant 1$ for all $1 \leqslant i, j \leqslant t$. Two vectors are equivalent if one can be obtained from the other by permuting the entries.

Definition 3.2. Let G be a bipartite graph on bipartition (A, B). If for all $v \in A, \operatorname{deg}_{G}(v)=$ d_{1} and for all $w \in B, \operatorname{deg}_{G}(w)=e_{1}$, then we will call G a $\left(d_{1}, e_{1}\right)$ - regular bipartite graph.

The following lemmas are proved in [1], p. 399.
Lemma 3.3. Let v and w be balanced vectors with the same number of coordinates. Then, for some vector w^{\prime} equivalent to $w, v+w^{\prime}$ is balanced.

Lemma 3.4. Let $a, b \in \mathbb{P}$, and let $e \leqslant a b$ be a non-negative integer. Then there is a bipartite graph G on bipartition (A, B) with both $\left(\operatorname{deg}_{G}(v) \mid v \in A\right)$ and $\left(d e g_{G}(y) \mid y \in B\right)$ balanced.

3.2 Bipartite Graphs with Four Degrees

The theorems we will be proving here can be proven by using the Ryser-Gale theorem ([2], p. 185), but the proof is much harder.

Theorem 3.5. Let $a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, e_{1}, e_{2}$ be non-negative integers. Then:
There is a simple bipartite graph on bipartition (A, B), where A consists of a_{1} vertices of degree d_{1} and a_{2} vertices of degree d_{2}, and B consists of b_{1} vertices of degree e_{1} and b_{2} vertices of degree e_{2}, if and only if

$$
(*) a_{1} d_{1}+a_{2} d_{2}=b_{1} e_{1}+b_{2} e_{2}
$$

1. $a_{1} d_{1} \leqslant a_{1} b_{1}+b_{2} e_{2}$, or, equivalently, $b_{1} e_{1} \leqslant a_{1} b_{1}+a_{2} d_{2}$
2. $a_{1} d_{1} \leqslant a_{1} b_{2}+b_{1} e_{1}$, or, equivalently, $b_{2} e_{2} \leqslant a_{1} b_{2}+a_{2} d_{2}$
3. $b_{1} e_{1} \leqslant a_{2} b_{1}+a_{1} d_{1}$, or, equivalently, $a_{2} d_{2} \leqslant a_{2} b_{1}+b_{2} e_{2}$
4. $b_{2} e_{2} \leqslant a_{2} b_{2}+a_{1} d_{1}$, or, equivalently, $a_{2} d_{2} \leqslant a_{2} b_{2}+b_{1} e_{1}$
5. either $a_{1}=0$, or $d_{1} \leqslant b_{1}+b_{2}$
6. either $a_{2}=0$, or $d_{2} \leqslant b_{1}+b_{2}$
7. either $b_{1}=0$, or $e_{1} \leqslant a_{1}+a_{2}$
8. either $b_{2}=0$, or $e_{2} \leqslant a_{1}+a_{2}$

Necessity:

Proof. Each side of $(*)$ counts the total number of edges, hence they must be equal. Conditions 5-8 come from the fact that maximum degree of any vertex is less than the number of vertices in the other part. Now for conditions 1-4:

Figure 3.1: Bipartite Graph with Four Degrees

For $i=1,2$, let A_{i} (resp. B_{i}) be the vertices of degree $d_{i}\left(\right.$ resp. $\left.e_{i}\right)$ in A_{i} (resp. B_{i}). In addition, let's assume that there are x edges in between vertices of A_{1} and B_{1}. If we look at the other pairs, we will get:

	B_{1}	B_{2}
A_{1}	x	$a_{1} d_{1}-x$
		$a_{2} d_{2}-b_{1} e_{1}+x$
A_{2}	$b_{1} e_{1}-x$	$=$
		$b_{2} e_{2}-a_{1} d_{1}+x$

Table 3.1: Distribution of the edges

Using table 3.1, we can get the following inequalities:

$$
\begin{array}{lcl}
0 \leqslant & x & \leqslant a_{1} b_{1} \\
0 \leqslant & a_{1} d_{1}-x & \leqslant a_{1} b_{2} \\
0 \leqslant & b_{1} e_{1}-x & \leqslant a_{2} b_{1} \\
0 \leqslant & a_{2} d_{2}-b_{1} e_{1}+x & \leqslant a_{2} b_{2}
\end{array}
$$

So, we can get:

$$
\begin{aligned}
& 0 \leqslant x \leqslant a_{1} b_{1} \\
& a_{1} d_{1}-a_{1} b_{2} \leqslant x \leqslant a_{1} d_{1} \\
& b_{1} e_{1}-a_{2} b_{1} \leqslant x \leqslant b_{1} e_{1} \\
& b_{1} e_{1}-a_{2} d_{2} \leqslant x \leqslant a_{2} b_{2}-a_{2} d_{2}+b_{1} e_{1}
\end{aligned}
$$

We can get sixteen inequalities on the variables $\left(a_{1}, a_{2}, b_{1}, b_{2}, d_{1}, d_{2}, e_{1}, e_{2}\right)$ from above since we have x in the middle of all of the four inequalities. If we use the left side of the first inequality and right sides of the all them, then we can get:

$$
\begin{array}{ll}
0 \leqslant & a_{1} b_{1} \\
0 \leqslant & a_{1} d_{1} \\
0 \leqslant & b_{1} e_{1} \\
0 \leqslant & a_{2} b_{2}-a_{2} d_{2}+b_{1} e_{1} \Rightarrow a_{2} d_{2} \leqslant a_{2} b_{2}+b_{1} e_{1}, \text { cond. } 4 \checkmark
\end{array}
$$

From the second one:

$$
\begin{array}{lll}
a_{1} d_{1}-a_{1} b_{2} \leqslant & a_{1} b_{1} & \Rightarrow d_{1} \leqslant b_{1}+b_{2} \\
a_{1} d_{1}-a_{1} b_{2} \leqslant & a_{1} d_{1} & \Rightarrow 0 \leqslant a_{1} b_{1} \\
a_{1} d_{1}-a_{1} b_{2} \leqslant & b_{1} e_{1} & \Rightarrow a_{1} d_{1} \leqslant a_{1} b_{2}+b_{1} e_{1}, \text { cond. } 2 \checkmark \\
a_{1} d_{1}-a_{1} b_{2} \leqslant & a_{2} b_{2}-a_{2} d_{2}+b_{1} e_{1} & \Rightarrow a_{1} d_{1}+a_{2} d_{2} \leqslant a_{2} b_{2}+b_{1} e_{1}+a_{1} b_{2}
\end{array}
$$

If we use $(*)$, we will get $a_{1} d_{1}+a_{2} d_{2}=b_{1} e_{1}+b_{2} e_{2} \leqslant a_{2} b_{2}+b_{1} e_{1}+a_{1} b_{2}$, so this reduces to $e_{1} \leqslant a_{1}+a_{2}$.

From the third one:

$$
\begin{array}{lll}
b_{1} e_{1}-a_{2} b_{1} \leqslant & a_{1} b_{1} & \Rightarrow e_{1} \leqslant a_{1}+a_{2} \\
b_{1} e_{1}-a_{2} b_{1} \leqslant & a_{1} d_{1} & \Rightarrow b_{1} e_{1} \leqslant a_{2} b_{1}+a_{1} d_{1}, \text { cond. } 3 \checkmark \\
b_{1} e_{1}-a_{2} b_{1} \leqslant & b_{1} e_{1} & \Rightarrow 0 \leqslant a_{2} b_{1} \\
b_{1} e_{1}-a_{2} b_{1} \leqslant & a_{2} b_{2}-a_{2} d_{2}+b_{1} e_{1} & \Rightarrow d_{2} \leqslant b_{1}+b_{2}
\end{array}
$$

From the fourth one:

$$
\begin{array}{lll}
b_{1} e_{1}-a_{2} d_{2} \leqslant & a_{1} b_{1} & \Rightarrow b_{1} e_{1} \leqslant a_{1} b_{1}+a_{2} d_{2}, \text { cond. } 1 \checkmark \\
b_{1} e_{1}-a_{2} d_{2} \leqslant & a_{1} d_{1} & \Rightarrow b_{1} e_{1} \leqslant a_{1} d_{1}+a_{2} d_{2} \\
b_{1} e_{1}-a_{2} d_{2} \leqslant & b_{1} e_{1} & \Rightarrow 0 \leqslant a_{2} d_{2} \\
b_{1} e_{1}-a_{2} d_{2} \leqslant & a_{2} b_{2}-a_{2} d_{2}+b_{1} e_{1} & \Rightarrow 0 \leqslant a_{2} b_{2}
\end{array}
$$

In the second equation, if we use $a_{1} d_{1}+a_{2} d_{2}=b_{1} e_{1}+b_{2} e_{2}$, then we will get $b_{1} e_{1} \leqslant b_{1} e_{1}+b_{2} e_{2} \Rightarrow 0 \leqslant b_{2} e_{2}$.

Sufficiency:

Proof. Assume there is bipartite graph (A, B) satisfying the necessary conditions and there are x edges in between the vertices of A_{1} and B_{1} like in figure 3.1. Therefore, we can find the number of edges in between other vertices using the remaining edges like in table 3.1.

Now using the construction in [1] on pg. 399,

1. distribute x edges on a_{1} vertices with balanced degrees.
2. distribute $a_{1} d_{1}-x$ on a_{1} vertices with balanced degrees.

So we will get two balanced vectors with the same number of entries.

Balanced Distrubution of $a_{1} d_{1}-x$ edges on a_{1} vertices

Figure 3.2: Adding balanced distributions

At the end, we will have one of these three cases from figure 3.2 and all of them will still have balanced distributions since both distributions were balanced to begin with. However, the first two cases are impossible, since we have a balanced distribution of $a_{1} d_{1}$ edges on a_{1} vertices, this means that each vertex will be incident with d_{1} edges. In the same manner we can prove that we can distribute the remaining edges with the desired degrees.

3.3 Parity balanced Bipartite Graphs

Definition 3.6. Let $a, b \in \mathbb{P}$ and $e \in \mathbb{N}$, and let $\epsilon_{a}, \epsilon_{b} \in\{0,1\}$. We say the bipartite graph G with e edges on bipartition (A, B), with $|A|=a$ and $|B|=b$, is parity balanced with parameters $\left(a, b, e, \epsilon_{a}, \epsilon_{b}\right)$ if

1. $\forall u \in A, \operatorname{deg}(u) \equiv \epsilon_{a}(\bmod 2)$ and further $\forall v \in A,|\operatorname{deg}(u)-\operatorname{deg}(v)| \leqslant 2$.
2. $\forall u \in B, \operatorname{deg}(u) \equiv \epsilon_{a}(\bmod 2)$ and further $\forall v \in B,|\operatorname{deg}(u)-\operatorname{deg}(v)| \leqslant 2$.

