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Abstract 

 

 

The issue of air quality within the aircraft cabin is receiving increasing attention from 

both pilot and flight attendant unions.  This is due to exposure events caused by poor air quality 

that in some cases may have contained toxic oil components due to bleed air that flows from 

outside the aircraft and then through the engines into the aircraft cabin.  Significant short and 

long-term medical issues for aircraft crew have been attributed to exposure.  The need for air 

quality monitoring is especially evident in the fact that currently within an aircraft there are no 

sensors to monitor the air quality and potentially harmful gas levels (detect-to-warn sensors), 

much less systems to monitor and purify the air (detect-to-treat sensors) within the aircraft cabin. 

The specific purpose of this research is to utilize a mathematical technique called 

principal component analysis (PCA) in conjunction with principal component regression (PCR) 

and proportionality constant calculations (PCC) to simplify complex, multi-component infrared 

(IR) spectra data sets into a reduced data set used for determination of the concentrations of the 

individual components.  Use of PCA can significantly simplify data analysis as well as improve 

the ability to determine concentrations of individual target species in gas mixtures where 

significant band overlap occurs in the IR spectrum region.  Application of this analytical 

numerical technique to IR spectrum analysis is important in improving performance of 

commercial sensors that airlines and aircraft manufacturers could potentially use in an aircraft 

cabin environment for multi-gas component monitoring. 



 iii 

The approach of this research is two-fold, consisting of a PCA application to compare 

simulation and experimental results with the corresponding PCR and PCC to determine 

quantitatively the component concentrations within a mixture.  The experimental data sets 

consist of both two and three component systems that could potentially be present as air 

contaminants in an aircraft cabin.  In addition, experimental data sets are analyzed for a 

hydrogen peroxide (H2O2) aqueous solution mixture to determine H2O2 concentrations at various 

levels that could be produced during use of a vapor phase hydrogen peroxide (VPHP) 

decontamination system.  After the PCA application to two and three component systems, the 

analysis technique is further expanded to include the monitoring of potential bleed air 

contaminants from engine oil combustion.  Simulation data sets created from database spectra 

were utilized to predict gas components and concentrations in unknown engine oil samples at 

high temperatures as well as time-evolved gases from the heating of engine oils. 
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Chapter 1: Introduction 

 

In today’s turbulent airline industry, a company’s survival is highly dependent on 

maintaining strict operational cost controls.  With the current global economic downturn not 

expected to recover for some time, the operational cost driver is becoming even more important 

in order for a company to maintain expected overall profit margins and in some cases to reduce 

massive operational net losses with declining revenues.  The Business Travel Index (BTI) 

indicated that 2010 would only have slight increases, 3.8% compared to 2009, in overall business 

travel growth, which is a major revenue source for the airline industry [1].  Michael McCormick, 

National Business Travel Association (NBTA) Executive Director and COO, recently said in an 

interview “we’re looking forward to the end of 2012 – when the industry should see a return to 

peak levels” [1].  In the long-term, the Federal Aviation Administration (FAA) has projected that 

one billion passengers will be flying per year in 2023 and that the number of passengers will 

continue to grow [2].    

Even though the industry has a strong focus on operational cost controls to maintain 

profitability, this should not come at the expense of safety.  Terrorist attacks utilizing aircraft, 

such as those against the World Trade Center on September 11, 2001, are a global safety concern 

that not only the airline industry has worked hard to prevent, but that also has required 

significant contribution from many national governments in the form of national defense 

intelligence gathering and information sharing [3, 4].  In addition, both domestic and 

international transmission of diseases, such as severe acute respiratory syndrome (SARS) and the 
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recent outbreak of H1N1 flu in Latin America, on aircraft is a major concern as well [5-7].  

These two focus points regarding safety currently receive the majority of media attention and 

rightfully so, but there is also a safety risk that many passengers as well as a number of airline 

employees are just beginning to realize.   

The issue of air quality within the aircraft cabin is receiving increasing attention from 

both pilot and flight attendant unions [7].  This is due to exposure events caused by poor air 

quality that in some cases may have contained toxic oil components due to bleed air that flows 

from outside the aircraft through the engines into the aircraft cabin [8-10].  The system that 

supplies bleed air to the aircraft is shown schematically in Figure 1-1.   

 

Figure 1-1: Commercial Aircraft Bleed Air System [11] 

 

Exposure events to contaminated air have been suggested as the primary cause of 

significant short and long-term medical issues for aircraft crew in which it was thought that a 
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leak in the bleed air system occurred during flight.  In 2009, the FAA Office of Aviation 

Medicine collaborated with the Occupational Health Research Consortium in Aviation 

(OHRCA) as well as the Airliner Cabin Environment Research Center (ACER) to create a guide 

for health care providers to deal with this specific issue [12].  The need for air quality monitoring 

is especially evident in the fact that currently within an aircraft there are no sensors to monitor 

the air quality and potentially harmful gas levels (detect-to-warn sensors), much less systems to 

monitor and purify the air (detect-to-treat sensors) within the aircraft cabin [13].  In 2009, the 

FAA estimated the total number of aircraft in the U.S. commercial fleet was 7,132, with 3,666 

mainline passenger aircraft and 2,612 regional carrier aircraft [7].  With these numbers of aircraft 

currently in service, it is not feasible to replace the current aircraft fleet with new model aircraft 

that do not utilize a bleed air system, such as the Boeing 787 Dreamliner [14]. 

 

Research Purpose 

The specific purpose of this research is to utilize a mathematical technique called 

principal component analysis (PCA) in conjunction with principal component regression (PCR) 

and proportionality constant calculations (PCC) to simplify complex, multi-component infrared 

(IR) spectra data sets into a reduced data set used for determination of the concentrations of the 

individual components [15].  This can significantly simplify data analysis as well as improve the 

ability to determine concentrations of individual target species in gas mixtures where significant 

band overlap in the IR spectrum region occurs.  PCR is a mathematical technique that determines 

component concentrations of a prediction data set based on multivariate regression of a 

calibration data set.  For PCC, the total integrated intensity of an IR absorbance band is assumed 

to increase linearly with the amount of the component concentrations in a mixture.  Based on this 
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assumption, one can determine the proportionality constant for each of the individual 

components in a calibration data set.  With the proportionality constants known for each 

component, a relationship to calculate the prediction data set component concentrations can be 

derived.  In some cases where the overall volume is not constant, the PCC technique is expanded 

to perform the analysis on volume and integrated area fractions instead of components.  

Application of this analytical numerical technique to IR spectrum analysis is important in 

improving performance of commercial sensors that airlines and aircraft manufacturers could 

potentially use in an aircraft cabin environment for multi-gas component monitoring. 

 

Research Approach 

The approach of this research is to utilize PCA with both simulation and experimental 

results in conjunction with PCR and PCC to determine quantitatively the component 

concentrations within a mixture.  In the simulation data sets, pure spectra from the QASoft® 

database (Infrared Analysis, Inc., Anaheim, CA, USA) are used.  To form a simulated mixture, 

pure spectra are added together and different multiplication factors are applied to achieve a range 

of component concentrations.  The simulated data sets consist of various spectra of two and three 

targeted component systems.   

The experimental data sets consist of both two and three targeted component systems that 

could potentially be present as air contaminants in an aircraft cabin.  In addition, experimental 

data sets are analyzed for a hydrogen peroxide (H2O2) aqueous solution mixture to determine 

H2O2 concentrations at various levels that could be produced during use of a vapor phase 

hydrogen peroxide (VPHP) decontamination system.  After the PCA application to two and three 

component systems, the analysis technique is further expanded to include the monitoring of 
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potential bleed air contaminants from engine oil combustion, in which a simulation data set is 

utilized to predict gas components and concentrations in unknown engine oil samples.  For the 

analysis of combusted aircraft engine oils, a simulated data set is used for PCA to determine 

regression coefficients for PCR to apply to the experimentally obtained data.  

 

Organization of Dissertation 

This dissertation contains a systematic utilization of PCA in conjunction with Fourier 

Transform infrared (FTIR) spectroscopy data for components that are applicable to the airline 

industry.  Chapter 2 provides a detailed background of commercial aircraft systems that are 

applicable to this research.  The background information includes a discussion on environmental 

air contaminants and bleed air contaminants that could potentially be present in aircraft cabins 

due to circulation of outside air of the combusted engine oils.  Also within Chapter 2, the 

experimental aircraft cabin simulation environment is detailed.  Next, in Chapter 3 a detailed 

overview of FTIR spectroscopy is presented.  This discussion provides theoretical background 

on the FTIR spectroscopy technology as well as details on the experimental procedure and 

materials used in the collection of FTIR spectroscopy data.  In addition, Chapter 3 also provides 

in-depth background on the characteristic IR modes of vibration on the key molecules of interest 

to this research, CO, CO2, and H2O.  Chapter 4 then provides a detailed and mathematical 

background of PCA as well as the associated PCR and PCC techniques.  Chapter 5 highlights the 

application of PCA to FTIR spectroscopy data from solutions to calculate H2O2 concentrations in 

an aqueous solution that could potentially be present during a VPHP decontamination event.  

The PCC technique for a variable volume of solution is utilized with this analysis in Chapter 5.  

Chapter 6 then uses PCA to obtain results that identify the individual component spectra within a 
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multi-component system with both simulated and experimental FTIR spectroscopy data sets.  

Chapter 6 includes the application of PCA to the monitoring of concentrations of environmental 

air contaminants.  Concluding the PCA on FTIR spectroscopy data in Chapter 7, is an 

application of the technique to the monitoring of potential bleed air contaminants within the 

aircraft cabin, which requires the use of simulated data sets to predict the components and 

concentrations of gas species.  The PCR technique is used to determine the quantitative 

concentrations of the individual components of the system and these concentrations are used to 

calculate predicted spectra for the oils and then compared to the original spectra to determine the 

experimental error.  Chapter 8 summarizes the research findings and contains concluding 

remarks about the potential scientific impact of the results found within this dissertation.  

Chapter 9 contains a brief discussion of potential future work that could further both scientific 

and engineering understanding of PCA application to FTIR spectroscopy.  The references cited 

are found at the end of this dissertation.  Appendix A contains the MATLAB® source code used 

to perform the matrix manipulations for PCA. 
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Chapter 2: Commercial Aircraft Systems Overview 

 

Commercial Aircraft Background 

Within the typical aircraft, numerous systems are responsible for the stability and 

operation of a desirable environmental control.  This project focuses on the main subsystems of 

the aircraft environmental control system (ECS) relating to cabin air quality, which are the bleed 

air controls, air conditioning pack, mix manifold, recirculation devices, and the cabin vents [11, 

16].   

The ECS air controls takes in outside air while the aircraft is in operation using bleed air 

controls.  This outside air is compressed to 220 kPa (32 psi) and rises to a temperature of 160 °C 

(320 °F).  This system, shown in Figure 1-1, has a number of valves and heat exchangers that 

conditions the air to a desirable temperature and pressure for the other flight systems.  During 

flight, air entering the bleed air system could potentially have high concentrations of ozone (O3) 

due to elevated atmospheric concentrations at the flight altitude.  Typical levels of O3 in the 

outside air range from 0.5 to 1.0 parts per million (ppm) [11, 17, 18].  Most of this O3 partially 

dissociates when it goes through compression stages of the engine and the catalytic converter but 

significant and harmful amounts have been measured in simulated aircraft cabin environments 

[17, 18].      

