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Abstract

In this thesis, we study four systems of ordinary differential equations, which model the

interrelationships between different cell populations while tumor cells exist, and treatments,

such as immunotherapy, chemotherapy, and radiotherapy, are applied.

For the first two models, we only consider the case with radiation treatment. For the

first model, we consider a single general cell population with its corresponding radiated cell

population. Meanwhile, two different kinds of radiation are studies separately: constant and

decay; for the second model, we consider the host and tumor cell populations together with

their corresponding radiated cell populations, which behave in the same way as that in the

first model.

For the third and fourth models, we consider both the immunotherapy and chemother-

apy. The third model includes three cell populations: host cells, tumor cells, and immune

cells, as well as the drug concentration. We study the properties of its null-surfaces, equilib-

ria, and the stability of them; in the fourth model, we not only extend the previous model

into one with six populations, with the immune cells in the third model being specified into

three different ones: CD8+T cells, circulating lymphocytes, and IL-2. but also focus on

the situation when controls are added in a linear manner. We investigate the existence of

controls and find the characterization of optimal bang-bang control.

ii



Acknowledgments

This thesis would not have been possible without the guidance and the help of several

individuals who in one way or another contributed and extended their valuable assistance in

the preparation and completion of this study.

First and foremost, my greatest thanks extend to Dr. Georg Hetzer for his patience and

guidance throughout this endeavor at Auburn University. I got lots of advisable suggestions

from him back to the time when I applied to this department, and Dr. Hetzer took consid-

erable time and energy to further the progress in my studies of Mathematics. I will never

forget the sincerity and encouragement that he showed to me.

I would also like to thank Dr. Wenxian Shen on the committee, who is such a great

teacher of mine for many courses. I have been learning so much from her. I am also thankful

for the excellent example she has provided as a successful professor and a good person. My

sincere thanks also go to Dr. Xiaoying Han for serving as the committee members.

I wish to express my greatest appreciation for my parents, my sister, and her lovely

daughter, who have given their love and constant support throughout my life. Thanks for

always being with me.

I offer my regards and blessings to all other people who supported me in any respect

during the completion of the project.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background and Preliminary Knowledge . . . . . . . . . . . . . . . . . . . . . . 6

3 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 General assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Model I: Single population with Radiotherapy only . . . . . . . . . . . . . . 22

3.3 Model II: Double populations with Radiotherapy only . . . . . . . . . . . . . 23

3.4 Model III: Tumor model with Immune Resistance and Chemotherapy . . . . 24

3.5 Model IV: Immuno-Chemotherapy with controls . . . . . . . . . . . . . . . . 26

4 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Constant radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Decay radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Model III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Null-surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Model IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Objective Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



4.4.2 Existence of Optimal Control . . . . . . . . . . . . . . . . . . . . . . 47

4.4.3 Characterization of the Optimal Bang-bang Control . . . . . . . . . . 50

5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A One-point compactification and associated results . . . . . . . . . . . . . . . . . 60

B Fundamental knowledge of optimal control theory . . . . . . . . . . . . . . . . . 61

v



Chapter 1

Introduction

Cancer has been known as a deadly disease of mankind from prehistoric time, and re-

search into cancer tumor treatment began only recently from a historic point of view [15].

The growth of cancerous tumor is a complicated process involving multiple biological in-

teractions. Also, the response of tumors to active treatments such as chemotherapy and

radiotherapy is complex, but important to understand. A tumor’s response to treatment

depends on many factors, including the severity of the disease, the application of the treat-

ment, and the strength of patient’s own immune response. Mathematical modeling of this

process is viewed as a potentially powerful tool in the development of improved treatment

regimens. The mathematical modeling of tumor growth and treatment has been approached

by a number of researchers using a variety of models over the past decades [33].

The main types of cancer treatments involve surgery, chemotherapy, radiotherapy, and

immunotherapy, either in isolation, or in combination of two or more of these. A given

specific type of cancer will have a preferred treatment depending on, among other things,

where the cancer is located and its stage of development. We introduce three therapies

that are widely used in practice in the following context: Radiotherapy, Chemotherapy, and

Immunotherapy.

• Radiotherapy

Radiotherapy is a treatment procedure that uses radiation to kill malignant tumor cells.

This treatment targets rapidly growing and dividing cells such as those in cancer[1].

Radiation destroys cells by causing one or more chromosomes to break. When this hap-

pens, the cells cannot reproduce and eventually die off [2] [3] [4]. Hence the question of
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persistence or extinction of a community of cells exposed to radiation is of paramount

interest. Moreover, it is sometimes possible for the broken chromosomes to recombine.

This may lead to the original configuration of the chromosomes, it may lead to muta-

tion, or the recombination may be completely ineffective [4] [5]. Here we view the first

of these possibilities as a probability of broken cells becoming whole again. Finally,

the radiation protocol may be one of two modes: constant dosage, which is similar to

the case of long term radiation after a nuclear accident; decaying radiation, such as

radioactive material implanted to fight lung cancer [6].

• Chemotherapy

Another of the most common and fundamental forms of treatment is chemotherapy,

which involves injecting into the body a type of drug designed to attack the cancer

cells. This type of drug also attacks normal (host) cells causing common side effects

such as hair loss (Radiotherapy has the same side effects sometimes). Much research

into chemotherapy is involved with designing the drug so as to maximize the effect on

cancer and minimize the side effects [7]. Therefore, when developing effective treat-

ment strategies, understanding the effects of chemotherapeutic drugs on tumors is of

primary importance. Several approaches to modeling chemotherapeutic induced cell-

kill (killing of tumor cells) have been developed. One of the early approaches was by

citeskipper1964experimental, which propose that cell-kill due to a chemotherapeutic

drug was proportional to the tumor population. This hypothesis is based on in vitro

studies in the murine leukemia cell-line L1210. It states that for a fixed dose, the

reduction of large tumors occurred more rapidly than for smaller tumors. The concept

in [8] is referred to as the log-kill mechanism. [9] [10] find this model to be inconsistent

with clinical observations of Hodgkin’s disease and acute lymphoblastic leukemia which

showed that, in some cases, reduction in large tumors was slower than in histologically

similar smaller tumors. Therefore, [9] [10] hypothesize that the cell-kill is proportional
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to the growth rate (e.g., exponential, logistic, or Gompertz) of the tumor. A third hy-

pothesis notes that some chemotherapeutic drugs must be metabolized by an enzyme

before being activated. This reaction is saturable due to the fixed amount of enzyme.

Thus, [11] develops the Emax model which describes cell-kill in terms of a saturable

function of Michaelis-Menton form.

• Immunotherapy

Meanwhile, immunotherapy refers to the use of natural and synthetic substances to

stimulate the immune response. This involves stimulating the immune system to work

harder or using an outside source of cells, such as synthesized immune system proteins.

Immunological therapies include the use of antigen and non-antigen specific agents such

as cytokines. Cytokines are hormones produced in the immune system that regulate

the growth and activity of other immune system cells and blood cells. Cytokines alone

can give the immune system a boost or given with other immunotherapies they can

be used as adjuvants [12]. Cytokines have been used to treat melanoma, leukemia,

lymphoma, neuroblastoma, Kaposis sarcoma, mesothelioma, brain cancer, cancer of

the kidney, and cancer of the cervix. It is therefore important that we begin to develop

mathematical models of tumor growth that include an immune system response, and

ultimately a response to immunotherapy.

Interleukin-2 (IL-2) is a cytokine that was approved by the FDA in 1992 for treatment

of metastatic renal cell (kidney) cancer. IL-2 became the first cytokine approved for

use alone in treating advanced cancer [21]. Since that time, it has also been approved

to treat people with metastatic melanoma. IL-2 can be used as a single-drug treatment

for these cancers, or it may be combined with other forms of immunotherapy, such as

vaccines. IL-2 helps immune system cells reproduce more rapidly once they are in the

patient. The use of IL-2 together with chemotherapy or with other cytokines (such as
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interferon-alpha) may increase their effectiveness against some cancers, but the side

effects of the combined treatment are also increased [34].

• Optimal Control

Once an adequate model of interacting cell populations is constructed, we focus on the

design of an improved treatment protocol. To this end, we employ the tools of optimal

control theory. This theory originated in economics, where it was used to optimize

cost or profit. It was subsequently applied to engineering problems and finally to

biological models [21]. The goal of different therapies is to destroy the tumor cells,

while maintaining adequate amounts of healthy tissue. From a mathematical point

of view, adequate destruction of tumor cells might mean forcing the system out of

the basin of an unhealthy spiral node, or out of a limit cycle, and into the basin of

attraction of a stable, tumor-free equilibrium. Alternatively, if the therapy pushes the

system into a limit cycle in which the size of the tumor is small for a long period of

time (as long as the life of the patient, for example), this could also be considered as

‘cure’ [20].

Optimality in treatment might be defined in a variety of ways. The general goal is to

keep the patient healthy while killing the tumor. In this thesis, we choose to minimize

the tumor population, while constraining the normal cells to stay above some minimal

level. Therefore, the development of therapies protocol can be phrased as an optimal

control problem with constraints: for a fixed time interval, find the points within that

interval at which the drug should be administered so that the number of tumor cells

has been minimized, while the number of healthy cells has been kept above a prescribed

threshold [20].

There have been many models, which tried to focus on simulating single or multiple

important elements of the multifaceted process of tumor growth and response to therapy,

with or without considering the optimal control. Based on these studies, people are trying
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to design or improve treatment protocol by employing the tools of optimal control theory.

See [13], [14], [15], [1] [16] [17].

This thesis is based on the models developed in [18] [19] [20] [21]. We build four different

systems by stating the biological behaviors of each population, specifying most of the func-

tional terms of them, and summarizing the mathematical form of these systems. We analyze

the qualitative properties of them, especially for the fourth one, to which we consider the

existence and characterization of the optimal bang-bang control.

The main mathematical tools that we employ here are from Ordinary Differential Equa-

tions (ODE) and Optimal Control Theory. The organization of this thesis is as follows: We

first give a wide range of background, including some fundamental definitions and impor-

tant theorems from ODE. Afterward, we formulate the four systems of ordinary differential

equations. Next, we investigate the qualitative details of these systems one by one, where

we frequently use the theorems we stated before. In the end, we give two appendices, one

of which gives the definitions and theorems concerning the One-point Compactification, the

other of which contains a brief summary of the optimal control theory, including the problem,

formulation, hypothesis, and solution outline.
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Chapter 2

Background and Preliminary Knowledge

Definition 2.1. (Hyperspace topology [22]) Suppose that X is a topological space. Then

the hyperspace of X, denoted by 2X , is the space of compact subsets of X. Suppose that

U1, · · · , Un is a finite collection of open subset of X, then

R(U1, · · · , Un) = {K ∈ 2X |K ⊂ ∪ni=1Ui and for all 1 ≤ i ≤ n, k ∩ Ui 6= ∅}

is a basic open set for the hyperspace topology.

Theorem 2.2. [22] If X is compact, so is 2X .

Theorem 2.3. [22] If X is a metric space with the bounded metric d, then the associated

Hausdorff metric generated the topology of 2X .

Definition 2.4. (Asymptotically autonomous process with limit semiflow [23]) Assume (X, d)

is a metric space, t0 ∈ R, and ∆ = {(t, s)|t0 ≤ s ≤ t < ∞}. A continuous mapping

Φ : ∆×X → X is called a nonautonomous process if it satisfies:

(i) Φ(s, s, x) = x, s ≥ t0.

