Production of High pH Value Bio-oil from Woody Biomass and Poultry Litter

by

Harideepan Ravindran

A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

> Auburn, Alabama August 6, 2011

Keywords: auger reactor, biomass, bio-oil, pH, physical properties, pyrolysis

Copyright 2011 by Harideepan Ravindran

Approved by

Sushil Adhikari, Co-chair, Assistant Professor of Biosystems Engineering Lewis Payton, Co-chair, Associate Research Professor of Mechanical Engineering Robert L. Jackson, Associate Professor of Mechanical Engineering

Abstract

Fast pyrolysis, a biomass to liquid conversion process, has attracted a lot of interest from industry and academia due to its high oil yield. Bio-oil can be produced from various biomass feedstocks that are regionally appropriate. Small diameter trees removed from forests have very little economic value in the current market, and the utilization of underutilized biomass to bio-oil could be a niche market for energy production. Also, Alabama is the third largest poultry producing state, and has substantial amount of poultry litter available. The main objective of this work was to produce high pH value bio-oil using cheap and simple methods. Apparently, this study was divided into three specific objectives in which the first task focused on determining maximum bio-oil production from selected biomass and their pH value. The second and third tasks comprised of experimentation and evaluation of new techniques to produce high pH value bio-oil.

The first task evaluated bio-oil production from pine wood, underutilized forest biomass, and poultry litter at different temperatures in between 425-500°C, and characterized according to the ASTM Standard (D7544-09) to document the effect of temperatures. The study found that pine wood gave the highest bio-oil at 500°C, but the poultry litter bio-oil showed the highest pH. In the second and third tasks, cheap and simple methods, such as using a bio-based additive (poultry litter) with primary biomass (pine wood), and through cascade (2- stage) pyrolysis process, were used to produce high pH value bio-oil. From the studies, it was found that the pH value of bio-oil increases while increasing the composition of the additive in the primary

biomass. However, the bio-oil produced from 15 wt.% poultry litter in pine wood did not meet selected properties recommended by the ASTM Standard. Further, the pH value of bio-oil obtained from 2-stage process was slightly higher when compared to the bio-oil produced from single stage process. Here, style of references used in the journal "Bioresource Technology" was followed in this report.

Acknowledgments

I would like to extend my sincere thanks to my advisory committee comprising Dr. Sushil Adhikari, Dr. Lewis Payton and Dr. Robert Jackson for their contribution and time throughout this thesis work. Without their help, this thesis could have never achieved its current form. Special thanks are extended to Dr. Adhikari for being a constant source of inspiration and motivation.

I would also very gratitude to the USDA Forest Service for funding this project. I would like to thank Mr. Dawayne "Doc" Flynn for his immense help while fabricating the reactor used in this work. I would also like to show my special gratitude for Ms. Suchithra Thangalazhy-Gopakumar for helping me in determining different physical properties of bio-oil measured for this thesis. I extend my thanks to Dr. Oladiran Fasina for providing the necessary instruments for measuring the different physical properties of bio-oil.

Above all, I would like to express my sincere gratitude to my parents, my brother and my friends for their support and love.

Table of Contents

ii iii
Acknowledgementiv
ist of Tablesx
ist of Figuresxii
. Introduction 1
2. Scope and Objectives
Literature Review
3.1 Energy and its Demand
3.2 Need for Alternative Energy Resources
3.3 Biomass, an Alternative Energy and its Availability
3.4 Bio-Energy Production Technologies
3.4.1 Co-Firing
3.4.2 Pyrolysis
3.4.3 Carbonation
3.4.4 Liquefaction
3.4.5 Technique Selection
3.5 Pyrolysis
3.5.1 Slow Pyrolysis14
3.5.2 Fast Pyrolysis14

3.5.3 Flash Pyrolysis	
3.5.4 Selection of Process Type: Fast Pyrolysis	
3.6 Features Influencing Fast Pyrolysis Process	16
3.6.1 Dry Biomass	16
3.6.2 Particle Size	
3.6.3 Vapor Residence Time	
3.6.4 Reaction Temperature	17
3.6.5 Heat Transfer and Rapid Quenching	17
3.6.6 Heating Rate	
3.6.7 Biomass Type	
3.7 Reactors Used in Fast Pyrolysis Process	
3.7.1 Bubbling Fluidized-Bed Reactor	
3.7.2 Circulating Fluidized-Bed Reactor	
3.7.3 Ablative Reactor	
3.7.4 Rotary Cone Reactor	21
3.7.5 Vacuum Reactor	
3.7.6 Auger Reactor	21
3.7.7 Reactor Selection: Auger	
3.8 Bio-Oil	
3.8.1 Properties of Bio-Oil	
3.8.2 Applications	24
3.8.3 Challenges	
3.9 Economics	

4	Equipment and Measuring Devices	
	4.1 Auger Reactor	
	4.2 Hopper	
	4.3 Reactor	
	4.4 Reactor Pipes	
	4.5 Auger	
	4.6 Heaters	
	4.7 Insulation	
	4.8 Power Transmission System	
	4.9 Char Collector	
	4.10 Heat Exchangers	
	4.11 Cooling System	
	4.12 Exhaust System	
	4.13 Instruments Used for Determining Various Physical Properties	
	4.13.1 Measuring Balance	
	4.13.2 pH Meter	
	4.13.3 Density Bottles	
	4.13.4 Filter Paper	
	4.13.5 Mechanical Conventional Oven	
	4.13.6 Furnace	
	4.13.7 Bomb Calorimeter	
	4.13.8 Rheometer	
	4.13.9 Aquametry Apparatus	

5. Materials and Methods	
5.1 Biomass Preparation and Characterization	44
5.2 Bio-Oil Production using an Auger Reactor	
5.3 Bio-Oil Analysis	
5.4 Biochar Analysis	
6. Statistical Design of Experiments	50
6.1 Factors Affecting the Process	
6.2 Working Procedure	51
7. Experimental Results	
7.1 Production of Bio-Oil from Selected Biomass	
7.1.1 Summary	
7.1.2 Introduction	
7.1.3 Results and Discussions	
7.1.4 Conclusions	73
7.2 Production of Bio-Oil using Sacrificial Bio-Based Additive	74
7.2.1 Summary	74
7.2.2 Introduction	75
7.2.3 Results and Discussions	76
7.2.4 Conclusions	
7.3 Production of Bio-Oil using Cascade Pyrolysis Reactor	
7.3.1 Summary	
7.3.2 Introduction	
7.3.3 Results and Discussions	

7.3.4 Conclusions	97
8. Conclusions and Recommendations	99
8.1 Conclusions	99
8.2 Recommendations	101
References	103
Appendix A. Supplementary Data for Biomass Characterization	114
Appendix B. Supplementary Data for Selected Figures and Tables Involved in Production of Bio-Oil from Selected Biomass	119
Appendix C. Supplementary Data for Selected Figures and Tables Involved in Production of Bio-Oil Using Sacrificial Bio-Based Additive	268
Appendix D. Supplementary Data for Selected Figures and Tables Involved in Production of Bio-Oil Using Cascade Pyrolysis Reactor	304

List of Tables

Table 1: Products yield obtained from different pyrolysis processes	. 15
Table 2: Reactor types and heat transfer modes	. 17
Table 3: Comparison and relative merits of different reactors	. 22
Table 4: Typical properties of wood pyrolysis bio-oil and of heavy fuel oil	. 24
Table 5: Bio-oil production cost	. 29
Table 6: Biomass sample characterization	. 46
Table 7: P-values of the various products of selected biomass.	.57
Table 8: Physical properties of bio-oil produced from pinewood at different temperatures	. 61
Table 9: Physical properties of bio-oil produced from underutilized forest biomass at different temperatures	. 64
Table 10: Physical properties of poultry litter bio-oil produced at different temperatures	. 66
Table 11: Physical properties of pinewood biochar produced at different temperatures	. 71
Table 12: Physical properties of underutilized forest biochar produced at different temperatures	. 71
Table 13: Physical properties of poultry litter biochar produced at different temperatures	. 72
Table 14: P-values of the different products of selected biomass	. 78
Table 15: Physical properties of bio-oil produced from different proportions of poultry litter with pinewood at 500°C	. 80
Table 16: Physical properties of biochar produced from different additive ratios	. 84
Table 17: P-values of the various products of pinewood at different temperatures	. 90
Table 18: Physical properties of pinewood bio-oil produced at different temperatures	. 93

List of Figures

Figure 1: Simplified model of an auger reactor at Auburn University	2
Figure 2: World marketed energy consumption (quadrillion Btu) by fuel type	5
Figure 3: U.S. primary energy consumption (quadrillion Btu) by fuel type	5
Figure 4: Bio-energy conversion technology	11
Figure 5: Process schematic of a bubbling fluidized-bed reactor	19
Figure 6: Process schematic of a circulating fluidized-bed reactor	
Figure 7: Fast pyrolysis and uses of its products	25
Figure 8: Operation Cost of 100/200/400 ton per day	
Figure 9: Auger reactor at Auburn University	
Figure 10: View on heat exchangers and exhaust gas port	
Figure 11: Measuring balance	
Figure 12: pH meter	
Figure 13: Pycnometer	
Figure 14: Mechanical conventional oven	41
Figure 15: Thermolyne atmosphere controlled ashing furnace	41
Figure 16: C200 Bomb calorimeter	
Figure 17: CVO Rheometer	
Figure 18: Aquametry apparatus	
Figure19: Pictorial representation of pinewood biomass	

Figure 20: Pictorial representation of underutilized forest biomass	45
Figure 21: Pictorial representation of poultry litter biomass	45
Figure 22: Typical material flow process of an auger reactor	47
Figure 23: Various factors affecting the process	50
Figure 24: Yield of bio-oil from selected biomass at different temperatures	57
Figure 25: Yield of biochar from selected biomass at different temperatures	59
Figure 26: Yield of gases from selected biomass at different temperatures	59
Figure 27: Viscosity analysis on different bio-oils	69
Figure 28: Product yield of different biomass mixtures at 500°C	77
Figure 29: Viscosity analysis on different bio-oils	83
Figure 30: Thermo-gravimetric analysis of different constituents of biomass	88
Figure 31: Product yield of pinewood at different operating temperatures	90
Figure 32: Comparison of bio-oil yield obtained from single stage and 2-stage process	91
Figure 33: Viscosity analysis on pinewood bio-oil at different operating temperatures	95

CHAPTER 1

INTRODUCTION

Pyrolysis is an ancient technology used by Egyptians in tar production for caulking boats and in making certain embalming agents. Since mid 1970s, inevitable demand on energy pushed the researchers and scientists to explore renewable source of energy to meet the future demand. Later, in 1980s, they found that high yield of pyrolysis liquid (bio-oil) can be produced through a fast pyrolysis technique. Here, biomass is used as the input and the products obtained from this process can be used as an energy source or as a feedstock for chemical production. Fast pyrolysis is a thermo-chemical process where biomass feedstock is heated rapidly in the absence of oxygen to produce vapors, aerosols and gases, and these elements are condensed rapidly into a liquid called bio-oil. The major products of the fast pyrolysis process are char (solid), bio-oil (liquid) and gases.

Fast pyrolysis process has different advantages such as flexibility in using different biomass feedstock, high bio-oil production and easy transportation (denser liquid). Bio-oil produced from fast pyrolysis process has numerous applications in combustion, heat and electricity production, transportation fuels, chemicals and in food industry. Though bio-oil has wide applications, its negative properties such as acidity, high oxygen content, thermal instability and storage problems play a significant role in restricting its market value. Among these drawbacks, acidity of the bio-oil is the most influential feature as it limits most of the applications of the product (bio-oil). An auger reactor was developed at Auburn University to carry out the fast pyrolysis process, and the simplified model of the reactor is shown in the Figure 1. Here, biomass is feed into the hot screw conveyor/ auger reactor (heaters are provided to heat the periphery of the conveyor) to heat the biomass. Screw conveyor consists of a screw (auger) and a reactor pipe (to support the screw and guide the biomass). A motor was installed to drive the screw conveyor, and as the auger moves inside the reactor pipe, the biomass advances to the hot zone of the reactor to absorb the heat and produces gaseous elements (vapors, aerosols and gases) and char (collected at the end of the system). These gaseous elements are passed through the heat exchanger (condensers) to condense the fumes into bio-oil and the non condensable gases (NCG) were vented.

Figure 1: Simplified model of an auger reactor at Auburn University.

CHAPTER 2

SCOPE AND OBJECTIVES

Since application of bio-oil are limited by its negative attributes, in this work, acidity of the bio-oil was considered as the major drawback and a few simple techniques were implemented on the fast pyrolysis process to remove or reduce the acidity in the oil. The main goal of this research was to increase the pH of bio-oil so that it can be used in existing refineries with no or minimum upgrading. The specific objectives of this project were as follows:

1. Production of bio-oil from selected biomass feedstocks

Bio-oils were produced from selected feedstocks (at different operating temperatures) and their physical properties were determined. Later, optimum temperature for maximum bio-oil production and their respective pH value were determined for each biomass type.

2. Production of bio-oil using sacrificial bio-based additive

Bio-oils were produced after mixing two different biomass (in which poultry litter acts as an additive) to increase its pH value. Operating temperature and primary biomass would be selected from the previous objective and verifying the technique by comparing the pH value obtained.

3. Production of bio-oil using cascade pyrolysis reactors

Implementing of 2-stage process for bio-oil production and validating the technique by comparing its results (pH value) with the first objective. Operating parameters will be selected from the first objective.

3

CHAPTER 3

LITERATURE REVIEW

This chapter comprises a comprehensive outline on world's current energy availability, energy production and new accessible energy options to meet the upcoming demand. A brief review on future energy demand, factors affecting the demand and the need for exploring new and alternate energy resources (bio-energy) were also discussed here. Further, various technologies involved in bio-energy production and factors involved in selecting the required technology (pyrolysis) to produce expected form of bio-energy (interest of this study) were detailed. As the selected technology has different methods/processes, all the methods involved in this technology were reviewed, and the best method (fast pyrolysis) was selected as per the requirement of this study. It also includes the features and factors influencing the process, and the reactors (including the reactor selection, auger reactor) involved in bio-oil production were also presented. Major form of bio-energy (bio-oil) obtained from this process was focused, and its various features such as properties, applications and challenges were also discussed below. In addition, a brief economic analysis on the method selected for this study was also presented in this section.

3.1 ENERGY AND ITS DEMAND

In this vast universe, every system requires some form of energy to trigger itself to execute some kind of work. Currently, numerous tools are been being created by humans to simplify and carry out their deed easily. These tools consume various modes of energy (like electricity, natural gas, liquid fuels, coal, nuclear and other renewable resources) to perform its actions. Basically,

utilization of these energy resources (stated above) can be characterized under four different sectors such as transportation, industrial, commercial and residential. Since 1990's, the amount of energy consumed by these sectors is growing up and this trend line is expected to rise in the future because of the demand created by the growing population, surplus investment on technologies for improvising the casual amenities, and improper utilization of the available energy. Certainly, international energy outlook 2010 illustrated that (Figure 2), the world marketed energy consumption will be expanded by 49% between 2007 and 2035 [1]. However, annual energy outlook 2010 showed that (Figure 3) in the U.S., the total primary energy consumption is expected to increase by 14% from 2008 to 2035 with an average annual growth rate of 0.5 % [2].

Figure 2: World marketed energy consumption (quadrillion Btu) by fuel type [1].

Figure 3: U.S. primary energy consumption (quadrillion Btu) by fuel type [2].

From Figures 2 and 3, it was evident that the demand of energy will be elevating for the next 25 years, and the growing consumption of fossil fuels were high in-spite of its increasing price and depleting resources. Though a fall in natural gas consumption (Figure 3) exists during 2008 to 2014 (1.5% per year), it gets elevated and shows an overall growth rate of 0.2% per year from 2008 to 2035. Nevertheless, the consumption of coal increases by 0.4% per year. The Energy Information Administration (EIA) states that renewable fuels will be used to generate electricity and liquid fuels from various renewable resources for the transportation sector [2].

Certainly, Figure 3 shows that the amount of fossil fuel usage in total energy drops from 84% to 78% (2008-2035) and the share of renewable energy in total energy increases from 8% to 14% (2008-2035) [2]. In addition, various government policies and state programs were implemented to increase the production of renewable energy resources, and The American Recovery and Reinvestment Act of 2009 offers federal funding, tax credits and loan guarantees to encourage financial outlay in energy efficiency and renewable energy.

3.2 NEED FOR ALTERNATIVE ENERGY RESOURCES

In this modern world, energy has never been an option; it's the key to access our basic amenities. The present situation demands a clean, reliable, and steady supply of energy to meet our basic comfort (residential), commercial, transportation, and industrial usage. In which, energy used by industries is relatively higher than the other three sectors, and nearly 68% of the energy consumed by industries is from liquid fuels and natural gas, whereas the remaining 32% is from electricity, coal and renewable [2]. However, the availability of fossil fuels are no longer sufficient to meet our future energy demand, and resulting in various tribulations such as price rise, energy security and serious concerns on climate change which resulted in multiplying the interest on alternative energy. This pushes both scientists and policy makers to direct their search

towards alternative (clean energy) and renewable energy resources to avoid obnoxious situation on energy demand in the future.

Currently, various expansions are being carried out in the field of alternative energy and in particular, solar energy is considered as a primary source of energy available in this world as it is obtained directly from the radiation of sun. It is one among the noticeable clean renewable energy resource. During clear sky, direct sun light can produce a radiation of 1000 W/m² on a plain horizontal surface. In the U.S. (considering 48 states), the production of total amount of solar energy is about 13.5×10^{15} kWh per year, and at present 23.2×10^{9} kWh per year is being produced as electricity through solar thermal energy [3]. However, solar energy is not highly established because of its various negative attributes such as poor conversion efficiency (from light energy to electric energy), variation of light during the day, weather conditions and seasonal changes.

Apart from solar energy, there are other alternative renewable energy technologies assisting to meet the future energy demand such as wind, water, geothermal and biofuels (products derived from biomass). The technology on these energy resources can be enhanced to produce a significant amount of resources to back the fossil fuel requirement. On the other hand, in U.S., biomass and biomass derived gases have supplied nearly 55,000 GWh of electricity (in 2006) and provided feedstock for about 6.5 billion gallons of ethanol in 2007 [4].

3.3 BIOMASS, AN ALTERNATIVE ENERGY AND ITS AVAILABILITY

Certainly, exploration on alternative energy resources are encouraged to alleviate this situation as these resources are said to be renewable, ease with environment, and global climate change. Particularly, biomass stands ahead of many alternatives by hauling the nation's attention

towards it. Biomass can be converted to bio-fuels through various techniques, and they can be used significantly to reduce the dependence on petroleum products.

Environmental concerns, national energy security and climate change are the primary reasons to explore alternative energy resources. Significant amount of resources has been devoted in producing transportation fuels from biomass and other sources. The Billion-Ton study estimated that approximately 1.3 billion dry tons of biomass is available annually in U. S. and if all the biomass are used to produce ethanol, then it has the potential to produce up to 60 billion gallons [5]. These facts motivated both academia and industries on bio-energy (energy derived from biomass) particularly on converting the biomass to liquid fuels through thermochemical or biochemical processes. Within the various thermochemical processes, fast pyrolysis process has attracted a lot of interest because of its high liquid fuel (bio-oil) production and its feedstock flexibility. The two major products from the fast pyrolysis process are bio-oil and bio-char (solid left after pyrolysis), in which the bio-oil is the major product of this process that can be stored and transported, and the bio-char can be utilized as soil amendment or carbon sequestration.

Biomass is required to produce bio-energy either in liquid, solid or gases form and recently, in U.S. an analysis was made over the availability of biomass from various sources such as forestry and agricultural residues. It states that U.S has a capacity to produce a billion ton of biomass every year, which includes 368 million dry tons/year of forestry residues. Further, forest residues include 64 million dry tons/year of logging and other residues. The biomass obtained from forest thinning and clearing operation has little or no value, and also has no other methods to process such biomass, except pyrolysis [5].

The term biomass represents all living and recently living biological organisms found in our planet or in other words, all organic matter derived from plants and plant based wastes are called biomass. Basically sun is the prime source of energy from which the plants produce their own food through photosynthesis process (where the solar energy is converted into chemical energy in the plant material) to develop themselves. This chemical energy (stored in biomass) can be extracted (as another form of energy) by various energy conversion processes such as thermochemical and bio-chemical processes. Certainly, this type of resource is considered as a renewable source for energy production because it is available in nature and found enormously. However, fossil fuels are obtained from organic matter (after the influence of geological process) and they are not adjudged as a renewable source of energy because of the time taken by the process to convert the biomass into coal or petroleum based products.

Over the last few years, several discussions were being made on energy security and exploration of alternative energy resources to support the future demand on energy. Since 1990, hunt on renewable resources for energy production has shown a growing trend particularly towards using biomass as an energy source. The rationales behind the attraction on biomass are, ability to produce biomass (most of the countries in the world has a capability to generate biomass, especially, western Europe and US are producing food surplus), technological developments in both energy conversion techniques and in crop production, proficiency in achieving higher conversion efficiency, rural economic development, low cost fuel production, petroleum displacement, fossil fuel displacement, reduced greenhouse gas emissions, and improved soil fertility and agricultural ecology [6-7].

Basically, biomass is available from different sources in different ways, and typically they are distinguished in four eminent forms such as woody plants, herbaceous plants/grasses, aquatic plants and manures [8]. However, the major constituents of these biomasses are cellulose (40-50% by dry weight), hemicellulose (20-40% by dry weight) and lignin (20-40% by dry

weight in woody plants and 10-40% by dry weight in herbaceous plants), An ideal energy crop should hold the following characteristic features to achieve successful commercial energy forming [7] and they are:

- high yield (maximum production of dry matter per hectare)
- low energy input to produce
- low production cost
- low nutrient requirements
- composed of least adulterants

In addition, moisture content present in biomass plays a very important role in selecting the energy conversion process. Biomass with low moisture content (woodchips) is treated in dry conversion processes such as gasification, pyrolysis and combustion; whereas, high moisture content biomass is used in wet or aqueous conversion process such as fermentation.

3.4 BIO-ENERGY PRODUCTION TECHNOLOGIES

Generally, future demand on energy drives both the developed and developing countries towards alternative (clean) or renewable energy producing technologies [3], and biomass is considered as a potential source from which various forms of energy can be produced. Currently, several bio-energy (biomass to energy) conversion technologies are available to convert the biomass to heat, power and liquid fuels [9] and such technologies are broadly classified into three types. Figure 4 shown below represents the major classification of bio-energy conversion technologies.

Figure 4: Bio-energy conversion technology [10-11].

However, the technologies mentioned above are implemented to produce bioenergy, and each technique requires unique form of biomass to carry out the process. In this work, we are interested in processing dry woody biomass and animal manure (poultry litter) because of the availability of such feedstocks are abundant in this region (AL, USA). The following technologies are being encouraged to process these biomasses in order to produce bio-energy and they are:

- Co-firing
- Pyrolysis
- Carbonation
- Gasification
- Liquefaction

3.4.1 CO-FIRING

It is a direct combustion process in which fossil fuels are co-fired with low cost biomass residues (in the presence of air) to convert chemical energy stored in biomass to heat or produce steam. Generally, the process is carried out around 800-1000°C and the equipment such as stoves, boilers, furnaces, steam turbines and turbo generators are used to achieve the process [11]. Various feedstocks (with moisture content < 10 wt. %) such as wood chips, sawdust, bark, hog fuel, black liquor, bagasse, straw, municipal solid waste (MSW), and wastes from the food industry are being used for this process [10-12]. This process has a wide application, particularly in electricity generation. The advantages of this process are low sulfur, nitrogen (relative to coal) and net CO_2 emission levels (almost zero) in the fuels and in addition to that residues can be used effectively in power production [10]. However, inefficient use of the limited life-time equipment, pretreatment associated with financial costs and lack of year round production in electricity limits the application of this process [10, 12].

3.4.2 PYROLYSIS

It is a thermochemical process where the biomass is heated in the absence of oxygen at moderate to high temperatures (about 350-700°C) to produce liquid (bio-oil), char and gases [11-14]. This process is flexible to various kinds of feedstocks such as pinewood, forest residues, switchgrass, poultry litter, peanut hulls, sawdust, plastics and rubber [15-23]. The products obtained from this technique have a wide range of applications in power generation with liquids, combustion, chemical production and many more [13].

3.4.3 CARBONATION

Carbonation is an old age pyrolytic process where the volatile compounds of the biomass are removed by heating it under the absence of oxygen to produce charcoal. This process is also called as torrefaction or dry wood distillation, and the biomass used for this process are wood, reed canary grass, willow and many more [10, 24-25]. Generally, the operating temperature

followed to achieve this process is about 200-300°C, and this technology has numerous applications in industrial, commercial and domestic sectors [10, 24-25].

3.4.4 LIQUEFACTION

It is a technique used to produce clean liquids (bio-oil) from biomass in the presence of a solvent or additive at moderate to high temperatures (250–550°C) and pressures (5–25 MPa) [10, 26]. This thermochemical process is carried out under wet conditions and the biomass used in the process are wood and wood waste, energy crops, tallow seeds, switch grass, pine dust, aquatic plants, agricultural crops, and animal wastes (such as poultry litter and dairy manure) [26-27]. This technique involves a fuel feeding system and a reactor, in which the reactor makes the process more complex and expensive while comparing it with the pyrolysis process [11].

3.4.5 TECHNIQUE SELECTION

Though we have several techniques to process woody biomass, the deciding factor for selecting a technique is based on the form of energy we expect. In this work, we are interested in producing energy in the form of bio-oil from woody biomass and poultry litter. Based on our interest, pyrolysis and liquefaction are the better options to produce bio-oil. However, liquefaction process is dropped because of the complexity involved in its system. Hence, pyrolysis was rated as a better option to produce bio-oil.

3.5 PYROLYSIS

As discussed above, pyrolysis is a thermochemical process in which biomass is heated in the absence of oxygen [13-14, 28-29]. While heating biomass, it decomposes to produce different types of gaseous elements, and later these gaseous phase materials are passed through the heat exchanger to condense them in the form of liquid called bio-oil or pyrolytic oil [14]. However some fumes (non-condensable gases) are escaped out of the system because it is

13

impossible to condense all the fumes produced by this process, and decomposed biomass are collected in the form of char. Thus, the three elements produced by this process are char (solid), bio-oil (liquid) and gases. Generally, bio-oil and char are the most attractive products obtained from this process and their production rate is entirely based on the operating parameters involved in this process [12]. Basically, there are three different types of pyrolysis process, and they are differentiated with respect to their operating parameters as shown below.

3.5.1 SLOW PYROLYSIS

This process is also called as conventional slow pyrolysis process and the term "slow" represents the heating rate of the biomass [12, 14]. Higher residence time (5 to 30 min) and the lower heating rates (approximately 5-7°C/min) are the basic operating conditions to achieve this process [12, 14]. Typically, primary product obtained through this process is char which leads to less liquid and gas production [12]. Certainly, as the temperature increases the production of char decreases and the yield of gas increases. At the same time, bio-oil yield increases with increase in temperature (about 550-600°C) and drops while operating above 600°C [12, 30].

3.5.2 FAST PYROLYSIS

Recently, people from different sectors have shown their interest towards this process because of its high bio-oil yield. Here, the biomass is heated rapidly to produce vapors and fumes and these gaseous products are quenched rapidly to obtain high yield of bio-oil (60-75 wt %) [14]. The typical operating conditions to achieve this process are high heating rates (usually 300°C/min) and lower residence time (0.5-2sec, <10sec is acceptable) [12, 14, 30-31]. Typically, high bio-oil yield was obtained between 450-550°C, however, char (15-25 wt %) and gases (10-20 wt %) are the other products acquired from this process. As the temperature increases the yield of char decreases and the yield of gas increases simultaneously [12, 14, 23, 30].

3.5.3 FLASH PYROLYSIS

This process is similar to fast pyrolysis process and the major difference in terms of operating condition is the residence time (approximately 30ms - 1.5 sec). Alike fast pyrolysis, bio-oil (50-75 wt %) is the primary product obtained from the flash pyrolysis, and char (5-25 wt %) [32] and gases (10-35%) are the other products of the process [12, 30-31]. Generally, for all the type of pyrolysis process, inert gas (nitrogen) is used to push the gases produced during the process, and it helps to achieve the required residence time easily. Apart from this, particle size (< 0.2mm for flash pyrolysis) of the biomass also plays a significant role in the pyrolysis process.

3.5.4 SELECTION OF PROCESS TYPE: FAST PYROLYSIS

As mention above, bio-oil is the primary form of bio-energy we are interested in and the Table-1 narrates the product yield (oil, char and gas) obtained from various pyrolysis processes.

Process	Bio-oil, wt %	Char, wt %	Gas, wt %
Slow pyrolysis	47	20	33
Fast pyrolysis	63	17	20
Flash pyrolysis	72	18	10

Table 1: Products yield obtained from different pyrolysis processes [30].

The data shown in Table 1 represent maximum yield of bio-oil produced from different types of pyrolysis process irrespective of the biomass type and temperature. It is evident that slow pyrolysis is not a better process to produce high quantity of bio-oil. However, fast pyrolysis and flash pyrolysis are the better options to produce high yield of bio-oil. In this work, fast pyrolysis is considered as the best option to produce bio-oil. The rationale behind selecting fast pyrolysis was, flash pyrolysis requires high energy input to grind biomass (biomass preparation),

and it is still in the lab scale production stage. In addition, bio-oil produced from fast pyrolysis process is denser, and can be easily transported [30].

3.6 FEATURES INFLUENCING FAST PYROLYSIS PROCESS

Fast pyrolysis process can be carried out efficiently by high heating rates. However, this process requires few more essential features to produce better products and they are as follows:

3.6.1 DRY BIOMASS

Biomass obtained from the yards may have moisture content around 30-45 wt% and this wet biomass is not suitable for the process because it produces large quantity of water in the biooil [33]. Therefore, the biomass used for this process should be dried properly and the biomass can have less than 10 wt % of moisture content (up to 15wt % is acceptable) [14, 33]. The reason behind using low moisture content biomass was nothing but, during the process the moisture present in the biomass is transformed to water molecules and collected along with the bio-oil. These water molecules present in the bio-oil have negative effects on the stability, acidity, corrosiveness and other properties of the liquid [33].

3.6.2 PARTICLE SIZE

Particle size plays a significant role in the production of bio-oil during the process. Usually, biomass should be finely ground (0.6-1.25mm, up to 2 mm is acceptable) before processing it [12, 14, 29, 31]. However, particle size of the biomass is selected according to the type of the reactor (ablative reactors use whole tree chips) used for the process [29].

3.6.3 VAPOR RESIDENCE TIME

The time taken by the fumes or vapors to reach the heat exchanger (condenser) is called vapor residence time or shortly as residence time. Typically, quality fast pyrolysis process can be achieved while a residence time of 0.5 - 2 sec. (up to 5 sec is acceptable) [13-14, 29]. By

16

processing at longer residence time, high temperature involved in the process will further crack the vapors and convert them into non-condensable liquids [29, 33]. Hence bio-oil yield will be reduced.

3.6.4 REACTION TEMPERATURE

Fast pyrolysis process requires controlled (absence of oxygen) pyrolysis reaction temperature of about 500°C [13-14, 29]. Typically the reaction temperature of about 425-500°C is used for this process [14, 23]. However, from woody biomass, maximum bio-oil yield (up to 80%) can be produced at 500-520°C with a residence time less than 1 second [13].

3.6.5 HEAT TRANSFER AND RAPID QUENCHING

Biomass is heated rapidly in fast pyrolysis process, and to achieve this, high heating rate is required. Basically, heat transfer can be achieved through three different modes of heat transfer such as conduction, convection and radiation. Table 2 describes the type of heat transfer involved in different types of reactor.

Reactor type	Suggested mode of heat transfer	Bio-oil yield %
Ablative	95% Conduction; 4% Convection 1% Radiation	75
Circulating Fluid bed	80% Conduction; 19% Convection 1% Radiation	75
Fluid bed	90% Conduction; 9% Convection 1% Radiation	75
Vacuum	4% Conduction; 95% Convection 1% Radiation	35-50
Rotary cone	95% Conduction; 9%Conventional 1% Radiation	65
Auger	Direct contact with hot surface	30-50

Table 2: Reactor types and heat transfer modes [13-14, 33].

Rapid quenching is the most essential feature which helps to produce high quality and quantity of bio-oil. Rapid cooling of pyrolysis vapors/aerosols results in producing bio-oil, and

avoids the secondary reactions in the vapor phase [13-14, 29]. However, electrostatic precipitators are also used to recover aerosols [29, 33].

3.6.6 HEATING RATE

Yield of various products of pyrolysis are dependent on the heating rate followed in the process. It was observed that less bio-oil was produced at low heating rates (100°C/min), and it can be increased by increasing the heating rates to about 300°C/min. However, no significant change in the bio-oil production was observed while raising the heating rate over 300°C/min [29].

3.6.7 BIOMASS TYPE

Basically all kinds of biomass cannot produce same amount of bio-oil at fixed operating conditions because bio-oil production is based on the percentage of biomass constituents (cellulose, hemicellulose and lignin) [14].

3.7 REACTORS USED IN FAST PYROLYSIS PROCESS

Basically, fast pyrolysis process needs a reactor to carry out the process, and there are few types of reactors which named after the kind of structure and the mode of biomass feed followed to process the biomass. The list followed below mentions some of the commonly used reactors through which the fast pyrolysis process is carried out and they are as follows [12, 14, 34]:

- Bubbling fluidized-bed reactor
- Circulating fluidized-bed reactor
- Ablative reactor
- Rotary cone reactor
- Vacuum reactor

• Auger reactor

3.7.1 BUBBLING FLUIDIZED-BED REACTOR

Bubbling fluidized bed reactor is the most commonly used reactor for performing fast pyrolysis process, and it is commonly known as fluidized bed reactor. This reactor requires a carrier gas (nitrogen) for fluidization and to direct the gaseous elements (produced during the process) to the condenser [13]. It owns a good temperature control and can transfer heat effectively to the biomass particles. Usually sand is used as the solid phase of the bed in which the heat transfer takes place. Hence, sand selection plays an important role in processing the biomass. Further, this reactor is known for its high bio-oil yield production [14, 34]. Figure 5 shows a typical view of a bubbling fluidized-bed reactor.

Figure 5: Process schematic of a bubbling fluidized-bed reactor [14].

3.7.2 CIRCULATING FLUIDIZED-BED REACTOR

Circulating fluidized-bed (CFB) reactor looks similar to the bubbling fluidized-bed reactor and the only difference in the design point of view is that it can re-circulate the sand particles involved in the process. In addition, it has a twin bed type in which the second vessel acts as a char combustor to reheat the circulating solids [14]. This makes the reactor design complex. Generally, convection mode of heat transfer is used to process the biomass, and Figure 6 shows a typical view of a circulating fluidized bed reactor.

Figure 6: Process schematic of a circulating fluidized-bed reactor [34].

3.7.3 ABLATIVE REACTOR

It is a process where wood is pressed against a hot rotating surface and leaves an oil film behind which evaporates [13]. This process can accommodate large particles and does not require a carrier gas. Often, this reactor uses conventional vapor collection system such as quench column and electrostatic precipitator for collecting bio-oil [28]. However, this reactor is not popular because of its complex design.

3.7.4 ROTARY CONE REACTOR

In rotary cone reactor, pyrolysis reaction is achieved by the centrifugal force (force created while rotating the cone) which helps in mixing both hot sand and biomass and results in transporting the mixture. Basically, hot sand and biomass are fed into the base of the reactor, and as the cone rotates, the solid particles move upwards to the lip of the cone. The reaction progresses as the solid particles move upwards and fumes produced during the process are directed to a condenser. The char and sand are sent to the combustor where the sand gets reheated before sending it to the base of the cone (for recirculation). About 70% of bio-oil yield can be achieved by this process. However, complex design and scale up issues pulls down the popularity of the reactor [34].

3.7.5 VACUUM REACTOR

This reactor can achieve pyrolysis process at slow heating rates [13-14] which results in low bio-oil yield (30-45%) [34]. This process is highly complex because of the moving belt (which carries the biomass) and high temperature vacuum chamber. Apart from this, high maintenance and investment costs of the system make it more complicated for processing. However, it has several positive attributes such as clean oil production, use of larger feed particles (20-50mm) [34], and no carrier gas. The complexity of the system and low bio-oil yield did not encourage a lot of researchers to work on this reactor.

3.7.6 AUGER REACTOR

It is a compact system where the augers are used to move the biomass inside the cylindrical heated tube (reactor). In auger reactor, heat transfer can be achieved either by using

hot sand or through coil/strip heaters mounted along the periphery of the cylindrical tube. The vapor residence time can be modified by changing the length of the hot zone and the use of carrier gas is optional. This reactor can produce bio-oil yield of about 65-75 wt% [14].

3.7.7 REACTOR SELECTION: AUGER

Although, we have several reactors to achieve fast pyrolysis process, auger reactor works better than other reactor types, Table 3 shows the comparison between different reactors involved in achieving the process.

Property	Status	Bio- oil wt%	Comp- lexity	Feed size	Inert gas need	Specific size	Scale up
Fluid bed	Demo	75	Medium	Small	High	Medium	Easy
CFB	Pilot	75	High	Medium	High	Large	Easy
Entrained	None	65	High	Small	High	Large	Easy
Rotating cone	Pilot	65	High	V small	Low	Small	Hard
Ablative	Lab	75	High	Large	Low	Small	Hard
Auger	Lab	65	Low	Small	Low	Medium	Easy
Vacuum	Demo	60	High	Large	Low	Large	Hard
The darker the cell color, the less desirable the process.			SS	Lab: 1 – 20 Pilot: 20 – 2 Demo: 200	kg h ¹ 200 kg h - 2000	n⁻¹ kg h⁻¹	

Table 3: Comparison and relative merits of different reactors [35].

From the above table, dark colored cells refer the demerits involved in the reactors and as the number of dark cells increases (for a reactor type), the desirability of the reactor decreases. Certainly, auger reactor has less number of dark cells (needs small feed size particles) when compared to all the other reactors involved in this comparison study. Hence, it was selected for this study. 3.8 BIO-OIL

Bio-oil is the major product of the fast pyrolysis process and it usually looks like a dark brown mobile liquid with a distinctive smoky smell [28-29, 36]. This liquid fuel has numerous names such as pyrolysis oil, bio-oil, bio-crude-oil, bio-fuel-oil, wood liquids, wood oil, liquid smoke, wood distillates, pyroligneous tar, pyroligneous acid, and liquid wood [28].

3.8.1 PROPERTIES OF BIO-OIL

Bio-oil obtained from different biomass has different elemental and chemical compositions, and the properties of the bio-oil are basically dependent on the various factors such as feedstock type, production process, operating conditions and collecting efficiency [13]. Bio-oil is a multi-component mixture comprised of different size molecules derived primarily from de-polymerization and fragmentation reactions of three basic components of biomass such as cellulose, hemicellulose, and lignin [28, 37]. The chemical composition of bio-oil is highly complex as it was identified that bio-oil comprises of more than 300 compounds in which they can be classified broadly under the categories such as acids, alcohols, aldehydes, esters, ketones, sugars, phenols, guaiacols, syringols, furans, alkenes, aromatics and nitrogen compounds [34, 38]. Certainly, physical properties of bio-oil show some significant differences while comparing them with the properties of heavy/petroleum derived oil, and Table 4 shown below enumerates the same.
Physical property	Bio-oil	Heavy fuel oil
Moisture content (wt %)	15–30	0.1
pH	2.5	-
Specific gravity	1.2	0.94
Elemental composition (wt %))	
С	54–58	85
Н	5.5-7.0	11
0	35–40	1.0
N	0-0.2	0.3
Ash	0-0.2	0.1
HHV (MJ/kg)	16–19	40
Viscosity (at 50°C) (cP)	40–100	180
Solids (wt %)	0.2–1	1
Distillation residue (wt %)	up to 50	1

Table 4: Typical properties of wood pyrolysis bio-oil and of heavy fuel oil [37, 39].

From the above table, the moisture content (water content) of the bio-oil is high when compared to heavy fuel oil and this is due to the moisture content present initially in the biomass. This high water content leads to high oxygen content of bio-oil (than heavy fuel oil) which apparently results in poor heating value (HV). Generally, at room temperature, viscosity of bio-oil (viscosity of bio-oil is different for different feedstock) is higher than the viscosity of heavy/petroleum derived oils. However, moderate preheating helps to reduce the viscosity of the bio-oil so that it can be pumped and transported easily. In addition, the low pH value of the bio-oil is due to the presence of organic acids, and this result in corroding common construction materials such as carbon steel and aluminum. However, they are noncorrosive to stainless steel [37, 39].

3.8.2 APPLICATIONS

Bio-oil from biomass is well known for its environmental and ecological merits, and these advantages help the oil to utilize it as an auxiliary fuel for petroleum based products. Apart from this, bio-oil and all the other products of the fast pyrolysis process have a wide range of applications and they are summarized in the Figure 7 as shown below.

Figure 7: Fast pyrolysis and uses of its products [28].

Various products of fast pyrolysis process have numerous applications. However, bio-oil is our major concern and is being used in several areas (without upgrading) as described below.

A. COMBUSTION

Furnaces and boilers are the most commonly used systems for power generation, and they are less efficient than engines and turbines. Various studies were made to identify an alternative fuel for furnaces, burners and boilers, and it seems that bio-oil would be the suitable option for it as long as it has consistent characteristics, provides acceptable emissions level, and is economically feasible [28, 37, 40].

B. POWER GENERATION

Bio-oils are used in power generation by co-firing it with different fuels (diesel, heavy fuel oil and natural gas) in different equipment such as engines, gas turbines and stirling engines [37, 40-44]. Bio-oil has the potential to replace the conventional fuels in diesel engines (in low to moderate speed stationary diesel engines) and also in gas turbines by doing a minor modifications in the design of diesel engines and gas turbines [28, 34, 41, 45]. In addition, bio-oils can be emulsified with diesel for combustion in IC engines [46-47].

C. TRANSPORT FUEL

Bio-oils can be used as a transportation fuel by upgrading it. However, upgrading requires more energy and not economically efficient [28-29, 37].

D. CHEMICALS

Wood pyrolysis is major source of chemicals such as methanol, acetic acid, turpentine, tars, etc. This oil has more than 300 compounds and it is hard to separate those compounds using the current technology. Hence, by developing the current technology the compounds can be separated easily from the bio-oil [28, 37]. In addition, bio-oil is also used to produce special quality chemicals for pharmaceuticals and synthons, fertilizers, environmental chemicals and resins [29].

E. FOOD INDUSTRY

Currently, bio-oil is used in the food industry as food flavorings such as liquid smoke [29].

3.8.3 CHALLENGES

Though bio-oil obtained from fast pyrolysis process has numerous applications, the negative attributes possessed by it play a significant role in confining its utilization in the commercial market. Some of the major problems associated with bio-oil are described below:

A. HIGH OXYGEN CONTENT

Organic acids and water present in the bio-oil increases the oxygen content present in the bio-oil and thus decreasing the heating value of the fuel (less than 50% of that of conventional fuels) [37]. Bio-oil has 15-35% of water and by removing or reducing both water and other oxygenated compounds, oxygen content in the bio-oil can be decreased, and hence heating value can be improved [28].

B. HIGHLY ACIDIC

Typically, pH value of bio-oil obtained from woody biomass has low values (between 2 to 3). Hence, it is highly acidic. This results in corroding and damaging moving and non moving components of various equipment. Further, the severity of the corrosion increases with increase in temperature and water content [28]. Eventually, it (bio-oil) cannot be used in the existing refineries.

C. THERMAL INSTABILITY

Basically, thermal instability is due to the short residence time and rapid cooling of gaseous elements (produced during the process) from high temperature [48]. Apart from this, high oxygen content is also responsible for instability of bio-oil [37].

E. STORAGE PROBLEMS

Produced bio-oil en route for thermodynamic equilibrium, resulting in rise in viscosity and increase in molecular weight of the bio-oil [14, 28, 38].

F.CHAR AND ASH IN BIO-OIL

Fumes produced during this process are carried to the heat exchanger for cooling. As the fumes are condensed, the char and ash particles carried along with the fumes are collected in the bio-oil [14, 38]. Eventually, ash in bio-oil leads to corrosion and kicking problems in engines and valves [39].

3.9 ECONOMICS

Interest on fast pyrolysis process encourages to develop this technology and eventually implementing necessary steps to commercialize it. Certainly, several studies [34, 43, 49-51] were made to analyze the economic feasibility of the process, and it was found that feedstock cost, labor cost and operating variables are the most important variables in commercializing the technology. Figure 8 describes the various costs involved in operating the plant.

Figure 8: Operation Cost of 100/200/400 ton per day [49].

From the above figure, nearly half of the expenditure involved in operating the plant goes to feedstock and maintenance, and labor cost decreases while increasing the plant capacity, however, transportation, grinding and utilities cost increase with the increase in plant capacity. In addition, it was identified that the feedstock cost was different for different biomass such as \$30/ton, \$20/ton, \$42.50/ton and \$20 for dry wood, peat, straw and rice husks respectively [34, 50, 52]. Table 5 shows the bio-oil production cost with respect to plant size and total capital investment.

Plant Size	Feed Cost	Die oil Ceat (C/lyg)	Bio-oil Cost	Total Capital
(ton/day)	(\$/ dry ton)	DI0-011 COSt (3/Kg)	(\$/gal)	Investment (\$)
2.4	22	0.38	1.73	97,000
24	22	0.18	0.82	389,000
100	36	0.26	1.21	6.6 million
400	36	0.19	0.89	14 million
1000	44	0.11	0.50	46 million
1000	20-42.5	0.13-0.54	0.59-2.46	44-143 million

Table 5: Bio-oil production cost [34].

Table 5 clearly elaborates the bio-oil production cost and total capital investment involved in different fast pyrolysis plant. Here, we can notice that as the capacity of the plant increases, the cost involved for constructing the plant (total capital investment) increases and the production cost on bio-oil decreases. Certainly, the cost on feedstock plays a significant role in bio-oil cost.

CHAPTER 4

EQUIPMENT AND MEASURING DEVICES

This chapter comprises the materials, equipment and measuring devices involved in various stages of this research (production and analysis of bio-oil). It also includes the various features (sub-components of major equipment) and the technical specification of the various equipments used in the experimental setup. In addition, measuring devices, furnace and conventional oven used in measuring the physical properties of the products (biomass, bio-oil and char) and the methods involved in measuring those physical properties were incorporated in this section.

4.1 AUGER REACTOR

The machine shown below in the Figure 9 is an auger reactor. Basically, the construction of this reactor have various subassemblies such as hopper (with nitrogen port), reactor (reactor pipes, auger, heaters and insulation), power transmission system (motor and battery), heat exchangers, char collector, cooling system (chiller), and exhaust system.

Figure 9: Auger reactor at Auburn University

The functions and the technical specification of various subassemblies involved in designing the reactor were given below:

Figure 10: View on heat exchangers and exhaust gas port.

4.2 HOPPER

Hopper was used to store the biomass temporarily, and the biomass can be extorted (as per the requirement) into the reactor using the augers mounted below the hopper. While processing biomass, hopper should be closed all the time (to maintain oxygen free atmosphere). In addition, a vent was provided at the top of the hopper for purging nitrogen into the system as shown in the Figure 10. Technical specifications of the hopper were listed below:

Material: Aluminum

Maximum capacity: 1.2 kg

4.3 REACTOR

Reactor is the heart of the system where the actual process (fast pyrolysis) takes place and it consists of reactors pipes, auger, heaters and insulation.

4.4 REACTOR PIPES

There were two cylindrical pipes mounted below the hopper (one below the other) in which one such cylinder was attached to the bottom end of the hopper to receive and supply the biomass towards the hot zone (stored in the hopper). Technical specifications of the reactor pipes were listed below:

Top reactor pipe:

Material: Stainless steel

Length: 1000 mm

Effective length: 800 mm (distance travelled by the biomass in the pipe)

Outside diameter: 76.2 mm

Inside diameter: 71.4 mm

Bottom reactor pipe:

Material: Stainless steel

Length: 1092.2 mm

Effective length: 863.6 mm

Outside diameter: 76.2 mm

Inside diameter: 71.4 mm

4.5 AUGER

It is also called as screw feeder. Here, it was mounted inside the reactor pipes and supported by the bearing provided at both the ends of the reactor pipes. The openings of the reactor pipes were sealed by a stainless steel plate, however, one end of the plate (on each reactor tube) was provided with an opening for mounting the transmission system to drive the augers inside the reactor pipes. The technical specifications of the augers were listed below:

Top auger:

Material: Stainless steel Length: 1000 mm Nominal diameter: 69.85 mm Pitch: 76.2 mm Route diameter: 15.875 mm Flight thickness: 4.77 mm Direction: Right hand Speed: 6 rpm (app.) Bottom auger: Material: Stainless steel Length: 1092.2 mm Nominal diameter: 69.85 mm Pitch: 76.2 mm Route diameter: 15.875 mm Flight thickness: 4.77 mm Direction: Right hand

Speed: 25 rpm (app.)

4.6 HEATERS

Three heaters were mounted along the periphery of the bottom reactor pipe to supply heat to the reactor. Typically, strip heaters were used for this purpose, and they were mounted in the form of coils along the cylindrical surface (of the reactor pipe). The technical specifications of the heaters were listed below:

Type: Strip heaters or flexible heating tapes

Quantity: Three (3) Part no: STH101-040 Volts: 120 Watts: 627 Size: 25.4 x 1219.2 mm Amps: 5.23 Heating length: 508mm

4.7 INSULATION

Insulators were mounted above the heaters and also along the bottom reactor pipe to avoid the heat loss while operating the heaters. Basically ceramic fiber blankets were used for this purpose and they can resist as high as 2025°C.

4.8 POWER TRANSMISSION SYSTEM

This system (includes a pair of DC motors, battery and battery charger) provides power required to rotate the augers installed inside the reactor pipes and the DC motors were couples with the augers using sprocket and chain assembly. Basically, battery was charged by the battery charger, and hence supplying the necessary power to the motors. Technical specifications of the motor were listed below:

35

Type: DC motors Quantity: Two (2) Power: 0.75 HP Volts: 24 Amps: 29 Speed: 1800 rpm Torque: 26.3

4.9 CHAR COLLECTOR

It is a small cylindrical tube (welded perpendicular to the bottom reactor tube) used to collect the biochar produced from the fast pyrolysis process. Here, one end of the collector was attached to the reactor side, whereas the other end of the reactor is closed using a stainless steel plate (to maintain oxygen free atmosphere). Dimensions and capacity of the char collector were listed below:

Material: Stainless Steel Length: 330.2 mm Outer diameter: 76.2 mm Inside diameter: 71.4 mm Maximum capacity: 400 g

4.10 HEAT EXCHANGERS

Condensers are the basic heat exchanging units installed to this system (to condense the fumes produced by the reaction). Here, two different condensers with different geometric shapes were used to collect the bio-oil, in which one condenser (condenser #1) was fixed near the bottom reactor, and the other (condenser #2) was mounted after its predecessor. The rationale

behind the geometry (cylindrical) of the heat exchangers was nothing but easy maintenance. The dimension and material of the heat exchangers were listed below:

Condenser #1:

Length: 254 mm

Diameter: 114.3 mm

Thickness: 2mm

Cooling area: 112000 mm²

Temperature: Atmospheric temperature

Cooling medium: Air

Condenser #2:

Length: 1092.2 mm

Outer diameter: 47.625 mm

Inner diameter: 15.875 mm

Material: Copper

Cooling length: 838.2 mm

Cooling area: 42200 mm²

Temperature: -1 °C

Cooling medium: Water and ethyl glycol

4.11 COOLING SYSTEM

The cooling system includes chiller and supporting cooling tubes for the reactor. The function of the chiller was to produce (to reduce the temperature of the coolant) and supply the coolant to the condenser #2 and to the cooling tubes. The function of the cooling tubes (coiled along the connecting pipe of the top and bottom reactor pipe) was to reduce and restrict the heat

produced by the heaters to reach the top reactor pipes. Technical specification of the chiller was listed below:

Make: LAUDA DR.R. WOBSERGMBH & CO. KG Model: LAUDA WK class WKL 1200 W Maximum filling capacity: 23 litters Maximum flow: 40L/min Temperature: -1 °C Accuracy: ± 0.5 °C Coolant: water and ethyl glycol (3:1 ratio respectively) Cooling tube material: Copper

4.12 EXHAUST SYSTEM

This system comprises of exhaust tube and exhaust fan (as shown in the Figures 9 and 10) in which, one end of the exhaust tube was attached to the outlet of the condenser #2, and the other end was vented out to exhaust fan (to suck the non condensable gases produced during the process).

4.13 INSTRUMENTS USED FOR DETERMINING VARIOUS PHYSICAL PROPERTIES

This session includes various measuring devices, furnace and conventional ovens used to quantify different physical properties of bio-oil.

4.13.1 MEASURING BALANCE

It was used to quantify the weight of bio-oil, filter paper, char and crucibles. This instrument was used in determining almost all the physical properties of bio-oil (except acidity and kinematic viscosity) and char involved in the work. Figure 11 shows the balance used for this project and its technical specifications were listed below:

Figure 11: Measuring balance

Name: Mettler Toledo

Model: AB 204-S/ FACT

Maximum measurable weight: 220 g

Minimum measurable weight: 0.1 mg

Accuracy: $\pm 0.2 \text{ mg}$

4.13.2 pH METER

It is an electronic instrument used to determine the acidity of a liquid. The instrument being used in our laboratory (as shown in the Figure 12) was manufactured by OAKTON instruments (Model: PH510 Series) and the accuracy of the instrument is about ± 0.1 .

Figure 12: pH meter

Figure 13: Pycnometer

4.13.3 DENSITY BOTTLES

Density bottles are technically known as pycnometer/Gay-Lussac bottles, and they are used to determine the specific gravity of the liquid. Figure 13 shows a typical pycnometer used in our laboratory and its technical specifications were listed below:

Dimensions: 32 mm H x 17 mm OD

Capacity: 2 mL

Brand: PYREX

Model: 1622-2

4.13.4 FILTER PAPER

Filter paper was used to determine the solid content of the bio-oil, and papers used in this work were manufactured by Whatman limited. The specifications of the filter paper were listed below:

Grade: Grade1 (11µm) Diameter: 70mm

Cat No: 1001070

4.13.5 MECHANICAL CONVENTIONAL OVEN

This oven (as shown in the Figure 14) was used while determining various physical properties such as solid content (bio-oil) and moisture content of biomass and bio-char. This instrument was manufactured by precision instruments (Model: STM 80), and they were generally operated at 105°C to remove moisture content of the filter paper and bio-based materials. Accuracy of this conventional oven was about ± 2 °C.

Figure 14: Mechanical conventional oven

4.13.6 FURNACE

Basically, in this work, furnace was used to determine the ash content of the bio-based materials (bio-oil, char and biomass). Figure 15 shown below was the typical thermolyne atmosphere controlled ashing furnaces used in our laboratory, and it was manufactured by Thermo Scientific. The technical specifications of the furnace were given below:

Figure 15: Thermolyne atmosphere controlled ashing furnace

Type: F6000

Max. Temperature: 975 °C

Max. Temperature gradient: ±3 °C at 750 °C

Capacity: Can accommodate 24 (30mL) porcelain crucibles or 38 (10mL) quartz crucibles

Heating rate: 8 °C/min. to 500 °C, 6 °C/min. from 500 °C to 750 °C

4.13.7 BOMB CALORIMETER

This instrument was used to determine calorific value (heating value) of bio-based materials used in this work and the instrument used in our laboratory (as shown in Figure 16) was manufactured by IKA groups. Technical details of this calorimeter were given below:

Model: IKA C200 calorimeter Part No: 8802501 C 200 Dimensions: 400 x 400x 400 mm Measuring time: 14 min

Figure 16: C200 Bomb calorimeter

Figure 17: CVO Rheometer

4.13.8 RHEOMETER

Rheometer was used to determine the kinematic viscosity of the liquids (bio-oil) and the instrument used in our laboratory (as shown in Figure 17) was manufactured by Bohlin Instruments (Model: CVO Rheometer). It has various features such as integrated microprocessor controlled electronics, automatic gap zeroing and adjustment, unique air bearing technology,

wide torque range, micro strain position sensing, high speed capability and controlled shear rate mode.