After air leaves the bleed air system, it then enters the air conditioning (AC) packs where 

it is cooled to a temperature of about 15 °C (59 °F) and decompressed to a pressure of 78-82 kPa 
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before continuing to the mix manifold.  This pressure range corresponds to the typical aircraft 

cabin altitude setting that ranges from 6,000-8,000 feet above sea level.  Table 2-1 summarizes 

the changes in pressure in relation to altitude.  One item to note is the air that enters the mix 

manifold is not monitored for harmful gas concentrations.  In addition to O3 that may still be 

present, the CO2 and CO proportional concentrations in the air are unchanged from outside 

levels. 

Table 2-1: Relationship between Altitude and Pressure with the Typical Aircraft Cabin Pressure 

Highlighted 

 

 

The change in total pressure has an effect that is described by Dalton’s Law of Partial 

Pressure shown in Equation 2.1, in which the partial pressure of a gas, pi, is a product of the mole 

fraction, Xi, of the gas and the total pressure of the gas mixture, PT.   

 

Tii PXp =      (Dalton’s Law of Partial Pressures)  (2.1) 
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With total pressure changes due to changes in altitude, the measured concentration of a gas of 

interest, if the sensor measurement principal is based on partial pressure, will be affected.  This 

effect will thus change readings of a gas ideal partial pressure sensor.  As shown in Figure 2-1, 

an ideal partial pressure sensor used to measure CO2 levels at approximately 7,000 ft altitude, 

where the total pressure is approximately 77% that of sea level, would read pCO2 = 0.39 kPa for a 

true concentration of pCO2 = 0.51 kPa measured at standard temperature and pressure (STP).   

 

Figure 2-1: Characteristics of Ideal CO2 Partial Pressure Sensor; Measures pCO2 = 0.39 at PT = 77 kPa (7000 ft 

Altitude) for pCO2 = 0.51 at PT = 101 kPa (Sea Level) 

 

The HEPA filters, similar to those used in critical wards of a hospital, are present in the 

recirculation system, and when in a relatively new condition remove 99.97% of bacteria and 

viruses at a particle size of 0.3 µm produced or brought on board the aircraft by passengers [11, 

16].  These filters, however, do not filter harmful gases such as CO or CO2 that may be present.  

The system attempts to control the levels of gases that may be present due to internal 

contamination of air within the aircraft through dilution with high quantities of outside air as 
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highlighted by the 10-15 outside air changes per hour shown in Figure 2-2 in comparison to 

hospital delivery and operating rooms as well as the typical building [16].   

 

 

Figure 2-2: Recirculation System Outside Air Changes per Hour for Aircraft Compared with Other Environments 

[16] 

 

The final subsystem the air passes through as it reaches the passengers is the cabin 

ventilation system shown in Figure 2-3.  The airflow is directed from overhead air supply 

nozzles and extracted through return air grilles where the sidewall meets the floor along the 

length of the cabin.  The air here has a typical temperature of 18-30 °C (64-86 °F) and a relative 

humidity of 10-20% [19].  Within the ventilation system, for nearly all commercial aircraft there 

are currently no sensors or monitoring for potentially harmful gases but recent computational 

fluid dynamics (CFD) simulation work has been conducted to determine the optimal position to 

place sensors when and if they are installed to ensure the earliest warning possible to both flight 

crew and passengers [20]. 
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Figure 2-3: Cabin Ventilation System Illustrating Typical Aircraft Recirculated Airflow [19] 

 

 

Vapor Phase Hydrogen Peroxide (VPHP) Aircraft Cabin Decontamination 

An increasing awareness towards aircraft cabin sterilization for biological and chemical 

contaminants has led to the development of full-scale methods using VPHP [21, 22, 23].  VPHP 

at concentrations greater than 80 ppm have been shown to have sporicidal effects, while the 

typical aircraft cabin sterilization utilizes VPHP concentrations in the range of 150-600 ppm 

[21].  In addition, the typical VPHP process contains an initial dehumidification process that 

reduces the relative humidity to less than 10% [21].  Concentrations of the initial liquid 

condensing from the H2O2-H2O vapor can be as high as 50-75 wt.% H2O2 even though the 

original flash vaporized liquid is only 35 wt.% and these high H2O2 concentration in the 

condensate have been shown to increase susceptibility to hydrogen embrittlement for 4340 high 

strength steel [24]. 

For VPHP, three major processing parameters affect inactivation of microorganisms.  

These three factors are sterilant concentration, exposure time, and percent saturation.  Although 
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commercial systems are available, monitoring the H2O2 and H2O conditions during operation 

require specialized sensors, such as those from Analytical Technology, Inc (Collegeville, PA, 

USA).  These sensors as well as others are primarily used to monitor H2O2 and H2O in the gas 

phase.  Although the occurrence of microcondensation can be detected with optical dew point 

sensors, accurate monitoring of the concentrations of condensates is not routinely practiced [25].   

 

Potential Environmental Air Contaminants within the Aircraft Cabin 

 During flight operations, air quality of an aircraft cabin is critical to crew and passenger 

safety and comfort and as noted previously.  However, there are currently no environmental 

monitoring sensors present in the aircraft cabin.  By diluting the aircraft cabin air with high 

quantities of outside air toxic gases, such as CO, CO2, and O3 are assumed to be below harmful 

levels.  Even so, recent aircraft cabin studies have shown that formaldehyde (CH2O) has been 

specifically detected as a reaction product of ozone-initiated chemistry due to ozone reactions 

with human skin oils, hair, and clothing as well as the fabric within the aircraft cabin [26].  In 

[17], both CH2O and acrolein (C3H4O) resulting from O3 interactions were detected at 

concentrations exceeding their OSHA recommended exposure limits.   

Table 2-2 highlights the limits that the FAA and the Occupational Safety and Health 

Administration (OSHA) currently have on some contaminants of interests that could potentially 

be found in aircraft cabin air [27].  In Table 2-2, it should be noted that time weighted average 

(TWA) is the average concentration in a normal 8-hour workday and a 40-hour workweek.  In 

addition, the ppm levels are sea level equivalents values. 
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Table 2-2: Limits on Contaminants that Could Potentially Be Found in Aircraft Cabin Air [27] 

Contaminants FAA Limit OSHA Permissible Exposure Limit 

Carbon Monoxide (CO) 50 ppm 50 ppm 

Carbon Dioxide (CO2) 5000 ppm 5000 ppm 

Ozone (O3) 0.1 ppm 0.1 ppm 

Formaldehyde (CH2O) N/A 0.75 ppm (TWA) 

Acrolein (C3H4O) N/A 0.1 ppm 

* TWA – Average concentration in a normal 8-hour workday and a 40-hour workweek 

 

Potential Bleed Air Contaminants within Aircraft Cabin 

 A bleed-air system within an aircraft is very beneficial in that the compressed air that it 

produces can be used as a major power source for many environmental control systems from de-

icing the wings of a plane to pressurizing the cabin.  A drawback of this system though, is that it 

has the potential to allow contaminated air from the environment during taxiing operations, as 

well as noxious gases due to possible leaks of engine oil, hydraulic fluid, de-icing fluid, etc., into 

the aircraft cabin.   

 In addition to forming due to O3 reactions, CH2O and C3H4O have been shown to form 

when engine oil is burned [28].  The oils and hydraulics used in aircraft are also known to 

contain toxic chemicals, such as the irritant phenyl-alpha-napthylamine and the neurotoxin 

tricresyl phosphate (TCP) [10, 29].  In 2000, measurement of various gases and volatile 

compounds from various engine oils showed that oil pyrolyzed at 525 °C (977 °F) generated 

significant amounts of CO2 and CO in excess of 100 ppm [30].  In addition, TCP was found 

within the samples using a gas chromatography (GC) laboratory measurement technique [30]. 

 

Laboratory Test Environment 

The experimental setup consists of three major modules.  The first is the Control Module, 

shown in Figure 2-4, which is responsible for control of pressure and the flow of both inert 
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carrying gases as well as test gases of interest.  The pressure setting within the system allows for 

testing of sensors at various altitudes that are encountered in the airplane cabin environment.  

The gas lines in the system are rated for vacuum pressures of 15 inches of mercury (380 mm Hg) 

or about 50% of atmospheric pressure (50.5 kPa), which corresponds to altitudes up to 12,000 

feet (3,700 meters).  The flow meters allow precise control of these gases and allow custom 

mixing ratios for sensor performance testing. 

 

Figure 2-4: Laboratory Test Environment, Control Module 

 

The second module, the Commercial Sensor Analysis Module, shown in Figure 2-5, is an 

enclosed, vacuum-sealed, Plexiglas (PMMA) chamber, which has a total volume of 42.4 liters.  
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With this module, an environment replicating the various airplane cabin conditions can be 

maintained to test commercial sensor performance in regards to detection of the gases of interest. 

 

Figure 2-5: Laboratory Test Environment, Commercial Sensor Analysis Module 

 

The final module shown in Figure 2-6, which is used as the standard in evaluating 

commercial sensor performance as well as for independent gas analysis studies, is the FTIR Gas 

Analysis Module.  This module contains a Spectrum GX FTIR System (Perkin Elmer, Shelton, 

CT, USA), as well as an M-5-22-V variable pathlength long path gas cell (Infrared Analysis, 

Inc., Anaheim, CA, USA).  The optical path is folded in a volume of 8.5 liters, while the cell 

path length is determined by the number of passes times the base path length (56 cm).  The FTIR 

spectrometer can take scans over a possible wavenumber scan range from 10,000 cm
-1

 to 400 cm
-

1
 with possible spectral resolutions of 64 cm

-1
 to 0.5 cm

-1
.  The IR source is produced by a 

temperature stabilized wire coil that operates at 1350 K.  The windows in the variable pathlength 

long pass gas cell are made of potassium chloride (KCl) and are 4 mm thick.  The detector for 
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the IR beam is a fast recovery deuterated triglycine sulfate (FR-DTGC) module, which is 

standard for the mid-IR region of interest.   

 

Figure 2-6: Laboratory Test Environment, FTIR Gas Analysis Module with Spectrum GX FTIR (Perkin Elmer, 

Shelton, CT, USA) with M-5-22-V Variable Pathlength Long Path Gas Cell (Infrared Analysis, Inc., Anaheim, CA, 

USA)  

 

Shown in Figure 2-7 are the internal gold plated mirrors of the variable pathlength long 

path gas cell.  Adjustments to the mirrors allow for multiple passes of the IR beam within the gas 

cell.  Using a viewing window located on the top of the long path gas cell, a laser can be used to 

see the number of passes that the IR beam will make.  The number of passes that the IR beam 

traverses in the long path gas cell is 4 times the number of laser dots found on the bottom row on 

the gold plated mirror when looking through the viewing window.  The base pathlength of the 

M-5-22-V variable pathlength long path gas cell is 0.56 m, with a minimum number of passes of 
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4 and a maximum number of passes of 64.  These adjustments to the pathlength allows for 

variable pathlength within the long path gas cell ranging from 2.24 m to 35.84 m (64 passes). 