(ii) Φ(t, s,Φ(s, r, x)) = Φ(t, r, x), t ≥ s ≥ r ≥ t0.

The process is called autonomous if, additionally,

(iii) Φ(t+ r, s+ r, x) = Φ(t, s, r), t ≥ s ≥ t0, r > 0.

In this case, we set Θ(t, x) = Φ(t+ t0, t0, x), and call Θ an autonomous semiflow.
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Moreover, the nonautonomous process Φ is called asymptotically autonomous with limit semi-

flow Θ, if Θ is an autonomous semiflow on X, and

Φ(ti + si, si, xi)→ Θ(t, x) as i→∞ in the metric space X

for any sequences ti → t, si →∞, xi → x.

Definition 2.5. (Chain Recurrent [23]) Let X and Θ be as in definition 2.4, A ⊆ X be a

nonempty positively invariant set under Θ, and x, y ∈ A. For ε > 0, t > 0, an (ε, t)-chain

from x to y (in A) is a sequence {x = x1, x2, . . . , xn+1 = y; t1, t2, . . . , tn} of points xi in A

and time ti > t such that dist(Θ(ti, xi), xi+1) < ε, i = 1, 2, . . . , n. A point x ∈ A is called

chain recurrent in A if for every ε > 0, t > 0, there exists an (ε, t)-chain from x to x in A.

The set A is said to be chain recurrent if every point in A is chain recurrent in A.

Remark 2.6. We are interested in the case that A is compact, connected, and invariant.

Definition 2.7. (ω-limit set [23] [24]) If Phi is a nonautonomous semiflow on X and

(s, x) ∈ [t0,∞)×X, then the forward orbit of Φ through (s, x) is defined to be

OΦ(s, x) = {Φ(t, s, x) : t ≥ s} ⊂ X.

If OΦ(s, x) has compact closure in X, then the ω-limit set of (s, x) (or of OΦ(s, x)) is defined

by

ωΦ(s, x) =
⋂
τ≥s

{Φ(t, s, x) : t ≥ τ},

where, for a subset A of X, A denotes the closure of A in X. In other words, y ∈ ωΦ(s, x)

if there is a sequence tj →∞, tj > s, such that Φ(tj, s, x)→ y, j →∞.

In the case of an autonomous semiflow Θ, the ω-limit set is independent of s and hence

we denote it by ωΘ(x):

ωΘ(x) =
⋂
τ≥0

{Θ(t, x) : t ≥ τ}.
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An equivalent definition for ω-limit set for an autonomous semiflow is as follows: sup-

pose that φt is a autonomous semiflow on Rn and p ∈ Rn. A point x in Rn is called an

ω-limit point of the orbit through p if there is a sequence of numbers t1 ≤ t2 ≤ t3 ≤ · · · such

that ti → ∞ and limi→∞ φti(p) = x. The collection of all such ω-limit points is called the

ω-limit set of p.

Lemma 2.8. [25] Suppose {fn}, n = 1, 2, . . . , is a sequence of functions defined and con-

tinuous on an open set D ⊂ Rn+1 with limn→∞ fn = f0 uniformly on compact subsets of D.

Suppose (tn, xn) is a sequence of points in D convergent to (t0, x0) ∈ D as n → ∞, and

let φn(t), n = 0, 1, . . . , be a solution of the equation ẋ = fn(t, x) passing through the point

(tn, xn). If φ0(t) is defined on [a, b] and is unique, then there is an integer n0 such that each

φn(t), n ≥ n0 can be defined on [a, b] and converges to φ0(t) uniformly on [a, b].

Proof. Please refer to [25] for the detailed proof.

Definition 2.9. Again, (X, d) is a metric space, and t0 ∈ R. Consider the following systems

ẋ = f(t, x) (2.1)

ẏ = g(y) (2.2)

where x, y ∈ Rn, f : R+ × Rn → Rn and g : Rn → Rn are continuous vector functions.

Assume the initial value problems for each system have unique solutions defined for all future

time after the initial time.

Define Φ = Φ(t, s, x0) to be the solution of system (2.1) with the initial value being

x(s) = x0, and Θ = Θ(t, x0) to be the solution of system (2.2) with the initial value being

y(0) = x0.

Proposition 2.10. We use the same assumptions and notations as in the definition 2.9.

Then Φ is asymptotically autonomous with limit semiflow Θ if one of the two following

conditions is satisfied:
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(A) : f(t, x)→ g(x) as t→∞ uniformly on compact subsets of Rn.

(B) : g is locally Lipschitz, and, for each compact subset K ⊂ Rn, there is a function

µK : [0,∞)→ [0,∞) satisfying µK(t)→ 0 as t→∞ and

∣∣∣∣∫ t+σ

t

[f(s, x)− g(x)]ds

∣∣∣∣ ≤ µK(t)

for every (x, σ) ∈ K × [0, 1] and t > 0.

Proof. By definition, we want to show Φ(tj + sj, sj, xj) → Θ(t, x) as j → ∞ for any three

sequences tj → t, sj →∞, xj → x as j →∞.

(A) : Let T > 0 be such that tj < T, j ≥ 0. Then observe that Φ(t+ sj, sj, xj) is the solution

of ẋ = f(t + sj, x) with x(0) = xj. Also, since f(t, x) → g(x) as t → ∞ uniformly on

compact subsets of Rn+1, by lemma 2.8, Φ(t + sj, sj, xj) → Θ(t, x) as j → ∞ uniformly on

[0, T ]. Therefore,

Φ(tj + sj, sj, xj)→ Θ(t, x) as j →∞.

(B) : Since Θ(t, xj) → Θ(t, x) as j →∞ uniformly on [0, T ] (since [0, T ] is compact), there

exists a K ⊂ Rn and ε > 0 such that K is compact and

⋃
t∈[0,T ]
j≥0

{y : |y −Θ(t, xj)| < ε} ⊂ K.

Since g is locally Lipschitz on K, let L be the associated Lipschitz constant, and choose

δ > 0 such that δeLT < ε. Then by our assumption, there exists a function µK(T ) on [0,∞)

satisfying µK(t)→ 0 as t→∞ and

∣∣∣∣∫ t+σ

t

[f(s, x)− g(x)]ds

∣∣∣∣ ≤ µK(t)
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for x ∈ K and σ ∈ [0, T ]. Since µK(t) → 0, choose S > 0 such that µK(s) < δ for s > S.

Denote uj = Φ(t+ sj, sj, xj), vj(t) = Θ(t, xj). Then

|uj(t)− vj(t)| =

∣∣∣∣[∫ t

0

f(τ + sj, uj(τ)) dτ + xj

]
−
[∫ t

0

g(vj(τ)) dτ + xj

]∣∣∣∣
≤

∣∣∣∣∣
∫ sj+t

sj

[f(τ, uj(τ − sj))− g(vj(τ − sj))] dτ

∣∣∣∣∣
+

∫ t

0

|g(uj(τ))− g(vj(τ))| dτ

≤ µK(sj) + L

∫ t

0

|uj(τ)− vj(τ)| dτ.

By the Gronwall’s inequality,

|uj(t)− vj(t)| ≤ µk(sj)e
Lt ≤ δeLT ≤ ε

for 0 ≤ t ≤ T . By the definition of K, it follows that uj(t) ∈ K for all T ∈ [0, T ] if sj > S

and uj → u, j →∞ uniformly. As in part (A), we finish the proof.

Lemma 2.11. We use the same assumptions and notations as in the definition 2.5. Assume

A is connected and chain recurrent with Θ representing the associated autonomous semiflow.

Then for any x, y ∈ A, ε > 0, T > 0, there exists a (ε, T )-chain from x to y.

Proof. Let δ =
ε

3
. Since A is connected, there exists a1, · · · , an ∈ A with x = a1, y = an,

and

d(ai, ai+1) < δ, , i = 1, · · · , n− 1.

Now, since A is chain recurrent, for each 1 ≤ i ≤ n, there exist a (δ, T )-chain from ai to ai:

{ai = bi1 , · · · , bin = ai; ti1 , · · · , tin−1}, bj ∈ A, tj ≥ T.

10



To get a chain from x to y, we can ‘connect’ these chains together, namely, we get a new

sequence

{x = a1 = b11 , · · · , b1n , b21 , · · · , bnn = an = y; t11 , · · · , tnn−1}, bij ∈ A, tij ≥ T.

To verify that this is a (ε, T )-chain, it suffices to check whether or not those points where the

chain is connected in the above way satisfy the definition of (ε, T )-chain. For 1 ≤ i ≤ n− 1,

d(Θ(tin , bin), bi+11) = d(Θ(tin , ai), ai+1)

≤ d(Θ(tin , ai), ai) + d(ai, ai+1)

< δ + δ

< ε.

Lemma 2.12. We use the same assumptions and notations as in the definition 2.4, where

Θ is an autonomous semiflow. Let T > 0 and OTΘ(x) = {Θ(t, x) : t ≥ T}. Given y ∈ ωΘ(x)

and ε > 0, t0 > 0. There exists a (ε, t0)-chain

{y = y1, · · · , yl, yl+1 = y; t1, · · · , tl}

such that yi ∈ OTΘ(x) for i = 1, 2, · · · , l, ti = t0 for i = 1, 2, . . . , l − 1 and t0 ≤ tl < 2t0.

Proof. Since y ∈ ωΘ(x), there exists τn → ∞ such that Θ(τn, x) → y as n → ∞. Choose

N > 0 such that

d(Θ(τN + t, x),Θ(t, y)) < ε for t ∈ [0, t0].

Similarly, we can choose M > N > 0 such that τM > τN + 2t0 and d(Θ(τM , x), y) < ε. Let l

be such that τM − τN = lt0 + r for some r ∈ [0, t0).
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Now let y1 = y, yi = Θ(τN + (i − 1)t0, x) for i = 2, . . . , l, yl+1 = y, ti = t0 for i =

1, . . . , l − 1, tl = t0 + r. We can check that d(Θ(t1, y1), y2) = d(Θ(τN + t0, x),Θ(t0, y)) < ε,

d(Θ(ti, yi), yi+1) = 0 for i = 2, . . . , l − 1, and

d(Θ(tl, yl), yl+1) = d(Θ(τN + lt0 + r, x), y) = d(Θ(τM , x), t) < ε.

Proposition 2.13. We use the same assumptions and notations as in the definition 2.5,

where Θ is an autonomous semiflow, and suppose that OΘ(x) = {Θ(t, x) : t > 0} has compact

closure in X. Then ωΘ(x) has the following properties:

(a) ωΘ(x) is nonempty, compact, and connected.

(b) ωΘ(x) is invariant.

(c) ωΘ(x) attracts Θ(t, x):

dX(Θ(t, x), ωΘ(x))→ 0, t→∞.

(d) ωΘ(x) is is chain recurrent.

Proof. (a), (b), and (c) are classical results. Check [24]

To prove (d), we need to show that for any y ∈ ωΘ(x), ε > 0, and t0 > 0, there exists

an (ε, t0)-chain lying in ωΘ(x) which connects y to itself.

