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Abstract 

 

 

The thermo-mechanical mismatch caused by the difference in the coefficient of 

thermal expansion between the electronic part and the printed circuit board results in 

shear strains in the solder interconnects during thermal excursions. Widely used life 

prediction models include the Manson [1966] and Coffin Model [1954, 1963] which 

correlates plastic strain amplitude, Goldmann Model  [1969] which correlates the 

geometry and material parameters with cyclic life,  ∆εp, with fatigue life, Norris-

Landzberg`s Model [1969] which correlates the thermo-mechanical material  and 

geometry parameters with cyclic life.  Norris-Landzberg acceleration factors for lead-free 

solders have been developed based on ridge regression models (RR) and on PCR for 

reliability prediction and part selection of area-array packaging architectures under 

thermo-mechanical loads. The principal component transformation has been used to rank 

the new orthogonal principal components in the order of their importance. Scree plots, 

Eigen values and proportion of total variance explained by each principal component are 

then used to eliminate the least important principal components. Multiple linear 

regressions have been performed with the original response variable and reduced set of 

principal components. Ridge regression adds a small positive bias to the diagonal of the 

covariance matrix to prevent high sensitivity to variables that are correlated. The 

proposed procedure proves to be a better tool for prediction than multiple-linear 

regression models. Models have been developed in conjunction with Stepwise Regression 
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Methods for identification of the main effects. Package architectures studied include, 

BGA packages mounted on copper-core and no-core printed circuit assemblies in harsh 

environments. The models have been developed based on thermo-mechanical reliability 

data acquired on copper-core and no-core assemblies in four different thermal cycling 

conditions. Packages with Sn3Ag0.5Cu solder alloy interconnects have been examined. 

The models have been developed based on perturbation of accelerated test thermo-

mechanical failure data. Data has been gathered on nine different thermal cycle 

conditions with SAC305 alloys. The thermal cycle conditions differ in temperature range, 

dwell times, maximum temperature and minimum temperature to enable development of 

constants needed for the life prediction and assessment of acceleration factors. Norris-

Landzberg acceleration factors have been benchmarked against previously published 

values. In addition, model predictions have been validated against validation data-sets 

which have not been used for model development. Convergence of statistical models with 

experimental data has been demonstrated using a single factor design of experiment study 

for individual factors including temperature cycle magnitude, relative coefficient of 

thermal expansion, and diagonal length of the chip. Life prediction models have been 

developed over the years trying to assess the influence of the different geometrical, 

material and thermo-cycling parameters on the life of an electronic package. In this study 

the influence of silver content on packages based on SAC alloys have been investigated.  

Along with silver content, the solder ball configuration parameters such as ball pitch, ball 

count, ball height, ball diameter and cycle conditions such as dwell time and delta T have 

been considered .An assortment of packages such as CBGAs, PBGAs, flips chips based 
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on a variety of SAC alloys with a set of different silver contents were considered for the 

analysis.
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Chapter 1 

Introduction 

1.1 Overview 

The fast pace developments and improvements in the field of electronics demands 

a faster method of determination of reliability and improvements in electronic packaging. 

Institutional learning is a proven method of understanding the behavioral pattern of 

electronics and hence knowing beforehand the mode of failure and the variables and 

parameters responsible in contributing to failure. Understanding the behavioral pattern 

helps one to be ready for what is going to happen when an electronic component is 

deployed in a given operating condition. Improving reliability could be based on 

changing or improving the parameter that is most contributing to the failure, given that 

parameter can be learnt by understanding the behavior of the package to a given 

condition with given geometrical and material configuration. Knowing the acceleration 

factor for a thermo-mechanical process is critical in understanding the used and available 

thermo-mechanical life of a package. Several Models to predict the Acceleration factors 

of an electronic package have been proposed, proven and used over the years. 

1.2 Life Prediction 

The mismatch between the coefficient of thermal expansion between the chip and 

the module due to the thermal cycling which the chip undergoes, results in shear strains 

in the solder joint. Thus the mechanical strain along with the time and temperature factors 
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has to be taken into consideration while evaluating the fatigue behavior of solder 

interconnections under accelerated conditions.  

Manson and Coffin [1965, 1954] developed an equation that related plastic strain 

∆εp, with number of cycles to failure N. Following Goldmann`s analysis and assuming 

the interconnection to be a spherical segment, the plastic strain amplitude at any cross 

section is given by the Norris-Landzberg`s Model [1969] for controlled collapse 

interconnections. 

Engelmaier [1990] developed a surface mount solder joint reliability prediction 

model containing all the parameters influencing the shear fatigue life of a solder joint due 

to shear displacement caused by thermal expansion mismatch between component and 

substrate. Engelmaier developed separate equation for stiff solder joints and compliant 

solder joints. The parameters of the model include effective solder joint area, solder joint 

height, diagonal flexural stiffness, distance from neutral point and thermal coefficient 

mismatch thermal cycling conditions, degree of completeness of stress relaxation and 

slope of weibull distribution.  

     Knecht and Fox [1991] developed a strain based model using creep shear strain as 

damage metric to determine the number of cycles to failure. The creep shear strain 

included creep of component due to matrix creep alone ignoring the plastic work. The 

equation was applicable to both 60Sn40Pb and 63Sn37Pb solder joints.  

       Vandevelde [1998] developed thermo-mechanical models for evaluating the 

solder joint forces and stresses. Barker [2002] synthesized the Vandevelde models for 

calculating the solder joint shear forces in ceramic and plastic ball grid array packages.  



 3

      Clech [1996] developed a solder reliability solutions model for leadless and 

leaded eutectic solder assemblies and extended it to area array and CSP packages. Clech 

obtained the inelastic strain energy density from area of solder joint hysteresis loop and 

developed a prediction equation correlating inelastic strain energy density with number of 

cycles to failure. 

  Singh [2006] developed failure mechanics based models for solder joint life 

prediction of ball array and flip chip packages. He calculated the maximum shear strain  a 

using a simplified DNP formula which was then used for initiating a hysteresis loop 

iteration for both global and local thermal mismatch. Inelastic strain energy was then 

calculated from the area of the hysteresis loop for both the thermal mismatch cases. The 

number of cycles for failure was determined using Lall [2003] model. 

Previously Hariharan [2006] demonstrated the power law dependencies of various 

design parameters for flip-chip, CBGA and CCGA packages using Box-Tidwell 

transformation. He compared the values obtained with those in the table. 

Table 1: NLZ Constants Comparison 

Variable 

Model 

Norris-

Landzberg Goldmann 

Delta T -2 -2 

Ball Height 2.7 2 

Solder Volume -0.152 -0.175 

Solder ball radius 4 5.44 

 

1.3 Regression Analysis 

Regression is an effective life prediction tool that predicts the life of packages 

based on historical behavior of the packages. Multiple linear regression attempts to model 
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the relationship between two or more explanatory variables and a response variable by 

fitting a linear equation to observed data. Every value of the independent variable x is 

associated with a value of the dependent variable y. The population regression line 

for p explanatory variables x1, x2, ... , xp is defined to be y = 0 + 1x1 + 2x2 + ... 