 

Figure 2-7: Internal Gold Plated Mirrors of the Variable Pathlength Long Path Gas Cell Highlighting the Path of the 

IR Beam within the Cell 

 

 With the flow controls on the Control Module and known volumes of the Commercial 

Sensor Analysis Module as well as the FTIR Gas Analysis Module, a differential equation based 

theoretical mixing model, based on the simplified system diagram shown in Figure 2-8, can be 

constructed.  This model details the expected concentrations of gas at a given time during an 

experiment.  The gases within the modules are assumed to be well mixed and this is 

accomplished using fans in the Commercial Sensor Analysis Module and the input of gas for the 

FTIR Gas Analysis Module being sufficiently far away from the output.   
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Figure 2-8: System Block Diagram Illustrating Gas Flows through the Commercial Sensor Analysis Module to the 

FTIR Gas Analysis Module then Out through the Vacuum Pump 

 

The basis for this theoretical gas flow model is the assumption that the change in 

concentration of a test gas within the Commercial Sensor Analysis Module, dC/dt, equals the 

inflow rate, Fin, of the test gas minus the outflow rate of the test gas, Fout (Equation 2.2).  The 

term Fout is multiplied by the concentration of the test gas at a given time divided by the total of 

volume of the module, V.  This multiplication is necessary because the total outflow volume 

includes the carrier gases as well as the test gas. In addition, Fout, is a function of the ratio of 

atmospheric pressure, P (1 atm. = 101.325 kPa), versus the applied vacuum pressure to the 

system, Pvac.  The inflow rate for the test and carrier gases are set with the flow controllers.   
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The second step in the derivation of a theoretical model is to use algebra and separation 

of variables producing Equations 2.3 and 2.4.   
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Integrating Equation 2.4 gives Equation 2.5, with k being a constant of integration.   
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Next, taking the exponential of each side in Equation 2.5, the relationship shown in Equation 2.6 

is produced and with further simplification, the equation for concentration as a function of time 

is given in Equation 2.7. 
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From Equation 2.7 and incorporation of the initial condition, the concentration of the test 

gas in the chamber, C(0), at time, t=0, the value of the integration constant, k can be found as 

shown in Equation 2.8.   
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Now, the final relationship of test gas concentration within the chamber at a given time, t, can be 

found using Equation 2.9.  An initial concentration of the test gas, C(0), can be present before the 

gas flow begins and this value must be measured either with a sensor in the Commercial Sensor 

Analysis Module or with the FTIR in the FTIR Gas Analysis Module. 
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This model was used to predict the expected CO concentration within the FTIR Gas 

Analysis Module for a given time.  Shown in Figure 2-9 is a comparison between the 

calculations derived from the simplified model versus the FTIR measured CO concentrations for 

given test parameters.  For this particular experiment, the inflow gas was a 800 ppm CO in N2, 

which corresponds to a 0.40 standard cubic centimeter (sccm) flow rate with the flow controller 

set to 500 sccm.   
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Figure 2-9: Theoretical Gas Flow Model Calculations Compared to Experimental Results for 800 ppm CO Test Gas 

in N2 with Total Inflow of 500 sccm with Vacuum Pressure (Pvac) = Atmospheric Pressure (Pa) 

  

For the case when the FTIR Gas Analysis Module is in series with the Commercial Gas 

Sensor Analysis Module, the inflow value to the model for FTIR Gas Analysis Module will be 

used to calculate outflow from the Commercial Sensor Analysis Module.  This produces a 

lagging effect for both the theoretical and measured test gas concentrations in the FTIR Gas 

Analysis Module during the initial ramp up to the final steady-state test gas concentration.  This 

effect is shown graphically for the theoretical models in Figure 2-10. 
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Figure 2-10: Theoretical Gas Flow Model Calculations for FTIR Gas Analysis Module in Series with the 

Commercial Gas Sensor Analysis Module 
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Chapter 3: Fourier Transform Infrared (FTIR) Spectroscopy Overview 

 

FTIR Theoretical Background 

FTIR analysis relies on the principle that all polyatomic molecules and hetero-nuclear 

diatomic molecules absorb IR radiation.  When a molecule interacts with an IR source, it 

experiences a vibrational transition due to photon absorption, illustrated in Figure 3-1 in red, thus 

placing the molecule at a higher energy state [31-33].  In addition, when a molecules of gas 

absorbs IR energy, rotational transitions can occur in conjunction with the vibrational transitions.  

These rotational and vibrational transitions produce a number of relatively closely spaced 

absorption lines [34].  The total energy (Etot) within a molecule is defined as three additive 

components (Equation 3.1), energy due to rotation of the molecule (Erot), energy due to vibration 

of atoms (Evib), and energy due motion of electrons (Ee-). 

 

−++= evibrottot EEEE           (3.1) 

 

Figure 3-1: Energy Diagram Highlighting Transitions from Electronic Ground State to Electronic Excited State 

with Rotational and Vibrational Transitions 
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The physical properties of a molecule determine the pattern of absorption, defined by the 

IR wavelength at which the species absorbs.  The major physical properties that help define a 

characteristic IR absorption spectrum for a molecule are the number of atoms, the bond angles, 

and the bond strengths [31].  Each IR absorption band, which is due to a particular vibrational 

energy change, is composed of a number of relatively closely spaced absorption lines and these 

components can be related to simultaneous rotational changes that accompany vibrational energy 

changes [31, 32].  For N atomic nuclei within a molecule, there are 3N-6 degrees of freedom for 

a nonlinear molecule and 3N-5 degrees of freedom for a linear molecule [33].  These degrees of 

freedom refer to the number of vibrational modes expected within a molecular structure.  The 

absorption frequency depends on the molecular vibrational frequency, while the intensity of the 

molecular absorption depends on how efficiently IR energy is transferred to the molecule. 

 

FTIR Measurement Technique 

In regards to the FTIR measurement technique, the system is technically referred to as a 

Michelson Interferometer that produces a time domain measurement based on a path difference 

of two beams from a single an IR source.  These beams are combined before interacting with an 

IR absorbing species using a specialized signal called an interferogram [35].  The interferometer 

utilizes a beam splitter that transmits about 50% and reflects about 50% of the incoming IR 

source thus dividing the signal it into two.  One beam reflects off a flat mirror that is fixed and 

the other is reflected off a mirror that is allowed to move.  When the two beams are recombined 

after reflecting off their respective mirrors, the resulting beams interfere with each other (Figure 

3-2).  Because the path of the beam on the moving mirror is constantly changing, the data points, 

which make up the interferogram signal, contain all the infrared source information from the IR 
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source within a very short time domain signal.  Once the interferogram interacts with the sample, 

the resulting signal is then converted to the frequency domain through a mathematical technique 

called a Fourier Transform.  

 

Figure 3-2: Beam Path from IR Source Highlighting the use of a Fixed Mirror and Moving Mirror to Construct an 

Interferogram Time Domain Signal Containing the IR Source Information [35] 

   

The intensity of the transmitted power through the sample, I, is compared to the intensity 

of the IR radiation incident on the sample, I0 and percent transmittance, %T, value for each 

frequency is calculated (Equation 3.2).  For quantitative analysis of a spectrum, this 

transmittance value is converted to a unit-less absorbance value, A, (Equation 3.3).  Absorbance 

values are ideal for quantitative studies because as shown in Equation 3.4, the Beer-Lambert 

Law, absorbance is directly proportional to the concentration of light-absorbing species [31].  In 

Equation 3.4, ε is the molar absorptivity, b is the pathlength that the light source travels, and c is 

the concentration of the light-absorbing species.  Table 3-1 highlights the relationship between 

I/I0, %T, and A.  
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bcA ε=        (Beer-Lambert Law)  (3.4) 

 

Table 3-1: Relationship between I/I0, %T, and A 

I/I0 %T A 

1 100 0 

0.1 10 1 

0.01 1 2 

0.001 0.1 3 

0.0001 0.01 4 

 

It is necessary to collect a background spectrum sample before taking scans of the sample 

to remove instrument and atmospheric characteristics.  It is important to note that the signal-to-

noise (S/N) ratio is determined by both the sample spectrum and the background spectrum and 

typically it is necessary to have as many background co-added scans (scans averaged over a 

given spectral range) as samples co-added scans to obtain the best S/N.  The S/N determines the 

weakest feature that can be confidently identified within a spectrum and is directly proportional 

to the number of scans taken for a sample or background.  As an example, if it is necessary to 

double the S/N value of four co-added scans, it is necessary to collect 16 co-added scans.   

When analyzing samples for strongly absorbing species such as CO2, it is not necessary 

to take as many scans, but to analyze species that do not absorb significantly in the IR region, it 

is necessary to have a high S/N value.  Figure 3-3 shows a background scan of 16 co-added 

spectra, taken at a resolution of 0.5 cm
-1

 over a wavenumber range of 2500-1000 cm
-1

.  This 
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spectrum highlights the typical atmospheric interference of CO2 in the wavenumber range of 

2400-2250 cm
-1

 and H2O (water vapor) in the wavenumber range of 2100-1300 cm
-1

.   

 

Figure 3-3: Typical Atmospheric Background Spectra Highlighting CO2 and H2O Interference, 16 Co-added Scans 

with Resolution 0.5 cm
-1

  

 

The most generally accepted resolution for gas analysis is 0.5 cm
-1

 because this takes 

advantage of detailed fine structure in the bands of gaseous molecules and widens the range over 

which absorption is valid.  In addition, the S/N is proportional to the resolution squared [35].  

The resulting spectrum is then analyzed by comparison to known databases.  The database used 

in this study is from QASoft® and contains molecular absorption spectra for 386 gases, with 

most of them being in an inert gas, such as N2, to maintain total pressure of 1 atmosphere.  The 

purpose of the background gas is to establish the total pressure of the system as close to 

atmosphere as possible while limiting background gas interference.  Since N2 is inactive in the 

IR region, it is a desirable gas for this purpose.  This database covers the region of 3700 cm
-1

 to 

500 cm
-1

, which is the fundamental IR region where rotation and vibrations of molecules give 

rise to IR absorption.   
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IR Characteristics of CO/CO2/H2O 

Carbon Monoxide (CO) 

CO is a homogeneous, linear, diatomic molecule and thus should have a single 

characteristic mode of vibration (3N-5 = 3x2-5 = 1) [31, 33].  This vibrational mode, which is 

along the chemical bond, shown in Figure 3-4, has a characteristic vibrational frequency of 2143 

cm
-1

.  The CO spectrum from the QASoft® database is shown in Figure 3-5. 

 

Figure 3-4: CO Fundamental Vibrational Mode, k1 = 2143 cm
-1

 

 

 

Figure 3-5: IR Absorbance Spectra for CO from QASoft® Database 
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Carbon Dioxide (CO2) 

CO2 is a heterogeneous, linear, tri-atomic molecule that has four characteristic modes of 

vibration, based on the calculated 4 degrees of freedom (3N-5 = 3x3-5 = 4) [31].  Figure 3-6 

shows the CO2 first fundamental vibrational mode, k1, which occurs with symmetrical motion of 

the oxygen atoms while the carbon atom is fixed.  The characteristic vibrational frequency 

associated with this vibration occurs at 1340 cm
-1

.  For pure CO2, this vibrational mode is 

inactive in the IR energy region because the molecular dipole moment is not changed with 

vibration.   

 

 

Figure 3-6: CO2 First Fundamental Vibrational Mode, k1 = 1340 cm
-1

 

 

Figure 3-7 shows the CO2 second fundamental vibrational mode, k2, which results when the 

carbon atom oscillates perpendicular to the oxygen atoms with the two vibrational modes arising 

from rotations by 90° [36].  Because the two vibrational modes are just rotations of the same 

molecular motion, they have the same fundamental vibrational frequency of 667 cm
-1

.   

 

 

Figure 3-7: CO2 Second Fundamental Vibrational Frequency, k2 = 667 cm
-1
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The third fundamental vibrational mode for CO2, k3, which is shown in Figure 3-8 results when 

the carbon atom moves relative to the center of mass of the oxygen atoms.  The characteristic 

vibrational frequency associated with this motion is 2350 cm
-1

.   

 

 

Figure 3-8: CO2 Third Fundamental Vibrational Frequency, k3 = 2350 cm
-1 

 

In regards to FTIR measurements, CO2 has IR bands that will absorb so strongly that that 

it is possible to reach a concentration level where the energy transmitted to the detector will not 

produce a spectrum with features that are distinguishable from the noise level of the instrument.  