From lemma 2.12, for each n ∈ N, there exists a (
1

n
, t0)-chain:

{y = yn1 , . . . , y
n
ln+1 = y; tn1 , . . . , t

n
ln}

with yi ∈ OTΘ(x) for i = 1, . . . , ln + 1. Furthermore, We denote the sets {yni }ln+1
i=1 by Y n.

First we notice that Y n are all finite therefore compact and Y n ⊂ OTΘ(x) which is also

compact. Apple Theorem 2.2 and consider OTΘ(x) as the whole space, then, W.L.O.G.,
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Y n → Ỹ in the hyperspace topology with some Ỹ ⊂ OTΘ(x) being compact. (Otherwise we

take a subsequence of Y n.) Since y ∈ Y n for all n, then y ∈ Ỹ ⊂ ωΘ(x). Next, we will

construct our chain by points from Ỹ .

Since Ỹ is compact, there exists a δ > 0 such that if ỹ1, ỹ2 ∈ Ỹ and d(ỹ1, ỹ2) < δ, then

d(Θ(t, ỹ1),Θ(t, ỹ1)) <
ε

3
for t ∈ [0, 2t0].

Furthermore, let N > 0 be such that
1

N
<
ε

3
and D(Y N , Ỹ ) <

ε

3
, where D is the Hausdorff

metric. We finish the proof by carrying out the following steps.

1. Let ỹ1 = y, pick up ỹ2 ∈ Ỹ such that d(ỹ2, y
N
2 ) < δ, and t1 = t0. Then

d(Θ(t0, ỹ1), ỹ2) = d(Θ(t0, y
N
1 ), ỹ2)

< d(Θ(t0, y
N
1 ), yN2 ) + d(yN2 , ỹ2)

<
1

N
+ δ < ε.

Also, since d(ỹ2, y
N
2 ) < δ, by how we chose δ, d(Θ(t0, ỹ2),Θ(t0, y

N
2 )) <

ε

3
.

2. Pick up ỹ3 ∈ Ỹ such that d(ỹ3, y
N
3 ) < δ, and t2 = t0. Then

d(Θ(t0, ỹ2), ỹ3) < d(Θ(t0, ỹ2),Θ(t0, y
N
2 )) + d(Θ(t0, y

N
2 ), yN3 ) + d(yN3 , ỹ3)

<
ε

3
+

1

N
+ δ < ε.

Also, d(ỹ3, y
N
3 ) < δ induces d(Θ(t0, ỹ3),Θ(t0, y

N
3 )) <

ε

3
.

...

(lN). Set ỹlN+1 = y and tlN ∈ [t0, 2t0), we have

d(Θ(tlN , ỹlN ), ỹlN+1) < d(Θ(tlN , ỹlN ),Θ(tlN , y
N
lN )) + d(Θ(tlN , y

N
lN ), yNlN+1)

<
ε

3
+

1

N
< ε.

13



Therefore, {y = ỹ1, . . . , ỹlN+1; t1, . . . , tlN} is the desired chain.

Remark 2.14. If Φ is a nonautonomous process but asymptotically autonomous with limit

semiflow Θ, then Φ and Θ can be embedded in a single autonomous semiflow Ψ on a larger

metric space Z = [t0,∞] × X, where [t0,∞] is the one-point compactification of [t0,∞)

in the usual sense (see Appendix A.), and a metric ρ on Z is defined by ρ((s, x), (t, y)) =

|h(s)− h(t)|+ d(x, y), where h : [t0,∞]→ [0, 1] is the map defined as follows:

h(t) =


t− t0

1 + t− t0
, t <∞,

1, t =∞.

The embedding is: Ψ : [0,∞)× Z → Z,

Ψ(t, (s, x)) =


(t+ s,Φ(t+ s, s, x)), t0 ≤ s <∞

(∞,Θ(t, x)), s =∞
(2.3)

Clearly, Ψ is continuous and a semiflow on Z.

Lemma 2.15. We use the same assumptions and notations as in the definition 2.4, where

Φ is an asymptotically autonomous process with limit semiflow Θ, and assume OΘ(s, x) has

compact closure in X. Then OΨ(s, x) has compact closure in Z and

{∞} × ωΦ(s, x) = ωΨ(s, x). (2.4)

Proof. Since Θ is the limit semiflow, by the definition, sj →∞, therefore we take the second

embedding of (2.3). (2.4) follows.

The topology on Z is the product topology on {∞} ×X. Since OΘ(s, x) has compact

closure in X, by the definition of compactness, it has a finite open cover, say C, in X. Then

14



we can construct an open cover C ′ of OΨ(s, x) by setting

C ′ = {[t0,∞]× E|E ∈ C}.

It follows immediately that OΨ(s, x) has compact closure in Z.

Theorem 2.16. We use the same assumptions and notations as in the definition 2.4, where

Φ is an asymptotically autonomous process with limit semiflow Θ, and assume the forward

orbit O+
Φ(s, x) has compact closure in X. The ω-limit set ωΦ(s, x) has the following proper-

ties:

(a) ωΦ(s, x) is nonempty, compact, and connected.

(b) ωΦ(s, x) is invariant under the semiflow Θ:

Θ(t, ωΦ(s, x)) = ωΦ(s, x) for each t ≥ 0.

(c) ωΦ(s, x) attracts Φ(t, s, x):

dX(Φ(t, s, x), ω)→ 0, t→∞.

(d) ωΦ(s, x) is is chain recurrent for Θ.

Proof. By lemma 2.15, OΨ(s, x) has compact closure in Z, then by proposition 2.13, ωΨ(s, x)

is nonempty, compact, and connected. (a) then follows. Similarly, ωΨ(s, x) is invariant under

Ψ, therefore we proved (b). For (c), we observe that

dZ(Ψ(t, (s, x)), ωΨ(s, x)) =

∣∣∣∣ t+ s− t0
1 + t+ s− t0

− 1

∣∣∣∣+ dX(Φ(t, s, x), ωΦ(s, x))→ 0 as t→∞.

This induces dX(Φ(t, s, x), ωΦ(s, x)) → 0 as t → ∞. Finally, {∞} × ωΦ(s, x) being chain

recurrent in Z implied that ωΦ(s, x) is also chain recurrent in X.
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Theorem 2.17. (Poincaré-Bendixson Theorem in R2 [26]) Suppose f ∈ C1(E) where E is

an open subset of R2, and φ is the solution flow of the system ẋ = f(x). If Ω is a nonempty

compact ω-limit set of φ, and Ω does not contain a rest point, then Ω is a periodic orbit.

Corollary 2.18. [26] We use the same notations and assumptions as in the Theorem 2.17.

If E contains a periodic orbit Γ of the system ẋ = f(x) and its interior U , then U contains

at least one rest point of the system.

Theorem 2.19. (Dulac’s Criterion [24]) Consider a smooth differential equation system

ẋ = f(x, y), ẏ = g(x, y).

If there is a smooth function B(x, y) defined on a simply connected region Ω ⊂ Rn such that

∂

∂x
(B · f) +

∂

∂y
(B · g) is not identically zero and of a fixed sign on Ω, then the system has

no periodic solution on Ω.

Theorem 2.20. (Lyapunov’s Stability Theorem [24]) Consider autonomous system

ẋ = f(x), x ∈ Rn.

Let x0 be a rest point of this system and U ⊂ Rn be an open set containing x0. A continuous

function h : U → R is called a Lyapunov Function of the above system at x0 if it satisfies:

1. h(x0) = 0.

2. h(x) > 0 for x ∈ U\{x0}.

3. h is continuously differentiable on the set U\{x0}, and, on this set,

ḣ(x) = gradh(x) · f(x) ≤ 0.

h(x) is called a strict Lyapunov Function if, additionally,
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(4) ḣ(x) < 0 on U\{x0}.

For the above system, if there exists a Lyapunov Function defined on an open neighborhood of

a rest point of the system, then this rest point is stable. Moreover, if the Lyapunov Function

is a strict Lyapunov Function, then this rest point is asymptotically stable.

Definition 2.21. (Subsolution and Supersolution [27]) Let f(t, x) be defined in D ⊂ R2.

Consider the following system with initial value

ẏ = f(t, x) for t ∈ J = [t0, t0 + a], y(t0) = K, (2.5)

where K is a constant, and a > 0. Suppose y(t) is a solution of the system. y−/y+ is called

a subsolution/supersolution of the above system if it is differentiable on J and satisfies

ẏ− ≤ f(t, x) on J, y−(t0) ≤ K. subsolution

˙y+ ≥ f(t, x) on J, y+(t0) ≥ K. supersolution

Theorem 2.22. (Kamke’s Comparison Theorem, version of unique solution [27]) Under the

previous definition, where f is a continuous function, and D is an open subset of R2, if the

initial value problem (2.5) has a unique solution on J , then

y−(t) ≤ y(t) ≤ y+(t) on J.

Theorem 2.23. (Carathéodory’s Existence Theorem [28]) Consider the initial value problem

ẋ = f(t, x(t)),

x(τ) = ξ,

where (τ, ξ) ∈ D, with D a nonempty open subset of R × Rn, and f : D → Rn. It has

a solution if for some open set Ra,b ⊂ D centered at τ, ξ, the restriction of f to Ra,b is
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continuous in x for fixed t, measurable in t for fixed x, and satisfies

|f(t, x)| ≤ m(t), (t, x) ∈ Ra,b,

for some m integrable over the interval [τ − a, τ + a].

Next we will introduce several definitions and theorems from optimal control theory.

Please refer to Appendix B for the fundamental background, such as basic terminologies and

general problem formulation, and an outline of solving optimal (bang-bang) control problem.

Definition 2.24. (Optimal control [29]) Consider the following optimal control problem:

min J =

∫ T

0

F (x(t), u(t), t) dt+ S(x(T ), T ) (2.6)

ẋ(t) = f(x(t), u(t), t), x(0) = x0 (2.7)

g(x(t), u(t), t) ≥ 0 (2.8)

h(x(t), t) ≥ 0 (2.9)

a(x(T ), T ) ≥ 0 (2.10)

b(x(T ), T ) = 0 (2.11)

where T is free on [0, tf ], F : Rn×Rm×R→ R, S : Rn×R→ R, f : Rn×Rm×R→ Rn, g :

Rn ×Rm ×R→ Rs, h : Rn ×R→ Rq, a : Rn ×R→ Rl, and b : Rn ×R→ Rl′. Assume that

F, S, f, g, h, a, and b are continuous over their domain, respectively.

Define the (state-dependent) set of admissible values

Ω(x, t) = {u ∈ Rm|g(x, u, t) ≥ 0} ⊂ Rm
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and the set

N(x, t) = {(F (x, u, t) + γ, f(x, u, t))|γ ≤ 0, u ∈ Ω(x, t)} ⊂ Rn+1

where m and n are the number of control and state variables, respectively.

We are looking for a measurable function u(·) mapping from [0, T ] into Rm and a cor-

responding function x(·) mapping from [0, T ] into Rn which is absolutely continuous, such

that the constraint (2.7) — (2.11) are satisfied and the objective functional (2.6) takes its

minimum value.

Theorem 2.25. (Filippov-Cesari Theorem [29]) Under the previous definition, we assume

that F, S, f, g, h, a, and b are continuous in all their arguments at all points (x, u, t). Fur-

thermore, suppose that the following conditions hold:

1. There exists an admissible solution pair.

2. N(x, t) is convex for all (x, t) ∈ Rn × [0, tf ].

3. There exists δ > 0 such that

‖x(t)‖ < δ

for all admissible {x(t), u(t)} and t.