Example 3.7. Let $|A|=a=6,|B|=b=5, e=14, \epsilon_{a}=1$ and $\epsilon_{b}=0$.

Figure 3.3: Example of a parity balanced bipartite graph

Definition 3.8. If A and B are disjoint sets, we denote $K_{A, B}$ to be the complete bipartite graph on bipartition (A, B).

Definition 3.9. Let $K_{A, B}$ be a complete bipartite graph on bipartition (A, B). A bipartite complement of a bipartite graph G on bipartition (A, B) with edge set E is the bipartite graph G^{\prime} on bipartition (A, B) with the edge set E^{\prime} where $E^{\prime}=E\left(K_{A, B}\right) \backslash E$.

Fact 3.10 . If G is a parity balanced bipartite graph with parameters $\left(a, b, e, \epsilon_{a}, \epsilon_{b}\right)$, then G^{\prime} is a parity balanced bipartite graph with parameters $\left(a, b, e^{\prime}=a b-e, \epsilon_{a}^{\prime}, \epsilon_{b}^{\prime}\right)$ where $\epsilon_{a}+\epsilon_{a}^{\prime} \equiv b(\bmod 2)$ and $\epsilon_{b}+\epsilon_{b}^{\prime} \equiv a(\bmod 2)$

Example 3.11. The bipartite complement of G is G^{\prime} with parameters $\left(a=6, b=5, e^{\prime}=\right.$ $\left.a b-14=30-14=16, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=0\right):$

Figure 3.4: Example of a bipartite complement
where $\epsilon_{a}+\epsilon_{a}^{\prime}=1+0=1 \equiv 5(\bmod 2)$ and $\epsilon_{b}+\epsilon_{b}^{\prime}=0+0 \equiv 6(\bmod 2)$.

Theorem 3.12. Let $a, b \in \mathbb{P}, e \in \mathbb{N}, \epsilon_{a}, \epsilon_{b}, \epsilon_{a}^{\prime}, \epsilon_{b}^{\prime} \in\{0,1\}$, $\epsilon_{a}+\epsilon_{a}^{\prime} \equiv b(\bmod 2), \epsilon_{b}+\epsilon_{b}^{\prime} \equiv a(\bmod 2)$.

Then, there is a parity balanced bipartite graph G on bipartition (A, B) with parameters $\left(a, b, e, \epsilon_{a}, \epsilon_{b}\right)$ if and only if
$\epsilon_{a} a \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a, \epsilon_{b} b \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b$, and all of these are congruent (mod 2), with the following exceptions:

e	a	b	ϵ_{a}	ϵ_{a}^{\prime}	ϵ_{b}	ϵ_{b}^{\prime}
2	2	2	0	0	0	0
	2	3	0	1	0	0
	3	2	0	0	0	1
	odd $\geqslant 3$	odd $\geqslant 3$	0	1	0	1
	odd $\geqslant 3$	even $\geqslant 3$	0	0	0	1
			0	0	1	0
	even $\geqslant 3$	odd $\geqslant 3$	0	1	0	0
			1	0	0	0
	even $\geqslant 3$	even $\geqslant 3$	1	1	1	1
			0	0	0	0
$a b-2$	2	2	0	0	0	0
	2	3	1	0	0	0
	3	2	0	0	1	0
	odd $\geqslant 3$	odd $\geqslant 3$	1	0	1	0
	odd $\geqslant 3$	even $\geqslant 3$	0	0	1	0
			0	0	0	1
	even $\geqslant 3$	odd $\geqslant 3$	1	0	0	0
			0	1	0	0
	even $\geqslant 3$	even $\geqslant 3$	1	1	1	1
			0	0	0	0

Table 3.2: Exceptions for Theorem 3.12

Necessity:

Proof. For any $u \in A$ we have $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G^{\prime}}(u)=b$ so $d e g_{G}(u)+\operatorname{deg}_{G^{\prime}}(u) \equiv b(\bmod 2)$ where $\operatorname{deg}_{G}(u) \equiv \epsilon_{a}(\bmod 2)$ and $\operatorname{deg}_{G^{\prime}}(u) \equiv \epsilon_{a}^{\prime}(\bmod 2)$ by definition, and $\epsilon_{a}+\epsilon_{a}^{\prime} \equiv b$ $(\bmod 2)$ follows. In the same way, we can get $\epsilon_{b}+\epsilon_{b}^{\prime} \equiv a(\bmod 2)$.

To get $\epsilon_{a} a \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a$ and $\epsilon_{b} b \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b$, if one of $\epsilon_{a}, \epsilon_{a}^{\prime}, \epsilon_{b}, \epsilon_{b}^{\prime}$ is 1 , then we have to have enough edges in either G or G^{\prime}.

Finally, to get $\epsilon_{a} a, e, a b-\epsilon_{a}^{\prime} a, \epsilon_{b} b, a b-\epsilon_{b}^{\prime} b$ all congruent $(\bmod 2)$;
$e=\sum_{u \in A} \operatorname{deg}_{G}(u) \equiv a \epsilon_{a}(\bmod 2)$, and
$\epsilon_{a}+\epsilon_{a}^{\prime} \equiv b(\bmod 2) \Rightarrow a \epsilon_{a}+a \epsilon_{a}^{\prime} \equiv a b(\bmod 2) \Rightarrow a \epsilon_{a} \equiv a b-a \epsilon_{a}^{\prime}(\bmod 2)$.
In the same way we can get the other conditions. For the exceptions, it is easy to prove that there is no parity balanced bipartite graph with parameters given in table 4.1. Figure 3.6 shows all possible parity balanced bipartite graphs with 2 edges and and the ones with $a b-2$ edges will be bipartite complement of these graphs.

Sufficiency:

Proof. We can use theorem 3.5 for this proof. Define $n, m, q_{a}, r_{a}, q_{b}, r_{b} \in \mathbb{N}$ by,
$e=2 n+\epsilon_{a} a=2 m+\epsilon_{b} b$
$n=a q_{a}+r_{a}, m=b q_{b}+r_{b}$
$0 \leqslant r_{a} \leqslant a-1,0 \leqslant r_{b} \leqslant b-1$.
So $e=2 a q_{a}+2 r_{a}+\epsilon_{a} a=2 b q_{b}+2 r_{b}+\epsilon_{b} b$.
$q_{a}=\frac{e-\epsilon_{a} a-2 r_{a}}{2 a}=\frac{e-\epsilon_{a} a}{2 a}-\frac{r_{a}}{a}=\left\lfloor\frac{e-\epsilon_{a} a}{2 a}\right\rfloor$. In the same way, $q_{b}=\left\lfloor\frac{e-\epsilon_{b} b}{2 b}\right\rfloor$.
Now let's translate this problem into"bipartite graphs with four degrees" since we already know NASCs for those graphs (figure 3.5).

Figure 3.5: Translating PBBG to a BGwFDs

Note that $(*)$ holds since:
$\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right)+r_{a}\left(2 q_{a}+\epsilon_{a}\right)=\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}\right)$
Case 1: Assume $a_{2}=0=b_{2}$, then we will get a (d_{1}, e_{1})-regular bipartite graph. Since $a_{2}=0$, and $b_{2}=0$, we only need to prove 1,5 and 7 in theorem 3.5. Let's start proving conditions 5 and 7 which say:

$$
\begin{aligned}
d_{1} & \leqslant b_{1}+b_{2} \\
2 q_{a}+\epsilon_{a} & \leqslant b-r_{b}+r_{b}=b
\end{aligned}
$$

and

$$
\begin{aligned}
e_{1} & \leqslant a_{1}+a_{2} \\
2 q_{b}+\epsilon_{b} & \leqslant a-r_{a}+r_{a}=a
\end{aligned}
$$

So for 5 if we prove $2 q_{a}+\epsilon_{a} \leqslant b$, we are done. Using $2 q_{a}=\frac{e-\epsilon_{a} a-2 r_{a}}{a}=\frac{e}{a}-\epsilon_{a}-\frac{2 r_{a}}{a}$; we can get $2 q_{a}+\epsilon_{a}=\frac{e}{a}-\epsilon_{a}-\frac{2 r_{a}}{a}+\epsilon_{a}=\frac{e}{a}-\frac{2 r_{a}}{a} \leqslant b-\frac{2 r_{a}}{a}<b$. We can prove 7 in the same way.

Now, let's prove 1:

$$
\begin{aligned}
a_{1} d_{1} & \leqslant a_{1} b_{1}+b_{2} e_{2} \\
a_{1} d_{1} & \leqslant a_{1} b_{1} \text { since } b_{2}=0 \\
d_{1} & \leqslant b_{1} \\
2 q_{a}+\epsilon_{a} & \leqslant b \text { and we just proved this in } 5
\end{aligned}
$$

Case 2: Assume $a_{2}=0$ and $b_{2} \neq 0\left(a_{2} \neq 0\right.$ and $b_{2}=0$ is just the symmetric case $)$. Since $a_{2}=0$, we only need to prove $1,2,5,7$ and 8 in theorem 3.5 .5 and 7 are the same as in Case 1. 1 and 2 will reduce to 7 and 8 , respectively since $a_{2}=0$. So just proving 8 is enough which says:

$$
\begin{aligned}
e_{2} & \leqslant a_{1}+a_{2} \\
2 q_{b}+\epsilon_{b}+2 & \leqslant a_{1}=a \text { since } a_{2}=0
\end{aligned}
$$

So $2 q_{b}=\frac{e}{b}-\epsilon_{b}-\frac{2 r_{b}}{b}$, using this:
$2 q_{b}+\epsilon_{b}+2=\frac{e}{b}-\epsilon_{b}-\frac{2 r_{b}}{b}+\epsilon_{b}+2=\frac{e}{b}-\frac{2 r_{b}}{b}+2 \leqslant a-\epsilon_{b}^{\prime}-\frac{2 r_{b}}{b}+2<a+2$.
The only problem is when $a=2 q_{b}+\epsilon_{b}+1$, then $\epsilon_{b}+\epsilon_{b}^{\prime} \equiv a=2 q_{b}+\epsilon_{b}+1(\bmod 2)$.
So $\epsilon_{b}^{\prime}=1$. In this case:
$2 q_{b}+\epsilon_{b}+2=\frac{e}{b}-\epsilon_{b}-\frac{2 r_{b}}{b}+\epsilon_{b}+2=\frac{e}{b}-\frac{2 r_{b}}{b}+2 \leqslant a-\epsilon_{b}^{\prime}-\frac{2 r_{b}}{b}+2<a+1$.
Case 3: We can assume $a_{2} \neq 0 \neq b_{2}$. Let's start proving conditions 5 through 8 in theorem
3.5. So 5 and 6 say:

$$
\begin{aligned}
d_{1} & \leqslant b_{1}+b_{2} \\
2 q_{a}+\epsilon_{a} & \leqslant b-r_{b}+r_{b}=b
\end{aligned}
$$

and

$$
\begin{aligned}
d_{2} & \leqslant b_{1}+b_{2} \\
2 q_{a}+\epsilon_{a}+2 & \leqslant b-r_{b}+r_{b}=b
\end{aligned}
$$

If we prove $2 q_{a}+\epsilon_{a}+2 \leqslant b$, this will cover both cases. However, this is the same as (8) in Case 2, just switch a and b. We can prove (7) and (8) in the same way.