+ pxp. This line describes how the mean response y changes with the explanatory 

variables. The observed values for y vary about their means y and are assumed to 

have the same standard deviation . The fitted values b0, b1... bp estimate the 

parameters 0, 1 ... p of the population regression line. 

Since the observed values for y vary about their means y, the multiple 

regression model includes a term for this variation. In words, the model is expressed as 

DATA = FIT + RESIDUAL, where the "FIT" term represents the expression 0 + 

1x1 + 2x2 + ... pxp. The "RESIDUAL" term represents the deviations of the observed 

values y from their means y, which is normally distributed with mean 0 and variance

. The notation for the model deviations is . In common terms the matrix ‘Y’ is 

called the response matrix and the matrix ‘X’ is called the predictor matrix. 

 The most predominant method of solving a regression problem uses the co-

relation matrix X’X matrix and is given by the formula YXXX ')'( 1
^

−=β . This method is 

good if and only if the determinant of the X’X matrix is nearly one. However the case 

may not always be true as the determinant of the X’X matrix tends to move toward zero 

if the columns of the X matrix are related to each other. In a lot of engineering 
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applications, some of the columns are derived functions of the other. In other words, the 

factors that significantly contribute to the response can be derived functions of each 

other. In such cases the regular solution to multiple linear regression, YXXX ')'( 1
^

−=β  

would fail. There have been a lot of techniques developed over the years to circumvent 

the resulting numerical snag. Since the determinant is approaching zero, the method fails 

the co-efficient tends to infinity losing the actual meaning and failing to explain the 

actual significance of the variable. 

 The predominant methods are using Principal component Analysis and Ridge 

Regression. The principal component method transforms the predictors into their 

principal components and hence reduces the dimensions of the predictors and hence nulls 

the effect of the co-relation. The method is effective for curve fitting and for low 

dimension data and is also useful for making life prediction models.  

The other most commonly used technique is called Ridge Regression. The method 

tries to circumvent the numerical snag by adding a small positive bias to the diagonal of 

the matrix and hence avoiding the determinant to tend toward zero. The method visibly 

reduces the mean square errors and is a lot flexible. The method is more of a prediction 

tool than a curve fitting tool as we manually handle the flow of the process of regression.

 Both methods have been used to re- create the Norris Landzberg and Goldmann 

Models for SAC alloys exposed to thermo-mechanical loading. The methods have been 

validated against a validation data set to assess the prediction accuracy of the models and 

their dependability. 

Additionally the dependency of Life on the Silver content of the SAC alloy has 

been investigated taking to account the other variables that are critical in deciding the life 
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of the electronic package. The other variables looked at include Ball Parameter, 

Geometric parameters and the test conditions like Dwell time and Delta T. The results 

have also been validated and checked for dependability. 

1.4 Scope of Data 

Accelerated test data is accumulated from the tests that conducted at the CAVE
3
 

and from publications. The accumulated data is used to run the regression analysis. The 

data accumulated is based on various package types and various material and geometric 

configurations. 

 

 

Figure 1 Package Configurations 
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Figure 2 More representation of Scope of packages 

There is a wide scope of architecture made available through test conducted 

previously at the CAVE3 and through publications; a small representation of the 

available material is shown below. 
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The center has been publishing prediction models (Lall 04, 07, 08, 09) previously 

based on regression techniques. Hence the behavioral properties of certain variables are 

known for certain given conditions are known and hence it gives an approximate idea of 

what to expect from the regression analysis in terms of positive or negative dependence. 

The models were checked to see if they comply with the underlying physics of the 

package. 
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Chapter 2 

Literature Review 

The rapid minimization of electronics and the fast paced change of technology 

demand a faster method of determining the reliability of packages. Accelerated tests, 

reliability models and life predictions are useful tools and hence making these tools more 

accurate and reliable is critical. A reliability assessment numerical model that could take 

into account the geometric and material properties of the widely operating conditions 

could be of great help in obtaining the failure modes such as die cracking, solder joint 

fatigue failure, de-lamination and total failure. Solder joint fatigue failure being a 

dominant failure mode contributing 90% of all structural and electrical failures [Tummala 

1997] demands greater focus for improving the mechanical reliability of the package. In 

this section, traditional approaches for solder joint reliability prediction, including 

physics of failure based models, statistical models, finite element models and 

experimental techniques have been discussed. Elaboration of the two methods that are 

mainly used, PCR and Ridge regression is also done.    

2.1 Statistical Prediction Models 

Statistical prediction models developed include cumulative failure distribution 

functions for expressing the experimental failure data as a probability function of time to 

failure for any failure distribution. Weibull distribution and Log normal distribution have 

been most widely used failure distribution functions. Log normal distributions [Muncy 
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2004] have widely been used for modeling failure due to slow degradation such as 

chemical reactions and other corrosions and weibull distributions have been used for 

modeling failures due to weak link propagations such as solder joint failure.  

Regression analysis and analysis of variance have been widely used by 

researchers for correlating the reliability of a package with its geometic attributes, 

material properties and operating conditions. Muncy [2004] conducted air to air thermal 

cycling and liquid to liquid to liquid thermal shock tests on a flip chip package for 1200 

test boards with four different die sizes, eight board configurations, two underfill 

materials and two substrate metallization. The predictor variables considered  for model 

building include substrate metallization, substrate mask opening area versus the UBM 

area of the flip chip bump, die size, perimeter or full area array flip chip interconnect 

pattern, underfill material properties, location of the die on the test board, frequency of 

cycling, number of interconnects, and percent area voiding. Multiple linear regression 

modeling and regression with life data modeling methodologies were used for obtaining 

the parameters of regression.  

The variables of interest on a regression analysis for an electronic package are 

often closely related to each despite the fact that they significantly contribute to the life of 

the package by themselves. Multi-co linearity implies near linear dependence among 

predictors. Multi- co linearity can seriously disturb the least squares fit and in some cases 

render the regression model almost useless. In some cases, the regression co-efficients 

can have the wrong sign or many of the predictors are not statistically significant when 

the overall F-test is highly significant. We make such intuitions from physical 

significances and prior learning. Thus, when a model includes more than one predictor, it 
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is important to asses whether strong co-relations exist among the predictors. Several 

techniques have been proposed for detecting multi-co linearity. When the method of least 

squares is applied to collinear data, very poor estimates of regression coefficients can be 

obtained. The variance of the least square estimates of regression co-efficient may 

considerably inflate in the presence of near linear dependencies among predictors. This 

implies that the least squares estimate of regression co-efficient are very stable, that is, 

their magnitude and signs may change considerably given a different sample. 

The problem with the least squares estimation method is the requirement that β� be 

an unbiased estimate of β. Though ordinary least squares gives unbiased estimates and 

indeed enjoy minimum variance of all linear unbiased estimates, there is no upper limit 

bound on the variance of the estimates and the presence of multi co linearity may produce 

large variances. As a result, one can visualize that, under the condition of multi co 

linearity, a huge price is paid for un-biasedness property that one achieves by using 

ordinary least squares. One way to alleviate this problem is to drop the requirement that 

the estimate β be unbiased. Biased estimation is used to attain a substantial reduction in 

variance with accomplished increase in stability of the regression co-efficients become 

biased and , simply put, if one is successful, the reduction in variance is of greater 

magnitude than he bias induced in the estimates. 