4.13.9 AQUAMETRY APPARATUS

This apparatus was used to determine the water content present in the bio-oil, and the schematic view of the apparatus was shown in Figure 18. Apart from the various parts shown in the Figure 18, methanol (solvent) was another important element used while measuring the water content of the bio-oil sample and the specifications of this apparatus were given below:

Figure 18: Aquametry apparatus

Accuracy: 1% of full scale volume

Reproducibility: 0.5% of full scale volume

Moisture determination: Ranges from 5ppm to 100% water

Operating conditions:

Temperature: 17 °C to 27 °C

Relative humidity: 20% to 80%.

CHAPTER 5

MATERIALS AND METHODS

This chapter details the materials (different biomass) and methods implemented along the various stages of this project. Three different biomass types were investigated in this study and in general, raw biomass has to be preprocessed before they can be fast pyrolyzed. Here, various methods involved in processing and characterizing biomass and in bio-oil production were discussed below. In addition, methods involved in analyzing different physical properties of bio-oil and biochar were also detailed here.

5.1 BIOMASS PREPARATION AND CHARACTERIZATION

As mentioned above, three biomass types such as pinewood, underutilized forest biomass and poultry litter were obtained from different resources. Pine wood chips were obtained from a local wood chipping plant in Opelika (AL); underutilized forest biomass was collected from the USDA- Forest Service at Auburn (AL); and poultry litter was acquired from a poultry house of Auburn (AL). During the collection of different biomass, it was observed that pine wood obtained from the wood chipping plant was pure (only wood chips and no adulteration of barks and leaves) as shown in Figure 19, whereas the underutilized forest biomass consists of woodchips, barks, twigs, dry leaves and other residues acquired from forest thinning operation (as shown in Figure 20). Poultry litter was the combination of litter and bedding material used in the poultry house (as shown in Figure 21).

Figure19: Pictorial representation of pinewood biomass

Figure 20: Pictorial representation of underutilized forest biomass

Figure 21: Pictorial representation of poultry litter biomass

Actually, both pinewood and underutilized forest biomass were broadly classified under woody biomass; whereas poultry litter comes under animal manure category. In this work, woody biomass were made to pass through the entire preprocessing stage (drying, grinding and sieving) however, poultry litter has gone through sieving stage only (as drying and grinding steps were not required). Certainly, woody biomass were dried in a conventional oven for 24 hr at 75°C and ground using a hammer mill (New Holland Grinder Model 358) fitted with 3.175mm (1/8 inch) screen size. Later, both the woody biomass (ground) and poultry litter were fractionated through a simple sieve analysis and the particles in the range of 0.841 to 1.41mm (US Sieve No. 14-20) were used in this study. While fractionating the biomass, sieves used in the process were cleaned properly before and after changing the biomass type (to avoid biomass mixing).

Bulk density of different biomass samples were calculated by filling a known amount of biomass in a given volume of measuring cylinder (100 mL). Moisture and ash contents of the biomass (wet basis) were determined according to the standards ASTM E 871 and ASTM E 1755, respectively. An oxygen bomb calorimeter (IKA, model C200) was used to measure the higher heating value (HHV) of biomass. Table 6 (refer Appendix A.1-A.3) shown below records the biomass sample characterization of different feedstocks involved in this study.

Properties	Pinewood	Underutilized forest biomass	Poultry litter	
Bulk density, g/cc	0.32	0.26	0.52	
Moisture content, wt.%	7.51	4.98	12.76	
Particle size, mm	0.84 - 1.4	0.84 - 1.4	0.84 - 1.4	
Ultimate analysis, wt.%				
С	46.26	47.86	27.11	
Н	5.62	5.81	4.32	
O*	47.66	45.36	31.35	
Ν	0.13	0.08	3.1	
S	\diamond	\diamond	0.61	
Ash, wt.%	0.31	0.89	34.68	
Higher heating value, MJ/kg	18.66	18.07	9.66	

Table 6: Biomass sample characterization

"*" calculated by the difference (100 minus the weight of carbon, hydrogen, nitrogen, sulfur and ash); "\$" below detection limit.

From Table 6, the sample characterization of both pinewood and underutilized forest biomass looks alike, however the ash content of underutilized forest biomass was approximately three times higher than pinewood and this was due to the residues present in the biomass. Certainly, poultry litter has higher ash and moisture content when compared to woody biomass. However, heating value of poultry litter was much lower than the woody biomass.

5.2 BIO-OIL PRODUCTION USING AN AUGER REACTOR

In this project, an auger reactor (designed and fabricated at Auburn University) was used to produce bio-oil from different biomass through fast pyrolysis process. This section describes the basic working procedure followed in operating the reactor to produce bio-oil from biomass. Figure 22 represents the basic material flow process involved of an auger reactor. Generally, the reactor was operated at four different temperatures (for the first objective alone) to investigate the effect of temperature on bio-oil yield and its physical properties. Two condensers were installed to collect the bio-oil in which the first condenser was operated at room temperature; whereas, the second condenser was maintained at 0 °C to condense vapors and aerosols escaped from the first condenser.

Figure 22: Typical material flow process of an auger reactor

Certainly, for each experiment, a known amount of biomass (500 g) was fed into the auger reactor to produce bio-oil and the reactor was maintained at inert atmosphere by purging nitrogen gas before the pyrolysis process. As the biomass advances to the hot zone of the auger reactor/pyrolyzer, it gets decomposed and produces gases, vapors and aerosols. These gaseous elements were then condensed as liquid (bio-oil) using the two condensers and the bio-oil obtained from those condensers were mixed together to measure the total yield of bio-oil whereas the decomposed biomass (char) are dumped into the char collector. Bio-oil and bio-char yields were calculated by measuring their weights at the end of each experiment; whereas, the gas yield was determined from the difference (100 minus the sum of the weight of bio-oil and bio-char).

5.3 BIO-OIL ANALYSIS

Bio-oil obtained from different biomass through the auger reactor (at different temperatures) was further analyzed to determine its physical properties such as pH, density, viscosity, water content, solid, ash and higher heating value.

The pH value of bio-oil was measured using a digital pH meter (Oakton, Model PC 510) and the density of bio-oil was measured using a calibrated 2 mL density bottle (Cole-Parmer Model EW-34580-40). Viscosity measurements were conducted using a rheometer (Bohlin Model CVO 100) at 40°C and dynamic viscosity (Pa.s) data were obtained as a function of shear rate (0.1 - 100s⁻¹). Water content of bio-oil samples was calculated by Karl-Fischer (KF) analysis using a Barnstead aquametry II apparatus (Cole-Parmer Model EW-25800-10). In the volumetric KF titration, the water equivalence of KF reagent (mg of H₂O/mL of KF reagent) was calculated and the water content of bio-oil was measured by dissolving a known amount of sample in methanol and titrated against the KF reagent (purchased from Sigma Aldrich).

The solid content in the bio-oil was measured by mixing one gram of bio-oil with 100 mL of ethanol in a beaker and the solution was filtered through a dried and pre-weighed Grade 1 (11 μ m pore size) filter paper. This filter paper was dried in an oven at 105 °C for 30 min and the insoluble materials remained on the dried filter paper was weighed for solid content. The ash content and the heating value of bio-oil were determined alike biomass. Each measurement was carried out in triplicate and their average values were reported in this study.

5.4 BIOCHAR ANALYSIS

Another major product of the fast pyrolysis process is biochar and its physical properties such as moisture content, ash content and heating value were also analyzed. The measuring procedure for determining these physical properties were described in the section 5.1.

CHAPTER 6

STATISTICAL DESIGN OF THE EXPERIMENTS

This chapter presents the design of experiments and the statistical analysis followed in this project. In addition, it also includes the working procedure (cleaning and inspection) followed along the course of the work.

6.1 FACTORS AFFECTING THE PROCESS

Basically, the design of experiments was modeled according to the measurable or controllable factors affecting the process (though we have other factors affecting the process as mention in the section 3.7). Figure 23 shown below illustrates all controllable and uncontrollable factors affecting the reaction and all the measurable parameters of the bio-oil.

Figure 23: Various factors affecting the process

From Figure 23, temperature and feedstock were the two controllable factors of the reaction and in this work, there are four levels of temperatures and three levels (type of biomass) of feedstocks were involved. However, three iterations (for each combination of the factor levels) were planned to carry out statistical analysis of the results and hence 36 iterations were scheduled for the first specific objective.

As the objective of this work was to increase the pH value of the bio-oil through simple and economic methods, for the second specific objective (production of bio-oil using sacrificial bio-based additive), feedstock was the major controllable factor (as the operating temperature and primary feedstock were determined from the previous objective). Here, three levels (weight percentage of the additive) of feedstock were considered and three iterations were planned for this study. As a whole, three different feedstocks at one operating temperature with three iterations were scheduled to 9 experiments.

For the third specific objective (production of bio-oil using cascade pyrolysis reactors), two different levels of operating temperatures and one type of feedstock (determined from the first objective) with three iterations were planned, eventually, 6 experiments were scheduled for the third objective. All the experiments (51 iterations) were planned and completed in two months and the analysis part (determining various physical properties of bio-oil and char) took another month.

6.2 WORKING PROCEDURE

The following were the list of activities (cleaning and inspection) followed for every experiment involved in this work.

List of cleaning activities to be carried out before starting every experiment:

• Biomass hopper should be cleaned properly using a cloth and compressed air.

51

- Cleaning interiors of stainless steel tubes (top, bottom reactors) and augers (screw conveyors) using wire scrubber and wire brush respectively whenever changing of biomass is required.
- Condensers should be cleaned thoroughly using acetone/methanol, water and compressed air whenever changing of biomass is required.
- Bio-char collector shall be cleaned using a wire scrubber and compressed air.

List of equipment to be inspected before starting every experiment:

- Visual inspection on biomass hopper and bio-char dumper are required.
- Inspection on reactors and condensers are carried out visually using compressed air.
- Reactors and bio-gas line are checked for leaks by purging nitrogen gas at 10 psi pressure and making sure that no leaks persists before starting the experiment.

CHAPTER 7

EXPERIMENTAL RESULTS

This chapter comprises of all the experiments involved in this work and it also includes a brief background, results and discussions on the experiments involved in each objective of this project. In addition, it also contains a short remarks section which narrates all the key observations and decisions taken while executing various stages of the project. Basically, this section is further subdivided into three parts (as per objectives) in order to elaborate the experiences gained while performing various objectives (experiments) involved in this project.

7.1 PRODUCTION OF BIO-OIL FROM SELECTED BIOMASS

In this work, producing bio-oil from selected feedstocks was considered as the first step to meet our prime objective (producing bio-oil with high pH value) of our project. Here, general information about the process, biomass used, ideas followed and their consequences were detailed below.

7.1.1 SUMMARY

From Chapter 3, we know that fast pyrolysis is a thermochemical process (biomass to liquid conversion process) which has attracted a lot of interest from industry and academia due to its high oil yield (the expected form of bio-energy, in this work). Bio-oil can be produced from different biomass feedstocks that are regionally appropriate. In this work, bio-oil was produced from pine wood, underutilized forest biomass and poultry litter at selected temperatures in between 425-500°C using an auger reactor. Physical properties of bio-oil, such as pH, density, higher heating value, ash, water and solid content were analyzed and compared with an ASTM

standard to document the effect of pyrolysis temperature. From the analysis, all the properties of the bio-oil obtained from woody biomass met the specifications suggested by the ASTM standard (except for ash content). However, density, water content and higher heating value of bio-oil obtained from poultry litter did not meet the ASTM standard. In addition to aforementioned analyses, kinematic viscosity of bio-oil was also measured and it showed that at higher shear rate, bio-oil behaved as a Newtonian fluid (constant viscosity). Furthermore, physical properties of biochar were measured and analyzed.

7.1.2 INTRODUCTION

As mentioned above, environmental concerns, national energy security and climate change are the primary reasons to explore alternative energy resources. Significant amount of resources has been devoted in producing transportation fuels from biomass and other resources. Liquid fuels are the most attractive alternative due to its competitive cost structure. The most common method for converting biomass to liquid fuels is generally achieved by thermochemical and biochemical processes. Here, fast pyrolysis was opted to produce liquid fuel (bio-oil) and auger reactor was selected to achieve this process, and the rationale behind these selections was already detailed in Sections 3.5.4 and 3.8.7, respectively.

The products of the fast pyrolysis process are bio-oil, bio-char (solid left after pyrolysis) and gases, in which bio-oil is the major product, and it is in the form of liquid that can be easily stored and transported. Further, it reduces the issues related to biomass logistics. This process is well known for its flexibility in accepting different types of biomass. Basically, biomass such as bagasse, pinewood, hazel nut shell, pine sawdust, switch grass and mixed wood waste are used in this process; however, pinewood (pure form of pinewood chips), underutilized forestry biomass

(forest residues) and poultry litter (animal waste) were selected for this project and the reasons behind selecting these feedstocks were given below.

Based on the Billion-Ton study, the U.S. has a capacity to produce about 368 million dry tons of forest residues annually, and another study conducted by Milbrandt (2005) showed that wood residues account for 39% of total biomass available in the U.S. [5, 53]. Further, Alabama State has a potential to produce 2.81 million dry tons of forest residues, 64 million dry tons/year of logging and other residues, 6.45 million dry tons of primary mill residues, 63 thousand dry tons of secondary mill residues, and 532 thousand dry tons of urban wood residues annually. As the availability of the woody biomass is huge in the southern parts of US, especially in Alabama, pine wood and underutilized forest biomass were selected.

Here, poultry litter was also selected as a feedstock (in this work) because of its availability in United States of America. US is the largest producer of poultry litter in the world, and it produces nearly 11 million tons of poultry litter (broiler litter) in 2008 [54]. Further, Alabama State ranks third in poultry litter production (after Georgia and Arizona) and it produces 1.2-1.3 million tons of broiler litter during 2008-2009 [54] and Alabama Co-operative Extension System states that Alabama have produces 1.2 to over 1.8 million tons of poultry litter annually, and is expected to reach 2 million tons by 2011. Basically, poultry litter is used as a fertilizer in Alabama.

In this objective, the selected biomass were fast pyrolysed to produce bio-oil and the various properties of the liquid (obtained from the process) were further analyzed to comprehend the behavior of the biomass and their properties of respective bio-oil at different operating temperatures. Methods involved in producing and analysis bio-oil and biochar are already elaborated in the Chapter 5.

7.1.3 RESULTS AND DISCUSSIONS

In this section, the results obtained from processing different biomass at different operating temperatures (such as yields of bio-oil, char and gases) were reported. In addition, analysis on different physical properties of bio-oil (including viscosity) and biochar were also discussed.

A. EFFECT OF TEMPERATURE ON PRODUCT YIELD

Previous studies showed that maximum yield of bio-oil (on different types of biomass) can be produced between 450 to 500°C [15, 17, 23, 55-56]. Hence, four different temperatures were selected in between 425 to 500°C (such as 425, 450, 475, 500°C) to determine an optimum temperature for maximum bio-oil production. As stated in the Section 6.1, each biomass (pinewood, underutilized forest biomass and poultry litter) was processed at each temperature for three iterations in order to comprehend their behavior statistically. Figure 24 (refer Appendix B.1) shown below represents the yield of bio-oil obtained from processing pinewood, underutilized forest biomass and poultry litter, and the values corresponds the average yield of various products obtained from three iterations.

Figure 24: Yield of bio-oil from selected biomass at different temperatures

Here, X-axis of the graph represents the different types of bio-oil (in which P.W. represents pinewood, U.U. represents underutilized forest biomass and P.L. represents the poultry litter), and the Y-axis represents the yield (in wt %) of bio-oil. As specified in the graph orange, cyan, green and red bars represent the operating temperature of the process (425, 450, 475 and 500 °C, respectively).

Type of biomass	P-value of the products			
Type of biomass	Bio-oil	char	Gas	
Pinewood	0.0002	< 0.0001	< 0.0001	
Underutilized forest biomass	0.2202	0.0151	0.0279	
Poultry litter	0.0044	< 0.0001	< 0.0001	

Table 7: P-values of the various products of selected biomass

From Figure 24, the yield of bio-oil obtained from pinewood biomass increases with increase in operating temperature and it was noticed that maximum yield of bio-oil (37.8 wt %) was obtained at 500°C. The ANOVA analysis (as shown in Table 7, refer Appendix B.1) at 95%

confidence interval showed that operating temperature of the process (in the range of $425-500^{\circ}$ C) plays a significant role (p-value = 0.0002) in bio-oil production (from pinewood biomass). Horne and Williams (1996) and Demirbas (1998) have mentioned that as the operating temperature of the process increases bio-oil production also increases, (while processing mixed wood waste as the feedstock) [16, 18]. However, previous studies have reported an optimum temperature for maximum bio-oil production and any further raise in the operating temperature results in less bio-oil yield (irrespective of biomass) [15, 23, 56].

The yield of bio-oil obtained from underutilized forest biomass fails to show a similar trend like pinewood biomass, and it was also noticed that bio-oil yield was steady for all the operating temperatures (as the bio-oil yield was between 30.4 - 32.8 wt % irrespective of operating temperature). In addition, ANOVA analysis also showed that there was no significant change (P-value = 0.2202) on bio-oil yield with respect to the operating temperature ranging between 425 to 500°C. Pyrolysis of poultry litter shows that the yield of bio-oil increases with increase in operating temperature and maximum bio-oil production (34.8 wt %) was achieved at 475°C. The ANOVA analysis reports that there is a significant change (p-value = 0.0044) in bio-oil production with respect to temperature operated in between 425-500°C. However, the yield of bio-oil decreases (at 500°C) while processing the biomass higher than its optimum temperature for bio-oil production. Similarly, Kim et al. (2009), Jung et al. (2008), and Lee et al. (2008) reported that biomass such as bedding, chicken litter (flock 2, broiler), rice straw, and many more show a decreasing trend in bio-oil yield after processing them at higher temperatures (500-550°C) [19, 56-57].

Figure 25: Yield of biochar from selected biomass at different temperatures

Figure 26: Yield of gases from selected biomass at different temperatures

In Figures 25 and 26 (refer Appendix B.1), X-axis of the graph represents the different types of biochar and gas and the Y-axis represents the yield (in wt %) of biochar and gas,
respectively. As specified in the graph orange, cyan, green and red bars represent the operating temperature of the process (425, 450, 475 and 500 °C, respectively).

From Figures 25 and 26, it was evident that as the operating temperature of the process increases (irrespective of the biomass), the yield of biochar decreases; whereas the gas yield increases. For pinewood and poultry litter, the char yield decreases gradually while increasing the temperature and a similar trend in opposite direction (gas yield increases while increasing the temperature) was observed for the gas. For underutilized forest biomass, the char yield decreases gradually from 450-475°C and abruptly thereafter (which results in high gas yield at 500°C). ANOVA analysis was also performed on the biochar and gas yields data. The p-values for biochar and gas yields (as shown in the Table 7, refer Appendix B.1) on char and gas confirmed that the temperature has significant effect on their yields for all selected feedstock.

From previous studies [58-60], using auger reactor, it was found that as the operating temperature increases the bio-char yield decreases which corresponds to high gas yield. Similar trend was also observed while processing different types of biomass in other types of reactors such as fixed bed and fluidized bed [15, 23, 55-56]. For instance, Ingram et al. (2008), Asadullah et al. (2007), and Kim et al. (2009) reported that as the operating temperature increases the yield of bio-char decreases and the gas production increases, irrespective of the biomass and the reactor used. Previous studies mentioned that primary decomposition of biomass takes place at lower pyrolysis temperature and as the operating temperature increases; the pyrolytic vapors were further cracked down into low molecular weight organic compounds and gaseous products (non-condensable gases) which results in high gas yield [15, 23].

B. EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-OIL

This section depicts all the physical properties of the bio-oil produced from pinewood, underutilized forest biomass and poultry litter at four different temperatures. Basically, this section is further divided into three parts (based on the feedstock) in order to understand (easy and also in a better way) the effect of temperature on different properties of bio-oil, easily and thoroughly.

B.1 EFFECT ON PINEWOOD BIO-OIL

Different physical properties (such as density, pH, calorific value, water content, solid content and ash content) of pinewood bio-oil were measured to characterize them against different operating temperatures and the values of those properties were summarized in Table 8 (refer Appendix B.2, Table B.2.1-B.2.6) as shown below.

	F	Pyrolysis Ten	nperature , °	C	p-value	ASTM
Properties	425	450	475	500	from ANOVA test	Std D 7544- 09
Density, kg/m ³	1152 ± 8	1149 ± 13	1134 ± 22	1131 ± 21	0.0305	1100- 1300
рН	3.33 ± 0.02	3.43 ± 0.04	$\begin{array}{r} 3.67 \pm \\ 0.03 \end{array}$	3.73 ± 0.03	<0.0001	Report
Water, wt%	19.67 ± 1.8	19.27 ± 1.4	18.39 ± 1.1	17.23 ± 1.2	0.4074	30 max.
HHV, MJ/kg	19.95 ± 0.7	$\begin{array}{c} 20.85 \pm \\ 0.6 \end{array}$	21.25 ± 0.4	$\begin{array}{c} 22.02 \pm \\ 0.5 \end{array}$	<0.0001	15 min.
Ash, wt%	0.61 ± 0.1	1.003 ±0.2	0.856 ± 0.1	0.33 ± 0.1	<0.0001	0.25 max.
Solid, wt%	0.63 ± 0.1	0.55 ± 0.1	0.66 ± 0.1	0.59 ± 0.2	0.4858	2.5 max.

Table 8: Physical properties of bio-oil produced from pinewood at different temperaturest.

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

Table 8 consists of different physical properties of bio-oil obtained from pinewood biomass along with ASTM standard D 7544-09 [61] of bio-oil (in order to compare the results

obtained from the analysis). In addition, average and standard deviation of the experiments were calculated and ANOVA test (at, 95% confidence interval) was performed to determine the p-value for null hypothesis. The null hypothesis states that the average of each property at four different temperatures would be same. If the p-value > 0.05, the null hypothesis is true; whereas, if the p-value < 0.05 then the given data failed to prove the null hypothesis; and therefore, there is a change in the property with the temperature.

From the above table, it was clear that the density of bio-oil decreases with increase in operating temperature because of further breakdown of large molecules into low molecular weight compounds at higher temperature [17]. Further, p-value obtained from ANOVA analysis depicts that there was a significant change in the density of bio-oil while changing the temperature. Similar trend (decrease in density of bio-oil with increase in temperature) on the density of bio-oil was observed from the previous studies [17, 23]. Convincingly, the values of Thangalazhy-Gopakumar et al. (2010) reported that there was a significant change (P-value = 0.0594) in density with increase in temperature [23]. In addition, several studies have recorded slightly higher values of density when compared to the density of pinewood measured in this work [14, 23].

Acidity of bio-oil decreases (as the pH value increases) with the increase in operating temperature, and the maximum pH value (3.73) was obtained at 500°C, however Mohan et al. (2006) and Thangalazhy-Gopakumar et al. (2010) recorded less pH (around 2.3-2.4) when compared to this work. Statistically, ANOVA analysis confirms that the operating temperature has a significant effect on pH value. However, petroleum fuels have wide and strong applications compared to bio-oil because petroleum fuels are not as acidic; whereas bio-oils are more acidic. Therefore, bio-oils are not widely used as a primary fuel in the automobile engines.

From Table 8, water content of the bio-oil (pinewood) decreases with increase in operating temperature but statistically, there was no significant change. However, Thangalazhy-Gopakumar et al.(2010) reported that water content of bio-oil (pinewood) remains constant at different operating temperatures [23]. Higher heating value (HHV) of bio-oil increases with the increase in temperature and statistically, ANOVA analysis reports that the operating temperature has a significant effect on heating value of the bio-oil. However, previous studies have not recorded similar kind of results to emphasize this effect [17, 23]. Certainly, heating value of bio-oil recorded in this work was higher when compared to other studies made on pinewood biomass [14, 23]; however these values were much lower than the petroleum fuels (40MJ/kg, Table 4).

Solid content of pinewood bio-oil was constant (0.55-0.63 wt %) at different temperatures and ANOVA analysis also depicts that operating temperature had no significant effect on solid content. Similarly, He et al. (2009) reported that solid content of bio-oil obtained from switchgrass (at 5% moisture content) had no effect on temperature [17]. It was also noted that all the properties of the bio-oil reported in this section meet the ASTM standards except ash content. Ash content of the bio-oil was high at 450°C and drops down thereafter but statistically, temperature had a significant role in the ash content of the bio-oil. Nevertheless, Thangalazy – Gopakumar et al. (2010) reported that the ash content was constant at different temperature, and statistically there was no significant change [23]. Further, rationale behind the presence of high ash content and removing them from bio-oil are yet unknown.

B.2 EFFECT ON UNDERUTILIZED FOREST BIO-OIL

The values of the physical properties of bio-oil produced from underutilized forest biomass at four different temperatures were summarized in Table 9 (refer Appendix B.2, Table

63

B.2.7-B.2.12). The table also shows how a comparison of these values to the corresponding values from ASTM standard D 7544–09 [61].

Table 9: Physical properties of bio-oil produced from underutilized forest biomass at different

	F	Pyrolysis Ter	nperature , ^c	PC	p-value	ASTM
Properties	425	450	475	500	from ANOVA test	Std D 7544- 09
Density, kg/m ³	1188 ± 17	1185 ± 10	1181 ± 11	1170 ± 10	0.0267	1100- 1300
рН	2.93 ± 0.06	$\begin{array}{c} 2.97 \pm \\ 0.07 \end{array}$	3.04 ± 0.04	3.09 ± 0.07	< 0.0001	Report
Water, wt%	18.19 ± 1.8	18.05 ± 1.5	17.38 ± 1.4	$\begin{array}{c} 17.59 \pm \\ 0.9 \end{array}$	0.6082	30 max.
HHV, MJ/kg	19.53 ± 1.1	$\begin{array}{c} 20.50 \pm \\ 0.6 \end{array}$	$\begin{array}{c} 20.42 \pm \\ 0.8 \end{array}$	19.69 ± 1.1	0.0662	15 min.
Ash, wt%	0.93 ± 0.3	0.71 ±0.2	1.06 ± 0.2	0.62 ± 0.1	< 0.0001	0.25 max.
Solid, wt%	0.28 ± 0.1	0.42 ± 0.1	0.53 ± 0.1	0.51 ± 0.1	<0.0001	2.5 max.

temperaturest.

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

From Table 9, it appears that the density of bio-oil decreases as the operating temperature increases and statistically, ANOVA analysis depicts that density of bio-oil changes significantly with the operating temperature. This trend was similar to the trend obtained from pinewood bio-oil (produced for this work) and as mentioned before, study from Thangalazhy- Gopakumar et al.(2010) and He et al. (2009, at 5% moisture content) also highlighted the same results [17, 23]. Certainly, the density of bio-oil produced from pinewood and underutilized forest biomass recorded higher values when compared to the density of petroleum fuels (0.94 kg/m³). Also, temperatures investigated in this study did not have any influence on water content and HHV (as their values are almost constant/same throughout working temperature) of the bio-oil. This analysis coincided with the study from Thangalazhy-Gopakumar et al.(2010) while using

pinewood as the biomass [23]. In addition, Garcia-Perez et al. (2010) had recorded similar values (18 wt % of water content at 500°C) while working on pinewood pellets [59].

He et al. recorded that pH value of bio-oil increases while increasing the temperature of the process and this coincides with the trend obtained from the pinewood bio-oil (produced for this work) [17]. In spite of observing similar results with the previous study, the pH value of biooil obtained from underutilized forest biomass was lower than the bio-oil obtained from pinewood biomass (produced for this work). On the other hand, solid content of the bio-oil increases gradually while increasing the temperature (upto 475°C) and then reduces slightly. The rationale behind this fact is, increasing the operating temperature of the process results in producing the fumes (gases, aerosols and burnt biomass/char) of higher velocity due to its decreased production rate. Further, when these fumes are passed into the heat exchanger for condensation; char particles present in the fumes are damped and collected along with the previously condensed bio-oil and thus increase in solid content with increase in operating temperature. However, ANOVA analysis states that the solid content of the bio-oil changes significantly while changing the temperature and convincingly, statistical records of Thangalazhy – Gopakumar et al. (2010) supports this fact [23]. Further, ash content of the bio-oil was higher than the ASTM standard and the reason behind this large numbers could be due to soil and sand particles (less than 1µm size) entrained with the bio-oil vapor during the pyrolysis process.

B.3 EFFECT ON POULTRY LITTER BIO-OIL

The values of the physical properties of the bio-oil produced from poultry litter biomass at four different temperatures were summarized in Table 10 (refer Appendix B.2, Table B.2.13B.2.18). ASTM standard D 7544–09 was also included in this table for comparing their corresponding results obtained in this work [61].

	ŀ	Pyrolysis Ter	nperature , °	°C	p-value	ASTM
Properties	425	450	475 500		from ANOVA test	Std D 7544- 09
Density, kg/m ³	1081 ± 40	1064 ± 15	1063 ±11	1062 ± 3	0.2399	1100- 1300
pН	9.2 ± 0.02	9.3 ± 0.01	9.3 ± 0.02	9.4 ± 0.06	< 0.0001	Report
Water, wt%	34.86 ± 2.22	30.75 ± 2.4	29.18± 1.89	$\begin{array}{r} 29.09 \pm \\ 1.89 \end{array}$	< 0.0001	30 max.
HHV, MJ/kg	11.19 ± 0.54	12.46 ± 0.78	14.18± 0.38	13.89 ± 0.45	<0.0001	15 min.
Ash, wt%	0.099 ± 0.02	0.168 ± 0.02	0.201 ± 0.01	0.147 ± 0.12	<0.0001	0.25 max.
Solid, wt%	0.10 ± 0.02	0.14 ± 0.03	0.25 ± 0.08	0.17 ± 0.05	< 0.0001	2.5 max.

Table 10: Physical properties of poultry litter bio-oil produced at different temperaturest.

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

Similar to pinewood and underutilized forest bio-oil, density of poultry litter bio-oil (shown in Table 10) also decreases with the increase in temperature but statistically, there was no significant change. He et al., (2009, at 10% moisture content) had also supported this fact statistically while processing switchgrass as the feedstock in pilot fluidized bed reactor [17]. Though the density of bio-oils produced from woody biomass changes significantly (as per ANOVA analysis) with respect to temperature, their values meet the ASTM standards; whereas the density of bio-oil produced from poultry litter fails to meet the same.

From Table 10, it was evident that all the properties of poultry litter bio-oil (except density) changes significantly with respect to temperature. Basically, pH value of poultry litter bio-oil increases with increase in temperature and this coincides with the bio-oils obtained from the woody biomass (investigated in this work). Certainly, poultry litter bio-oil has higher pH

value (9.4 at 500°C) when compared to other bio-oils produced in this work (pinewood and underutilized forest bio-oil). In addition, several studies [62-65] were made on other woody biomass such as cassava plants, rice husks, sugarcane waste and sugarcane bagasse using different reactors (fluidized bed and fixed bed) to determine the pH value of their respective bio-oil, and it was observed that the pH value of all those bio-oils were between 2.8 to 3.85.

In this work, all the properties of the bio-oil were measured without separating water contained in the bio-oil. Particularly, poultry litter bio-oil has more water content when compared to the other bio-oils produced in this work and this is due to the presence of high moisture content in poultry litter (12.76 wt %) biomass when compared to other woody biomass. Generally, during the process, moisture contained in the biomass are converted in the form of steam and collected as water molecules in bio-oil during condensation [66-67]. However, reason behind high moisture content in bio-oil obtained while processing the biomass at 425°C was unknown. Eventually, high water content reduces the heating value of the bio-oil, and hence its HHV were low while comparing to the bio-oil produced from other woody biomass. Kim et al. (2009) reported that the heating value of bio-oil obtained from poultry litter bedding was 18.11 MJ/kg, however, the moisture content of the biomass was less (8.08 wt %) when compared to the poultry litter used in this study [56]. Nevertheless, in this study the heating value of the bio-oil obtained from poultry litter did not meet the ASTM standard.

Ash and solid content of poultry litter bio-oil increase while increasing the operating temperature (till 475°C) and reduce thereafter, and statistically it was reported that the values of the above properties change significantly with respect to temperature. However, they drop after 475°C. A similar trend was also observed while processing broiler chicken litter as the feedstock in a fluidized-bed reactor [56]. Kim et al. (2009) reported that the ash content of the poultry litter

bedding biomass was measured almost similar to the ash content (of poultry litter bio-oil) observed in this work (0.1 wt % at 500°C) [56]. Solid content of the poultry litter bio-oil records lower values when compared to other bio-oils produced in this work. As a whole, all the properties of poultry litter bio-oil meet the ASTM standard except density and heating value.

C. MULTIPLE COMPARISON ANALYSIS

This section comprises of multiple comparison analysis made on the effect of different types of biomass and operating temperatures over the yield of various products of the pyrolysis process, and the physical properties of bio-oil and biochar. In this analysis, two way ANOVA (at 95%, confidence interval) was performed using Minitab software (refer Appendix B.5).

From this analysis, it was evident that yield of bio-oil and char changes significantly for different biomass, operating temperature, and during their interaction. In addition, high yield of bio-oil was obtained while processing pinewood at 500 °C. Further, gas yield changes significantly while executing the process at different biomass types, and operating temperature. However, no significant change in gas yield was observed during the interaction of the controllable factors (biomass type and temperature).

Apart from this, pH, heating value, solid and ash content of the bio-oil changes significantly for different controllable factors, and also during their interaction. Further, poultry litter bio-oil has higher pH value and lower solid content when compared to the bio-oils obtained from the woody biomass. Certainly, heating value of pinewood bio-oil obtained from 500 °C was higher than the bio-oil obtained from other biomass. Apparently, density of bio-oil changes significantly for different biomass and operating temperature. However, no significant change was observed during their interaction. Simultaneously, water content of bio-oil changes significantly only at different biomass types and not during temperature change, and during their

interaction (biomass type and temperature). However, poultry litter bio-oil has high water content when compared to the bio-oils obtained from woody biomass.

Two way ANOVA analysis also depicts that heating value, ash and moisture content of biochar changes significantly at different controllable factors, and also during their interaction. In addition, poultry litter biochar has high amount of ash content and pinewood biochar has high heating value when compared to other biochar analyzed in this study.

D. VISCOSITY ANALYSIS OF DIFFERENT BIO-OILS

Kinematic viscosity is a significant property of fuels. The consequences of higher viscosity values correspond to complicated design, complex handling, processing and transporting the equipment. In this study, the viscosity analysis on bio-oils (obtained from different biomass at 500°C) was carried out at 40°C and their results were shown in the Figure 27 (refer Appendix B.3).

From Figure 27, it was evident that viscosity analyses were made on different bio-oils obtained from pinewood (P.W), underutilized forest biomass (U.U) and poultry litter (P.L). Further, X-axis of the graph represents shear rate (S⁻¹) of the bio-oil and the Y-axis represents the viscosity of bio-oil in logarithmic scale. From previous studies [23, 56, 68] it was observed that after a particular shear rate, viscosity of bio-oils produced from different operating temperatures behaves similarly (with respect to values of viscosity). This helped in narrowing the analysis from four different temperatures to one temperature (500°C) and the rationale behind this temperature selection was due to high bio-oil yield (from pinewood biomass) and high pH value.

Fuels like gasoline (0.006 Pa.s) and diesel (0.011Pa.s) are less viscous when compared to bio-oil. From Figure 27, it is evident that poultry litter bio-oil is more viscous than other bio-oils produced from woody biomass, and the viscosity of this bio-oil was constant at higher shear rate ($< 30S^{-1}$). Further, between shear rate $< 20S^{-1}$ and $> 80S^{-1}$, viscosity of pinewood bio-oil is higher than underutilized forest bio-oil. In addition, viscosity of pine wood bio-oil varies at higher shear rates whereas, viscosity of underutilized forest bio-oil was almost constant at shear rate $< 60S^{-1}$.

E. EFFECT OF TEMPERATURE ON BIOCHAR

There is now an increase interest in bio-char obtained from fast pyrolysis because biochar sequestration makes the biomass to bioenergy conversion process via pyrolysis a carbon negative process [69]. Basically, this section comprises of the effect of temperature on various physical properties of biochar obtained from processing different biomass. In addition, ANOVA analysis at 95% confidence interval was also carried out on all the physical properties of bio-char (measured in this work). Tables 11, 12 and 13 (refer Appendix B.4) show the characterization of bio-char (pinewood, underutilized forest biomass and poultry litter respectively) obtained from four different temperatures for heating value, ash and moisture content.

Properties	425°C	Pyrolysis Temperature425°C450°C475°C500°C					
HHV, MJ/kg	25.97 ± 0.75	26.81 ± 0.85	29.04 ± 0.58	30.45 ± 0.36	<0.0001		
Ash, wt%	0.69 ± 0.14	1.13 ± 0.22	0.884± 0.18	0.51 ± 0.22	<0.0001		
Moisture content, wt%	2.76 ± 0.09	3.14 ± 0.15	3.31 ± 0.51	3.64 ± 0.25	<0.0001		

Table 11: Physical properties of pinewood biochar produced at different temperaturest.

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

Table 12: Physical pr	operties of underuti	lized forest biochar prod	uced at different temperatures+
-----------------------	----------------------	---------------------------	---------------------------------

	Properties	42500	2000 C	p-value from ANOVA Tost		
F		425°C	450°C	4/5°C	500°C	1030
	HHV, MJ/kg	23.08 ± 0.64	23.65 ± 0.93	23.86 ± 0.51	25.95 ± 0.47	<0.0001
	Ash, wt%	2.04 ± 0.27	2.74 ± 0.44	2.97 ± 0.77	3.43 ± 0.74	<0.0001
	Moisture content, wt%	1.13 ± 0.39	0.56 ± 0.43	0.77 ± 0.44	0.83 ± 0.53	0.0779

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

Properties	425°C	p-value from ANOVA Test			
	423 C	430 C	4/3 C	300 C	1050
HHV, MJ/kg	12.15 ± 0.29	11.16 ± 0.38	11.05± 0.36	10.81 ± 0.29	<0.0001
Ash, wt%	47.78± 5.01	56.48 ± 1.06	57.45 ± 1.4	58.76 ± 2.54	<0.0001
Moisture content, wt%	3.13 ± 0.65	2.61 ± 0.99	3.27 ± 0.95	3.69 ± 0.76	0.0801

Table 13: Physical properties of poultry litter biochar produced at different temperaturest.

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

From the above tables (Table 11,12, and 13), statistically, it was found that heating value and ash content of all the biochar obtained from processing different biomass had shown a significant change with respect to the increase in pyrolysis temperature. Similar trend was also noticed from the study reported by Thangalazy-Gopakumar et al. (2010) [23]. Eventually, the values of moisture content in poultry litter and underutilized forestry biochar were not significant with respect to operating temperature; however, the moisture content of pinewood bio-char showed its significance on temperature.

It was also noticed that as operating temperature increased the heating value of pinewood and underutilized forestry biochar also increased. Certainly, pinewood biochar have recorded higher heating value (30.45MJ/kg at 500°C) than all the other biomass used in this study. However, the heating value of pinewood biochar was low while comparing with the other studies made on radiata pine sawdust biomass (29.9 MJ/kg at 400°C in a bubbling fluidized bed reactor) [21]. Particle size used in that study was finer (0.7mm) when compared to the particle size of biomass used in this work. Hence at certain operating temperature, biomass of smaller particle size can produce bio-char of higher heating values. In addition, Jung et al. reported that the biochar (rice straw as feedstock) obtained at 490°C gave the maximum heating value of 17 MJ/kg [57].

The heating value of poultry litter biochar decreases with the increase in temperature and this is due to the fact that at higher operating temperatures amount of ash contained in the biochar increases. Hence, at higher operating temperature, poultry litter biochar has poor heating value. However, the bio-char can be used as an auxiliary source in energy production (solid fuel) due to its high heating value, further it is also used for soil amendment and to reduce the greenhouse gas emissions [21, 70].

7.1.4 CONCLUSIONS

This section contains the most important conclusions made on the results obtained from the above experiments. In addition, it also reviews the reasons behind the selection of different operating parameters involved in the upcoming objectives. From this objective, it was noticed that maximum amount of bio-oil (37.8 wt %) was produced while processing pinewood at 500°C, whereas other biomass produces less yield of bio-oil (underutilized forest biomass: 32.5 wt% at 450°C, and poultry litter: 34.8 wt% at 475°C).

Eventually, these observations helped in selecting pinewood and 500°C as the primary biomass and operating temperature for the next objective (Production of bio-oil using sacrificial bio-based additive). However, poultry litter was selected as the secondary biomass because the pH value of bio-oil obtained from poultry litter (9.4) was higher than the bio-oils obtained from other woody biomass. Thus, to meet our objective (to increase the pH value of bio-oil) above parameters were followed for the second objective, and for the third objective, 500°C was selected as the operating temperature (at second stage). Apart from this, all most all the physical properties of the bio-oil obtained in this study met the ASTM standards (except ash content of bio-oil obtained from woody biomass and density, and heating value of poultry litter bio-oil).

7.2 PRODUCTION OF BIO-OIL USING SACRIFICIAL BIO-BASED ADDITIVE

This work was the first step towards the production of high pH value bio-oil using two different types of biomass. As the pH value of the poultry litter bio-oil (obtained from the previous objective) was really high (9.4, basic and not acidic) when compared to the bio-oil obtained from woody biomass, here, poultry litter was used as an additive with pinewood so that the basic compounds of the poultry litter react with the acidic compounds of the pinewood, thereby increasing the pH of the bio-oil. Further, this Section also includes the general information about poultry litter, reasons for using poultry litter as an additive, ideas followed and their consequences.

7.2.1 SUMMARY

Bio-oil has numerous applications in various fields such as energy production, IC engines, producing chemicals and in food industry. However, most of its applications are limited by its negative attributes such as acidity, high oxygen content, storage instability and few more. In this work, we considered acidity as the major drawback for limiting its (bio-oil) applications. Hence, cheap and simple methods have been tried here to improve the pH value of the bio-oil so that it can be used in the current refineries without or less upgrading. Here, pinewood (primary biomass) and poultry litter (secondary biomass) were mixed at different proportions (5, 10, 15 % of poultry litter in 95, 90, 85 % of pinewood, respectively) and they were processed at 500°C (with reference to the remarks made from the results of the previous objective) to understand their effect on pH value of the bio-oil. Physical properties of bio-oil obtained after processing various proportions of different biomass were measured and compared with the ASTM standards

(to document the effect of pyrolysis temperature). All the properties of the bio-oil, analyzed in this study, met the specifications suggested by the ASTM standard except ash content. In addition to the above analysis, kinematic viscosity of bio-oil was also measured. Furthermore, physical properties of biochar were measured and analyzed.

7.2.2 INTRODUCTION

In animal operations, animal wastes are obvious and they are impossible to eliminate those wastes from the system. Especially in poultry wastes, USA is the biggest producer of poultry litter in the world and this includes both broiler and turkey litter [54]. In US, Alabama state was the third largest producer (in 2009) of poultry litter and Alabama Co-operative Extension System states that in 2008, nearly 1.8 million tons of poultry litter was produced, and it is estimated to reach 2 million tons by 2011 [71-72].

Basically, poultry litter consists of various elements such as manure, bedding material, feathers and spilled feed of chicken, in which the bedding materials may contain wood shavings, peanut, rice hulls, dirt on the floor and shredded paper products [73-76]. In addition, the composition of poultry litter produced in the farms may vary according to the quantity of chicken raised in the farm, type of bedding material used, water system, clean out process, storage time and few more [74, 77].

Generally, poultry litter is used as a substitute for fertilizer because of the amount of inorganic matter contained in it [77] and in Alabama, the production of poultry litter is three times more than the amount of fertilizer required for the state [72]. Eventually, interest on land disposal of poultry wastes results in runoffs rich in nutrients and this spoils the water resources. Further, surplus use of poultry litter in land application leads to cancer, respiratory illness in humans and fetal abortions in livestock [75, 78]. In addition, it (poultry litter) is also used as a

feed for beef cattle [75] thereby, it solves various problems such as, reducing the problematic wastes, provides an incentive for the proper management of this by-product of poultry and cattle producers and economizes the beef cattle production .

High production of poultry litter and its effect of various environmental issues encouraged several researchers and scientist to use this waste in energy production methods such as direct combustion, anaerobic digestion and gasification [54, 75, 78-79]. In addition, Koutcheiko et al. (2007) processed chicken manure through pyrolysis process. Similarly, in this work, poultry litter and pinewood mixtures were fast pyrolysed at 500°C [80]. In this objective, as mentioned above, three different proportions of poultry litter (with pinewood) were investigated at fixed temperature (as high yield of pinewood bio-oil was produced at 500°C). Under each operating condition, three iterations were executed to understand the effect of poultry litter contained in pinewood, statistically.

7.2.3 RESULTS AND DISCUSSIONS

In this section, the yield of different products obtained from processing different biomass mixture (at fixed operating temperatures, 500°C) was reported. In addition, different physical analysis of bio-oil (including viscosity) and biochar were also discussed here.

A. EFFECT OF ADDITIVE ON PRODUCT YIELD

From previous objective, we confirm that high bio-oil production was obtained from processing pinewood biomass, and high pH value of bio-oil was obtained while processing poultry litter. Hence, we tried to use both the biomass (as a mixture) to obtain high quantity of bio-oil with high pH value. Here, poultry litter is mixed with pinewood at 5, 10, 15 wt% in order to comprehend the behavior of the mixture (while processing), and to determine the optimum proportion (of poultry litter with pinewood) at which high pH value of bio-oil was obtained.

Hence, the mixture was processed at 500°C (temperature at which maximum pinewood bio-oil was produced) to determine an optimum proportion of mixture for maximum bio-oil production and high pH value. As stated in the previous Section 6.1, each type of mixture was processed thrice at fixed temperature in order to comprehend their behavior statistically. Figure 28 (refer Appendix C.1) shown below represents the yield of bio-oil, biochar and gases from the various proportion of pinewood, and poultry litter biomass and the values corresponds the average yield of various products obtained from three replications.

Figure 28: Product yield of different biomass mixtures at 500°C

Here, X-axis of the graph represents different products of the process and the Y-axis represents yield (in wt %) of different products. As specified in the graph, yellow, grey and black bars represent the various proportions of poultry litter in pinewood.

T (1 · · · /	P-value of the products			
Type of biomass mixtures	Bio-oil char		Gas	
0, 5, 10, 15, 100 wt % of P.L with 100, 95, 90, 85, 0 wt% of P.W	<0.0001	<0.0001	<0.0001	

Table 14: P-values of the different products of selected biomass

From Figure 28, it was evident that as the proportion of poultry litter (additive) in pinewood increases, the yield of bio-oil decreases at fixed operating temperature (500 °C). It was also noticed that the maximum yield of bio-oil (37.3 wt %) was obtained at 5 wt % of poultry litter with pinewood and minimum yield of bio-oil (34.8 wt%) was obtained at 15 wt% of poultry litter. From Table 14 (refer Appendix C.1), ANOVA analysis at 95% confidence interval reveals that different proportion of poultry litter in pinewood plays a significant role (p-value = 0.0011) in bio-oil production. Mante and Agblevor (2010) mentioned a similar trend (with respect to biooil production) while processing poultry litter (broiler and turkey litter) with pinewood shavings [77]. In their study, they investigated the mixture at 100, 75, 50, 25, 0 wt % of pine wood with poultry litter and recorded that as the weight proportion of pinewood decreases, the yield of biooil also decreases. In addition, Mante and Agblevor (2010) mentioned that maximum yield of bio-oil was obtained at 25 wt% of poultry litter (i.e., 75 wt % of pinewood), and it was nearly 53.5 wt% of bio-oil yield at 450°C. However, while comparing the current results of bio-oil yield with the previous objective, the yield of bio-oil obtained at 100% pinewood was about 37.8 wt% whereas the yield of bio-oil was 37.3 wt% at 95% of pinewood. Hence, it was observed that there was no significant difference in the yield of bio-oil while adding poultry litter in small quantities, however, it (poultry litter) affects the bio-oil yield while increasing the proportion of poultry litter in pinewood

From Figure 28, it was apparent that increasing the proportion of poultry litter in pinewood results in increasing the yield of biochar obtained from the process, and it was due to the high amount of ash contained in the poultry litter biomass. The ANOVA analysis also showed that (from Table 14), quantity of biochar changes significantly (p-value = <0.0001) while changing the proportion of poultry litter in pinewood. Similarly, study of Mante and Agblevor (2010) also reported a similar trajectory on biochar production while processing the mixture in a fluidized bed reactor [77]. Apparently, the gas yield did not show any kind of major differences while processing at different proportion of additive (poultry litter) with the primary biomass. Convincingly, Mante and Agblevor (2010) have also recorded no change on gas production while increasing the ratio of poultry litter in pinewood [77]. However, results obtained from the ANOVA analysis also mentioned that the yield of gas was significant with the addition of poultry litter in pinewood (Table 14).

B. EFFECT OF ADDITIVE ON PHYSICAL PROPERTIES OF BIO-OIL

This section comprises of the physical properties of bio-oil produced from different proportions of poultry litter (additive) with pinewood at fixed operating temperature. Basically, in this section the mixtures were compared with pure (100 wt %) poultry litter and pure pinewood biomass in order to understand the effect of poultry litter in pinewood.

Properties	Pine Wood	Different additive ratios (wt %)			Poultry litter	p-value from ANOVA	ASTM Standard D
	(at 500°C)	5%	10%	15%	(at 500°C)	Test	7544-09
Density, kg/m ³	1131 ± 21	1122 ± 19	1116 ± 9	1101 ± 8	1062 ± 3	<0.0001	1100-1300
рН	3.73 ± 0.03	3.7 ± 0.02	3.84 ± 0.01	3.94 ± 0.01	9.43 ± 0.06	<0.0001	Report
HHV, MJ/kg	22.02 ± 0.51	21.25 ± 0.41	19.8 ± 0.38	17.99 ± 0.48	13.89 ± 0.45	< 0.0001	15 min.
Ash, wt%	0.331 ± 0.11	0.399 ± 0.04	0.311 ± 0.04	0.371 ± 0.08	0.147 ± 0.12	< 0.0001	0.25 max.
Solid, wt%	0.59 ± 0.25	0.59 ± 0.06	0.65 ± 0.08	0.86 ± 0.07	0.17 ± 0.05	< 0.0001	2.5 max.
TAN No.	55.7 ± 0.1 (3.37)	41.4 ± 0.7 (3.5)	28.9 ± 0.9 (3.62)	27 ± 1.6 (3.73)	0 ± 0 (9.1)	< 0.0001	Report

Table 15: Physical properties of bio-oil produced from different proportions of poultry litter with pinewood at 500°Ct

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation. The values shown along with TAN (in the

brackets) represents the pH value of bio-oil measured at the time of determining Acid Number.

Different physical properties (such as density, pH, calorific value, water content, solid content and ash content) of the bio-oil were measured to characterize the effect of different proportions of poultry litter in pinewood and the values of those properties were summarized in the Table 15 (refer Appendix C.2) as shown above.

Table 15 depicts the various physical properties of bio-oil obtained from different ratios of additive (poultry litter) with pinewood biomass, and it also contains the ASTM standard D 7544-09 [61] of bio-oil in order to compare the results obtained from the analysis. In addition, average and standard deviation of the experiments were calculated and ANOVA test (95% confidence interval) was performed to determine statistical behavior of the different physical properties while changing the ratio of additive in primary biomass. It also includes physical properties of 100% pinewood and 100% poultry litter bio-oils obtained at 500°C for comparison.

From this table, it was evident that the density of bio-oil decreases while increasing the ratio of poultry litter in the primary biomass and this was due to the high moisture contained in poultry litter biomass. Apparently, ANOVA analysis also depicts that increasing the ratio of additive in primary biomass plays a significant role in the density of bio-oil. Certainly, pH value and water content of the bio-oil increases simultaneously while increasing the weight ratio of poultry litter in pinewood and p-value obtained from the ANOVA analysis also supports this fact. Here, raise in pH value was due to the high ash content of poultry litter which helps in cracking the fumes (produced during the process) and eventually producing high pH value bio-oil. Similarly, the increasing trend in water content of bio-oil was due to the amount of water molecules contained in the additive (later, they are moved to the bio-oil while condensing the fumes, vapors and aerosols). In addition, similar results (on pH value, density and water content) were observed from the previous study made on pinewood and poultry litter mixture [77].

On the other hand, solid content of bio-oil increases and heating value of the bio-oil decreases when higher proportions of poultry litter were added to the primary biomass. Certainly, heating value of bio-oil obtained from 15 % of poultry litter (17.99 MJ/kg) recorded lower values while compared with other bio-oils obtained from processing 5 and 10% of poultry litter, and this was due to the moisture content of poultry litter present in the biomass [81].

Theoretically, from Table 15, ash content of bio-oil should decrease while increasing the additive in primary biomass because the ash content of pure (100 wt %) pine wood bio-oil is higher than pure poultry litter bio-oil. However, it was not observed in this study and the reason behind this fact is mysterious. ANOVA analysis reveals that the quantity of poultry litter in pinewood plays a significant role in the values of heating value, ash and solid content. Incidentally, previous studies [77] have stated that both ash content and heating value (sample with the absence of water content) of the bio-oil increases with increase in poultry litter with pinewood, which was not observed in this study. From TAN (Total Acid Number) measurements, it was evident that as the composition of poultry litter increases in pine wood biomass, acid number of the bio-oil decreases. However, significant changes in pH value of bio-oil were not noticed during acidity measurement. This fact confirms that the amount of acids present in the bio-oil decreases significantly while increasing the amount of additive in primary biomass.

C. VISCOSITY ANALYSIS OF DIFFERENT BIO-OILS

As mentioned before, kinematic viscosity is a significant measure on fuel properties as higher viscosity values results in complicated design, requires complex handling, processing and transporting the equipment. In this study, the viscosity analysis on bio-oils obtained from

Figure 29: Viscosity analysis on different bio-oils

Figure 29 shows the various trends obtained while analyzing the dynamic viscosity of bio-oils obtained from processing different ratios of poultry litter with pinewood biomass. In addition, the dynamic viscosity of bio-oils obtained from both pinewood (P.W) and poultry litter (P.L.) (100% pure biomass) were also incorporated in this figure. However, from previous studies it was observed that after a particular shear rate viscosity of bio-oil produced at different operating temperatures behaves similarly (with respect to values of viscosity) [23, 56, 68]. All the trends (on dynamic viscosity) shown in the above figure were obtained from bio-oils collected while processing their respective biomass at 500°C.

Variation in log(viscosity) vs shear rate was shown in the above figure in which the shear rate was rated between 0.1 to 100 s⁻¹. As mentioned in the previous Section D. (under Section

7.1.3), viscosity of poultry litter bio-oil was higher than the viscosity of pinewood bio-oil, and from the above figure, viscosity of bio-oil increases while increasing the composition of additive in primary biomass. In addition, at shear rate $<10 \text{ S}^{-1}$, viscosity of bio-oil obtained from processing 5 wt% of poultry litter was constant. However, other bio-oils obtained from 10 and 15 wt% of poultry litter experiences change in viscosity at higher shear rate.