Now let's prove conditions 1 through 4 of theorem 3.5.
For 1, we need to prove:

$$
\begin{aligned}
a_{1} d_{1} & \leqslant a_{1} b_{1}+b_{2} e_{2} \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right)\left(b-r_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right)
\end{aligned}
$$

First, suppose $r_{b} \leqslant b-2 q_{a}-\epsilon_{a}$, then we get:

$$
\begin{aligned}
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right)\left(b-r_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}-b+r_{b}\right) & \leqslant r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
\left(a-r_{a}\right)\left(r_{b}-\left(b-2 q_{a}-\epsilon_{a}\right)\right) & \leqslant r_{b}\left(2 q_{b}+\epsilon_{b}+2\right)
\end{aligned}
$$

So $r_{b}-\left(b-2 q_{a}-\epsilon_{a}\right) \leqslant 0$ and the inequality is automatically satisfied since $a-r_{a}>0, r_{b}>$ $0,2 q_{b}+\epsilon_{b}+2>0$.

So we can assume $r_{b} \geqslant b-2 q_{a}-\epsilon_{a}+1$. In addition, recall that $e=2 n+\epsilon_{a} a=2 a q_{a}+2 r_{a}+\epsilon_{a} a$.

Need to prove:

$$
\begin{aligned}
a_{1} d_{1} & \leqslant a_{1} b_{1}+b_{2} e_{2} \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right)\left(b-r_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
2 a q_{a}+a \epsilon_{a}-r_{a}\left(2 q_{a}+\epsilon_{a}\right) & \leqslant a b-a r_{b}-b r_{a}+r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
2 a q_{a}+a \epsilon_{a}-r_{a}\left(2 q_{a}+\epsilon_{a}\right)+2 r_{a}-2 r_{a} & \leqslant a b-a r_{b}-b r_{a}+r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
\left(2 a q_{a}+a \epsilon_{a}+2 r_{a}\right)-r_{a}\left(2 q_{a}+\epsilon_{a}+2\right) & \leqslant a b-a r_{b}-b r_{a}+r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right)
\end{aligned}
$$

$e+r_{a}\left(b-\left(2 q_{a}+\epsilon_{a}+2\right)\right)+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right)-r_{a} r_{b} \leqslant a b$

So if we show $e+r_{a}\left(b-\left(2 q_{a}+\epsilon_{a}+2\right)\right)+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right)-r_{a} r_{b} \leqslant a b$, we are done.
Using $r_{b} \geqslant b-2 q_{a}-\epsilon_{a}+1$, we can get $r_{a}\left(b-\left(2 q_{a}+\epsilon_{a}+2\right)\right)<r_{a} r_{b}$. So
$e+r_{a}\left(b-\left(2 q_{a}+\epsilon_{a}+2\right)\right)+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right)-r_{a} r_{b}<e+r_{a} r_{b}+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right)-r_{a} r_{b}$

$$
=e+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right)
$$

where we can use, $e=\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right)$.

$$
\begin{aligned}
& =e+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right) \\
& =\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right)+r_{b}\left(a-\left(2 q_{b}+\epsilon_{b}+2\right)\right) \\
& =\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+a r_{b}
\end{aligned}
$$

here using the fact that $2 q_{b}+\epsilon_{b} \leqslant a$ (which we just proved in 7), we will get:

$$
\begin{aligned}
& =\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+a r_{b} \\
& \quad<\left(b-r_{b}\right) a+a r_{b}=a b
\end{aligned}
$$

Now let's prove 2:

$$
\begin{aligned}
a_{1} d_{1} & \leqslant a_{1} b_{2}+b_{1} e_{1} \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right) r_{b}+\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)
\end{aligned}
$$

First suppose $2 q_{a}+\epsilon_{a} \leqslant r_{b}$, then we get:

$$
\begin{aligned}
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right) r_{b}+\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right) \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}-r_{b}\right) & \leqslant\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right) .
\end{aligned}
$$

So $2 q_{a}+\epsilon_{a}-r_{b} \leqslant 0$ and the inequality is automatically satisfied since $a-r_{a}>0,\left(b-r_{b}\right)>$ $0,2 q_{b}+\epsilon_{b} \geq 0$.

We can assume $2 q_{a}+\epsilon_{a}+1 \geqslant r_{b}$. We need to prove:

$$
\begin{aligned}
a_{1} d_{1} & \leqslant a_{1} b_{2}+b_{1} e_{1} \\
\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) & \leqslant\left(a-r_{a}\right) r_{b}+\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right) \\
2 a q_{a}+a \epsilon_{a}-r_{a}\left(2 q_{a}+\epsilon_{a}\right) & \leqslant a r_{b}-r_{a} r_{b}+2 b q_{b}+b \epsilon_{b}-r_{b}\left(2 q_{b}+\epsilon_{b}\right) \\
2 a q_{a}+a \epsilon_{a}-r_{a}\left(2 q_{a}+\epsilon_{a}\right)+2 r_{a}-2 r_{a} & \leqslant a r_{b}-r_{a} r_{b}+2 b q_{b}+b \epsilon_{b}-r_{b}\left(2 q_{b}+\epsilon_{b}\right)+2 r_{b}-2 r_{b} \\
\left(2 a q_{a}+a \epsilon_{a}+2 r_{a}\right)-r_{a}\left(2 q_{a}+\epsilon_{a}+2\right) & \leqslant a r_{b}-r_{a} r_{b}+\left(2 b q_{b}+b \epsilon_{b}+2 r_{b}\right)-r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
e-r_{a}\left(2 q_{a}+\epsilon_{a}+2\right) & \leqslant a r_{b}-r_{a} r_{b}+e-r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant a r_{b}+r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)
\end{aligned}
$$

If we show $r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \leqslant a r_{b}+r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)$, then we have shown (2). Using $2 q_{a}+\epsilon_{a}+1 \geqslant r_{b}$ we can get $r_{a} r_{b}<r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)$. In addition, we can use the previously
proved fact in 8 that $2 q_{b}+\epsilon_{b}+2 \leqslant a$. So

$$
\begin{aligned}
r_{a} r_{b}+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) \\
& \leqslant r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)+r_{b} a \\
& =a r_{b}+r_{a}\left(2 q_{a}+\epsilon_{a}+2\right)
\end{aligned}
$$

The proof of 3 is exactly the same as the proof of 2 , if we switch parts $A \longleftrightarrow B$.
Now, let's prove the last condition, 4.
We need to prove $b_{2} e_{2} \leqslant a_{2} b_{2}+a_{1} d_{1}$, or, equivalently, $a_{2} d_{2} \leq a_{2} b_{2}+b_{1} e_{1}$.

$$
\begin{aligned}
b_{2} e_{2} & \leqslant a_{2} b_{2}+a_{1} d_{1} \\
r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant r_{a} r_{b}+\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) \\
r_{b}\left(2 q_{b}+\epsilon_{b}+2-r_{a}\right) & \leqslant\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right)
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
a_{2} d_{2} & \leqslant a_{2} b_{2}+b_{1} e_{1} \\
r_{a}\left(2 q_{a}+\epsilon_{a}+2\right) & \leqslant r_{a} r_{b}+\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right) \\
r_{a}\left(2 q_{a}+\epsilon_{a}+2-r_{b}\right) & \leqslant\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right) .
\end{aligned}
$$

First, assume $2 q_{b}+\epsilon_{b}+2 \leqslant r_{a}$ or $2 q_{a}+\epsilon_{a}+2 \leqslant r_{b}$.
Then $b_{2} e_{2} \leqslant a_{2} b_{2}+a_{1} d_{1}$ or $a_{2} d_{2} \leq a_{2} b_{2}+b_{1} e_{1}$ will be automatically satisfied.
So we can assume $2 q_{b}+\epsilon_{b}+2>r_{a}$ and $2 q_{a}+\epsilon_{a}+2>r_{b} \Rightarrow 2 q_{a}+\epsilon_{a}+1 \geqslant r_{b}$.
If we turn back to the problem and use the fact, which follows from 8 , that $2 q_{b}+\epsilon_{b}+2 \leqslant a$,
then:

$$
\begin{aligned}
r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant r_{b} a \\
& =r_{a} r_{b}+\left(a-r_{a}\right) r_{b} \\
& \leqslant r_{a} r_{b}+\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}+1\right)
\end{aligned}
$$

So the only problem is when $r_{b}=2 q_{a}+\epsilon_{a}+1$. Similarly, we can assume $r_{a}=2 q_{b}+\epsilon_{b}+1$. Need to show:

$$
\begin{aligned}
b_{2} e_{2} & \leqslant a_{2} b_{2}+a_{1} d_{1} \\
r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant r_{a} r_{b}+\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) \\
\left(2 q_{a}+\epsilon_{a}+1\right)\left(2 q_{b}+\epsilon_{b}+2\right) & \leqslant\left(2 q_{a}+\epsilon_{a}+1\right)\left(2 q_{b}+\epsilon_{b}+1\right)+\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) \\
2 q_{a}+\epsilon_{a}+1 & \leqslant\left(a-r_{a}\right)\left(2 q_{a}+\epsilon_{a}\right) \\
1 & \leqslant\left(a-r_{a}-1\right)\left(2 q_{a}+\epsilon_{a}\right) \\
1 & \leqslant\left(a-r_{a}-1\right)\left(r_{b}-1\right)
\end{aligned}
$$

Here $r_{b} \geqslant 1$ since $r_{a} \neq 0 \neq r_{b}$. In this case both are positive and we can assume $a-r_{a} \geqslant 1$ since $0 \leqslant r_{a}<a$. Therefore, we only need to prove $r_{b} \neq 1$ or $a-r_{a} \neq 1$. First, suppose $r_{b}=1$, then $r_{b}=2 q_{a}+\epsilon_{a}+1=1$ so $q_{a}=0$ and $\epsilon_{a}=0$.

$$
\begin{aligned}
e=2 a q_{a}+2 r a+a \epsilon_{a} & =2 b q_{b}+2 r_{b}+b \epsilon_{b} \\
2 r_{a} & =2 b q_{b}+2+b \epsilon_{b} \\
2\left(2 q_{b}+\epsilon_{b}+1\right) & =b\left(2 q_{b}+\epsilon_{b}\right)+2 \\
2\left(2 q_{b}+\epsilon_{b}\right) & =b\left(2 q_{b}+\epsilon_{b}\right) \\
0 & =(b-2)\left(2 q_{b}+\epsilon_{b}\right) \\
0 & =(b-2)\left(r_{a}-1\right)
\end{aligned}
$$

Therefore, in this case, either $b=2$ or $r_{a}=1$. If $r_{a}=1$, then $e=2 r_{a}=2$ and this is not possible since when $e=2$ there are only two bipartite graphs with 2 edges (see figure 3.6) and both of them have either $b_{2}=0$ or $a_{2}=0=b_{2}$, which contradicts the assumption $a_{2} \neq 0 \neq b_{2}$.