2.1.1 Ridge regression 

Consider the standard model for multiple linear regression, Y=Xβ+ε, where X is 

the matrix of predictors and Y is the matrix of the response. β is the regression co-

efficient matrix and is at this point unknown. The usual procedure of determining the 

values is called the Gauss-Markov linear functions.  
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Let B be the estimate of any vector β. The residual sum of squares can be written 

as, 

YXXXYY

XYXYF

''2'''

)()'()(

βββ
ββφβ

−+=

−−==

 

 The estimate has been expressed as the difference between the observed and 

fitted values. In an ideal case we want the value to be minimum; hence to find the 

minimum, we differentiate the above equation and equate it to zero. 

YXXX

YXXX

YXXX
F

')'(

''

0''
)(

1−=

=

=−=
∂

∂

β

β

β
β
β

 

This method is good if and only if the determinant of the X’X matrix is nearly 

one. However the case may not always be true as the determinant of the X’X matrix tends 

to move toward zero if the columns of the X matrix are related to each other. In a lot of 

engineering applications, some of the columns are derived functions of the other. In other 

words, the factors that significantly contribute to the response can be derived functions of 

each other. In such cases the regular solution to multiple linear regression,

YXXX ')'( 1
^

−=β  would fail. There have been a lot of techniques developed over the 

years to circumvent the resulting numerical snag. Since the determinant is approaching 

zero, the method fails the co-efficient tends to infinity losing the actual meaning and 

failing to explain the actual significance of the variable. 

 The predominant methods are using Principal component Analysis and Ridge 

Regression. The principal component method transforms the predictors into their 
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principal components and hence reduces the dimensions of the predictors and hence nulls 

the effect of the co-relation. The method is effective for curve fitting and for low 

dimension data. It loses its accountability when the size of the dataset is large. It is more 

a curve fitting tool than a prediction tool. Ridge regression on the other side uses a small 

positive bias to keep the X’X from tending to infinity. The method is effective no matter 

how big of a dataset we have.  

For data where X matrix is not specified to be near co linearity, the dispersion is 

expressed as, 

12 )'()( −= XXD σβ  

The trace of the dispersion matrix is the total variance, thus, 

∑
=

=
s

i i

TrD
1

2 1
)(

λ
σβ

        (1)

 

Where the λi are the non-zero eigen values of X’X, 

It is clear that if one or more of the Eigen values are low, the variance inflation is 

going to be high. 

The ridge estimator as suggested by Hoerl and Kennard as a possible remedy for 

the inflation is obtained by adding the scalar matrix kI to X’X in the least square 

estimator. Thus the regression equation takes the form  

YXkIXX ')'( 1
^

−+=β  

Upon calculating the dispersion and variance for the above equation as we did 

before, we get, 
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∑
= +

=
s

i i

i

k
TV

1
2

2
^

)(
)(

λ
λ

σβ
  

 

It is clear that variance inflation will be lesser in the eqn (2) in the event if low 

Eigen values. 

 The value of the ridge estimator ‘k’ was originally obtained by finding the point 

on the ellipsoid centered at the LS estimator β. The hyper ellipsoid is formed by the 

residual sum of squares. The objective as we understand is to reduce the residual sum of 

squares when there is inflation in the actual values. Let B be any estimate of the actual 

vector β. The residual sum of squares in that case will be. 

)(

)(')'()()'(

)()'()(

min

^^^^

B

BXXBXYXY

XBYXBYBF

φφ
ββββ

φ

+=

−−+−−=

−−==

 

As we understand, β has inflated to B and hence φ(B) is the residual that has 

added because of the inflation. Hence we try to reduce that term. 

)(')'()(
^^

ββφ −−== BXXBFB
 

The ridge trace can be shown to be following a path through sum of the squares so 

that for a fixed φ a single value of B is chosen and that is the one with the minimum 

length. 

Minimize B’B  

Subject to 0

^^

)(')'( φββ =−− BXXB  

Solving it using a lagrangian multiplier ‘k’, 
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Minimize, ])'(')')[(
1

(' 0

^^

φββ −−−+= BXXB
k

BBF  

Where (1/k) is the lagrangian multiplier, 

0])'(2)'(2)[
1

(2
^

=−+= β
δ
δ

XXBXX
k

B
B

F
 

Hence it reduces to 

B= [X’X+kI]
-1

X’Y [A.E Hoerl, 1970] 

The value of ‘k’ is chosen such that k > 0 and then φo is computed. In terms of β
*
, 

the residual sum of squares becomes, 

ϕ∗�k� = 	Y − Xβ�∗
�	Y − Xβ�∗
 = ϕ��� + k�β�∗��X�X���β�∗ 

If the squared length of the regression vector B is fixed at R
2
, then β�∗ is the value 

of B that gives a minimum sum of squares. Hence β�∗ is the value of B that minimizes the 

function, 

F= (Y-XB)’(Y-XB) + (1/k)(B’B- R
2
) 

The equation B= [X’X+kI]
-1

X’Y is used to perform Ridge Regression, and as 

seen it is just a modification of the original Multiple Linear Regression equation, 

YXXX ')'( 1
^

−=β , except that we introduce a small positive bias term, ‘k’ which is 

added to the diagonal of the variance-covariance portion of the Regression equation .In 

essence, the original data is retained as we observe that there is no change to the second 

part of the equation , rather  the variance which is a derived property of the actual data 

undergoes a small bias addition. The entire flow of the Ridge Regression process can be 

explained by the flow chart shown in fig(3). 
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Figure 3 Ridge Process 

 

 The process is started like how a regular regression process is started by forming a 

set of Predictor(X) and Response Variables (Y).An initial range of the Bias Parameters 

‘k’ is chosen . The equation (5) is solved with the range of bias and in each attempt the 

stability is looked for. The stability of the bias can be determined by a few methods 

mentioned later. Care has to be taken to make sure that the model is neither over-biased 
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nor under-biased. A perfect bias will be at a point where both the Regression co-efficients 

and the VIF values remain stable or show minimal change upon further biasing. The 

chosen k is taken and the results of the equation (5) for the chosen k value will be the 

results of the Ridge Regression process. 

The overall adequacy of the model is tested using ANOVA table. Small P value 

of the ANOVA table rejects the null hypothesis proving the overall adequacy of the 

model. Individual T tests on the coefficients of regression of variables should yield very 

small P values indicating the statistical significance of all the predictor variables.  

The individual T test values of variables are then used for conducting individual T 

test on the coefficients of regression of original variables. The test statistic follows a 

students’ T distribution with (n-k-1) degrees of freedom. The P values of individual T 

tests given by the ‘p’ values table are < 0.05 proving the statistical significance of 

individual regression coefficients of original predictor variables at a 95 % confidence. 