4. There exists δ1 > 0 such that ‖u‖ < δ1 for all u ∈ Ω(x, t) with ‖x‖ < δ.

Then there exists an optimal triple {T ∗, x∗, u∗} with u∗(·) measurable.

Theorem 2.26. (Pontryagin’s Maximum/Minimum Principle, or PMP [21], [30])

Use the same notations and assumptions as in the definition 2.24, where we assume

u(t) = (u1(t), . . . , um(t)) is a piecewise continuous control function and x(t) = (x1(t), . . . , xn(t))

be the corresponding continuous and piecewise differentiable state function defined on the fixed

interval [t0, t1] that minimizes ∫ t1

t0

f(t,x(t),u(t)) dt
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subject to the differential equations

ẋi(t) = gi(t,x(t),u(t)), i = 1, . . . , n,

initial conditions

xi(t0) = xi0, xi0 fixed, i = 1, . . . , n,

terminal conditions

xi(t1) = xi1, xi0 fixed, i = 1, . . . , p,

xi(t1) ≥ xit, xi0 fixed, i = p+ 1, . . . , q

xi(t1) is free, i = q + 1, . . . , n,

and control variable restriction

u(t) ∈ U, U is a given set in Rm.

We assume that f, g, ∂f/∂xj, and ∂gi/∂xj are continuous functions of all their arguments for

all i = 1, . . . , n and j = 1, . . . , n. Then there exist continuous functions (adjoint functions)

λ(t) = (λ1(t), . . . , λn(t)) : R→ Rn, where for all t0 ≤ t ≤ t1 we have λ(t) 6= 0 such that for

every t0 ≤ t ≤ t1,,

H(t,x∗(t),u(t), λ(t)) ≤ H(t,x∗(t),u∗(t), λ(t)),

where the Hamiltonian function H is defined by

H(t,x,u, λ) = f(t,x,u) +
n∑
i=1

λigi(t,x,u).

Moreover, except at points of discontinuity of u∗(t),

λ̇(t) = −∂H(t,x∗(t),u∗(t), λ(t))/∂xi, i = 1, . . . , n.
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Finally, the following transversality conditions are satisfied:

λi(t1) no conditions, i = 1. . . . , p, (2.12)

λi(t1) ≥ 0, the equality holds if x∗i (t1) > xi1, , i = p+ 1, . . . , q, (2.13)

λi(t1) = 0, , i = q + 1, . . . , n. (2.14)
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Chapter 3

Model Description

3.1 General assumptions

We will study three types of therapies in this thesis: Immunotherapy, Chemotherapy,

and Radiotherapy. What we list below are several assumptions about these therapies that

some models in this thesis share, each of which represents a certain well-accepted behavior

of a population or between populations.

Immune response: The intrinsic growth rates of tumor and immune cell populations are

assumed to obey logistic laws. Also, the immune cells will kill the tumor cells at some

rate, which results in the death of both populations. Furthermore, in the absence of

any tumor cell, the immune cells will die off at a constant rate.

Chemotherapy: Medicines will kill not only tumor cells, but also host and immune cells,

of which the rate is modeled by the term −k(1− e−σM) with k denoting the response

coefficient. The parameters k and σ can be adjusted according to clinical data.

Radiation: The radiation affects all types of cell. Furthermore, it is sometimes possible for

broken chromosomes to recombine, so that ‘broken’ tumor or host cells can become

viable cells again. This is here modeled to occur at a constant rate.

3.2 Model I: Single population with Radiotherapy only

We start with the case with radiotherapy only. More specifically, we deal with one cell

population (either host or tumor cells) and establish some general mathematical properties

and dynamics of the system. We will study the double-population case in the next model.
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A(t) and Ar(t) denote the population densities at time t of the cell populations under

consideration and the associated radiated cell populations, respectively.

• We assume logistic growth for the cell population with r and K denoting the intrinsic

growth rate and carrying capacity, respectively.

• Radiated cells with broken chromosomes are represented by D(t)u, where D(t) is the

rate of radiation protocol, a nonnegative function. It’s reasonable to ask furthermore

that D(t) 6≡ 0. We consider two cases for D(t) in this model:

1. D(t) = D0 > 0, constant.

2. D(t) = D0e
−αt, decay.

• p is the rate at which the radiated cells recombine into normal cells, and δ is the

washout rate of radiated cells.

After the discussion above, the system turns out to be of the following form:


Ȧ = rA(1− A

K
)−D(t)A+ pAr

Ȧr = D(t)A− pAr − δAr

A(0) ≥ 0;Ar(0) ≥ 0

(3.1)

3.3 Model II: Double populations with Radiotherapy only

In this model, we inherit the same assumptions as in Model I and consider the case

with both host and tumor cells, which includes additional competition between these two

populations.

• H(t) and T (t) denote the population densities at time t of the host and tumor cell

populations, respectively, with Hr(t) and Tr(t) for radiated host and tumor cell popu-

lations, respectively; ri andKi denote the intrinsic growth rates and carrying capacities,

respectively.
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• The radiotherapy is designed in such a way that full radiation concentration affects

the cancer cells, and a small proportion of the radiation affects the host cells.

• We only consider the case with constant radiation rate here, i.e., D(t) = D, where D

is a constant.

• We assume the same washout rate, δ, but different recombining rates for these two

populations, which are denoted by p1 and p2 for the radiated host and tumor cells,

respectively.

The system, in this way, becomes



Ḣ = r1H(1− H

K1

)− εDH + p1Hr − c1HT

Ḣr = εDH − p1Hr − δHr

Ṫ = r2T (1− T

K2

)−DT + p2Tr − c2HT

Ṫr = DT − p2Tr − δTr

H(0) ≥ 0;Hr(0) ≥ 0;T (0) ≥ 0;Tr(0) ≥ 0

(3.2)

3.4 Model III: Tumor model with Immune Resistance and Chemotherapy

Next, we will look at some more detailed cells population behaviors. In this model,

we will introduce three populations: tumor cells, immune cells, and normal (host) cells, of

which the population densities at time t are denoted by T (t), I(t), and H(t), respectively.

• We assume that the immune cells have a source with a constant influx rate s. Moreover,

in the absence of any tumor, they will die off at a per capita rate d, so that the immune

cells population won’t blow up, but has an upper bound
s

d
.

• The presence of tumor cells stimulate the immune response, represented by the Michaelis-

Menten form
ρI(t)T (t)

α + T (t)
, which is wildly used in enzyme kinetics modeling (the same as
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the terms used in [31],[32]). It’s easy to see that this term is positive and monotonically

increasing with respect to T . We will use similar terms again in the next model.

• The reaction between immune and tumor cells would result in the death for both,

which leads to two competition terms:

−c1I(t)T (t) and − c2I(t)T (t).

• Both the tumor and normal cell populations obey logistic growth laws, with ri and Ki

representing the intrinsic growth rates and carrying capacities for these two types of

cells, respectively. Thus, we have the following growth terms:

r2T (1− T

K2

) and r3H(1− H

K3

).

• In addition, there are two terms representing the competition between tumor and host

cells:

−c′2T (t)H(t) and − c3T (t)H(t).

• We add the effect of drugs into the system. M(t) denote the amount of drugs at time

t. By section 3.1, the response rates for all three types of cells are given by the terms:

−ki(1− e−σiM), i = 1, 2, 3

where for mathematical convenience and unknown of details of pharmacokinetics, we

let σi = 1, i = 1, 2, 3 in the preliminary studies.

• The amount of drug is determined by the given dose, v(t), and a per capita decay rate

of the drug once it’s injected, at the rate d4.
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Thus, we model this system as



İ = s− d1I +
ρIT

α + T
− c1IT − k1(1− e−M)I

Ṫ = r2T (1− T

K2

)− c2IT − c′2TH − k2(1− e−M)T

Ḣ = r3H(1− H

K3

)− c3TH − k3(1− e−M)H

Ṁ = v(t)− d4M

(3.3)

3.5 Model IV: Immuno-Chemotherapy with controls

In this model, we introduce a mixed-therapy method to treat cancer. More specifically,

we combine two biological therapies, Tumor Specific T Cell (CD8+T CTL) and cytokine

IL-2, together with a type of chemotherapy. We also consider controls of these therapies in

the system.

There are six populations in this model. The population densities at time t are denoted

by:

T (t): Tumor cells

N(t): Natural Killer cells

C(t): Number of circulating lymphocytes

S(t): Tumor Specific T cells (CD8+T cells)

I(t): Immunotherapy (cytokine IL-2) concentration

M(t): Chemotherapy medicine concentration

We assume the similar functional terms to the ones in [14]. The functions of ac-

tion/reaction between these populations can be categorized into several types.

Growth and death terms: The growth of tumor cells are assumed to obey logistic laws.

Both Natural Killer cells and CD8+T cells have constant death rates, while the growth
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of the former comes partially from circulating lymphocytes. The circulating lympho-

cytes have a constant production rate and a constant death rate. Both chemotherapy

and immunotherapy are assumed to decay proportionally to their concentrations.

Killing terms: The tumor cells will be killed by both the Natural Killer cells and the

CD8+T cells. Also, the chemotherapy medicine will affect all types of cells. The form

of inhibition is the same as in the system (3.1).

Stimulation and recruitment: The IL-2 stimulates the recruitment of both the Natural

Killer cells and the CD8+T cells. The latter will also be stimulated by the debris

of tumor cells. On the other hand, the CD8+T cells will also stimulate the produc-

tion of IL-2. These stimulations shall be modeled by the Michaelis-Menten form [33].

The Natural Killer cells killing the tumor cells may enhance the production of the

CD8+T cells. The same effect will be produced by the encounters between circulating

lymphocytes and tumor cells.

Control terms: We can control the population concentration of CTLs, IL-2, and medicine.

Before building the whole model, let’s discuss the detailed mathematical terms first in

the following text.

T(t) : The same as before, simple logistic growth term of the tumor cell population, rT (1−
T

K
), is assumed in the absence of medicine and immune interactions. Death of tumor

cells due to the Natural Killer cells and CD8+T cells is modeled by a mass action

term, −cNT , and a ratio dependent term, −D(S, T )T = −d (S/T )l

s/nl + (S/T )l
T [33],

respectively. Death due to chemotherapy medicine is given in the form that we used

to assume, −kT (1− e−σTM)T .

N(t) : The constant rate source term of Natural Killer cells due to circulating lymphocytes

is eC, while the linear natural death term is −fN . By killing the tumor cells, there
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is an extra death term, −pNT . Stimulation due to IL-2 is modeled in the Michaelis-

Menten form,
pNNI

gN + I
. The same as before, death due to chemotherapy medicine is

given by −kN(1− e−σNM)N .

C(t) : The circulating lymphocytes has a constant source term, α, and a linear death term,

−βC, together with the death due to medicine, −kC(1− e−σCM)C.

S(t) : For the CD8+T cells, we assume there exists a modified (in the presence of IL-2) linear

death term, − θmS
θ + I

, as well as a modified quadratic death term, −u0S
2CI

κ+ I
, due to

the inhibition by circulating lymphocytes. CTLs will also die through interaction with

tumor cells, modeled by −qST . Also, the stimulations on the CD8+T cells by Natural

Killer cells and circulating lymphocytes interacting with tumor cells are represented

by a1NT and a2CT , respectively. The stimulatory effect on the CD8+T cells by the

debris of tumor cells and the IL-2 are represented by
pTST

gT + T
and

pISI

gI + I
, respectively.