D. EFFECT OF ADDITIVE ON PHYSICAL PROPERTIES OF BIOCHAR

Basically, this section comprises of the effect of different ratios of additive (contained in the primary biomass) on different physical properties of biochar. ANOVA analysis at 95% confidence interval was also carried out on the various properties of biochar. Table 16 shows the characterization on physical properties of bio-char (such as heating value, ash and moisture content) obtained from different proportions of additive in primary biomass.

Properties	Pinewood	vood Different additive ratios (wt %) Poultry Litter			Poultry Litter	p-value from
Toperties	(at 500°C)	5%	10%	tios (wt %)Poultry Litter (at 500°C15%25.92 \pm 0.325.92 \pm 0.310.81 \pm 0515.86 \pm 0.8158.76 \pm 2.3.09 \pm 0.43.69 \pm 0.7	(at 500°C)	ANOVA Test
HHV, MJ/kg	30.45 ± 0.36	28.91 ± 0.3	27.24 ± 0.2	25.92 ± 0.3	10.81 ± 0.3	< 0.0001
Ash, wt%	0.51 ± 0.22	8.76 ± 0.87	13.47 ± 1.25	15.86 ± 0.81	58.76 ± 2.54	<0.0001
Moisture content, wt%	3.64 ± 0.25	2.7 ± 0.4	2.84 ± 0.3	3.09± 0.4	3.69 ± 0.76	<0.0001

Table 16: Physical properties of biochar produced from different additive ratiost

 \pm Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

From Tables 16, the heating values of biochar obtained from different additive ratios state that as the poultry litter ratio increases in pinewood biomass (from 0 to 15 wt %), the heating value of the biochar decreases gradually (30 to 26 MJ/kg, from 0 to 10wt % of P.L in P.W). Certainly, in this objective biochar obtained from 5% of poultry litter in pinewood have recorded

higher heating value (28.81MJ/kg, at 500°C) than all the other ratios of poultry litter and this is due the high ash content of poultry litter (as the proportion of P.L increases, the ash content in the biomass increases which results in poor heating value). In addition, ANOVA analysis also depicts that the heating value and ash content of all the biochar obtained from different additive ratios had shown a significant change with respect to increase in the quantity of poultry litter in pinewood. However, ash content of biochar increases while increasing the weight ratio of the additive in the primary biomass and this was due to the high ash content contained in the poultry litter biomass when compared to the ash contained in pinewood. Further, from ANOVA analysis, the values of moisture content of biochar contained in different additive ratios were significant with respect to the amount of poultry litter in pinewood.

7.2.4 CONCLUSIONS

This section comprises of all the significant observations recorded while performing the experiments involved in this objective. In addition, it also reviews the key objective of this section and the effects of selected operating parameters in order to meet the same. From this objective, it was noticed that bio-oil yield was not affected at lower quantities of poultry litter in pinewood; however, significant changes were observed at higher ratios of poultry litter.

Eventually, the pH value of the bio-oil increases while increasing the ratio of poultry litter with pinewood. As a result, the pH value of bio-oil raised by 6% (at 15% of P.L in P.W) and thus meeting the objective of this project. Further, TAN value also confirms that the acidity of bio-oil decreases with increase in the composition of additive increases in primary biomass. In addition, density and heating value of both bio-oil and biochar decrease with increase in poultry litter and water content increase while increasing the ratio of poultry litter in pinewood. All the

properties of bio-oil obtained from various additive ratios met the ASTM standards except the ash content, which requires further study (by altering the design of the auger reactor).

7.3 PRODUCTION OF BIO-OIL USING CASCADE PYROLYSIS REACTORS

This portion of the project can be referred as the second step in improvising the pH value of bio-oil and here, cascade pyrolysis reactors were used to meet the requirement. Cascade reactor is nothing but 2-stage reactor which is usually operated at two different temperatures. In this section, basic literature on biomass used, supporting thoughts for using cascade reactors, ideas followed and their consequences were detailed below.

7.3.1 SUMMARY

Fast pyrolysis is a thermo-chemical process, where different kinds of biomass are converted to liquid fuel called bio-oil. This process has attracted a lot of interest from industry and academia due to its high bio-oil yield. Though bio-oils are used in numerous applications, its (bio-oil) negative attributes limits the use of this form of bio-energy. Further acidity was considered as the main drawback (in this project) which pulls down the usage of bio-oils in various fields. Hence, in this objective, cheap and simple steps were followed to improvise the pH value of bio-oil. Here, pinewood was used as the feedstock for bio-oil production and two operating temperatures (300 and 500°C) were involved in producing high pH value bio-oil.

Physical properties of bio-oil such as pH, density, higher heating value, ash, water and solid content were analyzed and compared with the ASTM standard to document the effect of pyrolysis temperature. All the properties analyzed in this study of the bio-oil produced from 500°C met the specifications suggested by the ASTM standard except for the ash content. In addition, dynamic viscosity of bio-oil, physical properties of biochar were also measured and analyzed.

86

7.3.2 INTRODUCTION

Since 1990, interest in producing different forms of energy (including fuels) from biobased products has gone high and the availability of biomass is abundant in US. From literature review, we know that, U.S. has the capacity to produce 368 million dry tons of forest residues annually and further, Alabama State has a potential to produce 2.81 million dry tons of forest residues, 64 million dry tons/year of logging and other residues, 6.45 million dry tons of primary mill residues, 63 thousand dry tons of secondary mill residues and 532 thousand dry tons of urban wood residues annually [5]. As the availability of the woody biomass is huge in the southern parts of US, especially in Alabama, pine wood was selected for this study.

Generally, biomass is made up of three basic constituents such as cellulose, hemicellulose and lignin. These constituents vary in their proportions for each type of biomass. Basically, cellulose provides strength to the wood, and it comprises of 40-50 wt % in dry wood, hemicellulose is also called as polyose, and it is 25-35 wt % and lignin holds 23-33% in softwood and 16-25% in hardwood [14]. Several studies have mentioned that hemicellulose decomposes rapidly when compared to cellulose and lignin [14, 82-83]. Usually, hemicellulose decomposes at temperature around 200-260°C [14, 84-85]. However, some studies reported that hemicellulose decomposes between 220-315°C, as shown in the Figure 30 [86-87].

Figure 30: Thermo-gravimetric analysis of different constituents of biomass [86]

Further, hemicellulose is lower molecular weight compounds when compared to cellulose and it contains arabinose, galactose, mannose and xylose (which turns into furfural during dehydration) [14, 82, 88-89]. Tiwari and Ghosal (2005) reported that while comparing cellulose and hemicellulose, the later gives rise to more gas, less tar and less char in which the tar contains various organic compounds such as acetic acid, formic acid and other derivatives [85]. During fast pyrolysis, these compounds are collected in the form of acids in the bio-oil, thus increasing its acidic value.

In this objective, the biomass (pinewood) was first fast pyrolysed at 300°C (in order to remove the hemicellulose) and the char obtained from that reaction were again processed at 500°C so that most of the acid contents were removed in the first stage thereby, producing biooil with high pH value in the second stage. Hence, three iterations for each temperature were performed and the bio-oils obtained from those iterations were further analyzed to comprehend the influence of operating temperature over their (bio-oil) physical properties. In addition, different physical properties of biochar (left behind in the reactor) were also measured, and the methods involved in producing and analyzing both bio-oil and biochar were already elaborated in Chapter 5.

7.3.3 RESULTS AND DISCUSSIONS

In this section, the products (bio-oil, char and gases) obtained while processing pinewood at two different temperatures (300 and 500°C) were reported. In addition, different physical properties of bio-oil (including viscosity) and biochar were also discussed.

A. EFFECT OF TEMPERATURE ON PRODUCT YIELD

From the first objective, we confirm that pinewood can produce high yield of bio-oil when compared to other biomass types involved in this work, and the maximum production of bio-oil was made at 500°C. Hence, in this objective, pinewood and 500°C (operating temperature for second stage) were selected as the operating parameters. Similar to previous objectives, biomass was processed thrice at each temperature to comprehend their behavior statistically. Figure 31 (refer Appendix D.1) shown below represents the yield of bio-oil, biochar and gases obtained from different operating temperatures of pinewood and the values shown in the figure were the average yield of different products obtained from three iterations.

Figure 31: Product yield of pinewood at different operating temperatures

Here, X-axis of the graph represents the various products of the process and the Y-axis represents the yield (in wt %) of various products. As specified in the graph, yellow and red bars represent the operating temperature of the process.

Table 17: P values of the various products of pinewood at different temperatures

Onerating temperatures	P value	P value of the products			
operating temperatures	Bio-oil	char	Gas		
Pinewood at 300 and 500°C	< 0.0001	< 0.0001	< 0.0001		

From Table 17 (refer Appendix D.1), it was evident that the yield of all the products of the process changes significantly with respect to operating temperature. Figure 31 reveals that at 300°C, nearly 15 wt% of bio-oil and more than 75 wt % of biochar were produced. Thereby we can say that, during this operating temperature (300 °C) most of the moisture contained in the biomass (pinewood, nearly 7 wt %) was transferred to bio-oil (liquid collected at this stage). Previous studies have also confirmed that removal of moisture occurs at 160 °C and over the

temperature range 200-280 °C the hemicellulose present in the biomass decomposes and results in predominant yielding of volatile compounds into vapors [85]. Hence, it can be said that 15 wt% obtained from the first stage (at 300 °C) was none other than water and various sub-compounds of hemi-cellulose present in the biomass.

At the second stage of the process (500 °C), more than 25 wt% of bio-oil and 26 wt% of biochar were collected. However, the gas obtained from this stage was more than the other products (bio-oil and biochar). In all the biomass, combined weight ratio of cellulose and lignin are more than hemicellulose and generally, cellulose decomposes around 280 to 500 °C and lignin decomposes significantly above 320 °C [85]. Hence, the bio-oil contained in this stage (at 500 °C) has more materials derived from cellulose and lignin rather than hemicellulose (as most of it was removed in the first stage). Similar to the first objective, while increasing the operating temperature decrease in char and increase in gas production was observed here.

Figure 32 (refer Appendix D.1) represents the comparison of bio-oil yield obtained from single and 2-stage process. Here, X-axis represents the different stages and Y-axis represents the

yield (in wt %) of bio-oil. As specified in the graph, yellow and red bars represent the operating temperature of the process. However, 2-stage process produces more amount of bio-oil when compared to the single stage, statistically; there was no significant change in bio-oil yield.

B. EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-OIL

This section details all the physical properties of the bio-oil (from pinewood) produced at two different stages of the process. In addition, the physical properties of pinewood bio-oil obtained at single stage process (from first objective) were also compiled here (in order to understand the effect of stage process on the physical properties of bio-oil). Different physical properties (such as density, pH, calorific value, water content, solid content and ash content) of the pinewood bio-oil (obtained from stage process) were measured to characterize the bio-oil produced at different operating temperatures, and the values of those properties were summarized in the Table 18 (refer Appendix D.2) as shown below.

Table 18 consists of different physical properties of bio-oil obtained from processing pinewood biomass at different temperature along with ASTM standard D 7544-09 [61] of bio-oil (in order to compare the results obtained from the analysis). In addition, average and standard deviation of the experiments were calculated and ANOVA test (at 95% confidence interval) was performed between single stage and 2-stage process in order to understand their effect on different physical properties of bio-oil.

Properties	Pine Wood (single stage,	Pyrolysis T (°	emperature C)	p-value from ANOVA	ASTM Standard D
1	at 500°C)	300	500	Test	7544-09
Density, kg/m ³	1131 ± 21	1100 ± 16	1133 ± 6	0.8106	1100-1300
рН	3.73 ± 0.03	3.35 ± 0.07	3.82 ± 0.07	0.0019	Report
Water, wt%	17.23 ± 1.29	38.57 ± 1.67	14.35 ± 1.54	<0.0001	30 max.
HHV, MJ/kg	22.02 ± 0.51	Х	20.27 ± 0.46	< 0.0001	15 min.
Ash, wt%	0.33 ± 0.11	1.113 ± 0.21	0.625 ± 0.2	0.0014	0.25
Solid, wt%	0.59 ± 0.25	0.08 ± 0.01	1.37 ± 0.18	<0.0001	2.5 max.

Table 18: Physical properties of pinewood bio-oil produced at different temperaturest.

+ Values are means of nine repeated analysis and the numbers after \pm is standard deviation and the symbol "X" represents below detection limit.

From the above table, it was obvious that operating temperature plays a significant role in the values of all the physical properties measured in this work. Further, the density of bio-oil obtained from 2-stage process (at 500 °C) was almost same as the density of bio-oil obtained from the single stage process. Simultaneously, ANOVA analysis also confirms that there was no significant change in the density of bio-oil obtained from the 2-stage process (at 500 °C) was higher than the pH value of the bio-oil obtained from a single stage process. Convincingly, statistical analysis also confirms the significant change in the pH value of bio-oil obtained from a single stage process.

As mention before, during the first stage (in 2-stage process), most of the moisture contained in the biomass was removed which corresponds to high water content, low solid content and poor heating value of bio-oil (below detection limit) at 300 °C. Hence the water content of the bio-oil obtained from the second stage was much lower than the first stage. Further, its values were less than the bio-oil obtained from processing pinewood in single stage process. Consecutively, ANOVA analysis also confirms that single stage and 2-stage process have a significant effect on heating value, water, ash, and solid content of bio-oil.

Apparently, the ash content of the bio-oil obtained in the 2-stage process was high when compared to the single stage process, which was quite unusual in this study. During the second stage of the 2-stage process, char obtained from the first stage were processed again and as the process progresses breaking of char particles take place. These tiny char particles produced during the second stage were carried away by the fumes and gases produced by the process and they settled in the bio-oil (during condensation), hence high solid content of bio-oil was noticed in the second stage. However, it (tiny char in bio-oil) did not reflect in the heating value of the bio-oil obtained at 500 °C, as it measured less than the heating value of bio-oil obtained from the single stage which was also not expected in this study.

C. VISCOSITY ANALYSIS OF PINEWOOD BIO-OIL

Kinematic viscosity plays a significant role in design, handling and transportation of the equipment (for bio-oil). Here, the viscosity analysis on bio-oils obtained from pinewood at different temperatures was carried out at 40°C and their results were shown in the Figure 33 (refer Appendix D.3).

Figure 33: Viscosity analysis on pinewood bio-oil at different operating temperatures

Figure 33 shows the variation in log (viscosity) (as the shear rate was increased from 0.1 to 100 s⁻¹) for different types of bio-oil obtained from different stages of the process. In addition, the dynamic viscosity of bio-oil obtained from single stage process (using pinewood biomass) was also incorporated in this figure. Previous studies have also stated that at higher shear rate, viscosity of bio-oil produced from different operating temperatures behaves in a similar manner (with respect to values of viscosity) [23, 56, 68]. From the above figure, it was evident that viscosity of bio-oil obtained from 2-stage process was less than the bio-oil obtained from single stage process. Further, viscosity of bio-oil obtained from first stage was less than the viscosity of
bio-oil obtained from second stage and this is due to presence of high water content present in the bio-oil (obtained from the first stage of the process).

D. EFFECT OF TEMPERATURE ON BIOCHAR

In this objective, two different operating temperatures were used (300 and 500°C) which correspond to the production of two different types of biochar. Basically, this section comprises of, the effect of temperature on different physical properties of biochar obtained from processing pinewood. In addition, ANOVA analysis at 95% confidence interval was also carried out (between single stage and 2-stage process) on the various properties of bio-char. Table 19 (refer Appendix D.4) shows the characterization of bio-char (pinewood) obtained from different operating temperatures.

Properties	Pine Wood (Single stage,	Pyrolysis Tem	p-value from	
	at 500°C)	300	500	ANOVA Test
HHV, MJ/kg	30.45 ± 0.36	21 ± 0.052	31.73 ± 0.2	< 0.0001
Ash, wt%	0.51 ± 0.22	0.36 ± 0.04	2.14 ± 0.26	<0.0001
Moisture content, wt%	3.64 ± 0.25	2.98 ± 0.34	1.87 ± 0.52	<0.0001

Table 19: Physical properties of biochar produced from different temperaturest

+Values are means of nine repeated analysis and the numbers after \pm is standard deviation.

From Table19, statistically it was clear that all the physical properties of the biochar changes significantly with the type of process. Several studies also confirm that as the operating temperature of the process increases, the heating value of the biochar also increases [23]. Similarly, in this work, the heating value of biochar obtained at 500°C was higher than the heating value of the biochar obtained at 300°C. Further, the heating value of biochar obtained from the 2-stage process was higher than the biochar obtained from the single stage process and

this was due to repetitive heating (biochar obtained from the first stage was heated again in the second stage).

Ash content of the biochar obtained from 300°C (0.36 wt %) was very close to the ash content present in the pinewood biomass (0.3 wt %). However, ash content of the biochar at 500°C was very high and the reason behind this is mysterious. Apparently the moisture content of the biochar used in the second stage (of the 2-stage process) was less than the first stage because during the first stage, more water was removed from the biomass, and leaving less amount of moisture in the biochar.

7.3.4 CONCLUSIONS

This section includes all the significant conclusions made while performing various stages of this objective. In addition, it also reviews the key objective of this section and effects of the operating parameters selected in order to meet the prime objective (producing bio-oil of high pH value) were also discussed here. From the results obtained from this objective, it was evident that pH value of the bio-oil acquired from the 2-stage process was higher than the single stage process (raised by 3%) and thus meeting the objective (producing bio-oil of high pH value) of this work. However, 25 wt % of bio-oil was produced at the second stage of the process. By the end of the reaction, this process leads to high biochar production. Heating value of biochar obtained from the second stage (cascade) of this process records higher values when compared to the single stage process. Further, there was no significant change in the total energy contained in the different products (bio-oil and bio-char) of the process obtained from single stage (52.47 MJ/kg) and 2-stage (52 MJ/kg) methods. Here, moisture content of the biomass was removed in the first stage and hence producing bio-oil with less water content in the second stage.

Nevertheless, the heating value of the bio-oil obtained from the two stage process was lower than the single stage process.

CHAPTER 8

CONCLUSIONS & RECOMENTATIONS

This section summarizes the major results, conclusions and discussions made during various stages of this project. The key objective of this work along with the experience gained while performing fast pyrolysis process under different operating conditions were specified below. Basically, different feedstocks such as pinewood, underutilized forest biomass, poultry litter and various proportions of biomass mixture (pinewood and poultry litter) were investigated at different temperature in between 425 to 500°C. Detailed reviews on various objectives of this work were also detailed here. In addition, recommendations for improvising the instrument (from performance, life and maintenance point of view) and increasing the bio-oil production were also given below.

8.1 CONCLUSIONS

The main objective of this project was to produce bio-oil with high pH value using cheap and simple methods so that the bio-oil can be used at least in the existing refineries without or less upgrading. Hence in the first objective, fast pyrolysis of selected feedstocks were performed at selected temperatures in between 425 to 500°C in an auger reactor. Pinewood manages to produce maximum bio-oil yield (at 500°C) than underutilized forest biomass and poultry litter. Different physical properties of all the bio-oils (obtained from different biomass at different operating temperatures) were measured and analyzed. From the analysis, it was evident that the pH value of poultry litter was high (basic property, 9.4) when compared to the bio-oil obtained from the woody biomass (P.W-3.7 and U.U-3.1). Hence, pinewood and poultry litter were selected as the primary and secondary biomass for the second objective and 500°C was selected as the operating temperature (as high yield of bio-oil was obtained while processing pinewood).

Second objective of this work was considered as the first step in improving the pH value of the bio-oil. Here, poultry litter was considered as an additive and it was mixed with pinewood (primary biomass) at 5, 10 and 15 wt %, later these mixture are operated at 500°C. The physical properties of bio-oil obtained from three different ratios of poultry litter (with pinewood) were measured and compared with ASTM standard. The bio-oil produced at 15% wt ratio of poultry litter showed high values of pH when compared to the bio-oil obtained from processing pure pinewood biomass, thus meeting the objective of the project. Further, TAN value also confirms that as the composition of poultry litter increases in pine wood, the acidity of bio-oil decreases significantly. Heating value of bio-oil decreases while increasing the amount of poultry litter in pinewood. The bio-oil produced at different weight ratios of poultry litter (with pinewood) meet the specifications of the measured properties. However, the ash content of the bio-oil failed to met the same. It was also observed that, further adding of poultry litter in pinewood would result in producing bio-oil with poor physical properties.

Another direction in achieving high pH value of bio-oil was detailed in the third objective of this work. In this technique, biomass (pinewood) was processed at two different temperatures in which the hemicellulose and water were removed in the first stage and quality bio-oil was collected in the later. The physical properties of bio-oil produced at two different stages were measured and compared with the bio-oil obtained from the single stage and with the ASTM standards. The bio-oil obtained from 2-stage process met the standards except ash content. The pH value of the bio-oil obtained from the 2-stage process was high when compared to the single stage process, and thus satisfying the requirement of this project. Certainly, viscosity analysis showed that at higher shear rates, bio-oils produced from pinewood and underutilized biomass behaves like a Newtonian fluid. However, the bio-oil obtained from poultry litter appeared as a pseudo plastic fluid (even at higher shear rates). The results obtained from the second and third objectives conclude that both the techniques worked good in producing high pH value bio-oil. Nevertheless, the ash content of the bio-oil obtained from pinewood and underutilized biomass required further study.

8.2 RECOMENDATIONS

Recommendations mentioned in this section are the future work that can be done on the auger reactor in order to improvise its efficiency. Basically, it helps in increasing the bio-oil production, reducing the leaking, easy operation and maintenance (through design modification).

Primarily, bio-oil yield can be raised by placing the condenser #1 in a cooling bath/tub (<1°C). Generally, under current design, fumes produced during this process were passed through the condenser operated at room temperature, and by operating this equipment (condenser #1) at lower temperature results in high bio-oil production (because of larger temperature difference). In addition, bio-oil production shall be increased by using additional condensers or by modifying the design of the condenser #2 so that condensation time (time taken by the fumes to pass through the heat exchangers) can be increased and thus increasing the yield of bio-oil. Further, bio-oil yield can be raised slightly by reducing the leakage of fumes during the process.

Leakage of fumes (at bottom reactor) is another major drawback of the system because, sometimes, it is difficult for the operator to run the machine. This can be controlled/ reduced by mounting the transmission system of the reactor towards the other side of char collector. Certainly, clogging of char (at char collector) is another problem faced while operating the reactor and this can be reduced by increasing/altering the cross-section area (rectangular cross-

section instead of circular) of the char collector. Further, this design (rectangular cross-section) helps in easy removal of char from the reactor and eventually resulting in better quality of bio-oil (with less char and ash content).

Apart from this, current design of hopper shall be changed to a cylindrical structure for easy and free flow of biomass into the top auger. High torque motors (for uniform speed of augers), orifice meters (to determine the flow rate of carrying gas) and thermocouples (to measure the temperature of the biomass inside the reactor) shall be added to the current system in order to understand the process in a better way.

From the research point of view, theoretically, ash content of biochar increases at higher operating temperatures. However, there was no increasing trend in ash content was noticed while increasing the operating temperature. Hence, it requires further study. Apart from this, reason behind high water content in poultry litter bio-oil obtained at 425°C is to be analyzed. Basically, while comparing the ash and solid content of pinewood and poultry litter bio-oils (from 100 wt% pure biomass), pinewood bio-oil has more amount of ash and solid particles when compared to poultry litter bio-oil. Eventually, while increasing the composition of poultry litter in pinewood should reduce the ash and solid contents of the bio-oil (obtained from the biomass mixture). However, the trend was not noticed from this study and it requires further analysis.

In addition, bio-oil obtained from 2-stage pyrolysis process requires further analysis to find out why the pH value did not increase significantly even after removing hemicellulose from 1-stage. Apart from this, ash content of biochar requires further study because of the amount of ash contained in the 2-stage process was very high than theoretical values.

REFERENCES

- EIA, International energy outlook. U.S. Energy Information Administration 2010, Washington, DC. DOE/EIA-0484, www.eia.gov/oiaf/ieo/index.html.
- 2. EIA, Annual energy outlook 2010 with projections to 2035. U. S. Energy Information Administration 2010, Washington, DC. DOE/EIA-0383, www.eia.doe.gov/oiaf/aeo/.
- Dresselhaus, M. S. and Thomas, I. L., Alternative energy technologies. *Nature* 2001 414: 332-337.
- 4. Christopher, S. G., Abt, R., and Wu, Y., Forest biomass supply in the southeastern united states—implications for industrial roundwood and bioenergy production. *Journal of Forestry* **2008**: 69-77.
- Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., and Erbach,
 D. C., Biomass as a feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. USDA/DOE 2005. DOE/GO-102005-2135, ORNL/TM-2005/66,
- Lynd, L. R., Larson, E., Greene, N., Laser, M., Sheehan, J., Dale, B. E., McLaughlin, S., and Wang, M., The role of biomass in America's energy future: framing the analysis. *Society of Chemical Industry and John Wiley & Sons, Ltd* 2009 Biofuels, Bioprod. Bioref. 3: 113-123.
- McKendry, P., Energy production from biomass (part 1): overview of biomass. Bioresource Technology 2002 83(1): 37-46.

- 8. Yaman, S., Pyrolysis of biomass to produce fuels and chemical feedstocks. *Energy Conversion and Management* **2004** 45(5): 651-671.
- UNF, Biomass conversion technologies. Sustainable Bioenergy Development in UEMOA Member Countries 2005, Washington, D.C. p. 45-56, <u>www.globalproblems-globalsolutions-files.org/.../UNF Bioenergy 5.pdf</u>.
- Woods, J. and Hall, D. O., Bioenergy for development Technical and environmental dimensions. FAO Environment and Energy Paper Natural Resources Management and Environment Department, 1994; 13:[Available from: http://www.fao.org/docrep/T1804E/T1804E00.htm.
- McKendry, P., Energy production from biomass (part 2): conversion technologies.
 Bioresource Technology 2002 83(1): 47-54.
- Goyal, H. B., Seal, D., and Saxena, R. C., Bio-fuels from thermochemical conversion of renewable resources: A review. *Renewable and Sustainable Energy Reviews* 2008 12(2): 504-517.
- Bridgwater, A. V., Meier, D., and Radlein, D., An overview of fast pyrolysis of biomass. Organic Geochemistry 1999 30(12): 1479-1493.
- Mohan, D., Charles U. Pittman. Jr, and Steele, P. H., Pyrolysis of wood/biomass for biooil: A critical review. *Energy & Fuels* 2006 20: 848-889.
- Asadullah, M., Rahman, M. A., Ali, M. M., Rahman, M. S., Motin, M. A., Sultan, M. B., and Alam, M. R., Production of bio-oil from fixed bed pyrolysis of bagasse. *Fuel* 2007 86: 2514-2520.
- Demirbas, A., Kinetics for non-isothermal flash pyrolysis of hazelnut shell. *Bioresource Technology* 1998 66: 247-252.

- He, R., Ye, X. P., English, B. C., and Satrio, J. A., Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties. *Bioresource Technology* 2009 100: 5305 - 5311.
- Horne, P. A. and Williams, P. T., Influence of temperature on the products from the flash pyrolysis of biomass. *Fuel* 1996 75: 1051-1059.
- Lee, S.-H., Eoma, M.-S., Yoo, K.-S., Kim, N.-C., Jeon, J.-K., Park, Y.-K., Song, B.-H., and Lee, S.-H., The yields and composition of bio-oil produced from Quercus Acutissima in a bubbling fluidized bed pyrolyzer. *Journal of Analytical and Applied Pyrolysis* 2008 83: 110-114.
- 20. Paradela, F., Pinto, F., Ramos, A. M., Gulyurtlu, I., and Cabrita, I., Study of the slow batch pyrolysis of mixtures of plastics, tyres and forestry biomass wastes. *Journal of Analytical and Applied Pyrolysis* **2009** 85: 392–398.
- Park, H. J., Park, Y.-K., and Kim, J. S., Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis. *Fuel Processing Technology* 2008 89: 797-802.
- Sensoz, S., Demiral, I., and Gercel, H. F., Olive bagasse (Olea europea L.) pyrolysis.
 Bioresource Technology 2006 97: 429-436.
- Thangalazhy-Gopakumar, S., Adhikari, S., Ravindran, H., Gupta, R. B., Fasina, O., Tu, M., and Fernando, S. D., Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. *Bioresource Technology* 2010 101: 8389 8395.

- 24. Bridgeman, T. G., Jones, J. M., Shield, I., and Williams, P. T., Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. *Fuel* **2008** 87(6): 844-856.
- Tumuluru, J. S., Sokhansanj, S., and Wright., C. T., A review on torrefaction process and design of moving bed torrefaction system for biomass processing. U.S. Department of Energy 2010. INL/EXT-10-19569,
- Akhtar, J. and Amin, N. A. S., A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. *Renewable and Sustainable Energy Reviews* 2011 15(3): 1615-1624.
- Midgett, J. S., Assessing a hydrothermal liquefaction process using biomass feedstocks. *The Department of Biological and Agricultural Engineering* (Louisiana State University)
 2008.
- 28. Bridgwater, A. V., Biomass fast pyrolysis 2004. UDC: 662.73/.75, p. 21-49,
- 29. Bridgwater, A. V. and Peacocke, G. V. C., Fast pyrolysis processes for biomass. *Renewable and Sustainable Energy Reviews* **2000** 4(1): 1-73.
- Onay, O. and Kockar, O. M., Slow, fast and flash pyrolysis of rapeseed. *Renewable Energy* 2003 28(15): 2417-2433.
- 31. Antony-Raja, S., Kennedy, Z. R., and Pillai, B. C., Flash pyrolysis of jatropha oil cake in gas heated fluidized bed research reactor. *International Journal of Chemical Engineering Research* 2010 2: 1-12.
- 32. Wang, S., Fang, M., Yu, C., Luo, Z., and Cen, K., Flash pyrolysis of biomass particles in fluidized bed for bio-oil production. *China Particuology* **2005** 3(Nos. 1-2): 136-140.

- Bridgwater, A. V., Principles and practice of biomass fast pyrolysis processes for liquids.
 Journal of Analytical and Applied Pyrolysis 1999 51(1-2): 3-22.
- Ringer, M., Putsche, V., and Scahill, J., Large-scale pyrolysis oil production: A technology assessment and economic analysis. *National Renewable Energy Laboratory* 2006. NREL/TP-510-37779,
- 35. IEA, Reactors Summary and status. 2009, 15th april 2011 [cited 20 2009-2011];
 Available from: <u>http://www.pyne.co.uk/? id=69</u>.
- Oasmaa, A. and Czernik, S., Fuel oil quality of biomass pyrolysis oils-state of the art for the end users. *Energy & Fuels* 1999 13: 914-921.
- Czernik, S. and Bridgwater, A. V., Overview of applications of biomass fast pyrolysis oil. *Enegry & Fuels* 2004 18: 590-598.
- Diebold, J. P., A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. *National Renewable Energy Laboratory* 2000. NREL/SR-570-27613,
- 39. Zhang, Q., Chang, J., Wang, T., and Xu, Y., Review of biomass pyrolysis oil properties and upgrading research. *Energy Conversion and Management* **2007** 48(1): 87-92.
- 40. DYNAMOTIVE, The bio-oil information book. *DynaMotive Energy Systems Corporation* **2006**.
- 41. Boucher, M. E., Chaala, A., Pakdel, H., and Roy, C., Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. *Biomass and Bioenergy* **2000** 19(5): 351-361.

- 42. Chiaramonti, D., Oasmaa, A., and Solantausta, Y., Power generation using fast pyrolysis liquids from biomass. *Renewable and Sustainable Energy Reviews* **2007** 11(6): 1056-1086.
- 43. Mullaney, H., Technical, environmental and economic feasibility of bio-oil in New Hampshire's north country. *New Hampshire Industrial Research Center* **2002**.
- Wagenaar, B. M., Florijn, J. H., Gansekoele, E., Venderbosch, R. H., Penninks, F. W. M., and Stellingwerf, A., Bio-oil as natural gas substitute in a 350 MW power station. *BTG Biomass Technology Group BV and Electrabel Nederland NV*.
- 45. Strenziok, R., Hansen, U., and Künstner, H., Combustion of bio-oil in a gas turbine. Institute of Energy and Environmental Technology and University of Rostock, Germany 1999-2000.
- 46. Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., Grimm, H. P., Soldaini, I., Webster, A., and Baglioni, P., Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines--Part 2: tests in diesel engines. *Biomass and Bioenergy* 2003 25(1): 101-111.
- Ikura, M., Stanciulescu, M., and Hogan, E., Emulsification of pyrolysis derived bio-oil in diesel fuel. *Biomass and Bioenergy* 2003 24(3): 221-232.
- 48. Diebold, J. P. and Czernik, S., Additives to lower and stabilize the viscosity of pyrolysis oils during storage. *Energy & Fuels* **1997** 11: 1081-1091.
- 49. Bricka, M. R., Bio-oil the good, bad and the ugly. *ChemE-Mississippi State University Bio Fuels Conference, August 27,2007.* **2007**.

- 50. Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., and Hsu, D. D., Technoeconomic analysis of biomass fast pyrolysis to transportation fuels. *Nartional Renewable Energy Laboratory* **2010**.
- 51. Solantausta, Y., Techno-economic assessment, the finnish case study. **2001**. NNE5-CT-2001-00604,
- 52. Luo, Z., Wang, S., Liao, Y., Zhou, J., Gu, Y., and Cen, K., Research on biomass fast pyrolysis for liquid fuel. *Biomass and Bioenergy* **2004** 26(5): 455-462.
- 53. Milbrandt, A., A geographic perspective on the current biomass resource availability in the United States. *National Renewable Energy Laboratory* **2005**.
- 54. Perera, R., Perera, P., Vlosky, R. P., and Darby, P., Potential of using poultry litter as a feedstock for energy production. *Louisiana Forest Products Development Center* 2010, Baton Rouge, Louisiana. p. 1-14,
- Ji-lu, Z., Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. *Journal of Analytical and Applied Pyrolysis* 2007 80: 30-35.
- Kim, S.-S., Agblevor, F. A., and Lim, J., Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. *Journal of Industrial and Engineering Chemistry* 2009 15: 247-252.
- 57. Jung, S.-H., Kang, B.-S., and Kim, J.-S., Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. *Journal of Analytical and Applied Pyrolysis* 2008 82: 240-247.

- Bhattacharya, P., Steele, P. H., Hassan, E. B. M., Mitchell, B., Ingram, L., and Pittman Jr,
 C. U., Wood/plastic copyrolysis in an auger reactor: Chemical and physical analysis of the products. *Fuel* 2009 88(7): 1251-1260.
- Garcia-Perez, M., Adams, T. T., Goodrum, J. W., Geller, D. P., and Das, K. C., Production and fuel properties of pine chip bio-oil/biodiesel blends. *Enegry & Fuels* 2007 21: 2363-2372.
- Ingram, L., Mohan, D., Bricka, M., Steele, P., Strobel, D., Crocker, D., Mitchell, B., Mohammad, J., Cantrell, K., and Pittman, C. U., Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. *Enegry & Fuels* 2008 22: 614-625.
- 61. ASTM D 7544 09, Standard specification for pyrolysis liquid biofuel. *Petroleum Standards (D02.E0), Book of Standards Volume: 05.04* **2009.**
- 62. Islam, M. R., Parveen, M., and Haniu, H., Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. *Bioresource Technology* 2010 101(11): 4162-4168.
- 63. Parihar, M. F., Kamil, M., Goyal, H. B., Gupta, A. K., and Bhatnagar, A. K., An experimental study on pyrolysis of biomass. *Institution of Chemical Engineers* **2007**.
- 64. Pattiya, A., Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor. *Bioresource Technology* 2011 102(2): 1959-1967.
- Kiujuan, G., Shurong, W., Qi, W., Zuogang, G., and Zhongyang, L., Properties of bio-oil from fast pyrolysis of rice husk. *Chinese Journal of Chemical Engineering* 2011 19(1): 116.

- 66. Heo, H. S., Park, H. J., Park, Y.-K., Ryu, C., Suh, D. J., Suh, Y.-W., Yim, J.-H., and Kim, S.-S., Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. *Bioresource Technology* 2010 101(1, Supplement 1): S91-S96.
- 67. Heo, H. S., Park, H. J., Yim, J.-H., Sohn, J. M., Park, J., Kim, S.-S., Ryu, C., Jeon, J.-K., and Park, Y.-K., Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. *Bioresource Technology* **2010** 101(10): 3672-3677.
- 68. Le'de', J., Broust, F., Ndiaye, F. T., and Ferrer, M., Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. *Fuel* **2007** 86: 1800-1810.
- 69. Lehmann, J., A handful of carbon. *Nature* 2007 447: 143-144.
- McHenry, M. P., Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. *Agriculture, Ecosystems and Environment* 2009 129: 1-7.
- Donald, J., Broiler litter storage. *Alabama Cooperative Extension System*, 2011, Monday, April 18, 2011]; Available from: <u>http://www.aces.edu/pubs/docs/A/ANR-0839/</u>.
- 72. Prince, B., Bock, B., Hilburn, R., and Simpson, G., The scoopp on littler. *US Department of Agriculture*. **2007**.
- 73. Cross, D. L., Feeding poultry litter to beef cattle. *The Clemson University Cooperative Extension Service* 1995.
- 74. Jacob, J. P., Kunkle, W. E., Tervola, R. S., Miles, R. D., and Mather, F. B., Broiler litter, Part 1: A feed ingredient for ruminants. **1997**.
- 75. Mante, N. O. D., Influence of wood on the pyrolysis of poultry litter. *Biological Systems Engineering*,(Virginia Polytechnic Institute and State University) **2008**.

- 76. Rankins, D., McCaskey, T. A., Ruffin, B. G., and Norwood J. Van Dyke, Feeding broiler litter to beef cattle. *Alabama Cooperative Extension System* Auburn.
- 77. Mante, O. D. and Agblevor, F. A., Influence of pine wood shavings on the pyrolysis of poultry litter. *Waste Management* 2010 30(12): 2537-2547.
- Kelleher, B. P., Leahy, J. J., Henihan, A. M., O'Dwyer, T. F., Sutton, D., and Leahy, M. J., Advances in poultry litter disposal technology a review. *Bioresource Technology* 2002 83(1): 27-36.
- Agblevor, F. A., Beis, S., Kim, S. S., Tarrant, R., and Mante, N. O., Biocrude oils from the fast pyrolysis of poultry litter and hardwood. *Waste Management* 2010 30(2): 298-307.
- Koutcheiko, S., Monreal, C. M., Kodama, H., McCracken, T., and Kotlyar, L., Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. *Bioresource Technology* 2007 98(13): 2459-2464.
- Kim, S.-S. and Agblevor, F. A., Pyrolysis characteristics and kinetics of chicken litter.
 Waste Management 2007 27(1): 135-140.
- Boateng, A. A., Hicks, K. B., Flores, R. A., and Gutsol, A., Pyrolysis of hull-enriched byproducts from the scarification of hulled barley (Hordeum vulgare L.). *Journal of Analytical and Applied Pyrolysis* 2007 78(1): 95-103.
- 83. Delaney, M. T., Fernandez, I. J., Simmons, J. A., and Briggs, R. D., Red maple and white pine litter quality: Initial changes with decomposition. *Maine Agricultural and Forest Experiment Station* **1996**.

- Pütün, E. and Varoli, E. A., Carbonaceous products from different biomass samples: A general review. *Department of Materials Science and Engineering, Anadolu University.*, Eskisehir, Turkey.
- 85. Tiwari, G. N. and Ghosal, M. K., Renewable energy resources: basic principles and applications
 2005. [1-84265-125-0], http://books.google.com/books?id=I8ApwaKRmf0C&printsec=frontcover&dq=renewabl
 e+energy+resources&hl=en&ei=BqGsTZTEBYHqgQep6cHzBQ&sa=X&oi=book_result
 &ct=book-thumbnail&resnum=2&ved=0CD4Q6wEwAQ#v=onepage&q&f=false
- Lehmann, J. and Joseph, S., Biochar for environmental management: science and technology 2009. [978-1-84407-658-1],
- Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis. *Fuel* 2007 86(12-13): 1781-1788.
- Mehta, R., Barlaz, M. A., M.ASCE, Yazdani, R., Augenstein, D., Bryars, M., and Sinderson, L., Refuse Decomposition in the Presence and Absence of Leachate Recirculation. *Journal of Environmental Engineering* 2002: 228-236.
- 89. Qi, J. and Xiuyang, L., Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water. *Chinese Journal of Chemical Engineering* **2007**. p. 666—669,

APPENDIX A

SUPPLEMENTARY DATA FOR BIOMASS CHARECTERIZATION

All the row data used for the Table 6 are reported in this Appendix. Data tables shown below represent the type of biomass and their physical properties recorded during the characterization of different biomass involved in this work.

A.1 PHYSICAL PROPERTIES OF PINE WOOD BIOMASS

S. No.	Weight of the beaker	Weight of the Beaker with biomass	Weight of the biomass	Density (g/cc)
1	5.7221	6.3607	0.6386	0.3193
2	5.7245	6.3676	0.6431	0.3215
3	5.7720	6.4180	0.6460	0.3230
			Average	0.32

Table A.1.1. Data for density of pine wood biomass.

Density calculations:

Weight of the biomass (g) = Weight of the Beaker with biomass - Weight of the beaker

Density $(g/cc) = \frac{\text{Weight of the biomass}}{\text{Volume of the beaker (100ml)}}$

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after drying	Weight Difference	Moisture (%)
1	47.8796	52.2513	4.3717	51.9363	4.0567	0.3150	7.2054
2	48.1250	50.1267	2.0017	49.9728	1.8478	0.1539	7.6885
3	48.6719	51.6717	2.9998	51.4428	2.7709	0.2289	7.6305
						Average	7.51

Table A.1.2. Data for moisture content of pine wood biomass.

Moisture content calculations:

Weight of the biomass (g) = Weight of the crucible with biomass - Weight of the crucible

Weight of the biomass after drying (g) = Weight of the crucible with biomass after drying -

Weight of the crucible

Weight Difference (g) = Weight of the biomass - Weight of the biomass after drying

Moisture (%) = $\frac{\text{Weight Difference x 100 \%}}{\text{Weight of the biomass}}$

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after test	Weight of ash	Ash content (%)
1	18.6988	18.6975	20.537	1.8395	18.7031	0.0056	0.3044
2	16.9612	16.9608	18.4771	1.5163	16.9642	0.0034	0.2242
3	19.2093	19.2074	21.2176	2.0102	19.2154	0.0082	0.3979
						Average	0.31

Ash content calculations:

Weight of the biomass (g) = Weight of the crucible with biomass - Weight of the crucible

Weight of the biomass after test (g) = Weight of the crucible with biomass after drying – Weight

of the crucible

Weight of ash(g) = Weight of the biomass - Weight of the biomass after test

Ash Content (%) = $\frac{\text{Weight of ash x 100 \%}}{\text{Weight of the biomass}}$

S. No.	Wt. of the biomass	Higher heating value (MJ/kg)
1	0.51	18.691
2	0.4672	18.618
3	0.5672	18.665
	Average	18.66

Table A.1.4. Data for higher heating value of pine wood biomass

A.2 PHYSICAL PROPERTIES OF UNDERUTILIZED FOREST BIOMASS

S. No.	Weight of the beaker	Weight of the Beaker with biomass	Weight of the biomass	Density (g/cc)
1	5.7224	6.2542	0.5318	0.2659
2	5.7225	6.2449	0.5224	0.2612
3	5.7226	6.2444	0.5218	0.2609
			Average	0.26

Table A.2.1. Data for density of underutilized forest biomass.

Table A.2.2. Data for moisture content of underutilized forest biomass.

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after drying	Weight Difference	Moisture (%)
1	17.759	19.493	1.734	19.405	1.646	0.088	5.0749
2	17.343	19.117	1.774	19.025	1.682	0.092	5.1860
3	17.418	19.449	2.031	19.354	1.936	0.095	4.6774
						Average	4.98

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after test	Weight of ash	Ash content (%)
1	18.1371	18.1365	19.2831	0.9066	18.1450	0.0085	0.9375
2	17.9550	17.9550	19.0025	1.0475	17.9635	0.0085	0.8114
3	17.8273	17.8264	18.7463	0.9199	17.8348	0.0084	0.9131
						Average	0.89

Table A.2.3. Data for ash content of underutilized forest biomass

Table A.2.4. Data for higher heating value of underutilized forest biomass

S. No.	Wt. of the biomass	Higher heating value (MJ/kg)
1	0.5023	18.093
2	0.5126	17.989
3	0.5509	18.122
	Average	18.07

A.3 PHYSICAL PROPERTIES OF POULTRY LITTER BIOMASS

S. No.	Weight of the beaker	Weight of the Beaker with biomass	Weight of the biomass	Density (g/cc)
1	5.7228	6.7607	1.0379	0.5190
2	5.7235	6.7674	1.0439	0.5220
3	5.7229	6.7591	1.0362	0.5181
			Average	0.52

Table A.3.2. Data for moisture content of poultry litter biomass.

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after drying	Weight Difference	Moisture (%)
1	46.5235	59.0948	12.5713	57.4907	10.9672	1.6041	12.7600
2	48.144	61.4785	13.3345	59.7782	11.6342	1.7003	12.7511
3	48.7824	62.0893	13.3069	60.3901	11.6077	1.6992	12.7693
						Average	7.76

S. No.	Weight of the crucible	Weight of the crucible with biomass	Weight of the biomass	Weight of the crucible with biomass after drying	Weight of the biomass after test	Weight of ash	Ash content (%)
1	16.9228	16.9228	22.4197	5.4969	18.8371	1.9143	34.8250
2	18.9612	18.9604	22.5412	3.5808	20.2095	1.2491	34.8832
3	17.7841	17.7838	21.4985	3.7147	19.0595	1.2757	34.3419
						Average	34.68

Table A.3.3. Data for ash content of poultry litter biomass

Table A.3.4. Data for higher heating value of poultry litter biomass

S. No.	Wt. of the biomass	Higher heating value (MJ/kg)
1	0.5012	9.664
2	0.4995	9.677
3	0.5109	9.65
	Average	9.66

APPENDIX B

SUPPLEMENTARY DATA FOR SELECTED FIGURES AND TABLES INVOLVED IN PRODUCTION OF BIO-OIL FROM SELECTED BIOMASS

This appendix comprises of all the data, SAS code and SAS results involved in constructing the figures (Figure 24-27) and tables (Table7-13) of the first specific objective of this work. Data tables shown below represents the yield of bio-oil, char and gas and their physical properties, obtained while operating the respective biomass at different temperatures.

B.1 EFFECT OF TEMPERATURE ON PRODUCT YIELD

Table B.1.1. Data for yield of bio-oil obtained from selected biomass at different temperatures

Operating	Iteration	Bio-oil from selected biomass (wt. %)				
temperature (°C)	No.	P.W.	U.U	P.L.		
	1	30	30.4	32.2		
425	2	29.6	29.6	32.8		
	3	29	31.2	33		
	1	30	31.8	33.4		
450	2	32.2	35	33.6		
	3	33.4	30.8	32.8		
	1	36.2	32	35.4		
475	2	34.6	32	34.4		
	3	35.8	31.2	34.6		
	1	37.6	34.2	31.2		
500	2	36.4	32.8	29.4		
	3	39.4	31.4	26		

(refer Figure 24).

SAS code for pine wood bio-oil (refer Table 7):

data OILYIELD; input temp yield; datalines; 425 30 425 29.6 425 29 450 30 32.2 450 450 33.4 475 36.2 475 34.6 35.8 475 500 37.6 36.4 500 500 39.4 ; run; proc anova data=OILYIELD; class temp; model yield=temp; means temp/ alpha=0.05; run;

SAS results for pine wood bio-oil:

		The	ANOVA Procedure	e		
	Level of		yield-			
	temp	Ν	Mean	Std Dev		
	425	3	29.5333333	0.50332230		
	450	3	31.8666667	1.72433562		
	475	3	35.5333333	0.83266640		
	500	3	37.8000000	1.50996689		
Dependent Variable: vi	eld					
1			Sum of			
Source		DF	Squares	Mean Square F	⁼ Value	Pr > F
Model		3	122.6766667	40.8922222	26.38	0.0002
Error		8	12.4000000	1.5500000		
Corrected Total		11	135.0766667			
	R-Square 0.908200	Coef 3.6	f Var Root 96160 1.244	MSE yield Mear 990 33.68333	1 3	
Source temp		DF 3	Anova SS 122.6766667	Mean Square F 40.8922222	⁻ Value 26.38	Pr > F 0.0002

SAS code for underutilized forest bio-oil (refer Table 7):

data OILYIELD; input temp yield;

datali	ines;
425	30.4
425	<mark>29.6</mark>
425	31.2
450	31.8
450	<mark>35</mark>
450	30.8
475	32
475	32
475	31.2
500	34.2
<mark>500</mark>	32.8
<mark>500</mark>	31.4
;	
<pre>run;</pre>	
proc a	anova data=OILYIELD;
class	temp;
model	<pre>yield=temp;</pre>
means	<pre>temp/ alpha=0.05;</pre>
<pre>run;</pre>	

SAS result for underutilized forest bio-oil:

The ANOVA Procedure

Level of		yiel	d
temp	Ν	Mean	Std Dev
425	3	30.4000000	0.8000000
450	3	32.5333333	2.19393102
475	3	31.7333333	0.46188022
500	3	32.8000000	1.4000000

Source		DF	Sum o Square	f s Mean	Square	F Value	Pr > F
Model		3	10.4533333	3 3.4	844444	1.83	0.2202
Error		8	15.2533333	3 1.9	0666667		
Corrected Total		11	25.7066666	7			
	R-Square 0.406639	Coef 4.3	f Var 1 333120	Root MSE 1.380821	yield 31.8	Mean 36667	
Source		DF	Anova S	S Mean	Square	F Value	Pr > F
temp		3	10.4533333	3 3.4	844444	1.83	0.2202

SAS code for poultry litter bio-oil (refer Table 7):

data OILYIELD; input temp yield; datalines; 425 32.2 425 32.8 425 33 450 33.4 33.6 450 450 32.8 475 35.4 475 34.4 475 34.6 500 31.2 29.4 500 500 26 ; run; proc anova data=OILYIELD; class temp; model yield=temp; means temp/ alpha=0.05; run;

SAS result for poultry litter bio-oil:

The ANOVA Procedure

Level of		yiel	Ld
temp	Ν	Mean	Std Dev
425	3	32.6666667	0.41633320
450	3	33.2666667	0.41633320
475	3	34.8000000	0.52915026
500	3	28.8666667	2.64070698

Dependent Variable: yield

temp

			Sum	of					
Source		DF	Squar	es	Mean	Square	F	Value	Pr > F
Model		3	57.200000	00	19.06	666667		10.04	0.0044
Error		8	15.200000	00	1.90	000000			
Corrected Total		11	72.400000	00					
	R-Square	Coef	f Var	Root	MSE	vield	Mean		
						,			
	0.790055	4.2	54336	1.378	405	32.4	0000		
Source		DF	Anova	SS	Mean	Square	F	Value	Pr > F
temp		3	57.200000	00	19.06	666667		10.04	0.0044

Table B.1.2. Data for yield of bio-char obtained from selected biomass at different temperatures

Operating	Iteration	Bio-char from selected biomass (wt. %)				
temperature (°C)	No.	P.W.	U.U	P.L.		
	1	48.8	38.6	49.4		
425	2	49.6	48	48.4		
	3	50.4	39.6	47.2		
	1	43	40.8	43		
450	2	37.8	36.4	42.6		
	3	41.2	40.4	45.6		
	1	32.2	39	39.6		
475	2	34.2	40.4	40.8		
	3	32.8	34.4	40.8		
	1	28.4	31	36		
500	2	23.6	30.2	38.4		
	3	21	24	39.2		

(refer Figure 25).

SAS code for pine wood bio-char:

```
data CHARYIELD;
input temp yield;
datalines;
425 48.8
425
    49.6
425 50.4
450 43
450
     37.8
450
     41.2
475
     32.2
475
     34.2
475
     32.8
500
     28.4
500
     23.6
500 21
;
run;
proc anova data=CHARYIELD;
class temp;
model yield=temp;
means temp/ alpha=0.05;
run;
```

SAS results for pine wood bio-char:

The ANOVA Procedure

Level of		yiel	.d
temp	Ν	Mean	Std Dev
425	3	49.6000000	0.8000000
450	3	40.6666667	2.64070698
475	3	33.0666667	1.02632029
500	3	24.3333333	3.75410886

Dependent Variable: yield

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	1044.276667	348.092222	61.18	<.0001
Error	8	45.520000	5.690000		
Corrected Total	11	1089.796667			

R-Square	Coeff Var	Root MSE	yield Mean
0.958231	6.461505	2.385372	36.91667

Source	DF	Anova SS	Mean Square	F Value	Pr > F
temp	3	1044.276667	348.092222	61.18	<.0001

SAS code for underutilized forest bio-char (refer Table 7):

```
data CHARYIELD;
input temp yield;
datalines;
425
    38.6
425
     48
425
     39.6
450
     44.8
450
     36.4
450
     40.4
    39
475
475
    40.4
475
    34.4
500
     31
500
     30.2
500 24
;
run;
proc anova data=CHARYIELD;
class temp;
model yield=temp;
means temp/ alpha=0.05;
```

run;

SAS result for underutilized forest bio-char:

Level of		yiel	d
temp	Ν	Mean	Std Dev
	_		
425	3	42.0666667	5.16268664
450	3	40.5333333	4.20158700
475	3	37.9333333	3.13900196
500	3	28.4000000	3.83144881

The ANOVA Procedure

Dependent Variable: yield

Source		DF	Sum Squar	of es	Mean	Square	F	Value	Pr > F
		2.				oqual o		10.200	
Model		3	338.30666	67	112.7	688889		6.55	0.0151
Error		8	137.68000	00	17.2	2100000			
Corrected Total		11	475.98666	67					
	R-Square	Coef	f Var	Root	MSE	yield	Mean		
	0.710748	11.	14188	4.148	494	37.2	3333		
Source		DF	Anova	SS	Mean	Square	F	Value	Pr > F
temp		3	338.30666	67	112.7	7688889		6.55	0.0151

SAS code for poultry litter bio-char (refer Table 7):

data CHARYIELD; input temp yield; datalines; 425 49.4 425 48.4 47.2 425 450 43 42.6 450 450 45.6 39.6 475 475 40.8 475 40.8 500 36 500 38.4 500 39.2 ; run; proc anova data=CHARYIELD; class temp;

model yield=temp; means temp/ alpha=0.05; run;

SAS result for poultry litter bio-char:

The ANOVA Procedure

	Level o	f	y			
	temp	Ν	Mean	Std [Dev	
	425	3	48.3333333	1.101514	111	
	450	3	43.7333333	1.628905	556	
	475	3	40.400000	0.692820	032	
	500	3	37.8666667	1.665332	280	
Dependent Variable:	yield		Que of			
			SUM OT			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	184.1966667	61.3988889	34.49	<.0001
Error		8	14.2400000	1.7800000		

> F

Corrected Total		11	198.4366	667				
	R-Square 0.928239	Coe 3.	ff Var 133072	Root 1.33	MSE 4166	yield M 42.58	ean 333	
Source temp		DF 3	Anova 184.1966	SS 667	Mean 61.	Square 3988889	F Value 34.49	Pr > F <.0001

Table B.1.3. Data for yield of bio-char obtained from selected biomass at different temperatures

(refer Figure 26).