2.1.2 Principal Component Regression 

Principal components models have been used for dealing with multi-collinearity 

and producing stable and meaningful estimates for regression coefficients [Fritts et al 

1971].  Methodology for developing a Principal Component Regression Model is presented here: 

Matrix Notation for the model: 

}{}]{X[}y{ ε+β=  
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Multi-collinearity of predictor variables may cause large variance and co-variance 

of individual regression coefficients, high standard error of individual regression 

coefficients in spite of high R
2
 values, instable regression models fluctuating in 

magnitude and sign of regression coefficients for small changes in the specification, and 

wider confidence intervals of regression coefficients.  Previously the problem of multi-

collinearity has been overcome by removing one of the variables which resulted in loss of 

some influential parameters. The principal components technique determines a linear 

transformation for transforming the set of X predictor variables into new set Z predictor 

variables known as the principal components. The set of new Z variables are uncorrelated  
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with each other and together account for much of variation in X. The principal 

components correspond to the principal axes of the ellipsoid formed by scatter of simple 

points in the n dimensional space having X as a basis. The principal component 

transformation is thus a rotation from the original x coordinate system to the system 

defined by the principal axes of this ellipsoid. The principal component transformation is 

used to rank the new orthogonal principal components in the order of their importance.  

 Multiple linear regression is then performed with the original response variable 

and reduced set of principal components. The principal components estimators are then 

transformed back to original predictor variables using the same linear transformation. 

Since the ordinary least square method is used on principal components, which are pair 

wise independent, the new set of predictor coefficients are more reliable. The Pearson’s 

Co-relation matrix is calculated to check for the multi-colinearity in the matrix X. And 

the Eigen values are used in transforming the original predictor variables in the new Z 

variables. Scree plots, Eigen values and proportion of total variance explained by each 

principal component are then used to eliminate the least important principal components. 

The Equation for calculation of the Eigen values and the Eigen vector is:  

]V])[I[]C([ λ−  

0]I[]X[]X[ *T* =λ−
 

Where λ  is the eigen value and V is the eigen vector matrix.  The original set of 

predictors has been transformed (matrix A) to a new set of predictor variables (matrix Z)  

called the principal components.  The principal component matrix Z contains exactly the 

same information as the original centered and scaled matrix A, except that the data are 

arranged into a set of new variables which are completely uncorrelated with one another 
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and which can be ordered or ranked with respect to the magnitude of their Eigen values 

(Draper and Smith 1981, Myers 1986). 
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MLR has been performed with the transformed predictor variables and the 

original response variable. The coefficients obtained as a result of this regression model 

are stored in a variable named alpha. Matrix notation for the same is given as: 

1*k

*
k*k

T

1*k }{]V[}{ β=α
 

The Principal Components have been transformed back to the Original variables.  

To eliminate the principal components the coefficients are transformed back to the 

original ones by using the reverse transformation.  

1*kk*k1*k }{]V[}{ α=β  

The individual T test values of principal components regression components are 

then used for conducting individual T test on the coefficients of regression of original 

variables. The test statistic proposed by Mansfield et al.[1997] and Gunst et al. [1980] for 

obtaining the significance of coefficients of regression of original variables is given in the 

equation below:  
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Where bj,pc is the coefficient of regression of the j
th

 principal component, MSE is 

the mean square error of the regression model with l principal components as its predictor 

variables, vjm  is the j
th 

element of the Eigen vector vm and  λm is its corresponding Eigen 

value. M takes the values from 1 to l, where l is the number of principal components in 

the model.  The test statistic follows a students’ T distribution with (n-k-1) degrees of 

freedom. 

2.2 Physics of Failure Based Models 

Manson and Coffin [1965, 1954] developed an equation that related plastic strain 

∆εp, with number of cycles to failure N. Goldmann [1969] analyzed a controlled collapse  

joint with spherical dimensions for developing an equation that related the plastic strain 

of a joint with relative thermal expansion coefficients of chip to substrate, distance from 

chip neutral point to substrate, height of the solder, volume of solder, radius of the cross 

section under consideration and exponent from plastic shear stress strain relationship. The 

plastic strain obtained from Goldmann formulation can be substituted in Coffin- Manson 

equation for predicting the number of cycles for fatigue failure. Norris and Landzberg 

[1969] studied the effect of cycling frequency and maximum temperature of cycling on 

fatigue failure of solder joints and added an empirical correction factor for time 

dependent and temperature dependent effects for the thermal fatigue model. 

Solomon [1986] analyzed the fatigue failure of 60Sn/40Pb solder for various 

temperatures and developed an isothermal low cycle fatigue equation that correlated the 
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number of cycles to failure with applied shear strain range.  Solomon also studied the 

influence of frequency, and temperature changes and added corrections that account for 

temperature changes, cycling wave shape and joint geometries. 

Engelmaier [1990] developed a surface mount solder joint reliability prediction 

model containing all the parameters influencing the shear fatigue life of a solder joint due 

to shear displacement caused by thermal expansion mismatch between component and 

substrate. Engelmaier developed separate equation for stiff solder joints and compliant 

solder joints. The parameters of the model include effective solder joint area, solder joint 

height, diagonal flexural stiffness, distance from neutral point and thermal coefficient 

mismatch thermal cycling conditions, degree of completeness of stress relaxation and 

slope of weibull distribution.  

Knecht and Fox [1991] developed a strain based model using creep shear strain as 

damage metric to determine the number of cycles to failure. The creep shear strain 

included creep of component due to matrix creep alone ignoring the plastic work. The 

equation was applicable to both 60Sn40Pb and 63Sn37Pb solder joints.  

Vandevelde [1998] developed thermo-mechanical models for evaluating the 

solder joint forces and stresses. Barker et al [2002] synthesized the Vandevelde models 

for calculating the solder joint shear forces in ceramic and plastic ball grid array 

packages. Clech [1996] developed a solder reliability solutions model for leadless and 

leaded eutectic solder assemblies and extended it to area array and CSP packages. Clech 

obtained the inelastic strain energy density from area of solder joint hysteresis loop and 

developed a prediction equation correlating inelastic strain energy density with number of 

cycles to failure.  
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2.3 Experimental Methods 

Temperature cycling is a widely method for solder joint reliability predictions. In 

this method the component is exposed to a series of low and high temperatures 

accelerating the failure modes caused by cyclic stresses. The thermal cycling uses a 

single air chamber in which the temperature ramp can be controlled carefully. Thermal 

shock tests like thermal cycling are used for accelerated life testing of solder joints. 

Thermal shock testing is a liquid-liquid test in which two liquid chambers at different 

temperatures are used. Thermal shock tests generate very high ramp rates. 