At this point, above 3 absorbance units (< 0.1% Transmission), the Beer-Lambert law is no 

longer applicable, and typical methods for concentration calculations are no long applicable.  

The CO2 spectrum from the QASoft® database is shown in Figure 3-9 and from this 100 ppm 

spectra the maximum absorbance level is 0.65 absorbance units at the k2 (667 cm
-1

) characteristic 

frequency and 0.40 absorbance units at the k3 (2350 cm
-1

) characteristic frequency.  Because of 

this strong absorption, the Beer-Lambert law is not applicable to monitor CO2 concentrations 

above 460 ppm near the k2 (667 cm
-1

) characteristic frequency and 750 ppm near the k3 (2350 

cm
-1

) characteristic frequency.  It is standard industry practice to monitor CO2 high 

concentrations within a working wavenumber window of detection of 2390-2379 cm
-1

 to avoid 

significant absorption of the IR source.   
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Figure 3-9: IR Absorbance Spectra for CO2 from QASoft® Database 

 

Water (H2O) 

H2O is a heterogeneous, bent, tri-atomic molecule that has three characteristic modes of 

vibration (3N-6 = 3x3-6 = 3) [31].  Figure 3-10 shows the H2O second fundamental vibrational 

mode, k2 that results when the hydrogen atoms bend their O-H bonds.  The characteristic 

vibrational frequency associated with this motion is 1595 cm
-1

.  The first and third fundamental 

vibrational modes are outside the spectral window used for analysis in this research.  This second 

fundamental vibrational mode, along with its associated rotational modes is a major source of 

interference for a number of characteristic IR spectra of interest, spanning from approximately 

2000 cm
-1

 to 1300 cm
-1

.  The H2O spectrum from the QASoft® database is shown in Figure 3-

11.   
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Figure 3-10: H2O Second Fundamental Vibrational Frequency, k2 = 1595 cm
-1

 

 

 

Figure 3-11: IR Absorbance Spectra for H2O from QASoft® Database
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Chapter 4: Principal Component Analysis (PCA) 

 

PCA Theoretical Background 

PCA is a technique that has been exploited quite extensively and successfully in the area 

of applied chemistry for a wide variety of functions, ranging from surface enhanced Raman 

scattering [37, 38], to X-ray photoelectron spectroscopy (XPS) [39], liquid chromatography [40-

42], and FTIR spectroscopy [43-45].  This versatile technique allows for a large number of 

variables in a data set, such as absorbance values for given wavenumbers in the case of IR 

spectra, to be reduced to simple primary, i.e. principal, components.  These principal components 

are orthogonal and have been shown to retain a significant amount of the original data set 

variation [46, 47].  A further principal component reduction process allows for the use of only 

the first few uncorrelated and ordered principal components for determining the simplified 

internal structure of the original data [43]. 

Typically, the data matrix used in PCA, [X](n x p), is a data set consisting of n samples 

taken at p measurements points.  Using the singular value decomposition (SVD) theorem of 

matrix algebra, [X] can be written as a product of three terms as shown in Equation 4.1, where 

the product [U][L], is most commonly referred to as the scores matrix, [S](n x p), and [V](p x p) as 

the loadings matrix. 

 

TVUX ]][][[][ Λ=            (4.1) 
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The first step in solving for [S] and [V] of the original data set is to calculate the mean 

adjusted data matrix, [XM](n x p), by subtracting the columns means from each column component 

in [X].  Mean subtraction is necessary to ensure that the first principal component describes the 

direction of maximum variance instead of corresponding to the mean of the data [48].  From 

[XM], a variance-covariance matrix, [Z](p x p), can be constructed where the diagonals, Zij (i = j), 

represent the variance of the data points, Var, at a given wavenumber and the Zij (i ≠ j) 

components represent the covariance, Cov, of particular wavenumbers among the samples as 

shown in Figure 4-1.   
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Figure 4-1: Variance-Covariance Matrix, [Z](p x p) Calculated from Mean Centered Data Matrix, [XM](n x p) 

 

The magnitude of each eigenvalue, λ, in Equation 4.2 indicates the relative contribution 

of the corresponding eigenvector to the variance of the original data.  In Equation 4.2, I is the 

identity matrix.  The eigenvalues are arranged in order from largest to smallest and the measure 

of reconstruction accuracy, γ, is provided by the relative contribution of the retained eigenvalues 

to the sum of squares of eigenvalues as shown in Equation 4.3, where p* is the number of 

retained eigenvalues.   

 

0=− IZ λ            (4.2) 
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From each of the ordered eigenvalues, corresponding eigenvectors or loadings matrix, 

[V](p x p), can be found by solving Equation 4.4 for each of the p eigenvalues from Equation 4.2.  

In Equation 4.4, Vi,j corresponds to the eigenvector associated with the i
th

 eigenvalue.  These 

eigenvectors are the coefficients required to transform the original variables into the principal 

component variable space.   
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From these eigenvectors, the individual elements of the new variable of [S] are calculated from 

Equation 4.5. 

 

)()()( ][][][ pxpnxpMnxp VXS =          (4.5) 

 

The columns of [V] are then arranged from largest to smallest and a cut-off for the 

number of retained or significant eigenvalues, p*, is made when the cumulative variance 

explained from each of the p eigenvalues is within the experimental error associated with the 

measurement process, which is typically 5% for FTIR experimental data.  The first p* columns 
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of [V] and [S] are used as a reduced loadings matrix, [V*](p x p*), and reduced scores matrix, 

[S*](n x p*), respectively, for further calculations.  The error matrix, [E], associated with the use of 

the reduced loadings and reduced scores matrices can be calculated from Equation 4.6, where 

[X*] is the reconstructed data matrix defined in Equation 4.7.   

 

)()()( ][*][][ nxpnxpnxp EXX +=          (4.6) 

 

)()*(*)()( ][*][*][*][ nxpMxpp
T

nxpnxp XVSX +=        (4.7) 

 

This residual error is typically very small when the reconstruction accuracy, γ, of the original 

data explained is high (Equation 4.3). 

 

Principal Component Regression (PCR) 

 PCR is a mathematical technique that determines component concentrations of a 

prediction data set based on multivariate regression of a calibration data set.  In most multivariate 

regression techniques though, there are correlations within the set of variables on which the 

measured response is dependent, and these correlations add redundancy to the regression model 

that can cause numerical instability in estimating regression coefficients [48].  PCR is employed 

when the responses of one variable are dependent on a set of other variables as shown in 

Equation 4.8 for the mean adjusted values, where [b] is the vector of estimates of regression 

coefficients to be determined [49].  The advantage of PCR over other multivariate regression 

models is that through PCA, the number of significant components has been determined and the 

analyzed variables are orthogonal, which by definition do not have correlations.  
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]][[][ bXaY MM +=           (4.8) 

 

 The vector [b] is defined as the product of the reduced loading, [V*], and the y-loadings 

term, [q], shown in Equation 4.9.  The [q] term is defined in Equation 4.10, where [D](pxp) is a 

diagonal matrix that has each diagonal element (i = j) equal to the inverse of the i
th

 eigenvalue. 

 

]*][[][ qVb =            (4.9) 

 

]*][][[][ YSDq =           (4.10) 

 

With the values for [b] calculated, the constant a from Equation 4.8 can be found using Equation 

4.11, where YM is the mean value of the dependent variable and XM is the mean value of the 

independent variable at a given measurement. 

 

][bXYa MM −=           (4.11) 

 

 With the regression analysis completed with a calibration data set, the regression analysis 

results can be applied to a prediction data set.  In each case, root mean square error (RMSE) 

values can be computed to provide a measure of how well the PCR technique performs.  RMSE 

is defined in Equation 4.12. 
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Proportionality Constant Calculation (PCC) 

 For PCC, the total integrated intensity of an IR absorbance band, Ii, is assumed to depend 

linearly by a proportionality constant, ki, on the amount of the component concentration, Xi, in a 

mixture as shown in Equation 4.13.     

 

iii IkX =            (4.13) 

 

The mixture of r components with their respected concentrations is defined in Equation 4.14, 

where XT is the total amount (i.e. total volume) of the mixture analyzed. 

 

rT XXXX +++= ...21          (4.14) 

 

Based on the linearity assumption, one can determine the proportionality constant for 

each of the individual components in a calibration data set in which the amount is known and the 

peaks associated with the particular component can be isolated from the peaks associated with 

the mixture.  This isolation of peaks associated with a particular component is an ideal task for 

PCA that reduces mixtures down to principal components.  As with PCR, for both the calibration 

and prediction data sets, calculation of RMSE using Equation 4.12 can provide a measure of how 

well the PCC technique performs.   

With the proportionality constants known for each component, a relationship to calculate 

the prediction data set component concentrations can be derived.  In some cases where the 

overall volume is not constant, the PCC technique can be expanded to perform the analysis on 
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volume and integrated area fractions instead of components as shown in Equation 4.15 for a 2-

component system.   
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Equation 4.15 can be further simplified to Equation 4.16 where the ratio of proportionality 

constants for the two components calculated from a calibration data set are utilized to determine 

the volume fraction of a component in prediction data set mixtures where the total volume of the 

system cannot be kept constant. 
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Application to FTIR Spectroscopy Data 

In the case of FTIR spectroscopy data for CH2O and C3H4O, a simplified data set that has 

overlap between the two components can be constructed to highlight the mathematics involved 

within PCA, PCR, and PCC.  Figure 4-2 shows the complete spectra of CH2O and C3H4O that 

the simplified spectra values are shown in Table 4-1 and displayed graphically in Figure 4-3 that 

consists of seven wavenumbers with their corresponding absorbance values.   
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Figure 4-2: Formaldehyde (CH2O) and Acrolein (C3H4O) Complete Pure Spectra 

 

Table 4-1: CH2O/C3H4O Simplified Pure Spectra for Illustration of PCA Application to FTIR Spectroscopy Data 

  Wavenumber (cm
-1

) 

Component  2897 2863 2813 2810 2802 2791 2778 

CH2O Absorbance 0.551 0.448 0.277 0.437 0.533 0.144 0.369 

C3H4O Absorbance 0.000 0.009 0.078 0.079 0.042 0.072 0.055 

 

 

Figure 4-3: CH2O/C3H4O Simplified Pure Spectra for Illustration of PCA Application to FTIR Spectroscopy Data 
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From these pure spectra, a set of 10 samples (n = 10) at 7 different wavenumbers (p = 7) 

were simulated with concentrations given in Table 4-2.  Five spectra of the ten spectra used to 

produce a calibration data set [XC](10 x 7) are shown in Figure 4-4.  A set of five samples, with 

concentrations given in Table 4-3, were simulated as shown in Figure 4-5 to produce a prediction 

data set [XP](10 x 7) for PCR.  In the case of the PCC, a single data set [X](15 x 7) consisting of the 

calibration and prediction data sets were combined and PCA was simultaneously performed on 

all 15 samples to extract out the pure components in each simulated spectra.  The mean centered 

data matrix is shown in Figure 4-6.    