Operating	Iteration	Gas from selected biomass (wt. %)					
temperature (°C)	No.	P.W.	U.U	P.L.			
	1	21.2	31	18.4			
425	2	20.8	22.4	18.8			
	3	20.6	29.2	19.8			
	1	27	27.4	23.6			
450	2	30	28.6	23.8			
	3	25.4	28.8	21.6			
	1	31.6	29	25			
475	2	31.2	27.6	24.8			
	3	31.4	34.4	24.6			
	1	34	34.8	32.8			
500	2	40	37	32.2			
	3	39.6	44.6	34.8			

SAS code for pine wood gas (refer Table 7):

```
data GASYIELD;
input temp yield;
datalines;
425
    21.2
    20.8
425
425 20.6
450 27
450
    30
450
    25.4
475
    31.6
475
     31.2
     31.4
475
    34
500
500 40
500 39.6
;
run;
proc anova data=GASYIELD;
class temp;
model yield=temp;
means temp/ alpha=0.05;
run;
```

SAS results for pine wood gas:

The ANOVA Procedure

Level of		yiel	.d
temp	Ν	Mean	Std Dev
425	3	20.8666667	0.30550505
450	3	27.4666667	2.33523732
475	3	31.4000000	0.2000000
500	3	37.8666667	3.35459883

			Sum	of					
Source		DF	Squai	res	Mean	Square	F	Value	Pr > F
Model		3 4	156.72000	000	152.2	2400000		36.16	<.0001
Error		8	33.68000	000	4.2	2100000			
Corrected Total		11 4	190.4000	000					
	R-Square	Coeff	Var	Root	MSE	yield	Mean		
	0.931321	6.979	9008	2.051	828	29.4	10000		
Source		DF	Anova	SS	Mean	Square	F	Value	Pr > F

SAS code for underutilized forest gas (refer Table 7):

```
data GASYIELD;
input temp yield;
datalines;
425
     31
425
    22.4
425
     29.2
     23.4
450
450
     28.6
450
     28.8
475
     29
475
     27.6
475
     34.4
500
     34.8
500
     37
500 44.6
;
run;
proc anova data=GASYIELD;
class temp;
model yield=temp;
means temp/ alpha=0.05;
run;
```

temp

SAS result for underutilized forest gas:

The ANOVA Procedure

Level of		yiel	.d
temp	Ν	Mean	Std Dev
425	3	27.5333333	4.53578365
450	3	26.9333333	3.06159000
475	3	30.3333333	3.59072880
500	3	38.8000000	5.14198405

0	55	Sum of		F \/_l	D
Source	DF	Squares	mean Square	F Value	Pr > F
Model	3	269.4000000	89.8000000	5.18	0.0279
Error	8	138.5600000	17.3200000		
Corrected Total	11	407.9600000			
	-				

R-Square	Coeff Var	Root MSE	yield Mean
0.660359	13.46838	4.161730	30.90000

Source	DF	Anova SS	Mean Square	F Value	Pr > F
temp	3	269.4000000	89.8000000	5.18	0.0279

SAS code for poultry litter gas (refer Table 7):

```
data GASYIELD;
input temp yield;
datalines;
425
     18.4
425
     18.8
425 19.8
450 23.6
450
     23.8
450
     21.6
475
     25
475
     24.8
475
    24.6
500 32.8
500 32.2
500 34.8
;
run;
proc anova data=GASYIELD;
class temp;
model yield=temp;
means temp/ alpha=0.05;
run;
```

SAS result for poultry litter gas:

The ANOVA Procedure

Level of		yie	Ld
temp	Ν	Mean	Std Dev
425	3	19.000000	0.72111026
450	3	23.0000000	1.21655251
475	3	24.8000000	0.2000000
500	3	33.2666667	1.36137186

			Sum	of				
Source		DF	Squa	res	Mean	Square	F Value	Pr > F
Model		3	325.1300	000	108.	3766667	111.35	<.0001
Error		8	7.7866	667	0.	9733333		
Corrected Total		11	332.9166	667				
	R-Square	Co	eff Var	Root	MSE	yield M	lean	
	0.976611	3	.943677	0.98	6577	25.0	1667	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		3	325.1300	000	108.	3766667	111.35	<.0001

B.2 EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-OIL

		Sample #1				Sample #2				Sample #3			
Temp (°C)	Iteration No.	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)
	1	5.7221	8.0354	2.3133	1156.65	5.7245	8.0341	2.3096	1154.8	5.7300	8.0457	2.3157	1157.85
425	2	5.7245	8.0341	2.3096	1154.8	5.7372	8.0417	2.3045	1152.25	5.8418	8.1783	2.3365	1168.25
	3	5.7720	8.0613	2.2893	1144.65	5.7779	8.0595	2.2816	1140.8	5.7790	8.0674	2.2884	1144.2
	1	5.7448	8.0155	2.2707	1135.35	5.7498	8.0448	2.2950	1147.5	5.7542	8.0267	2.2725	1136.25
450	2	5.7426	8.0660	2.3234	1161.7	5.9782	8.3175	2.3393	1169.65	5.7589	8.0984	2.3395	1169.75
	3	5.7544	8.0445	2.2901	1145.05	5.9348	8.2192	2.2844	1142.2	5.7581	8.0431	2.2850	1142.5
	1	5.7712	8.0048	2.2336	1116.8	5.8699	8.0737	2.2038	1101.9	5.7412	8.0121	2.2709	1135.45
475	2	5.7490	8.0434	2.2944	1147.2	5.9588	8.2517	2.2929	1146.45	5.7763	8.0265	2.2502	1125.1
	3	5.7392	8.0000	2.2608	1130.4	5.7551	8.1157	2.3606	1180.3	5.7545	8.0054	2.2509	1125.45
	1	5.7391	7.9807	2.2416	1120.8	5.8180	8.0104	2.1924	1096.2	5.7492	8.0101	2.2609	1130.45
500	2	5.7511	8.0867	2.3356	1167.8	5.7514	8.0567	2.3053	1152.65	5.8874	8.1847	2.2973	1148.65
	3	5.7589	8.0115	2.2526	1126.3	5.7563	8.0100	2.2537	1126.85	5.7554	7.9898	2.2344	1117.2

Table B.2.1. Data for	density of pi	ne wood bio-oi	l (refer Table 8)
-----------------------	---------------	----------------	-------------------

Note: Column "Iteration No." represents the number of iterations made on the particular temperature and the columns Sample #1, #2 and #3 represents the experiments made on each Iteration No. Here, the column "Temp" represents the operating temperature (°C) of the process.

SAS code for density of pine wood bio-oil:

data Pinewood; input temp yield; datalines; 425 1156.65 425 1154.8 425 1144.65 450 1135.35 450 1161.7 450 1145.05 1116.8 475 475 1147.2 475 1130.4 500 1120.8 500 1167.8 500 1126.3 425 1154.8 425 1152.25 425 1140.8 450 1147.5 450 1169.65 450 1142.2 475 1101.9 475 1146.45 475 1180.3 500 1096.2 500 1152.65 500 1126.85 425 1157.85 425 1168.25 425 1144.2 450 1136.25 450 1169.75 450 1142.5 475 1135.45 475 1125.1 475 1125.45 500 1130.45 500 1148.65 500 1117.2 ; run; proc anova data=Pinewood; class temp; model yield=temp; means temp/ alpha=0.05; run;

SAS result for density of pine wood bio-oil:

The ANOVA Procedure

Level of		yield				
temp	Ν	Mean	Std	Dev		
	425	9	1152.69444	4 8.45290	06	
------------------------	----------	-----	-------------	---------------	---------	--------
	450	9	1149.99444	4 13.53053	13	
	475	9	1134.33889	9 22.26410	76	
	500	9	1131.87778	3 21.42628	51	
Dependent Variable: y:	ield					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	3053.06354	1017.68785	3.37	0.0305
Error		32	9674.42389	302.32575		
Corrected Total		35	12727.48743			
	R-Square	Coe	ff Var Root	t MSE yield M	ean	
	0.239880	1.	522248 17.3	38752 1142.	226	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	3053.063542	1017.687847	3.37	0.0305

Table B.2.2. Data for acidity (pH) of pine wood bio-oil (refer Table 8).

Operating temperature (°C)	Iteration No.	Sample # 1	Sample # 2	Sample # 3
	1	3.31	3.31	3.31
425	2	3.33	3.34	3.33
	3	3.36	3.36	3.35
450	1	3.39	3.4	3.4
	2	3.43	3.43	3.43
	3	3.47	3.48	3.48
	1	3.63	3.63	3.64
475	2	3.69	3.68	3.68
	3	3.69	3.69	3.69
	1	3.68	3.69	3.7
500	2	3.74	3.73	3.73
	3	3.76	3.76	3.76

SAS code for acidity of pine wood bio-oil:

```
data Pinewood;
input temp pH;
datalines;
```

425	3.31
425	3.33
425	3.36
450	3.39
450	3.43
450	3.47
475	3.63
475	3.69
475	3.69
500	3.68
500	3.74
500	3.76
425	3.31
425	3.34
425	3.36
450	3.4
450	3.43
450	3.48
475	3.63
475	3.68
475	3.69
<mark>500</mark>	3.69
<mark>500</mark>	3.73
<mark>500</mark>	3.76
425	3.31
425	3.33
425	3.35
<mark>450</mark>	3.4
<mark>450</mark>	3.43
450	3.48
475	3.64
475	3.68
475	3.69
500	3.7
500	3.73
500	3.76
;	
run;	
proc a	inova data=Pinewood;
CLASS	cemp;
means	$p_{\pi} - cemp;$
means	cemp/ arpha-0.03;
run,	

SAS result for acidity of pine wood bio-oil:

Level of		рН	
temp	Ν	Mean	Std Dev
425	9	3.33333333	0.02061553
450	9	3.4344444	0.03503966
475	9	3.66888889	0.02713137
500	9	3.7277778	0.03113590

Dependent Variable: pH

			Sum o	f				
Source		DF	Square	s	Mean S	Square	F Value	Pr > F
Model		3	0.951488	89	0.3	1716296	377.76	<.0001
Error		32	0.026866	67	0.00	083958		
Corrected Total		35	0.978355	56				
	R-Square	Coeff	Var	Root	MSE	pH Mean		
	0.972539	0.81	8262	0.028	3976	3.5411	111	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		3	0.951488	89	0.3	1716296	377.76	<.0001

Table B.2.3. Data for water content of pine wood bio-oil (refer Table 8).

Sample wt (g)		Difference	KFR vol (ml)		Difference	Water	
Sample	Initial	Final	(g)	Initial	final	(ml)	(wt%)
methanol	0.0000	2.4000	2.4000				40ml
water			5 µl	2.4	3.3	0.9	5.56
water			5 µl	3.3	4.2	0.9	5.56
425-1-A	155.1438	155.0818	0.0620	0	2.2	2.2	19.71
425-1-B	155.0818	155.0151	0.0667	2.2	4.2	2	16.66
425-1-C	155.0151	154.9532	0.0619	4.2	6.2	2	17.95
425-2-A	156.7217	156.6661	0.0556	6.2	8.0	1.8	17.99
425-2-В	156.6650	156.6237	0.0413	8.0	9.6	1.6	21.52
425-2-C	156.6237	156.5786	0.0451	9.6	11.3	1.7	20.94
425-3-a	164.8720	164.8252	0.0468	11.3	13.0	1.7	20.18
425-3-b	164.8252	164.7893	0.0359	13.0	14.3	1.3	20.12
425-3-с	164.7893	164.7491	0.0402	14.3	15.9	1.6	22.11
450-3-а	133.6844	133.6321	0.0523	15.9	18.0	2.1	22.31
450-3-b	133.6321	133.5893	0.0428	18.0	19.5	1.5	19.47
450-3-с	133.5893	133.5352	0.0541	19.5	21.5	2	20.54
450-4-a	155.4381	155.3906	0.0475	21.5	23.1	1.6	18.71
450-4-b	155.3906	155.3230	0.0676	23.1	25.2	2.1	17.26
450-4-c	155.3230	155.2848	0.0382	25.2	26.5	1.3	18.91
450-5-а	164.1564	164.1139	0.0425	0.0	1.5	1.5	19.61
450-5-b	164.1139	164.0717	0.0422	1.5	2.9	1.4	18.43
450-5-с	164.0717	164.0259	0.0458	2.9	4.4	1.5	18.20
475-1-a	174.0000	173.9581	0.0419	0.0	1.5	1.5	19.89
475-1-b	173.9581	173.9168	0.0413	1.5	2.8	1.3	17.49
475-1-c	173.9168	173.8687	0.0481	2.8	4.3	1.5	17.33
475-2-а	127.9836	127.9176	0.0660	4.3	6.6	2.3	19.36
475-2-b	127.9176	127.8789	0.0387	6.6	8.0	1.4	20.10
475-2-с	127.8789	127.8338	0.0451	8.0	9.5	1.5	18.48
475-3a	161.3829	161.3238	0.0591	9.5	11.3	1.8	16.92
475-3b	161.3238	161.2730	0.0508	11.3	12.9	1.6	17.50

Sampla	Sampl	e wt (g)	Difference	KFR vo	l (ml)	Difference	Water
Sample	Initial	Final	(g)	Initial	final	(g)	(wt%)
475-3c	161.2730	161.2218	0.0512	12.9	14.6	1.7	18.45
500-1a	138.2234	138.1800	0.0434	14.6	16.1	1.5	19.20
500-1b	138.1800	138.1381	0.0419	16.1	17.6	1.5	19.89
500-1c	138.1381	138.1030	0.0351	17.6	19.0	1.4	22.16
500.2a	168.7295	168.6684	0.0611	19.0	21.2	2.2	20.00
500-2b	168.6491	168.5373	0.1118	21.2	25.1	3.9	19.38
500-2c	168.5373	168.5015	0.0358	25.1	26.3	1.2	18.62
500-3a	165.3967	165.3506	0.0461	0.0	1.6	1.6	19.28
500-3b	165.3501	165.2971	0.0530	1.6	3.4	1.8	18.87
500-3c	165.2971	165.2369	0.0602	3.4	5.0	1.6	14.77

Water content calculations:

Water (%) = $\frac{\text{KFR required for sample titration (ml)x water equvalence of KFR x 0.1}}{\text{Grams of sample}}$

SAS code for water content of pine wood bio-oil:

data P	'inewood;
input	temp Water;
datali	nes;
425	19.71327742
425	16.65835082
425	17.95011309
425	17.9856259
425	21.52275061
425	20.94113525
425	20.18045299
425	20.11762674
425	22.11168159
450	22.30721989
450	19.47042056
450	20.5381146
450	18.71346526
450	17.25839645
450	18.90635602
450	19.60785882
450	18.43076777
450	18.1950655
475	19.88863962
475	17.48723487
475	17.32503119
475	19.36028485
475	20.09763307
475	18.47747228
475	16.92048731
475	17.49782677
475	18.44619531
500	19.20124424

500	19.88863962
500	22.15892877
500	20.00365303
500	19.37986047
500	18.62198883
500	19.28177007
500	18.86793962
500	14.76560797
;	
run;	
proc a	anova data=Pinewood;
class	temp;
model	Water=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for water content of pine wood bio-oil:

	Level of	Level ofWater				
	temp	Ν	Mean	Std De	ev.	
	425	9	19.6867794	1.8143768	37	
	450	9	19.2697405	1.4720499	90	
	475	9	18.3889784	1.1736038	36	
	500	9	19.1299592	1.9357951	12	
Dependent Variable: W	ater					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	7.90332978	2.63444326	1.00	0.4074
Error		32	84.66834495	2.64588578		
Corrected Total		35	92.57167474			
	R-Square	Coe	ff Var Root	MSE Water Me	ean	
	0.085375	8.	507921 1.62	6618 19.118	386	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	7.90332978	2.63444326	1.00	0.4074

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.6027	19211	0.5427	19316	0.5638	19333
425	2	0.5548	19513	0.4483	19692	0.5218	19717
	3	0.5246	20722	0.6735	20983	0.4732	21100
	1	0.4892	20316	0.5531	20378	0.5063	20251
450	2	0.5589	20692	0.5244	20523	0.5682	20547
	3	0.6273	21583	0.5298	21501	0.4893	21833
	1	0.4611	20671	0.5231	20599	0.4439	20578
475	2	0.5323	21456	0.4588	21382	0.6264	21504
	3	0.6653	21659	0.5442	21681	0.5538	21722
	1	0.5683	21333	0.5462	21268	0.5183	21424
500	2	0.654	22270	0.5483	22238	0.5032	22309
	3	0.5	22368	0.6093	22472	0.5333	22461

Table B.2.4. Data for higher heating value of pine wood bio-oil (refer Table 8).

SAS code for higher heating value of pine wood bio-oil:

SAS result for higher heating value of pine wood bio-oil:

		1	ne ANOVA Procedui	e		
	Level of			HHV		
	temp	Ν	Mean	Std De	ev	
	425	9	19954.1111	760.42824	12	
	450	9	20847.1111	614.18104	19	
	475	9	21250.2222	488.72634	19	
	500	9	22015.8889	513.07539	95	
Dependent Variable: H	IHV					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	19896898.78	6632299.59	18.20	<.0001
Error		32	11660554.22	364392.32		
Corrected Total	L	35	31557453.00			
	R-Square	Coe	ff Var Root	MSE HHV Me	ean	
	0.630498	2.	872218 603.6	6492 21016.	.83	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	19896898.78	6632299.59	18.20	<.0001

	Iteration No.			S	ample #1			
Temp (°C)		Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	15.4957	15.4941	17.6575	2.1634	15.5045	0.0104	0.4807
425	2	14.4295	14.4294	16.8598	2.4304	14.4431	0.0137	0.5636
	3	14.7354	14.7345	17.3163	2.5818	14.7553	0.0208	0.8056
	1	14.9276	14.9272	17.1031	2.1759	14.9435	0.0163	0.7491
450	2	14.9741	14.9735	17.8231	2.8496	15.0104	0.0369	1.2949
	3	14.3654	14.3643	17.2383	2.874	14.3923	0.028	0.9742
	1	15.1804	15.1801	16.7278	1.5477	15.1968	0.0167	1.0790
475	2	14.1305	14.1302	16.8136	2.6834	14.1498	0.0196	0.7304
	3	14.2178	14.2171	16.9395	2.7224	14.2392	0.0221	0.8117
	1	14.2752	14.2747	16.927	2.6523	14.2799	0.0052	0.1960
500	2	14.4982	14.4972	17.8152	3.318	14.5091	0.0119	0.3586
	3	14.8937	14.8931	17.4977	2.6046	14.9042	0.0111	0.4261

Table B.2.5. Data for ash content of pine wood bio-oil (refer Table 8).

				S	ample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	14.7443	14.7434	17.2586	2.5152	14.7556	0.0122	0.4851
425	2	13.7292	13.7286	15.5593	1.8307	13.7387	0.0101	0.5517
	3	15.3529	15.3528	17.6084	2.2556	15.3712	0.0184	0.8157
	1	12.9885	12.9883	15.4689	2.4806	13.0096	0.0213	0.8587
450	2	12.8962	12.8959	15.6154	2.7195	12.9301	0.0342	1.2576
	3	15.1207	15.1207	17.8644	2.7437	15.1476	0.0269	0.9804
	1	14.3474	14.3467	17.6644	3.3177	14.3784	0.0317	0.9555
475	2	15.0052	15.0044	17.2001	2.1957	15.021	0.0166	0.7560
	3	15.14	15.1377	17.4593	2.3216	15.1573	0.0196	0.8442
	1	14.5044	14.5033	17.2331	2.7298	14.5084	0.0051	0.1868
500	2	16.6669	16.666	17.9489	1.2829	16.6708	0.0048	0.3742
	3	15.4693	15.4689	18.1079	2.639	15.4805	0.0116	0.4396

	Iteration No.			S	ample #3			
Temp (°C)		Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	15.4959	15.4943	17.5999	2.1056	15.5037	0.0094	0.4464
425	2	14.4298	14.429	15.9659	1.5369	14.4374	0.0084	0.5466
	3	14.7354	14.7345	16.1584	1.4239	14.7458	0.0113	0.7936
	1	14.9276	14.9272	15.8834	0.9562	14.9351	0.0079	0.8262
450	2	14.9742	14.9732	16.8698	1.8966	14.9957	0.0225	1.1863
	3	14.3659	14.3642	15.4801	1.1159	14.3743	0.0101	0.9051
	1	15.1804	15.1806	16.081	0.9004	15.1891	0.0085	0.9440
475	2	14.1309	14.131	15.5008	1.3698	14.1414	0.0104	0.7592
	3	14.2181	14.2171	15.876	1.6589	14.2308	0.0137	0.8258
	1	14.2755	14.2745	15.5529	1.2784	14.2772	0.0027	0.2112
500	2	14.4982	14.4975	15.8659	1.3684	14.5021	0.0046	0.3362
	3	14.8938	14.893	16.2628	1.3698	14.8992	0.0062	0.4526

SAS code for ash content of pine wood bio-oil:

data Pinewood; input temp Ash; datalines; 425 0.480724785 425 0.563693219 425 0.805639476 450 0.749115309 450 1.294918585 450 0.974251914 475 1.079020482 475 0.730416636 475 0.81178372 500 0.196056253 500 0.358649789 500 0.426169085 425 0.485050891 425 0.551701535 425 0.815747473 450 0.858663227 450 1.257584115 450 0.980427889 475 0.955481207 475 0.756023136 475 0.844245348 500 0.186826874 500 0.374152311 500 0.43956044 425 0.446428571

425	0.546554753
425	0.793595056
450	0.82618699
450	1.186333439
450	0.905099023
475	0.944024878
475	0.759234925
475	0.825848454
500	0.211201502
500	0.336159018
500	0.452620821
;	
run;	
proc a	anova data=Pinewood;
class	temp;
model	Ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for ash content of pine wood bio-oil:

	Level of			Ash		
	temp	Ν	Mean	Std Dev		
	425	9	0.60990397	0.15122921		
	450	9	1.00362005	0.19720267		
	475	9	0.85623098	0.11484498		
	500	9	0.33126623	0.10702461		
Dependent Variable: As	h					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	2.34607392	0.78202464	36.20	<.0001
Error		32	0.69122244	0.02160070		
Corrected Total		35	3.03729636			
	R-Square	Coeff	Var Root	MSE Ash Mea	n	
	0.772422	20.9	8831 0.146	6972 0.70025	5	
Source		DE	Anova SS	Mean Square	F Value	Pr > F
			Allova 00	Mean oquale	Varue	11 2 1
temp		3	2.34607392	0.78202464	36.20	<.0001

	Iteration No.		S	ample #1		
Operating temperature (°C)		Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)
	1	320.2	308.3	0.9965	314.1	0.58
425	2	327	315.2	1	320.5	0.53
	3	318.3	307.6	1.0006	315.3	0.77
	1	325.9	316.4	1.0212	321.2	0.47
450	2	321.1	311.9	1.0151	317.7	0.57
	3	321.6	312.5	1.0382	318.6	0.59
	1	329.8	321.4	1.005	329.4	0.80
475	2	326.5	317.9	0.9963	325	0.71
	3	321	312.7	1.0067	318.5	0.58
	1	320.5	312.4	1.0165	314.7	0.23
500	2	321.7	313.4	1.0072	320.1	0.67
	3	324.7	316.4	1.0029	324.6	0.82

Table B.2.6. Data for solid content of pine wood bio-oil (refer Table 8).

Operating	Iteration No.		Sample #2								
Operating temperature (°C)		Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)					
	1	331	319.5	1.01	325.4	0.58					
425	2	327.3	315.9	1.0045	322	0.61					
	3	328.5	317.6	1.0005	324.9	0.73					
	1	326.5	316.1	1.0375	321.3	0.50					
450	2	324.7	315.2	1.0191	320.5	0.52					
	3	325.6	315.7	1.0041	321.8	0.61					
	1	333.1	325.3	0.9982	332.9	0.76					
475	2	324.1	317.7	0.9982	324.2	0.65					
	3	319.5	311.3	1.0093	317.1	0.57					
	1	322.6	314.4	1.001	317.1	0.27					
500	2	323.9	315.6	1.0286	323.3	0.75					
	3	330	320.5	1.0024	329	0.85					

	Iteration No.		S	ample #3		
Operating temperature (°C)		Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)
	1	329.4	321.8	1.0078	327.1	0.53
425	2	325.1	317.5	1.0026	323.5	0.60
	3	342.9	330.3	0.9921	337.9	0.77
	1	330.2	323.5	1.0164	328.5	0.49
450	2	331.1	324.9	1.0311	331	0.59
	3	325.6	316.4	1.0026	322.7	0.63
	1	322.8	314.9	1.0625	323.4	0.80
475	2	341.7	333.1	1.0004	337.8	0.47
	3	343.8	337.5	1.0012	343.2	0.57
	1	330.2	321.7	0.9994	324.6	0.29
500	2	330.9	322.4	0.9812	329.4	0.71
	3	339.1	331.5	1.0269	339.3	0.76

Solid content calculations:

Solid content (wt. %) = $\frac{\text{Weight of filter paper after test} - \text{Weight of filter paper after drying}}{\text{Weight of the oil } x 10}$

SAS code for solid content of pine wood bio-oil:

data Pinewood; input temp Solid; datalines; 425 0.58203713 425 0.53 0.769538277 425 0.470035253 450 450 0.571372279 450 0.587555384 475 0.7960199 0.712636756 475 475 0.576139863 500 0.226266601 500 0.665210485 500 0.817628876 425 0.584158416 425 0.607267297 0.729635182 425 450 0.501204819 450 0.520066726 450 0.607509212 475 0.761370467 475 0.65117211

475	0.574655702
500	0.26973027
500	0.748590317
500	0.847964884
425	0.525897996
425	0.598444045
425	0.766051809
450	0.49193231
450	0.591601203
450	0.628366248
475	0.8
475	0.469812075
475	0.56931682
500	0.290174104
500	0.713412148
500	0.759567631
;	
run;	
proc a	nova data=Pinewood;
class	temp;
model	Solid=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for solid content of pine wood bio-oil:

```
The ANOVA Procedure
```

	Level of		8			
	temp	Ν	Mean	Std D	ev	
	425	9	0.63255891	0.096566	64	
	450	9	0.55218260	0.057059	98	
	475	9	0.65679152	0.117177	40	
	500	9	0.59317170	0.254418	88	
Dependent Variable: So	lid					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	0.05685645	0.01895215	0.83	0.4858
Error		32	0.72832377	0.02276012		
Corrected Total		35	0.78518022			
	R-Square	Coeff	Var Root	MSE Solid M	ean	
	0.072412	24.7	8569 0.150	0.608	676	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	0.05685645	0.01895215	0.83	0.4858

			Sample #1				Samj	ole #2		Sample #3			
Temp (°C)	Iteration No.	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)
	1	5838.9	8263	2424.1	1212.05	5835.5	8258.8	2423.3	1211.65	5842.1	8258.4	2416.3	1208.15
425	2	5829.1	8191.3	2362.2	1181.1	5838.7	8192.9	2354.2	1177.1	5832.3	8200.6	2368.3	1184.15
	3	5824.2	8179.9	2355.7	1177.85	5828.5	8174.1	2345.6	1172.8	5837.1	8184.3	2347.2	1173.6
	1	5830.1	8244.4	2414.3	1207.15	5842.7	8211.1	2368.4	1184.2	5844.9	8223.1	2378.2	1189.1
450	2	5825.7	8175.4	2349.7	1174.85	5841.9	8205.9	2364	1182	5849.4	8223.3	2373.9	1186.95
	3	5811.7	8191.2	2379.5	1189.75	5845.8	8193.8	2348	1174	5832.1	8195.1	2363	1181.5
	1	5826.7	8181.7	2355	1177.5	5832.1	8193.2	2361.1	1180.55	5837.5	8195.2	2357.7	1178.85
475	2	5824.6	8216.3	2391.7	1195.85	5827.1	8196.9	2369.8	1184.9	5828.9	8227.8	2398.9	1199.45
	3	5828.2	8177.9	2349.7	1174.85	5837.1	8196.6	2359.5	1179.75	5849.8	8172.4	2322.6	1161.3
	1	5833.6	8190.2	2356.6	1178.3	5850.2	8195.2	2345	1172.5	5872.8	8196.6	2323.8	1161.9
500	2	5827	8188.3	2361.3	1180.65	5848	8207.8	2359.8	1179.9	5830.2	8195	2364.8	1182.4
	3	5828	8166.8	2338.8	1169.4	5822	8131.3	2309.3	1154.65	5817.3	8135.4	2318.1	1159.05

Table B.2.7. Data for density of underutilized forest bio-oil (refer Table 9).

Note: Column "Iteration No." represents the number of iterations made on the particular temperature and the columns Sample #1, #2 and #3 represents the experiments made on each Iteration No. Here, the column "Temp" represents the operating temperature (°C) of the process.

SAS code for density of underutilized forest bio-oil:

data U	JU;	
input	temp	density;
datali	nes;	
425	1212.	.05
425	1181.	.1
425	1177.	.85
450	1207.	.15
450	1174.	. 85
450	1189.	.75
475	1177.	. 5
475	1195.	.85
475	1174.	.85
500	1178.	. 3
500	1180.	.65
500	1169.	. 4
425	1211.	<mark>. 65</mark>
425	1177.	.1
425	1172.	. 8
450	1184.	. 2
450	1182	
450	1174	
475	1180.	<mark>. 55</mark>
475	1184.	. 9
475	1179.	.75
500	1172.	<mark>. 5</mark>
500	1179.	. 9
500	1154.	<mark>. 65</mark>
425	1208.	.15
425	1184.	<mark>.15</mark>
425	1173.	. 6
450	1189.	.1
450	1186.	<mark>. 95</mark>
450	1181.	. 5
475	1178.	.85
475	1199.	. 45
475	1161.	. 3
500	1161.	. 9
500	1182.	. 4
500	1159.	.05
;		
run;		
proc a	nova	data=UU;
CLASS	temp;	
model	aensi	Lty=temp;
means	temp/	aipna=0.05;
run;		

SAS result for density of underutilized forest bio-oil:

Level of		density			
temp	Ν	Mean	Std Dev		

	425	9	118	8.71667		16.81439	912	
	450	9	118	5.50000		9.8581	185	
	475	9	118	1.44444		11.2855	395	
	500	9	117	0.97222		10.3278	783	
Dependent Variable:	density							
			Su	m of				
Source		DF	Squ	ares	Mean	Square	F Value	Pr > F
Model		3	1609.35	4722	536	.451574	3.50	0.0267
Error		32	4911.47	7778	153	. 483681		
Corrected Tota	1	35	6520.83	2500				
	R-Square	Coef	f Var	Boot	MSE	density	Mean	
	n oquare	0001	i vai	noor	MOL	uchistcy	wear	
	0.246802	1.0	48429	12.38	885	118	1.658	
Source		DF	Anov	a SS	Mean	Square	F Value	Pr > F
temp		3	1609.35	4722	536	451574	3.50	0.0267

Table B.2.8. Data for acidity (pH) of underutilized forest bio-oil (refer Table 9).

Operating temperature (°C)	Iteration No.	Sample # 1	Sample # 2	Sample # 3
	1	3.01	3.01	3.01
425	2	2.9	2.89	2.88
	3	2.91	2.9	2.9
	1	3.08	3.07	3.07
450	2	2.94	2.93	2.94
	3	2.92	2.92	2.91
	1	3	3	2.99
475	2	3.06	3.06	3.06
	3	3.08	3.08	3.05
	1	3.06	3.06	3.06
500	2	3.05	3.04	3.03
	3	3.19	3.19	3.18

SAS code for acidity (pH) of underutilized forest bio-oil:

data UU; input temp pH; datalines; 425 3.01 425 2.9

425	2.91
450	3.08
450	2.94
450	2.92
475	3
475	3.06
475	3.08
500	3.06
500	3.05
500	3.19
425	3.01
425	2.89
425	2.9
450	3.07
450	2.93
450	2.92
475	3
475	3.06
475	3.08
500	3.06
500	3.04
500	3.19
425	3.01
425	2.88
425	2.9
450	3.07
450	2.94
450	2.91
475	2.99
475	3.06
475	3.05
500	3.06
500	3.03
500	3.18
;	
run;	
proc a	anova data=UU;
class	temp;
model	pH=temp;
means	temp/ alpha=0.0
run;	

SAS result for acidity (pH) of underutilized forest bio-oil: The ANOVA Procedure

F	pHp					
Ν	Mean	Std Dev				
9	2.93444444	0.05725188				
9	2.97555556	0.07401201				
9	3.04222222	0.03562926				
9	3.09555556	0.06912147				
F	- N 9 9 9 9	N Mean 9 2.93444444 9 2.9755556 9 3.04222222 9 3.09555556				

Dependent Variable: pH

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F

Model		3	0.137141	67	0.045	571389		12.35	<.0001
Error		32	0.118422	22	0.003	370069			
Corrected Total		35	0.255563	89					
	R-Square	Coeff	Var	Root	MSE	рН	Mean		
	0.536624	2.019	9736	0.060	833	3.01	1944		
Source		DF	Anova	SS	Mean S	Square	F	Value	Pr > F
temp		3	0.137141	67	0.045	571389		12.35	<.0001

1000 D.2.7. Data for watch contone of under utilized forest of on (refer 1 able)	Table B.2.9. Data f	for water content	of underutilized	forest bio-oil	(refer Table 9)
---	---------------------	-------------------	------------------	----------------	-----------------

Sample	Sample wt (g)		Difference KFR		l (ml)	Difference	Water
Sumpre	Initial	Final	(g)	(g) Initial		(ml)	(wt%)
methanol	0.0000	2.4000	2.4000				40ml
water			5 µl	16	17.5	1.5	3.33
water			5 µl	17.5	19	1.5	3.33
425-1-A	32.5122	32.4787	0.0335	0	1.7	1.7	16.92
425-1-B	32.4787	32.4244	0.0543	1.7	4.7	3	18.42
425-1-C	32.4244	32.3839	0.0405	6.6	8.6	2	16.46
425-2-A	29.7094	29.6815	0.0279	8.6	10.3	1.7	20.31
425-2-В	29.6815	29.6538	0.0277	10.3	11.9	1.6	19.25
425-2-C	29.6537	29.6232	0.0305	11.9	13.8	1.9	20.77
425-3-а	28.6509	28.6161	0.0348	13.8	15.6	1.8	17.24
425-3-b	28.6161	28.586	0.0301	15.6	17.3	1.7	18.83
425-3-с	28.5853	28.5574	0.0279	17.3	18.6	1.3	15.53
450-1-a	29.7005	29.6705	0.03	5.7	7.4	1.7	18.89
450-1-b	29.6705	29.6527	0.0178	7.4	8.4	1	18.73
450-1-с	29.6526	29.6243	0.0283	8.4	9.8	1.4	16.49
450-2-а	28.2936	28.2661	0.0275	9.8	11.4	1.6	19.39
450-2-b	28.2661	28.2372	0.0289	11.4	12.9	1.5	17.30
450-2-с	28.237	28.2156	0.0214	12.9	14.1	1.2	18.69
450-3-а	31.4932	31.4444	0.0488	14.1	17	2.9	19.81
450-3-b	31.4444	31.374	0.0704	17	20.2	3.2	15.15
450-3-с	31.3739	31.2775	0.0964	20.2	25.4	5.2	17.98
475-1-a	29.9396	29.8607	0.0789	0	4.3	4.3	18.17
475-1-b	29.8604	29.8159	0.0445	4.3	6.5	2.2	16.48
475-1-с	29.8157	29.7878	0.0279	6.5	7.9	1.4	16.73
475-2-а	32.6278	32.5684	0.0594	7.9	10.5	2.6	14.59
475-2-b	32.5683	32.5224	0.0459	10.5	12.9	2.4	17.43
475-2-с	32.5224	32.4809	0.0415	12.9	15.1	2.2	17.67
475-3-а	28.5712	28.5341	0.0371	15.1	17.3	2.2	19.77
475-3-b	28.5341	28.4791	0.055	17.3	20.2	2.9	17.58
475-3-с	28.4789	28.4476	0.0313	20.2	21.9	1.7	18.10
500-1-a	32.2055	32.1481	0.0574	10.4	13.5	3.1	18.00

Sample	Samp	le wt (g)	Difference	KFR vol (ml)		Difference	Water
1	Initial	Final	(g)	Initial	final	(ml)	(wt%)
500-1-b	31.4075	31.3402	0.0673	13.5	17.2	3.7	18.33
500-1-с	31.3402	31.293	0.0472	17.2	19.5	2.3	16.24
500-2-а	32.325	32.2765	0.0485	19.5	21.9	2.4	16.49
500-2-b	32.276	32.2241	0.0519	21.9	24.8	2.9	18.63
500-2-с	32.2241	32.1624	0.0617	0	3.3	3.3	17.83
500-3-а	33.0358	32.9541	0.0817	3.3	7.6	4.3	17.54
500-3-b	32.9568	32.8801	0.0767	7.6	11.4	3.8	16.51
500-3-с	32.879	32.724	0.155	11.4	20.1	8.7	18.71

SAS code for water content of underutilized forest bio-oil:

data U	U;
input	temp Water;
datali	nes;
425	16.91540597
425	18.41618785
425	16.46088889
425	20.3106129
425	19.2538917
425	20.76500656
425	17.24136207
425	18.82611628
425	15.53164516
450	<mark>18.88887</mark>
450	18.72657303
450	16.48997173
450	<mark>19.39392</mark>
450	17.30102076
450	18.69157009
450	19.80872336
450	15.1515
450	17.98061826
475	18.16643726
475	16.47938427
475	16.7263871
475	14.59033333
475	17.42917647
475	17.67066506
475	19.76637736
475	17.57574
475	18.10434824
500	18.00230488
500	18.32588559
500	16.24292161
500	16.49482887
500	18.62554335
500	17.82818314
500	17.54384211
500	16.51454237

```
500 18.70965871
;
run;
proc anova data=UU;
class temp;
model Water=temp;
means temp/ alpha=0.05;
run;
```

SAS result for water content of underutilized forest bio-oil:

The ANOVA Procedure

Level of		Water					
temp	Ν	Mean	Std Dev				
425	9	18.1912353	1.77821870				
450	9	18.0480852	1.49470048				
475	9	17.3898721	1.41345592				
500	9	17.5875234	0.95308343				

Dependent Variable: Water

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		3	3.85103382	1.28367794	0.62	0.6082
Error		32	66.41933546	2.07560423		
Corrected Total		35	70.27036928			
	R-Square 0.054803	Coef 8.0	f Var Ro 91897 1.	oot MSE Water .440696 17.8	Mean 30418	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	3.85103382	1.28367794	0.62	0.6082

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.5063	17210	0.5129	19120	0.5065	18942
425	2	0.6272	19486	0.5207	20202	0.5405	20760
	3	0.5259	20135	0.5679	20676	0.5486	19256
	1	0.5621	19271	0.4969	20887	0.5514	20948
450	2	0.5478	20380	0.5456	20137	0.5546	20479
	3	0.5348	21103	0.554	20186	0.5213	21077
	1	0.55	20108	0.5358	21145	0.5331	21320
475	2	0.5674	19808	0.5	19797	0.5128	21441
	3	0.5328	19297	0.5362	20321	0.5539	20553
500	1	0.5535	18694	0.5485	19162	0.5135	19654
	2	0.5321	18908	0.547	18777	0.5262	18999
	3	0.6444	19975	0.5373	21532	0.5058	21471

Table B.2.10. Data for higher heating value of underutilized forest bio-oil (refer Table 9).

SAS code for higher heating value of underutilized forest bio-oil:

425	19256
450	20948
450	20479
450	21077
475	21320
475	21441
475	20553
500	19654
500	18999
500	21471
;	
run;	
proc a	anova data=UU;
class	temp;
model	HHV=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for higher heating value of underutilized forest bio-oil:

The ANOVA Procedure

	HH\	/
Ν	Mean	Std Dev
9	19531.8889	1096.41740
9	20496.4444	591.87670
9	20421.1111	752.22095
9	19685.7778	1109.09082
	N 9 9 9 9	N Mean 9 19531.8889 9 20496.4444 9 20421.1111 9 19685.7778

Dependent Variable: HHV

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	6633756.08	2211252.03	2.64	0.0662
Error		32	26786943.56	837091.99		
Corrected Total		35	33420699.64			
	R-Square	Coef	f Var Roo [.]	t MSE HHV M	ean	
	0.198492	4.5	66917 914	.9273 20033	.81	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	6633756.083	2211252.028	2.64	0.0662

				S	Sample #1				
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %	
	1	18.2134	18.1385	21.1051	2.9666	18.1779	0.0394	1.3281	
425	2	17.8299	17.8283	20.9281	3.0998	17.8568	0.0285	0.9194	
	3	18.1687	18.1621	21.1985	3.0364	18.1875	0.0254	0.8365	
	1	17.3581	17.3438	20.65	3.3062	17.3707	0.0269	0.8136	
450	2	17.7969	17.7921	21.9604	4.1683	17.8269	0.0348	0.8349	
	3	17.766	17.7653	20.9845	3.2192	17.7807	0.0154	0.4784	
	1	17.7151	17.7126	20.7595	3.0469	17.742	0.0294	0.9649	
475	2	18.1468	18.1385	20.5214	2.3829	18.1593	0.0208	0.8729	
	3	17.8307	17.8283	20.7462	2.9179	17.8569	0.0286	0.9802	
	1	17.7598	17.7592	20.096	2.3368	17.7751	0.0159	0.6804	
500	2	17.6159	17.6149	19.042	1.4271	17.6231	0.0082	0.5746	
	3	17.7944	17.7921	20.5628	2.7707	17.8059	0.0138	0.4981	

Table B.2.11. Data for ash content of underutilized forest bio-oil (refer Table 9).

		Sample #2						
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	17.9597	17.958	21.2016	3.2436	18.0016	0.0436	1.3442
425	2	18.3781	18.3778	21.1871	2.8093	18.4011	0.0233	0.8294
	3	17.7768	17.7653	20.6952	2.9299	17.7837	0.0184	0.6280
	1	17.9504	17.9421	21.0578	3.1157	17.9697	0.0276	0.8858
450	2	17.7622	17.7592	21.5	3.7408	17.7868	0.0276	0.7378
	3	17.4219	17.4206	20.5478	3.1272	17.4352	0.0146	0.4669
	1	17.4228	17.4206	20.0672	2.6466	17.4535	0.0329	1.2431
475	2	17.9599	17.958	20.794	2.836	17.9826	0.0246	0.8674
	3	18.384	18.3778	20.629	2.2512	18.4034	0.0256	1.1372
	1	17.9561	17.9552	20.0313	2.0761	17.9703	0.0151	0.7273
500	2	17.5198	17.5159	20.1673	2.6514	17.5352	0.0193	0.7279
	3	17.7651	17.7653	20.0261	2.2608	17.7748	0.0095	0.4202

				Sample #3					
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %	
	1	17.7012	17.6999	19.9564	2.2565	17.7184	0.0185	0.8199	
425	2	18.1382	18.1369	20.4025	2.2656	18.1584	0.0215	0.9490	
	3	17.4256	17.4231	20.4627	3.0396	17.4437	0.0206	0.6777	
	1	18.3779	18.3772	20.4516	2.0744	18.3968	0.0196	0.9449	
450	2	17.7184	17.7115	19.7638	2.0523	17.7255	0.014	0.6822	
	3	17.345	17.3439	19.6766	2.3327	17.3566	0.0127	0.5444	
	1	17.7602	17.7586	19.58	1.8214	17.7824	0.0238	1.3067	
475	2	17.9609	17.9555	19.884	1.9285	17.974	0.0185	0.9593	
	3	18.1666	18.1613	19.9658	1.8045	18.1835	0.0222	1.2303	
	1	17.4273	17.4238	19.866	2.4422	17.4425	0.0187	0.7657	
500	2	17.7054	17.7	20.7765	3.0765	17.7213	0.0213	0.6923	
	3	17.7155	17.7112	19.9874	2.2762	17.723	0.0118	0.5184	

SAS code for ash content of underutilized forest bio-oil:

data UU; input temp Ash; datalines; 425 1.328119733

0.919414156
0.836516928
0.81362289
0.83487273
0.478379722
0.96491516
0.872885979
0.980156962
0.680417665
0.57459183
0.49806908
1.344185473
0.829388104
0.628007782
0.885836249
0.737810094
0 166071222
0.4000/1323
1.24310436
1.24310436 0.8674189
1.24310436 0.8674189 1.137171286
1.24310436 0.8674189 1.137171286 0.727325273
1.24310436 0.8674189 1.137171286 0.727325273 0.727917327

run;	
means	<pre>temp/ alpha=0.05;</pre>
model	Ash=temp;
class	temp;
proc a	nova data=UU;
run;	
;	
500	0.518407873
500	0.692345197
500	0.765703055
475	1.230257689
475	0.959294789
475	1.306687164
450	0.544433489
450	0.682161477
450	0.944851523
425	0.677720753
425	0.948975989
425	0.819853756

SAS result for ash content of underutilized forest bio-oil:

```
The ANOVA Procedure
```

	Asł	1
Ν	Mean	Std Dev
9	0.92579807	0.25401780
9	0.70987106	0.17822897
9	1.06243248	0.16842220
9	0.62277584	0.12266671
	N 9 9 9 9	N Mean 9 0.92579807 9 0.70987106 9 1.06243248 9 0.62277584

Dependent Variable: Ash

			Sum	of				
Source		DF	Squar	es	Mean Sq	uare	F Value	Pr > F
Model		3	1.085172	77	0.3617	2426	10.36	<.0001
Error		32	1.117630	15	0.0349	2594		
Corrected Total		35	2.202802	92				
	R-Square	Coeff	Var	Root	MSE	Ash Me	an	
	0.492633	22.5	1030	0.186	885	0.8302	19	
Source		DF	Anova	SS	Mean Sq	uare	F Value	Pr > F
temp		3	1.085172	77	0.3617	2426	10.36	<.0001

		Sample #1						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	560.1	544.3	1.018	548.3	0.39		
425	2	560.3	545.1	1.2174	548.1	0.25		
	3	565.1	551.4	1.0393	554.3	0.28		
	1	566.8	539.8	1.099	544.9	0.46		
450	2	553.5	538.2	1.0196	541.8	0.35		
	3	557	547.1	1.0383	551.6	0.43		
	1	564	538.7	1.0764	544.5	0.54		
475	2	566.8	540.1	1.0123	545.2	0.50		
	3	563.3	534.6	1.0108	540.8	0.61		
	1	557.9	537.3	1.0053	542.2	0.49		
500	2	560.2	539.8	1.0275	544.9	0.50		
	3	561.1	536	1.0831	541.1	0.47		

Table B.2.12. Data for solid content of underutilized forest bio-oil (refer Table 9).

		Sample #2						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	558.5	542	1.0235	547.1	0.50		
425	2	560.9	537.7	1.0092	539.6	0.19		
	3	558.1	530.1	1.0258	532.3	0.21		
	1	557.6	543.7	1.0367	549.1	0.52		
450	2	556	539.8	1.008	543.3	0.35		
	3	549.4	537.9	1.0798	543.3	0.50		
	1	562.3	542.7	1.039	547.4	0.45		
475	2	567.7	542.9	1.0084	547.8	0.49		
	3	572.9	549.1	1.0293	555.6	0.63		
	1	561.8	540.8	1.0111	546.4	0.55		
500	2	562.1	534.6	1	539.6	0.50		
	3	565.2	539.1	1.0217	544.8	0.56		

		Sample #3						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	568.1	548.7	1.0195	552.9	0.41		
425	2	575	554.3	1	555.6	0.13		
	3	558.4	540.8	1.0903	542.9	0.19		
	1	570.1	545.9	1.0113	549.9	0.40		
450	2	562.1	552.2	1.0329	556.4	0.41		
	3	551	539.9	1.0019	544	0.41		
	1	564.6	537.9	1.0465	543.3	0.52		
475	2	555.2	528.5	1.0112	533.1	0.45		
	3	563.1	541	1.0431	547.1	0.58		
	1	564.7	539	1.1231	543.8	0.43		
500	2	568.3	540	1.0662	545.9	0.55		
	3	554.5	529.1	1.0646	534.9	0.54		

SAS code for solid content of underutilized forest bio-oil:

data UU; input temp Solid; datalines; 425 0.392927308 425 0.246426811 425 0.279033965 450 0.464058235 450 0.353079639 450 0.433400751 475 0.538833148 475 0.50380322 475 0.613375544 500 0.487416692 500 0.496350365 500 0.470870649 425 0.498290181 425 0.188267935 425 0.214466758 450 0.520883573 450 0.347222222 450 0.50009261 475 0.452358037 475 0.485918286 475 0.631497134 500 0.55385224 500 0.5 500 0.557893707 425 0.41196665 425 0.13 425 0.192607539

450	0.395530505
450	0.406622132
450	0.409222477
475	0.516005733
475	0.454905063
475	0.584795322
500	0.427388478
500	0.553367098
500	0.544805561
;	
run;	
proc a	anova data=UU;
class	temp;
model	Solid=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for solid content of underutilized forest bio-oil:

	Level of			Solid		
	temp	Ν	Me	an Std	Dev	
	425	9	0.283776	35 0.12332	120	
	450	9	0,425568	02 0.06031	462	
	475	9	0.531276	83 0.06596	577	
	500	9	0.510216	09 0.04536	054	
Dependent Variable: So	olid					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	0.34069393	0.11356464	17.99	<.0001
Error		32	0.20204025	0.00631376		
Corrected Total		35	0.54273418			
			_			
	R-Square	Coeff	[*] Var Ro	ot MSE Solid	Mean	
	0.627736	18.1	15341 0.	079459 0.43	7709	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
				•		
temp		3	0.34069393	0.11356464	17.99	<.0001

		Sample #1			Sample #2				Sample #3				
Temp (°C)	mp Iteration C) No.	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)
	1	5.7328	7.8422	2.1094	1054.7	5.75	7.8583	2.1083	1054.15	5.7341	7.8429	2.1088	1054.4
425	2	5.7435	7.8594	2.1159	1057.95	5.7619	7.8637	2.1018	1050.9	5.7487	7.8584	2.1097	1054.85
	3	5.7429	8.0179	2.275	1137.5	5.7429	8.011	2.2681	1134.05	5.7454	8.0169	2.2715	1135.75
	1	5.7602	7.8768	2.1166	1058.3	5.7793	7.8827	2.1034	1051.7	5.76	7.8738	2.1138	1056.9
450	2	5.8031	7.9119	2.1088	1054.4	5.8046	7.9165	2.1119	1055.95	5.8078	7.9127	2.1049	1052.45
	3	5.7604	7.9359	2.1755	1087.75	5.8114	7.9736	2.1622	1081.1	5.7665	7.9364	2.1699	1084.95
	1	5.7523	7.8703	2.118	1059	5.917	8.0154	2.0984	1049.2	5.7412	7.8665	2.1253	1062.65
475	2	5.757	7.9113	2.1543	1077.15	5.7865	7.9451	2.1586	1079.3	5.7589	7.898	2.1391	1069.55
	3	5.7624	7.8976	2.1352	1067.6	5.8239	7.9145	2.0906	1045.3	5.7687	7.8877	2.119	1059.5
	1	5.7455	7.8697	2.1242	1062.1	5.7679	7.888	2.1201	1060.05	5.7398	7.871	2.1312	1065.6
500	2	5.7554	7.8835	2.1281	1064.05	5.7775	7.9004	2.1229	1061.45	5.7501	7.8629	2.1128	1056.4
	3	5.7509	7.875	2.1241	1062.05	5.8174	7.9459	2.1285	1064.25	5.7596	7.8905	2.1309	1065.45

Table B.2.13. Data for density of poultry litter bio-oil (refer Table 10).

SAS code for density of poultry litter bio-oil:

data PL; input temp Density; datalines; 425 1054.7 425 1057.95 425 1137.5 450 1058.3 450 1054.4 450 1087.75 475 1059 1077.15 475 475 1067.6 500 1062.1 500 1064.05 500 1062.05 425 1054.15 1050.9 425 425 1134.05 450 1051.7 450 1055.95 450 1081.1 475 1049.2 475 1079.3 475 1045.3 500 1060.05 500 1061.45 500 1064.25 425 1054.4 425 1054.85 1135.75 425 450 1056.9 450 1052.45 450 1084.95 475 1062.65 475 1069.55 475 1059.5 500 1065.6 500 1056.4 500 1065.45 ; run; proc anova data=PL; class temp; model Density=temp; means temp/ alpha=0.05; run;

SAS result for density of poultry litter bio-oil:

Level of		Density		
temp	Ν	Mean	Std Dev	

	425	9	1081	.58333	40	.685316	8	
	450	9	1064	.83333	15	5.056892	1	
	475	9	1063	.25000	11	.519087	4	
	500	9	1062	.37778	2	2.922339	7	
Dependent Variable: D	ensity							
			Sum	of				
Source		DF	Squa	res	Mean Sc	quare	F Value	Pr > F
Model		3	2238.35	500	746.1	1833	1.48	0.2399
Error		32	16185.87	556	505.8	30861		
Corrected Total		35	18424.23	056				
	R-Square	Coeff	f Var	Root M	SE De	ensity M	ean	
	0.121490	2.10	05801	22.490	19	1068.	011	
Source		DF	Anova	SS	Mean Sc	quare	F Value	Pr > F
temp		3	2238.355	000	746.11	8333	1.48	0.2399

Table B.2.14. Data for acidity (pH) of poultry litter bio-oil (refer Table 10).

Operating temperature (°C)	Iteration No.	Sample # 1	Sample # 2	Sample # 3
	1	9.23	9.23	9.25
425	2	9.28	9.28	9.27
	3	9.24	9.23	9.23
	1	9.31	9.31	9.31
450	2	9.32	9.31	9.32
	3	9.28	9.29	9.29
	1	9.31	9.31	9.31
475	2	9.35	9.35	9.34
	3	9.33	9.34	9.34
	1	9.36	9.36	9.36
500	2	9.44	9.44	9.44
	3	9.48	9.49	9.49

SAS code for acidity (pH) of poultry litter bio-oil:

data PL; input temp pH; datalines;

425 9.23 425 9.28 425 9.24 450 9.31 9.32 450 9.28 450 9.31 475 475 9.35 475 9.33 500 9.36 500 9.44 500 9.48 425 9.23 425 9.28 425 9.23 450 9.31 450 9.31 450 9.29 9.31 475 475 9.35 475 9.34 500 9.36 500 9.44 500 9.49 425 9.25 425 9.27 9.23 425 450 9.31 450 9.32 450 9.29 475 9.31 475 9.34 475 9.34 500 9.36 500 9.44 500 9.49 ; run; proc anova data=PL; class temp; model pH=temp; means temp/ alpha=0.05; run; quit; proc boxplot data=PL; plot pH*temp /boxstyle=schematic; run;

SAS result for acidity (pH) of poultry litter bio-oil:

The	ANOVA	Procedure
-----	-------	-----------

Level of temp	- N	Mean	Std Dev
425	9	9.24888889	0.02204793

	450	9	9.30	44444	0	014240	001		
	475	9	9.33	111111	0.	016914	182		
	500	9	9.42	888889	0	055552	278		
Dependent Variable: pH									
			Sum	of					
Source		DF	Squa	res	Mean So	quare	F۱	/alue	Pr > F
Model		3	0.15301	111	0.0510	00370	5	50.24	<.0001
Error		32	0.03248	889	0.0010	01528			
Corrected Total		35	0.18550	000					
	R-Square	Coeff	f Var	Root	MSE	рН М	lean		
	0.824858	0.34	41577	0.031	863	9.328	3333		
Source	DF	Ar	nova SS	Mear	n Square	F۱	/alue	Pr	> F
temp	3	0.15	5301111	0.0	5100370	5	50.24	<.0	0001

Table B.2.15. Data for water content of poultry litter bio-oil (refer Table 10).