Similarly, death due to medicine is modeled by −kS(1− e−σSM)S.

I(t) : The IL-2 is assumed to be with a linear death rate, −µII, and a constant source from

Circulating Lymphocytes, ρC. We use
pSSI

gS + I
to represent the stimulatory production

from the CD8+T cells.

M(t) : Once injected, medicine (chemotherapy) is assumed to have a linear decay rate,

−γM .

All of the controls are in the term of ηXvX(t), where X denotes corresponding populations.

After the discussion above, we can summarize the system as
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

Ṫ = rT (1− T

K
)− cNT −D(S, T )T − kT (1− e−σTM)T

Ṅ = eC − fN − pNT +
pNNI

gN + I
− kN(1− e−σNM)N

Ċ = α− βC − kC(1− e−σCM)C

Ṡ = − θmS
θ + I

− u0S
2CI

κ+ I
− qST + a1NT + a2CT

+
pISI

gI + I
+

pTST

gT + T
− kS(1− e−σSM)S + ηSvS(t)

İ = −µII + ρC +
pSSI

gS + I
+ ηIvI(t)

Ṁ = −γM + ηMvM(t)

(3.4)

where D(S, T ) = d
(S/T )l

s/nl + (S/T )l
.

Also, T (0) ≥ 0;N(0) ≥ 0;C(0) ≥ 0;S(0) ≥ 0; I(0) ≥ 0;M(0) ≥ 0.
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Chapter 4

Analytic Results

4.1 Model I

Before starting to analyze the three cases individually, we first take a look at some

preliminary properties of the system (3.1).

Proposition 4.1. Assume that (A(t), Ar(t)) is the solution of the initial value problem (3.1),

and D(t) is continuous, then A(t) ≥ 0, Ar(t) ≥ 0.

Proof. (0, 0) is an equilibrium. It suffices to prove that A(t) and Ar(t) cannot cross the

A-axis and Ar-axis.

By the continuity of D(t), A(t) and Ar(t) are at least continuous over a small time

interval [0, ε] since they are the solutions of the initial value problem (3.1). Assume A(0) =

0, Ar(0) > 0, then Ȧ(0) = pAr(0) > 0, hence there exists a 0 < ε < ε such that Ȧ(t) >

0, Ar(t) > 0 for t ∈ [0, ε]. Thus,

A(t) =

∫ t

0

Ȧ(t) dt > 0 for t ∈ (0, ε],

Similar argument can imply the same conclusion for A(0) > 0, Ar(0) = 0, as Ȧr(0) =

D(0)Ar(0) > 0.

For the case that A(0) > 0, Ar(0) > 0, if the solution orbit intersects either A-axis or

Ar-axis at some time point, for instance, t1 > ε, we use the same arguments above to show

that the orbit will stay in the first quadrant, with A(0) and Ar(0) being substituted by A(t1)

and Ar(t1), respectively.

30



Proposition 4.2. IVP System (3.1) is dissipative within the set

R = R2
+ ∩

{
(A,Ar)|A+ Ar ≤ max

{
A(0) + Ar(0),

K(r + δ)2

4rδ

}}
.

where R2
+ = {(A,Ar)|A ≥ 0, Ar ≥ 0}.

Proof. Let X = A + Ar, then we combine the two equations in the initial value problem

(3.1) together:

Ẋ = rA(1− A

K
)− δAr

= −δX − r

K
A2 + (r + δ)A

= −δX +
K(r + δ)2

4r
− r

K
(A− K(r + δ)

2r
)2

≤ −δX +
K(r + δ)2

4r

Solving the corresponding equality, we get

X̃(t) =

(
X(0)− K(r + δ)2

4rδ

)
e−δt +

K(r + δ)2

4rδ
.

Therefore, by the Kamke comparison theorem (Theorem 2.22) ,

X ≤ max

{
X(0),

K(r + δ)2

4rδ

}

where X(0) = A(0) + Ar(0).

Next, we will discuss cases with different types of D(t) and see some analytical properties

for each of them.

4.1.1 Constant radiation

In this case, D(t) = D0 > 0, where D0 is a constant. The system (3.1) becomes
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Ȧ = rA(1− A

K
)−D0A+ pAr

Ȧr = D0A− pAr − δAr

A(0) ≥ 0;Ar(0) ≥ 0

(4.1)

Then, by solving the corresponding equations


rA(1− A

K
)−D0A+ pAr = 0

D0A− pAr − δAr = 0

we can get at most two reasonable distinct equilibria of the initial value problem (4.1):

E0 = (0, 0)

and E1 =

(
K
r(p+ δ)− δD0

r(p+ δ)
, KD0

r(p+ δ)− δD0

r(p+ δ)2

)
= (u1, v1) 6= E0, u1 ≥ 0, v1 ≥ 0.

Theorem 4.3. E1 exists if and only if E0 is unstable.

Proof. For one direction, E1 existing means that u ≥ 0, v ≥ 0, and the equalities cannot

hold at the same time. Since D0 6= 0, and all other parameters are positive in this model, it

is also equivalent to say that r(p+ δ)− δD0 > 0, which is

0 < D0 <
r(p+ δ)

δ
(4.2)

.

Now consider the linearized system

ẋ
ẏ

 =

r − 2rA

K
−D0 p

D0 −p− δ


x
y

 (4.3)
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of the IVP system (4.1). Then for E0, the eigenvalues of its corresponding Jacobean matrix

are

λ± =
−(p+ δ +D0 − r)±

√
(p+ δ +D0 − r)2 + 4[D0p+ (r −D0)(p+ δ)]

2
.

It is clear that at least λ− has negative real part. Now (4.2) induces that

4[D0p+ (r −D0)(p+ δ)] > 0,

which indicates λ+ has positive real part. Therefore, E0 is unstable.

Similarly arguments yield the other direction.

Theorem 4.4. If E1 does not exist, then E0 is asymptotically stable.

Proof. If E1 does not exist, then E0 is the only equilibrium. By the dissipativity (proposition

4.2), it suffices to prove that there is no periodic solution.

If there is a periodic orbit, then by the corollary 2.18, it must surround an equilibrium,

which is E0 in this case. Use the dissipativity again, it’s clear that this type of periodic orbit

does not exist, because if it does, then part of the orbit must lie in the dissipative region

in proposition 4.2, therefore cannot keep being periodic but approaches E0. Hence, E0 is

globally asymptotically stable.

Theorem 4.5. If E1 exists, then it is globally asymptotically stable on R2\E0.

Proof. From proposition 4.3, E0 is unstable. Since the system is dissipative, we only need

to show that there is no periodic solution.

We use the Dulac’s Criterion (Theorem 2.19) to prove this. Choose B(A,Ar) =
1

A · Ar
in the Dulac’s Criterion and apply it to the initial value problem (4.1):

∂

∂A

{
1

A · Ar

[
rA

(
1− A

K

)
−D0A+ pAr

]}
+

∂

∂Ar

[
1

A · Ar
(D0A− pAr − δAr)

]
= − r

K · Ar
− p

A2
− D0

A2
r

< 0
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This holds for any (A,Ar) ∈ R2
+. Then by the Dulac’s Criterion, the initial value problem

does not have any periodic solution in R2
+.

Theorem 4.6. The IVP system (4.1) persists if and only if 0 < D0 <
r(p+ δ)

δ
, otherwise

both populations die off.

Proof. Combine the above 3 theorems. The system persists if and only if E1 exists, which by

Theorem 4.3 is equivalent with 0 < D0 <
r(p+ δ)

δ
. Furthermore, Theorem 4.5 guarantees

it is asymptotically stable.

If not, then by Theorem 4.4, any orbit will approach the equilibrium E1, the extinction.

4.1.2 Decay radiation

In this case, we assume D(t) = D0e
−αt. The system (3.1) becomes

Ȧ = rA(1− A

K
)−D0e

−αtA+ pAr

Ȧr = D0e
−αtA− pAr − δAr

A(0) ≥ 0;Ar(0) ≥ 0

(4.4)

Theorem 4.7. Let (A(t), Ar(t)) be the solution of the initial value problem (4.4), then

lim
t→∞

(A(t), Ar(t)) = (0, 0)

or lim
t→∞

(A(t), Ar(t)) = (K, 0).

Proof. We consider the asymptotic system by taking the limit of t to ∞.

Ȧ = rA(1− A

K
) + pAr

Ȧr = −pAr − δAr
(4.5)
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By Theorem 2.16, the ω-limit sets of system (4.4) are contained within the chain recur-

rent sets of system (4.5). But the only chain recurrent sets of (4.5) are (0, 0) and (K, 0).

This follows from two observations:

(1) For any orbit starting from a point of which the Ar-coordinate is not 0, by the second

equation of the initial value problem (4.5), it will approach some point on the A-axis.

Therefore, for any of these points, there would not be any chain connecting it to itself.

(2) For any orbit starting from a point lying on the A-axis other than (0, 0) and (K, 0), the

Ar-coordinate will remain the same; but by the first equation of the initial value prob-

lem (4.5), the evolution of A obeys the logistic law, which will approach K. Therefore,

as the same reason as last case, there would not be any chain connecting any of these

points to itself.

4.2 Model II

Similarly as proposition 4.2, we get the following corollary:

Corollary 4.8. The initial value problem (3.2) is dissipative within the set

R = R4
+

⋂{
(H,Hr, T, Tr)|X ≤ max

{
X(0),

K1(r1 + δ)2

4r1δ
+
K2(r2 + δ)2

4r2δ

}}
.

where R4
+ = {(H,Hr, T, Tr)|H ≥ 0, Hr ≥ 0, T ≥ 0, Tr ≥ 0} and X = H +Hr + T + Tr.
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Proof. The proof is similar as in the Theorem 4.2. Let X = H +Hr +T +Tr, then by (3.2),

Ẋ = r1H(1− H

K1

)− δHr − c1HT + r2T (1− T

K2

)− δTr − c2HT

≤ −δX + (r1H + δH − r1H
2

K1

)− c1HT + (r2T + δT − r2T
2

K2

)− c2HT

≤ −δX − r1

K1

[H − K1

2r1

(r1 + δ)]2 +
K1(r1 + δ)2

4r1

− c1HT

− r2

K2

[T − K2

2r2

(r2 + δ)]2 +
K2(r2 + δ)2

4r2

− c2HT

≤ −δX +
K1(r1 + δ)2

4r1

+
K2(r2 + δ)2

4r2

Solving the corresponding equality, we can get

X̃ =

[
X(0)−

(
K1(r1 + δ)2

4r1δ
+
K2(r2 + δ)2

4r2δ

)]
e−δt +

K1(r1 + δ)2

4r1δ
+
K2(r2 + δ)2

4r2δ
.

By using the Kamke comparison theorem (Theorem 2.22), we can get the desired result.

Also, in absence of radiation, the system (3.2) reduces to a competition system



Ḣ = r1H(1− H

K1

)− c1HT

Ṫ = r2T (1− T

K2

)− c2HT

H(0) ≥ 0;T (0) ≥ 0.