 

Table 4-2: CH2O/C3H4O Spectra Compositions for Calibration Data Set, [XC](10 x 7), Ordered from Lowest to 

Highest Amount of CH2O in the Gas Mixture 

Sample # 
Amount of CH2O  

(x100 ppm) 

Amount of C3H4O  

(x100 ppm) 

1 0.00 10.00 

2 0.33 6.67 

3 0.45 4.75 

4 0.50 7.75 

5 0.50 8.00 

6 0.67 3.33 

7 0.75 5.00 

8 0.80 0.50 

9 0.95 9.50 

10 1.00 0.00 
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Figure 4-4: CH2O/C3H4O Calibration Data Set, [XC](10 x 7); Note – Only 5 of 10 Calibration Spectra Shown 

 

Table 4-3: CH2O/C3H4O Spectra Compositions for Prediction Data Set, [XP](5 x 7), Ordered from Lowest to Highest 

Amount of CH2O in the Gas Mixture 

Sample # 
Amount of CH2O  

(x100 ppm) 

Amount of C3H4O  

(x100 ppm) 

11 0.17 4.25 

12 0.25 8.75 

13 0.40 9.75 

14 0.60 6.00 

15 0.70 1.25 
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Figure 4-5: CH2O/C3H4O Prediction Data Set, [XP](5 x 7) 

 

 

Figure 4-6: CH2O/C3H4O Calibration Data Set, Mean Centered, [XM](10 x 7); Note – Only 5 of 10 Calibration Spectra 

Shown 

 

 From the covariance-variance matrix shown in Figure 4-7, solving Equation 4.2 yields 

the eigenvalues, ordered from largest to smallest, shown in Figure 4-8.  As shown in the plot of 
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eigenvalues as a function of principal components, Figure 4-9, the number of significant 

eigenvalues obtained from PCA is two.  The first principal component explains 77.1% of the 

total calibration data set variance and the second principal component explains of 22.9% of the 

total calibration data set variance.  With these two principal components, 100.0% of the original 

data variance can be explained.  Figure 4-9 is commonly referred to as a SCREE plot that shows 

the eigenvalues as a function of each principal component. 
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Figure 4-7: CH2O/C3H4O Variance-Covariance Matrix, [Z](7 x 7) 
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Figure 4-8: CH2O/C3H4O Eigenvalues from Solving Equation 4-2 
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Figure 4-9: SCREE Plot Indicating Eigenvalues for Each Principal Component; Principal Components 1 and 2 

Explain 77.1% and 22.9% of the Total Calibration Data Set Variance  

 

 Next, Equation 4.4 can be solved to find the eigenvectors corresponding to the calculated 

eigenvalues.  This yields the loadings matrix, [V] shown in Figure 4-10.  With [V], Equation 4.5 

can be solved to determine the scores matrix, [S], which is shown in Figure 4-11.  Since the 

number of significant principal components was calculated to be two, only the first two columns 

of both [V] and [S] are needed to represent the 100% of the variance found in the calibration data 

set for [V*] and [S*].  The residual error from using two principal components is found by 

solving Equation 4.6 for [E], which for this simulated data set is for all practical purposes zero.  
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Figure 4-10: CH2O/C3H4O Loadings Matrix, [V](7 x 7) 
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Figure 4-11: CH2O/C3H4O Scores Matrix, [S](10 x 10) 

 

 With [V*] and [S*], PCR can be conducted and the vector of estimates of regression 

coefficients, [b], shown in Figure 4-12 can be found by solving Equation 4.9.  The intercept, a, 

can be found by solving Equation 4.11 and for this example is calculated to be -4.2x10
-4

.  

Applying this analysis, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data as shown in Figure 4-13.  With the PCR technique, the 

RMSE (Equation 4.12) for both the calibration set (RMSEC) and for the prediction data set 

(RMSEP) is found to be 1.1x10
-4

 ppm. 
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Figure 4-12: CH2O/C3H4O Estimates of Regression Coefficients from Calibration Data Set, [b](7 x 1) 
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Figure 4-13: Principal Component Regression (PCR) for CH2O Concentrations in CH2O/C3H4O Gas Mixtures; 

RMSE Calibration = 1.1x10
-4

 ppm, RMSE Prediction = 1.1x10
-4

 ppm 

 

PCA on the entire set of collected spectra, both calibration and prediction sets, is capable 

of isolating the peaks associated with each particular component as shown in Figures 4-14 and 4-

15.  Since the principal component loadings, V-1 and V-2, are abstract representations of 

information within the original data set, it is acceptable and in most cases unavoidable to have 

negative elements due to the orthogonality requirement of PCA.  The benefit of Figures 4-14 and 

4-15 are that V-1 and V-2 can be easily identifiable as corresponding to the pure spectra of 

C3H4O and CH2O, respectively.  
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Figure 4-14: PCA Separated CH2O Spectra in CH2O/C3H4O Gas Mixtures 

 

 

Figure 4-15: PCA Separated C3H4O Spectra in CH2O/C3H4O Gas Mixtures 

 

 With the components separated, the contribution of each component to the sample 

mixtures can be determined as shown as in Figures 4-16 and 4-17 for the C3H4O calibration and 
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prediction data sets, respectively, and Figures 4-18 and 4-19 for CH2O calibration and prediction 

data set, respectively. 

 

Figure 4-16: PCC C3H4O Calibration Data Set; Note – Only 5 of 10 Calibration Spectra Shown 

 

 

Figure 4-17: PCC C3H4O Prediction Data Set 
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Figure 4-18: PCC CH2O Calibration Data Set; Note – Only 5 of 10 Calibration Spectra Shown  

 

 

Figure 4-19: PCC CH2O Prediction Data Set 

 

 As shown in Figure 4-20 for CH2O, a baseline correction is necessary to remove the 

generated noise into the data set due to the mathematics in the PCA technique.  With the baseline 

correction made (Figure 4-21), and based on the linearity assumption, the proportionality 
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constant can be determined from Equation 4.13 for each of the individual components in the 

calibration data set from the isolated peaks.  This calculated proportionality constant, equal to the 

inverse of the slope of the line of best fit shown in Figure 4-21, can then be used to calculate the 

concentration of the mixtures in the prediction data set that are shown in Figure 4-22.     

 

Figure 4-20: PCC CH2O Calibration Data Set with No Baseline Correction 

 

 

Figure 4-21: PCC Calibration Data Set with Baseline Correction 
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Figure 4-22: PCC CH2O Prediction Data Set; RMSE Calibration = 2.6x10
-2

 ppm, RMSE Prediction = 2.6x10
-2

 ppm 

 

 The comparison of errors associated with both the PCR and PCC techniques shown in 

Table 4-4 indicates that the PCC technique could be a viable alternative quantitative analysis 

method to the PCR technique.  The PCC technique in most cases provides a more tangible 

solution method that directly relates total area under an absorbance as a function of wavenumber 

curve proportionally to the volume of the component in the mixture, while the PCR technique is 

solely a mathematical multivariate regression technique.  In addition, the PCC technique can be 

further expanded, as will be shown in Chapter 5, to analyze data sets that do not contain a 

constant volume of the mixtures across the entire sample space and outperform the PCR 

technique in terms of RMSEC and RMSEP. 

 

Table 4-4: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques 

Analysis Technique RMSE Calibration RMSE Prediction 

PCR 1.1x10
-4 

1.1x10
-4 

PCC 2.6x10
-2 

2.6x10
-2 
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Chapter 5: PCA Application to FTIR Spectroscopy Data of Vapor Phase Hydrogen 

Peroxide (VPHP) Aircraft Cabin Decontamination Events 

 

Discussion of Analyzed Data Sets 

Data set 1 was comprised of experimentally obtained IR spectra from H2O2 aqueous 

solution mixtures.  Eight concentrations for the calibration data set were prepared by diluting a 

35 wt.% H2O2 solution with de-ionized water at approximately 5 wt.% intervals.  The H2O2 

aqueous solution mixture samples for calibration in data set 1 were made from the solution in the 

Steris 1000ED Bio-decontamination Unit (Mentor, OH, USA) that uses VAPROX® (35 wt.% 

H2O2) as the sterilant.  A single sample, for the prediction data set, was taken from an 

experimental VPHP run where conditions were known to produce significant and observable 

condensation of the H2O2 within a sample chamber.  The IR spectra for data set 1 was obtained 

using the FTIR spectrometer over a wavenumber scan range from 2000 cm
-1

 to 1200 cm
-1

 with a 

spectral resolution of 4 cm
-1

.   

Data set 2 was comprised of a calibration data set with 15 spectra of H2O2 concentrations 

in aqueous solutions prepared by diluting a 70 wt.% H2O2 solution offered by Armeka Canada 

Inc. with de-ionized water at approximately 5 wt. % intervals thus giving a calibration set that 

spans 0-70 wt.% H2O2 in solution.  The prediction data set for the second set of H2O2 

experiments consisted of 5 samples taken from different experimental VPHP runs using the 

Steris 1000ED Bio-decontamination Unit that produced condensation of the H2O2 within a 
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sample chamber.  The IR spectra for data set 2 was obtained using the FTIR spectrometer over a 

wavenumber scan range from 1800 cm
-1

 to 1200 cm
-1

 with a spectral resolution of 4 cm
-1

.   

The purpose of data set 2 was to confirm the findings from data set 1.  Data set 1 

consisted of a restricted range for the calibration data set because the Steris 1000ED Bio-

decontamination Unit operates with 35 wt.% H2O2 in aqueous solution.  Use of this 35 wt.% 

H2O2 solution though is capable of producing condensates that are much higher in H2O2 

concentration depending on the particular operating conditions as discussed in [24].  Data set 2 

contains a more complete calibration data set that may not always be available in engineering 

applications and shows that the performance of the PCA technique in regards to data set 1 is 

sufficient when a complete calibration data is not feasible or possible to obtain.  Sample 

collection for the prediction data sets 1 and 2 was performed by Mobbassar Hassan Sk (Ph.D. 

Graduate Student, Materials Engineering, Auburn University).     

To confirm the PCR and PCC techniques for prediction in each of the data sets, a titration 

process (performed by Mobbassar Hassan Sk) on the prediction data sets for the H2O2 aqueous 

solutions [50].  First, a 5 N aqueous H2SO4 solution, where N is the number of protons (H
+
) in a 

molecule of the acid, was made using 36 N H2SO4 (Fisher Scientific, Pittsburg, PA, USA, lot no. 

094134) and a 0.05 M (moles/L) KMnO4 solution was made from solid KMnO4 (Fisher 

Scientific).  Next, 50 ml of the 5 N aqueous H2SO4 solution was taken in a flask and an exactly 

weighed sample of liquid H2O2 was added to it followed by thorough mixing.  Then, the 0.05 M 

KMnO4 solution was taken in a burette and added to the solution mixture drop wise with 

constant stirring of the solution mixture.  The end of titration process was easily identifiable by 

the permanent change of color of the solution mixture into pale pink.  Once this point was 
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reached, the volume (measured in mL) of KMnO4 solution consumed in the titration process was 

noted.  The weight percentage of H2O2 in the solution was calculated using Equation 5.1.   

 

wtsolutionOHsample

mLconsumedMstrengthKMNO
OHwt

)(

425175.0][)05.0(
.%

22

4
22

×=
=    (5.1) 

 

PCA Results and Discussions 

Data Set 1 

From the experimental FTIR spectral analysis of the H2O2 in aqueous solution mixture, a 

set of 8 samples (n = 8) at 801 different wavenumbers (p = 801) were collected as shown in 

Figure 5-1 to produce a calibration data set [XC](8 x 801).  A single sample was collected as shown 

in Figure 5-2 to produce a prediction data set [XP](1 x 801) for PCR.  In the case of the PCC, a 

single data set [X](9 x 801) consisting of the calibration and prediction data sets were combined and 

PCA was simultaneously performed on all 9 samples to extract out the pure components in each 

spectra.   
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Figure 5-1: H2O2 in Aqueous Solution Calibration Data Set 1, [XC](8 x 801); Note – Only 4 of 8 Calibration Spectra 

Shown, 0%, 10%, 20%, 30% H2O2 

 

 

Figure 5-2: H2O2 in Aqueous Solution Prediction Data Set 1, [XP](1 x 801); 63.7% H2O2 

 

As shown in the plot of eigenvalues as a function of principal components (Figure 5-3), 

the number of significant eigenvalues obtained from PCA is two.  The first principal component 
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explains 67.5% of the total calibration data set variance and the second principal component 

explains of 28.5% of the total calibration data set variance.  With these two principal 

components, 96.0% of the original data variance can be explained.   