Sample	Sample wt (g)		Difference	KFR vo	l (ml)	Difference	Water	
Bumple	Initial	Final	(g)	Initial	final	(ml)	(wt%)	
methanol	0.0000	20.6000	20.6000				40ml	
water			5 µl	1.6	3.1	1.5	3.33	
water			5 µl	3.1	4.6	1.5	3.33	
425-1-A	106.3119	106.2718	0.0401	0	4.7	4.7	38.26	
425-1-B	106.2715	106.2290	0.0425	4.7	9.3	4.6	35.33	
425-1-C	106.2290	106.1703	0.0587	9.3	15.8	6.5	36.14	
425-2-A	158.9371	158.8778	0.0593	15.8	21.7	5.9	32.47	
425-2-В	158.8778	158.8326	0.0452	21.7	26.3	4.6	33.22	
425-2-C	158.8326	158.7878	0.0448	0	4.5	4.5	32.78	
425-3-а	153.6570	153.6235	0.0335	4.5	8.4	3.9	38.00	
425-3-b	153.6235	153.5800	0.0435	8.4	12.8	4.4	33.01	
425-3-с	153.5800	153.5470	0.0330	12.8	16.3	3.5	34.62	
450-3-а	117.6800	117.6355	0.0445	16.3	21.0	4.7	34.47	
450-3-b	117.6355	117.5941	0.0414	21.0	25.3	4.3	33.90	
450-3-с	117.5941	117.5310	0.0631	0.0	5.9	5.9	30.52	
450-4-a	159.3223	159.2871	0.0352	5.9	8.9	3	27.82	
450-4-b	159.2855	159.1960	0.0895	8.9	16.7	7.8	28.45	
450-4-с	159.1940	159.1320	0.0620	16.7	22.1	5.4	28.43	
450-5-а	159.6726	159.6374	0.0352	0.0	3.2	3.2	29.67	
450-5-b	159.6374	159.5743	0.0631	3.2	9.4	6.2	32.07	
450-5-с	159.5743	159.5359	0.0384	9.4	13.1	3.7	31.45	
475-1-a	114.5225	114.4844	0.0381	13.1	16.8	3.7	31.70	
475-1-b	114.4831	114.4485	0.0346	16.8	19.9	3.1	29.24	
475-1-с	114.4142	114.3773	0.0369	19.9	23.1	3.2	28.30	
475-2-a	159.6025	159.5615	0.0410	0.0	3.7	3.7	29.45	

Sample	Sample wt (g)		Difference	KFR vo	ol (ml)	Difference	Water	
1	Initial	Final	(g)	Initial	final	(ml)	(Wt%)	
475-2-b	159.2795	159.2478	0.0317	3.7	6.3	2.6	26.77	
475-2-с	159.2478	159.2110	0.0368	6.3	9.5	3.2	28.38	
475-3a	155.6700	155.6323	0.0377	9.5	12.6	3.1	26.84	
475-3b	155.6304	155.5853	0.0451	12.6	16.7	4.1	29.67	
475-3c	155.5845	155.5521	0.0324	16.7	19.9	3.2	32.24	
500-1a	160.4940	160.4598	0.0342	0.0	3.0	3	28.63	
500-1b	160.4498	160.4243	0.0255	3.0	5.5	2.5	32.00	
500-1c	160.4235	160.3956	0.0279	5.5	8.1	2.6	30.42	
500.2a	93.9595	93.9126	0.0469	8.1	11.8	3.7	25.75	
500-2b	93.9126	93.8715	0.0411	11.8	15.6	3.8	30.18	
500-2c	93.8715	93.8273	0.0442	15.6	19.3	3.7	27.32	
500-3a	116.8931	116.8465	0.0466	19.3	23.3	4	28.02	
500-3b	116.8457	116.7943	0.0514	0.0	4.6	4.6	29.21	
500-3c	116.7943	116.7545	0.0398	4.6	8.3	3.7	30.34	

SAS code for water content of poultry litter bio-oil:

data PL; input temp Water; datalines; 425 38.25518703 425 35.32691765 425 36.14199319 425 32.47387858 425 33.21668142 425 32.78470982 425 37.99764179 425 33.01416092 425 34.61712121 450 34.47265169 450 33.90041063 450 30.51824089 450 27.81732955 450 28.44516201 450 28.42751613 450 29.67181818 32.07001585 450 450 31.44903646 475 31.69666667 29.24303468 475 475 28.30482385 475 29.45470732 475 26.77015773 475 28.38173913 475 26.83843501 475 29.67181818 475 32.23604938

500	28.63070175
500	31.99901961
500	30.4162724
500	25.7493177
500	30.17717762
500	27.32223982
500	28.01630901
500	29.21
500	30.34278894
;	
run;	
proc a	nova data=PL;
class	temp;
model	Water=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for water content of poultry litter bio-oil:

The ANOVA Procedure

Level of		Water						
temp	Ν	Mean	Std Dev					
425	9	34.8698102	2.21922724					
450	9	30.7524646	2.41187727					
475	9	29.1774924	1.89366493					
500	9	29.0959808	1.89195033					

Dependent Variable: Water

Source		DF	Sum Squar	of es	Mean	Square	F	Value	Pr > F
Model		3	197.82729	49	65.9	424316		14.73	<.0001
Error		32	143.26051	53	4.4	768911			
Corrected Total		35	341.08781	03					
	R-Square	Coef	f Var	Root M	ISE	Water	Mean		
	0.579989	6.8	31119	2.1158	367	30.9	7394		
Source		DF	Anova	SS	Mean	Square	F	Value	Pr > F
temp		3	197.82729	49	65.9	424316		14.73	<.0001

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.5132	10.947	0.6725	10.754	0.4891	10.823
425	2	0.5165	11.124	0.5189	10.459	0.567	11.93
	3	0.5128	11.004	0.5276	11.859	0.5681	11.828
	1	0.6136	11.369	0.5471	12.98	0.4923	12.797
450	2	0.596	12.341	0.5701	12.329	0.6549	11.109
	3	0.5471	13.441	0.5287	12.965	0.6194	12.872
	1	0.5978	14.217	0.5219	13.491	0.5418	13.675
475	2	0.6	14.456	0.6289	14.36	0.5218	14.673
	3	0.4912	14.298	0.5172	14.112	0.5732	14.365
	1	0.526	14.324	0.5872	14.561	0.5174	13.673
500	2	0.6564	13.741	0.4398	13.786	0.4561	13.101
	3	0.5436	13.79	0.558	14.39	0.5926	13.682

Table B.2.16. Data for higher heating value of poultry litter bio-oil (refer Table 10).

SAS code for higher heating value of poultry litter bio-oil:

data PL; input temp HHV; datalines; 425 10.947 425 11.124 425 11.004 450 11.369 12.341 450 450 13.441 475 14.217 475 14.456 475 14.298 500 14.324 13.741 500 500 13.79 10.754 425 10.459 425 425 11.859 450 12.98 12.329 450 450 12.965 13.491 475 475 14.36 475 14.112 14.561 500 13.786 500 500 14.39 425 10.823 425 11.93
425 11.828 450 12.797 450 11.109 450 12.872 475 13.675 475 14.673 475 14.365 500 13.673 500 13.101 500 13.682 ; run; proc anova data=PL; class temp; model HHV=temp; means temp/ alpha=0.05; run;

SAS result for higher heating value of poultry litter bio-oil:

The ANOVA Procedure

Level of		HH\	/
temp	Ν	Mean	Std Dev
425	9	11.1920000	0.54306031
450	9	12.4670000	0.77600435
475	9	14.1830000	0.37673465
500	9	13.8942222	0.45336624

Dependent Variable: HHV

			Sum	of					
Source		DF	Squar	es	Mean Sq	uare	F	Value	Pr > F
Model		3	51.612126	33	17.2040	4211		55.29	<.0001
Error		32	9.956537	56	0.3111	4180			
Corrected Total		35	61.568663	89					
	R-Square	Coef	f Var	Root	MSE	HHV N	Mean		
	0.838286	4.3	12652	0.557	801	12.93	3406		
Source		DF	Anova	SS	Mean Sq	uare	F	Value	Pr > F
.		0	51 010100	00	17 00 40	1011			< 0001
τemp		3	51.612126	33	17.2040	4211		55.29	<.0001

		Sample #1								
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %		
	1	18.1413	18.1405	20.1504	2.0099	18.1423	0.0018	0.0896		
425	2	18.1652	18.1634	19.8829	1.7195	18.1656	0.0022	0.1279		
	3	17.7629	17.7623	20.4962	2.7339	17.7649	0.0026	0.0951		
	1	17.6202	17.6187	19.6552	2.0365	17.6216	0.0029	0.1424		
450	2	17.9619	17.9614	20.0976	2.1362	17.9653	0.0039	0.1826		
	3	17.3471	17.3457	18.6967	1.3510	17.3482	0.0025	0.1850		
	1	17.4279	17.4256	18.9114	1.4858	17.4286	0.0030	0.2019		
475	2	17.9451	17.9454	19.8191	1.8737	17.9492	0.0038	0.2028		
	3	12.7336	12.7336	14.1935	1.4599	12.7363	0.0027	0.1849		
	1	9.7761	9.7752	10.6453	0.8701	9.7764	0.0012	0.1379		
500	2	9.4736	9.4728	10.2990	0.8262	9.4741	0.0013	0.1573		
	3	12.1083	12.1074	12.9368	0.8294	12.1085	0.0011	0.1326		

Table B.2.17. Data for ash content of poultry litter bio-oil (refer Table 10).

				S	ample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	18.3810	18.3806	20.2131	1.8325	18.3823	0.0017	0.0928
425	2	17.5189	17.5182	19.4173	1.8991	17.5202	0.0020	0.1053
	3	17.9607	17.9596	21.1111	3.1515	17.9622	0.0026	0.0825
	1	17.7982	17.7966	19.9944	2.1978	17.7999	0.0033	0.1502
450	2	17.7677	17.7673	18.6567	0.8894	17.7690	0.0017	0.1911
	3	17.4231	17.4227	19.0469	1.6242	17.4255	0.0028	0.1724
	1	17.7033	17.7033	18.8232	1.1199	17.7055	0.0022	0.1964
475	2	17.7141	17.7137	19.5260	1.8123	17.7175	0.0038	0.2097
	3	11.9863	11.9862	14.5276	2.5414	11.9919	0.0057	0.2243
	1	9.6727	9.6724	10.2071	0.5347	9.6731	0.0007	0.1309
500	2	12.4191	12.4189	13.7764	1.3575	12.4211	0.0022	0.1621
	3	13.0795	13.0790	15.2365	2.1575	13.0821	0.0031	0.1437

			Sample #3								
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %			
	1	18.1413	18.1405	20.0973	1.9568	18.1427	0.0022	0.1124			
425	2	18.1652	18.1634	19.4390	1.2756	18.1649	0.0015	0.1176			
	3	17.7629	17.7623	20.9561	3.1938	17.7647	0.0024	0.0751			
	1	17.6202	17.6187	19.5389	1.9202	17.6213	0.0026	0.1354			
450	2	17.9619	17.9614	20.2583	2.2969	17.9656	0.0042	0.1829			
	3	17.3471	17.3457	18.4569	1.1112	17.3476	0.0019	0.1710			
	1	17.4279	17.4256	18.3893	0.9637	17.4275	0.0019	0.1972			
475	2	17.9451	17.9454	20.6739	2.7285	17.9507	0.0053	0.1942			
	3	12.7336	12.7336	14.5009	1.7673	12.7371	0.0035	0.1980			
	1	9.7761	9.7752	10.2945	0.5193	9.7759	0.0007	0.1348			
500	2	9.4736	9.4728	10.7893	1.3165	9.4751	0.0023	0.1747			
	3	12.1083	12.1074	13.0002	0.8928	12.1087	0.0013	0.1456			

SAS code for ash content of poultry litter bio-oil:

data PL;

input	temp Ash;
datali	nes;
425	0.089556694
425	0.12794417
425	0.095102235
450	0.142401178
450	0.182567175
450	0.185048113
475	0.201911428
475	0.20280728
475	0.184944174
500	0.137915182
500	0.157346889
500	0.132625995
425	0.092769441
425	0.105313043
425	0.082500397
450	0.15015015
450	0.191140094
450	0.172392562
475	0.196446111
475	0.209678309
475	0.224285827
500	0.130914532
500	0.162062615
500	0.14368482

425	0.112428455
425	0.117591722
425	0.075145595
450	0.135402562
450	0.182855153
450	0.170986321
475	0.197156792
475	0.194245923
475	0.198042211
500	0.134796842
500	0.174705659
500	0.145609319
;	
run;	
proc a	nova data=PL;
class	temp;
model	Ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for ash content of poultry litter bio-oil:

The ANOVA Procedure Level of -----Ash----temp Ν Mean Std Dev 425 9 0.09981686 0.01725561 450 9 0.16810481 0.02038260 475 9 0.20105756 0.01100723 500 9 0.14662909 0.01504176 Dependent Variable: Ash Sum of Source DF Squares Mean Square F Value Pr > F 0.04863118 З Model 0.01621039 61.14 <.0001 Error 32 0.00848496 0.00026516 Corrected Total 35 0.05711614 R-Square Coeff Var Root MSE Ash Mean 0.851444 10.58048 0.016284 0.153902 DF Source Anova SS Mean Square F Value Pr > F 0.04863118 0.01621039 temp 3 61.14 <.0001

		Sample #1					
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)	
	1	325.7	317	1.0345	317.9	0.09	
425	2	322.4	314.7	1.0068	316	0.13	
	3	337.6	328.3	1.0122	329	0.07	
	1	326.3	319.6	1.0196	320.7	0.11	
450	2	337.9	329.4	1.0278	331.1	0.17	
	3	334.8	326.8	1.124	327.9	0.10	
	1	325.1	316.2	0.9943	317.7	0.15	
475	2	316.3	308.9	0.9845	310.9	0.20	
	3	316.1	307.1	1.0114	310.5	0.34	
	1	320.4	312.9	1.0076	313.9	0.10	
500	2	330.8	322.6	1.0554	324.1	0.14	
	3	320.9	312.5	1.0072	314.6	0.21	

Table B.2.18. Data for solid content of poultry litter bio-oil (refer Table 10).

		Sample #2						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	337.4	330.3	1	331.2	0.09		
425	2	339.1	332	1.0021	333.5	0.15		
	3	333.9	326.8	1.0152	327.7	0.09		
	1	334.6	327.8	1.0068	329	0.12		
450	2	334.9	328	1.0367	329.9	0.18		
	3	341.5	333.8	0.9918	334.9	0.11		
	1	321.1	311.5	1.0259	313.4	0.19		
475	2	323.4	315.9	1.0059	318.3	0.24		
	3	317.4	307.6	1.0048	311.4	0.38		
	1	317.7	310.4	1.0064	311.8	0.14		
500	2	317.9	311.2	1.0219	312.8	0.16		
	3	325.4	317.7	1.0187	320.1	0.24		

		Sample #3					
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)	
	1	340.1	331.7	1.0056	332.5	0.08	
425	2	323.7	315.8	1.0372	317.1	0.13	
	3	325.3	317.2	0.9921	318.3	0.11	
	1	324.9	317.8	0.9984	319.1	0.13	
450	2	326.3	319.6	1.0372	321.5	0.18	
	3	326.9	318.5	1.0011	319.7	0.12	
	1	319.5	311.7	1.0233	313.7	0.20	
475	2	332.8	325.5	1.0189	327.9	0.24	
	3	335.6	327.4	1.0034	330.9	0.35	
	1	329.7	321.6	1.0097	323.1	0.15	
500	2	334.8	328.9	1.0172	330.7	0.18	
	3	329.1	320.5	1.0084	323.1	0.26	

SAS code for solid content of poultry litter bio-oil:

```
data PL;
```

```
input temp Solid;
datalines;
425
     0.08699855
425
      0.129121971
425
     0.069156293
450
     0.107885445
450
      0.165401829
450
     0.097864769
475
     0.150859901
475
      0.203148807
475
      0.336167688
500
      0.099245732
500
      0.142126208
500
      0.208498809
425
      0.09
425
      0.14968566
425
      0.088652482
450
      0.119189511
450
      0.18327385
450
      0.110909458
475
      0.185203236
475
      0.238592305
475
      0.378184713
500
      0.139109698
500
      0.156571093
500
      0.235594385
425
      0.079554495
425 0.125337447
```

425 0.11087592 450 0.130208333 450 0.183185499 450 0.119868145 475 0.195446106 475 0.23554814 475 0.348814032 500 0.148558978 500 0.176956351 500 0.257834193 ; run; proc anova data=PL; class temp; model Solid=temp; means temp/ alpha=0.05; run;

SAS result for solid content of poultry litter bio-oil:

The ANOVA Procedure

	Sol:	id
Ν	Mean	Std Dev
9	0.10326476	0.02680544
9	0.13530965	0.03311363
9	0.25244055	0.08147418
9	0.17383283	0.05098184
	N 9 9 9 9	Sol: N Mean 9 0.10326476 9 0.13530965 9 0.25244055 9 0.17383283

Dependent Variable: Solid

			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	0.11169675	0.03723225	13.48	<.0001
Error		32	0.08841787	0.00276306		
Corrected Total		35	0.20011462			
	R-Square	Coeff	Var Ro	oot MSE Solid	Mean	
	0.558164	31.6	2516 0.	052565 0.16	6212	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	0.11169675	0.03723225	13.48	<.0001

B.3 VISCOSITY ANALYSIS OF DIFFERENT BIO-OILS

Shear Stress	Shear Rate	Viscosity	Log(Viscosity)
(Pa)	(1/s)	(Pas)	
0.015	0.0340	0.43	-0.36362
0.362	2.0841	0.17	-0.76025
0.367	5.095	0.07	-1.14256
0.319	8.1708	0.04	-1.40843
0.319	9.7832	0.03	-1.48721
0.387	13.439	0.03	-1.54103
0.450	16.448	0.03	-1.56246
0.516	19.5	0.03	-1.57756
0.531	23.134	0.02	-1.63926
0.516	23.52	0.02	-1.65849
0.609	26.849	0.02	-1.64459
0.725	29.129	0.02	-1.60371
0.913	33.352	0.03	-1.56244
0.995	36.298	0.03	-1.56201
1.119	39.074	0.03	-1.54307
1.213	42.084	0.03	-1.54043
1.283	45.553	0.03	-1.55032
1.279	49.915	0.03	-1.59147
1.295	52.836	0.02	-1.61055
1.349	54.639	0.02	-1.60757
1.379	58.139	0.02	-1.62498
1.373	62.19	0.02	-1.6562
1.124	66.168	0.02	-1.76991
1.138	65.935	0.02	-1.76311
0.575	71.15	0.01	-2.09272
0.494	70.757	0.01	-2.15614
0.456	76.188	0.01	-2.22304
0.402	78.542	0.01	-2.29059
0.418	80.155	0.01	-2.28311
0.444	82.706	0.01	-2.2697
0.454	85.735	0.01	-2.27632
0.480	89.052	0.01	-2.26806
0.492	92.196	0.01	-2.27289
0.499	95.309	0.01	-2.28091
0.514	98.154	0.01	-2.28116

Table B.3.1. Data (pine wood) for Figure 27

Shear Stress	Shear Rate	Viscosity	Log(Viscosity)
(Pa)	(1/s)	(Pas)	
0.019	0.03	0.62	-0.20653
0.033	0.05	0.70	-0.15531
1.102	4.97	0.22	-0.65412
0.948	9.36	0.10	-0.9943
0.482	13.82	0.03	-1.45724
0.335	15.09	0.02	-1.6538
0.188	20.45	0.01	-2.03704
0.298	21.04	0.01	-1.84921
0.306	26.13	0.01	-1.93078
0.321	30.24	0.01	-1.97359
0.335	33.96	0.01	-2.00569
0.352	36.30	0.01	-2.0138
0.361	39.91	0.01	-2.0431
0.366	43.90	0.01	-2.07899
0.368	46.97	0.01	-2.10623
0.380	50.26	0.01	-2.12125
0.377	53.63	0.01	-2.15303
0.394	55.91	0.01	-2.15229
0.432	59.35	0.01	-2.1381
0.457	63.12	0.01	-2.14035
0.464	67.09	0.01	-2.16038
0.482	70.82	0.01	-2.16692
0.479	74.76	0.01	-2.19312
0.496	78.11	0.01	-2.19714
0.521	81.58	0.01	-2.19518
0.541	85.12	0.01	-2.19695
0.552	88.28	0.01	-2.20391
0.573	91.47	0.01	-2.20283
0.611	94.57	0.01	-2.18936
0.658	97.55	0.01	-2.17098

Table B.3.2. Data (underutilized forest) for Figure 27

Shear Stress	Shear Rate	Viscosity	Log(Viscosity)
(Pa)	(1/s)	(Pas)	
0.066801	0.065899	1.01	0.005909
1.8709	2.4265	0.77	-0.11293
3.9604	5.7852	0.68	-0.16458
5.3348	9.0836	0.59	-0.23114
7.2125	12.571	0.57	-0.24128
8.0672	16.107	0.50	-0.30029
9.115	19.335	0.47	-0.32657
10.497	21.791	0.48	-0.31721
12.041	23.185	0.52	-0.28453
12.593	29.543	0.43	-0.37034
14.738	30.119	0.49	-0.31039
18.299	32.821	0.56	-0.25372
15.119	35.193	0.43	-0.36693
18.005	40.734	0.44	-0.35456
23.726	47.801	0.50	-0.30422
21.69	47.983	0.45	-0.34483
23.281	55.616	0.42	-0.3782
23.436	55.618	0.42	-0.37534
30.551	54.263	0.56	-0.24948
29.831	55.723	0.54	-0.27137
31.013	60.266	0.51	-0.28853
38.874	83.081	0.47	-0.32984
32.664	73.018	0.45	-0.34936
34.894	74.348	0.47	-0.32851
40.408	79.197	0.51	-0.29223
39.826	85.509	0.47	-0.33185
49.933	95.485	0.52	-0.28155
44.155	90.81	0.49	-0.31315
41.03	88.02	0.47	-0.33147
34.465	90.31	0.38	-0.41836

Table B.3.3. Data (poultry litter) for Figure 27

B.4 EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-CHAR

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.51	24978	0.6011	25067	0.5543	25004
425	2	0.4672	26727	0.5281	26644	0.5804	26675
	3	0.5672	26138	0.628	26286	0.4996	26228
	1	0.6291	25655	0.6361	25692	0.6468	25711
450	2	0.5123	27444	0.4337	27561	0.6305	27602
	3	0.5976	27208	0.6	27175	0.5308	27222
	1	0.4573	28302	0.4898	28248	0.5196	28397
475	2	0.538	29061	0.574	29319	0.4783	29168
	3	0.4331	29497	0.5386	29736	0.5338	29641
	1	0.4819	30234	0.4862	30191	0.6028	30124
500	2	0.6459	30239	0.5521	30248	0.5696	30272
	3	0.513	30901	0.5189	30862	0.6452	31007

Table B.4.1. Data for higher heating value of pine wood bio-char (refer Table 11).

SAS code for higher heating value of pine wood bio-char:

420	25004	
425	26675	
425	26228	
450	25711	
450	27602	
450	27222	
475	28397	
475	29168	
475	29641	
500	30124	
500	30272	
500	31007	
;		
run;		
proc a	anova	<pre>data=pinewood;</pre>
class	temp;	
model	hhv=t	emp;
means	temp/	alpha=0.05;
run;		

SAS result for higher heating value of pine wood bio-char:

	Level of			hhv	-	
	temp	Ν	Mea	n Std De	v	
	425	9	25971.888	9 745.95499	9	
	450	9	26807.777	8 854.86106	7	
	475	9	29041.000	0 584.64519	2	
	500	9	30453.111	1 357.12898	4	
Dependent Variable: hhv	/					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	113555925.6	37851975.2	86.19	<.0001
Error		32	14052699.3	439146.9		
Corrected Total		35	127608624.9			
	R-Square	Coef	ff Var Roo	t MSE hhv Me	an	
	0.889877	2.3	360949 662	.6816 28068.	44	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	113555925.6	37851975.2	86.19	<.0001

				S	ample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	15.4949	15.4951	18.2091	2.714	15.5093	0.0142	0.5232
425	2	14.4292	14.4297	15.7486	1.3189	14.4401	0.0104	0.7885
	3	14.7352	14.7352	16.5667	1.8315	14.7491	0.0139	0.7589
	1	14.9327	14.9331	17.1511	2.218	14.953	0.0199	0.8972
450	2	14.9745	14.9746	17.2113	2.2367	15.0058	0.0312	1.3949
450	3	14.362	14.3628	16.4004	2.0376	14.3853	0.0225	1.1042
	1	15.1751	15.1763	17.0131	1.8368	15.197	0.0207	1.1270
475	2	14.1264	14.1269	16.1406	2.0137	14.141	0.0141	0.7002
	3	14.2175	14.2175	16.1807	1.9632	14.2327	0.0152	0.7742
	1	14.2744	14.2744	16.8481	2.5737	14.2828	0.0084	0.3264
500	2	14.4946	14.4949	16.1933	1.6984	14.508	0.0131	0.7713
	3	14.8899	14.89	16.2675	1.3775	14.896	0.006	0.4356

Table B.4.2. Data for ash content of pine wood bio-char (refer Table 11).

				S	ample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	14.7482	14.7485	17.1294	2.3809	14.7617	0.0132	0.5544
425	2	13.7254	13.7258	15.6068	1.881	13.7399	0.0141	0.7496
	3	15.3545	15.3546	16.9991	1.6445	15.3693	0.0147	0.8939
	1	13.9845	12.9851	15.3655	2.3804	13.005	0.0199	0.8360
450	2	12.897	12.897	15.232	2.335	12.9289	0.0319	1.3662
	3	15.1174	15.1176	17.2375	2.1199	15.1413	0.0237	1.1180
	1	14.3482	14.3482	16.4064	2.0582	14.3712	0.023	1.1175
475	2	15.0009	15.0019	17.1138	2.1119	15.017	0.0151	0.7150
	3	15.138	15.1381	16.8731	1.735	15.1536	0.0155	0.8934
	1	14.5028	14.5033	16.7285	2.2252	14.5095	0.0062	0.2786
500	2	14.6681	14.6683	16.3004	1.6321	14.6815	0.0132	0.8088
	3	15.4717	15.4719	17.0858	1.6139	15.4792	0.0073	0.4523

				S	ample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	15.4949	15.4951	18.2178	2.7227	15.5088	0.0137	0.5032
425	2	14.4292	14.4297	15.7961	1.3664	14.4397	0.01	0.7319
	3	14.7352	14.7352	16.4589	1.7237	14.7484	0.0132	0.7658
	1	14.9327	14.9331	17.1695	2.2364	14.9538	0.0207	0.9256
450	2	14.9745	14.9746	17.8792	2.9046	15.0157	0.0411	1.4150
425	3	14.362	14.3628	16.1259	1.7631	14.3825	0.0197	1.1174
	1	15.1751	15.1763	17.6597	2.4834	15.2038	0.0275	1.1074
475	2	14.1264	14.1269	16.568	2.4411	14.1445	0.0176	0.7210
	3	14.2175	14.2175	16.14	1.9225	14.233	0.0155	0.8062
	1	14.2744	14.2744	16.1294	1.855	14.2798	0.0054	0.2911
500	2	14.4946	14.4949	16.2369	1.742	14.5085	0.0136	0.7807
	3	14.8899	14.89	16.7456	1.8556	14.8977	0.0077	0.4150

SAS code for ash content of pine wood bio-char:

data pinewood;

input temp Ash; datalines; 425 0.52321297 425 0.788535901 425 0.758940759 450 0.897204689 450 1.394912147 450 1.104240283 475 1.12695993 475 0.700203605 475 0.774246129 500 0.326378366 0.771314178 500 500 0.435571688 425 0.554412197 425 0.749601276 425 0.89388872 450 0.835993951 450 1.366167024 450 1.117977263 475 1.117481294 475 0.714995975 475 0.893371758 500 0.27862664 500 0.808773972 500 0.452320466 425 0.503176993

425	0.731850117
425	0.765794512
450	0.925594706
450	1.414996901
450	1.117350122
475	1.107352823
475	0.720986441
475	0.806241873
500	0.291105121
500	0.780711825
500	0.414960121
;	
run;	
proc a	nova data=pinewood;
class	temp;
model	Ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for ash content of pine wood bio-char:

					A - I-		
		Level of	N		Asn		
		temp	N	Mean	Std Dev		
		425	9	0.69660149	0.13591997		
		450	9	1.13049301	0.22095170		
		475	9	0.88464887	0.18388947		
		500	9	0.50664026	0.21903164		
Deper	ndent Variable: As	h					
				Sum of			
	Source		DF	Squares	Mean Square F	Value	Pr > F
	Model		3	1.91751981	0.63917327	17.15	<.0001
	Error		32	1.19267269	0.03727102		
	Corrected Total		35	3.11019250			
		R-Square 0.616528	Coeff 23.9	Var Root 9429 0.193	MSE Ash Mean 057 0.804596		
	Source		DF	Anova SS	Mean Square F	Value	Pr > F
	temp		3	1.91751981	0.63917327	17.15	<.0001

					Sample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	46.6343	50.6475	4.0132	50.5321	3.8978	0.1154	2.88
425	2	42.3064	44.9326	2.6262	44.86	2.5536	0.0726	2.76
	3	42.412	44.935	2.523	44.869	2.457	0.066	2.62
	1	46.9118	50.771	3.8592	50.6587	3.7469	0.1123	2.91
450	2	48.7604	52.1998	3.4394	52.0891	3.3287	0.1107	3.22
	3	46.5236	50.0761	3.5525	49.9696	3.446	0.1065	3.00
	1	46.7121	50.1644	3.4523	50.0623	3.3502	0.1021	2.96
475	2	47.0303	49.8158	2.7855	49.7345	2.7042	0.0813	2.92
	3	48.5496	50.5131	1.9635	50.4455	1.8959	0.0676	3.44
	1	96.9211	100.3934	3.4723	100.2735	3.3524	0.1199	3.45
500	2	93.5845	97.114	3.5295	96.969	3.3845	0.145	4.11
	3	152.4772	156.1768	3.6996	156.0545	3.5773	0.1223	3.31

	Table B.4.3. Data	for moisture	content of pir	ne wood bio-char	(refer Table 1	1)
--	-------------------	--------------	----------------	------------------	----------------	----

					Sample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	45.8667	49.5468	3.6801	49.4419	3.5752	0.1049	2.85
425	2	46.749	50.1036	3.3546	50.0079	3.2589	0.0957	2.85
	3	46.3932	49.3896	2.9964	49.31	2.9168	0.0796	2.66
	1	46.0832	51.2258	5.1426	51.0687	4.9855	0.1571	3.05
450	2	47.8766	52.5363	4.6597	52.3881	4.5115	0.1482	3.18
	3	48.1352	52.8214	4.6862	52.6635	4.5283	0.1579	3.37
	1	47.4912	52.4574	4.9662	52.311	4.8198	0.1464	2.95
475	2	47.3427	50.9786	3.6359	50.8711	3.5284	0.1075	2.96
	3	103.75	109.6048	5.8548	109.3555	5.6055	0.2493	4.26
	1	92.085	95.7132	3.6282	95.5872	3.5022	0.126	3.47
500	2	113.0288	116.7161	3.6873	116.5723	3.5435	0.1438	3.90
	3	121.4935	125.0328	3.5393	124.9066	3.4131	0.1262	3.57

					Sample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	46.6343	50.268	3.6337	50.1665	3.5322	0.1015	2.79
425	2	42.3064	45.0459	2.7395	44.9709	2.6645	0.075	2.74
	3	42.412	44.8569	2.4449	44.7902	2.3782	0.0667	2.73
	1	46.9118	50.1267	3.2149	50.0226	3.1108	0.1041	3.24
450	2	48.7604	52.4875	3.7271	52.3754	3.615	0.1121	3.01
	3	46.5236	50.7593	4.2357	50.6203	4.0967	0.139	3.28
	1	46.7121	50.1251	3.413	50.0202	3.3081	0.1049	3.07
475	2	47.0303	49.7766	2.7463	49.6894	2.6591	0.0872	3.18
	3	48.5496	50.9981	2.4485	50.8989	2.3493	0.0992	4.05
	1	96.9211	100.1032	3.1821	99.9874	3.0663	0.1158	3.64
500	2	93.5845	97.2567	3.6722	97.1168	3.5323	0.1399	3.81
	3	152.4772	155.8759	3.3987	155.7569	3.2797	0.119	3.50

SAS code for moisture content of pine wood bio-char:

data pinewood; input temp Moisture; datalines; 425 2.875510814 425 2.764450537 425 2.615933413 450 2.909929519 450 3.218584637 450 2.997888811 475 2.957448657 475 2.918686053 475 3.442831678 500 3.453042652 500 4.108230628 500 3.305762785 425 2.85046602 425 2.852799141 425 2.656521159 450 3.054874966 450 3.180462262 450 3.369467799 475 2.947927993 475 2.95662697 475 4.258044681 500 3.472796428 500 3.899872535 500 3.565676829 425 2.793296089 425 2.737725862 425 2.72812794 450 3.23804784 450 3.007700357 450 3.281629955 475 3.073542338 475 3.175181153 475 4.051460078 500 3.639106251 500 3.809705354 500 3.501338747 ; run; proc anova data=pinewood; class temp; model Moisture=temp; means temp/ alpha=0.05; run;

SAS result for moisture content of pine wood bio-char:

Level of		Moisture			
temp	Ν	Mean	Std	Dev	

		425	9	2.76387011	0.089517	58	
		450	9	3.13984291	0.153304	39	
		475	9	3.30908329	0.509124	80	
		500	9	3.63950358	0.253709	39	
Depen	dent Variable:	Moisture					
				Sum of			
	Source		DF	Squares	Mean Square	F Value	Pr > F
	Model		3	3.58386209	1.19462070	13.46	<.0001
	Error		32	2.84073719	0.08877304		
	Corrected Tota	ıl	35	6.42459928			
		R-Square	Coeff	Var Root M	SE Moisture	Mean	
		0.557834	9.272	2988 0.2979	48 3.21	3075	
	Source		DF	Anova SS	Mean Square	F Value	Pr > F
	temp		3	3.58386209	1.19462070	13.46	<.0001

Table B.4.4. Data for higher heating value of underutilized forest bio-char (refer Table 12).

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.5791	22714	0.5237	23409	0.5391	23012
425	2	0.4841	22581	0.6017	22286	0.5296	22379
	3	0.5211	23599	0.5218	24075	0.5473	23702
	1	0.6137	23784	0.5004	23540	0.5321	23581
450	2	0.5229	24736	0.5458	24642	0.5047	24698
	3	0.6481	22079	0.6459	22820	0.5219	23002
	1	0.5222	23066	0.497	23490	0.5478	23545
475	2	0.5491	23684	0.6125	23733	0.5189	23789
	3	0.5164	24203	0.5746	24573	0.5694	24612
	1	0.5421	25037	0.5479	26437	0.5517	26359
500	2	0.5318	25820	0.5678	26418	0.5684	26138
	3	0.5418	25957	0.5765	25463	0.5501	25879

SAS code for higher heating value of underutilized forest bio-char:

```
data UU;
input temp HHV;
datalines;
425 22714
```

425	22581
425	23599
450	23784
450	24736
450	22079
475	23066
475	<mark>23684</mark>
475	24203
500	25037
500	25820
500	25957
425	23409
425	22286
425	24075
450	23540
450	24642
450	22820
475	23490
475	<mark>23733</mark>
475	24573
500	26437
500	26418
500	<mark>25463</mark>
425	23012
425	<mark>22379</mark>
425	<mark>23702</mark>
450	<mark>23581</mark>
450	<mark>24698</mark>
450	<mark>23002</mark>
475	23545
475	23789
475	24612
500	26359
500	26138
500	25879
;	
<pre>run;</pre>	
proc a	anova data=UU;
class	temp;
model	HHV=temp;
means	temp/ alpha=0
<pre>run;</pre>	

SAS result for higher heating value of underutilized forest bio-char:

05;

The ANOVA Procedure

Level of		HH\	/
temp	Ν	Mean	Std Dev
425	9	23084.1111	638.726946
450	9	23653.5556	926.911014
475	9	23855.0000	513.566451
500	9	25945.3333	467.887540

Dependent Variable: HHV

Source temp		DF 3	Anova 42226757.	SS 89	Mean Sq 1407558	uare 5.96	F Value 32.18	Pr > F <.0001
	R-Square 0.751029	Coeft 2.74	f Var 40480	Root M 661.40	/ISE 010	HHV Mea 24134.5	in 60	
Corrected Total		35	56225201.	00				
Error		32	13998443.	11	43745	1.35		
Model		3	42226757.	89	1407558	5.96	32.18	<.0001
Source		DF	Sum Squar	of `es	Mean Sq	uare	F Value	Pr > F

Table B.4.5. Data for ash content of underutilized forest bio-char (refer Table 12	2).
--	-----

		Sample #1								
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %		
	1	18.1379	18.1366	18.7185	0.5819	18.15	0.0134	2.3028		
425	2	18.378	18.3767	19.1072	0.7305	18.3897	0.013	1.7796		
	3	17.7647	17.7631	18.3831	0.62	17.7747	0.0116	1.8710		
	1	18.378	18.3767	20.1493	1.7726	18.4152	0.0385	2.1720		
450	2	17.7647	17.7631	18.9527	1.1896	17.7981	0.035	2.9422		
	3	18.1379	18.1366	19.5595	1.4229	18.1789	0.0423	2.9728		
	1	17.7647	17.7631	19.1354	1.3723	17.7948	0.0317	2.3100		
475	2	18.1379	18.1366	19.8946	1.758	18.1828	0.0462	2.6280		
	3	18.378	18.3767	19.7203	1.3436	18.4326	0.0559	4.1605		
	1	18.1379	18.1366	19.5285	1.3919	18.1796	0.043	3.0893		
500	2	18.378	18.3767	20.0342	1.6575	18.4251	0.0484	2.9201		
	3	17.7647	17.7631	19.4099	1.6468	17.839	0.0759	4.6089		

		Sample #2							
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %	
	1	17.9566	17.9555	18.7767	0.8212	17.9727	0.0172	2.0945	
425	2	18.1617	18.1607	18.8907	0.73	18.1765	0.0158	2.1644	
	3	17.4236	17.4225	18.1149	0.6924	17.434	0.0115	1.6609	
	1	18.1617	18.1607	19.7392	1.5785	18.1908	0.0301	1.9069	
450	2	17.4236	17.4225	18.6076	1.1851	17.4581	0.0356	3.0040	
	3	17.9566	17.9555	18.9934	1.0379	17.987	0.0315	3.0350	
	1	17.4236	17.4225	18.637	1.2145	17.4512	0.0287	2.3631	
475	2	17.9566	17.9555	19.1465	1.191	17.9866	0.0311	2.6113	
	3	18.1617	18.1607	19.3858	1.2251	18.2064	0.0457	3.7303	
	1	17.9566	17.9555	18.9746	1.0191	17.9856	0.0301	2.9536	
500	2	18.1617	18.1607	19.1159	0.9552	18.1857	0.025	2.6173	
	3	17.4236	17.4225	18.5961	1.1736	17.4708	0.0483	4.1155	

	Iteration No.			S	ample #3			
Temp (°C)		Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	17.828	17.8266	18.3376	0.511	17.8374	0.0108	2.1135
425	2	17.4198	17.4187	18.244	0.8253	17.4393	0.0206	2.4961
	3	17.7111	17.7101	18.1612	0.4511	17.7184	0.0083	1.8399
	1	17.4198	17.4187	18.7105	1.2918	17.4511	0.0324	2.5081
450	2	17.7111	17.7101	19.0615	1.3514	17.752	0.0419	3.1005
	3	17.828	17.8266	19.0946	1.268	17.8653	0.0387	3.0521
	1	17.7111	17.7101	18.7176	1.0075	17.7327	0.0226	2.2432
475	2	17.828	17.8266	19.2246	1.398	17.8638	0.0372	2.6609
	3	17.4198	17.4187	18.4442	1.0255	17.4596	0.0409	3.9883
	1	17.828	17.8266	18.9554	1.1288	17.8599	0.0333	2.9500
500	2	17.4198	17.4187	18.6463	1.2276	17.4582	0.0395	3.2177
	3	17.7111	17.7101	19.2567	1.5466	17.7787	0.0686	4.4355

SAS code for ash content of underutilized forest bio-char:

data UU; input temp Ash; datalines; 425 2.302801169 425 1.779603012 425 1.870967742 450 2.171950807 450 2.942165434 450 2.972802024 475 2.309990527 475 2.627986348 475 4.160464424 500 3.089302392 500 2.920060332 500 4.608938547 425 2.09449586 425 2.164383562 425 1.660889659 450 1.906873614 450 3.00396591 450 3.034974468 475 2.363112392 475 2.61125105 475 3.73030773 500 2.953586498 500 2.617252931 500 4.115541922 425 2.113502935 425 2.496062038 425 1.839946797 450 2.508128193 450 3.100488382 450 3.052050473 475 2.243176179 475 2.660944206 475 3.988298391 500 2.950035436 500 3.217660476 500 4.435536014 ; run; proc anova data=UU; class temp; model Ash=temp; means temp/ alpha=0.05; run;

SAS result for ash content of underutilized forest bio-char:

Level of		Ash	
temp	Ν	Mean	Std Dev

425	9	2.03585031	0.26946016
450	9	2.74371103	0.44009985
475	9	2.96617014	0.76693062
500	9	3.43421273	0.74245385

Dependent Variable: Ash

			Sum	of				
Source		DF	Squar	es	Mean S	quare	F Value	Pr > F
Model		3	9.151478	45	3.050	49282	8.68	0.0002
Error		32	11.245735	59	0.351	42924		
Corrected Total		35	20.397214	04				
	R-Square	Coef	f Var	Root	MSE	Ash M	ean	
	0.448663	21.	20993	0.592	815	2.794	986	
Source		DF	Anova	SS	Mean S	quare	F Value	Pr > F
temp		3	9.151478	45	3.050	49282	8.68	0.0002

					Sample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	43.5	47.1744	3.6744	47.1197	3.6197	0.0547	1.49
425	2	46.139	49.426	3.287	49.378	3.239	0.048	1.46
	3	42.949	46.68	3.731	46.6236	3.6746	0.0564	1.51
	1	43.2425	46.002	2.7595	45.9668	2.7243	0.0352	1.28
450	2	44.0061	46.133	2.1269	46.1153	2.1092	0.0177	0.83
	3	42.118	45.416	3.298	45.3952	3.2772	0.0208	0.63
	1	46.1815	49.178	2.9965	49.1517	2.9702	0.0263	0.88
475	2	45.977	48.4219	2.4449	48.3802	2.4032	0.0417	1.71
	3	44.6883	48.5	3.8117	48.4589	3.7706	0.0411	1.08
	1	44.637	47.734	3.097	47.6959	3.0589	0.0381	1.23
500	2	41.789	44.23	2.441	44.1916	2.4026	0.0384	1.57
	3	48.245	49.749	1.504	49.7406	1.4956	0.0084	0.56

	Table B.4.6. Data	a for moisture	e content of underutilize	d forest bio-char	(refer Table 12)
--	-------------------	----------------	---------------------------	-------------------	------------------

		Sample #2										
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %				
	1	47.575	50.7848	3.2098	50.7485	3.1735	0.0363	1.13				
425	2	45.56	48.1153	2.5553	48.1059	2.5459	0.0094	0.37				
	3	48.369	50.1177	1.7487	50.1013	1.7323	0.0164	0.94				
	1	43.562	46.843	3.281	46.8343	3.2723	0.0087	0.27				
450	2	46.8443	48.4127	1.5684	48.4077	1.5634	0.005	0.32				
	3	43.1858	44.4948	1.309	44.494	1.3082	0.0008	0.06				
	1	46.945	48.4598	1.5148	48.456	1.511	0.0038	0.25				
475	2	46.6382	48.1803	1.5421	48.1689	1.5307	0.0114	0.74				
	3	45.8689	47.2541	1.3852	47.2466	1.3777	0.0075	0.54				
	1	46.7538	48.0021	1.2483	48.001	1.2472	0.0011	0.09				
500	2	42.4188	44.5996	2.1808	44.5769	2.1581	0.0227	1.04				
	3	46.3995	47.9312	1.5317	47.9282	1.5287	0.003	0.20				

					Sample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	46.916	49.221	2.305	49.1873	2.2713	0.0337	1.46
425	2	46.089	48.967	2.878	48.9453	2.8563	0.0217	0.75
	3	48.7639	50.6366	1.8727	50.6154	1.8515	0.0212	1.13
	1	46.519	47.8638	1.3448	47.85	1.331	0.0138	1.03
450	2	48.144	49.7285	1.5845	49.7188	1.5748	0.0097	0.61
	3	46.7168	48.4028	1.686	48.4019	1.6851	0.0009	0.05
	1	47.0338	48.7202	1.6864	48.7149	1.6811	0.0053	0.31
475	2	47.3458	48.73	1.3842	48.7185	1.3727	0.0115	0.83
	3	48.5515	50.059	1.5075	50.05	1.4985	0.009	0.60
	1	17.712	18.5948	0.8828	18.5914	0.8794	0.0034	0.39
500	2	17.5664	18.5081	0.9417	18.496	0.9296	0.0121	1.28
	3	17.8312	18.8985	1.0673	18.8867	1.0555	0.0118	1.11

SAS code for moisture content of underutilized forest bio-char:

data UU; input temp Moisture; datalines; 425 1.488678424 1.460298144 425 1.511659073 425 450 1.275593405 450 0.832197094 450 0.630685264 475 0.877690639 475 1.705591231 475 1.078259045 500 1.230222796 500 1.573125768 500 0.558510638 425 1.130911583 425 0.367862873 425 0.937839538 450 0.26516306 450 0.318796225 450 0.061115355 475 0.250858199 475 0.73925167 475 0.541438059 500 0.088119843 500 1.040902421 500 0.195860808 425 1.462039046 425 0.75399583 425 1.132055321 450 1.026174896 450 0.612180499 450 0.053380783 475 0.314278937 475 0.830804797 475 0.597014925 500 0.385138197 500 1.284910269 500 1.105593554 ; run; proc anova data=UU; class temp; model Moisture=temp; means temp/ alpha=0.05; run;

SAS result for moisture content of underutilized forest bio-char:

Level of		Moisture	Moisture				
temp	Ν	Mean	Std Dev				

	425	9	1	.13837109	0.395631	27	
	450	9	0	.56392073	0.427452	206	
	475	9	0	.77057639	0.439594	139	
	500	9	0	.82915381	0.531966	586	
Dependent Variable	: Moisture						
				Sum of			
Source		DF	S	quares	Mean Square	F Value	Pr > F
Model		3	1.52	407789	0.50802596	2.49	0.0779
Error		32	6.52	377066	0.20386783		
Corrected To	tal	35	8.04	784855			
	R-Square	Coeff	Var	Root M	SE Moisture	Mean	
	0.189377	54.6	9585	0.4515	17 0.82	25506	
Source		DF	An	ova SS	Mean Square	F Value	Pr > F
temp		3	1.52	407789	0.50802596	2.49	0.0779

Table B.4.7. Data	for higher	heating value	e of poultry	v litter bio-char	(refer Table 13	5).
	0	0				

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.5437	11810	0.5075	11891	0.5623	11789
425	2	0.513	12352	0.5568	12615	0.498	12490
	3	0.5028	12118	0.5107	12117	0.5432	12209
	1	0.4444	11194	0.493	11120	0.5239	11202
450	2	0.5128	10668	0.502	10771	0.4927	10758
	3	0.5119	11407	0.5122	11668	0.5421	11661
	1	0.5371	10978	0.5225	11068	0.4728	11081
475	2	0.5088	11445	0.5549	11448	0.5174	11493
	3	0.5607	10646	0.6442	10624	0.5876	10651
	1	0.5262	10824	0.5415	10829	0.4987	10841
500	2	0.5036	11074	0.5315	11239	0.5678	11112
	3	0.5752	10446	0.5763	10483	0.5129	10477

SAS code for higher heating value of poultry litter bio-char:

475	10646			
500	10824			
500	11074			
500	10446			
425	11891			
425	12615			
425	12117			
450	11120			
450	10771			
450	11668			
475	11068			
475	11448			
475	10624			
500	10829			
500	11239			
500	10483			
425	11789			
425	12490			
425	12209			
450	11202			
450	10758			
450	11661			
475	11081			
475	11493			
475	10651			
500	10841			
500	11112			
500	10477			
;				
run;		_		
proc a	anova	lata=	PL;	
class	temp;			
model	HHV=te	emp;		_
means	temp/	alph	a=0.05	5
run;				

SAS result for higher heating value of poultry litter bio-char:

		Th	e ANOVA Procedur	e		
	Level of			HHV		
	temp	Ν	Mean	Std Dev		
	425	9	12154.5556	293.904368		
	450	9	11161.0000	375.761560		
	475	9	11048.2222	357.248435		
	500	9	10813.8889	295.092547		
Dependent Variable: HHV	,					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		3	9442418.08	3147472.69	28.47	<.0001
Error		32	3538260.67	110570.65		
Corrected Total		35	12980678.75			
	R-Square	Coef	f Var Root	MSE HHV Mea	n	
	0.727421	2.9	44124 332.5	216 11294.4	2	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		3	9442418.083	3147472.694	28.47	<.0001

		Sample #1						
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio-oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	15.4928	15.4918	16.2671	0.7753	15.901	0.4092	52.7796
425	2	14.4324	14.4299	15.4451	1.0152	14.842	0.4121	40.5930
	3	14.74	14.7386	15.5342	0.7956	15.1142	0.3756	47.2097
	1	14.9381	14.9372	16.0048	1.0676	15.5193	0.5821	54.5242
450	2	14.9786	14.975	16.2666	1.2916	15.729	0.754	58.3772
	3	14.3689	14.3642	15.5917	1.2275	15.0558	0.6916	56.3422
	1	15.1845	15.1809	16.5941	1.4132	16.014	0.8331	58.9513
475	2	14.1347	14.131	15.241	1.11	14.7944	0.6634	59.7658
	3	14.2151	14.2134	15.5012	1.2878	14.9513	0.7379	57.2993
	1	14.2743	14.2739	15.8913	1.6174	15.154	0.8801	54.4145
500	2	14.4892	14.489	15.8304	1.3414	15.2884	0.7994	59.5945
	3	14.8947	14.8935	16.3717	1.4782	15.784	0.8905	60.2422

Table B.4.8. Data for ash content of poultry litter bio-char (refer Table 13).

		Sample #2								
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %		
	1	14.7423	14.741	15.271	0.53	15.0293	0.2883	54.3962		
425	2	14.2774	14.2769	14.9274	0.6505	14.5583	0.2814	43.2590		
	3	15.3551	15.3547	16.3613	1.0066	15.8305	0.4758	47.2680		
	1	12.9784	12.978	14.3797	1.4017	13.7621	0.7841	55.9392		
450	2	12.8959	12.8959	14.2424	1.3465	13.6654	0.7695	57.1482		
	3	15.1221	15.1214	16.3927	1.2713	15.8389	0.7175	56.4383		
	1	14.3498	14.3487	15.4685	1.1198	14.9702	0.6215	55.5010		
475	2	15.0069	15.0058	16.3294	1.3236	15.7546	0.7488	56.5730		
	3	15.1387	15.138	16.7015	1.5635	16.0175	0.8795	56.2520		
	1	14.5049	14.5036	15.9767	1.4731	15.33	0.8264	56.0994		
500	2	14.6652	14.6643	16.0283	1.364	15.4794	0.8151	59.7581		
	3	15.4697	15.4681	16.9575	1.4894	16.3844	0.9163	61.5214		

		Sample #3							
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %	
	1	15.4928	15.4918	16.4126	0.9208	15.989	0.4972	53.9965	
425	2	14.4324	14.4299	15.4879	1.058	14.8875	0.4576	43.2514	
	3	14.74	14.7386	15.689	0.9504	15.1878	0.4492	47.2643	
	1	14.9381	14.9372	15.7536	0.8164	15.3938	0.4566	55.9285	
450	2	14.9786	14.975	15.8549	0.8799	15.4778	0.5028	57.1429	
	3	14.3689	14.3642	14.9663	0.6021	14.704	0.3398	56.4358	
	1	15.1845	15.1809	15.8697	0.6888	15.5831	0.4022	58.3914	
475	2	14.1347	14.131	15.6589	1.5279	15.0153	0.8843	57.8768	
	3	14.2151	14.2134	14.7416	0.5282	14.5115	0.2981	56.4370	
	1	14.2743	14.2739	15.0015	0.7276	14.683	0.4091	56.2259	
500	2	14.4892	14.489	15.1256	0.6366	14.869	0.38	59.6921	
	3	14.8947	14.8935	15.4569	0.5634	15.2391	0.3456	61.3419	

SAS code for ash content of poultry litter bio-char:

data PL;

input temp Ash; datalines; 425 52.7795692 425 40.5929866 425 47.20965309 450 54.52416635 450 58.37720657 450 56.34215886 475 58.95131616 475 59.76576577 475 57.29927007 500 54.4144924 500 59.59445356 500 60.24218644 425 54.39622642 425 43.25903151 425 47.268031 450 55.93921667 450 57.1481619 450 56.43829151 475 55.50098232 475 56.57298277 475 56.25199872 500 56.09938226 500 59.75806452 500 61.52141802 425 53.99652476

425	43.25141777
425	47.26430976
450	55.92846644
450	57.14285714
450	56.43580801
475	58.39140534
475	57.8768244
475	<mark>56.4369557</mark>
500	<mark>56.22594832</mark>
500	<mark>59.69211436</mark>
500	61.34185304
;	
run;	
proc a	anova data=PL;
class	temp;
model	Ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for ash content of poultry litter bio-char:

The	ANOVA	Procedure
-----	-------	-----------

	Level of			Ash	
	temp	Ν	Mean	Std Dev	
	425	9	47.7797500	5.01085126	
	450	9	56.4751482	1.05650454	
	475	9	57.4497224	1.40254938	
	500	9	58.7655459	2.53557237	
Dependent Variable:	Ash				
			Sum of		
Source		DF	Squares	Mean Square F	Value

Pr > F

Model		3	669.89954	196	223.2	998499	25.80	<.0001
Error		32	276.96883	337	8.6	552761		
Corrected Total		35	946.86838	333				
	R-Square 0.707490	Coef 5.3	f Var 37657	Root 2.941	MSE 985	Ash Me 55.117	an 54	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		3	669.89954	196	223.2	998499	25.80	<.0001

		Sample #1								
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %		
	1	43.4951	47.236	3.7409	47.0863	3.5912	0.1497	4.00		
425	2	42.9424	46.8331	3.8907	46.715	3.7726	0.1181	3.04		
	3	43.2417	46.9396	3.6979	46.8485	3.6068	0.0911	2.46		
	1	42.1114	45.2703	3.1589	45.1504	3.039	0.1199	3.80		
450	2	46.1775	49.5704	3.3929	49.4795	3.302	0.0909	2.68		
	3	44.6864	49.0111	4.3247	48.9426	4.2562	0.0685	1.58		
	1	44.36	48.0972	3.7372	47.939	3.579	0.1582	4.23		
475	2	48.2386	52.4554	4.2168	52.3167	4.0781	0.1387	3.29		
	3	45.5597	49.866	4.3063	49.7743	4.2146	0.0917	2.13		
	1	47.5009	51.7488	4.2479	51.5616	4.0607	0.1872	4.41		
500	2	46.8336	51.2526	4.419	51.0802	4.2466	0.1724	3.90		
	3	46.0423	50.1707	4.1284	50.0563	4.014	0.1144	2.77		

Table B.4.9. Data for moisture content of	poultry litter bio-char (refer Table 13).
---	---------------------------	----------------	----

		Sample #2									
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %			
	1	46.1278	49.4853	3.3575	49.3557	3.2279	0.1296	3.86			
425	2	45.4166	49.783	4.3664	49.6526	4.236	0.1304	2.99			
	3	44.0149	47.7219	3.707	47.6341	3.6192	0.0878	2.37			
	1	45.7667	50.4866	4.7199	50.3067	4.54	0.1799	3.81			
450	2	45.9833	51.0141	5.0308	50.9034	4.9201	0.1107	2.20			
	3	46.7795	52.8452	6.0657	52.7523	5.9728	0.0929	1.53			
	1	41.791	46.6566	4.8656	46.4372	4.6462	0.2194	4.51			
475	2	47.5682	51.6919	4.1237	51.548	3.9798	0.1439	3.49			
	3	48.3674	53.708	5.3406	53.5847	5.2173	0.1233	2.31			
	1	45.5664	49.2776	3.7112	49.1078	3.5414	0.1698	4.58			
500	2	43.1856	47.2647	4.0791	47.112	3.9264	0.1527	3.74			
	3	46.941	51.5296	4.5886	51.4022	4.4612	0.1274	2.78			
		Sample #3									
--------------	------------------	------------------------------	---	------------------------------	---	---	--------------------------	-----------------------	--	--	--
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %			
	1	43.4951	47.2456	3.7505	47.0983	3.6032	0.1473	3.93			
425	2	42.9424	46.8789	3.9365	46.7616	3.8192	0.1173	2.98			
	3	43.2417	46.9127	3.671	46.8204	3.5787	0.0923	2.51			
	1	42.1114	45.2002	3.0888	45.0844	2.973	0.1158	3.75			
450	2	46.1775	49.4589	3.2814	49.3701	3.1926	0.0888	2.71			
	3	44.6864	49.0457	4.3593	48.9826	4.2962	0.0631	1.45			
	1	44.36	48.0168	3.6568	47.8591	3.4991	0.1577	4.31			
475	2	48.2386	52.4023	4.1637	52.2767	4.0381	0.1256	3.02			
	3	45.5597	49.8455	4.2858	49.7543	4.1946	0.0912	2.13			
	1	47.5009	51.7969	4.296	51.5998	4.0989	0.1971	4.59			
500	2	46.8336	51.2003	4.3667	51.0411	4.2075	0.1592	3.65			
	3	46.0423	50.1189	4.0766	50.0048	3.9625	0.1141	2.80			

SAS code for moisture content of poultry litter bio-char:

data PL; input temp Moisture; datalines; 425 4.001710818 3.035443493 425 2.463560399 425 450 3.795625059 450 2.679124053 450 1.583924897 475 4.233115702 475 3.289224056 475 2.129438265 500 4.406883401 500 3.901335144 500 2.771049317 425 3.860014892 425 2.98644192 425 2.368492042 450 3.811521431 450 2.200445257 450 1.531562722 475 4.509207498 475 3.489584596 475 2.308729356 500 4.575339513 500 3.743472825 500 2.776445975 425 3.927476336 425 2.979804395 425 2.51430128 450 3.749028749 450 2.706162004 450 1.4474801 475 4.312513673 475 3.016547782 2.127957441 475 500 4.587988827 500 3.645773696 500 2.798901045 ; run; proc anova data=PL; class temp; model Moisture=temp; means temp/ alpha=0.05; run;

SAS result for moisture content of poultry litter bio-char:

The ANOVA Procedure

Level of		Moisture		
temp	Ν	Mean	Std Dev	

		425	9	3.12636062	0.650373	01	
		450	9	2.61165270	0.993465	68	
		475	9	3.26847982	0.948159	37	
		500	9	3.68968775	0.760486	48	
Depende	ent Variable: M	oisture					
				Sum of			
S	Source		DF	Squares	Mean Square	F Value	Pr > F
Μ	lodel		3	5.34027854	1.78009285	2.47	0.0801
E	rror		32	23.09843977	0.72182624		
С	corrected Total		35	28.43871831			
	I	R-Square	Coeff	Var Root M	ISE Moisture	Mean	
		0.187782	26.76	722 0.8496	3.17	4045	
S	Source		DF	Anova SS	Mean Square	F Value	Pr > F
t	emp		3	5.34027854	1.78009285	2.47	0.0801

B.5 MULTIPLE COMPARISON

This section comprises of all the data and results (from Minitab software) required to interpret the multiple comparison analysis between the effect of different types of biomass and operating temperatures over the yield of various products of the pyrolysis process, and the physical properties of bio-oil and biochar.