Master, et al. [1998] conducted accelerated thermal cycling tests on CBGA 

packages for various body size and assembly parameters to study the effect of package 

thickness and card pad design on reliability of the package. Master, et al. [1995] studied 

the effect of column length on fatigue life of solder joint for two different thermal 

profiles using accelerated thermal cycling tests. Gerke, et al. [1995] studied the reliability 

of high I/O CBGA packages used in computer environment using accelerated thermal 

cycling tests for two different thermal profiles. Kang [2004] evaluated the thermal fatigue 

life and failure mechanism of Sn-Ag-Cu solder joints with reduced Ag contents for a 

CBGA package. Hong [1998] predicted the mean fatigue life of CBGA packages with 

lead free (Sb5-Sn95, Ag3.5-Sn96.5, Zn9-Sn91) solder fillets and found the lead free 

joints outperform the leaded ones. Ingallas [1998] conducted accelerated thermal cycling 

tests on CCGA packages for two different ball pitch, to study the effect of solder ball 

pitch on solder joint reliability of the package .Zhang, et al. [2001] evaluated the 

reliability of SnCu0.7, SnAg3.8Cu0.7 and SnAg3.5 solder joints on both NiP and Cu 

under bump metallurgies for flip-chip application. Peng, et al. [2004] analyzed the 
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sensitivity of reliability of flip chip package to solder joint geometric parameters such as 

stand-off height, lower and upper contact angles, and solder joint profile using 

accelerated thermal cycling tests. Wang, et al. [2001] assessed the reliability of flip chip 

packages with no flow underfills using liquid to liquid thermal shock tests. Hou, et al. 

[2001] conducted liquid to liquid thermal shock tests for reliability assessment of flip 

chip packages with SnAgAu joints. He found the leaded solder joints perform better than 

the lead free ones.  Teo, et al. [2000] conduated accelerated thermal cycling tests for 

investigating the effect of under bump metallurgy solder joint reliability of flip chip 

packages. Braun, et al. [2005] studied the high temperature potential of flip chip 

assemblies for automotive applications. Darveaux, et al [2000] studied the impact of 

design and material choice on solder joint fatigue life of various BGA packages including 

PBGA, FlexBGA, tape array BGA and mBGA.  

Moire interferometry is an optical method which provides whole field contour 

maps of in-plane displacements with sensitivity as low as 0.417µm [Tunga 2004]. Moire 

Interferometry technique has been increasing employed in mapping thermally induced 

deformation of electronic packages. Meng [1997] applied this technique for solder joint 

reliability prediction of BGA, CSP and flip chip packages. He subjected the packages to a 

temperature cycling and extracted the accumulated thermal deformations for reliability 

predictions.  Zhu [1997] studied the reliability of OMPAC BGA and a flip chip BGA 

using moiré interferometry technique. Zhu also studied the effect of bonding, 

encapsulation, soldering and geometry on the reliability of both the packages and using 

the same technique.  
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Chapter 3 

Extended Life Prediction Model 

Life prediction models have been developed over the years trying to assess the 

influence of the different geometrical, material and thermo-cycling parameters on the life 

of an electronic package. In this study the influence of silver content on packages based 

on SAC alloys have been investigated.  

3.1 Scope of Data: 

The dataset includes accelerated test reliability data for a variety of packaging 

architectures including, of plastic ball-grid array (PBGA), flip-chip ball-grid array (FC-

BGA), chip-array ball-grid array (CABGA) devices, MCM-PBGA, Hi-CTE ball grid 

array, Flip-Chip, ceramic ball-grid array (CBGA), metal lead frame (MLF), and quad-flat 

packs (QFP).  The electronic components have been assembled on copper core and no-

core printed circuit boards.  Data gathered on test assemblies from nine temperature cycle 

conditions including, TC1 (-40 to 95
o
C, 30 min dwell), TC2 (-55 to 125

o
C, 30 min 

dwell), TC3 (3 to 100
o
C, 30 min dwell), TC4 (-20 to 60

o
C, 30 min dwell), TC5 (-20 to 

80
o
C, 30 min dwell), TC6 (0 to 100

o
C, 15 min dwell), TC7 (0 to 100

o
C, 10 min dwell), 

TC8 (-55 to 125
o
C, 15 min dwell), TC9 (-40 to 125

o
C, 15 min dwell).  The chambers 

were profiled with full-load, and the temperatures measured at various locations on the 

test boards in the stack, to ensure that the packages experience uniform temperature 
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exposure.  All packages are daisy-chained and the resistance monitored to identify 

failures.   

3.2 Model Development 

Along with silver content, the solder ball configuration parameters such as ball 

pitch, ball count, ball height, ball diameter and cycle conditions such as dwell time and 

delta T have been considered .An assortment of packages such as CBGAs, PBGAs, flips 

chips based on a variety of SAC alloys with a set of different silver contents were 

considered for the analysis. Initial model diagnosis revealed that the data set had 

correlated variables and hence was causing Variance inflation.  

From the table below, it is clear that there are a few variables with high co-

relation coefficients and hence the regression will yield high variance inflation and in-

accurate regression coefficients. Below is the table of Pearson’s correlation co-efficient, 

the correlated variables have co-efficient values of more than 0.5. 
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Table 3 Pearson’s Correlation Matrix 

  

Die 

Length 

Ball 

Count 

Ball 

pitch 

Ball 

Dia Ball H 

% of 

AG 

Dwell 

Time Delta T 

Die 

Length 1.00 0.86 0.61 -0.19 0.42 0.55 0.51 -0.66 

Ball 

Count 0.86 1.00 0.53 -0.09 0.43 0.69 0.37 -0.62 

Ball 

pitch 0.61 0.53 1.00 0.03 0.88 0.75 0.37 -0.60 

Ball Dia -0.19 -0.09 0.03 1.00 -0.03 -0.11 -0.05 -0.07 

Ball H 0.42 0.43 0.88 -0.03 1.00 0.64 0.38 -0.49 

% AG 0.55 0.69 0.75 -0.11 0.64 1.00 0.12 -0.50 

Dwell 

Time 0.51 0.37 0.37 -0.05 0.38 0.12 1.00 -0.50 

Del T -0.66 -0.62 -0.60 -0.07 -0.49 -0.50 -0.50 1.00 
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3.3 Selection of Ridge Parameter ‘K’: 

The regular multiple linear regression model with the above data will yield a 

model with inaccuracies and high variance inflations. Below is the result of the multiple 

linear regression performed on the above data. 

Table 4  MLR Results 

Variable Estimate Error T P VIF 

Intercept 24.51 1.77 13.84 0.00 0.00 

die_length -0.83 0.22 -3.71 0.00 9.63 

ball_count -0.29 0.17 -1.72 0.09 8.51 

ball_dia -1.13 0.46 -2.46 0.02 12.65 

ball_h 1.37 0.24 5.62 0.00 1.46 

ball_pitch 0.41 0.21 1.93 0.06 6.81 

Ag 0.77 0.18 4.25 0.00 5.02 

dwell_time -0.27 0.09 -3.04 0.00 1.85 

delta_T -2.71 0.29 -9.46 0.00 2.29 
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It can be seen that despite the fact that the VIF is high for a few variables, the 

corresponding ‘p’ values a really low explaining the importance of the variable to the 

model and so those variables cannot be dropped off. 

Ridge regression is applied to the problem to circumvent the numerical snag. A 

small positive bias k is introduced to try and reduce the variance and hence the MSE. 