 

 

Figure 5-3: SCREE Plot Indicating Eigenvalues for Each Principal Component for H2O2 in Aqueous Solution Data 

Set 1; Principal Components 1 and 2 Explain 67.5% and 28.5% of the Total Calibration Data Set Variance 

 

Next, Equation 4.4 can be solved to find the eigenvectors corresponding to the calculated 

eigenvalues and this yields the loadings matrix, [V].  With [V], Equation 4.5 can be solved to 

determine the scores matrix, [S].  Since the number of significant principal components was 

calculated to be two, only the first two columns of both [V] and [S] are needed to represent the 

96.0% of the variance found in the calibration data set for [V*] and [S*].  Figure 5-4 shows the 

plot of the reduced loadings matrix [V*] for the first two principal components.  V-1 represents 

the variable in the original data set contributing the most variance within the spectra, the H2O 

component and V-2 represents the variable in the original data set contributing the second most 

variance, the H2O2 component.  V-2 produces two partitions, with the positive loadings 

representing the bands for H2O2 and the negative loadings representing the bands for H2O.   
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Figure 5-4: H2O2 in Aqueous Solution Mixtures – Reduced Principal Component Loadings, [V*]; V-1 represents 

the variable in the original data set contributing the most variance within the spectra, the H2O component, V-2 

represents the variable in the original data set contributing the second most variance, the H2O2 component 

 

With [V*] and [S*], PCR can be conducted and the vector of estimates of regression 

coefficients for wt. % H2O2, [bH2O2], shown graphically by wavenumber in Figure 5-5, can be 

found by solving Equation 4.9.  The intercept, aH2O2, can be found by solving Equation 4.11 and 

for H2O2 calibration data set 1 it is calculated to be 12.7.  Applying this analysis, a plot can be 

created that shows the calibration data set used to determine the concentrations in the prediction 

data set as shown in Figure 5-6.  With the PCR technique, the RMSE (Equation 4.12) for the 

calibration data set 1 is found to be 2.1 wt.% of H2O2, while the RMSE for the prediction data set 

1 is found to be 12.0 wt.% of H2O2.  
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Figure 5-5: H2O2 in Aqueous Solution Mixtures – Estimates of Regression Coefficients for wt. % of H2O2 from 

Calibration Data Set 1 as Function of Wavenumber, [bH2O2](801 x 1) 

 

 

Figure 5-6: Principal Component Regression (PCR) – H2O2 Concentrations for H2O2 in Aqueous Solution Mixtures; 

RMSE Calibration = 2.1 wt.%, RMSE Prediction = 12.0 wt.% 
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In some cases, to improve the PCR analysis for H2O2 the analysis can utilize more of the 

identified principal components.  This is not always possible because in some cases, the 

representation of redundant data can cause numerical instability within the regression analysis.  

To show that for this experimental data the PCR technique is not dramatically improved and can 

actually become worse with the use of more principal components, Figure 5-7 was produced that 

shows both RMSEC and RMSEP as a function of increasing number of principal components 

used to represent the original data set.  This analysis indicates that no significant improvements 

can be made in terms of RMSEC for the H2O2 data set with the use of more principal 

components than was calculated to be necessary to explain 96.0% of the original data variance.   

 

Figure 5-7: H2O2 RMSE Calibration and RMSE Prediction as a Function of the Number of Principal Components 

Used to Represent the Original Data Set for H2O2 in Aqueous Solution Mixtures Data Set 1 

 

PCA on the entire set of collected spectra, both calibration and prediction sets, is capable 

of isolating the peaks associated with each particular component.  Since the principal component 

loadings, V-1 and V-2, are abstract representations of information within the original data set, it 
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is acceptable and in most cases unavoidable to have negative elements due to the orthogonality 

requirement of PCA.  With the components separated, the contribution of each component to the 

sample mixtures can be determined as shown as in Figure 5-8 and 5-9 for the H2O2 calibration 

and prediction data sets, respectively, and Figures 5-10 and 5-11 for H2O calibration and 

prediction data set, respectively.  

 

Figure 5-8: PCC H2O2 Calibration Data Set 1; Note – Only 3 of 8 Calibration Spectra Shown, 0%, 20%, 30% H2O2 
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Figure 5-9: PCC H2O2 Prediction Data Set 1; 63.7% H2O2 

 

 

Figure 5-10: PCC H2O Calibration Data Set 1; Note – Only 2 of 8 Calibration Spectra Shown, 70%, 100% H2O 
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Figure 5-11: PCC H2O Prediction Data Set 1; 36.3% H2O 

 

 As evident in Figure 5-12 and 5-13 for the H2O2 and H2O calibration data sets, a baseline 

correction is necessary to remove the generated noise into the data set due to the mathematics in 

the PCA technique as well as the noise from the experiment.  In addition, it is also clear that the 

samples contain variable total amounts of solution and it will be necessary to correct for this by 

using the relationship in Equation 4.14 for the prediction data set.   
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Figure 5-12: PCC H2O2 Calibration Data Set 1 with No Baseline Correction 

 

 

Figure 5-13: PCC H2O Calibration Data Set 1 with No Baseline Correction 

 

With the baseline correction made (Figures 5-14 and 5-15), and based on the linearity 

assumption, the proportionality constant can be determined from Equation 4.13 for each of the 

individual components in the calibration data set from the isolated peaks.  For the baseline 
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correction, it was found that subtraction of the calculated baseline value from the fourth data 

point (15 wt.% H2O2) in the calibration data set produces a negative value.  Because of this, the 

proportionality constant calculation uses a calibration data set with seven components.  This may 

indicate that some error occurred during the FTIR sampling procedure for the 15 wt.% H2O2 

sample.   

The calculated proportionality constants (kH2O2 = 0.19, kH2O = 0.67), equal to the inverse 

of the slope of the lines of best fit shown in Figures 5-14 and 5-15, can then be used to calculate 

the concentration of the mixtures in the PCC model as shown in Figure 5-16.  This model 

requires the utilization of the relationship presented in Equation 4.14 to correct for the total 

amount of solution varying throughout both the calibration and prediction sample spaces.  With 

the PCC technique, the RMSE (Equation 4.12) for the calibration data set 1 is found to 4.1 wt.%, 

while the RMSE for the prediction data set 1 is found to be 5.2 wt.%. 

 

Figure 5-14: PCC H2O2 Calibration Data Set 1 with Baseline Correction 
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Figure 5-15: PCC H2O Calibration Data Set 1 with Baseline Correction 

 

 

Figure 5-16: PCC Model for wt.% of H2O2 in Aqueous Solution with Variable Total Amount in Data Set 1; kH2O2 = 

0.19, kH2O = 0.67; RMSE Calibration = 4.1 wt.%, RMSE Prediction = 5.2 wt.% 

 

 As shown in Table 5-1, comparison of the PCR and PCC technique for analysis of data 

sets that do not contain constant volume of the mixtures across the entire sample space indicates 
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that the PCC technique performs significantly better in terms of prediction of the unknown 

concentration.  This finding will be further explored by an additional data set presented next that 

contains 15 spectra of H2O2 concentrations in aqueous solutions for the calibration data set and 5 

spectra for the prediction data set.  

 

Table 5-1: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; H2O2 in Aqueous Solution Data Set 1 

Analysis Technique RMSE Calibration (wt.%) RMSE Prediction (wt.%) 

PCR 2.1
 

12.0
 

PCC 4.1
 

5.2
 

 

Data Set 2 

From the experimental FTIR spectral analysis of the H2O2 in aqueous solution mixture, a 

set of 15 samples (n = 15) at 601 different wavenumbers (p = 601) were collected to produce a 

calibration data set [XC](15 x 601) of wt.% H2O2 in aqueous solution from 0-70% at 5% intervals.  

A set of 5 samples shown in Table 5-2 were collected to produce a prediction data set [XP](5 x 601) 

for PCR.  In the case of the PCC, a single data set [X](20 x 601) consisting of the calibration and 

prediction data sets were combined and PCA was simultaneously performed on all 20 samples to 

extract out the pure components in each spectra.   

Table 5-2: H2O2 in Aqueous Solution Spectra Compositions for Prediction Data Set 2, [XP](5 x 601) 

Sample # 
H2O2 Concentration (wt.%) 

from Titration 

16 38.4 

17 35.9 

18 26.0 

19 38.7 

20 45.2 

 

The number of significant eigenvalues obtained from PCA is two (Figure 5-17).  The first 

principal component explains 61% of the total calibration data set variance and the second 
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principal component explains of 34% of the total calibration data set variance.  With these two 

principal components, 95% of the original data variance can be explained.   

 

Figure 5-17: SCREE Plot Indicating Eigenvalues for Each Principal Component for H2O2 in Aqueous Solution Data 

Set 2; Principal Components 1 and 2 Explain 61% and 34% of the Total Calibration Data Set Variance 

 

The plot of the calibration data set used to determine the concentrations in the prediction 

data set is shown in Figure 5-18.  The RMSE for the calibration data set 2 is found to be 10.7 

wt.%, while the RMSE for the prediction data set 2 is found to be 3.9 wt.%. 

 

Figure 5-18: Principal Component Regression (PCR) – H2O2 Concentrations for H2O2 in Aqueous Solution with 

Variable Total Amount in Data Set 2; RMSE Calibration = 10.7 wt.%, RMSE Prediction = 3.9 wt.% 
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With the components separated from PCA on the entire set of collected spectra, the 

contribution of each component to the sample mixtures can be determined.  Baseline corrections 

were made to the calibration data set spectra to account for non-zero values for the 0% H2O2 

concentration spectra as well as from extrapolation to 0% H2O concentration from the spectra 

values shown.  The calculated proportionality constants (kH2O2 = 0.65, kH2O = 0.40) are used to 

calculate the concentration of the mixtures in the PCC model as shown in Figure 5-19.  With the 

PCC technique, the RMSE for the calibration data set 2 is found to be 5.9 wt.%, while the RMSE 

for the prediction data is found to be 6.0 wt.%.     

 

Figure 5-19: PCC Model for wt.% of H2O2 in Aqueous Solution with Variable Total Amount in Data Set 2; kH2O2 = 

0.65, kH2O = 0.40; RMSE Calibration = 5.9 wt.%, RMSE Prediction = 6.0 wt.% 

 

 As shown in Table 5-3, comparison of the PCR and PCC technique for analysis of data 

sets that do not contain constant volume of the mixtures across the entire sample space indicates 

that the PCC technique performs significantly better overall for the calibration data set when 

compared on a RMSE basis.  PCC compares reasonable well to the PCR technique in terms of 
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RMSE for the prediction data set.  For the PCC technique, the RMSE were of 5.9 wt.% and 6.0 

wt.% for the calibration and prediction data sets, respectively compared to the PCR technique, 

which had RMSE of 10.7 wt.% and 3.9 wt.% for the calibration and prediction data set, 

respectively.  The PCC technique performs similarly in low (0-20 wt.%), medium (25-45 wt.%), 

and high ranges (50-70 wt.%) of H2O2 concentration with the RMSE of calibration for each of 

the segments for being 6.0 wt.%, 6.0 wt.%, and 5.7 wt.%, respectively.  In contrast, the 

performance of the PCR technique in low H2O2 concentrations (15.7 wt.%) is worse than that for 

medium (6.8 wt.%) and high (7.0 wt.%) H2O2 concentration ranges.   