Minitab worksheet for bio-oil production:

Biomass Type	Temp	Oil Yield
PW	425	30
PW	425	29.6
PW	425	29
PW	450	30
PW	450	32.2
PW	450	33.4
PW	475	36.2
PW	475	34.6
PW	475	35.8
PW	500	37.6
PW	500	36.4
PW	500	39.4
UU	425	30.4
UU	425	29.6
UU	425	31.2
UU	450	31.8
UU	450	35
UU	450	30.8
UU	475	32
UU	475	32
UU	475	31.2
UU	500	34.2
UU	500	32.8
UU	500	31.4
PL	425	32.2
PL	425	32.8
PL	425	33
PL	450	33.4
PL	450	33.6
PL	450	32.8

Biomass Type	Temp	Oil Yield
PL	475	35.4
PL	475	34.4
PL	475	34.6
PL	500	31.2
PL	500	29.4
PL	500	26

Minitab result for bio-oil production:

Two-way ANOVA: Oil Yield versus Biomass Type, Temp

Source	DF	SS	MS	F	Р
Biomass Type	2	20.927	10.4633	5.86	0.008
Temp	3	47.950	15.9833	8.95	0.000
Interaction	6	142.380	23.7300	13.29	0.000
Error	24	42.853	1.7856		
Total	35	254.110			

S = 1.336 R-Sq = 83.14% R-Sq(adj) = 75.41%

		Individual 95	5% CIs For	Mean Based	on
Biomass		Pooled StDev			
Туре	Mean	+	+	+	+
PL	32.4000	(-*)		
PW	33 6833		(*	-)
± ••	00000		(,
UU	31.8667	(*)		
UU	31.8667	(*) +	+	+

		Individual	95% CIs	For Mean	Based on	Pooled	StDev
Temp	Mean	+	+	+	+		
425	30.8667	(*)				
450	32.5556		(*)			
475	34.0222			(*)	
500	33.1556			(*)		
		+	+	+	+		
		30.0	31.5	33.0	34.5		

General Linear Model: Oil Yield versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 475,	500

Analysis of Variance for Oil Yield, using Adjusted SS for Tests

Source		DF	Seq SS	Adj SS	Adj MS	F	P
Biomass	Туре	2	20.927	20.927	10.463	5.86	0.008
Temp		3	47.950	47.950	15.983	8.95	0.000
Biomass	Type*Temp	6	142.380	142.380	23.730	13.29	0.000
Error		24	42.853	42.853	1.786		

Total 35 254.110 S = 1.33625 R-Sq = 83.14% R-Sq(adj) = 75.41% Unusual Observations for Oil Yield Oil YieldFitSE FitResidualSt Resid35.000032.53330.77152.46672.2631.200028.86670.77152.33332.14 Obs Oil Yield 2.26 R 17 34 2.14 R 26.0000 28.8667 0.7715 -2.8667 -2.63 R 36 R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Oil Yield All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Туре PW (-----) (-----) UU -3.2 -1.6 0.0 1.6 Biomass Type = PW subtracted from: Biomass -3.178 -1.817 -0.4550 (-----*----) UU -3.2 -1.6 0.0 1.6 Tukey Simultaneous Tests Response Variable Oil Yield All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Adjusted Biomass Difference SE of of Means Difference T-Value P-Value Type 1.2833 0.5455 2.3525 0.0675 PW 0.5455 -0.9777 0.5977 -0.5333 UU Biomass Type = PW subtracted from: BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-ValueUU-1.8170.5455-3.3300.0076 Tukey 95.0% Simultaneous Confidence Intervals Response Variable Oil Yield All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: (-----) 450 -0.04823 1.689 3.426

Temp	= 450 s	ubtracte	d from:					
Temp 475	Lower -0.270	Center 1.4667	Upper 3.204	+	 ()	+	
500	-1.137	0.6000	2.337	+	*) 	+	
				-2.5	0.0	2.5	5.0	

Temp = 475 subtracted from:

Temp 500	Lower -2.604	Center -0.8667	Upper 0.8705	+	+ *)	+	+	
				+ -2.5	0.0	2.5	+ 5.0	

Tukey Simultaneous Tests Response Variable Oil Yield All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	1.689	0.6299	2.681	0.0589
475	3.156	0.6299	5.010	0.0002
500	2.289	0.6299	3.634	0.0068

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	1.4667	0.6299	2.3284	0.1196
500	0.6000	0.6299	0.9525	0.7771

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	-0.8667	0.6299	-1.376	0.5259

Minitab worksheet for biochar production:

Biomass Type	Temp	Char Yield
PW	425	48.8
PW	425	49.6
PW	425	50.4
PW	450	43
PW	450	37.8
PW	450	41.2
PW	475	32.2
PW	475	34.2
PW	475	32.8
PW	500	28.4
PW	500	23.6
PW	500	21
UU	425	38.6
UU	425	48
UU	425	39.6
UU	450	40.8
UU	450	36.4
UU	450	40.4

Biomass Type	Temp	Char Yield
UU	475	39
UU	475	40.4
UU	475	34.4
UU	500	31
UU	500	30.2
UU	500	24
PL	425	49.4
PL	425	48.4
PL	425	47.2
PL	450	43
PL	450	42.6
PL	450	45.6
PL	475	39.6
PL	475	40.8
PL	475	40.8
PL	500	36
PL	500	38.4
PL	500	39.2

Minitab result for biochar production:

Two-way ANOVA: Char versus Biomass Type, Temp

Source	DF	SS	MS	म	P	
Biomass Type	e 2	257.65	128.823	17.77	0.000	
Temp	3	1299.44	433.147	59.75	0.000	
Interaction	6	244.94	40.823	5.63	0.001	
Error	24	173.97	7.249			
Total	35	1976.00				
S = 2.692	R-Sq	= 91.20%	R-Sq (ad	j) = 87	.16%	
		Individu	al 95% CI	s For M	ean Base	d

		Individual 95%	CIs For	Mean Based	on
Biomass		Pooled StDev			
Туре	Mean	+	+	+	+
PL	42.5833			(*)
PW	36.9167	()			
UU	36.9000	()			
		+	+	+	+
		37.5	40.0	42.5	45.0

		Individual	95%	CIs	For	Mean	Based	on	
		Pooled StDe	∋v						
Temp	Mean	+	+-			-+	+		
425	46.6667						(*	-)	
450	41.2000				(?	⁺)			
475	37.1333		(- *)					

General Linear Model: Char versus Biomass Type, Temp

Factor Biomass T Temp	Type Leve ype fixed fixed	ls Valu 3 PL, 4 425,	aes PW, UU 450, 4	75, 500			
Analysis	of Variance for	Char, us	sing Adjı	usted SS	for Te	sts	
Source Biomass T Temp Biomass T Error Total	DF S ype 2 2 3 12 ype*Temp 6 2 24 1 35 19	eq SS 57.65 99.44 1 44.94 73.97 76.00	Adj SS 257.65 299.44 244.94 173.97	Adj MS 128.82 433.15 40.82 7.25	F 17.77 59.75 5.63	P 0.000 0.000 0.001	
S = 2.692	38 R-Sq = 91.2	0% R-S	Sq(adj) =	= 87.16%			
Unusual O	bservations for	Char					
Obs C 14 48.0 24 24.0	har Fit SE 000 42.0667 1. 000 28.4000 1.	Fit Re 5544 5544 -	esidual 5.9333 -4.4000	St Resid 2.70 -2.00	1) R) R		
R denotes	an observation	with a l	arge sta	andardize	ed resi	dual.	
Tukey 95. Response All Pairw Biomass T	0% Simultaneous Variable Char ise Comparisons ype = PL subtra	Confider among Le cted fro	nce Inte: evels of om:	rvals Biomass	Туре		
Biomass Type PW UU	Lower Center -8.410 -5.667 -8.427 -5.683	Upper -2.923 -2.940	 (+ -7.0	+- -*+- -3.5	-) -) 	+ + 0.0	+ 3.5
Biomass T	ype = PW subtra	cted fro	om:				
Biomass Type UU	Lower Center -2.760 -0.01667	Upper 2.727	+ -7.0	+ -3.5	(5	+ + 0.0	+) 3.5
Tukey Simultaneous Tests Response Variable Char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from:							
Biomass	Difference	SE of		Adjuste	ed		

Туре Р₩ UU	of Means D -5.667 -5.683	ifferen 1.0 1.0	ce T-Val 99 -5.1 99 -5.1	ue P-Val 55 0.00 71 0.00	ue 01 01	
Biomass Typ	e = PW sub	tracted	from:			
Biomass Di Type UU	fference of Means D -0.01667	SE o SE o SE o SE o SE o SE o SE o SE o	of ce T-Va 99 -0.01	Adjus lue P-Va 516 0.9	ted lue 999	
Tukey 95.08 Response Va All Pairwis Temp = 425	Simultaneo Ariable Char Se Compariso Subtracted	us Conf: ns amono from:	idence In g Levels	tervals of Temp		
Temp Lowe	er Center	Upper	+	+	+	+
450 -8.9	97 -5.47	-1.97		((*)
500 -19.9	-16.47	-12.97	(*)	/	
			+	-12.0		0.0
Temp = 450	subtracted	from:				
Temp Lowe	er Center	Upper	+	+	+	+
475 -7.5	57 - 4.07	-0.567		(*_	(*)
500 -14.5	-11.00	-7.500	+) +	+
			-18.0	-12.0	-6.0	0.0
Temp = 475	subtracted	from:				
Temp Lowe	er Center	Upper	+	+	+	+
500 -10.4	-6.933	-3.433		(*)
			-18.0	-12.0	-6.0	0.0
Tukey Simultaneous Tests Response Variable Char All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:						
Diffe	erence	SE of		Adjusted		
Temp of 450	Means Diff -5 47	erence 1 269	T-Value _4 31	P-Value 0 0013		
475	-9.53	1.269	-7.51	0.0000		
500 -	-16.47	1.269	-12.97	0.0000		
Temp = 450	subtracted	from:				
Diffe	erence	SE of		Adjusted		
Temp of 475	Means Diff	erence	T-Value	P-Value		
500 -	-11.00	1.269	-8.667	0.0000		
Temp = 475	subtracted	from:				

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	-6.933	1.269	-5.463	0.0001

Minitab worksheet for gas production:

Biomass Type	Temp	Gas Yield
PW	425	21.2
PW	425	20.8
PW	425	20.6
PW	450	27
PW	450	30
PW	450	25.4
PW	475	31.6
PW	475	31.2
PW	475	31.4
PW	500	34
PW	500	40
PW	500	39.6
UU	425	31
UU	425	22.4
UU	425	29.2
UU	450	27.4
UU	450	28.6
UU	450	28.8
UU	475	29
UU	475	27.6
UU	475	34.4
UU	500	34.8
UU	500	37
UU	500	44.6
PL	425	18.4
PL	425	18.8
PL	425	19.8
PL	450	23.6
PL	450	23.8
PL	450	21.6
PL	475	25
PL	475	24.8
PL	475	24.6
PL	500	32.8
PL	500	32.2
PL	500	34.8

Minitab result for gas production:

Two-way ANOVA: Gas Yield versus Biomass Type, Temp

PL	25.0167	(*)		
PW	29.4000		(*)
UU	31.2333			(-*)
		+	+	+	+
		25.0	27.5	30.0	32.5

		Individual Pooled StDe	95% ∋v	CIs	For	Mean	Based	on
Temp	Mean	+-			-+		+	+
425	22.4667	(*)						
450	26.2444	(_*)				
475	28.8444		(–	*-)			
500	36.6444						(* -)
		+-			-+		+	+
		25.0		30.	. 0	35	5.0	40.0

General Linear Model: Gas Yield versus Biomass Type, Temp

Factor		Туре	Levels	Valu	les			
Biomass	Туре	fixed	3	PL,	PW,	UU	J	
Temp		fixed	4	425,	450),	475,	500

Analysis of Variance for Gas Yield, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	e 2	244.89	244.89	122.44	18.09	0.000
Temp	3	971.36	971.36	323.79	47.84	0.000
Biomass Type	e*Temp 6	52.15	52.15	8.69	1.28	0.302
Error	24	162.43	162.43	6.77		
Total	35	1430.83				

S = 2.60150 R-Sq = 88.65% R-Sq(adj) = 83.45%

Unusual Observations for Gas Yield

Obs	Gas Yield	Fit	SE Fit	Residual	St Resid
14	22.4000	27.5333	1.5020	-5.1333	-2.42 R
24	44.6000	38.8000	1.5020	5.8000	2.73 R

R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Gas Yield All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Туре (-----*----) (-----*-1.732 PW 3.566 6.217 8.868 (-----*-----) UU ---+----+----+----+----+----+----0.0 3.0 6.0 9.0 Biomass Type = PW subtracted from: Biomass Туре Lower Center Upper ---+----+----+----+----+----+-----0.8177 1.833 4.484 (-----*----) UU ---+----+----+----+----+----+----0.0 3.0 6.0 9.0 Tukey Simultaneous Tests Response Variable Gas Yield All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value 4.383 1.062 4.127 0.0011 PW UU 6.217 1.062 5.853 0.0000 Biomass Type = PW subtracted from: Biomass Difference SE of Adjusted Typeof MeansDifferenceT-ValueP-ValueUU1.8331.0621.7260.2162 Tukey 95.0% Simultaneous Confidence Intervals Response Variable Gas Yield All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:
 450
 0.3958
 3.778
 7.160
 (------)

 475
 2.9958
 6.378
 9.760
 (------)

 500
 10.7958
 14.178
 17.560
 (------)
 0.0 5.0 10.0 15.0 Temp = 450 subtracted from: Temp 475 -0.7819 2.600 5.982 (-----*----) 500 7.0181 10.400 13.782 (-----*----) --+----+-----+-----+-----+-----

				0.0	5.0	10.0	15.0
Temp	= 475	subtract	ed from:	:			
Temp 500	Lower 4.418	Center 7.800	Upper 11.18	+	+ (·) ·*)	+
				0.0	5.0	10.0	15.0
Tukey Respo All P Temp	Simult nse Var airwise = 425	aneous T iable Ga Compari subtract	ests s Yield sons amo ed from:	ong Levels	of Temp		
Temp 450	Differ of M	ence eans Di 778	SE of fference 1 226	T-Value	Adjuste P-Valu 0 024	ed le	

100	5.110	1.220	5.000	0.0240
475	6.378	1.226	5.201	0.0001
500	14.178	1.226	11.561	0.0000

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	2.600	1.226	2.120	0.1754
500	10.400	1.226	8.480	0.0000

	Difference	SE of		Adjusted		
Temp	of Means	Difference	T-Value	P-Value		
500	7.800	1.226	6.360	0.0000		

Biomass			Biomass			Biomass		
Туре	Temp	Density	Туре	Temp	Density	Туре	Temp	Density
PW	425	1156.65	UU	425	1212.05	PL	425	1054.7
PW	425	1154.8	UU	425	1181.1	PL	425	1057.95
PW	425	1144.65	UU	425	1177.85	PL	425	1137.5
PW	450	1135.35	UU	450	1207.15	PL	450	1058.3
PW	450	1161.7	UU	450	1174.85	PL	450	1054.4
PW	450	1145.05	UU	450	1189.75	PL	450	1087.75
PW	475	1116.8	UU	475	1177.5	PL	475	1059
PW	475	1147.2	UU	475	1195.85	PL	475	1077.15
PW	475	1130.4	UU	475	1174.85	PL	475	1067.6
PW	500	1120.8	UU	500	1178.3	PL	500	1062.1
PW	500	1167.8	UU	500	1180.65	PL	500	1064.05
PW	500	1126.3	UU	500	1169.4	PL	500	1062.05
PW	425	1154.8	UU	425	1211.65	PL	425	1054.15
PW	425	1152.25	UU	425	1177.1	PL	425	1050.9
PW	425	1140.8	UU	425	1172.8	PL	425	1134.05
PW	450	1147.5	UU	450	1184.2	PL	450	1051.7
PW	450	1169.65	UU	450	1182	PL	450	1055.95
PW	450	1142.2	UU	450	1174	PL	450	1081.1
PW	475	1101.9	UU	475	1180.55	PL	475	1049.2
PW	475	1146.45	UU	475	1184.9	PL	475	1079.3
PW	475	1180.3	UU	475	1179.75	PL	475	1045.3
PW	500	1096.2	UU	500	1172.5	PL	500	1060.05
PW	500	1152.65	UU	500	1179.9	PL	500	1061.45
PW	500	1126.85	UU	500	1154.65	PL	500	1064.25
PW	425	1157.85	UU	425	1208.15	PL	425	1054.4
PW	425	1168.25	UU	425	1184.15	PL	425	1054.85
PW	425	1144.2	UU	425	1173.6	PL	425	1135.75
PW	450	1136.25	UU	450	1189.1	PL	450	1056.9
PW	450	1169.75	UU	450	1186.95	PL	450	1052.45
PW	450	1142.5	UU	450	1181.5	PL	450	1084.95
PW	475	1135.45	UU	475	1178.85	PL	475	1062.65
PW	475	1125.1	UU	475	1199.45	PL	475	1069.55
PW	475	1125.45	UU	475	1161.3	PL	475	1059.5
PW	500	1130.45	UU	500	1161.9	PL	500	1065.6
PW	500	1148.65	UU	500	1182.4	PL	500	1056.4
PW	500	1117.2	UU	500	1159.05	PL	500	1065.45

Minitab worksheet for density of bio-oil:

Minitab result for density of bio-oil:

Two-way ANOVA: Density versus Biomass type, Temp

		Individual	95% CIs	For Mean	Based on	
		Pooled StDe	ev			
Temp	Mean		+	+	+	
425	1141.00			(*)	
450	1133.44		(?	*)		
475	1126.34	(-*)	1		
500	1121.74	(*)			
		+	+	+-	+	
		1120	1130	1140	1150	

General Linear Model: Density versus Biomass type, Temp

Factor		Туре	Levels	Values	
Biomass	type	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 4	75, 500

Analysis of Variance for Density, using Adjusted SS for Tests

Source		DF	Seq SS	Adj SS	Adj MS	F	P
Biomass t	суре	2	239742	239742	119871	373.97	0.000
Temp		3	5745	5745	1915	5.97	0.001
Biomass t	ype*Temp	6	1156	1156	193	0.60	0.729
Error		96	30772	30772	321		
Total		107	277414				

S = 17.9036 R-Sq = 88.91% R-Sq(adj) = 87.64%

Unusual Observations for Density

Obs	Density	Fit	SE Fit	Residual	St Resid
11	1167.80	1131.88	5.97	35.92	2.13 R
21	1180.30	1134.34	5.97	45.96	2.72 R
22	1096.20	1131.88	5.97	-35.68	-2.11 R

751137.501081.585.9755.923.31 R871134.051081.585.9752.473.11 R991135.751081.585.9754.173.21 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Density All Pairwise Comparisons among Levels of Biomass type Biomass type = PL subtracted from: Biomass type 64.16 74.22 84.27 (---*--) PW (--*--) 103.59 113.65 123.70 UU 30 60 90 120 Biomass type = PW subtracted from: Biomass type UU 30 60 90 120 Tukey Simultaneous Tests Response Variable Density All Pairwise Comparisons among Levels of Biomass type Biomass type = PL subtracted from: Biomass Difference SE of Adjusted type of Means Difference T-Value P-Value PW 74.22 4.220 17.59 0.0000 UU 113.65 4.220 26.93 0.0000 Biomass type = PW subtracted from: Biomass Difference SE of Adjusted type of Means Difference T-Value P-Value UU 39.43 4.220 9.344 0.0000 Tukey 95.0% Simultaneous Confidence Intervals Response Variable Density All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

 450
 -20.30
 -7.56
 5.193
 (-----*----)

 475
 -27.40
 -14.65
 -1.905
 (-----*----)

 500
 -32.00
 -19.26
 -6.507
 (-----*-----)

-24 -12 0 Temp = 450 subtracted from:

 475
 -19.85
 -7.10
 5.650
 (------)

 500
 -24.45
 -11.70
 1.049
 (------)

-24 -12 0

Temp = 475 subtracted fro	m :						
Temp Lower Center Uppe 500 -17.35 -4.602 8.14	r+- 7	(*	+)			
	-24	-12	2 ()			
Tukey Simultaneous Tests Response Variable Density All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:							

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	-7.56	4.873	-1.551	0.4118
475	-14.65	4.873	-3.007	0.0174
500	-19.26	4.873	-3.952	0.0009

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	-7.10	4.873	-1.457	0.4676
500	-11.70	4.873	-2.401	0.0837

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	-4.602	4.873	-0.9444	0.7810

Biomass			Biomass			Biomass		
Туре	Temp	pН	Туре	Temp	pН	Туре	Temp	pН
PW	425	3.31	UU	425	3.01	PL	425	9.23
PW	425	3.33	UU	425	2.90	PL	425	9.28
PW	425	3.36	UU	425	2.91	PL	425	9.24
PW	450	3.39	UU	450	3.08	PL	450	9.31
PW	450	3.43	UU	450	2.94	PL	450	9.32
PW	450	3.47	UU	450	2.92	PL	450	9.28
PW	475	3.63	UU	475	3.00	PL	475	9.31
PW	475	3.69	UU	475	3.06	PL	475	9.35
PW	475	3.69	UU	475	3.08	PL	475	9.33
PW	500	3.68	UU	500	3.06	PL	500	9.36
PW	500	3.74	UU	500	3.05	PL	500	9.44
PW	500	3.76	UU	500	3.19	PL	500	9.48
PW	425	3.31	UU	425	3.01	PL	425	9.23
PW	425	3.34	UU	425	2.89	PL	425	9.28
PW	425	3.36	UU	425	2.90	PL	425	9.23
PW	450	3.40	UU	450	3.07	PL	450	9.31
PW	450	3.43	UU	450	2.93	PL	450	9.31
PW	450	3.48	UU	450	2.92	PL	450	9.29
PW	475	3.63	UU	475	3.00	PL	475	9.31
PW	475	3.68	UU	475	3.06	PL	475	9.35
PW	475	3.69	UU	475	3.08	PL	475	9.34
PW	500	3.69	UU	500	3.06	PL	500	9.36
PW	500	3.73	UU	500	3.04	PL	500	9.44
PW	500	3.76	UU	500	3.19	PL	500	9.49
PW	425	3.31	UU	425	3.01	PL	425	9.25
PW	425	3.33	UU	425	2.88	PL	425	9.27
PW	425	3.35	UU	425	2.90	PL	425	9.23
PW	450	3.40	UU	450	3.07	PL	450	9.31
PW	450	3.43	UU	450	2.94	PL	450	9.32
PW	450	3.48	UU	450	2.91	PL	450	9.29
PW	475	3.64	UU	475	2.99	PL	475	9.31
PW	475	3.68	UU	475	3.06	PL	475	9.34
PW	475	3.69	UU	475	3.05	PL	475	9.34
PW	500	3.70	UU	500	3.06	PL	500	9.36
PW	500	3.73	UU	500	3.03	PL	500	9.44
PW	500	3.76	UU	500	3.18	PL	500	9.49

Minitab worksheet for pH value of bio-oil:

Minitab result for pH value of bio-oil:

Two-way ANOVA: pH versus Biomass Type, Temp

Source Biomas Temp Intera Error Total	e ss Type action	DF 2 3 6 96 107	SS 884.025 0.973 0.269 0.178 885.444	MS 442.012 0.324 0.045 0.002	F 238686.68 175.11 24.19	P 0.000 0.000 0.000
S = 0.	04303	R-Sq	= 99.98%	R-Sq(a	dj) = 99.9	8%
Biomas	s	I	ndividua Pooled St	l 95% CIs Dev	For Mean	Based on
Туре	M∈	ean	-+		+	
PL	9.328	33				*
PW	3.541	.11	*			
UU	3.011	94	*			
			-+	+	+	+
		3	3.2	4.8	6.4	8.0
				50 er -		
		Indi	vidual 9	5% CIs Fo	r Mean Bas	ed on
		Pool	ed StDev.			
Temp	Mean	+		-+	+	+
425	5.17222	(-*-	-)			
450	5.23815		(-*)		
475	5.34741				(-*-)	
500	5.41741					(-*-)
		+ 5.1	.80 5	.250	5.320	5.390

General Linear Model: pH versus Biomass Type, Temp

Factor		Туре	Levels	Values		
Biomass	Туре	fixed	3	PL, PW, UU	i	
Temp		fixed	4	425, 450,	475,	500

Analysis of Variance for pH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	2	884.025	884.025	442.012	238686.68	0.000
Temp	3	0.973	0.973	0.324	175.11	0.000
Biomass Type*Temp	6	0.269	0.269	0.045	24.19	0.000
Error	96	0.178	0.178	0.002		
Total	107	885.444				

S = 0.0430331 R-Sq = 99.98% R-Sq(adj) = 99.98%

Unusual Observations for pH

Obs	pН	Fit	SE Fit	Residual	St Resid
40	3.08000	2.97556	0.01434	0.10444	2.57 R
48	3.19000	3.09556	0.01434	0.09444	2.33 R
52	3.07000	2.97556	0.01434	0.09444	2.33 R

603.190003.095560.014340.094442.33 R643.070002.975560.014340.094442.33 R723.180003.095560.014340.084442.08 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable pH All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Type -5.811 -5.787 -5.763 * PW -6.341 -6.316 -6.292 *) UU --+----+----+----+-----+-----+------6.0 -4.0 -2.0 0.0 Biomass Type = PW subtracted from: Biomass Туре -0.5533 -0.5292 -0.5050 UU --+----+----+-----+-----+-----+------6.0 -4.0 -2.0 0.0 Tukey Simultaneous Tests Response Variable pH All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted of Means Difference T-Value P-Value Type PW -5.787 0.01014 -570.6 0.0000 UU -6.316 0.01014 -622.7 0.0000 Biomass Type = PW subtracted from: BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-ValueUU-0.52920.01014-52.170.0000 Adjusted Tukey 95.0% Simultaneous Confidence Intervals Response Variable pH All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: Temp Lower Center Upper ----+-
 450
 0.03528
 0.06593
 0.09657
 (---*---)

 475
 0.14454
 0.17519
 0.20583
 500
 0.21454
 0.24519
 0.27583
 (---*---) (---*---) 0.070 0.140 0.210 0.280 Temp = 450 subtracted from: Lower Center Upper ----+-Temp

 475
 0.07862
 0.1093
 0.1399
 (----*---)

 500
 0.14862
 0.1793
 0.2099
 (----*---)

----+

0.070 0.140 0.210 0.280

Temp	Lower	Center	Upper		+	+	+-
500	0.03936	0.07000	0.1006	(*)			
					+	+	+-
				0.070	0.140	0.210	0.280

Tukey Simultaneous Tests Response Variable pH All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	0.06593	0.01171	5.629	0.0000
475	0.17519	0.01171	14.958	0.0000
500	0.24519	0.01171	20.934	0.0000

Temp = 450 subtracted from:

Temp = 475 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	0.1093	0.01171	9.329	0.0000
500	0.1793	0.01171	15.305	0.0000

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	0.07000	0.01171	5.977	0.0000

Biomass	T		Biomass	m		Biomass	æ	
Туре	Temp	HHV	Туре	Temp	HHV	Туре	Temp	HHV
PW	425	19211	UU	425	17210	PL	425	10947
PW	425	19513	UU	425	19486	PL	425	11124
PW	425	20722	UU	425	20135	PL	425	11004
PW	450	20316	UU	450	19271	PL	450	11369
PW	450	20692	UU	450	20380	PL	450	12341
PW	450	21583	UU	450	21103	PL	450	13441
PW	475	20671	UU	475	20108	PL	475	14217
PW	475	21456	UU	475	19808	PL	475	14456
PW	475	21659	UU	475	19297	PL	475	14298
PW	500	21333	UU	500	18694	PL	500	14324
PW	500	22270	UU	500	18908	PL	500	13741
PW	500	22368	UU	500	19975	PL	500	13790
PW	425	19316	UU	425	19120	PL	425	10754
PW	425	19692	UU	425	20202	PL	425	10459
PW	425	20983	UU	425	20676	PL	425	11859
PW	450	20378	UU	450	20887	PL	450	12980
PW	450	20523	UU	450	20137	PL	450	12329
PW	450	21501	UU	450	20186	PL	450	12965
PW	475	20599	UU	475	21145	PL	475	13491
PW	475	21382	UU	475	19797	PL	475	14360
PW	475	21681	UU	475	20321	PL	475	14112
PW	500	21268	UU	500	19162	PL	500	14561
PW	500	22238	UU	500	18777	PL	500	13786
PW	500	22472	UU	500	21532	PL	500	14390
PW	425	19333	UU	425	18942	PL	425	10823
PW	425	19717	UU	425	20760	PL	425	11930
PW	425	21100	UU	425	19256	PL	425	11828
PW	450	20251	UU	450	20948	PL	450	12797
PW	450	20547	UU	450	20479	PL	450	11109
PW	450	21833	UU	450	21077	PL	450	12872
PW	475	20578	UU	475	21320	PL	475	13675
PW	475	21504	UU	475	21441	PL	475	14673
PW	475	21722	UU	475	20553	PL	475	14365
PW	500	21424	UU	500	19654	PL	500	13673
PW	500	22309	UU	500	18999	PL	500	13101
PW	500	22461	UU	500	21471	PL	500	13682

Minitab worksheet for heating value of bio-oil:

Minitab result for heating value of bio-oil:

Two-way ANOVA: HHV versus Biomass Type, Temp

SourceDFSSMSFPBiomass Type214004490837002245421388.760.000Temp3511681491705605033.830.000Interaction62697463244957728.920.000 96 48404035 Error 96 48404035 Total 107 1526995900 504209 S = 710.1 R-Sq = 96.83% R-Sq(adj) = 96.47% Individual 95% CIs For Mean Based on Biomass Pooled StDev Mean -----+---+ Туре PL 12934.1 (*) PW 21016.8 UU 20033.8 (*) (*) 15000 17500 20000 22500 Individual 95% CIs For Mean Based on Pooled StDev Temp 425 16892.7 (----*---) 450 17936.9 (----) (---*---) 475 18618.1 (----) 500 18532.0

				,
	+			
168	300	17400	18000	18600

General Linear Model: HHV versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 475,	, 500

Analysis of Variance for HHV, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	2	1400449083	1400449083	700224542	1388.76	0.000
Temp	3	51168149	51168149	17056050	33.83	0.000
Biomass Type*Tem	ıp 6	26974632	26974632	4495772	8.92	0.000
Error	96	48404035	48404035	504209		
Total	107	1526995900				

S = 710.077 R-Sq = 96.83% R-Sq(adj) = 96.47%

Unusual Observations for HHV

Obs	HHV	Fit	SE Fit	Residual	St Resid
37	17210.0	19531.9	236.7	-2321.9	-3.47 R
60	21532.0	19685.8	236.7	1846.2	2.76 R
72	21471.0	19685.8	236.7	1785.2	2.67 R

101 11109.0 12467.0 236.7 -1358.0 -2.03 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable HHV All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Type Lower Center Upper ----+-
 7684
 8083
 8482

 6701
 7100
 7499
 PW (*) (-*) UU ----+ 0 3000 6000 9000 Biomass Type = PW subtracted from: Biomass -1382 -983.0 -584.2 (-*) UU 0 3000 6000 9000 Tukey Simultaneous Tests Response Variable HHV All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted of Means Difference T-Value P-Value Type PW 8083 167.4 48.29 0.0000 7100 UU 167.4 42.42 0.0000 Biomass Type = PW subtracted from: BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-ValueUU-983.0167.4-5.8730.0000 Adjusted Tukey 95.0% Simultaneous Confidence Intervals Response Variable HHV All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: 450 538.6 1044 1550 (----*---) (-----*----) (-----*-----) 475 1219.8 1725 2231 500 1133.7 1639 2145 0 800 1600 Temp = 450 subtracted from: Temp
 Lower
 Center
 opper

 175.64
 681.3
 1187
 (-----*----)

 89.49
 595.1
 1101
 (-----*)
 475 500 89.49 595.1 1101 0 800 1600

Temp	Lower	Center	Upper	+		+	+
500	-591.8	-86.15	419.5	(*-)		
) 80	0 1600)

Tukey Simultaneous Tests Response Variable HHV All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	1044	193.3	5.403	0.0000
475	1725	193.3	8.928	0.0000
500	1639	193.3	8.482	0.0000

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	681.3	193.3	3.525	0.0036
500	595.1	193.3	3.079	0.0142

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	-86.15	193.3	-0.4458	0.9703

Biomass		Biomass			Biomass			
Туре	Temp	Solid	Туре	Temp	Solid	Туре	Temp	Solid
PW	425	0.582037	UU	425	0.392927	PL	425	0.086999
PW	425	0.53	UU	425	0.246427	PL	425	0.129122
PW	425	0.769538	UU	425	0.279034	PL	425	0.069156
PW	450	0.470035	UU	450	0.464058	PL	450	0.107885
PW	450	0.571372	UU	450	0.35308	PL	450	0.165402
PW	450	0.587555	UU	450	0.433401	PL	450	0.097865
PW	475	0.79602	UU	475	0.538833	PL	475	0.15086
PW	475	0.712637	UU	475	0.503803	PL	475	0.203149
PW	475	0.57614	UU	475	0.613376	PL	475	0.336168
PW	500	0.226267	UU	500	0.487417	PL	500	0.099246
PW	500	0.66521	UU	500	0.49635	PL	500	0.142126
PW	500	0.817629	UU	500	0.470871	PL	500	0.208499
PW	425	0.584158	UU	425	0.49829	PL	425	0.09
PW	425	0.607267	UU	425	0.188268	PL	425	0.149686
PW	425	0.729635	UU	425	0.214467	PL	425	0.088652
PW	450	0.501205	UU	450	0.520884	PL	450	0.11919
PW	450	0.520067	UU	450	0.347222	PL	450	0.183274
PW	450	0.607509	UU	450	0.500093	PL	450	0.110909
PW	475	0.76137	UU	475	0.452358	PL	475	0.185203
PW	475	0.651172	UU	475	0.485918	PL	475	0.238592
PW	475	0.574656	UU	475	0.631497	PL	475	0.378185
PW	500	0.26973	UU	500	0.553852	PL	500	0.13911
PW	500	0.74859	UU	500	0.5	PL	500	0.156571
PW	500	0.847965	UU	500	0.557894	PL	500	0.235594
PW	425	0.525898	UU	425	0.411967	PL	425	0.079554
PW	425	0.598444	UU	425	0.13	PL	425	0.125337
PW	425	0.766052	UU	425	0.192608	PL	425	0.110876
PW	450	0.491932	UU	450	0.395531	PL	450	0.130208
PW	450	0.591601	UU	450	0.406622	PL	450	0.183185
PW	450	0.628366	UU	450	0.409222	PL	450	0.119868
PW	475	0.8	UU	475	0.516006	PL	475	0.195446
PW	475	0.469812	UU	475	0.454905	PL	475	0.235548
PW	475	0.569317	UU	475	0.584795	PL	475	0.348814
PW	500	0.290174	UU	500	0.427388	PL	500	0.148559
PW	500	0.713412	UU	500	0.553367	PL	500	0.176956
PW	500	0.759568	UU	500	0.544806	PL	500	0.257834

Minitab worksheet for solid content of bio-oil:

Minitab result for solid content of bio-oil:

Two-way ANOVA: Solid versus Biomass Type, Temp

		Individual	. 95% CIs	For Mean	Based on	Pooled	StDev
Temp	Mean	+	+	+	+		
425	0.339867	(*)				
450	0.371020	(*)			
475	0.480170			(–	*)	
500	0.425740		(–	*)		
		+	+	+	+		
		0.300	0.360	0.420	0.480		

General Linear Model: Solid versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 4	75, 500

Analysis of Variance for Solid, using Adjusted SS for Tests

Source		DF	Seq SS	Adj SS	Adj MS	F	P
Biomass '	Туре	2	3.58458	3.58458	1.79229	168.89	0.000
Temp		3	0.30983	0.30983	0.10328	9.73	0.000
Biomass '	Type*Temp	6	0.19942	0.19942	0.03324	3.13	0.008
Error		96	1.01878	1.01878	0.01061		
Total		107	5.11261				

S = 0.103016 R-Sq = 80.07% R-Sq(adj) = 77.79%

Unusual Observations for Solid

Obs	Solid	Fit	SE Fit	Residual	St Resid
10	0.226267	0.593172	0.034339	-0.366905	-3.78 R
12	0.817629	0.593172	0.034339	0.224457	2.31 R
22	0.269730	0.593172	0.034339	-0.323441	-3.33 R
24	0.847965	0.593172	0.034339	0.254793	2.62 R
34 0.290174 0.593172 0.034339 -0.302998 -3.12 R 49 0.498290 0.283776 0.034339 0.214514 2.21 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Solid All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Type 0.3846 0.4425 0.5003 (--*--) PW (--*-) 0.2136 0.2715 0.3294 UU -0.20 0.00 0.20 0.40 Biomass Type = PW subtracted from: Biomass Туре -0.2288 -0.1710 -0.1131 (-*--) UU -0.20 0.00 0.20 0.40 Tukey Simultaneous Tests Response Variable Solid All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value 0.4425 0.02428 18.22 0.0000 PW UU 0.2715 0.02428 11.18 0.0000 Biomass Type = PW subtracted from: SE of BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-ValueUU-0.17100.02428-7.0410.0000 Adjusted Tukey 95.0% Simultaneous Confidence Intervals Response Variable Solid All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: Temp 450 -0.04220 0.03115 0.1045 (-----*----)
 475
 0.06695
 0.14030
 0.2137
 (-----*--

 500
 0.01252
 0.08587
 0.1592
 (-----*---)
 (-----*-----) ---+----+----+----+----+-----0.10 0.00 0.10 0.20 Temp = 450 subtracted from: Lower Center Upper ---+----+-----+-----+-----+-----+----Temp 0.03580 0.10915 0.1825 (------) -0.01863 0.05472 0.1281 (-----*----) 475 500 -0.01863 0.05472 0.1281 ---+----+----+----+----+----+-----0.10 0.00 0.10 0.20

Temp = 475 subtracted from:

Temp	Lower	Center	Upper	+		+	+
500	-0.1278	-0.05443	0.01892	(*)		
				+		+	+
				-0.10	0.00	0.10	0.20

Tukey Simultaneous Tests Response Variable Solid All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	0.03115	0.02804	1.111	0.6836
475	0.14030	0.02804	5.004	0.0000
500	0.08587	0.02804	3.063	0.0149

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	0.10915	0.02804	3.893	0.0010
500	0.05472	0.02804	1.952	0.2138

Temp = 475 subtracted from:

	Difference	SE of		Adjusted		
Temp	of Means	Difference	T-Value	P-Value		
500	-0.05443	0.02804	-1.941	0.2179		

Biomass			Biomass			Biomass		
Туре	Temp	Ash	Туре	Temp	Ash	Туре	Temp	Ash
PW	425	0.480725	UU	425	1.32812	PL	425	0.089557
PW	425	0.563693	UU	425	0.919414	PL	425	0.127944
PW	425	0.805639	UU	425	0.836517	PL	425	0.095102
PW	450	0.749115	UU	450	0.813623	PL	450	0.142401
PW	450	1.294919	UU	450	0.834873	PL	450	0.182567
PW	450	0.974252	UU	450	0.47838	PL	450	0.185048
PW	475	1.07902	UU	475	0.964915	PL	475	0.201911
PW	475	0.730417	UU	475	0.872886	PL	475	0.202807
PW	475	0.811784	UU	475	0.980157	PL	475	0.184944
PW	500	0.196056	UU	500	0.680418	PL	500	0.137915
PW	500	0.35865	UU	500	0.574592	PL	500	0.157347
PW	500	0.426169	UU	500	0.498069	PL	500	0.132626
PW	425	0.485051	UU	425	1.344185	PL	425	0.092769
PW	425	0.551702	UU	425	0.829388	PL	425	0.105313
PW	425	0.815747	UU	425	0.628008	PL	425	0.0825
PW	450	0.858663	UU	450	0.885836	PL	450	0.15015
PW	450	1.257584	UU	450	0.73781	PL	450	0.19114
PW	450	0.980428	UU	450	0.466871	PL	450	0.172393
PW	475	0.955481	UU	475	1.243104	PL	475	0.196446
PW	475	0.756023	UU	475	0.867419	PL	475	0.209678
PW	475	0.844245	UU	475	1.137171	PL	475	0.224286
PW	500	0.186827	UU	500	0.727325	PL	500	0.130915
PW	500	0.374152	UU	500	0.727917	PL	500	0.162063
PW	500	0.43956	UU	500	0.420205	PL	500	0.143685
PW	425	0.446429	UU	425	0.819854	PL	425	0.112428
PW	425	0.546555	UU	425	0.948976	PL	425	0.117592
PW	425	0.793595	UU	425	0.677721	PL	425	0.075146
PW	450	0.826187	UU	450	0.944852	PL	450	0.135403
PW	450	1.186333	UU	450	0.682161	PL	450	0.182855
PW	450	0.905099	UU	450	0.544433	PL	450	0.170986
PW	475	0.944025	UU	475	1.306687	PL	475	0.197157
PW	475	0.759235	UU	475	0.959295	PL	475	0.194246
PW	475	0.825848	UU	475	1.230258	PL	475	0.198042
PW	500	0.211202	UU	500	0.765703	PL	500	0.134797
PW	500	0.336159	UU	500	0.692345	PL	500	0.174706
PW	500	0.452621	UU	500	0.518408	PL	500	0.145609

Minitab worksheet for ash content in bio-oil:

Minitab result for ash content in bio-oil:

Two-way ANOVA: Ash.oil versus Biomass Type, Temp

 Source
 DF
 SS
 MS
 F
 P

 Biomass Type
 2
 9.2736
 4.63679
 244.94
 0.000

 Temp
 3
 1.7146
 0.57152
 30.19
 0.000

 Interaction
 6
 1.7653
 0.29422
 15.54
 0.000
 96 1.8173 0.01893 Error 96 1.8173 Total 107 14.5708 S = 0.1376 R-Sq = 87.53% R-Sq(adj) = 86.10% Individual 95% CIs For Mean Based on Biomass Pooled StDev Туре PL 0.153902 (--*-) PW 0.700255 UU 0.830219 (-*-) (--*-) 0.20 0.40 0.60 0.80 Individual 95% CIs For Mean Based on Pooled StDev Temp 425 0.545173 (---*---) (---*---) 450 0.627199 475 0.706574 (---*---) 500 0.366890 (----*---) 0.36 0.48 0.60 0.72

General Linear Model: Ash.oil versus Biomass Type, Temp

Factor Biomass Type	Type fixed	Levels 3	Values PL, PW, U	JU		
Temp	Ilxed	4	425, 450,	, 475, 500		
Analysis of V	ariance	for Ash.	oil, usin	ng Adjuste	d SS for	Tests
Source	г)F Sea	ss Adi s	ss Adi Ms	ਸ	P
Biomass Type	-	2 9 2	136 9 27	36 4 6368	244 94	0 0 0 0
Temp		3 1 71	46 1 714	46 0 5715	30 19	0 000
Biomass Turne*	Tomp	6 1 7	53 1 76 ¹	53 0 2942	15 54	0.000
Error	Temb	0 1.70 26 1.81	73 1 81	73 0 012942	10.01	0.000
Total	1 (14 5	100 I.0I	15 0.0109		
IOLAI	Τ(14.5	00			
S = 0.137589	R-Sq =	= 87.53%	R-Sq(ad	dj) = 86.1	0%	
Unusual Obser	vations	for Ash.	oil			
Obs Ash.oil	Fit	SE Fi	t Residu	ual St Re	sid	
5 1.29492	1.00362	2 0.0458	36 0.29	130 2	.25 R	
37 1.32812	0.92580	0.0458	36 0.402	232 3	.10 R	
49 1.34419	0.92580	0.0458	36 0.418	839 3	.23 R	
51 0.62801	0.92580	0.0458	36 -0.29	779 -2	.30 R	
R denotes an	observat	tion with	n a large	standardi	zed resi	dual.