Different bias values from 0 to 0.1 in increments of 0.001 are tried to see if the regression 

co-efficients and the variance stabilize. In case no stability is observed, the upper limit of 

the bias is increased until a range which records the stability of the parameters is reached 

at. The biased models are made by using the k value in the equation (5).The process is 

carried out as mentioned in fig (1).The regression co-efficients and the VIF are recorded 

in each case. These values are observed to see if there is any stability. Stabilization of 

ridge parameter can be determined in a lot of ways. In most cases the requirements of the 

model play a vital role. Since the objective is prediction we have to make sure the model 

chosen to be with stable bias has good prediction accuracy and complied with the 

physical interpretations of the case .The most common method is observing the ‘ridge 

plot’. The ridge plot is plot of the bias parameter on the X-axis against parameters like 

‘VIF’ or the β co-efficients themselves. An ideal bias parameter is determined based on 

where the plots seem to stabilize. In some cases the VIF and co-efficients stabilize at 

different points. In those cases we try to choose the bias in such a way the model is 

neither ‘over-biased’ nor ‘under-biased’. The trade-off can be based on prediction 

accuracy of the model in each case. Below is a ridge plot of the model for assessing the 

influence of silver content based on the parameters mentioned above. 
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Figure 4 Ridge Plot (based on VIF) 
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Figure 5 Ridge Plot 2 (based on Co-efficients) 
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In the initial attempt to regress the data, it was seen that a few variables had high 

variance inflations. These variables are seen to stabilize with increase in bias parameter. 

A bias at which a stability of both the co-efficients and the VIF is seen is chosen to the 

biasing parameter. In the above case, it is seen that the VIF of all the variables attain 

stability at about 0.06 and after. Upon closely observing the second plot, we see that all 

the variables stabilize at about 0.076. Hence the bias parameter is chosen to be 0.076. The 

model corresponding to k=0.076 is given below: 

Table 5 RR Results 

parameter Constant Die Length Ball Count Ball Pitch 

Β 21.151 -0.788 -0.183 -0.509 

Ball Dia Ball Height % of Ag Dwell Time Delta T 

1.2646 0.2818 0.5358 -0.258 -2.11 

 

Hence we have, 

)(11.2)(2585.0)(%5358.0)(2818.0)(2646.1

)(50908.0)(18294.0)(788.0151.21)_(

TLnTLnofAgLnHLnDLn

PLnCLnLLnlifecharLn

DBB

BBD

∆−−+++

−−−=

(6) 

The model reduces to, 

11.22585.053.028.0264.1

50908.018294.0788.0

)()()(%)()(

)()()(151.21

−−

−−−

∆

=

TTofAgHD

PCLCharLife

DBB

BBD

(7) 
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Where, LD is the Die Length, CB is the ball count, PB is the ball pitch, DB is the 

ball  diameter, HB is ball height, TD is the dwell time and ∆T is the temperature cycle 

range. 

As an inference, we have, die length, ball count, ball pitch, dwell time and Delta T 

have negative dependencies on life and parameters like ball height, % of AG and ball 

diameter have positive influence on life. The inferences are further assessed and 

confirmed when the model is validated. An Analysis of variance is performed to verify 

that the results of the Regression process are significant. 

ANOVA 

Table 6 ANOVA 

Source DF 

Sum of 

squares 

Mean 

Square F P 

Model 8 64.8702 8.1088 34.2 0.00010 

Error 83 19.68 0.2371     

Total 91 84.5504       

 

3.4 Model Validation: 

The Validation is done using data outside of the data set used for regression. A 

few data are set aside from the original dataset for the purpose of validation. Since the 

objective of the regression is prediction, a validation done by predicting the life of 

packages that were not included in the regression will give a better validation the model. 

A plot with the predicted and actual life of package would give an idea of the reliability 

of the model. 
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3.4.1 Dwell Time: 

 Dwell time is a critical contributor to the life of the solder ball and as the model 

suggests, the increase in dwell time decreases life. The plot below re-confirms the same. 

 

Figure 6 Validation of Dwell Time 

3.4.2 Percentage of Silver: 

 The model suggests that the increase in the silver content increases life. Two 

similar packages with the only difference being silver content (2.1 and 2.3) are 

considered and the plot shows that there is a increase in life both actual and predicted 

with increase in Silver content. 
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Figure 7 Validation of Silver Content 

3.4.3 Delta T: 

 Temperature difference is the most significant parameter in thermo-cycling. The 

model predicts square negative influence on life. The plot below shows that there is a 

significant decrease in life with increase in Delta T. 
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Figure 8 Validation of Delta T 

3.4.4 Ball Diameter: 

 The solder ball diameter has a positive co-efficient and the plot shows increase in 

life with increase in Diameter. Hence we infer that considering two packages with similar 

material and Geometric properties except for the ball diameter, we can say that the 

package with the higher ball diameter will have better life amongst the two. 
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Figure 9 Validation of Ball Diameter 

3.4 Model Prediction: 

 The model is used to predict life and the model predictions are plotted against the 

actual life to see the accuracy of the model. The dotted lines represent the 90% interval. 

As seen from the plot, most of the model predictions fall in the interval. 
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Figure 10 Model Prediction for Silver content model 
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Chapter 4 

 Norris Landzberg Constants Development 

 The Norris-Landzberg Equation is based on the Coffin Mansion Equation and the 

Goldmann Equation. It provides a way of calculating the acceleration factor for 

Controlled Collapse Interconnections [Norris 1969].  The equation is given by: 

 

 

Where, 

AF is the Acceleration factor. 

NU and NA are the lives of the packages fU and fA are the frequencies 

TA and TU are the temperature excursions 

Tmax is the maximum temperature of the cycle in Kelvin 

This Equation is often used in the form [Lau 1997] 

 

 

The Equation can be transformed by computing the natural Log format as follows: 
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Now we model the above equation into a regression model with ratio of cyclic 

frequencies, Temperature cycle magnitude and the difference of inverse of maximum 

temperatures as the independent variables and the Acceleration factor as the response 

variable.  

Due to the presence of Multi-colinearity Principal Component Regression is 

implemented. Regression of the transformed Principal Components against the 

Acceleration Factor is given in the table below: 

Table 7  PCR Results (Transformed) 

Predictor Coef SE Coef T P 

Constant 0.7448 0.1161 6.4123 0 

Z1 3589.0768 1354.5949 2.6496 0.0095 

Z2 285.8296 107.7056 2.6538 0.0094 

Z3 2802.1627 1057.2824 2.6503 0.0095 

 

The ANOVA table is used to check the presence of a linear relationship between 

the predictor variables and the response variables. 

Table 8 ANOVA for PCR NLZ 

Source DF SS MS F P 

Regression 3 2.136 0.712 5.82 0.001 

Residual   Error 90 11.0016 0.1222   

Total 93 13.1375    

 

To get the relationship between the original variables and the response variable, 

we need to back transform the Principal Components using the same back transformation. 