 

Table 5-3: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; H2O2 in Aqueous Solution Data Set 2 

Analysis Technique RMSE Calibration (wt.%) RMSE Prediction (wt.%) 

PCR – Overall 10.7
 

3.9
 

PCR – Low (0-20 wt.% H2O2) 15.7 - 

PCR – Med (25-45 wt.% H2O2) 6.8 - 

PCR – High (50-70 wt.% H2O2) 7.0 - 

PCC – Overall 5.9 6.0 

PCC – Low (0-20 wt.% H2O2) 6.0 - 

PCC – Med (25-45 wt.% H2O2) 6.0 - 

PCC – High (50-70 wt.% H2O2) 5.7
 

-
 

 

This study indicates that FTIR spectroscopy used in conjunction with the discussed 

chemometric techniques has the potential to be utilized in determining the H2O2 concentrations 

in aqueous solutions from condensation events that may occur during a VPHP decontamination 

event, even when a complete calibration data set is not utilized, as was shown with data set 1.  
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Chapter 6: PCA Application to FTIR Spectroscopy Data of Potential Environment Air 

Contaminants within the Aircraft Cabin 

 

Discussion of Analyzed Data Sets 

In the simulation data sets, pure spectra from the QASoft® database are used.  To form a 

simulated mixture, pure spectra are added together and different multiplication factors are 

applied to achieve a range of component concentrations.  The simulated data sets consist of 

various spectra of targeted component systems for two and three component systems.  The 

simulated data sets are comprised of the entire pure spectra of each of the components.  To make 

the data sets more manageable, the analyzed data sets are comprised of the raw data averaged 

over ten wavenumber data points, thus reducing the size by an order of magnitude.  This reduced 

data set is then used as input in a MATLAB® program to determine the PCA, PCR, and PCC 

characteristics of the data.   

The first two-component simulation data set was a gas mixture of CH2O and C3H4O.  

This system is of interest because of the strong overlap that the two components have in their 

respective IR spectra.  The second two-component simulation data set was of gas mixtures 

consisting of CO and CO2.  The experimental two-component data set consisted of mixtures of 

CO and CO2 from gas cylinders.  This system is of interest in that it is expected to be a 

combination of potential environmental air contaminants most commonly found in the aircraft 

cabin as well as being a data set that can be tested within both the Commercial Sensor Module 

and FTIR Gas Analysis Module in conjunction with simultaneous testing of commercial sensors. 
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For the three-component systems, a simulation data set consisting of a gas mixture of 

CH2O, C3H4O, and H2O was analyzed and like the two-component system, all three components 

have significant overlap within their respective spectra.  The second three-component simulation 

data set was of gas mixtures consisting of CO, CO2, and H2O.  The experimental three-

component data set consisted of mixtures of CO and CO2 from gas cylinders with H2O 

introduced into the system from evaporation in heated crucible linked to the FTIR Gas Analysis 

Module.  The introduced was not directly controlled and was allowed to enter the system as it 

was evaporated to present variable water vapor levels when detecting known concentrations of 

CO/CO2 gas mixtures.  Even though the H2O spectrum does not overlap with CO or CO2 spectra, 

it is expected to be present at significantly higher concentrations than the target components that 

could be potential environmental air contaminants within the aircraft cabin.  The pathlength of 

the gas cell for the experimental gas mixtures was kept constant at 2.24 cm.     

 

PCA Results and Discussions: 2-Component Systems 

CH2O/C3H4O Simulation Data Set 

From the simulated FTIR spectral analysis of the CH2O/C3H4O gas mixtures, a set of 8 

samples (n = 8) at 2,655 different wavenumbers (p = 2,655) with concentrations given in Table 

6-1 were compiled as shown in Figure 6-1 to produce a calibration data set [XC](8 x 2655).  A set of 

3 samples with concentrations given in Table 6-2 were compiled as shown in Figure 6-2 to 

produce a prediction data set [XP](3 x 2655) for PCR.  In the case of the PCC, a single data set [X](11 

x 2655) consisting of the calibration and prediction data sets were combined and PCA was 

simultaneously performed on all 11 samples to extract out the pure components in each spectra.   
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Table 6-1: CH2O/C3H4O Spectra Compositions for Calibration Data Set, [XC](8 x 2655), Ordered from Low to High 

Concentration of CH2O 

Sample # 
Amount of CH2O  

(x100 ppm) 

Amount of C3H4O  

(x100 ppm) 

1 0.00 2.50 

2 0.50 1.00 

3 1.00 0.50 

4 1.50 2.00 

5 2.00 1.50 

6 3.00 4.75 

7 4.75 3.00 

8 10.00 10.00 

 

 

Figure 6-1: CH2O/C3H4O Gas Mixtures Calibration Data Set, [XC](8 x 2655); Note – Only 3 of 8 Calibration Spectra 

Shown 

 

Table 6-2: CH2O/C3H4O Spectra Compositions for Prediction Data Set, [XP](3 x 2655), Ordered from Low to High 

Concentration of CH2O 

Sample # 
Amount of CH2O  

(x100 ppm) 

Amount of C3H4O  

(x100 ppm) 

9 1.33 8.00 

10 2.50 0.00 

11 8.00 1.33 
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Figure 6-2: CH2O/C3H4O Gas Mixtures Prediction Data Set, [XP](3 x 2655) 

 

As shown in the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is two (Figure 6-3).  The first principal component 

explains 98.4% of the total calibration data set variance and the second principal component 

explains of 1.6% of the total calibration data set variance.  With these two principal components, 

100.0% of the original data variance can be explained.   

 

Figure 6-3: SCREE Plot Indicating Eigenvalues for Each Principal Component for CH2O/C3H4O Gas Mixtures 

Data Set; Principal Components 1 and 2 Explain 98.4% and 1.6% of the Total Calibration Data Set Variance 

 



 75

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data set as shown in Figures 6-4 and 6-5 for CH2O and 

C3H4O, respectively.  With the PCR technique, the RMSE for the calibration and prediction data 

sets in regards to the concentration of CH2O and C3H4O are found to be 0 ppm.  

 

Figure 6-4: Principal Component Regression (PCR) – CH2O Concentrations in CH2O/C3H4O Gas Mixtures; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 
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Figure 6-5: Principal Component Regression (PCR) – C3H4O Concentrations in CH2O/C3H4O Gas Mixtures; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 

 

PCA on the entire set of collected spectra, both calibration and prediction sets, isolates 

the peaks associated with each particular component as shown in Figures 6-6 and 6-7.  The 

benefit of these figures are that V-1 and V-2 can be easily identifiable as corresponding to the 

pure spectra of CH2O and C3H4O and, respectively.  With the components separated, the 

contribution of each component to the sample mixtures can be determined. 
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Figure 6-6: PCA Separated CH2O Spectra in CH2O/C3H4O Gas Mixtures 

 

 

Figure 6-7: PCA Separated C3H4O Spectra in CH2O/C3H4O Gas Mixtures 

 

 With the baseline correction made, and based on the linearity assumption, the 

proportionality constant is determined for each of the individual components in the calibration 
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data set from the isolated peaks.  The calculated proportionality constants (kCH2O = 0.08, kC3H4O = 

0.32), equal to the inverse of the slope of the lines of best fit shown, can then be used to calculate 

the concentrations of the simulate gas mixtures for CH2O and C3H4O shown in Figures 6-8 and 

6-9, respectively.  With the PCC method, the RMSE for CH2O and C3H4O calibration data sets 

are found to be 1 ppm and 2 ppm, respectively, while the RMSE of the prediction data sets for 

CH2O and C3H4O are found to be 0 ppm and 2 ppm, respectively.      

 

Figure 6-8: PCC CH2O Calibration and Prediction Data Sets in CH2O/C3H4O Gas Mixtures; kCH2O = 0.08; RMSE 

Calibration = 1 ppm, RMSE Prediction = 2 ppm 
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Figure 6-9: PCC C3H4O Calibration and Prediction Data Sets in CH2O/C3H4O Gas Mixtures; kC3H4O = 0.32; RMSE 

Calibration = 0 ppm, RMSE Prediction = 2 ppm 

 

 As shown in Table 6-3, the comparison of the PCR and PCC techniques indicate that the 

PCC technique could be a viable alternative quantitative analysis method to the PCR technique.  

The PCC technique for this example does not perform as well as PCR due to the strong overlap 

of the two components that make the separation of the two spectra more difficult for PCA.  The 

PCA representation for CH2O still contains small amounts of spectra that are due to C3H4O thus, 

the calculation for the area under the curve for each concentration introduces error within the 

PCC technique.  In addition, the PCA representation for C3H4O does not contain the entire 

spectra for the wavenumber range of 2900-2700 cm
-1

, where there is a strong overlap of the 

CH2O spectra. 
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Table 6-3: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; CH2O/C3H4O Gas Mixtures 

Analysis Technique RMSE Calibration (ppm) RMSE Prediction (ppm) 

CH2O: PCR 0
 

0
 

CH2O: PCC 1 2 

C3H4O: PCR 0 0 

C3H4O: PCC 0
 

2
 

 

CO/CO2 Simulation Data Set 

From the simulated FTIR spectral analysis of the CO/CO2 gas mixtures, a set of 10 

samples (n = 10) at 2,636 different wavenumbers (p = 2,636) with concentrations given in Table 

6-4 were compiled as shown in Figure 6-10 to produce a calibration data set [XC](10 x 2636).  A set 

of 5 samples with concentrations given in Table 6-5 were compiled as shown in Figure 6-112 to 

produce a prediction data set [XP](5 x 2636) for PCR.  In the case of the PCC, a single data set [X](15 

x 2636) consisting of the calibration and prediction data sets were combined and PCA was 

simultaneously performed on all 15 samples to extract out the pure components in each spectra.   

 

Table 6-4: CO/CO2 Spectra Compositions for Calibration Data Set, [XC](10 x 2636) 

Sample # 
Amount of CO  

(x100 ppm) 

Amount of CO2  

(x100 ppm) 

1 0.00 5.00 

2 8.00 3.00 

3 6.00 1.00 

4 4.00 0.50 

5 2.00 1.50 

6 1.00 3.50 

7 3.00 0.25 

8 5.00 0.00 

9 7.00 2.00 

10 9.00 4.00 
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Figure 6-10: CO/CO2 Gas Mixtures Calibration Data Set, [XC](10 x 2636); Note – Only 4 of 10 Calibration Spectra 

Shown 

 

Table 6-5: CO/CO2 Spectra Compositions for Prediction Data Set, [XP](5 x 2636) 

Sample # 
Amount of CO  

(x100 ppm) 

Amount of CO2  

(x100 ppm) 

11 1.25 0.40 

12 5.67 0.80 

13 2.25 2.20 

14 4.33 1.20 

15 8.75 0.60 
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Figure 6-11: CO/CO2 Gas Mixtures Prediction Data Set, [XP](5 x 2636) 

 

As shown in the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is two (Figure 6-12).  The first principal component 

explains 99.1% of the total calibration data set variance and the second principal component 

explains of 0.9% of the total calibration data set variance.  With these two principal components, 

100.0% of the original data variance can be explained.   

 

Figure 6-12: SCREE Plot Indicating Eigenvalues for Each Principal Component for CO/CO2 Gas Mixtures Data 

Set; Principal Components 1 and 2 Explain 99.1% and 0.9% of the Total Calibration Data Set Variance 
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Applying PCR, a plot is created that shows the calibration data set used to determine the 

concentrations in the prediction data set as shown in Figures 6-13 and 6-14 for CO and CO2, 

respectively.  With the PCR technique, the RMSE for the calibration and prediction data set in 

regards to concentrations of CO and CO2 is found to be 0 ppm.  