We can get the exceptions in table 4.1 with parameters $\left(a, b, e=2, \epsilon_{a}, \epsilon_{a}^{\prime}, \epsilon_{b}, \epsilon_{b}^{\prime}\right)$ easily since no other bipartite graphs exist with 2 edges but the ones in figure 3.6.

Figure 3.6: Bipartite graphs with 2 edges

Now, assume $b=2$ where $r_{b}=1$ and $r_{a} \geqslant 2$.

Figure 3.7: Exception for $b=2$

There are only two vertices in B and $d_{2}=2$ which means every vertex in a_{2} will be adjacent to the vertices in B. This implies $b_{1}=2$, and $b_{2}=0$, and contradicts the assumption $b_{2} \neq 0$. So we finished proving the case where $r_{b} \neq 1$. Therefore we can assume $r_{b} \geq 2$.

Now assume $a=r_{a}+1$:
If $r_{a}=1$, then $a=2$ and it will be the same case as $b=2$. Assume $r_{a} \geqslant 2$, so $a \geqslant 3$ where $r_{a}=2 q_{b}+\epsilon_{b}+1=a-1$.

$$
\begin{aligned}
e & =2 b q_{b}+2 r_{b}+b \epsilon_{b} \\
& =b\left(2 q_{b}+\epsilon_{b}\right)+2 r_{b} \\
& =b(a-2)+2 r_{b} \\
& =a b-2\left(b-r_{b}\right)
\end{aligned}
$$

On the other side,

$$
\begin{aligned}
e=2 b q_{b}+2 r_{b}+b \epsilon_{b} & =2 a q_{a}+2 r_{a}+a \epsilon_{a} \\
\left(b-r_{b}\right)\left(2 q_{b}+\epsilon_{b}\right)+r_{b}\left(2 q_{b}+\epsilon_{b}+2\right) & =2 a q_{a}+2(a-1)+a \epsilon_{a} \\
\left(b-r_{b}\right)(a-2)+a r_{b} & =a\left(2 q_{a}+\epsilon_{a}+2\right)-2 \\
\left(b-r_{b}\right)(a-2)+a r_{b} & =a\left(r_{b}+1\right)-2 \\
\left(b-r_{b}\right)(a-2)+a r_{b} & =a r_{b}+a-2 \\
\left(b-r_{b}\right)(a-2) & =a-2 \\
\left(b-r_{b}-1\right)(a-2) & =0
\end{aligned}
$$

We know $a \geqslant 3, b=r_{b}+1$, which means $e=a b-2\left(b-r_{b}\right)=a b-2$, which is the bipartite complement of the exception $e=2$. So we proved $r_{b} \neq 1$ or $a-r_{a} \neq 1$. This completes the proof.

Chapter 4

Results

4.1 Complete Multipartite Graphs

4.1.1 Complete Tripartite Graph

Theorem 4.1. For a complete tripartite graph $K(A, B, C)$ with $|A|=a,|B|=b$ and $|C|=c$, assume $a \geqslant b \geqslant c$, then the NASCs are:

1. $2 \mid(a b+a c+b c)$
2. $a b \leqslant a c+b c$

Figure 4.1: $K(A, B, C)$

Necessity:

Proof. $2 \mid(a b+a c+b c)$ comes from the fact that the total number of edges must be divisible by 2 since there are two edges in P_{3}. For $a b \leqslant a c+b c$:

We have three kinds of paths, let x, y, z be the number of the paths $C \rightarrow A \rightarrow B$, $A \rightarrow B \rightarrow C$ and $A \rightarrow C \rightarrow B$ respectively, then

$$
\begin{aligned}
& x+y=a c \\
& x+y=a b \\
& y+z=b c
\end{aligned}
$$

So

$$
\begin{aligned}
x & =\frac{1}{2}(a c+a b-b c) \Rightarrow b c \leqslant a c+a b \\
y & =\frac{1}{2}(a b+b c-a c) \Rightarrow a c \leqslant a b+b c \\
z & =\frac{1}{2}(a c+b c-a b) \Rightarrow a b \leqslant a c+c b
\end{aligned}
$$

So if we have $a b \leqslant a c+c b$, the other two follow easily since $a \geqslant b \geqslant c$.

Sufficiency:

Proof. Let A, B, C be sets of size a, b, c respectively. Assume the necessary conditions are satisfied, then we can find proper x, y, z. Find subgraphs S_{1} of $K(C, A)$ and S_{2} of $K(A, B)$ with x edges, as in Lemma 3.4, so that their degrees agree on A (thus $S_{1} \cup S_{2}$ is a union of x gregarious paths). Do the same for y paths in $K(A, B) \cup K(B, C)$ and z paths in $K(A, C) \cup K(C, B)$. Now we take the union of these three collections of paths, taking care to rename vertices as in Lemma 3.3. Thus the resulting graph will be the required complete tripartite graph.

4.2 Star Multipartite Graphs

Definition 4.2. A star is a tree consisting of one vertex (called the root) adjacent to the all others. So a star multipartite graph $S=\left(A ; B_{1}, B_{2}, \ldots, B_{n}\right)$ has $|A|=a$ non-adjacent
vertices in the root which are adjacent to all the other sets of vertices $\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ where $\left|B_{i}\right|=b_{i}$ for any i.

Theorem 4.3. Let $S=\left(A ; B_{1}, B_{2}, \ldots, B_{n}\right)$ be a star multipartite graph and assume $b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{n}$. The NASCs are:

1. $2 \mid\left(b_{1}+b_{2}+\cdots+b_{n}\right)$
2. $b_{1} \leqslant b_{2}+b_{3}+\cdots+b_{n}$

Figure 4.2: Multipartite $\operatorname{Star} S\left(A ; B_{1}, B_{2}, \ldots, B_{n}\right)$

Necessity:

Proof. Let v be a vertex in A. So all the gregarious paths passing through v have both ends in $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$. So $2 \mid\left(b_{1}+b_{2}+\cdots+b_{n}\right)$. For the second condition, the number of the vertices in any b_{i} should be less than the number of remaining vertices, because if you fix a vertex, say v in a, then the gregarious paths passing through v gives a one-to-one matching in between vertices. So the number of vertices in any part, b_{i}, should be less than the sum of the number of vertices in the remaining parts. So for any $1 \leqslant i \leqslant n$, $b_{i} \leqslant b_{2}+\cdots+b_{i-1}+b_{i+1}+\cdots+b_{n}$. Therefore, if $b_{1} \leqslant b_{2}+b_{3}+\cdots+b_{n}$ is true, then for any $1 \leqslant i \leqslant n, b_{i} \leqslant b_{2}+\cdots+b_{i-1}+b_{i+1}+\cdots+b_{n}$ is also true since $b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{n}$.

Sufficiency:

Proof. First, take any vertex v in a, then find the gregarious decomposition of $\left(v ; b_{1}, b_{2}, \ldots, b_{n}\right)$. Afterwards, we put the copies of this decomposition on the remaining vertices in A (every vertex in a has the same degree). To find the gregarious decomposition of $\left(v ; b_{1}, b_{2}, \ldots, b_{n}\right)$:

1. take a P_{3} between the first (biggest) two parts.
2. reorder $\left(b_{1}-1, b_{2}-1, \ldots, b_{n}\right)$ so it is non-increasing.
3. repeat steps 1 and 2 until there are no edges left.

Now we need to prove that in each step the graph we get still satisfies the necessary conditions. The proof of the first condition is easy since we start with an even number of vertices and in each step we just remove two vertices, so in the next step we should still have an even number of vertices.

Now we need prove that in each step we preserve the second condition. We will use induction. Assume that in the $k^{t h}$ step we have $\left(b_{1}^{(k)}, b_{2}^{(k)}, \ldots, b_{n}^{(k)}\right)$. For $k=1$ the second condition holds since $\left(b_{1}^{(1)}, b_{2}^{(1)}, \ldots, b_{n}^{(1)}\right)=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and
for any $1 \leqslant i \leqslant n, b_{i} \leqslant b_{2}+\cdots+b_{i-1}+b_{i+1}+\cdots+b_{n}$.
To use induction, assume the condition holds for k :
for any $1 \leqslant i \leqslant n, b_{i}^{(k)} \leqslant b_{2}^{(k)}+\cdots+b_{i-1}^{(k)}+b_{i+1}^{(k)}+\cdots+b_{n}^{(k)}$.
So, we need to prove it holds for $k+1$:
for any $1 \leqslant i \leqslant n, b_{i}^{(k+1)} \leqslant b_{2}^{(k+1)}+\cdots+b_{i-1}^{(k+1)}+b_{i+1}^{(k+1)}+\cdots+b_{n}^{(k+1)}$
Fix $i, 1 \leqslant i \leqslant n$.
Case 1: $b_{i}^{(k+1)}=b_{i}^{(k)}-1$:
If we remove one vertex from b_{i}^{k}, there exists an m with $1 \leqslant m \leqslant n$ such that $b_{m}^{(k+1)}=b_{m}^{k}-1$. In addition, $b_{j}^{(k+1)}=b_{j}^{k}$ for any j except $j=m, i$. So,

$$
\begin{aligned}
b_{i}^{(k+1)}=b_{i}^{(k)}-1 & \leqslant b_{1}^{(k)}+\cdots+b_{m}^{(k)}-1+\cdots+b_{n}^{(k)} \\
& \leqslant b_{1}^{(k+1)}+\cdots+b_{m}^{(k+1)}+\cdots+b_{n}^{(k+1)}
\end{aligned}
$$

Case 2: $b_{i}^{(k+1)}=b_{i}^{(k)}$:
Since we removed two vertices in each step, there exist $b_{p}^{(k)}$ and $b_{q}^{(k)}$ such that $b_{p}^{(k)} \geqslant b_{q}^{(k)} \geqslant b_{i}^{(k)}$.
If $b_{i}^{(k)} \geqslant 2$, then $b_{i}^{(k+1)}=2 \leqslant b_{p}^{(k+1)}+b_{q}^{(k+1)}+\cdots$.
If $b_{i}^{(k)}=1$ and $b_{p}^{(k)}=b_{q}^{(k)}=1$, then we should have at least one more $b_{w}^{(k)}=1$ since we have an even number of vertices in each step. So

$$
\begin{aligned}
b_{i}^{(k+1)}=1 & \leqslant b_{p}^{(k+1)}+b_{q}^{(k+1)}+b_{w}^{(k+1)}+\cdots \\
& \leqslant b_{p}^{(k)}-1+b_{q}^{(k)}-1+b_{w}^{(k)}+\cdots \\
& \leqslant 1-1+1-1+1+\cdots \\
& \leqslant 1+\cdots
\end{aligned}
$$

Note that the following are equivalent:

1. There is a gregarious P_{3} decomposition of $S\left(A ; B_{1}, B_{2}, \ldots, B_{n}\right)$.
2. There is a loopless multigraph with degree sequence $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$.
3. The complete multigraph $K\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ has a perfect matching.