(4.6)

A well-known result shows that cancer cells will win in the competition under the hypothesis

c2K1 < r2 and r1 < c1K2. (4.7)

Remark 4.9. We will call (4.7) the ‘cancer hypothesis’ and we assume this throughout the

remainder of this section for Model II.
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4.2.1 Equilibria

There are four types of equilibria:

• Null state E0 = (0, 0, 0, 0) always exists.

• Tumor free E1 = (a, b, 0, 0) 6= E0, a ≥ 0, b ≥ 0. This state exists if the initial value

problem 
r1H(1− H

K1

)− εDH + p1Hr − c1HT = 0

εDH − p1Hr − δHr = 0

H(0) ≥ 0;T (0) ≥ 0.

has a nonnegative solution.

Since T = 0, by (4.2), we get the conditions

0 < D <
r1(p1 + δ)

εδ
(4.8)

and

(a, b) =

(
K1

r1(p1 + δ)− εδD
r1(p1 + δ)

, K1εD
r1(p1 + δ)− εδD

r1(p1 + δ)2

)
(4.9)

Remark 4.10. Notice that, theoretically, we can always make ε sufficiently small to

guarantee the existence of this tumor free equilibrium. However, in reality, ε measures

the relative efficiency of the radiation, and this ratio is not easy to modify!

• Dead E2 = (0, 0, c, d) 6= E0, c > 0, d > 0, in which the host cells die off. Similarly as

above, the condition for the existence of this type of equilibrium is

0 < D <
r2(p2 + δ)

δ
(4.10)

and

(c, d) =

(
K2

r2(p2 + δ)− δD
r2(p2 + δ)

, K2D
r2(p2 + δ)− δD
r2(p2 + δ)2

)
(4.11)
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• Coexisting E3 = (a∗, b∗, c∗, d∗). To decide the conditions for the existence of this

equilibrium, let’s consider the IVP system (3.2) and solve



r1H(1− H

K1

)− εDH + p1Hr − c1HT

εDH − p1Hr − δHr

r2T (1− T

K2

)−DT + p2Tr − c2HT

DT − p2Tr − δTr


=



0

0

0

0



After calculation and considering a∗ 6= 0, b∗ 6= 0, c∗ 6= 0, d∗ 6= 0, we have



 r1

K1

c1

c2
r2

K2

 ·
H
T

 =

A
B


Hr =

εD

p1 + δ
H

Tr =
D

p2 + δ
T

(4.12)

where A = r1 − εD +
p1εD

p1 + δ
, B = r2 −D +

p2D

p2 + δ
. Therefore, E3 exists if and only if

the matrix

 r1

K1

c1

c2
r2

K2

 is invertible, namely,

r1r2 6= c1c2K1K2.

and 

H

Hr

T

Tr


=



r2K1A− c1K1K2B

r1r2 − c1c2K1K2
εD(r2K1A− c1K1K2B)

(p1 + δ)(r1r2 − c1c2K1K2)
c2K1K2A− r1K2B

c1c2K1K2 − r1r2
D(c2K1K2A− r1K2B)

(p2 + δ)(c1c2K1K2 − r1r2)


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4.2.2 Stability

From (4.3), we calculate the variational matrix being



r1 −
2r1H

K1

− εD − c1T p1 −c1H 0

εD −p1 − δ 0 0

−c2T 0 r2 −
2r2T

K2

−D − c2H p2

0 0 D −p2 − δ


=

M1 M2

M3 M4



(4.13)

where Mis are 2× 2 matrices.

If (â, b̂, ĉ, d̂) is a general equilibrium, by solving the characteristic equation, the eigenval-

ues are given as follows. For mathematical convenience, denote Γ = r1−
2r1H

K1

−εD−c1T,Υ =

r2 −
2r2T

K2

−D − c2H.

Since det(M2) = 0, det(M3) = 0, it’s easy to get

λ1± =
1

2

[
(Γ− p1 − δ)±

√
(Γ + p1 + δ)2 + 4εDp1

]
λ2± =

1

2

[
(Υ− p2 − δ)±

√
(Υ + p2 + δ)2 + 4Dp2

] (4.14)

Notice all of the eigenvalues are real.

• Null state. For E0,

λ0
1± =

1

2

[
(r1 − εD − p1 − δ)±

√
(r1 − εD + p1 + δ)2 + 4εDp1

]
λ0

2± =
1

2

[
(r2 −D − p2 − δ)±

√
(r2 −D + p2 + δ)2 + 4Dp2

]

By Theorem 4.3, E0 is unstable if and only if (4.8) and (4.10) are satisfied, i.e. E0 is

stable if and only if D > max

{
r1(p1 + δ)

εδ
,
r2(p2 + δ)

δ

}
.
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• Tumor free. For E1,

λ1
1± =

1

2

[
(r1 −

2r1a

K − 1
− εD − p1 − δ)

±
√

(r1 −
2r1a

K − 1
− εD + p1 + δ)2 + 4εDp1

]
(4.15)

λ1
2± =

1

2

[
(r2 −D − c2a− p2 − δ)±

√
(r2 −D − c2a+ p2 + δ)2 + 4Dp2

]
(4.16)

Theorem 4.11. E1 is stable if and only if

D > max

{
r1(p1 + δ)(r2 − c2K1 − p2 − δ)

r1(p1 + δ)− εδc2K1

,
r1(p1 + δ)(p2 + δ)(r2 − c2K1)

δ[r1(p1 + δ)− εc2K1(p2 + δ)]

}

Proof. Here, by (4.8), we assume sufficiently small ε to guarantee E1 exists. By The-

orem 4.5, it suffices to make λ1
2± < 0.

By (4.16), λ1
2± are real, and

λ1
2± < 0

⇒

 r2 −D − c2a− p2 − δ < 0√
(r2 −D − c2a+ p2 + δ)2 + 4Dp2 < |r2 −D − c2a− p2 − δ|

⇒

 [r1(p1 + δ)− εδc2K1]D > r1(p1 + δ)(r2 − c2K1 − p2 − δ)

δ[r1(p1 + δ)− εc2K1(p2 + δ)]D > r1(p1 + δ)(p2 + δ)(r2 − c2K1)

⇒


D >

r1(p1 + δ)(r2 − c2K1 − p2 − δ)
r1(p1 + δ)− εδc2K1

D >
r1(p1 + δ)(p2 + δ)(r2 − c2K1)

δ[r1(p1 + δ)− εc2K1(p2 + δ)]

The third step deduction is guaranteed by ε being sufficiently small.

Theorem 4.12. (Global stability of the tumor free equilibrium)

Recall from (4.9) that E1 = (a, b, 0, 0). Then E1 is globally asymptotically stable if

1.
γ2

α2
− 2β < 0
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2.
(c1 + c2)2

α
− 2c2

K2

< 0

3. r2 − c2a < 0

Proof. We prove this by constructing a Lyapunov function. Let

V (H,Hr, T, Tr) = H − a− a ln
H

a
+Hr − b− b ln

Hr

b
+ T + Tr (4.17)

This function satisfies the first two conditions in Theorem 2.20. Now compute

V̇ = (H − a)

[
r1(1− H

K1

)− εD + p1
Hr

H
− c1T

]
+(Hr − b)

[
εD

H

Hr

− p1 − δ
]

+ r2T (1− T

K2

)− c2HT − δTr(
Since εD = r1(1− a

K1

) +
p1b

a
and

a

b
=
p1 + δ

εD

)
= (H − a)

[
r1(1− H

K1

)− r1(1− a

K1

)− p1b

a
+
p1Hr

H

]
+(Hr − b)

[
εD

H

Hr

− εDa
b

]
+ r2T (1− T

K2

)− c1T (H − a)− c2HT − δTr

= (H − a)

[
− r1

K1

(H − a)− p1b

aH
(H − a) +

p1

H
(Hr − b)

]
+(Hr − b)

[
−εDa
bHr

(Hr − b) +
εD

Hr

(H − a)

]
− c2

K2

T 2

−c1T (H − a)− c2T (H − a) + r2T − c2aT − δTr

= −(
r1

K1

+
p1b

aH
)(H − a)2 − εDa

bHr

(Hr − b)2 + (
p− 1

H
+
εD

Hr

)(H − a)(Hr − b)

− c2

K2

T 2 − (c1 + c2)(H − a)T + (r2 − c2a)T − δTr(
let α =

r1

K1

+
p1b

aH
, β =

εDa

bHr

, γ =
p− 1

H
+
εD

Hr

)
= −α(H − a)2 − β(Hr − b)2 + γ(H − a)(Hr − b)

− c2

K2

T 2 − (c1 + c2)(H − a)T + (r2 − c2a)T − δTr
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For mathematical convenience, we consider

2V̇ = −α[(H − a)− γ

α
(Hr − b)]2 + (

γ2

α2
− 2β)(Hr − b)2

−α[(H − a)− c1 + c2

α
T ]2 +

[
(c1 + c2)2

α
− 2c2

K2

]
T 2

+2(r2 − c2a)T − 2δTr

Consequently, if

γ2

α2
− 2β < 0,

(c1 + c2)2

α
− 2c2

K2

< 0, and r2 − c2a < 0

then V̇ < 0, which makes V satisfy the third condition of Theorem 2.20, therefore E1

is globally asymptotically stable.

• Dead.

Corollary 4.13. The dead equilibrium E2 is stable if and only if

D > max

{
r2(p2 + δ)(r1 − c1K2 − p1 − δ)

εr2(p2 + δ)− δc1K2

,
r2(p1 + δ)(p2 + δ)(r1 − c1K2)

δ[εr2(p2 + δ)− c1K2(p1 + δ)]

}

4.3 Model III

To understand the dynamics of this system, we analyze the null-surfaces and equilibria

of the drug-free system which is the simplification of system (3.3) without any term involving

the medicine M(t).
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

İ = s− d1I +
ρIT

α + T
− c1IT

Ṫ = r2T (1− T

K2

)− c2IT − c′2TH

Ḣ = r3H(1− H

K3

)− c3TH

(4.18)

4.3.1 Null-surfaces

The three sets of null-surfaces of the system (4.18) are as follows:

• N1:

s− d1I +
ρIT

α + T
− c1IT = 0

⇒I =
s(α + T )

(d1 + c1T )(α + T ) + ρT
= f(T ).

If (d1 + c1T )(α + T ) + ρT 6= 0. This is a curved surface parallel to the N-axis in the

I-T-N surface.

• N2:

r2T (1− T

K2

)− c2IT − c′2TH = 0

⇒T = 0 or T = K2 +
c2K2

r2

I +
c′2
r2

H = g(I,H).

N2 is a plane.

• N3:

r3H(1− H

K3

)− c3TH = 0

⇒H = 0 or H = K3 +
c3K3

r3

T = h(T ).

N3 is a plane which parallel to I-axis.

4.3.2 Equilibria

There are three types of equilibria:

• Tumor free In this category, we consider the tumor population to be zero and the

host cells population to be nonzero. The equilibrium is of the form (
s

d1

, 0, K3).
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• Dead We classify an equilibrium as “dead” if the host cells population is zero. There

are two types of this category of equilibria.

∗ (
s

d1

, 0, 0) in which both tumor and normal cells die off.

∗ (a, b, 0) in which a, b satisfy f(b) = 0, g(a) = 0. The solution, if it exists, is unique

upon fixed parameters. In this case, only the normal cells died off and the tumor

cells survived.