Regression results for the same are: 
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Table 9 PCR Results Transformed back 

Predictor Coef SE Coef T P 

Constant 0.7448 0.1161 6.4123 0 

Ln(Fu/Fa) 0.3035 0.1145 2.6496 0.0095 

Ln(Delta Tu / Delta Ta) 2.3149 0.8722 2.6538 0.0094 

(1/Tu-1/Ta) 4562.3767 1721.45 2.6503 0.0095 

 

The regression equation is given by: 









−+








+








+=

AUA

U

A

U

TT
Ln

TDelta

TDelta
Ln

F

F
LnAF

11
*3767.4562

_

_
*3149.2*3035.07448.0  

Writing the equation in the form of the NL equation: 

 

 

 The PCR model that is shown above has been shown to predict the acceleration 

factor of PBGAs with SAC305 alloys with good prediction accuracy. The same three 

variables are taken for regression and with the same dataset using ridge regression.  

4.1 Ridge Regression 

An initial attempt to model the case using Multiple Linear regression was made 

and the model was found to have very high values for regression co-efficient and high 

MSE and VIF due to a high variance. y'X)X'X(ˆ 1−=β . A biasing parameter k was 

introduced to the least squares formula and a significant reduction of variance and a more 

meaningful co-efficient matrix was seen. The value of ‘k’ was varied with small 

increments to choose the best value of it. 
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Figure 11 Ridge Plot - VIF 
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Figure 12 Ridge Plot Regression Co-efficients 

At one point of the biasing parameter, the ridge plots become stable and the VIF 

also stabilizes. That model is checked to see if it fits accurately. A trial with k values 

between 0 and 0. 003 with increments of 0.0001 is done and in each case, the k is 

plugged into the equation β+=β − )X'X()kIX'X(ˆ 1
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efficients are calculated. In each case, the corresponding variation inflation factor is 

calculated. With each trial of the regression and increment of ‘k’, the stability of the VIF 

and the regression co-efficients are closely watched for. If the case does not stabilize 

within the given range of values for k, the range is increased and the same procedure is 

followed to move toward a perfect biasing factor. The above graph, also called the ‘ridge 

trace’ plots the stabilization of the regression co-efficients with the increase in bias. 

Based on the three plots, it is seen that all of them stabilize just about when k =0.0017. 

Taking the regression co-effiecients at k=0.0017, the Norris Landzberg equation, 

Table 10 NLZ Results (Ridge) 

Constant F Ratio Delta T 

Ratio 

T Max 

0.74 0.201 2.086 3802 
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ANOVA Table 

Table 11 ANOVA NLZ (Ridge) 

Source DF 

Sum of 

squares 

Mean 

Square F P 

Model 3 1.313 0.437 5.36 0.002 

Error 84 6.856 0.08162     

Total 87 8.1698       

 

 

 



 

4.2 Model Comparison 

4.3 Model Validation 

The Validation is done using data outside of the data set used for regression. A 

few data are set aside from the original dataset for the purpose of validation. Since t

objective of the regression is prediction, a validation done by predicting the life of 

packages that were not included in the regression will give a better validation the model. 

A plot with the predicted and actual life of package would give an idea of 

of the model. 
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The Validation is done using data outside of the data set used for regression. A 

few data are set aside from the original dataset for the purpose of validation. Since t

objective of the regression is prediction, a validation done by predicting the life of 

packages that were not included in the regression will give a better validation the model. 

A plot with the predicted and actual life of package would give an idea of 

 

The Validation is done using data outside of the data set used for regression. A 

few data are set aside from the original dataset for the purpose of validation. Since the 

objective of the regression is prediction, a validation done by predicting the life of 

packages that were not included in the regression will give a better validation the model. 

A plot with the predicted and actual life of package would give an idea of the reliability 



 47

Table 12 Validation dataset NLZ 

Package No. 1 2 3 4 5 

Frequencies 0.01667 0.01667 0.01667 0.01667 0.03333 

0.01667 0.0333 0.01667 0.01667 0.01667 

Delta T 135 135 165 135 165 

180 165 180 180 180 

Tmax 368 368 368 368 398 

398 398 398 398 398 

 

 

Figure 13 Model Validation for NLZ (PCR Vs Ridge) 
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4.3.1 Delta T 

 The temperature excursion or DeltaT is as known the most critical parameter in 

thermo-cycling. The model predicts that the increase in Delta T decreases the 

Acceleration factor. The plot shows the same trend. 

 

Figure 14 Validation of DeltaT (NLZ) 
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4.3.2 Frequency Ratio: 

 The increase in frequency ratio decreases the acceleration factor as explained by 

the plot. 

 

Figure 15 Validation of f Ratio (NLZ) 
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Chapter 5 

 Goldmann Constants Development 

The Goldmann Model [1969] relates the coefficients of thermal expansion, 

distance from chip neutral point to interconnections, temperature excursion of the cycle, 

volume of the solder, radius and height of the solder ball, with the thermo-mechanical 

reliability of components. The Goldmann Model [1969] has the form, 

 

Where Nf is the number of cycles to failure, KT is the Constant in applied Coffin-

Manson Equation, τu is the ultimate shear strength of the critical joint interface, i.e., chip-

pad interface or land-substrate interface, rf is the radius of critical interface, h is the 

solder joint height, A is the constant in stress-strain relationship τ = Aγ
β
, V is the solder 

volume of joint, δ is the shear deformation of joint, d is the distance of the solder joint 

from neutral point of the chip, αrel is the relative coefficient of thermal expansion, ∆T is 

change in temperature. The equation has been re-arranged as follows, 
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Since KT, τu and A are material and damage constants, these have been combined 

into one constant, C. The equation has been modified as follows, 

 

Substituting m = 1.9, β = 0.58 into the equation, 

 

The equation has been transformed by computing a natural logarithm of equation. 

 ln	��
 = ln��� + ��
� � + �. ln�ℎ� + �. ln�"� + �. ln�#$%&� + �. ln�∆'� 

5.1 Principal Component Regression 

The critical parameters like Difference in coefficients of thermal expansion, 

Distance from chip neutral point to interconnections, Temperature excursion of the cycle, 

Volume of the solder, radius and height of the solder ball, are included in the Goldmann 

equation. Using these parameters as predictor variables, we model the Goldmann`s 

Equation in the form of a log transformed Principal Component Regression model for 

PBGAs assembled on Copper Core BGAs 
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The principal components matrix Z is obtained using the transformation: 

]V[*]X[]Z[ =  

MLR is performed with the transformed predictor variables and the original 

response variable. The coefficients obtained as a result of this regression model are stored 

in a variable named alpha. Matrix notation for the same is given as: 

1*k

*
k*k

T

1*k }{]V[}{ β=α  

Regressing the transformed Z variables against the N1% life of the packages, we 

get the following results. 