4.3 Cycle Multipartite Graphs

4.3.1 Even Cycles

Theorem 4.4. For an even cycle multipartite graph $C\left(B_{1}, \ldots, B_{2 n}\right)$, the NASCs are:

1. $b_{1} b_{2}+b_{3} b_{4}+\cdots+b_{2 n-1} b_{2 n}=b_{2} b_{3}+b_{4} b_{5}+\cdots+b_{2 n} b_{1}$
2. for any $1 \leqslant i \leqslant 2 n, b_{i} b_{i+1} \leqslant b_{i-1} b_{i}+b_{i+1} b_{i+2}$

Figure 4.3: Multipartite Even Cycle $C_{2 n}$

Necessity:

Proof. For any $1 \leqslant i \leqslant 2 n$ let x_{i} be the number of gregarious paths that have their middle vertex in B_{i}. Then,

$$
\begin{aligned}
x_{1}+x_{2} & =b_{1} b_{2} \\
x_{2}+x_{3} & =b_{2} b_{3} \\
& \vdots \\
x_{2 n-1}+x_{2 n} & =b_{2 n-1} b_{2 n} \\
x_{2 n}+x_{1} & =b_{2 n} b_{1}
\end{aligned}
$$

If we add the first, third, fifth, \ldots, and $(2 n-1)^{t h}$ equations, we get,

$$
x_{1}+x_{2}+\cdots+x_{2 n}=b_{1} b_{2}+b_{3} b_{4}+\cdots+b_{2 n-1} b_{2 n}
$$

and if we add the second, fourth, sixth, \ldots, and $(2 n)^{t h}$ equations and rearrange the x_{i} 's, we get:

$$
x_{1}+x_{2}+\cdots+x_{2 n}=b_{2} b_{3}+b_{4} b_{5}+\cdots+b_{2 n} b_{1}
$$

So these two equations give the first condition. For the second condition, let $x_{1}=x$ and $x \geqslant 0$, then:

$$
\begin{aligned}
x_{2} & =b_{1} b_{2}-x \\
x_{3} & =b_{2} b_{3}-x_{2} \\
x_{4} & =b_{3} b_{4}-x_{3} \\
& \vdots \\
x_{2 n} & =b_{2 n-1} b_{2 n}-x_{2 n-1}
\end{aligned}
$$

and if we get all equations in terms of x,

$$
\begin{aligned}
x_{2} & =b_{1} b_{2}-x \\
x_{3} & =b_{2} b_{3}-b_{1} b_{2}+x \\
x_{4} & =b_{3} b_{4}-b_{2} b_{3}+b_{1} b_{2}-x \\
& \vdots \\
x_{2 n} & =b_{2 n-1} b_{2 n}-b_{2 n-2} b_{2 n-1}+\cdots+x
\end{aligned}
$$

If we use $x \geqslant 0$ and the equations we have above, then we get:
$b_{i} b_{i+1} \leqslant b_{i-1} b_{i}+b_{i+1} b_{i+2}$ for any $1 \leqslant i \leqslant 2 n$.

Sufficiency:

Proof. If the necessary conditions are satisfied, we can find all the x_{i} 's for $1 \leqslant i \leqslant 2 n$, then we use the same technique that we used in the proof of Theorem 4.1 to find gregarious a P_{3} decomposition.

4.3.2 Odd Cycles

Theorem 4.5. For an odd cycle multipartite graph $C\left(B_{1}, \ldots, B_{2 n+1}\right)$, the NASCs are:

1. $2 \mid \sum_{i=1}^{i=2 n} b_{i} b_{i+1}$ (\# of the edges)
2. for any $1 \leqslant i \leqslant 2 n+1, b_{i} b_{i+1} \leqslant b_{i-1} b_{i}+b_{i+1} b_{i+2}$
3. for any $1 \leqslant i \leqslant 2 n+1$,
$b_{i+1} b_{i+2}+b_{i+3} b_{i+4}+\cdots+b_{i+2 n-2} b_{(i+1)+2 n-2} \leqslant b_{i} b_{i+1}+b_{i+2} b_{i+3}+\cdots+b_{i+2 n} b_{(i+1)+2 n}$ where the subscripts of the b 's are taken $(\bmod 2 n+1)$.

Figure 4.4: Multipartite Odd Cycle $C_{2 n+1}$

Necessity:

Proof. The first condition comes from the fact that the total number of edges is divisible by
2. To get the second condition, for any $1 \leqslant i \leqslant 2 n+1$ let x_{i} be the number of gregarious
paths that have their middle vertex in B_{i}. Then

$$
\begin{aligned}
x_{1}+x_{2} & =b_{1} b_{2} \\
x_{2}+x_{3} & =b_{2} b_{3} \\
& \vdots \\
x_{2 n}+x_{2 n+1} & =b_{2 n} b_{2 n+1} \\
x_{2 n+1}+x_{1} & =b_{2 n+1} b_{1}
\end{aligned}
$$

To find x_{1};

$$
\begin{aligned}
(+) x_{1}+x_{2} & =b_{1} b_{2} \\
(-) x_{2}+x_{3} & =b_{2} b_{3} \\
& \vdots \\
(-) x_{2 n}+x_{2 n+1} & =b_{2 n} b_{2 n+1} \\
(+) x_{2 n+1}+x_{1} & =b_{2 n+1} b_{1}
\end{aligned}
$$

then we get

$$
\begin{aligned}
x_{1} & =\frac{b_{1} b_{2}-b_{2} b_{3}+b_{3} b_{4}-\cdots-b_{2 n} b_{2 n+1}+b_{2 n+1} b_{1}}{2} \\
& =\frac{b_{1} b_{2}+b_{3} b_{4}+\cdots+b_{2 n+1} b_{1}-\left(b_{2} b_{3}+\cdots+b_{2 n} b_{2 n+1}\right)}{2}
\end{aligned}
$$

Using the same technique we can get all the x_{i} 's along with condition 3 since each $x_{i} \geqslant 0$. Condition 2 is the same as the even cycle case.

Sufficiency:

Proof. After finding x_{i}, constructing the gregarious P_{3} decomposition is the same as for the even cycle case.

4.4 Path Multipartite Graphs

Theorem 4.6. For a path multipartite graph $P\left(B_{1}, B_{2}, \ldots, B_{n}\right)$, the NASCs are:

1. $b_{3} \geqslant b_{1}$ and $b_{n-2} \geqslant b_{n}$
2. $b_{1} b_{2}+b_{3} b_{4} \cdots+b_{k-1} b_{k}=b_{2} b_{3}+b_{4} b_{5}+\cdots+b_{l-1} b_{l}$
3. for any $2 \leqslant i \leqslant n-2, b_{i} b_{i+1} \leqslant b_{i-1} b_{i}+b_{i+1} b_{i+2}$
where k is the largest even number such that $k \leqslant n$ and l is the largest odd number such that $l \leqslant n$.

Figure 4.5: Multipartite Path P_{n}

Necessity:

Proof. For any $2 \leqslant i \leqslant n-1$ let x_{i} be the number of gregarious paths that have the middle vertex in B_{i}.

$$
\begin{aligned}
x_{2} & =b_{1} b_{2} \\
x_{2}+x_{3} & =b_{2} b_{3} \\
x_{3}+x_{4} & =b_{3} b_{4} \\
& \vdots \\
x_{n-2}+x_{n-1} & =b_{n-2} b_{n-1} \\
x_{n-1} & =b_{n-1} b_{n}
\end{aligned}
$$

The first condition comes from the fact that $x_{3}=b_{2} b_{3}-x_{2}=b_{2} b_{3}-b_{1} b_{2}=b_{2}\left(b_{3}-b_{1}\right)$. So we get $b_{3} \geqslant b_{1}$ since $x_{2} \geqslant 0$. We can get $b_{n} \geqslant b_{n-2}$ in the same way. We can find the remaining x_{i} 's easily.

If we add the first, third, fifth,... , and $(k-1)^{t h}$ equations, we get,

$$
x_{2}+x_{3} \cdots+x_{n-1}=b_{1} b_{2}+b_{3} b_{4}+\cdots+b_{k-1} b_{k}
$$

and if we add the second, fourth, sixth,..., and $(l-1)^{t h}$ equations, we get:

$$
x_{2}+x_{3}+\cdots+x_{n-1}=b_{2} b_{3}+b_{4} b_{5}+\cdots+b_{l-1} b_{l}
$$

So these two equations give the second condition. The third condition is the same as the condition in the cycle case.

Sufficiency:

Proof. If the necessary conditions are satisfied, we can find all the x_{i} 's for $2 \leqslant i \leqslant n-1$, then we use the same technique that we used in the proof of Theorem 4.1 to find gregarious a P_{3} decomposition.

4.5 Some Tree Multipartite Graphs

Definition 4.7. Let $T\left(C_{1}, \ldots C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$ be a multipartite graph such that two multipartite stars $S\left(A_{1} ; C_{1}, \ldots, C_{m}\right)$ and $S\left(A_{2} ; B_{1}, \ldots, B_{n}\right)$ are attached to each other via putting a complete bipartite graph on bipartition $\left(A_{1}, A_{2}\right)$. See figure 4.6.

Figure 4.6: $T\left(C_{1}, \ldots C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$

Definition 4.8. Define $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$ by using definition 4.7 as $T\left(A_{1} ; A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$. See figure 4.7.

Figure 4.7: $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$

Lemma 4.9. Let $G=(E, V)$ be a graph. There is an orientation of G such that for all $v \in V,|\operatorname{out}(v)-i n(v)| \leqslant 1$.

Proof. We can assume that G is connected.
Case 1: If all vertices have even degree, then there exists an Euler trail, we can orient the graph this way.

Case 2: If G has some vertices with odd degree, make an extra vertex u and connect all those vertices to u, then find an Euler trail on $G \cup\{u\}$ and remove the edges at the end. For all $v \in V$, we still have $|o u t(v)-i n(v)| \leqslant 1$ since we remove one edge from each vertex with odd degree.

Figure 4.8: Orientation of G

Theorem 4.10. [14] Let A, B, I be finite non-empty sets, let $f: B \times I \rightarrow \mathbb{N}$ be such that for all $t \in B, \sum_{i \in I} f(t, i)=|A|$. Then the edges of $K(A, B)$ can be partitioned into spanning subgraphs $G_{i}, i \in I$, such that for each $i \in I, G_{i}$ is balanced on A, and for each $t \in B$, the degree of t in G_{i} is $f(t, i)$.