• Coexisting (a, b, c) in which a, b, c satisfying

a = f(b), b = g(a, c), c = h(b), (4.19)

which induces

a =
s(α + b)

(d1 + c1b)(α + b) + ρb

b = K2 +
c2K2

r2

a+
c′2
r2

c

c =
c3K3

r3

b

By solving the second and third linear equations and then plugging into the first one, we

can get a cubic equation of a, which means, depending on the parameters, there could

be zero, one, two, or three different coexisting equilibria, which may not necessarily

locate in the first quadrant, but the whole R3, theoretically.
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4.3.3 Stability

• We use linearization around the equilibria to analyze the stability. The linearized

system is as follows


u̇

v̇

ẇ

 =


−d1 − c1T

ρIα

(α + T )2
− c1I 0

−c2T r2 −
2r2T

K2

− c2I − c′2H −c′2T

0 −c3H r3 −
2r3H

K3

− c3T



u

v

w

 (4.20)

• Tumor free equilibrium. In principle, we want the tumor free equilibrium to be stable

so that the system will move toward the tumor free state starting at least locally. By

linearization around this equilibrium, we can get the system


u̇

v̇

ẇ

 =


−d1

ρs

d1α
− c1s

d1

0

0 r2 −
c2s

d1

− c′2K3 0

0 −c3K3 −r3



u

v

w

 (4.21)

with eigenvalues

λ1 = −d1 < 0

λ2 = r2 −
c2s

d1

− c′2K3

λ3 = −r3 < 0

So the equilibrium is stable when λ2 < 0, i.e.

r2 <
c2s

d1

+ c′2K3. (4.22)
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As r2 is the growth rate of the tumor cells, which is normally large compared with c2

and c′2, (4.22) tells us there is a big chance that the tumor free equilibrium is unstable.

This indicates the importance or the therapies, for example chemotherapy.

• Dead equilibria. Similarly, we use (4.20) to analyze the stability of them.

∗ Of the first type of dead equilibrium (
s

d1

, 0, 0), the eigenvalues are

λ1 = −d1 < 0

λ2 = r2 −
c2s

d1

λ3 = r3 > 0

which indicates this equilibrium is always unstable.

∗ Of the second type of dead equilibrium (a, b, 0), λ1 and λ2 are the solutions of the

equation

λ2 − (d1 − r2 +
2r2b

K2

+ c2a)λ− d1r2 +
2r2bd1

K2

+ c2ad1 +
c2bρaα

(α + b)2
+ c1c2ab = 0,

and λ3 = r3−c3b. So this equilibrium could be either stable or unstable, depending

on the parameters.

4.4 Model IV

For this model, we focus on investigating the qualitative properties of bang-bang controls

in the system, therefore determining the optimal therapies treatments schedule for patients.

To achieve this goal, we need to look at the existence and characterization of the optimal

bang-bang control. For the background, please, refer to Appendix B.
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4.4.1 Objective Functional

In particular, we wish to minimize the objective functional

J(vS, vI , vM) =

∫ tf

t0

T (t) + εSvS + εIvI + εMvM dt (4.23)

where εS, εI and εM are weight factors, t0 = 0, and tf is the terminal time which is fixed. This

control problem is under two constraints. The first one requires the tumor cell population

to be bounded throughout the time interval [0, tf ]. It is formulated by

T (tf ) ≤ ∆, ∆ is a constant. (4.24)

The other constraint confines the total amount of Chemotherapy medicine used through

the therapy. It is given in a integration form.

∫ tf

t0

vm(t)dt ≤ Γ, Γ is a constant. (4.25)

4.4.2 Existence of Optimal Control

We establish the existence of an optimal control by the Filippov-Cesari existence theo-

rem (Theorem 2.25).

Theorem 4.14. (Existence of Optimal Control) Given the IVP system (3.4) under the

constraints (4.24) and (4.25), with the set of all admissible controls being

U = {u = (vs(t), vI(t), vM(t))|vS(t), vI(t), vM(t) ∈ [0, 1]piecewise continuous},

then there exists an optimal control û = (v̂S, v̂I , v̂M) for the objective functional (4.23),

namely,

J(û) = min
u∈[0,1]3

J(u).
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Proof. To apply the Filippov-Cesari existence theorem (Theorem 2.25), we need to verify its

four conditions.

Use the notation of Theorem 2.25 for our system, then

x =



T

N

C

S

I

M


where x ∈ R6, and

N(x, t) : R6 × R+ → R7.

N(x, t) =



T (t) + εSvS + εIvI + εMvM + γ

rT (1− T

K
)− cNT −D(S, T )T − kT (1− e−σTM)T

eC − fN − pNT +
pNNI

gN + I
− kN(1− e−σNM)N

α− βC − kC(1− e−σCM)C

− θmS
θ + I

− u0S
2CI

κ+ I
− qST + a1NT + a2CT +

pISI

gI + I
+

pTST

gT + T
− kS(1− e−σSM)S + ηSvS(t)

−µII + ρC +
pSSI

gS + I
+ ηIvI(t)

−γM + ηMvM(t)


where γ ≤ 0. The first one asks the existence of an admissible solution pair for the state

and controls, which was showed in [34] and [35].

For the second condition, notice all of the control terms and γ are linear, therefore for

any A1, A2 ∈ N(x, t), ζA1 + (1− ζ)A2 ∈ N(x, t) for ζ ∈ [0, 1]. This shows N(x, t) is convex.
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For the third condition, consider the first equation of the IVP system (3.4):

Ṫ = rT (1− T

K
)− cNT −D(S, T )T − kT (1− e−σTM)T

≤ rT.

Solve the corresponding equality, we get T̃ = T0e
rt. By the Kamke Comparison Theorem,

T (t) ≤ T0e
rt. Therefore, T0e

rtf is an upper bound of T (t). We denote it as T ∗. Now, consider

the system of x+ =

[
T+ N+ C+ S+ I+ M+

]T
:

(T+)′ = rT+ (4.26)

(N+)′ = eC+ + pNN
+ (4.27)

(C+)′ = α (4.28)

(S+)′ = a1N
+T ∗ + a2C

+T ∗ + (pI + pT )S+ + ηSvS(t) (4.29)

(I+)′ = ρC+ + pSS
+ + ηIvI(t) (4.30)

(M+)′ = ηMvM(t) (4.31)

Compare with the system (3.4), it’s easy to see that (x+)′ ≥ x′. Therefore, x+ is a superso-

lution of the system (3.4). We only need to prove it is bounded, which can be shown by the

following steps. Notice that the time interval is [t0, tf ], which is finite.

1. By (4.28), C+ is bounded above. Say an upper bound is C∗. Also, T+ is bounded

above by T ∗. M+ is also bounded above because of (4.25). Let M∗ denote an upper

bound of it.

2. Combine the above results with (4.27), we get (N+)′ ≤ Constant + pnN
+, therefore

N+ is bounded above by, say, N∗.
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3. Combine the results from above two steps with (4.29), together with the fact that vS(t)

is finite, we get (S+)′ ≤ Constant+ (pI + pT )S+. Then S+ could be bounded by, say,

S∗. Similarly, I+ could be bounded by I∗.

Thus, we find a constant δ > 0 such that ‖x‖ < ‖x+‖ < δ.

Since vs, vI , vM are all finite, there must be an upper bound for ‖u‖ = ‖(vs, vI , vM)‖

over [t0, tf ].

4.4.3 Characterization of the Optimal Bang-bang Control

We now develop the representations of the optimal control by using PMP (Theorem

2.26).

The first constraint is a terminal inequality, but the second one is given in the integral

form. Therefore, we need to deal with it before we start to discuss the characterization. The

method is similar as the one being used in [36].

We introduce a new variable Y for this purpose. Assume

Ẏ = vM(t), (4.32)

then by (4.25),

Y (0) = 0 and Y (tf ) ≤ Γ. (4.33)

We add (4.32) to the system (3.4) as we add a extra variable. Also, (4.33) is viewed as a new

constraint to replace the previous second constraint. We then consider the adjoint functions.

Theorem 4.15. (Characterization of the Optimal Bang-bang Control). Given an optimal

control triple, û = (v̂S, v̂I , v̂M), there exists adjoint variables λ = (λ1, . . . , λ7) satisfying: (To
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simplify the expressions, define Π = dl · (s/nl)(S/T )l−1

[s/nl + (S/T )l]2
.)

λ̇1 = −1− λ1

[
r − 2rT

K
− cN −D + Π(S/T )− kT (1− e−σTM)

]
−λ2pN − λ4

[
−qS + a1N + a2C +

pTgTS

(gT + T )2

]
λ̇2 = λ1cT − λ2

[
−f − pT +

pNI

gN + I
kN(1− e−σNM)

]
− λ4a1T

λ̇3 = −λ2e+ λ3

[
β + kC(1− e−σCM)

]
+ λ4(

u0S
2I

κ+ I
− a2T )− λ5ρ

λ̇4 = λ1Π + λ4

[
θm

θ + I
+

2u0SCI

κ+ I
+ qT − pII

gI + I
− pTT

gT + T
+ kS(1− e−σSM)

]
− λ5

pSI

gS + I

λ̇5 = −λ2
pNgNN

(gN + I)2
− λ4

[
θmS

(θ + I)2
− u0κS

2C

(κ− I)2
+

pIgIS

(gI + I)2

]
+ λ5

[
µI −

pSgSS

(gS + I)2

]
λ̇6 = λ1kT δTTe

−δTM + λ2kNδNNe
−δTN + λ3kCδCCe

−δTC + λ4kSδSSe
−δSM + λ6γ

λ̇7 = 0

Moreover, the transversality conditions are

λi(tf ) = 0, i = 2, . . . , 6, λ1(tf ) ≥ 0, λ7(tf ) ≥ 0.