Tukey 95.0% Simultaneous Confidence Intervals Response Variable Ash.oil All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Туре PW UU 0.20 0.40 0.60 Biomass Type = PW subtracted from: Biomass Type 0.05269 0.1300 0.2072 (--*---) UU 0.20 0.40 0.60 Tukey Simultaneous Tests Response Variable Ash.oil All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted of Means Difference T-Value P-Value Туре 0.54640.0324316.850.00000.67630.0324320.850.0000 PW UU Biomass Type = PW subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value 0.1300 0.03243 4.008 0.0004 TILI Tukey 95.0% Simultaneous Confidence Intervals Response Variable Ash.oil All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: Temp Lower Center (----) 450 -0.0159 0.0820 0.18000 475 0.0634 0.1614 0.25937 (----*----) (----*----) 500 -0.2763 -0.1783 -0.08031 -0.40 -0.20 -0.00 0.20 Temp = 450 subtracted from: Temp 475 -0.0186 0.0794 0.1773 500 -0.3583 -0.2603 -0.1623 (----*---) (----*----) --+----+----+-----+-----+-----+------0.40 -0.20 -0.00 0.20

Temp = 475 subtracted from:

Temp	Lower	Center	Upper	+	+	+	
500	-0.4377	-0.3397	-0.2417	(*-)		
				+	+	+	+
				-0.40	-0.20	-0.00	0.20

Tukey Simultaneous Tests Response Variable Ash.oil All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	0.0820	0.03745	2.190	0.1333
475	0.1614	0.03745	4.310	0.0002
500	-0.1783	0.03745	-4.761	0.0000

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	0.0794	0.03745	2.120	0.1542
500	-0.2603	0.03745	-6.951	0.0000

Temp = 475 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	-0.3397	0.03745	-9.071	0.0000

Biomass			Biomass			Biomass		
Туре	Temp	Water	Туре	Temp	Water	Туре	Temp	Water
PW	425	19.7133	UU	425	16.9154	PL	425	38.2552
PW	425	16.6584	UU	425	18.4162	PL	425	35.3269
PW	425	17.9501	UU	425	16.4609	PL	425	36.1420
PW	450	17.9856	UU	450	20.3106	PL	450	32.4739
PW	450	21.5228	UU	450	19.2539	PL	450	33.2167
PW	450	20.9411	UU	450	20.7650	PL	450	32.7847
PW	475	20.1805	UU	475	17.2414	PL	475	37.9976
PW	475	20.1176	UU	475	18.8261	PL	475	33.0142
PW	475	22.1117	UU	475	15.5316	PL	475	34.6171
PW	500	22.3072	UU	500	18.8889	PL	500	34.4727
PW	500	19.4704	UU	500	18.7266	PL	500	33.9004
PW	500	20.5381	UU	500	16.4900	PL	500	30.5182
PW	425	18.7135	UU	425	19.3939	PL	425	27.8173
PW	425	17.2584	UU	425	17.3010	PL	425	28.4452
PW	425	18.9064	UU	425	18.6916	PL	425	28.4275
PW	450	19.6079	UU	450	19.8087	PL	450	29.6718
PW	450	18.4308	UU	450	15.1515	PL	450	32.0700
PW	450	18.1951	UU	450	17.9806	PL	450	31.4490
PW	475	19.8886	UU	475	18.1664	PL	475	31.6967
PW	475	17.4872	UU	475	16.4794	PL	475	29.2430
PW	475	17.3250	UU	475	16.7264	PL	475	28.3048
PW	500	19.3603	UU	500	14.5903	PL	500	29.4547
PW	500	20.0976	UU	500	17.4292	PL	500	26.7702
PW	500	18.4775	UU	500	17.6707	PL	500	28.3817
PW	425	16.9205	UU	425	19.7664	PL	425	26.8384
PW	425	17.4978	UU	425	17.5757	PL	425	29.6718
PW	425	18.4462	UU	425	18.1043	PL	425	32.2360
PW	450	19.2012	UU	450	18.0023	PL	450	28.6307
PW	450	19.8886	UU	450	18.3259	PL	450	31.9990
PW	450	22.1589	UU	450	16.2429	PL	450	30.4163
PW	475	20.0037	UU	475	16.4948	PL	475	25.7493
PW	475	19.3799	UU	475	18.6255	PL	475	30.1772
PW	475	18.6220	UU	475	17.8282	PL	475	27.3222
PW	500	19.2818	UU	500	17.5438	PL	500	28.0163
PW	500	18.8679	UU	500	16.5145	PL	500	29.2100
PW	500	14.7656	UU	500	18.7097	PL	500	30.3428

Minitab worksheet for water content in bio-oil:

Minitab worksheet for water content in bio-oil:

Two-way ANOVA: Water versus Biomass Type, Temp

		Pooled StI	Dev		
Temp	Mean	+	+	+	
425	22.5130	(*)	
450	23.2032		(*)
475	22.5614	(*)	
500	22.2517	(*)	
		+	+	+	
		21.70	22.40	23.10	23.80

General Linear Model: Water versus Biomass Type, Temp

Factor		Туре	Levels	Values		
Biomass	Туре	fixed	3	PL, PW,	UU	
Temp		fixed	4	425, 45	0, 475,	500

Analysis of Variance for Water, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Ty	pe 2	3788.56	3788.56	1894.28	387.23	0.000
Temp	3	13.23	13.23	4.41	0.90	0.444
Biomass Ty	pe*Temp 6	21.08	21.08	3.51	0.72	0.636
Error	96	469.62	469.62	4.89		
Total	107	4292.49				

S = 2.21176 R-Sq = 89.06% R-Sq(adj) = 87.81%

Unusual Observations for Water

Obs	Water	Fit	SE Fit	Residual	St Resid
36	14.7656	19.2407	0.7373	-4.4751	-2.15 R
73	38.2552	31.4623	0.7373	6.7929	3.26 R
75	36.1420	31.4623	0.7373	4.6797	2.24 R

7937.997630.90250.73737.09523.40 R8234.472730.11860.73734.35412.09 R9726.838431.46230.7373-4.6238-2.22 R 103 25.7493 30.9025 0.7373 -5.1531 -2.47 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Water All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Туре -13.10 -11.86 -10.61 (--*--) PW UU -14.41 -13.17 -11.93 (--*--) ----+ -12.0 -8.0 -4.0 0.0 Biomass Type = PW subtracted from: Biomass Туре UU -----+ -12.0 -8.0 -4.0 0.0 Tukey Simultaneous Tests Response Variable Water All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value PW -11.86 0.5213 -22.74 0.0000 UU -13.17 0.5213 -25.26 0.0000 Biomass Type = PW subtracted from: Biomass Difference SE of Adjusted Typeof MeansDifferenceT-ValueP-ValueUU-1.3150.5213-2.5220.0352 Tukey 95.0% Simultaneous Confidence Intervals Response Variable Water All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

 450
 -0.885
 0.6902
 2.265
 (-----*----)

 475
 -1.526
 0.0484
 1.623
 (-----*----)

 500
 -1.836
 -0.2612
 1.314
 (-----*-----)

 -1.5 0.0 1.5 Temp = 450 subtracted from: 475 -2.217 -0.6418 0.9332 (-----*-----) 500 -2.526 -0.9514 0.6235 (----*----*-----) -1.5 0.0 1.5

250

Temp	= 475	subtracted	from:				
Temp 500	Lower -1.885	Center -0.3097	Upper 1.265	+	**)	
				-1.5	0.0	1.5	

Tukey Simultaneous Tests Response Variable Water All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted	
Temp	of Means	Difference	T-Value	P-Value	
450	0.6902	0.6020	1.1466	0.6617	
475	0.0484	0.6020	0.0805	0.9998	
500	-0.2612	0.6020	-0.4340	0.9725	
Temp	= 450 subtr	acted from:			
		_			
	Difference	SE of		Adjusted	
Temp	of Means	Difference	T-Value	P-Value	
475	-0.6418	0.6020	-1.066	0.7109	
500	-0.9514	0.6020	-1.581	0.3945	
${\tt Temp}$	= 475 subtr	acted from:			
	Difference	SE of		Adjusted	
Temp	of Means	Difference	T-Value	P-Value	
500	-0.3097	0.6020	-0.5144	0.9555	

Biomass			Biomass			Biomass		
Туре	Temp	Moisture	Туре	Temp	Moisture	Туре	Temp	Moisture
PW	425	2.8755	UU	425	1.4887	PL	425	4.0017
PW	425	2.7645	UU	425	1.4603	PL	425	3.0354
PW	425	2.6159	UU	425	1.5117	PL	425	2.4636
PW	450	2.9099	UU	450	1.2756	PL	450	3.7956
PW	450	3.2186	UU	450	0.8322	PL	450	2.6791
PW	450	2.9979	UU	450	0.6307	PL	450	1.5839
PW	475	2.9574	UU	475	0.8777	PL	475	4.2331
PW	475	2.9187	UU	475	1.7056	PL	475	3.2892
PW	475	3.4428	UU	475	1.0783	PL	475	2.1294
PW	500	3.4530	UU	500	1.2302	PL	500	4.4069
PW	500	4.1082	UU	500	1.5731	PL	500	3.9013
PW	500	3.3058	UU	500	0.5585	PL	500	2.7710
PW	425	2.8505	UU	425	1.1309	PL	425	3.8600
PW	425	2.8528	UU	425	0.3679	PL	425	2.9864
PW	425	2.6565	UU	425	0.9378	PL	425	2.3685
PW	450	3.0549	UU	450	0.2652	PL	450	3.8115
PW	450	3.1805	UU	450	0.3188	PL	450	2.2004
PW	450	3.3695	UU	450	0.0611	PL	450	1.5316
PW	475	2.9479	UU	475	0.2509	PL	475	4.5092
PW	475	2.9566	UU	475	0.7393	PL	475	3.4896
PW	475	4.2580	UU	475	0.5414	PL	475	2.3087
PW	500	3.4728	UU	500	0.0881	PL	500	4.5753
PW	500	3.8999	UU	500	1.0409	PL	500	3.7435
PW	500	3.5657	UU	500	0.1959	PL	500	2.7764
PW	425	2.7933	UU	425	1.4620	PL	425	3.9275
PW	425	2.7377	UU	425	0.7540	PL	425	2.9798
PW	425	2.7281	UU	425	1.1321	PL	425	2.5143
PW	450	3.2380	UU	450	1.0262	PL	450	3.7490
PW	450	3.0077	UU	450	0.6122	PL	450	2.7062
PW	450	3.2816	UU	450	0.0534	PL	450	1.4475
PW	475	3.0735	UU	475	0.3143	PL	475	4.3125
PW	475	3.1752	UU	475	0.8308	PL	475	3.0165
PW	475	4.0515	UU	475	0.5970	PL	475	2.1280
PW	500	3.6391	UU	500	0.3851	PL	500	4.5880
PW	500	3.8097	UU	500	1.2849	PL	500	3.6458
PW	500	3.5013	UU	500	1.1056	PL	500	2.7989

Minitab worksheet for moisture content in biochar:

Minitab result for moisture content in biochar:

Two-way ANOVA: Moisture.char versus Biomass Type, Temp

 Source
 DF
 SS
 MS
 F
 P

 Biomass Type
 2
 134.612
 67.3059
 199.04
 0.000

 Temp
 3
 5.255
 1.7516
 5.18
 0.002

 Interaction
 6
 5.193
 0.8656
 2.56
 0.024
 96 32.463 0.3382 Error 96 32.463 Total 107 177.523 S = 0.5815 R-Sq = 81.71% R-Sq(adj) = 79.62% Biomass Individual 95% CIs For Mean Based on Pooled StDev Mean 3.17405 Туре PL (-*--) (--*--) PW UU 0.82551 (--*--) 0.70 1.40 2.10 2.80 Individual 95% CIs For Mean Based on

		Pooled StDev	7		
Temp	Mean	+			
425	2.34287	(*	-)	
450	2.10514	(*)		
475	2.44938	(*)	
500	2.71945		(–	*)
		+			
		2.10	2.40	2.70	3.00

General Linear Model: Moisture.char versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 475,	500

Analysis of Variance for Moisture.char, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	2	134.612	134.612	67.306	199.04	0.000
Temp	3	5.255	5.255	1.752	5.18	0.002
Biomass Type*	Temp 6	5.193	5.193	0.866	2.56	0.024
Error	96	32.463	32.463	0.338		
Total	107	177.523				

S = 0.581512 R-Sq = 81.71% R-Sq(adj) = 79.62%

Unusual Observations for Moisture.char

Obs	Moisture.char	Fit	SE Fit	Residual	St Resid
76	3.79563	2.61165	0.19384	1.18397	2.16 R
81	2.12944	3.26848	0.19384	-1.13904	-2.08 R
88	3.81152	2.61165	0.19384	1.19987	2.19 R
91	4.50921	3.26848	0.19384	1.24073	2.26 R
100	3.74903	2.61165	0.19384	1.13738	2.07 R
102	1.44748	2.61165	0.19384	-1.16417	-2.12 R
105	2.12796	3.26848	0.19384	-1.14052	-2.08 R

R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Moisture.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Type PW -2.675 -2.349 -2.022 (---*--) UU -2.0 -1.0 0.0 Biomass Type = PW subtracted from: Biomass UU -2.714 -2.388 -2.061 (--*--) -2.0 -1.0 0.0 Tukey Simultaneous Tests Response Variable Moisture.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value PW 0.039 0.1371 0.28 0.9563 UU -2.349 0.1371 -17.13 0.0000 Biomass Type = PW subtracted from: BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-ValueUU-2.3880.1371-17.420.0000 Tukey 95.0% Simultaneous Confidence Intervals Response Variable Moisture.char All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:
 450
 -0.6518
 -0.2377
 0.1763
 (-----*----)

 475
 -0.3076
 0.1065
 0.5206
 (-----*----)

 500
 -0.0375
 0.3766
 0.7907
 (-----*----)
 (-----) ---+----+----+----+----+-----0.50 0.00 0.50 1.00 Temp = 450 subtracted from: Lower Center Upper ---+----+----+----+----+----+----Temp (-----) (-----*-----) 475 -0.06983 0.3442 0.7583 500 0.20024 0.6143 1.0284 ---+----+----+----+----+----+-----0.50 0.00 0.50 1.00

Temp = 47	Temp = 475 subtracted from:									
Temp I 500 -0.	Lower Cer 1440 0.2	nter Upper 2701 0.6841	+	·+ (+	+				
			-0.50	0.00	0.50	1.00				
Tukey Sim Response All Pairw Temp = 42	nultaneous Variable vise Compa 25 subtra	s Tests Moisture.ch arisons amon acted from:	ar g Levels	of Temp						
Dif Temp c 450 475 500	ference of Means -0.2377 0.1065 0.3766	SE of Difference 0.1583 0.1583 0.1583	T-Value -1.502 0.673 2.379	Adjusted P-Value 0.4403 0.9071 0.0880						
Temp = 45	0 subtra	acted from:								
Dif Temp c 475 500	ference of Means 0.3442 0.6143	SE of Difference 0.1583 0.1583	T-Value 2.175 3.881	Adjusted P-Value 0.1376 0.0011						
Temp = 47	5 subtra	acted from:								
Dif Temp c 500	ference of Means 0.2701	SE of Difference 0.1583	T-Value 1.706	Adjusted P-Value 0.3260						

Biomass			Biomass			Biomass		
Туре	Temp	Ash	Туре	Temp	Ash	Туре	Temp	Ash
PW	425	0.5232	UU	425	2.3028	PL	425	52.7796
PW	425	0.7885	UU	425	1.7796	PL	425	40.5930
PW	425	0.7589	UU	425	1.8710	PL	425	47.2097
PW	450	0.8972	UU	450	2.1720	PL	450	54.5242
PW	450	1.3949	UU	450	2.9422	PL	450	58.3772
PW	450	1.1042	UU	450	2.9728	PL	450	56.3422
PW	475	1.1270	UU	475	2.3100	PL	475	58.9513
PW	475	0.7002	UU	475	2.6280	PL	475	59.7658
PW	475	0.7742	UU	475	4.1605	PL	475	57.2993
PW	500	0.3264	UU	500	3.0893	PL	500	54.4145
PW	500	0.7713	UU	500	2.9201	PL	500	59.5945
PW	500	0.4356	UU	500	4.6089	PL	500	60.2422
PW	425	0.5544	UU	425	2.0945	PL	425	54.3962
PW	425	0.7496	UU	425	2.1644	PL	425	43.2590
PW	425	0.8939	UU	425	1.6609	PL	425	47.2680
PW	450	0.8360	UU	450	1.9069	PL	450	55.9392
PW	450	1.3662	UU	450	3.0040	PL	450	57.1482
PW	450	1.1180	UU	450	3.0350	PL	450	56.4383
PW	475	1.1175	UU	475	2.3631	PL	475	55.5010
PW	475	0.7150	UU	475	2.6113	PL	475	56.5730
PW	475	0.8934	UU	475	3.7303	PL	475	56.2520
PW	500	0.2786	UU	500	2.9536	PL	500	56.0994
PW	500	0.8088	UU	500	2.6173	PL	500	59.7581
PW	500	0.4523	UU	500	4.1155	PL	500	61.5214
PW	425	0.5032	UU	425	2.1135	PL	425	53.9965
PW	425	0.7319	UU	425	2.4961	PL	425	43.2514
PW	425	0.7658	UU	425	1.8399	PL	425	47.2643
PW	450	0.9256	UU	450	2.5081	PL	450	55.9285
PW	450	1.4150	UU	450	3.1005	PL	450	57.1429
PW	450	1.1174	UU	450	3.0521	PL	450	56.4358
PW	475	1.1074	UU	475	2.2432	PL	475	58.3914
PW	475	0.7210	UU	475	2.6609	PL	475	57.8768
PW	475	0.8062	UU	475	3.9883	PL	475	56.4370
PW	500	0.2911	UU	500	2.9500	PL	500	56.2259
PW	500	0.7807	UU	500	3.2177	PL	500	59.6921
PW	500	0.4150	UU	500	4.4355	PL	500	61.3419

Minitab worksheet for ash content in biochar:

Minitab result for ash content in biochar:

Two-way ANOVA: Ash.char versus Biomass Type, Temp

SourceDFSSMSFPBiomass Type268298.134149.011327.670.000Temp3277.792.630.710.000Interaction6403.267.222.290.000Error96289.43.03.0 Error 96 289.4 Total 107 69268.5 S = 1.736 R-Sq = 99.58% R-Sq(adj) = 99.53% Individual 95% CIs For Mean Based on Biomass Pooled StDev Mean +-----Туре PL 55.1175 (* PW 0.8046 (* UU 2.7950 (* 15 30 45 0 Individual 95% CIs For Mean Based on Pooled StDev Temp 425 16.8374 (---*---) 450 20.1165 (---*---) (---*---) 475 20.4335 500 20.9021 (---*---) 16.5 18.0 19.5 21.0

General Linear Model: Ash.char versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 475	, 500

Analysis of Variance for Ash.char, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	2	68298.1	68298.1	34149.0	11327.67	0.000
Temp	3	277.7	277.7	92.6	30.71	0.000
Biomass Type*Temp	6	403.2	403.2	67.2	22.29	0.000
Error	96	289.4	289.4	3.0		
Total	107	69268.5				

S = 1.73628 R-Sq = 99.58% R-Sq(adj) = 99.53%

Unusual Observations for Ash.char

Obs	Ash.char	Fit	SE Fit	Residual	St Resid
73	52.7796	47.7798	0.5788	4.9998	3.05 R
74	40.5930	47.7798	0.5788	-7.1868	-4.39 R
82	54.4145	58.7655	0.5788	-4.3511	-2.66 R

 85
 54.3962
 47.7798
 0.5788
 6.6165
 4.04 R

 86
 43.2590
 47.7798
 0.5788
 -4.5207
 -2.76 R

 97
 53.9965
 47.7798
 0.5788
 6.2168
 3.80 R
 -2.77 R 98 43.2514 47.7798 0.5788 -4.5283 R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable Ash.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Туре -55.29 -54.31 -53.34 (*) PW UU -53.30 -52.32 -51.35 *) -48 -32 -16 0 Biomass Type = PW subtracted from: Biomass *) ----+ -48 -32 -16 0 Tukey Simultaneous Tests Response Variable Ash.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value PW -54.31 0.4092 -132.7 0.0000 UU -52.32 0.4092 -127.9 0.0000 Biomass Type = PW subtracted from: BiomassDifferenceSE ofAdjustedTypeof MeansDifferenceT-ValueP-Value 1.990 0.4092 4.864 0.0000 LILI Tukey 95.0% Simultaneous Confidence Intervals Response Variable Ash.char All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:
 Temp
 Lower
 Center
 Upper
 ----+

 450
 2.043
 3.279
 4.515
 (----*---)

 475
 2.360
 3.596
 4.832
 (----*---)

 500
 2.828
 4.065
 5.301
 (----*----)
 (-----) (-----*----) 0.0 2.0 4.0 6.0 Temp = 450 subtracted from: Lower Center Upper -----+-----+-----+-----+-----+-----+--Temp 475 -0.9193 0.3171 1.553 (-----*----) 500 -0.4507 0.7857 2.022 (----*----) 0.0 2.0 4.0 6.0

Temp	= 475 su	btracted	from:				
Temp 500	Lower -0.7677	Center 0.4686	Upper 1.705	+)	+	+-
				0.0	2.0	4.0	6.0

Tukey Simultaneous Tests Response Variable Ash.char All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
450	3.279	0.4726	6.939	0.0000
475	3.596	0.4726	7.610	0.0000
500	4.065	0.4726	8.602	0.0000

Temp = 450 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
475	0.3171	0.4726	0.6710	0.9078
500	0.7857	0.4726	1.6626	0.3491

Temp = 475 subtracted from:

	Difference	SE of		Adjusted
Temp	of Means	Difference	T-Value	P-Value
500	0.4686	0.4726	0.9917	0.7545

Biomass			Biomass			Biomass		
Туре	Temp	HHV	Туре	Temp	HHV	Туре	Temp	HHV
PW	425	24978	UU	425	22714	PL	425	11810
PW	425	26727	UU	425	22581	PL	425	12352
PW	425	26138	UU	425	23599	PL	425	12118
PW	450	25655	UU	450	23784	PL	450	11194
PW	450	27444	UU	450	24736	PL	450	10668
PW	450	27208	UU	450	22079	PL	450	11407
PW	475	28302	UU	475	23066	PL	475	10978
PW	475	29061	UU	475	23684	PL	475	11445
PW	475	29497	UU	475	24203	PL	475	10646
PW	500	30234	UU	500	25037	PL	500	10824
PW	500	30239	UU	500	25820	PL	500	11074
PW	500	30901	UU	500	25957	PL	500	10446
PW	425	25067	UU	425	23409	PL	425	11891
PW	425	26644	UU	425	22286	PL	425	12615
PW	425	26286	UU	425	24075	PL	425	12117
PW	450	25692	UU	450	23540	PL	450	11120
PW	450	27561	UU	450	24642	PL	450	10771
PW	450	27175	UU	450	22820	PL	450	11668
PW	475	28248	UU	475	23490	PL	475	11068
PW	475	29319	UU	475	23733	PL	475	11448
PW	475	29736	UU	475	24573	PL	475	10624
PW	500	30191	UU	500	26437	PL	500	10829
PW	500	30248	UU	500	26418	PL	500	11239
PW	500	30862	UU	500	25463	PL	500	10483
PW	425	25004	UU	425	23012	PL	425	11789
PW	425	26675	UU	425	22379	PL	425	12490
PW	425	26228	UU	425	23702	PL	425	12209
PW	450	25711	UU	450	23581	PL	450	11202
PW	450	27602	UU	450	24698	PL	450	10758
PW	450	27222	UU	450	23002	PL	450	11661
PW	475	28397	UU	475	23545	PL	475	11081
PW	475	29168	UU	475	23789	PL	475	11493
PW	475	29641	UU	475	24612	PL	475	10651
PW	500	30124	UU	500	26359	PL	500	10841
PW	500	30272	UU	500	26138	PL	500	11112
PW	500	31007	UU	500	25879	PL	500	10477

Minitab worksheet for heating value in biochar:

Minitab result for heating value in biochar:

Two-way ANOVA: HHV.char versus Biomass Type, Temp

Source	e	DF		SS	M	S	F P	
Biomas	ss Type	2	55405400	01 27	7027000	1 8418.8	3 0.000	
Temp		3	682377	37	2274591	2 69.1	2 0.000	
Intera	action	6	969873	65	1616456	1 49 1	2 0 000	
Error	1001011	96	31580/	03	32905	6	2 0.000	
DIIOI Matal		107	513095	000	52905	0		
IOLAI		107	57575545	000				
~			0.0 450	/				
S = 5	/3.6	R-Sq =	= 99.45%	R-Sq(adj) =	99.39%		
			Individua	1 95%	CIs For	Mean Bas	ed on	
Biomas	SS		Pooled St	Dev				
Туре	1	Mean	+		+	+	+-	
PL	112	94.4	(*					
PW	280	68.4					*)	
UU	241	34.5				*)		
			+		+	+	+-	
			15000) 2	0000	25000	30000	
			20000	_	0000	20000	00000	
		Inc	dividual 9	95% CIs	For Me	an Based	on Pooled	l StDev
Temp	Mear	n –	-+	+	+		+	
425	20403	5 ((*)					
120	20540	0	· / / / / / / / / / / / / / / / / / / /					
430	20040.0	0 7	(==*===)	,	ц)			
4/3	ZIJI4.	/		(^)			

475 22404.1 (--*--) 20300 21000 21700 22400

General Linear Model: HHV.char versus Biomass Type, Temp

Factor		Туре	Levels	Values	
Biomass	Туре	fixed	3	PL, PW, UU	
Temp		fixed	4	425, 450, 475,	, 500

Analysis of Variance for HHV.char, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Biomass Type	2	5540540001	5540540001	2770270001	8418.83	0.000
Temp	3	68237737	68237737	22745912	69.12	0.000
Biomass Type*1	'emp 6	96987365	96987365	16164561	49.12	0.000
Error	96	31589403	31589403	329056		
Total	107	5737354506				

S = 573.634 R-Sq = 99.45% R-Sq(adj) = 99.39%

Unusual Observations for HHV.char

Obs	HHV.char	Fit	SE Fit	Residual	St Resid
4	25655.0	26807.8	191.2	-1152.8	-2.13 R
16	25692.0	26807.8	191.2	-1115.8	-2.06 R
28	25711.0	26807.8	191.2	-1096.8	-2.03 R
41	24736.0	23653.6	191.2	1082.4	2.00 R

22079.0 23653.6 191.2 -1574.6 -2.91 R R denotes an observation with a large standardized residual. Tukey 95.0% Simultaneous Confidence Intervals Response Variable HHV.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Biomass 16452 16774 17096 (* PW 12518 12840 13162 *) UU 0 6000 12000 Biomass Type = PW subtracted from: Biomass 0 6000 12000 Tukey Simultaneous Tests Response Variable HHV.char All Pairwise Comparisons among Levels of Biomass Type Biomass Type = PL subtracted from: Adjusted Biomass Difference SE of Type of Means Difference T-Value P-Value PW 16774 135.2 124.06 0.0000 135.2 94.97 0.0000 UU 12840 Biomass Type = PW subtracted from: Biomass Difference SE of Adjusted Type of Means Difference T-Value P-Value -3934 135.2 -29.10 0.0000 UU Tukey 95.0% Simultaneous Confidence Intervals Response Variable HHV.char All Pairwise Comparisons among Levels of Temp Temp = 425 subtracted from: ---+----+----+----+----+----0 800 1600 2400 Temp = 450 subtracted from: 475 365.5 774.0 1182 (----*---) 500 1454.9 1863.3 2272 (----)

42

			0	800	1600	2400
Temp	= 475 subtr	acted from:				
Temp 500	Lower Cent 680.9 10	er Upper - 89 1498	+	·+)	+
		-	0	800	1600	2400
Tukey Respo All P Temp	Simultaneou nse Variable airwise Comp = 425 subtr	s Tests HHV.char arisons amon acted from:	g Levels	of Temp		
Temp 450 475 500	Difference of Means 137.3 911.2 2000.6	SE of Difference 156.1 156.1 156.1	T-Value 0.8792 5.8365 12.8142	Adjusted P-Value 0.8156 0.0000 0.0000		
Temp	= 450 subtr	acted from:				
Temp 475 500	Difference of Means 774.0 1863.3	SE of Difference 156.1 156.1	T-Value 4.957 11.935	Adjusted P-Value 0.0000 0.0000		
Temp Temp 500	= 475 subtr Difference of Means 1089	acted from: SE of Difference 156.1	T-Value 6.978	Adjusted P-Value 0.0000		

APPENDIX C

SUPPLEMENTARY DATA FOR SELECTED FIGURES AND TABLES INVOLVED IN PRODUCTION OF BIO-OIL USING SACRIFICIAL BIO-BASED ADDITIVE

This appendix comprises of all the data, SAS code and SAS results involved in constructing the figures (Figure 28-29) and tables (Table14-16) of the second specific objective of this work. Data tables shown below represents the yield of bio-oil, char and gas and their physical properties, obtained while operating the respective biomass at selected temperatures.

C.1 EFFECT OF ADDITIVE ON PRODUCT YIELD

Table C.1.1. Data for yield of bio-oil obtained from different biomass mixture at 500°C (refer

Composition of poultry	Iteration	Product yield (wt. %)				
litter contained in the primary biomass (%)	No.	Bio-oil	Bio-char	Gas		
	1	37.6	28.4	34		
0	2	36.4	23.6	40		
	3	39.4	21	39.6		
	1	37	19.8	43.2		
5	2	37.4	19.6	43		
	3	37.6	19.6	42.8		
	1	36	20.8	43.2		
10	2	36	21	43		
	3	36.4	20.6	43		
	1	35.4	22.2	42.4		
15	2	35	22	43		
	3	34.2	22.4	43.4		
	1	31.2	36	32.8		
100	2	29.4	38.4	32.2		
	3	26	39.2	34.8		

Figure 28).

SAS code for bio-oil production (refer Table 14):

data OILYIELD; input Comp yield; datalines; 37.6 0 0 36.4 0 39.4 5 37 5 37.4 5 37.6 10 36 10 36 10 36.4 15 35.4 15 35 15 34.2 100 31.2 100 29.4 100 26 ; run; proc anova data=OILYIELD; class Comp; model yield=Comp; means Comp/ alpha=0.05; run;

SAS result for bio-oil production (refer Table 14):

	Level of			yield			
	Comp	Ν		Mean	Std Dev		
	0	3	37.800	00000	1.50996689		
	5	3	37.333	33333	0.30550505		
	10	3	36.133	33333	0.23094011		
	15	3	34.860	36667	0.61101009		
	100	3	28.860	36667	2.64070698		
Dependent Variable: yie	eld						
			Sum o	of			
Source		DF	Square	es Mea	an Square F	Value	Pr > F
Model		4	156.613333	33 39	9.1533333	20.03	<.0001
Error		10	19.546666	57 1	.9546667		
Corrected Total		14	176.16000	00			
	P 0		c \ \ (5 . Mor			
	к-square	COETI	r var	ROOT MSE	yield Mean		
	0.889040	3.99	94554	1.398094	35.00000		

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Comp	4	156.6133333	39.1533333	20.03	<.0001

SAS code for bio-char production (refer Table 14):

```
data CHARYIELD;
input Comp yield;
datalines;
0
      28.4
0
     23.6
0
     21
5
     19.8
5
     19.6
5
     19.6
10
     20.8
10
     21
10
     20.6
15
     22.2
15
    22
     22.4
15
100
    36
100
    38.4
100
    39.2
;
run;
proc anova data=CHARYIELD;
class Comp;
model yield=Comp;
means Comp/ alpha=0.05;
run;
```

SAS result for bio-char production (refer Table 14):

	Level of					
	Comp	Ν	Mean	Std De	ev	
	0	3	24.3333333	3.7541088	36	
	5	3	19.6666667	0.1154700)5	
	10	3	20.800000	0.200000	00	
	15	3	22.200000	0.200000	00	
	100	3	37.8666667	1.6653328	30	
Dependent Variable:	yield					
Source	DF		Squares Mean	Square F Va	Lue Pr >	> F
Model		4	659.7493333	164.9373333	48.63	<.0001
Error		10	33.9200000	3.3920000		
Corrected Tota	1	14	693.6693333			
	R-Square	Co	eff Var Root	MSE yield Me	ean	
	0.951101	7	.374820 1.84	1738 24.973	333	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
Comp		4	659.7493333	164.9373333	48.63	<.0001

SAS code for gas production (refer Table 14):

```
data GASYIELD;
input Comp yield;
datalines;
0
      34
0
      40
0
     39.6
5
     43.2
5
     43
5
     42.8
10
     43.2
10
     43
10
     43
15
     42.4
15
     43
15
     43.4
100 32.8
100
    32.2
100 34.8
;
run;
proc anova data=GASYIELD;
class Comp;
model yield=Comp;
means Comp/ alpha=0.05;
run;
```

SAS result for gas production (refer Table 14):

	Level of			yield		
	Comp	Ν	Mear	n Std	Dev	
	0	3	37.8666667	3.3545	9883	
	5	3	43.000000	0.2000	0000	
	10	3	43.0666667	0.1154	7005	
	15	3	42.9333333	0.5033	2230	
	100	3	33.2666667	7 1.3613	7186	
Dependent Variable: yi	.eld					
			Sum of			
Source	DF		Squares Me	ean Square	F Value 🛛 I	Pr > F
Model		4	230.6826667	57.6706667	21.50	<.0001
Error		10	26.8266667	2.6826667		
Corrected Total		14	257.5093333			
	R-Square	Coe	ff Var Root	: MSE yield	Mean	
	0.895823	4.0	091984 1.63	37885 40.	02667	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
Comp		4	230.6826667	57.6706667	21.50	<.0001

C.2 EFFECT OF ADDITIVE ON PHYSICAL PROPERTIES OF BIO-OIL

			Samp	le #1		Sample #2			Sample #3				
Comp. (%)	Iteration No.	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)
	1	5.7391	7.9807	2.2416	1120.8	5.818	8.0104	2.1924	1096.2	5.7492	8.0101	2.2609	1130.45
0	2	5.7511	8.0867	2.3356	1167.8	5.7514	8.0567	2.3053	1152.65	5.8874	8.1847	2.2973	1148.65
	3	5.7589	8.0115	2.2526	1126.3	5.7563	8.01	2.2537	1126.85	5.7554	7.9898	2.2344	1117.2
	1	5.7274	7.895	2.1676	1083.8	5.7484	8.0184	2.27	1135	5.7401	7.9606	2.2205	1110.25
5	2	5.7254	7.96	2.2346	1117.3	5.7497	8.0153	2.2656	1132.8	5.7943	8.0244	2.2301	1115.05
	3	5.7353	8.0277	2.2924	1146.2	5.8543	8.1004	2.2461	1123.05	5.7368	8.0128	2.276	1138
	1	5.7402	7.97	2.2298	1114.9	5.7373	7.9615	2.2242	1112.1	5.7327	7.9399	2.2072	1103.6
10	2	5.7404	7.9982	2.2578	1128.9	5.7212	7.9422	2.221	1110.5	5.7452	7.9981	2.2529	1126.45
	3	5.7212	7.9422	2.221	1110.5	5.7431	7.9672	2.2241	1112.05	5.7601	8.0127	2.2526	1126.3
	1	5.7408	7.9469	2.2061	1103.05	5.7432	7.9431	2.1999	1099.95	5.7675	7.9502	2.1827	1091.35
15	2	5.7465	7.9497	2.2032	1101.6	5.7367	7.9401	2.2034	1101.7	5.8167	8.0013	2.1846	1092.3
	3	5.7376	7.9433	2.2057	1102.85	5.7416	7.9463	2.2047	1102.35	5.742	7.9834	2.2414	1120.7
	1	5.7455	7.8697	2.1242	1062.1	5.7679	7.888	2.1201	1060.05	5.7398	7.871	2.1312	1065.6
100	2	5.7554	7.8835	2.1281	1064.05	5.7775	7.9004	2.1229	1061.45	5.7501	7.8629	2.1128	1056.4
	3	5.7509	7.875	2.1241	1062.05	5.8174	7.9459	2.1285	1064.25	5.7596	7.8905	2.1309	1065.45

Table C.2.1. Data for density of bio-oil (refer Table 15).

Note: Column "Comp (%)" represents the composition of poultry litter contained in the primary biomass (%).

SAS code for density of bio-oil:

data o	bi2:
input	temp density:
datali	nes:
0	1120.8
0	1167.8
0	1126.3
0	1096.2
0	1152 65
0	1126 85
0	1130 45
0	1148 65
0	1117 2
5	1083 8
5	1117 3
5	1146 2
10	1111 9
10	1128 9
10	1110 5
15	1103 05
15 15	1101 6
15 15	1102 85
1J 5	1135
5 5	1132 8
5	1122.05
J 1 0	1112 1
10	1110 5
10	1112 05
10 15	1000 05
15	1101 7
15	1102.25
E E	1110 25
Э Е	1116 05
Э Е	1120
J 1 0	1102 6
10	1103.0
10	1126.45
1U 1 E	1001 25
15	1091.35
15	1120 7
100	1000 1
100	1064 05
100	1062.05
100	1062.05
100	1060.05
100	1061.45
100	1065 6
100	1056 4
100	1065 45
	1003.43
, run:	
proc a	nova data=obi2:
class	temp:
model	densitv=temp:
means	temp/ alpha=0 05.
means	comp, arpna-0.03,

run;

SAS result for density of bio-oil:

	Level of		de	ensity		
	temp	Ν	Mean	Std D	ev	
	0	9	1131.87778	21.42628	51	
	5	9	1122.38333	18.69075	64	
	10	9	1116.14444	8.85859	20	
	15	9	1101.76111	8.38964	31	
	100	9	1062.37778	2.92233	97	
Dependent Variable: Den	sity					
			Sum of			
Source	l	DF	Squares	Mean Square	F Value	Pr > F
Model		4	26619.46922	6654.86731	34.45	<.0001
Error		40	7726.64722	193.16618		
Corrected Total		44	34346.11644			
R	-Square	Coeff	Var Root M	ISE density	Mean	
0	.775036	1.255	607 13.898	342 1106	.909	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		4	26619.46922	6654.86731	34.45	<.0001

Table C.2.2. Data fo	acidity (pH) of	ibio-oil (refer	Table 15).
----------------------	-----------------	-----------------	------------

Composition of poultry litter contained in the primary biomass (%)	Iteration No.	Sample # 1	Sample # 2	Sample # 3
	1	3.68	3.69	3.7
0	2	3.74	3.73	3.73
	3	3.76	3.76	3.76
	1	3.73	3.73	3.71
5	2	3.69	3.68	3.69
	3	3.68	3.69	3.69
	1	3.82	3.82	3.83
10	2	3.84	3.84	3.83
	3	3.85	3.85	3.86
	1	3.9	3.91	3.92
15	2	3.95	3.95	3.96
	3	3.98	3.98	3.98
	1	9.36	9.36	9.36
100	2	9.44	9.44	9.44
	3	9.48	9.49	9.49

SAS code for acidity of bio-oil:

data c	bi2:	
input	temp	ρH:
datali	nes:	P11/
0	3 68	
0	2 74	
0	3.74	
0	3.76	
0	3.69	
0	3.73	
0	3.76	
0	3.7	
0	3.73	
0	3.76	
5	3.73	
5	3.69	
5	3.68	
10	3.82	
10	3.84	
10	3 85	
15	3 9	
15	2 05	
15 15	2.95	
10	3.98	
5	3./3	
5	3.68	
5	3.69	
10	3.82	
10	3.84	
10	3.85	
15	3.91	
15	3.95	
15	3.98	
5	3.71	
5	3.69	
5	3.69	
10	3.83	
10	3 83	
10	3 86	
15	3 92	
15	3 96	
15 15	2.90	
100	3.90	
100	9.30	
100	9.44	
100	9.48	
100	9.36	
100	9.44	
100	9.49	
100	9.36	
100	9.44	
100	9.49	
;		
run;		
proc a	nova	data=obj2;
class	temp;	;
model	pH=te	emp;
means	temp/	<pre>alpha=0.05;</pre>
run;

SAS result for acidity of bio-oil:

	The	ANOVA Procedure	
Level of		pH	
temp	Ν	Mean	Std Dev
0	9	3.7277778	0.03113590
5	9	3.69888889	0.01964971
10	9	3.83777778	0.01394433
15	9	3.94777778	0.03113590
100	9	9.42888889	0.05555278

Dependent Variable: pH

			Sum	of				
Source		DF	Squar	es	Mean Sq	uare	F Value	Pr > F
Model		4	228.22801	33	57.057	0033	50893.3	<.0001
Error		40	0.04484	44	0.001	1211		
Corrected Total		44	228.27285	78				
	R-Square	Coet	ff Var	Root	MSE	рН Ме	an	
	0.999804	0.6	679413	0.033	483	4.9282	22	
Source		DF	Anova	SS	Mean Sq	uare	F Value	Pr > F
temp		4	228.22801	33	57.057	0033	50893.3	<.0001

Sample	Sample wt (g)		Difference	KFR vo	l (ml)	Difference (ml)	Water	
1	Initial	Initial Final		Initial	final	(ml)	(Wt%)	
methanol	0.0	2.4	2.4				40ml	
water			5 µl	2.4	3.8	1.4	3.57	
water			5 µl	3.8	5.2	1.4	3.57	
0-1a	138.2234	138.1800	0.0434	14.6	16.1	1.5	19.20	
0-1b	138.1800	138.1381	0.0419	16.1	17.6	1.5	19.89	
0-1c	138.1381	138.1030	0.0351	17.6	19.0	1.4	22.16	
0.2a	168.7295	168.6684	0.0611	19.0	21.2	2.2	20.00	
0-2b	168.6491	168.5373	0.1118	21.2	25.1	3.9	19.38	
0-2c	168.5373	168.5015	0.0358	25.1	26.3	1.2	18.62	
0-3a	165.3967	165.3506	0.0461	0.0	1.6	1.6	19.28	
0-3b	165.3501	165.2971	0.0530	1.6	3.4	1.8	18.87	
0-3c	165.2971	165.2369	0.0602	3.4	5.0	1.6	14.77	
5-1-A	110.6825	110.5420	0.1405	0	7.8	7.8	19.83	

Table C.2.3. Data for water content of bio-oil (refer Table 15).

	Sampl	e wt (g)	D.00	KFR vo	l (ml)	D.00	Water
Sample			Difference		1	Difference	(wt%)
	Initial	Final	(g)	Initial	final	(1111)	Initial
5-1-B	110.5420	110.3785	0.1635	7.8	16.4	8.6	18.79
5-1-C	110.2397	110.1612	0.0785	16.4	20.7	4.3	19.56
5-2-A	62.8978	62.7898	0.1080	20.7	26.5	5.8	19.18
5-2-В	62.7882	62.7081	0.0801	0.0	4.2	4.2	18.73
5-2-C	62.7041	62.6282	0.0759	4.2	8.3	4.1	19.29
5-3-а	132.7878	132.7380	0.0498	8.3	11.2	2.9	20.80
5-3-b	132.7381	132.6565	0.0816	11.2	16.1	4.9	21.45
5-3-с	132.6547	132.5855	0.0692	16.1	20.1	4	20.64
10-3-a	107.9407	107.8982	0.0425	20.1	22.7	2.6	21.85
10-3-b	107.8965	107.6907	0.2058	0.0	13.1	13.1	22.73
10-3-с	107.6907	107.5480	0.1427	13.1	21.7	8.6	21.52
10-4-a	115.5591	115.4468	0.1123	21.7	28.1	6.4	20.35
10-4-b	115.4447	115.3805	0.0642	0.0	4.0	4	22.25
10-4-c	115.3805	115.3000	0.0805	4.0	9.0	5	22.18
10-5-a	124.3572	124.2491	0.1081	9.0	15.6	6.6	21.81
10-5-b	124.2480	124.1590	0.0890	15.6	20.9	5.3	21.27
10-5-c	124.1596	124.0963	0.0633	20.9	24.5	3.6	20.31
15-1-a	124.4925	124.2895	0.2030	0.0	13.3	13.3	23.40
15-1-b	124.2800	124.2387	0.0413	13.3	15.9	2.6	22.48
15-1-c	124.2275	124.1678	0.0597	15.9	19.7	3.8	22.73
15-2-a	111.1373	110.8891	0.2482	0.0	16.2	16.2	23.31
15-2-b	110.8800	110.7162	0.1638	16.2	26.7	10.5	22.89
15-2-с	110.7127	110.6097	0.1030	0.0	6.1	6.1	21.15
15-3a	123.3551	123.2886	0.0665	6.1	10.2	4.1	22.02
15-3b	123.2886	123.0935	0.1951	10.2	23.1	12.9	23.61
15-3c	123.0906	123.0303	0.0603	23.1	26.9	3.8	22.51
100-1a	160.4940	160.4598	0.0342	0.0	3.0	3	28.63
100-1b	160.4498	160.4243	0.0255	3.0	5.5	2.5	32.00
100-1c	160.4235	160.3956	0.0279	5.5	8.1	2.6	30.42
100.2a	93.9595	93.9126	0.0469	8.1	11.8	3.7	25.75
100-2b	93.9126	93.8715	0.0411	11.8	15.6	3.8	30.18
100-2c	93.8715	93.8273	0.0442	15.6	19.3	3.7	27.32
100-3a	116.8931	116.8465	0.0466	19.3	23.3	4	28.02
100-3b	116.8457	116.7943	0.0514	0.0	4.6	4.6	29.21
100-3c	116.7943	116.7545	0.0398	4.6	8.3	3.7	30.34

SAS code for water content of bio-oil:

data obj2; input temp water; datalines; 0 19.88863962 0 22.15892877 0 20.00365303 0 19.37986047 0 18.62198883 0 19.28177007 0 18.86793962 0 14.76560797 5 19.82715032 5 18.7854981 5 19.56324166 5 19.17989648 5 18.72659401 5 19.29230422 5 20.79747811 5 21.446081 5 20.64409827 10 21.84874212 10 22.73358596 10 21.52367863 10 20.35364702 10 22.25189408 10 22.18278882 10 21.80520944 10 21.26806034 10 20.31144455 15 23.39901759 15 22.4835724 15 22.7327139 15 23.31069694 15 22.89377564 15 21.15118146 22.01933669 15 15 23.61426658 15 22.50651774 100 31.99901961 100 30.4162724 100 25.7493177 100 30.17717762 100 27.32223982 100 28.01630901 100 29.21 100 30.34278894 ; run; proc anova data=obj2; class temp; model water=temp; means temp/ alpha=0.05; run;

SAS result for water content of bio-oil:

		Т	he ANOVA Procedur	`e		
	Level of		N	ater	-	
	temp	Ν	Mean	Std De	v	
	0	8	19.1210485	2.0692547	1	
	5	9	19.8069269	0.9550592	2	
	10	9	21.5865612	0.8277804	5	
	15	9	22.6790088	0.7647328	7	
	100	8	29.1541406	2.0139606	8	
Dependent Variable: wa	ter					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		4	518.1287322	129.5321830	64.92	<.0001
Error		38	75.8223682	1.9953255		
Corrected Total		42	593.9511004			
	R-Square	Coe	ff Var Root	MSE water Me	an	
	0.872342	6.	308337 1.412	2560 22.391	95	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		4	518.1287322	129.5321830	64.92	<.0001

Table C.2.4. Data for higher heating value of bio-oil (refer Table 15).

Composition of poultry litter contained in the primary biomass (%)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.5683	21333	0.5462	21268	0.5183	21424
0	2	0.654	22270	0.5483	22238	0.5032	22309
	3	0.5	22368	0.6093	22472	0.5333	22461
	1	0.614	20831	0.5233	20708	0.5449	20928
5	2	0.4722	21677	0.4991	21789	0.6038	21751
	3	0.5488	21076	0.537	21233	0.5139	21217
	1	0.5667	19511	0.5137	19402	0.552	19567
10	2	0.5485	20363	0.4992	20291	0.5048	20199
	3	0.4878	19780	0.5361	19501	0.5403	19543
	1	0.49	18015	0.5079	17995	0.6372	17891
15	2	0.5731	18363	0.5238	18674	0.4254	18549
	3	0.5538	17762	0.5187	17362	0.5506	17293
	1	0.526	14324	0.5872	14561	0.5174	13673
100	2	0.6564	13741	0.4398	13786	0.4561	13101
	3	0.5436	13790	0.558	14390	0.5926	13682

SAS code for higher heating value of bio-oil:

data ()ILHHV;
input	temp hhv;
datali	ines;
0	21333
0	22270
0	22368
0	21268
0	22220
0	22230
0	22472
0	21424
0	22309
0	22461
5	20831
5	21677
5	21076
10	19511
10	20363
10	19780
15	18015
15	18363
15	17762
5	20708
5	21789
5	21222
J 1.0	10402
10	20201
10	10501
10	19501
15	1/995
15	186/4
15	1/362
5	20928
5	21751
5	21217
10	19567
10	20199
10	19543
15	17891
15	18549
15	17293
100	14324
100	13741
100	13790
100	<mark>14561</mark>
100	13786
100	14390
100	13673
100	13101
100	13682
;	
run;	
proc a	anova data=OILHHV;
class	temp;
model	hhv=temp;
means	<pre>temp/ alpha=0.05;</pre>

run;

SAS result for higher heating value of bio-oil:

		The	e ANOVA Procedur	`e		
	Level of			hhv		
	temp	Ν	Mean	Std	Dev	
	0	9	22015.8889	513.075	395	
	5	9	21245.5556	407.482	549	
	10	9	19795.2222	382.280	910	
	15	9	17989.3333	482.453	366	
	100	9	13894.2222	453.366	237	
Dependent Variable: hhv						
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		4	376741647.7	94185411.9	464.55	<.0001
Error		40	8109834.2	202745.9		
Corrected Total		44	384851481.9			
	R-Square	Coef	f Var Root	MSE hhv I	Mean	
	0.978927	2.3	71351 450.2	2731 1898	8.04	
Source		DF	Anova SS	Mean Square	F Value	Pr > F
temp		4	376741647.7	94185411.9	464.55	<.0001

Table C.2.5. Data for ash content of bio-oil (refer Table 15).

			Sample #1								
Comp (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %			
	1	14.2752	14.2747	16.927	2.6523	14.2799	0.0052	0.1961			
0	2	14.4982	14.4972	17.8152	3.318	14.5091	0.0119	0.3586			
	3	14.8937	14.8931	17.4977	2.6046	14.9042	0.0111	0.4262			
	1	15.495	15.4945	17.5337	2.0392	15.5013	0.0068	0.3335			
5	2	14.4316	14.4295	16.5318	2.1023	14.4386	0.0091	0.4329			
	3	14.7363	14.735	17.4849	2.7499	14.7469	0.0119	0.4327			
	1	14.9405	14.9377	17.597	2.6593	14.946	0.0083	0.3121			
10	2	14.9751	14.9744	17.4221	2.4477	14.9811	0.0067	0.2737			
	3	14.3648	14.3642	17.554	3.1898	14.3753	0.0111	0.3480			
	1	15.1814	15.1813	18.0003	2.819	15.1925	0.0112	0.3973			
15	2	14.1313	14.1302	16.5617	2.4315	14.1416	0.0114	0.4688			
	3	14.2161	14.2161	15.3151	1.099	14.2195	0.0034	0.3094			
	1	9.7761	9.7752	10.6453	0.8701	9.7764	0.0012	0.1379			
100	2	9.4736	9.4728	10.2990	0.8262	9.4741	0.0013	0.1573			
	3	12.1083	12.1074	12.9368	0.8294	12.1085	0.0011	0.1326			

				S	ample #2			
Comp (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	14.5044	14.5033	17.2331	2.7298	14.5084	0.0051	0.1868
0	2	16.6669	16.666	17.9489	1.2829	16.6708	0.0048	0.3742
	3	15.4693	15.4689	18.1079	2.639	15.4805	0.0116	0.4396
	1	14.7438	14.7436	16.9911	2.2475	14.7522	0.0086	0.3826
5	2	13.7298	13.7286	16.5476	2.819	13.7401	0.0115	0.4079
	3	15.3537	15.3532	18.146	2.7928	15.3658	0.0126	0.4512
	1	12.9886	12.9883	15.4419	2.4536	12.9957	0.0074	0.3016
10	2	12.8977	12.8958	15.0839	2.1881	12.9012	0.0054	0.2468
	3	15.1206	15.1205	17.4393	2.3188	15.1289	0.0084	0.3623
	1	14.3467	14.3466	17.4444	3.0978	14.3574	0.0108	0.3486
15	2	15.0049	15.0045	17.1571	2.1526	15.0146	0.0101	0.4692
	3	15.1392	15.1383	17.1398	2.0015	15.1434	0.0051	0.2548
	1	9.6727	9.6724	10.2071	0.5347	9.6731	0.0007	0.1309
100	2	12.4191	12.4189	13.7764	1.3575	12.4211	0.0022	0.1621
	3	13.0795	13.0790	15.2365	2.1575	13.0821	0.0031	0.1437

			Sample #3									
Comp (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %				
	1	14.2755	14.2745	15.5529	1.2784	14.2772	0.0027	0.2112				
0	2	14.4982	14.4975	15.8659	1.3684	14.5021	0.0046	0.3362				
	3	14.8938	14.893	16.2628	1.3698	14.8992	0.0062	0.4526				
	1	15.4954	15.4948	17.2838	1.789	15.5012	0.0064	0.3577				
5	2	14.4306	14.4296	15.6692	1.2396	14.4344	0.0048	0.3872				
	3	14.7355	14.7355	15.7226	0.9871	14.7395	0.004	0.4052				
	1	14.9388	14.9385	16.2051	1.2666	14.9427	0.0042	0.3316				
10	2	14.9747	14.9744	16.9581	1.9837	14.9797	0.0053	0.2672				
	3	14.3644	14.3642	17.2016	2.8374	14.3743	0.0101	0.3560				

			Sample #3								
Comp (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %			
	1	15.1818	15.1815	16.42	1.2385	15.1858	0.0043	0.3472			
15	2	14.1304	14.1303	16.2041	2.0738	14.1392	0.0089	0.4292			
	3	14.2162	14.2161	15.7834	1.5673	14.221	0.0049	0.3126			
	1	9.7761	9.7752	10.2945	0.5193	9.7759	0.0007	0.1348			
100	2	9.4736	9.4728	10.7893	1.3165	9.4751	0.0023	0.1747			
	3	12.1083	12.1074	13.0002	0.8928	12.1087	0.0013	0.1456			

SAS code for ash content of bio-oil:

data obj2; input temp ash; datalines; 0 0.196056253 0 0.358649789 0 0.426169085 0 0.186826874 0 0.374152311 0 0.43956044 0 0.211201502 0 0.336159018 0 0.452620821 5 0.333464104 5 0.432859249 5 0.432743009 10 0.31211221 10 0.273726355 10 0.3479842 15 0.397304009 15 0.468846391 15 0.309372157 5 0.382647386 5 0.40794608 5 0.451160126 10 0.301597652 10 0.246789452 10 0.362256339 15 0.348634515 15 0.469200037 15 0.254808893 5 0.357741755 5 0.387221684 5 0.405227434 10 0.3315964 0.267177497 10 10 0.355959681

15	0.347194187
15	0.429163854
15	0.312639571
100	0.137915182
100	0.157346889
100	0.132625995
100	0.130914532
100	0.162062615
100	0.14368482
100	0.134796842
100	0.174705659
100	0.145609319
;	
run;	
proc a	nova data=obj2;
class	temp;
model	ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

SAS result for ash content of bio-oil:

The ANOVA Procedure

Level of		asł	1
temp	Ν	Mean	Std Dev
0	q	0 33126623	0 10702461
5	9	0.39900120	0.03796028
10	9	0.31102220	0.04177768
15	9	0.37079596	0.07505245
100	9	0.14662909	0.01504176

Dependent Variable: HHV

Source		DF	Sum o Square	of es	Mean Squ	uare	F	Value	Pr > F
Model		4	0.348709	71	0.08717	7743		21.26	<.0001
Error		40	0.163998	00	0.00409	9995			
Corrected Total		44	0.512707	71					
	R-Square	Coeff	Var	Root	MSE	ash	Mean		

	0.680134	20.53963	0.064	4031 0.31	1743	
Source		DF A	nova SS	Mean Square	F Value	Pr > F
temp		4 0.3	4870971	0.08717743	21.26	<.0001

		Sample #1						
Comp. (%)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)			
	1	320.5	312.4	314.7	0.23			
0	2	321.7	313.4	320.1	0.67			
	3	324.7	316.4	324.6	0.82			
	1	547.8	530.4	536.2	0.58			
5	2	550.4	534.6	539.9	0.53			
	3	548	531.1	537.2	0.61			
	1	550.2	535	541.7	0.67			
10	2	549	534.6	541.9	0.73			
	3	543.8	525.8	532.2	0.64			
	1	549.5	535.5	543.8	0.83			
15	2	549.5	531.4	539.7	0.83			
	3	562.4	542.4	551.6	0.92			
	1	320.4	312.9	313.9	0.10			
100	2	330.8	322.6	324.1	0.14			
	3	320.9	312.5	314.6	0.21			

Table C.2.6. Data for solid content of bio-oil (refer Table 15).

		Sample #2						
Comp. Iteration (%) No.		Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)			
	1	322.6	314.4	317.1	0.27			
0	2	323.9	315.6	323.3	0.75			
	3	330	320.5	329	0.85			
	1	544.5	525.6	531.7	0.61			
5	2	550.8	534.7	540.8	0.61			
	3	548.4	530.2	537.1	0.69			
	1	550.8	535.1	541.1	0.6			
10	2	557.3	540.6	547.9	0.73			
	3	557.5	546	552.1	0.61			
	1	557.3	540	548	0.8			
15	2	553.8	536.1	544.5	0.84			
	3	545.1	527.9	537.5	0.96			
	1	317.7	310.4	311.8	0.14			
100	2	317.9	311.2	312.8	0.16			
	3	325.4	317.7	320.1	0.24			

Г

Т

Т

		Sample #3					
Comp. Iteration (%) No.	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	330.2	321.7	324.6	0.29		
0	2	330.9	322.4	329.4	0.71		
	3	339.1	331.5	339.3	0.76		
	1	543.6	526.7	532.2	0.55		
5	2	549.3	534.1	539.5	0.54		
	3	521.7	520.1	526.8	0.67		
	1	534.6	523.5	529.4	0.59		
10	2	538.9	526.3	534.1	0.78		
	3	550.4	533.8	539	0.52		
	1	554.3	538.4	546.4	0.8		
15	2	548.1	524.9	533.2	0.83		
	3	539.5	522.1	531.7	0.96		
	1	329.7	321.6	323.1	0.15		
100	2	334.8	328.9	330.7	0.18		
	3	329.1	320.5	323.1	0.26		

Note: Here, weight of the bio-oil was assumed as one gram (1g).

SAS code for solid content of bio-oil:

data obj2; input temp solid; datalines; 0 0.226266601 0 0.665210485 0 0.817628876 0 0.26973027 0 0.748590317 0 0.847964884 0 0.290174104 0 0.713412148 0 0.759567631 5 0.58 5 0.53 5 0.61 10 0.67 10 0.73 10 0.64 15 0.83 15 0.83 15 0.92 5 0.61 5 0.61 5 0.69

10	0.6
10	0.73
10	0.61
15	0.8
15	0.84
15	0.96
5	0.55
5	0.54
5	0.67
10	0.59
10	0.78
10	0.52
15	0.8
15	0.83
15	0.96
100	0.099245732
100	0.142126208
100	0.208498809
100	0.139109698
100	0.156571093
100	0.235594385
100	0.148558978
100	0.176956351
100	0.257834193
;	
run;	
proc a	town:
CIdSS model	cellid-tomp.
moana	tomp/ alpha=0 05.
	cemp/ arpna-0.05;

SAS result for solid content of bio-oil:

The ANOVA Procedure

Level of		soli	d
temp	Ν	Mean	Std Dev
0	9	0.59317170	0.25441888
5	9	0.59888889	0.05555278
10	9	0.65222222	0.08273116
15	9	0.86333333	0.06500000
100	9	0.17383283	0.05098184
10 15 100	9 9 9	0.65222222 0.86333333 0.17383283	0.08273116 0.06500000 0.05098184

Dependent Variable: Solid

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	4	2.25834349	0.56458587	34.64	<.0001
Error	40	0.65186937	0.01629673		
Corrected Total	44	2.91021287			

	R-Square	Coeff	Var	Root	MSE	solid Me	an	
	0.776006	22.1	5182	0.127	659	0.5762	290	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		4	2.258343	49	0.56	458587	34.64	<.0001

Sample Name	Wt. of the sample	Amt. of KOH in ml	TAN No.
P.W, 1-stage-a	1.0086	10	55.64
P.W, 1-stage-b	1.0087	10	55.64
P.W, 1-stage-c	1.0054	10	55.82
5% P.L -a	1.0063	7.5	41.83
5% P.L -b	1.0043	7.25	40.51
5% Р.L -с	1.009	7.5	41.71
10% P.L-a	1.0013	5.25	29.42
10% P.L-b	1.0051	5.25	29.31
10% P.L-c	1.0075	5	27.85
15% P.L-a	1.0053	5	27.91
15% P.L-b	1.0047	5	27.93
15% P.L-c	1.007	4.5	25.08
P.L, 1-stage-a	1	0	0.00
P.L, 1-stage-b	1	0	0.00
P.L. 1-stage-c	1	0	0.00

Table C.2.7. Data for TAN No. of bio-oil (refer Table 15).