Proof. If $|A|=1$, then the proof is trivial.
Now suppose $|A|=2$. Let $A=\left\{s_{1}, s_{2}\right\}$. Form a graph H on vertex set I as follows:
For each $t \in B, H$ has an edge e_{t} : If $f(t, i)=2$, (and so $f(t, j)=0$ for all other $j \in I$) then e_{t} is a loop at vertex i of H. If $f(t, i)=1=f(t, j), i \neq j,(f(t, k)=0$ for the other $k \in I)$, then e_{t} joins the vertices i and j in H.

Orient H so that at each vertex of H the indegree and outdegree differ by at most 1 using Lemma 4.9. For each $t \in B$, if e_{t} is directed from i to j in the oriented H, place the edge between t and s_{1} in G_{i}, and the edge between t and s_{2} in G_{j} (see example 4.11).

If $|A| \geqslant 3$, then partition the edges of $K(A, B)$ into spanning subgraphs G_{i} whose degrees on B are given by f (this is certainly possible by the sum condition on f). If everything is balanced on $|A|$, then we are done. Otherwise degrees in some G_{i} differ by 2 or more. Fix i, and let s_{1}, s_{2} be two vertices in A, whose degrees differ by 2 or more in G_{i}. So use the previous case where $|A|=2$ on this graph to find the balanced distribution. Using this method repeatedly for each unbalanced pair of vertices of G_{i} in A, finally we can get the balanced distribution on A. Afterwards, we can repeat the same process for the other G_{j} for each $j \in I$.

Now we need to prove that this process will stop after finitely many steps. Let $V_{1}=$ $\left(a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}\right)$ be a integer vector with fixed sum $\sum a_{i}=a$. So the shortest integer vector with respect to the Euclidean metric with the fixed sum of the entries is the balanced one. To see this assume $a_{j} \geqslant a_{i}+2$, then if we balance a_{i} and a_{j}, we get
$V_{2}=\left(a_{1}, \ldots, a_{i}+1, \ldots, a_{j}-1, \ldots, a_{n}\right)$ and $\left|V_{2}\right|^{2} \leqslant\left|V_{1}\right|^{2}-2$ since,

$$
\begin{aligned}
\left|V_{2}\right|^{2} & =a_{1}^{2}+\cdots+\left(a_{i}+1\right)^{2}+\cdots+\left(a_{j}-1\right)^{2}+\cdots+a_{n}^{2} \\
& =a_{1}^{2}+\cdots+a_{i}^{2}+2 a_{i}+1+\cdots+a_{j}^{2}-2 a_{j}+1+\cdots+a_{n}^{2} \\
& =\left(a_{1}^{2}+\cdots+a_{i}^{2}+\cdots+a_{j}^{2}+\cdots+a_{n}^{2}\right)+2\left(a_{i}-a_{j}\right)+2 \\
& =\left|V_{1}\right|^{2}+2\left(a_{i}-a_{j}\right)+2 \\
& \leqslant\left|V_{1}\right|^{2}+2(-2)+2 \\
& \leqslant\left|V_{1}\right|^{2}-2
\end{aligned}
$$

This means that when we balance a pair of entries in the vector at a time, the vector gets shorter, and after finitely many steps we will find the shortest one. This completes the proof.

Example 4.11. Let G be a bipartite graph on bipartition (A, B) where $A=\left\{s_{1}, s_{2}\right\}$ and $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $I=\{$ green, blue, red $\}$. We want to get green and blue balanced on A without changing the color census on B (see the first picture in Figure 4.9). Then using the method defined in Theorem 4.10 build a graph H (see the second picture in Figure 4.9) and orient H so that $|i n(w)-o u t(w)| \leqslant 1$ for every vertex w in H. Finally, we can swap edges of G with respect to the orientation on H to get a balanced coloring on A.

Figure 4.9: An Example for Theorem 4.10

4.5.1 Necessary And Sufficient Conditions for $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$

Theorem 4.12. For a graph $T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$ assume $b_{n} \leqslant \cdots \leqslant b_{2} \leqslant b_{1}$, the NASCs are:

1. $2 \mid\left[a_{2}\left(a_{1}+a_{3}\right)+a_{3}\left(b_{1}+b_{2}+\cdots+b_{n}\right)\right]$
2. $a_{1} \leqslant a_{3}$
3. $a_{1} a_{2}+b_{1} a_{3} \leqslant a_{3}\left(a_{2}+b_{2}+b_{3}+\cdots+b_{n}\right)$
4. $a_{2} a_{3} \leqslant a_{1} a_{2}+a_{3}\left(b_{1}+b_{2}+\cdots+b_{n}\right)$
5. If

- $a_{2}+\left(b_{1}+\cdots+b_{n}\right)$ is even, then $a_{1} a_{2}$ is even.
- $a_{2}+\left(b_{1}+\cdots+b_{n}\right)$ is odd, then $a_{1} a_{2}-a_{3}$ is even and non-negative.

Necessity:

Proof. Let $G=T\left(A_{1}, A_{2}, A_{3} ; B_{1}, \ldots, B_{n}\right)$. Condition 1 comes from the fact that the number of edges is even. We can get conditions 2-4 using Tutte's f-factor Theorem on $L(G)$. $L(G)$ is union of a complete graph on $n+1$ vertices and an edge attached at the vertex $A_{2} A_{3}$. If we check all the possible $L(G)$ triples $B=(S, T, U)$ where T is independent and $\lambda(T, U)=0$ from theorem 2.12, all will reduce to the the following three cases in figure 4.10. We need to check $k(B, h)+h(T) \leqslant h(S)$ for each case. From the first picture in the figure 4.10 , we will get $a_{2} a_{3} \leqslant a_{1} a_{2}$ which gives condition 2 . From the second picture, we get $a_{1} a_{2}+b_{1} a_{3} \leqslant a_{2} a_{3}+b_{2} a_{3}+\cdots+b_{n} a_{3}$ which gives condition 3 . From the last picture, we get $a_{2} a_{3} \leqslant a_{1} a_{2}+a_{3} b_{1}+a_{3} b_{2}+\cdots+a_{3} b_{n}$ which gives condition 4 .

Figure 4.10: How to get conditions 2-4

For condition 5, we need to consider all the types of paths we have and the degree of any vertex in A_{3}. Firstly, the degree of any vertex v in A_{3} is $\operatorname{deg}(v)=a_{2}+b_{1}+\cdots+b_{n}$. Let x_{1} be the number of paths passing through the sets of vertices $A_{1} \rightarrow A_{2} \rightarrow A_{3}$ so $x_{1}=a_{1} a_{2}$. In the same way, $y_{i}: A_{2} \rightarrow A_{3} \rightarrow B_{i}$ for any $1 \leqslant i \leqslant n$, and $w_{i j}: B_{i} \rightarrow A_{3} \rightarrow B_{j}$ for any $1 \leqslant i \leqslant j \leqslant n$. Here, both y_{i} and $w_{i j}$ have their middle vertices in A_{3}, so if $\operatorname{deg}(v)$ is even, then x_{1} must be even. If $\operatorname{deg}(v)$ is odd, then we should have enough x_{1} type paths which means $a_{1} a_{2} \geqslant a_{3}$. That gives $a_{1} a_{2}-a_{3}$ non-negative. To see that $a_{1} a_{2}-a_{3}$ is even, consider the vertices in A_{3} and distribution of $a_{1} a_{2}$ edges on A_{3}. There are α_{i} 's for
$1 \leqslant i \leqslant a_{3}$ such that $\sum_{i=1}^{a_{3}} \alpha_{i}=a_{1} a_{2}$ where each $\alpha_{i}=2 \beta_{i}+1$, an odd number. $\beta_{i}=\frac{\alpha_{i}-1}{2}$. $\sum_{i=1}^{a_{3}} \beta_{i}=\sum_{i=1}^{a_{3}} \frac{\alpha_{i}-1}{2}=\frac{1}{2}\left(a_{1} a_{2}-a_{3}\right)$. Therefore $a_{1} a_{2}-a_{3}$ is an even number.

Sufficiency:

Proof. If the necessary conditions are satisfied we can find proper x_{1}, y_{i} 's and $w_{i j}$'s. In between pairs of sets $\left(A_{1}, A_{2}\right)$ and $\left(A_{3}, B_{i}\right)$ for any i, we can find balanced edge distributions with the required numbers as we did for the sufficiency case of the Theorem 4.1. The only problem is finding a construction for $\left(A_{2}, A_{3}\right)$ since we need to find a parity balanced distribution of x_{1} edges on A_{3} with respect to the parity of $a_{2}+\left(b_{1}+\cdots+b_{n}\right)$ (see condition 5 in Theorem 4.12). We also need to find a balanced distribution for the remaining y_{i} 's. To be able to find this special distribution we can use theorem 4.10 and choose the degrees on A_{3} to get balanced degrees on A_{2}.

4.5.2 Necessary And Sufficient Conditions for $T\left(C_{1}, \ldots, C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$

Theorem 4.13. For a graph $T\left(C_{1}, \ldots, C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$ assume $c_{m} \leqslant \cdots \leqslant c_{2} \leqslant c_{1}$ and $b_{n} \leqslant \cdots \leqslant b_{2} \leqslant b_{1}$, and let $C=C_{1} \cup C_{2} \cup \cdots \cup C_{m}$ and $|C|=c, B=B_{1} \cup B_{2} \cup \cdots \cup B_{n}$, $|B|=b$ and $d_{1}=c+a_{2}, d_{2}=b+a_{1}$. The NASCs are:

1. $2 \mid\left[a_{1}\left(c_{1}+c_{2}+\cdots+c_{m}\right)+a_{1} a_{2}+a_{2}\left(b_{1}+b_{2}+\cdots+b_{n}\right)\right]$
2. $c_{1} \leqslant a_{2}+\left(c_{2}+\cdots+c_{m}\right)$ and $b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$
3. $a_{1} c_{1}+a_{2} b_{1} \leqslant a_{1}\left(c_{2}+\cdots+c_{m}\right)+a_{1} a_{2}+a_{2}\left(b_{2}+\cdots+b_{n}\right)$
4. $a_{1} a_{2} \leqslant a_{1}\left(c_{1}+c_{2}+\cdots+c_{m}\right)+a_{2}\left(b_{1}+b_{2}+\cdots+b_{n}\right)$
5. If