Table 13 Transformed Z variable regression for Goldmann`s model of Cu Core Assemblies 

Predictor Coef SE Coef T P 

Constant -2.651 4.014 -0.66 0.511 

Z1 -0.8412 0.2914 -2.89 0.005 

Z2 1.3919 0.1823 7.64 0 

Z3 1.3075 0.1682 7.77 0 

Z4 -0.4962 0.1579 -3.14 0.002 

Z5 0.1626 0.1114 1.46 0.148 

 

The overall adequacy of the model has been tested using ANOVA table. Small P 

value of the ANOVA table rejects the null hypothesis proving the overall adequacy of the 

model. Individual T tests on the coefficients of regression of principal components 

yielded very small P values indicating the statistical significance of all the five variables 
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ANOVA  

Table 14 ANOVA Goldmann PCR 

 

 

 

 

 

Table 15 Transforming Z back to Original Variables in the Goldmann`s Model for  Copper Core  

Predictor Coef 

SE 

Coef T P 

Constant -2.651 4.014 -0.66 0.511 

IntTerm 0.0495 0.0171 2.89 0.005 

Ln(BallhgtMM) 0.4121 0.054 7.64 0 

Ln(HalfDLengthMM) -0.3705 0.0476 -7.77 0 

Ln(CTEppmC) -1.3721 0.4369 -3.14 0.002 

Ln(DeltaT) -1.56 1.068 -1.46 0.148 

 

We write the model in equation format to compare the values of constants 

obtained from the PCR model with standard values for Cu Core Assemblies. Following 

are the two models: 

Goldmann`s Model: 

( ) C
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Source  DF  

Sum of 

squares  

Mean 

Square  F  P  

Model  5  11.5452  2.3090  15.08  0.0001  

Error  98  15.003  0.1530        

Total  103  26.5482           
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Statistical form based on PCR for Goldmann`s Model: 

 

 

 

5.2 Ridge Regression: 

The initial bias range was set to be 0 and 0.1 with intervals of 0.001. The stability 

of bias is looked for in the VIF and regression co-efficient ridge plot. 

 

Figure 16 Ridge plot (co-efficients) 
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Stabilization of VIF 

 

Figure 17 Ridge plot (co-efficients) 

Upon close examination of the results and of the plot, stability is attained at 

different point for different variables but at k =0.062, all the variables are stable. The 

results at this particular bias factor are taken to be best bias. The results are as follows: 

Table 16 Ridge Results (Goldmann Model) 

Predictor C Int 

term 

Ln 

(BallHgtMM) 

Ln(Half 

DLengthMM) 

Ln 

(CTEppmC) 

Ln(DeltaT) 

Co-eff 1.64 0.050 0.402 -0.31 -1.09 -1.584 
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ANOVA  

 

 

 

 

Upon plugging in the above values on to equation and taking anti

 

 

 5.3 Model Comparison 

The above equations

created using accelerated data of SAC alloy using two different methods and show close 

resemblance. Model validation would reveal which model would work better.

 

Source 

Model 

Error 

Total 


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


= −− 3174.009.1

%1 dCN relα

56

Table 17 ANOVA - Ridge (Goldmann) 

Upon plugging in the above values on to equation and taking anti-log, we end up with,

above equations are in close comparison. The equations 15 and 16 were 

created using accelerated data of SAC alloy using two different methods and show close 

resemblance. Model validation would reveal which model would work better.

Source  DF  

Sum of 

squares  

Mean 

Square  F  P  

Model  5  11.5452  2.3090  15.08  0.0001  

Error  98  15.003  0.1530        

Total  103  26.5482           
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log, we end up with, 

 

uations 15 and 16 were 

created using accelerated data of SAC alloy using two different methods and show close 

resemblance. Model validation would reveal which model would work better. 



 57

5.4 Model Validation 

The Validation is done using data outside of the data set used for regression. A 

plot with the predicted and actual life of package would give an idea of the reliability of 

the model. 

Table 18 Model Validation Dataset (Goldmann) 

Package 

No 

 

Ball 

Height 

Diagonal 

Length Diff in CTE ∆T  

1 3.31  0.36  3.95  3.50E-06  135  

2 5.52  0.36  3.95  3.50E-06  180  

3 2.12  0.19  3.10  5.00E-06  180  

4 5.52  0.36  3.95  3.50E-06  135  

5 2.12  0.19  3.10  5.00E-06  135  

 

 

 

 

 

 

 

 

 












V

hr f
2π



 58

 

Figure 18 Model Validation (PCR Vs Ridge) 

5.4 Model Validation (Parameters) 

The Validation is done using data outside of the data set used for regression. A 

plot with the predicted and actual life of package would give an idea of the reliability of 

the model. 
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5.4.1 Half Diagonal Length 

 

Figure 19 Effect of Die Length 

The distance of the solder ball from the neutral axis of the chip increases the 

stress induced in the solder ball. The increase in diagonal length means more number of 

solder balls away from the neutral axis. Hence the half diagonal length has negative 

influence on life. The plot shows the same trend. 
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5.4.2 Delta T 

 

Figure 20 Delta T Validation 

The temperature difference between the minimum and maximum temperatures is 

the most significant variable on a thermal cycle. The temperature excursion (Delta T) has 

square dependency on life. The plot shows the same trend. The packages looked at have 

the same dimensions and test conditions but undergo different thermal cycle. The 

package undergoing lesser temperature excursion has better life. 
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5.5 Model Predictions 

 The model is used to predict life and the model predictions are plotted against the 

actual life to see the accuracy of the model. The dotted lines represent the 90% interval. 

As seen from the plot, most of the model predictions fall in the interval. 

 

Figure 21 Goldmann Prediction 
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Chapter 6 

 Summary and Conclusions 

Statistics-based modeling methodologies have been presented in this work.   

The methods have been used for development of Norris-Landzberg Acceleration 

Factors and Goldmann Constants for area-array packages with Sn3Ag0.5Cu solder 

alloy interconnects. The methodology is based on accelerated test data. Test-boards 

with various package architectures, tested under different temperature ranges, dwell 

times, maximum temperature, and minimum temperatures have been included in the 

dataset. The time to one percent failure and characteristic life of the weibull distribution 

has been used for the model development. The models developed have been validated 

with experimental data in a number of different ways.  Life has been predicted for a 

completely different data-set and the error in the model predictions quantified. In 

addition, change in thermo- mechanical fatigue life versus individual parameter 

variations has been studied for a number of test cases. The model predictions in 

each case have been correlated with experimental data and Weibull distributions 

presented for each case.   The presented approach provides a method for institutional 

learning based on databases of accelerated test data developed for product specific 

applications.   The closed form models are a time effective solution for doing trade-

offs and the thermo- mechanical reliability assessment of the area-array packages on 

PCB assemblies subjected to extreme environments. The developed methodology also 
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allows the user to understand the relative impact of the various geometric parameters, 

material properties and thermal environment on the thermo-mechanical reliability of the 

different configurations of area array devices with leaded as well as lead-free solder 

joints. The influence of silver content on the life of SAC alloy based packages has been 

assessed and the model has been validated. A wide range of SAC alloys like SAC 

105,305,405, 387 and other not very common SAC alloys have also been used for the 

model, making the model dependable. The convergence between experimental results 

and the model predictions with higher order of accuracy than achieved by any first 

order closed form models has been demonstrated, which develops the confidence for 

the application of the models for comparing the reliability of the different BGA 

packages for various parametric variations.  The current approach allows the user to 

analyze independent as well as coupled effects of the various parameters on the 

package reliability under harsh environment. 
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