In addition, of the optimal controls, the switching functions are:

ψS = εS + λ4ηS (4.34)

ψI = εI + λ5ηI (4.35)

ψM = εM + λ6ηM (4.36)
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and the characterizations are given by:

vS(t) =


0 if ψS > 0

1 if ψS < 0

singular if ψS = 0

vI(t) =


0 if ψI > 0

1 if ψI < 0

singular if ψI = 0

vM(t) =


0 if ψM > 0

1 if ψM < 0

singular if ψM = 0

Proof. We follow the regular outline of solving optimal control problem stated in Appendix

B. First of all, let’s construct the Hamiltonian of the modified system.

H = T (t) + εSvS + εIvI + εMvM

+λ1

[
rT (1− T

K
)− cNT −D(S, T )T − kT (1− e−σTM)T

]
+λ2

[
eC − fN − pNT +

pNNI

gN + I
− kN(1− e−σNM)N

]
+λ3

[
α− βC − kC(1− e−σCM)C

]
+λ4

[
− θmS
θ + I

− u0S
2CI

κ+ I
− qST + a1NT + a2CT +

pISI

gI + I

+
pTST

gT + T
− kS(1− e−σSM)S + ηSvS(t)

]
+λ5

[
−µII + ρC +

pSSI

gS + I
+ ηIvI(t)

]
+λ6 [−γM + ηMvM(t)]

+λ7vM(t).
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Then, the adjoint state equations can be formulated as

λ̇1 = −∂H
∂T

= −1− λ1

[
r − 2rT

K
− cN −D + Π(S/T )− kT (1− e−σTM)

]
−λ2pN − λ4

[
−qS + a1N + a2C +

pTgTS

(gT + T )2

]
(4.37)

λ̇2 = −∂H
∂N

= λ1cT − λ2

[
−f − pT +

pNI

gN + I
kN(1− e−σNM)

]
− λ4a1T (4.38)

λ̇3 = −∂H
∂C

= −λ2e+ λ3

[
β + kC(1− e−σCM)

]
+ λ4(

u0S
2I

κ+ I
− a2T )− λ5ρ (4.39)

λ̇4 = −∂H
∂S

= λ1Π + λ4

[
θm

θ + I
+

2u0SCI

κ+ I
+ qT − pII

gI + I
− pTT

gT + T
+ kS(1− e−σSM)

]
−λ5

pSI

gS + I
(4.40)

λ̇5 = −∂H
∂I

= −λ2
pNgNN

(gN + I)2
− λ4

[
θmS

(θ + I)2
− u0κS

2C

(κ− I)2
+

pIgIS

(gI + I)2

]
+ λ5

[
µI −

pSgSS

(gS + I)2

]
(4.41)

λ̇6 = − ∂H
∂M

= λ1kT δTTe
−δTM + λ2kNδNNe

−δTN + λ3kCδCCe
−δTC + λ4kSδSSe

−δSM

+λ6γ (4.42)
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λ̇7 = −∂H
∂Y

= 0 (4.43)

We first prove that the above system has a solution. Since the right-hand side functions

are linear combination of λis, hence continuous with respect to λ. From the previous theorem,

we know all of the supersolutions are bounded on [0, tf ]. Therefore, by Theorem 2.23, we

get the existence of λi, i = 1, . . . , 7.

Next, we want to find the transversality conditions. For the original system, no variable

except T (t) and Y (t) has restriction. In another word, all variables except T (t) and Y (t) are

free. Hence, by (2.12) – (2.14) in Theorem 2.26,

λi(tf ) = 0, i = 2, . . . , 6.

From the proof of theorem 4.14, we know T (t) has an upper bound T0e
rtf , Thus, λ1(tf ) ≥ 0.

Similarly, by (4.33), Y (t) has an upper bound Γ, which indicates λ7(tf ) ≥ 0.

Finally, we can find the switching functions and the characterizations of the optimal

bang-bang control according to Appendix B. By (B.3),

(f2, g2) =


(εS, ηS), for vS(t),

(εI , ηI), for vI(t),

(εM , ηM), for vM(t).

Thus, we get (4.34)–(4.36). The characterizations are given by the definition.
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Chapter 5

Conclusion and Discussion

We have studied four different ODE systems about cancer therapies. For the first three

models, we focus on the qualitative analysis of their dynamical properties; for the last one,

we investigate the optimal control for the whole system for the purpose of improving the

treatment protocol.

There are several further subjects that we can look at in the future:

1. For the optimal control, we can further look at higher order representation of the

control. Also, the competition between different populations may need some further,

more detailed assumptions, so as to deal with different kinds of tumor cells.

2. All these four systems are built by ODEs. To study and understand the interrelation-

ship more specifically, we can employ the tool of partial differential equations (PDE).

A summary of some work that has been done in this area can be found in [37].
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Appendix A

One-point compactification and associated results

Definitions: A topological space X is said to be locally compact at x if there is some compact
subspace C of X that contains a neighborhood of x. If X is locally compact at each of its
points, X is said to be locally compact.

Theorem [38]: Let X be a topological space. Then X is locally compact Hausdorff if and
only if there exists a space Y satisfying the following conditions:

1. X is a subspace of Y .

2. The set Y −X consists of a single point.

3. Y is compact Hausdorff space.

Definitions: If Y is a compact Hausdorff space and X is a proper subspace of Y whose
closure equals Y , then Y is said to be a compactification of X. If Y − X equals a single
point, then Y is called the one-point compactification of X.
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Appendix B

Fundamental knowledge of optimal control theory

1. General formulation [39] [40]

We consider the following differential equation in Rn,

ẋ = f(t,x,u), (B.1)

The point x = (x1, · · · , xn) ∈ Rn will be called the state vector (variables), and the
parameter u = (u1, · · · , ur) ∈ Rr will be called the control vector (variables).

We call (B.1) the state equation, where f = f(t,x,u) maps from R1+n+r to Rn. Any
absolutely continuous function x(t), t ∈ [t1, t2] is called a solution of this equation on
the interval [t1, t2] if it satisfies (B.1) for almost all t ∈ [t1, t2].

2. Hypotheses [39] [40]

In order to assure that the state equation possesses a unique solution for a given initial
value, we introduce certain hypotheses:

For the state equation, we assume that f is continuous on its domain and has a
continuous derivative with respect to x:

∂f

∂x
=

(
∂f

∂x1

, · · · , ∂f
∂xn

)
.

Now we introduce conditions for control vectors. We call a function x(t) : [t0, t1]→ Rr

a control vector function, where t0, t1 ∈ R+ ∪ {0}, t0 < t1. It is admissible if it is well
defined, measurable, piecewise continuous, integrable with respect to t, and takes its
values on a prescribed set U ⊂ Rr. Here U is called the set of admissible values of the
control vector.

We substitute the u in (B.1) by an admissible control u(t), then we obtain

ẋ = f(t,x,u(t)) = F (t,x),

where F (t,x) is continuously differentiable with respect to x and measurable with
respect to t. By the hypotheses above, we know that given an initial value x(t0) = x0,
the state equation (B.1) has a unique piecewise continuous solution. We call x(t0) = x0

and x(t1) = x1 initial state and terminal state, respectively.
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3. Terminal Time and Feasible Controls

We are concerned with problems in which the initial state (value) is assumed and the
terminal state belongs to a given subset, T . We called it the target set. Notice that
the terminal state may be given, or we may only require it to belong to some curve or
surface. We call t1 in the first case is fixed, and in the second case is free.

We also restrict consideration to those admissible controls which generate solutions
starting from x0 and terminating at T . A control u(t) : [t0, t1] → Rr is feasible
at x0 if it is admissible and generates the solution x(t) : [t0, t1] → Rn such that
x(t0) = x0,x(t1) ∈ T . We let U denote the set of all feasible controls at x0.

4. Objective Functional and Optimal Control Problem [41] [42]

Given functions F (t,x,u) : R× Rn × Rr → R and S(x) : Rn → R, we called

J(t,x,u,x1, t1) = S(x1) +

∫ t1

t0

F (t,x(t),u(t)) dt (B.2)

the general form of cost function or objective functional, where u(t) is an admissible
control.

Therefore, the simplest optimal control problem can be stated as follows:

Given the state equation (B.1), the set of admissible values U , the terget set T , and
the objective functional (B.2), find a control in U that minimizes (maximizes) J over
all controls in U .

In another word, u∗(t) : [t0, t
∗
1] → Rr is optimal at x0 if and only if it generates the

solution x∗(t) : [t0, t
∗
1]→ Rn such that x∗(t∗1) ∈ T and

J(t,x∗,u∗,x(t∗1), t∗1) ≤ (≥)J(t,x,x,x1, t1)

for all u(t) ∈ U .

Remark: Sometimes the states variables and control variables may be subject to some
extra constraints.

5. Existence, necessary conditions, and sufficient conditions of optimal controls

This four questions, existence,uniqueness, necessary condition, and sufficient condition,
have their counterparts in optimal control theory.

• Existence: It is very natural to ask the existence of an optimal control before
we start to look for one. Actually there are examples showing that the optimal
control may not exist. Also, all of the formulations of the necessary and sufficient
conditions, such as PMP, are based on the existence. Actually, it is the most
difficult one to answer.

• Necessary Condition: We can derive the optimal control by the Pontryagin’s
Maximum/Minimum Principle, or PMP. The principle, being stated as Theo-
rem 2.26 in this thesis, introduced the idea of “adjoint” functions to append the
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state equation to the objective functional. Adjoint functions have a similar pur-
pose as Lagrange multipliers variables in multiple-variable calculus, which append
constraints to the function of several variables to be maximized (or minimized).
Thus, we begin by finding appropriate conditions that the adjoint function should
satisfy. Then, by differentiating the map from the control to the objective func-
tional, we will derive a characterization of the optimal control variables in terms
of the optimal state variables and corresponding adjoint.

After introducing the adjoint and Hamiltonian as in the Theorem 2.26, we have
converted the problem of finding a control that maximizes (or minimizes) the
objective functional subject to the state equation and initial condition, to maxi-
mizing (or minimizing) the Hamiltonian pointwise with respect to the control.

• We don’t discuss the sufficient condition and uniqueness of the optimal control in
this thesis.

6. Optimality system [43]

Now, we outline how the optimal theory can be applied to solve the simplest problems.
(x∗,u∗) is the pair of optimal variables, and λ(t) is the adjoint variable.

(i). Verify the existence of the optimal problem.

(ii). Form the Hamiltonian for the problem.

(iii). Write the adjoint state equation, i.e., a differential equation of λ̇. Also, we get
the corresponding boundary condition λ(t1) from the original initial and terminal
conditions. We call the new condition as transversality condition.

(iv). Try to eliminate u∗ by using the optimality equation Hu = 0, i.e., solve for u∗ in
term of x∗ and λ. We call the result as optimality condition.

(v). Solve the two state equations for x∗ and λ with two boundary conditions, substi-
tuting u∗ in the state equations with the expression for the optimal control from
the last step.

(vi). After finding the optimal state and adjoint, solve for the optimal control.

When we are able to solve for the optimal control in terms of x∗ and λ, we will call
that formula for u∗ the characterization of the optimal control. The state equations
and the adjoint equations together with the characterization of the optimal control and
the boundary conditions are called the optimality system.

7. Bang-bang controls

Since u(t) is bounded, say in R1, u(t) ∈ [a, b], we can defined v(t) as

u(t) =
1

2
(a+ b) +

1

2
(a− b)v(t).

Therefore, v(t) ∈ [−1, 1] and is also integrable. Consider a subset of U where the
corresponding v(t) only takes the extreme values. Any change in the value of the
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control is actually switching from one extreme value to the other. Such controls are
called bang-bang.

8. Linear Bang-bang control [43]

Consider the optimal control problem

min
u

∫ t1

t0

f1(t,x) + u(t)f2(t, x) dt,

subject to ẋ = g1(t,x) + u(t)g2(t,x), u(0) = u0,

a ≤ u(t) ≤ b.

The integrand function inside the objective functional and the state equation are both
linear functions of the control variable u. Thus, the Hamiltonian is also a linear function
of u, which can be written as

H(x,u, t) = [f1(t,x) + λ(t)g1(t,x)] + u(t)[f1(t,x) + λ(t)g2(t,x)].

Define
ψ(t) = f2(t,x) + λ(t)g2(t,x), (B.3)

usually called the switching function. Our characterization of u∗ is

u∗(t) =


a if φ(t) < 0,

? if φ(t) = 0,

b if φ(t) > 0.

If ψ = 0 cannot be sustained over a time interval, but occurs only at finitely many
points, then the control u∗ is bang-bang.

If ψ ≡ 0 on some interval of time, we say u∗ is singular on that interval. A character-
ization of u∗ on this interval must be found using other information.
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