- d_{1} and d_{2} are even, then $a_{1} a_{2}$ is even.
- d_{1} is even and d_{2} is odd, then either both a_{1} and a_{2} are odd, both even or a_{1} is odd and a_{2} even. In addition, $c a_{1}-a_{2} \geqslant 0$.
- d_{1} is odd and d_{2} is even, then either both a_{1} and a_{2} are odd, both even or a_{1} is even and a_{2} odd. In addition, $b a_{2}-a_{1} \geqslant 0$.
- d_{1} and d_{2} are odd, then both a_{1} and a_{2} are even. In addition, $c a_{1}-a_{2} \geqslant 0$ and $b a_{2}-a_{1} \geqslant 0$.
with the following exceptions:

d_{1}	d_{2}	a_{1}	a_{2}	$c_{1} \& b_{1}$
even	even	2	2	any c_{1} with $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant 2+\left(b_{2}+\cdots+b_{n}\right)$
		even	1	any c_{1} with $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$
		even	any b_{1} with $1+\left(c_{2}+\cdots+c_{m}\right) \leqslant c_{1} \leqslant a_{2}+\left(c_{2}+\cdots+c_{m}\right)$	
even	odd	odd	1	any c_{1} with $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$
		1	even	any c_{1} with $b_{1}=1+\left(b_{2}+\cdots+b_{n}\right)$
	even	1	odd	any b_{1} with $1+\left(c_{2}+\cdots+c_{m}\right) \leqslant c_{1} \leqslant a_{2}+\left(c_{2}+\cdots+c_{m}\right)$
		even	1	any b_{1} with $c_{1}=1+\left(c_{2}+\cdots+c_{m}\right)$

Table 4.1: Exceptions for Theorem 4.13

Necessity:

Proof. Let $G=T\left(C_{1}, \ldots, C_{m} ; A_{1}, A_{2} ; B_{1}, \ldots, B_{n}\right)$. Condition 1 comes from the fact that the number of edges is even. We can get conditions 2-4 using Tutte's f-factor Theorem on $L(G) . L(G)$ is union of two complete graphs on m and n vertices attached at the vertex $A_{1} A_{2}$. If we check all the possible $L(G)$ triples $B=(S, T, U)$ where T is independent and $\lambda(T, U)=0$ from theorem 2.12, all will reduce to the the following three cases in figure 4.11. We need to check $k(B, h)+h(T) \leqslant h(S)$ for each case. From the first picture in the figure 4.11, we will get $c_{1} \leqslant a_{2}+\left(c_{2}+\cdots+c_{m}\right)$ and in the same picture if we replace B 's with C 's
and C 's with B 's then we get $b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$ which gives condition 2 . From the second picture, we get $a_{1} c_{1}+a_{2} b_{1} \leqslant a_{1}\left(c_{2}+\cdots+c_{m}\right)+a_{1} a_{2}+a_{2}\left(b_{2}+\cdots+b_{n}\right)$ which gives condition 3. From the last picture, we get $a_{1} a_{2} \leqslant a_{1}\left(c_{1}+c_{2}+\cdots+c_{m}\right)+a_{2}\left(b_{1}+b_{2}+\cdots+b_{n}\right)$ which gives condition 4.

Figure 4.11: How to get conditions 2-4

For condition 5, we need to consider all the types of paths we have and the degree of any vertex in A_{1} and A_{2}. Firstly, the degree of any vertex v_{1} in A_{1} is:
$d_{1}=\operatorname{deg}\left(v_{1}\right)=a_{2}+c_{1}+\cdots+c_{m}=a_{2}+c$
and the degree of any vertex v_{2} in A_{2} is:
$d_{2}=\operatorname{deg}\left(v_{2}\right)=a_{1}+b_{1}+\cdots+b_{n}=a_{1}+b$.
Let x_{i} be the number of paths passing through the sets of vertices $C_{i} \rightarrow A_{1} \rightarrow A_{2}$ for any $1 \leqslant i \leqslant m$ and let $x=\sum_{i=1}^{m} x_{i}$. In the same way, $y_{j}: B_{j} \rightarrow A_{2} \rightarrow A_{1}$ for any $1 \leqslant j \leqslant n$ and $y=\sum_{j=1}^{n} y_{j}$. So $x+y=a_{1} a_{2}$. In addition, we have $w_{i j}: C_{i} \rightarrow A_{1} \rightarrow C_{j}$ for any $1 \leqslant i \leqslant j \leqslant m$ and $z_{k l}: B_{k} \rightarrow A_{2} \rightarrow B_{l}$ for any $1 \leqslant k \leqslant l \leqslant n$. Here $w_{i j}$'s have their middle vertex in A_{1} and $z_{k l}$'s have their middle vertex in A_{2}, so we have four cases with respect to the parity of d_{1} and d_{2}. So the parity of x and d_{2}, and y and x_{1} must be consistent (see figure 4.12).

Figure 4.12: Types of paths

Case 1: If d_{1} and d_{2} are even, then y and x are even so $a_{1} a_{2}$ is even since $x+y=a_{1} a_{2}$.
Case 2: If d_{1} is even and d_{2} is odd, then y is even and $x \equiv a_{2}(\bmod 2)$ and $x \geqslant a_{2}$. So we can get $c a_{1}-a_{2} \geqslant 0$ since $c a_{1} \geqslant x$. To get either both a_{1} and a_{2} odd, both even or or a_{1} is odd and a_{2} even, see:

$$
\begin{aligned}
x+y & =a_{1} a_{2} \\
x+y & \equiv a_{1} a_{2} \quad(\bmod 2) \\
x & \equiv a_{1} a_{2} \quad(\bmod 2) \text { since } y \text { is even }
\end{aligned}
$$

Case 3: If d_{1} is odd and d_{2} is even, then this is the same as case 2 , just replace a_{2} with a_{1}. Case 4: If d_{1} is odd and d_{2} is odd, then $y \equiv a_{1}(\bmod 2)$ and $y \geqslant a_{1}$, and $x \equiv a_{2}(\bmod 2)$ and $x \geqslant a_{2}$. We can get $c a_{1}-a_{2} \geqslant 0$ and $b a_{2}-a_{1} \geqslant 0$ in the same way as in case 2 . To get both a_{1} and a_{2} even, see:

$$
\begin{aligned}
x+y & =a_{1} a_{2} \\
x+y & \equiv a_{1} a_{2} \quad(\bmod 2) \\
a_{1}+a_{2} & \equiv a_{1} a_{2} \quad(\bmod 2) \quad \text { since } x \equiv a_{2} \quad(\bmod 2) \text { and } y \equiv a_{1} \quad(\bmod 2)
\end{aligned}
$$

$a_{1}+a_{2} \equiv a_{1} a_{2}(\bmod 2)$ is only satisfied when both a_{1} and a_{2} are even.
Note that theorem 4.12 is a special case of theorem 4.13. In theorem 4.13, if we get $c_{2}=c_{3}=\cdots=c_{m}=0$ and replace c_{1} with a_{1}, a_{1} with a_{2} and a_{2} with a_{3} we will get exactly the same conditions as in theorem 4.12.

Sufficiency:

Proof. If the necessary conditions are satisfied we can find proper x_{i} 's, y_{j} 's, $w_{i j}$'s and $v_{k l}$'s. First we find a proper x and y then we will find $w_{i j}$'s and $v_{k l}$'s since we have more restriction on x and y. In between pairs of sets $\left(C_{i}, A_{1}\right)$ for any $1 \leqslant i \leqslant m$, and $\left(A_{2}, B_{j}\right)$ for any $1 \leqslant j \leqslant n$, we can find balanced edge distributions with the required numbers as we did for the sufficiency case of theorem 4.1. The only problem is finding a construction for $\left(A_{1}, A_{2}\right)$ since we need to find a parity balanced distribution of $x+y$ edges on A_{1} and A_{2} with respect to the parity of d_{1} and d_{2} (see condition 5 in theorem 4.13). To find this parity balanced distribution, we will use theorem 3.12.

Case 1: Assume d_{1} and d_{2} are even, then y and x are even so $a_{1} a_{2}$ is even since $x+y=a_{1} a_{2}$. So there are three cases for $\left(a_{1}, a_{2}\right):($ even, even $)$, (even, odd) and (odd, even).

If a_{1} and a_{2} are both even, then we need to find a parity balanced bipartite graph (PBBG) with pararameters ($a=a_{1}, b=a_{2}, e=x, \epsilon_{a}=0, \epsilon_{b}=0$) with bipartite complement ($\left.a=a_{1}, b=a_{2}, e=a b-x=y, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=0\right)$ so that the distribution of x on A_{2} has even parity $\left(\epsilon_{b}=0\right)$ and the distribution of y on A_{1} has even parity $\left(\epsilon_{a}^{\prime}=0\right)$. We can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =0+0=0 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=0+0=0 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow 0 \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow 0 \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

For the exceptions in table 4.1 the only problem concerning this case is when $a=a_{1}=$ even, $b=a_{2}=$ even, $e=x=2, \epsilon_{a}=0, \epsilon_{a}^{\prime}=0, \epsilon_{b}=0, \epsilon_{b}^{\prime}=0$. We can solve this problem by choosing $x \geqslant 4$ since $a_{1} \geqslant 2$ and $a_{2} \geqslant 2$ in the exceptions. In the case of $a_{1}=2=a_{2}$, we will not have any y 's which means we need to put a gregarious P_{3} decomposition of star multipartite graph on $S=\left(A_{2} ; B_{2}, B_{2}, \ldots, B_{n}\right)$. The first condition of theorem 4.3 is satisfied since $2 \mid b=b_{1}+b_{2}+\ldots+b_{n}\left(d_{1}=\right.$ even $=a_{1}+b$ and a_{1} is even so b is even $)$. For the second condition of theorem 4.3, we can get $b_{1} \leqslant 2+b_{2}+\ldots+b_{n}$ from condtion 2 of theorem 4.13. From here we get two exceptions: $b_{1}=1+b_{2}+\cdots+b_{n}$ and $b_{1}=2+b_{2}+\cdots+b_{n}$. So $T\left(C_{1}, \ldots C_{m} ; 2,2 ; B_{1}, \ldots, B_{n}\right)$ doesn't exist when either $b_{1}=1+b_{2}+\cdots+b_{n}$ or $b_{1}=$ $2+b_{2}+\cdots+b_{n}$.

If a_{1} is even and a_{2} is odd, then we need to find a PBBG with pararameters ($a=$ $a_{1}, b=a_{2}, e=x, \epsilon_{a}=1, \epsilon_{b}=0$) with bipartite complement ($a=a_{1}, b=a_{2}, e=a b-x=$ $\left.y, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=0\right)$ so that the distribution of x edges on a_{2} has even parity $\left(\epsilon_{b}=0\right)$ and the distribution of y edges on a_{1} has even parity $\left(\epsilon_{a}^{\prime}=0\right)$. We can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =1+0=1 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=0+0=0 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow a_{1} \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow 0 \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

If we check the exceptions in table 4.1, then we see $\left(a=\right.$ even $\geqslant 4, b=o d d \geqslant 3, e=2, \epsilon_{a}=$ $\left.1, \epsilon_{a}^{\prime}=0, \epsilon_{b}=0, \epsilon_{b}^{\prime}=0\right)$. However, in this case $e=x \geqslant a_{1}$ and $a_{1} \geqslant 4$ so we don't have any exception for $e=2$. There are other exceptions coming from $x \geqslant a_{1}$. If $a_{2}=1$, then we don't have any y 's which means we need to put a gregarious P_{3} decomposition of a star multipartite graph on $S=\left(A_{2}=1 ; B_{2}, B_{2}, \ldots, B_{n}\right)$. The first condition of theorem 4.3 is satisfied since $2 \mid b=b_{1}+b_{2}+\ldots+b_{n}\left(d_{2}=\right.$ even $=a_{1}+b$ and a_{1} is even so b is even $)$. For the second
condition of theorem 4.3, we can get $b_{1} \leqslant a_{1}+\left(b_{2}+\ldots+b_{n}\right)$ from condition 2 of theorem 4.13. From here we get exceptions when $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$. So $T\left(C_{1}, \ldots C_{m} ; A_{1}, 1 ; B_{1}, \ldots, B_{n}\right)$ doesn't exist when $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$.