SAS code for TAN No. of bio-oil:

data obj2; input temp TAN; datalines; 0 55.64 0 55.64 0 55.82 5 41.82649309 5 40.51279498 5 41.71456888 10 29.42474783 10 29.31350114 10 27.85111663 15 27.91206605 15 27.92873495 25.07845084 15 100 0.00 100 0.00 0.00 100 ;

run; proc anova data=obj2; class temp; model TAN=temp; means temp/ alpha=0.05; run;

SAS result for TAN No. of bio-oil:

The ANOVA Procedure

Level of		TAN	
temp	Ν	Mean	Std Dev
0	3	55.7000000	0.10392305
5	3	41.3512857	0.72830743
10	3	28.8631219	0.87818558
15	3	26.9730839	1.64082157
100	3	0.000000	0.0000000

Dependent Variable: TAN

			Sum	of				
Source		DF	Squar	es	Mean	Square	F Value	Pr > F
Model		4	5094.3866	32	1273	. 596658	1590.11	<.0001
Error		10	8.0094	74	0	.800947		
Corrected Total		14	5102.3961	06				
	R-Square	Coef	f Var	Root	MSE	TAN Me	ean	
	0.998430	2.9	26847	0.894	957	30.577	750	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		4	5094.3866	32	1273	.596658	1590.11	<.0001

C.3 VISCOSITY ANALYSIS OF DIFFERENT BIO-OILS

5 % of P.L									
Shear Stress	Shear Rate	Viscosity	Log (Viscosity)						
(Pa)	(1/s)	(Pas)							
0.022	0.030	0.61	-0.73095						
0.303	2.065	0.35	-0.80173						
0.618	4.855	0.22	-0.86832						
0.939	7.723	0.14	-0.92053						
1.234	11.008	0.10	-0.94188						
1.553	11.921	0.11	-0.93919						
1.837	16.926	0.09	-0.95877						
2.162	20.281	0.08	-0.95218						
2.431	22.825	0.08	-0.96214						
2.730	24.553	0.07	-0.97212						
3.002	29.992	0.05	-0.97724						
3.255	24.439	0.06	-0.98055						
3.528	32.195	0.07	-0.99025						
3.764	38.078	0.06	-0.99225						
4.013	39.321	0.06	-0.99978						
4.250	41.203	0.06	-1.00854						
4.488	45.075	0.06	-1.00923						
4.692	48.531	0.06	-1.01476						
4.944	50.065	0.07	-1.02124						
5.187	53.221	0.07	-1.02325						
5.452	56.002	0.07	-1.02521						
5.663	59.397	0.07	-1.02684						
5.945	63.188	0.07	-1.02899						
6.202	68.840	0.06	-1.03082						
6.455	73.673	0.05	-1.03291						
6.699	72.338	0.06	-1.03317						
6.976	77.182	0.05	-1.03423						
7.204	81.250	0.05	-1.036						
7.507	80.174	0.05	-1.03132						
7.780	85.516	0.05	-1.03417						
8.033	88.638	0.05	-1.03586						
8.256	86.986	0.04	-1.03767						
8.528	95.563	0.04	-1.03717						
8.782	86.446	0.05	-1.03861						
9.025	96.415	0.05	-1.0401						

Table C.3.1. Data for Figure 29

10 % of P.L									
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)						
(Pa)	(1/s)	(Pas)							
0.009	0.030	1.17	-0.36653						
0.867	1.953	0.89	-0.36333						
1.687	4.832	0.66	-0.4593						
2.320	7.729	0.51	-0.52307						
3.097	10.694	0.42	-0.5369						
3.884	13.592	0.40	-0.54714						
4.581	16.728	0.38	-0.55952						
5.273	19.460	0.35	-0.56951						
6.097	22.479	0.33	-0.56373						
6.973	25.751	0.30	-0.55799						
7.534	28.467	0.29	-0.57889						
8.168	31.135	0.27	-0.58603						
8.661	34.947	0.24	-0.59469						
9.369	37.636	0.20	-0.60305						
9.429	40.156	0.21	-0.63449						
9.694	43.948	0.19	-0.64832						
10.485	44.198	0.18	-0.63944						
10.762	49.120	0.13	-0.66452						
10.948	46.458	0.16	-0.67516						
10.802	52.051	0.11	-0.70737						
10.462	63.192	0.08	-0.74242						
10.819	54.030	0.09	-0.74456						
10.725	68.320	0.07	-0.77801						
10.817	64.504	0.06	-0.79263						
10.893	70.001	0.06	-0.80532						
11.126	73.085	0.04	-0.82246						
11.564	76.728	0.04	-0.80033						
11.866	79.146	0.02	-0.82206						
11.867	77.575	0.02	-0.84394						
11.944	85.508	0.01	-0.85658						
11.835	81.284	0.01	-0.86748						
12.217	89.739	0.01	-0.87092						
11.976	93.563	0.01	-0.89083						
11.371	95.715	0.01	-0.90354						
10.495	98.691	0.01	-0.98611						

15 % of P.L									
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)						
(Pa)	(1/s)	(Pas)							
0.009	0.029	0.51	-0.13734						
1.031	2.034	0.32	-0.26727						
1.917	4.868	0.27	-0.41504						
2.397	7.876	0.25	-0.50403						
3.316	10.927	0.24	-0.51196						
3.805	13.733	0.22	-0.55944						
4.298	16.529	0.20	-0.58853						
5.032	18.415	0.22	-0.5858						
5.378	21.798	0.22	-0.6263						
5.808	26.022	0.20	-0.64214						
6.132	28.416	0.20	-0.66583						
6.769	28.831	0.20	-0.65691						
7.488	33.101	0.21	-0.65637						
8.298	37.037	0.21	-0.64338						
8.900	40.465	0.20	-0.66138						
9.384	43.591	0.19	-0.66462						
10.015	46.035	0.19	-0.65785						
10.614	49.401	0.18	-0.66637						
10.978	51.313	0.18	-0.68485						
11.299	54.325	0.16	-0.68674						
11.661	57.514	0.15	-0.69379						
12.011	60.787	0.15	-0.6981						
12.258	63.783	0.14	-0.71366						
12.465	67.418	0.12	-0.72832						
12.433	70.218	0.12	-0.7478						
12.472	72.538	0.10	-0.77009						
12.531	75.162	0.10	-0.78278						
12.333	78.001	0.09	-0.80646						
11.535	81.459	0.08	-0.84451						
11.737	80.007	0.07	-0.85996						
11.664	85.634	0.04	-0.87005						
10.401	84.825	0.06	-0.94435						
10.445	94.970	0.04	-0.94831						
10.951	89.528	0.05	-0.93565						
10.536	99.349	0.04	-0.98481						

C.4 EFFECT OF ADDITIVE ON PHYSICAL PROPERTIES OF BIO-CHAR

Comp. (%)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
	1	0.4819	30234	0.4862	30191	0.6028	30124
0	2	0.6459	30239	0.5521	30248	0.5696	30272
	3	0.513	30901	0.5189	30862	0.6452	31007
	1	0.48	28590	0.5247	28496	0.6072	28505
5	2	0.4362	29061	0.4508	29100	0.5046	29089
	3	0.4558	29126	0.6106	29108	0.5576	29148
	1	0.4871	27384	0.5629	27368	0.4777	27402
10	2	0.5433	27299	0.4994	27345	0.509	27318
	3	0.4652	26977	0.6173	27008	0.5133	27019
	1	0.5157	26291	0.4877	26273	0.5523	26314
15	2	0.558	25830	0.5016	25774	0.5247	25783
	3	0.5792	25685	0.4995	25631	0.6629	25690
	1	0.5262	10824	0.5415	10829	0.4987	10841
100	2	0.5036	11074	0.5315	11239	0.5678	11112
	3	0.5752	10446	0.5763	10483	0.5129	10477

Table C.4.1. Data for higher heating value of bio-char (refer Table 16).

SAS code for higher heating value of bio-char:

obj2;
temp HHV;
ines;
<u>30234</u>
<u>30239</u>
<u>30901</u>
30191
30248
30862
30124
<u>30272</u>
31007
<mark>28590</mark>
<mark>29061</mark>
29126
27384
27299
26977
26291
25830
25685
<mark>28496</mark>

5	29100
5	29108
10	27368
10	27345
10	27008
15	26273
15	25774
15	25631
5	<mark>28505</mark>
5	29089
5	29148
10	27402
10	27318
10	27019
15	<mark>26314</mark>
15	25783
15	25690
100	10824
100	11074
100	10446
100	10829
100	11239
100	10483
100	10841
100	11112
100	104//
;	
run;	data-obi2.
proc a	tomp:
model	HHV=tomp.
meane	$t_{emp}/alpha=0.05$
run:	
Lun,	

SAS result for higher heating value of bio-char:

The ANOVA Procedure

	Level o	f				
	temp	Ν	Mean	Std D)ev	
	0	9	30453.1111	357.1289	84	
	5	9	28913.6667	289.6433	815	
	10	9	27235.5556	178.7492	204	
	15	9	25919.0000	286.6417	'62	
	100	9	10813.8889	295.0925	647	
Dependent Variable:	hhv					
			Sum of			
Source		DF	Squares	Mean Square	F Value	Pr > F
Model		4	2264282358	566070589	6859.32	<.0001
Error		40	3301030	82526		
Corrected Tota	1	44	2267583388			

	R-Square	Coeff	f Var	Root	MSE	HHV Me	an	
	0.998544	1.16	64602	287.2	730	24667.	04	
Source		DF	Anova	SS	Mean Sq	uare	F Value	Pr > F
temp		4	22642823	58	56607	0589	6859.32	<.0001

Table C.4.2. Data for ash content of bio-char (refer Table 16).

		Sample #1									
Comp. (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %			
	1	14.2744	14.2744	16.8481	2.5737	14.2828	0.0084	0.3264			
0	2	14.4946	14.4949	16.1933	1.6984	14.508	0.0131	0.7713			
	3	14.8899	14.89	16.2675	1.3775	14.896	0.006	0.4356			
	1	15.4959	15.4945	16.0642	0.5697	15.5437	0.0492	8.6361			
5	2	14.433	14.4307	15.0677	0.637	14.486	0.0553	8.6813			
	3	14.7359	14.7354	15.301	0.5656	14.7883	0.0529	9.3529			
	1	14.9383	14.938	15.6071	0.6691	15.0349	0.0969	14.4821			
10	2	14.9759	14.9747	15.6294	0.6547	15.0658	0.0911	13.9148			
	3	14.3652	14.3651	14.9548	0.5897	14.4374	0.0723	12.2605			
	1	15.1829	15.1814	15.7856	0.6042	15.2721	0.0907	15.0116			
15	2	14.132	14.1307	14.865	0.7343	14.2469	0.1162	15.8246			
	3	14.2177	14.2168	14.857	0.6402	14.328	0.1112	17.3696			
	1	14.2743	14.2739	15.8913	1.6174	15.154	0.8801	54.4145			
100	2	14.4892	14.489	15.8304	1.3414	15.2884	0.7994	59.5945			
	3	14.8947	14.8935	16.3717	1.4782	15.784	0.8905	60.2422			

		Sample #2							
Comp. (%)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %	
	1	14.5028	14.5033	16.7285	2.2252	14.5095	0.0062	0.2786	
0	2	14.6681	14.6683	16.3004	1.6321	14.6815	0.0132	0.8088	
	3	15.4717	15.4719	17.0858	1.6139	15.4792	0.0073	0.4523	
	1	14.7453	14.7443	15.4449	0.7006	14.7961	0.0518	7.3937	
5	2	13.7297	13.7294	14.4094	0.68	13.7867	0.0573	8.4265	
	3	15.3547	15.354	16.0192	0.6652	15.4207	0.0667	10.0271	
	1	12.9908	12.9889	13.8567	0.8678	13.1212	0.1323	15.2454	
10	2	12.8992	12.8969	13.3957	0.4988	12.9585	0.0616	12.3496	
	3	15.1231	15.1214	15.6927	0.5713	15.1902	0.0688	12.0427	
	1	14.3473	14.3473	14.9707	0.6234	14.4482	0.1009	16.1854	
15	2	15.0052	15.005	15.762	0.757	15.1312	0.1262	16.6711	
	3	15.1393	15.1386	15.7824	0.6438	15.2376	0.099	15.3774	
	1	14.5049	14.5036	15.9767	1.4731	15.33	0.8264	56.0994	
100	2	14.6652	14.6643	16.0283	1.364	15.4794	0.8151	59.7581	
	3	15.4697	15.4681	16.9575	1.4894	16.3844	0.9163	61.5214	

	Iteration No.			S	Sample #3			
Comp. (%)		Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
	1	14.2744	14.2744	16.1294	1.855	14.2798	0.0054	0.2911
0	2	14.4946	14.4949	16.2369	1.742	14.5085	0.0136	0.7807
	3	14.8899	14.89	16.7456	1.8556	14.8977	0.0077	0.4150
	1	15.4957	15.4943	16.0351	0.5408	15.536	0.041	7.6368
5	2	14.4327	14.4304	14.5217	0.0913	14.439	0.008	9.0909
	3	14.7359	14.7354	16.0284	1.293	14.86	0.125	9.6365
	1	14.9382	14.9379	15.8134	0.8755	15.07	0.132	15.0999
10	2	14.9754	14.9742	15.685	0.7108	15.065	0.091	12.7743
	3	14.3648	14.3647	15.7914	1.4267	14.551	0.186	13.0371

Comp. (%)	Iteration No.		Sample #3									
		Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %				
	1	15.1827	15.1812	16.0985	0.9173	15.319	0.138	15.0332				
15	2	14.1318	14.1305	16.0517	1.9212	14.421	0.291	15.1260				
	3	14.2177	14.2168	16.0922	1.8754	14.52	0.303	16.1459				
	1	14.2743	14.2739	15.0015	0.7276	14.683	0.4091	56.2259				
100	2	14.4892	14.489	15.1256	0.6366	14.869	0.38	59.6921				
	3	14.8947	14.8935	15.4569	0.5634	15.2391	0.3456	61.3419				

SAS code for ash content of bio-char:

data obj2; input temp ash; datalines; 0 0.326378366 0 0.771314178 0 0.435571688 0 0.27862664 0 0.808773972 0 0.452320466 0 0.291105121 0 0.780711825 0 0.414960121 5 8.636124276 5 8.681318681 5 9.352899576 10 14.48214019 10 13.91477012 10 12.26047143 15 15.01158557 15 15.82459485 15 17.36957201 5 7.393662575 5 8.426470588 5 10.02705953 10 15.24544826 10 12.34963913 10 12.04270961 15 16.18543471 15 16.67107001 15 15.37744641 5 7.63683432 5 9.090909091 5 9.636504254 10 15.09994289 10 12.77433877 10 13.03707857

15	15.03324975							
15	15.12596294							
15	16.14588888							
100	54.4144924							
100	59.59445356							
100	60.24218644							
100	56.09938226							
100	59.75806452							
100	61.52141802							
100	56.22594832							
100	59.69211436							
100	61.34185304							
;								
run;								
<pre>proc anova data=obj2;</pre>								
class	temp;							
model	ash=temp;							

means temp/ alpha=0.05; run;

SAS result for ash content of bio-char:

The ANOVA Procedure

Level of		asł	1
temp	Ν	Mean	Std Dev
0	9	0.5066403	0.21903164
5	9	8.7646425	0.87290415
10	9	13.4673932	1.24788865
15	9	15.8605339	0.81398132
100	9	58.7655459	2.53557237

Dependent Variable: Ash

			Sum	of				
Source		DF	Squar	es	Mean Sq	uare	F Value	Pr > F
Model		4	18606.717	96	4651.6	7949	2458.90	<.0001
Error		40	75.670	84	1.8	9177		
Corrected Total		44	18682.388	81				
	R-Square	Coef	f Var	Root	MSE	ash Me	an	
	0.995950	7.0	63216	1.375	417	19.472	95	
Source		DF	Anova	SS	Mean Sq	uare	F Value	Pr > F
temp		4	18606.717	96	4651.6	7949	2458.90	<.0001

					Sample #1			
Comp. (%)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	96.9211	100.3934	3.4723	100.2735	3.3524	0.1199	3.45
0	2	93.5845	97.114	3.5295	96.969	3.3845	0.145	4.11
	3	152.4772	156.1768	3.6996	156.0545	3.5773	0.1223	3.31
	1	43.4977	45.4427	1.945	45.3859	1.8882	0.0568	2.92
5	2	42.9453	45.2951	2.3498	45.2317	2.2864	0.0634	2.70
	3	43.2437	45.3121	2.0684	45.2663	2.0226	0.0458	2.21
	1	42.1079	44.5818	2.4739	44.5087	2.4008	0.0731	2.95
10	2	46.1818	48.4822	2.3004	48.429	2.2472	0.0532	2.31
	3	44.6902	47.2155	2.5253	47.1406	2.4504	0.0749	2.97
	1	44.359	46.8085	2.4495	46.7457	2.3867	0.0628	2.56
15	2	48.2318	50.5035	2.2717	50.4301	2.1983	0.0734	3.23
	3	45.566	48.1417	2.5757	48.0535	2.4875	0.0882	3.42
	1	47.5009	51.7488	4.2479	51.5616	4.0607	0.1872	4.41
100	2	46.8336	51.2526	4.419	51.0802	4.2466	0.1724	3.90
	3	46.0423	50.1707	4.1284	50.0563	4.014	0.1144	2.77

Table C.4.3. Data for moisture content of bio-char (refer Table 16).

					Sample #2			
Comp. (%)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	92.085	95.7132	3.6282	95.5872	3.5022	0.126	3.47
0	2	113.0288	116.7161	3.6873	116.5723	3.5435	0.1438	3.90
	3	121.4935	125.0328	3.5393	124.9066	3.4131	0.1262	3.57
	1	46.16	48.8331	2.6731	48.742	2.582	0.0911	3.41
5	2	45.4183	47.5671	2.1488	47.5158	2.0975	0.0513	2.39
	3	44.0163	46.2906	2.2743	46.2356	2.2193	0.055	2.42
	1	45.769	48.4783	2.7093	48.4052	2.6362	0.0731	2.70
10	2	46.02	48.2538	2.2338	48.1957	2.1757	0.0581	2.60
	3	46.7842	48.9034	2.1192	48.8383	2.0541	0.0651	3.07
	1	41.7889	43.7882	1.9993	43.733	1.9441	0.0552	2.76
15	2	47.5748	49.6954	2.1206	49.6317	2.0569	0.0637	3.00
	3	48.3651	50.5124	2.1473	50.4423	2.0772	0.0701	3.26
	1	45.5664	49.2776	3.7112	49.1078	3.5414	0.1698	4.58
100	2	43.1856	47.2647	4.0791	47.112	3.9264	0.1527	3.74
	3	46.941	51.5296	4.5886	51.4022	4.4612	0.1274	2.78

					Sample #3			
Comp. (%)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
	1	96.9211	100.1032	3.1821	99.9874	3.0663	0.1158	3.64
0	2	93.5845	97.2567	3.6722	97.1168	3.5323	0.1399	3.81
	3	152.4772	155.8759	3.3987	155.7569	3.2797	0.119	3.50
	1	43.4984	45.5853	2.0869	45.5172	2.0188	0.0681	3.26
5	2	42.9455	44.2426	1.2971	44.2093	1.2638	0.0333	2.57
	3	43.2441	44.6384	1.3943	44.6044	1.3603	0.034	2.44
	1	42.108	43.3177	1.2097	43.2807	1.1727	0.037	3.06
10	2	46.1818	47.1754	0.9936	47.1492	0.9674	0.0262	2.64
	3	44.6913	45.8471	1.1558	45.8096	1.1183	0.0375	3.24
	1	44.3598	45.648	1.2882	45.6129	1.2531	0.0351	2.72
15	2	48.2322	50.0966	1.8644	50.0408	1.8086	0.0558	2.99
	3	45.5663	46.5522	0.9859	46.5144	0.9481	0.0378	3.83
	1	47.5009	51.7969	4.296	51.5998	4.0989	0.1971	4.59
100	2	46.8336	51.2003	4.3667	51.0411	4.2075	0.1592	3.65
	3	46.0423	50.1189	4.0766	50.0048	3.9625	0.1141	2.80

SAS code for moisture content of bio-char:

data obj2; input temp moisture; datalines; 0 3.453042652 0 4.108230628 0 3.305762785 0 3.472796428 0 3.899872535 0 3.565676829 0 3.639106251 0 3.809705354 0 3.501338747 5 2.920308483 5 2.698101966 5 2.214271901 10 2.95484862 10 2.31264128 10 2.965984239 15 2.563788528 3.231060439 15 15 3.424311838 5 3.408028132 5 2.387379002 5 2.418326518 10 2.698113904 10 2.600949055 10 3.07191393 15 2.760966338 15 3.00386683 15 3.264564802 5 3.263213379 5 2.567265438 5 2.438499606 10 3.058609573 10 2.636876006 10 3.24450597 15 2.724732184 15 2.992919974 15 3.83406025 100 4.406883401 100 3.901335144 100 2.771049317 100 4.575339513 100 3.743472825 100 2.776445975 100 4.587988827 3.645773696 100 100 2.798901045 ; run; proc anova data=obj2; class temp; model moisture=temp; means temp/ alpha=0.05;

run;

SAS result for moisture content of bio-char:

The ANOVA Procedure

Level of	moisture							
temp	Ν	Mean	Std Dev					
0	9	3.63950358	0.25370939					
5	9	2.70171049	0.41322373					
10	9	2.83827140	0.29387034					
15	9	3.08891902	0.39547063					
100	9	3.68968775	0.76048648					

Dependent Variable: Moisture

			Si	um of			
Source		DF	Squ	uares	Mean Square	F Value	Pr > F
Model		4	7.4167	76712	1.85419178	8.78	<.0001
Error		40	40 8.44975023		0.21124376		
Corrected Total		44	15.866	51735			
	R-Square	Coeff Var		Root MS	SE moisture	Mean	
	0.467448	14.40	061	0.45961	3.19	91618	
Source		DF	Anov	va SS	Mean Square	F Value	Pr > F
temp		4	7.416	76712	1.85419178	8.78	<.0001

APPENDIX D

SUPPLEMENTARY DATA FOR SELECTED FIGURES AND TABLES INVOLVED IN PRODUCTION OF BIO-OIL USING CASCADE PYROLYSIS REACTOR

This appendix comprises of all the data, SAS code and SAS results involved in constructing the figures (Figure 31-33) and tables (Table17-19) of the second specific objective of this work. Data tables shown below represents the yield of bio-oil, char and gas and their physical properties, obtained while operating the respective biomass at selected temperatures.

D.1 EFFECT OF TEMPERATURE ON PRODUCT YIELD

Table D.1.1. Data for yield of bio-oil obtained from selected biomass at different temperatures

Operating	Iteration	Product yield (wt. %)						
temperature (°C)	No.	Bio-oil	Bio-char	Bio-char				
	1	14.0	79.6	6.4				
300	2	14.0	78.2	7.8				
	3	14.9	76.4	8.7				
	1	24.6	27.1	48.3				
500	2	25.2	26.8	48.0				
	3	26.2	26.2	47.7				

(refer Figure 31).

SAS code for pine wood bio-oil (refer Table 17):

```
data obj3;
input temp oilyield;
datalines;
300
      14
300
      14
300
      14.88888889
      24.61538462
500
500
      25.23076923
500
      26.15384615
;
run;
```

```
proc anova data=obj3;
class temp;
model oilyield=temp;
means temp/ alpha=0.05;
run;
quit;
proc boxplot data=obj3;
plot oilyield*temp /boxstyle=schematic;
run;
```

SAS result for pine wood bio-oil (refer Table 17):

The ANOVA Procedure									
	l	Level of	-	oi.	lyield				
	1	temp	Ν	Mean	Std D	ev			
	(300	3	14.2962963	0.513200	24			
	Ę	500	3	25.3333333	0.774341	99			
Dependent Va	riable: oily:	ield							
				Sum of					
Source	•	DF		Squares	Mean Square	F Value	Pr > F		
Model		1	182	.7242798	182.7242798	423.47	<.0001		
Error		4	1	.7259600	0.4314900				
Correc	ted Total	5	184	.4502398					
	R-So	quare Co	eff Var	Root MS	E oilyield	Mean			
	0.99	90643 3	.315090	0.65687	9 19.8	1481			
Source		DF		Anova SS	Mean Square	F Value	Pr > F		
temp		1	182	.7242798	182.7242798	423.47	<.0001		

SAS code for pine wood bio-char (refer Table 17):

```
data obj3;
input temp charyield;
datalines;
300 79.5555556
300 78.2222222
300 76.4444444
    27.07692308
500
500
    26.76923077
500 26.15384615
;
run;
proc anova data=obj3;
class temp;
model charyield=temp;
```

means temp/ alpha=0.05;
run;
quit;
proc boxplot data=obj3;
plot charyield*temp /boxstyle=schematic;
run;

SAS result for pine wood bio- char (refer Table 17):

			Tł	ne ANOVA Procedur	e		
		Level of	N	cha	ryield		
		200	11	Weall	1 5600276	20	
		500	3	26.66666667	0.4700077	77	
Depen	dent Variable: c	haryield					
				Sum of			
	Source		DF	Squares	Mean Square	F Value	Pr > F
	Model		1	3964.082304	3964.082304	2983.74	<.0001
	Error		4	5.314243	1.328561		
	Corrected Total		5	3969.396547			
	I	R-Square	Coeff	Var Root MS	E charyield	Mean	
		0.998661	2.200	0924 1.15263	2 52.3	37037	
	Source		DE	Anova 55	Moon Squano	E Voluo	
	Source		DF	Allova 33	mean Square	r value	FI' > F
	temp		1	3964.082304	3964.082304	2983.74	<.0001

SAS code for pine wood gas (refer Table 17):

```
data obj3;
input temp gasyield;
datalines;
300 6.44444444
300 7.77777778
300 8.66666667
500 48.30769231
500 48
500 47.69230769
;
run;
proc anova data=obj3;
class temp;
model gasyield=temp;
means temp/ alpha=0.05;
run;
```

quit; proc boxplot data=obj3; plot gasyield*temp /boxstyle=schematic; run;

SAS result for pine wood gas (refer Table 17):

	The ANOVA Procedure									
	Level of									
	temp	Ν	Mean	Std Dev						
	300	3	7.6296296	1.118493	99					
	500	3	48.000000	0.307692	31					
Dependent Variable:	gasyield									
			Sum of							
Source		DF	Squares	Mean Square	F Value	Pr > F				
Model		1	2444.650206	2444.650206	3633.27	<.0001				
Error		4	2.691407	0.672852						
Corrected Tota	1	5	2447.341612							
	R-Square	Coeff	Var Root MS	E gasyield	Mean					
	0.998900	2.949	9059 0.82027	75 27.8	1481					
Source		DF	Anova SS	Mean Square	F Value	Pr > F				
temp		1	2444.650206	2444.650206	3633.27	<.0001				

Table	D.1	.2.	Data	for	comparison	of b	io-oil	vield	obtained	from	single s	stage and	2-stage	process
								J			- 0			

(refer Figure 32).

Operating temperature (°C)	Iteration No.	Total bio-oil yield (wt. %)
	1	37.6
Single stage	age 2	36.4
	3	39.4
	1	38.6
2-Stage	2	39.2
	3	41.1

SAS code for pine wood bio-oil (refer Table 17):

```
data obj3;
input temp oilyield;
datalines;
300 14
300
    14
300 14.88888889
500 24.61538462
500 25.23076923
500 26.15384615
;
run;
proc anova data=obj3;
class temp;
model oilyield=temp;
means temp/ alpha=0.05;
run;
quit;
proc boxplot data=obj3;
plot oilyield*temp /boxstyle=schematic;
run;
SAS result for pine wood bio-oil (refer Table 17):
```

The ANOVA Procedure

Level	of	oi	lyield
temp	Ν	Mean	Std Dev
			0.51000001
300	3	14.2962963	0.51320024
500	3	25.3333333	0.77434199

Dependent Variable: oilyield

			S	um of			
Source		DF	Sq	uares	Mean Square	F Value	Pr > F
Model		1	182.72	42798	182.7242798	423.47	<.0001
Error		4	1.72	59600	0.4314900		
Corrected Tot	al	5	184.45	02398			
			,		oc <u>'1</u> '1		
	R-Square	COETT	var	ΚΟΟΤ Μ	SE OILVIELO	n Mean	
	0.990643	3.31	5090	0.6568	79 19.	.81481	
Soupoo		DE	400	V0.88	Maan Sauana		
Source		DF	And	va 55	mean Square	F Value	PI: > F
temp		1	182.72	42798	182.7242798	423.47	<.0001

D.2 EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-OIL

		Sample #1					Sample #2				Sample #3			
Temp (°C)	Iteration No.	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	Weight of the beaker (g)	Weight of the beaker with bio-oil (g)	Wt. of the oil (g)	Density (kg/m ³)	
Cin ala	1	5.7391	7.9807	2.2416	1120.8	5.818	8.0104	2.1924	1096.2	5.7492	8.0101	2.2609	1130.45	
Single	2	5.7511	8.0867	2.3356	1167.8	5.7514	8.0567	2.3053	1152.65	5.8874	8.1847	2.2973	1148.65	
stage	3	5.7589	8.0115	2.2526	1126.3	5.7563	8.01	2.2537	1126.85	5.7554	7.9898	2.2344	1117.2	
	1	5.7367	7.9999	2.2632	1131.6	5.7451	8.0187	2.2736	1136.8	5.7389	8	2.2611	1130.55	
2-	2	5.7391	8.0009	2.2618	1130.9	5.8167	8.114	2.2973	1148.65	5.7512	8.0021	2.2509	1125.45	
stage	3	5.7416	8.0046	2.263	1131.5	5.7423	8.0076	2.2653	1132.65	5.7376	8.0079	2.2703	1135.15	

Table D.2.1. Data for density of pinewood bio-oil (refer Table 18).

SAS code for density of pine wood bio-oil:

```
data obj3;
input temp density;
datalines;
     1120.8
1
1
     1167.8
1
     1126.3
1
     1096.2
1
     1152.65
1
     1126.85
1
     1130.45
1
     1148.65
1
     1117.2
2
     1131.6
2
     1130.9
2
     1131.5
2
     1136.8
2
     1148.65
2
     1132.65
2
     1130.55
2
     1125.45
2
     1135.15
;
run;
proc anova data=obj3;
class temp;
model density=temp;
means temp/ alpha=0.05;
run;
```

The ANOVA Procedure

Level of		density				
temp	Ν	Mean	Std Dev			
1	9	1131.87778	21.4262851			
2	9	1133.69444	6.4361501			

Dependent Variable: density

			Sum	of				
Source		DF	Squa	res	Mean	Square	F Value	Pr > F
Model		1	14.851	250	14	.851250	0.06	0.8106
Error		16	4004.077	778	250	.254861		
Corrected Tota	1	17	4018.929	028				
	R-Square	Coeff	Var	Root M	ISE	density	Mean	
	0.003695	1.396	508	15.819	45	113	2.786	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F

Operating temperature (°C)	Iteration No.	Sample # 1	Sample # 2	Sample # 3
Sinala	1	3.68	3.69	3.7
Single	2	3.74	3.73	3.73
stage	3	3.76	3.76	3.76
	1	3.88	3.88	3.88
2-stage	2	3.89	3.79	3.79
	3	3.74	3.74	3.76

Table D.2.2. Data for acidity (pH) of pine wood bio-oil (refer Table 18).

SAS code for acidity of pine wood bio-oil:

```
data obj3;
input temp pH;
datalines;
1
      3.68
1
      3.74
1
      3.76
1
      3.69
1
      3.73
1
      3.76
1
      3.7
1
      3.73
1
      3.76
2
      3.88
2
      3.89
2
      3.74
2
      3.88
2
      3.79
2
      3.74
2
      3.88
2
      3.79
2
      3.76
;
run;
proc anova data=obj3;
class temp;
model pH=temp;
means temp/ alpha=0.05;
run;
```

The ANOVA Procedure

Level of		pH	
temp	Ν	Mean	Std Dev
1	9	3.7277778	0.03113590
---	---	------------	------------
2	9	3.81666667	0.06500000

Dependent Variable: pH

			Sum	of						
Source		DF	Squa	res	Mean	Square	F	Value	Pr	> F
Model		1	0.03555	556	0.0	3555556		13.69	0.0	019
Error		16	0.04155	556	0.00	0259722				
Corrected Tota	L	17	0.07711	111						
	R-Square	Coeff	Var	Root	MSE	рН Ме	an			
	0.461095	1.351	006	0.0509	963	3.77222	2			
Source		DF	Anova	SS	Mean	Square	F	Value	Pr	> F
temp		1	0.	0355555	56	0.035555	56	13	. 69	0.001

Sample	Sample wt (g)		Difference	KFR v	ol (ml)	Difference	Water
1	Initial	Final	(g)	Initial	final	(ml)	(wt%)
methanol	0.0000	2.4000	2.4000				40ml
water			5 µl	0.0000	1.4000	1.400	3.57
water			5 µl	1.4000	2.8000	1.400	3.57
single-1a	155.1438	155.0818	0.0620	0	2.2	2.2	19.71
single -1b	155.0818	155.0151	0.0667	2.2	4.2	2	16.65
single -1c	155.0151	154.9532	0.0619	4.2	6.2	2	17.95
single -2a	156.7217	156.6661	0.0556	6.2	8.0	1.8	17.98
single -2b	156.6650	156.6237	0.0413	8.0	9.6	1.6	21.52
single -2c	156.6237	156.5786	0.0451	9.6	11.3	1.7	20.94
single -3a	164.8720	164.8252	0.0468	11.3	13.0	1.7	20.18
single -3b	164.8252	164.7893	0.0359	13.0	14.3	1.3	20.11
single -3c	164.7893	164.7491	0.0402	14.3	15.9	1.6	22.11
2s-500-1a	70.5118	70.4327	0.0791	8.4	11.7	3.3	14.90
2s-500-1b	70.43	70.3784	0.0516	11.7	14.1	2.4	16.61
2s-500-1c	70.3114	70.2581	0.0533	14.1	16.4	2.3	15.41
2s-500-2a	72.6765	72.6136	0.0629	16.4	18.8	2.4	13.63
2s-500-2b	72.61	72.5564	0.0536	18.8	20.5	1.7	11.33
2s-500-2c	72.5536	72.5014	0.0522	20.5	22.5	2	13.68
2s-500-3a	70.6941	70.6442	0.0499	0	2.2	2.2	15.75
2s-500-3b	70.6435	70.5943	0.0492	2.2	4.1	1.9	13.79
2s-500-3c	70.5921	70.5463	0.0458	4.1	5.9	1.8	14.04

Table D.2.3.	Data for	water conte	nt of pine	wood bio-oil	(refer Table 18).

SAS code for water content of pine wood bio-oil:

data c	obj3;
input	temp water;
datali	nes;
1	19.20124424
1	19.88863962
1	22.15892877
1	20.00365303
1	19.37986047
1	18.62198883
1	19.28177007
1	18.86793962
1	14.76560797
2	14.899767
2	16.61129767
2	15.4114197
2	13.62707409
2	11.32729347
2	13.68363602
2	15.74577916
2	13.79210386
2	14.03618384
;	
<pre>run;</pre>	
proc a	nova data=obj3;
class	temp;
model	<pre>water=temp;</pre>
means	<pre>temp/ alpha=0.05;</pre>
<pre>run;</pre>	

The ANOVA Procedure

Level of		water				
temp	Ν	Mean	Std Dev			
1	9	19.1299592	1.93579512			
2	9	14.3482839	1.54125119			

Dependent Variable: water

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	102.8898846	102.8898846	33.61	<.0001
Error	16	48.9820640	3.0613790		
Corrected Total	17	151.8719486			

R-Square	Coeff Var	Root MSE	water Mean
0.677478	10.45264	1.749680	16.73912

Source	DF	Anova SS	Mean Square	F Value	Pr > F
temp	1	102.8898846	102.8898846	33.61	<.0001

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
Single	1	0.5683	21333	0.5462	21268	0.5183	21424
stage -	2	0.654	22270	0.5483	22238	0.5032	22309
	3	0.5	22368	0.6093	22472	0.5333	22461
	1	0.5006	20274	0.5023	20216	0.4932	20103
2-stage	2	0.6725	20969	0.5882	20741	0.5712	20768
	3	0.5137	19871	0.5576	19627	0.5474	19899

Table D.2.4. Data for higher heating value of pine wood bio-oil (refer Table 18).

SAS code for higher heating value of pine wood bio-oil:

data c	bj3;	
input	temp	HHV;
datali	nes;	
1	21333	
1	22270	
1	22368	
1	21268	
1	22238	
1	22472	
1	21424	
1	22309	
1	22461	
2	20274	
2	20969	
2	19871	
2	20216	
2	20741	
2	19627	
2	20103	
2	20768	
2	19899	
;		
run;		
proc a	inova	data=obj3;
class	temp;	
model	HHV=t	emp;
means	temp/	alpha=0.05;
run;		

The ANOVA Procedure

Level of		HHV	
temp	Ν	Mean	Std Dev

	1	9	2201	5.8889	1	513.0753	95	
	2	9	2027	4.2222		460.8955	35	
Dependent Variable: HHV								
•			Sum	of				
Source		DF	Squa	res	Mean S	Square	F Value	Pr > F
Model		1	13650312	.50	13650	312.50	57.39	<.0001
Error		16	3805368	.44	237	835.53		
Corrected Total		17	17455680	.94				
F	R-Square	Coef	f Var	Root	MSE	HHV M	ean	
C	.781998	2.3	806373	487.6	6838	21145	.06	
Source		DF	Anova	SS	Mean	Square	F Value	Pr > F
temp		1	13650312	.50	13650	312.50	57.39	<.0001

Table D.2.5. Data for ash content of pine wood bio-oil (refer Table 18).

				S	ample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Cin al a	1	14.2752	14.2747	16.927	2.6523	14.2799	0.0052	0.1961
Single	2	14.4982	14.4972	17.8152	3.318	14.5091	0.0119	0.3586
stage	3	14.8937	14.8931	17.4977	2.6046	14.9042	0.0111	0.4262
2	1	14.9378	14.9378	16.574	1.6362	14.9498	0.012	0.7334
2-	2	14.3761	14.3744	16.8722	2.4978	14.3935	0.0191	0.7647
stage	3	14.3651	14.3645	16.0978	1.7333	14.3707	0.0062	0.3577

				S	ample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Single	1	14.5044	14.5033	17.2331	2.7298	14.5084	0.0051	0.1868
stage	2	16.6669	16.666	17.9489	1.2829	16.6708	0.0048	0.3742
stage	3	15.4693	15.4689	18.1079	2.639	15.4805	0.0116	0.4396
2	1	12.9887	12.9886	14.2167	1.2281	12.9976	0.009	0.7328
2-	2	12.8979	12.8967	15.0905	2.1938	12.9139	0.0172	0.7840
siage	3	15.1211	15.1208	16.8534	1.7326	15.1272	0.0064	0.3694

				S	ample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Single	1	14.2755	14.2745	15.5529	1.2784	14.2772	0.0027	0.2112
stage	2	14.4982	14.4975	15.8659	1.3684	14.5021	0.0046	0.3362
stage	3	14.8938	14.893	16.2628	1.3698	14.8992	0.0062	0.4526
	1	14.9398	14.9378	15.6492	0.7114	14.9431	0.0053	0.7450
2-stage	2	14.3750	14.3744	16.4511	2.0767	14.3909	0.0165	0.7945
0	3	14.3653	14.3651	16.1085	1.7434	14.3711	0.006	0.3442

SAS code for ash content of pine wood bio-oil:

```
data obj3;
input temp Ash;
datalines;
     0.196056253
1
1
     0.358649789
1
     0.426169085
1
     0.186826874
1
     0.374152311
1
     0.43956044
1
     0.211201502
1
     0.336159018
1
     0.452620821
2
     0.733406674
2
     0.764672912
2
     0.357699187
2
     0.732839345
2
     0.784027714
2
      0.369387048
2
      0.74500984
2
      0.794529783
2
      0.344155099
;
run;
proc anova data=obj3;
class temp;
model Ash=temp;
means temp/ alpha=0.05;
run;
```

The ANOVA Procedure

Level of		Ash				
temp	Ν	Mean	Std Dev			
1	9	0.33126623	0.10702461			
2	9	0.62508084	0.20217068			

Dependent Variable: Ash

Source		DF	Sum Squar	of es	Mean Sq	uare	F	Value	Pr > F
Model		1	0.388471	62	0.3884	7162		14.85	0.0014
Error		16	0.418618	03	0.0261	6363			
Corrected Total		17	0.807089	64					
	R-Square	Coeff	Var	Root	MSE	Ash	Mean		
	0.481324	33.8	2700	0.161	1752	0.47	8174		
Source		DF	Anova	SS	Mean Sq	uare	F	Value	Pr > F
temp		1	0.388471	62	0.3884	7162		14.85	0.0014

Table D.2.6. Data for solid content of pine wood bio-oil (refer Table 18).

		Sample #1						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	320.5	312.4	1.0165	314.7	0.23		
Single stage	2	321.7	313.4	1.0072	320.1	0.67		
	3	324.7	316.4	1.0029	324.6	0.82		
	1	330.1	322	1.0283	337.9	1.55		
2-stage	2	328.8	320.1	1.0167	332.7	1.24		
	3	326.7	318.3	1.0182	335	1.64		

		Sample #2						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)		
	1	322.6	314.4	1.001	317.1	0.27		
Single stage	2	323.9	315.6	1.0286	323.3	0.75		
	3	330	320.5	1.0024	329	0.85		
	1	325.3	318.5	1.0222	332.1	1.33		
2-stage	2	327.8	319.4	0.9951	330.4	1.11		
	3	328.8	319	1.0118	333.9	1.47		

			Sample #3						
Operating temperature (°C)	Iteration No.	Weight of filter paper (mg)	Weight of filter paper after drying (mg)	Weight of the oil (g)	Weight of filter paper after test (mg)	Wt. of solid (wt. %)			
	1	330.2	321.7	0.9994	324.6	0.29			
Single stage	2	330.9	322.4	0.9812	329.4	0.71			
	3	339.1	331.5	1.0269	339.3	0.76			
	1	321.7	313.4	0.9989	327.4	1.40			
2-stage	2	329.9	319.7	1.0004	331.1	1.14			
	3	329.1	318.1	1.0025	332.6	1.45			

SAS code for solid content of pine wood bio-oil:

```
data obj3;
input temp Solid;
datalines;
     0.226266601
1
1
     0.665210485
1
     0.817628876
1
    0.26973027
1
     0.748590317
     0.847964884
1
1
     0.290174104
     0.713412148
1
     0.759567631
1
2
     1.546241369
2
     1.239303629
2
     1.640149283
2
     1.330463706
2
     1.105416541
2
      1.472623048
2
      1.401541696
2
      1.139544182
2
      1.44638404
;
run;
proc anova data=obj3;
class temp;
model Solid=temp;
means temp/ alpha=0.05;
run;
```

SAS result for solid content of pine wood bio-oil:

The ANOVA Procedure

Level of		Solid		
temp	Ν	Mean	Std	Dev

1	9	0.59317170	0.254418	88	
2	9	1.36907417	0.181367	65	
Dependent Variable: Solid					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	1	2.70911085	2.70911085	55.50	<.0001
Error	16	0.78098553	0.04881160		
Corrected Total	17	3.49009638			
R-Squar	e Coef	f Var Root	MSE Solid M	ean	
0.77622	8 22.	51843 0.22	0933 0.981	123	
Source	DF	Anova SS	Mean Square	F Value	Pr > F
temp	1	2.70911085	2.70911085	55.50	<.0001

D.3 VISCOSITY ANALYSIS OF DIFFERENT BIO-OILS

P.W at 300°C (1 st stage)									
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)						
(Pa)	(1/s)	(Pas)							
0.01	0.040	0.23	-0.63884						
0.05	2.656	0.02	-1.73384						
0.12	4.863	0.02	-1.61439						
0.10	7.659	0.01	-1.8788						
0.07	11.090	0.01	-2.19266						
0.10	13.164	0.01	-2.10321						
0.13	16.527	0.01	-2.11966						
0.10	19.112	0.01	-2.28583						
0.12	22.176	0.01	-2.25159						
0.14	25.147	0.01	-2.26947						
0.13	28.099	0.00	-2.32544						
0.14	30.915	0.00	-2.34728						
0.15	33.781	0.00	-2.34984						
0.15	36.769	0.00	-2.3897						
0.16	39.625	0.00	-2.39254						
0.18	42.600	0.00	-2.38609						
0.18	45.551	0.00	-2.41149						
0.19	48.405	0.00	-2.40338						
0.20	51.329	0.00	-2.4143						
0.20	54.385	0.00	-2.44006						
0.22	57.442	0.00	-2.41977						
0.22	60.313	0.00	-2.43394						
0.24	63.214	0.00	-2.41766						
0.23	66.185	0.00	-2.45187						

Table D.3.1. Data for Figure 32

P.W at 300°C (1 st stage)								
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)					
(Pa)	(1/s)	(Pas)						
0.25	69.242	0.00	-2.44069					
0.25	72.179	0.00	-2.45308					
0.26	75.130	0.00	-2.4602					
0.27	78.062	0.00	-2.45357					
0.29	81.058	0.00	-2.44585					
0.29	83.970	0.00	-2.45822					
0.29	86.942	0.00	-2.47808					
0.31	89.810	0.00	-2.46745					
0.33	92.493	0.00	-2.45296					
0.33	95.399	0.00	-2.46199					
0.31	98.393	0.00	-2.49852					

P.W at 500°C (2 nd stage)							
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)				
(Pa)	(1/s)	(Pas)					
0.01	0.044	0.20	-0.71				
0.15	2.035	0.07	-1.14				
0.18	5.461	0.03	-1.48				
0.14	7.392	0.02	-1.73				
0.17	10.720	0.02	-1.81				
0.14	13.549	0.01	-1.98				
0.15	16.141	0.01	-2.03				
0.18	18.892	0.01	-2.02				
0.20	22.220	0.01	-2.05				
0.21	25.379	0.01	-2.08				
0.21	28.689	0.01	-2.13				
0.21	30.980	0.01	-2.16				
0.37	33.585	0.01	-2.19				
0.39	36.438	0.01	-2.19				
0.39	37.226	0.00	-2.21				
0.41	41.141	0.01	-2.21				
0.42	47.055	0.01	-2.21				
0.45	47.934	0.01	-2.20				
0.47	49.916	0.01	-2.20				
0.48	52.948	0.01	-2.21				
0.50	56.476	0.01	-2.21				
0.52	59.950	0.01	-2.20				
0.57	63.133	0.01	-2.18				
0.56	66.123	0.01	-2.20				
0.56	68.964	0.01	-2.22				
0.59	71.657	0.01	-2.21				

P.W at 500°C (2 nd stage)								
Shear Stress	Shear Rate	Viscosity	Log(Viscosity)					
(Pa)	(1/s)	(Pas)						
0.61	74.589	0.01	-2.21					
0.01	77.595	0.01	-0.71					
0.15	80.520	0.01	-1.14					
0.18	83.187	0.01	-1.48					
0.14	86.156	0.01	-1.73					
0.17	89.361	0.01	-1.81					
0.14	92.736	0.01	-1.98					
0.15	95.697	0.01	-2.03					
0.18	98.555	0.01	-2.02					

D.4 EFFECT OF TEMPERATURE ON PHYSICAL PROPERTIES OF BIO-CHAR

Operating temperature (°C)	Iteration No.	Weight of the sample #1	Energy required (J/g)	Weight of the sample #2	Energy required (J/g)	Weight of the sample #3	Energy required (J/g)
Sinala	1	0.4819	30234	0.4862	30191	0.6028	30124
stage –	2	0.6459	30239	0.5521	30248	0.5696	30272
	3	0.513	30901	0.5189	30862	0.6452	31007
	1	0.4961	31404	0.4816	31478	0.5048	31513
2-stage	2	0.52	31832	0.5218	31761	0.6331	31814
	3	0.5593	31928	0.5029	31871	0.5538	31933

Table D.4.1. Data for higher heating value of pine wood bio-char (refer Table 19).

SAS code for higher heating value of pine wood bio-char:

data	obj3;
input	temp HHV;
datal	ines;
1	<mark>30234</mark>
1	<mark>30239</mark>
1	<mark>30901</mark>
1	<mark>30191</mark>
1	<u>30248</u>
1	<mark>30862</mark>
1	<mark>30124</mark>
1	<u>30272</u>
1	<mark>31007</mark>
2	<mark>31404</mark>
2	<mark>31832</mark>
2	<mark>31928</mark>
2	<mark>31478</mark>
2	<mark>31761</mark>
2	<mark>31871</mark>
2	<mark>31513</mark>

2 31814 2 31933 ; run; proc anova data=obj3; class temp; model HHV=temp; means temp/ alpha=0.05; run;

The ANOVA Procedure

	HHV				
Ν	Mean	Std Dev			
9	30453.1111	357.128984			
9	31726.0000	204.768162			
	N 9 9	N Mean 9 30453.1111 9 31726.0000			

Dependent Variable: HHV

			Sum	of				
Source		DF	Squar	`es	Mean Sq	uare	F Value	Pr > F
Model		1	7291107.5	556	7291107	.556	86.05	<.0001
Error		16	1355768.8	389	84735	.556		
Corrected Total		17	8646876.4	144				
	R-Square 0.843207	Coef 0.9	f Var 936307	Root 291.0	MSE 937	HHV Mea 31089.5	n 6	
Source temp		DF 1	Anova 7291107.5	SS 556	Mean Sq 7291107	uare .556	F Value 86.05	Pr > F <.0001

Table D.4.2. Data for ash content of pine wood bio-char (refer Table 19).

				S	ample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Cin al a	1	14.2744	14.2744	16.8481	2.5737	14.2828	0.0084	0.3264
Single	2	14.4946	14.4949	16.1933	1.6984	14.508	0.0131	0.7713
stage	3	14.8899	14.89	16.2675	1.3775	14.896	0.006	0.4356
2	1	14.2755	14.2755	14.9353	0.6598	14.2916	0.0161	2.4401
Z-	2	14.4985	14.4981	15.2522	0.7541	14.5117	0.0136	1.8035
stage	3	14.8948	14.894	15.8711	0.9771	14.9132	0.0192	1.9650

				S	ample #2			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Cincla	1	14.5028	14.5033	16.7285	2.2252	14.5095	0.0062	0.2786
Single	2	14.6681	14.6683	16.3004	1.6321	14.6815	0.0132	0.8088
stage	3	15.4717	15.4719	17.0858	1.6139	15.4792	0.0073	0.4523
2	1	14.5045	14.5037	15.0553	0.5516	14.5173	0.0136	2.4656
Z-	2	14.667	14.6667	16.0178	1.3511	14.6945	0.0278	2.0576
stage	3	15.4706	15.4694	16.4991	1.0297	15.4894	0.02	1.9423

				S	ample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crusible after drying (g)	Weight of crusible with bio- oil (g)	Weight of bio- oil (g)	Weight after test (g)	Weight of ash (g)	Ash %
Single	1	14.2744	14.2744	16.1294	1.855	14.2798	0.0054	0.2911
stage	2	14.4946	14.4949	16.2369	1.742	14.5085	0.0136	0.7807
stage	3	14.8899	14.89	16.7456	1.8556	14.8977	0.0077	0.4150
2	1	14.2759	14.2755	15.5129	1.2374	14.3065	0.031	2.5053
Z-	2	14.4985	14.4988	16.193	1.6942	14.5341	0.0353	2.0836
stage	3	14.8949	14.8943	16.0148	1.1205	14.9169	0.0226	2.0170

SAS code for ash content of pine wood bio-char:

```
data obj3;
input temp Ash;
datalines;
1
    0.326378366
1
     0.771314178
1
     0.435571688
1
     0.27862664
1
     0.808773972
1
     0.452320466
1
     0.291105121
1
     0.780711825
1
     0.414960121
2 2.440133374
```

2	1.80347434
2	1.964998465
2	2.46555475
2	2.05758271
2	1.942313295
2	2.50525295
2	2.08357927
2	2.016956716
;	
run;	
proc a	nova data=obj3;
class	temp;
model	Ash=temp;
means	<pre>temp/ alpha=0.05;</pre>
run;	

The ANOVA Procedure

Level of		Ash				
temp	Ν	Mean	Std Dev			
1	9	0.50664026	0.21903164			
2	9	2.14220510	0.25920613			

Dependent Variable: Ash

temp

			Sum	of				
Source		DF	Squar	es	Mean So	quare	F Value	Pr > F
Model		1	12.037825	545	12.037	82545	209.06	<.0001
Error		16	0.921301	41	0.057	58134		
Corrected Total		17	12.959126	86				
	R-Square	Coef	f Var	Root	MSE	Ash Me	an	
	0.928907	18.	11817	0.239	961	1.3244	23	
Source		DF	Anova	SS	Mean So	quare	F Value	Pr > F

12.03782545

12.03782545

209.06

<.0001

1

					Sample #1			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
G: 1	1	96.9211	100.3934	3.4723	100.2735	3.3524	0.1199	3.45
Single	2	93.5845	97.114	3.5295	96.969	3.3845	0.145	4.10
stage	3	152.4772	156.1768	3.6996	156.0545	3.5773	0.1223	3.30
2	1	46.6376	49.0004	2.3628	48.9418	2.3042	0.0586	2.48
2-	2	46.0536	48.1655	2.1119	48.1345	2.0809	0.031	1.47
stage	3	46.844	49.4482	2.6042	49.403	2.559	0.0452	1.74

Table D.4.3. Data for moisture content of pine wood bio-char (refer Table 19).

325

	Iteration No.	Sample #2								
Temp (°C)		Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %		
<u>Cincelo</u>	1	92.085	95.7132	3.6282	95.5872	3.5022	0.126	3.47		
Single	2	113.0288	116.7161	3.6873	116.5723	3.5435	0.1438	3.90		
stage	3	121.4935	125.0328	3.5393	124.9066	3.4131	0.1262	3.57		
0	1	45.8706	47.5283	1.6577	47.4859	1.6153	0.0424	2.56		
∠- stage	2	46.9536	49.1378	2.1842	48.8992	2.1539	0.0303	1.39		
stage	3	43.1945	46.004	2.8095	48.6331	2.7625	0.047	1.67		

					Sample #3			
Temp (°C)	Iteration No.	Weight of crucible (g)	Weight of crucible with biomass (g)	Weight of the biomass (g)	Weight of the crucible with biomass after drying (g)	Weight of the biomass after drying (g)	Weight Difference (g)	Moisture Content %
Q:	1	96.9211	100.1032	3.1821	99.9874	3.0663	0.1158	3.64
Single	2	93.5845	97.2567	3.6722	97.1168	3.5323	0.1399	3.81
stage	3	152.4772	155.8759	3.3987	155.7569	3.2797	0.119	3.50
2	1	46.6388	49.0968	2.458	49.0334	2.3946	0.0634	2.58
2-	2	46.0543	48.5076	2.4533	48.4745	2.4202	0.0331	1.35
sidge	3	46.8442	49.5771	2.7329	49.5344	2.6902	0.0427	1.56

SAS code for moisture content of pine wood bio-char:

data d	obj3;
input	temp moisture;
datali	lnes;
1	3.453042652
1	4.108230628
1	3.305762785
1	3.472796428
1	3.899872535
1	3.565676829
1	3.639106251
1	3.809705354
1	3.501338747
2	2.480108346
2	1.467872532
2	1.735657784
2	2.557760753
2	1.387235601
2	1.672895533
2	2.579332791
2	1.349203114
2	1.562442826
;	
run;	
proc a	nova data=obj3;
class	temp;
model	<pre>moisture=temp;</pre>
means	<pre>temp/ alpha=0.05;</pre>
run;	

The ANOVA Procedure

Level of		moisture					
temp	Ν	Mean	Std Dev				
1	9	3.63950358	0.25370939				
2	9	1.86583436	0.52030408				

Dependent Variable: moisture

Source		DF	Sum Squar	of es M	lean Square	F Value	Pr > F
Model		1	14.156561	17 1	4.15656117	84.50	<.0001
Error		16	2.680678	28	0.16754239		
Corrected Total		17	16.837239	45			
	R-Square 0.840789	Coeff 14.80	Var R 6991 0	oot MSE .409319	moisture 2.7	Mean 52669	
Source temp		DF 1	Anova 14.156561	SS M 17 1	lean Square 4.15656117	F Value 84.50	Pr > F <.0001