If a_{1} is odd and a_{2} is even, then this case is the same as the previous case, just switch a_{2} with a_{1}.

Case 2: If d_{1} is even and d_{2} is odd, then y is even and $x \equiv a_{2}(\bmod 2)$ and $x \geqslant a_{2}$. So there are three cases for $\left(a_{1}, a_{2}\right):($ even, even $)$, (odd, odd) and (odd, even).

If a_{1} and a_{2} are both even, then x and y are both even. We need to find a PBBG with parameters $\left(a=a_{1}, b=a_{2}, e=x, \epsilon_{a}=0, \epsilon_{b}=1\right)$ with bipartite complement ($a=a_{1}, b=$ $a_{2}, e=a_{1} a_{2}-x=y, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=1$) so that the distribution of x on A_{2} has odd parity ($\epsilon_{b}=1$) and the distribution of y on A_{1} has even parity $\left(\epsilon_{a}^{\prime}=0\right)$. We can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =0+0=0 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=1+1=0 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow 0 \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow a_{2} \leqslant x \leqslant a_{1} a_{2}-a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

If we check the exceptions in table 4.1, we see that we don't have any exception for this case.
If a_{1} and a_{2} are both odd, then x is odd and y is even. We need to find a PBBG with parameters $\left(a=a_{1}, b=a_{2}, e=x, \epsilon_{a}=1, \epsilon_{b}=1\right)$ with bipartite complement ($a=a_{1}, b=$ $\left.a_{2}, e=a_{1} a_{2}-x=y, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=0\right)$ so that the distribution of x on A_{2} has odd parity $\left(\epsilon_{b}=1\right)$ and the distribution of y on A_{1} has even parity $\left(\epsilon_{a}^{\prime}=0\right)$. We can we can find such
a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =0+1=1 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=1+0=1 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow a_{1} \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow a_{2} \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 1 \quad(\bmod 2)
\end{aligned}
$$

If we check the exceptions in table 4.1, then we see $\left(a=o d d \geqslant 3, b=o d d \geqslant 3, e=2, \epsilon_{a}=\right.$ $\left.1, \epsilon_{a}^{\prime}=0, \epsilon_{b}=1, \epsilon_{b}^{\prime}=0\right)$. However, in this case $e=x \geqslant \max \left\{a_{1}, a_{2}\right\}$ and $a_{1}, a_{2} \geqslant 3$ so we don't have any exception for $e=2$. There are other exceptions coming from $x \geqslant \max \left\{a_{1}, a_{2}\right\}$. If $a_{2}=1$, then $x=a_{1}=a_{1} a_{2}$ so we don't have any y 's which means we need to put a gregarious P_{3} decomposition of a star multipartite graph on $S=\left(A_{2}=1 ; B_{2}, B_{2}, \ldots, B_{n}\right)$. The first condition of theorem 4.3 is satisfied since $2 \mid b=b_{1}+b_{2}+\ldots+b_{n}\left(d_{2}=\right.$ odd $=$ $a_{1}+b$ and a_{1} is odd so b is even). For the second condition of theorem 4.3, we can get $b_{1} \leqslant a_{1}+\left(b_{2}+\ldots+b_{n}\right)$ from condition 2 of theorem 4.13. From here we get exceptions when $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$. So $T\left(C_{1}, \ldots C_{m} ; A_{1}, 1 ; B_{1}, \ldots, B_{n}\right)$ doesn't exist when $1+\left(b_{2}+\cdots+b_{n}\right) \leqslant b_{1} \leqslant a_{1}+\left(b_{2}+\cdots+b_{n}\right)$.

If a_{1} is odd and a_{2} is even, then x and y are both even. We need to find a PBBG with parameters $\left(a=a_{1}, b=a_{2}, e=x, \epsilon_{a}=0, \epsilon_{b}=1\right)$ with bipartite complement $\left(a=a_{1}, b=\right.$ $\left.a_{2}, e=a_{1} a_{2}-x=y, \epsilon_{a}^{\prime}=0, \epsilon_{b}^{\prime}=0\right)$ so that the distribution of x on A_{2} has odd parity ($\epsilon_{b}=1$) and the distribution of y on A_{1} has even parity $\left(\epsilon_{a}^{\prime}=0\right)$. We can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =0+0=0 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=1+0=1 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow 0 \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow a_{2} \leqslant x \leqslant a_{1} a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

If we check the exceptions in table 4.1, then we see $(a=o d d \geqslant 3, b=$ even $\geqslant 3, e=$ $\left.2, \epsilon_{a}=0, \epsilon_{a}^{\prime}=0, \epsilon_{b}=1, \epsilon_{b}^{\prime}=0\right)$. However, in this case $e=x \geqslant a_{2}$ and $a_{2} \geqslant 4$ so we don't have any exception for $e=2$. There is an exception coming from $x \geqslant a_{2}$. If $a_{1}=1$, then $x=a_{2}=a_{1} a_{2}$ so we don't have any y 's which means we need to put a gregarious P_{3} decomposition of a star multipartite graph on $S=\left(A_{2} ; B_{2}, B_{2}, \ldots, B_{n}\right)$. The first condition of theorem 4.3 is satisfied since $2 \mid b=b_{1}+b_{2}+\ldots+b_{n}\left(d_{2}=\mathrm{odd}=a_{1}+b\right.$ and a_{1} is odd so b is even). For the second condition of theorem 4.3, we can get $b_{1} \leqslant a_{1}+\left(b_{2}+\ldots+b_{n}\right)$ from condition 2 of theorem 4.13. From here we get exceptions when $b_{1}=1+\left(b_{2}+\cdots+b_{n}\right)$. So $T\left(C_{1}, \ldots C_{m} ; 1, A_{2} ; B_{1}, \ldots, B_{n}\right)$ doesn't exist when $b_{1}=1+\left(b_{2}+\cdots+b_{n}\right)$.

Case 3: If d_{1} is odd and d_{2} is even, then this case is the same as case 2 , just switch a_{1} and a_{2}.

Case 4: If d_{1} and d_{2} are both odd, then x, y, a_{1}, a_{2} are even and $y \geqslant a_{1}, x \geqslant a_{2}$. We need to find a PBBG with parameters $\left(a=a_{1}, b=a_{2}, e=x, \epsilon_{a}=1, \epsilon_{b}=1\right)$ with bipartite complement $\left(a=a_{1}, b=a_{2}, e=a_{1} a_{2}-x=y, \epsilon_{a}^{\prime}=1, \epsilon_{b}^{\prime}=1\right)$ so that the distribution of x on A_{2} has odd parity $\left(\epsilon_{b}=1\right)$ and the distribution of y on A_{1} has odd parity too $\left(\epsilon_{a}^{\prime}=1\right)$. We can we can find such a PBBG since the necessary conditions of theorem 3.12 are satisfied.

$$
\begin{aligned}
\epsilon_{a}+\epsilon_{a}^{\prime} & =1+1=0 \equiv b \quad(\bmod 2) \text { and } \epsilon_{b}+\epsilon_{b}^{\prime}=1+1=0 \equiv a \quad(\bmod 2) \\
\epsilon_{a} a & \leqslant e \leqslant a b-\epsilon_{a}^{\prime} a \Rightarrow a_{1} \leqslant x \leqslant a_{1} a_{2}-a_{1} \\
\epsilon_{b} b & \leqslant e \leqslant a b-\epsilon_{b}^{\prime} b \Rightarrow a_{2} \leqslant x \leqslant a_{1} a_{2}-a_{2} \\
\epsilon_{a} a & \equiv a b-\epsilon_{a}^{\prime} a \equiv e=x \equiv \epsilon_{b} b \equiv a b-\epsilon_{b}^{\prime} b \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

If we check the exceptions in table 4.1, we see that we don't have any exception for this case.

Bibliography

[1] D.G Hoffman, Cores of Class II Graphs, Journal of Graph Theory, Vol. 20, No. 3, 397-402 (1995)
[2] Douglas B. West, Introduction to Graph Theory, Prentice Hall 2001.
[3] Elizabeth J. Billington, Dean G. Hoffman, Short path decompositions of arbitrary complete multipartite graphs, Proc. of the 38th Southeastern Int. Conf. on Comb., Graph Theo. and Comp., Congr. Numer. 187 (2007), 161-173.
[4] W.T. Tutte, Graph Factors, Combinatorica 1 (1981) 79-97
[5] Billington, Elizabeth J. ; Hoffman, D. G., Decomposition of complete tripartite graphs into gregarious 4-cycles. Papers on the occasion of the 65th birthday of Alex Rosa. Discrete Math. 261 (2003), no. 1-3, 87-111.
[6] Billington, Elizabeth J. ; Hoffman, D. G. , Equipartite and almost-equipartite gregarious 4-cycle systems. Discrete Math. 308 (2008), no. 5-6, 696-714.
[7] Smith, Benjamin R., Equipartite gregarious 5-cycle systems and other results. Graphs Combin. 23 (2007), no. 6, 691-711.
[8] Billington, Elizabeth J. ; Smith, Benjamin R. ; Hoffman, D. G. Equipartite gregarious 6- and 8-cycle systems. Discrete Math. 307 (2007), no. 13, 1659-1667.
[9] Cho, Jung R. ; Gould, Ronald J. Decompositions of complete multipartite graphs into gregarious 6-cycles using complete differences. J. Korean Math. Soc. 45 (2008), no. 6, 1623-1634.
[10] Cho, Jung Rae. A note on decomposition of complete equipartite graphs into gregarious 6-cycles. Bull. Korean Math. Soc. 44 (2007), no. 4, 709-719.
[11] Smith, Benjamin R. Some gregarious cycle decompositions of complete equipartite graphs. Electron. J. Combin. 16 (2009), no. 1, Research Paper 135, 17 pp.
[12] Billington, Elizabeth J. ; Hoffman, D. G. ; Rodger, C. A., Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Math. 308 (2008), no. 13, 28442853.
[13] El-Zanati, Saad I. ; Punnim, Narong ; Rodger, Chris A. Gregarious GDDs with two associate classes. Graphs Combin. 26 (2010), no. 6, 775-780.
[14] Bryant, Darryn; Private Communication