 

Figure 6-13: Principal Component Regression (PCR) – CO Concentrations in CO/CO2 Gas Mixtures; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 
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Figure 6-14: Principal Component Regression (PCR) – CO2 Concentrations in CO/CO2 Gas Mixtures; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 

 

Figures 6-15 and 6-16, produced from PCA on the entire set of compiled spectra, show 

that V-2 and V-1 can be easily identifiable as corresponding to the pure spectra of CO and CO2 

and, respectively.  With the components separated, the contribution of each component to the 

sample mixtures can be determined for the CO calibration and prediction data sets, and for CO2 

calibration and prediction data set. 
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Figure 6-15: PCA Separated CO Spectra in CO/CO2 Gas Mixtures 

 

 

Figure 6-16: PCA Separated CO2 Spectra in CO/CO2 Gas Mixtures 

 

 The calculated proportionality constants (kCO = 0.75, kCO2 = 0.06), equal to the inverse of 

the slope of the lines of best fit shown, are then be used to calculate the concentration of the 
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mixtures for CO and CO2 shown in Figures 6-17 and 6-18, respectively.  With the PCC method, 

the RMSE for CO and CO2 calibration and prediction data sets are found to be 0 ppm . 

 

Figure 6-17: PCC CO Calibration and Prediction Data Sets in CO/CO2 Gas Mixtures; kCO = 0.75; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 

 

 

Figure 6-18: PCC CO2 Calibration and Prediction Data Sets in CO/CO2 Gas Mixtures; kCO2 = 0.06; RMSE 

Calibration = 0 ppm, RMSE Prediction = 0 ppm 
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 The values shown in Table 6-6 highlight that the PCC techniques compares very well 

with the PCR technique and although not zero for CO, the values are still statistically low 

enough to indicate PCC technique could be a viable alternative quantitative analysis method to 

the PCR technique.  The PCC technique for CO in this example performs just as well as the PCR 

technique even with the strong absorption of CO2 that lowers the impact the CO spectra has on 

the overall data set variation. 

Table 6-6: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; CO/CO2 Gas Mixtures 

Analysis Technique RMSE Calibration (ppm) RMSE Prediction (ppm) 

CO: PCR 0.0
 

0.0
 

CO: PCC 0.3 0.2 

CO2: PCR 0.0 0.0 

CO2: PCC 0.0
 

0.0
 

 

CO/CO2 Experimental Data Set 

From the experimental FTIR spectral analysis of the CO/CO2 gas mixtures, a set of 8 

samples (n = 8) at 5,001 different wavenumbers (p = 5,001) with concentrations given in Table 

6-7 were collected as shown in Figure 6-19 to produce a calibration data set [XC](8 x 5001).  A set 

of 4 samples with concentrations given in Table 6-8 were collected as shown in Figure 6-20 to 

produce a prediction data set [XP](4 x 5001) for PCR.  In the case of the PCC, a single data set [X](12 

x 5001) consisting of the calibration and prediction data sets were combined and PCA was 

simultaneously performed on all 12 samples to extract out the pure components in each spectra.   

Table 6-7: CO/CO2 Spectra Compositions for Experimental Calibration Data Set, [XC](8 x 5001) 

Sample # Amount of CO (ppm) Amount of CO2 (ppm) 

1 258.0 3.1 

3 653.8 3.3 

4 737.8 2.7 

5 756.5 6.6 

6 735.9 13.1 

8 741.2 103.1 

10 750.5 178.8 

12 777.5 210.6 
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Figure 6-19: CO/CO2 Gas Mixtures Experimental Calibration Data Set, [XC](8 x 5001); Note – Only 4 of 8 Calibration 

Spectra Shown 

 
Table 6-8: CO/CO2 Spectra Compositions for Experimental Prediction Data Set, [XP](8 x 5001) 

Sample # Amount of CO (ppm) Amount of CO2 (ppm) 

2 441.2 1.4 

7 737.8 55.5 

9 754.8 127.8 

11 759.5 195.2 

 

 

Figure 6-20: CO/CO2 Gas Mixtures Prediction Data Set, [XP](4 x 5001) 
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As shown in the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is two (Figure 6-21).  The first principal component 

explains 97.9% of the total calibration data set variance and the second principal component 

explains of 0.9% of the total calibration data set variance.  With these two principal components, 

98.8% of the original data variance can be explained.  This compares well with the explanation 

of variation that was found with the CO/CO2 simulation data set, where the principal components 

corresponding to CO2 and CO explained 99.1% and 0.9% of the data set variance, respectively.  

In an unknown mixture, the second component would typically not be analyzed since the first 

component explains at least 95% of the total data set variance as necessary for an experimental 

data set.  The 95% explanation of the total data set variance level is associated with the typical 

error of the FTIR sampling procedure, which is 5%. 

 

Figure 6-21: SCREE Plot Indicating Eigenvalues for Each Principal Component for CO/CO2 Gas Mixtures Data 

Set; Principal Components 1 and 2 Explain 97.9% and 0.9% of the Total Calibration Data Set Variance 

 

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data set as shown in Figures 6-22 and 6-23 for CO and CO2, 

respectively.  With the PCR technique, the RMSEC for CO is found to be 92 ppm, while the 



 90

RMSEP for CO is found to be 49 ppm.  The RMSEC and RMSEP values for CO2 are found to be 

1 ppm.  

 

Figure 6-22: Principal Component Regression (PCR) – CO Concentrations in CO/CO2 Gas Mixtures; RMSE 

Calibration = 92 ppm, RMSE Prediction = 49 ppm 

 

 

Figure 6-23: Principal Component Regression (PCR) – CO2 Concentrations in CO/CO2 Gas Mixtures; RMSE 

Calibration = 1 ppm, RMSE Prediction = 1 ppm 
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To improve the PCR analysis for CO, more principal components can be utilized.  This is 

not always possible because in some cases, the representation of redundant data can cause 

numerical instability within the regression analysis.  To show that for this experimental data the 

PCR technique is improved with the use of more principal components, Figure 6-24 was 

produced that shows both RMSE for calibration and prediction as a function of increasing 

number of principal components used to represent the original data set.  This analysis indicates 

with the use of three principal components, which explains 99.6% of the original data variance, 

the RMSEC is reduced to 16 ppm and the RMSEP is reduced to 14 ppm as shown in Figure 6-25.  

Further analysis with four principal components, which cumulatively explain 100.0% of the 

original data variance, the RMSEC is found to be 8 ppm and the RMSEP is found to be 14 ppm 

as shown in Figure 6-26.  The addition of the remaining principal components will not provide 

additional explanation of the data set variance.   

 

Figure 6-24: CO RMSE Calibration and RMSE Prediction as a Function of the Number of Principal Components 

Used to Represent the Original Data Set in CO/CO2 Gas Mixtures 
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Figure 6-25: Principal Component Regression (PCR) with 3 Principal Components – CO Concentrations in CO/CO2 

Gas Mixtures; RMSE Calibration = 16 ppm, RMSE Prediction = 14 ppm 

 

 

Figure 6-26: Principal Component Regression (PCR) with 4 Principal Components – CO Concentrations in CO/CO2 

Gas Mixtures; RMSE Calibration = 8 ppm, RMSE Prediction = 14 ppm 
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This analysis indicates that the spectra may contain beneficial data beyond the two 

principal components that explain 98.8% of the original calibration data set variation.  This may 

be an indication that the variance for the IR spectra of the CO component in the CO/CO2 mixed 

gas environment is partitioned among three principal components instead of just one.  By 

utilizing more principal components, the quantification of the CO concentration is improved but 

there is no evidence to support four distinct components in the experimentally collected IR 

spectra since the system was purged with IR-inactive N2 and only CO and CO2 gas from certified 

gas cylinders were allowed into the FTIR Gas Analysis Module.  The improved in using more 

principal components to calculated the regression coefficients for CO is highlighted in Figures 6-

27 thru 6-29, where the contribution to the CO2 peak region (2400 cm
-1

 – 2300 cm
-1

) is 

diminished. 

 

Figure 6-27: CO/CO2 Gas Mixtures – Estimates of Regression Coefficients for Concentrations of CO from 

Calibration Data Set as Function of Wavenumber, [bCO](5000 x 1); 2 Principal Components Used 

 



 94

 

Figure 6-28: CO/CO2 Gas Mixtures – Estimates of Regression Coefficients for Concentrations of CO from 

Calibration Data Set as Function of Wavenumber, [bCO](5000 x 1); 3 Principal Components Used 

 

 

Figure 6-29: CO/CO2 Gas Mixtures – Estimates of Regression Coefficients for Concentrations of CO from 

Calibration Data Set as Function of Wavenumber, [bCO](5000 x 1); 4 Principal Components Used 
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Figures 6-30 and 6-31, derived from PCA on the entire set of collected experimental data 

set spectra, show that V-2 and V-1 can be identified as corresponding to the pure spectra of CO 

and CO2 and, respectively.  With the components separated, the contribution of each component 

to the sample mixtures can be determined for the CO calibration and prediction data sets, and for 

CO2 calibration and prediction data set.  

 

Figure 6-30: PCA Separated CO Spectra in CO/CO2 Gas Mixtures Represented by V-2 
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Figure 6-31: PCA Separated CO2 Spectra in CO/CO2 Gas Mixtures Represented by V-1 

 

 The calculated proportionality constants (kCO = 20, kCO2 = 0.25), equal to the inverse of 

the slope of the lines of best fit shown, are used to calculate the concentration of the mixtures for 

CO and CO2 shown in Figures 6-32 and 6-33, respectively.  With the PCC method, the RMSE 

for CO and CO2 calibration data sets are found to be 204 ppm and 1 ppm, respectively, while the 

RMSE of the prediction data sets for CO and CO2 are found to be 194 ppm and 1 ppm, 

respectively.       
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Figure 6-32: PCC CO Calibration and Prediction Data Sets in CO/CO2 Gas Mixtures; kCO = 20;  

RMSE Calibration = 204 ppm, RMSE Prediction = 194 ppm 

 

 

Figure 6-33: PCC CO2 Calibration and Prediction Data Sets in CO/CO2 Gas Mixtures; kCO2 = 0.25; RMSE 

Calibration = 1 ppm, RMSE Prediction = 1 ppm 
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 As shown in Table 6-9 the values for CO2 concentration calculations compare very well 

between the PCR and PCC techniques.  The analysis using PCR is improved in quantitatively 

determining the CO concentration in the CO/CO2 experimental gas mixtures by utilizing 

additional principal components.  PCC for CO in this example does not perform well at all due to 

the strong absorption of CO2 that lowers the impact the CO spectra has on the overall data set 

variation and thus makes it more difficult for the PCA process to extract the pure CO spectra 

using only 2 principal components.  Because of this, the regression calculations for PCR and the 

calculation for the area under the curve for PCC, a significant amount of error is introduced in 

determining the CO concentration.  

Table 6-9: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; CO/CO2 Experimental Gas Mixtures 

Analysis Technique 
# of Principal Components 

Used in Analysis 

RMSE Calibration 

(ppm) 

RMSE Prediction 

(ppm) 

CO: PCR 2 92
 

49 

 3 16 14 

 4 8 14 

CO: PCC 2 204 194 

CO2: PCR 2 1 1 

CO2: PCC 2 1
 

1
 

 

PCA Results and Discussions: 3-Component Systems 

CH2O/C3H4O/H2O Simulation Data Set 

From the simulated FTIR spectral analysis of the pure CH2O/C3H4O/H2O gas mixtures 

shown in Figure 6-34, a set of 8 samples (n = 8) at 2,655 different wavenumbers (p = 2,655) with 

concentrations given in Table 6-10 were combined as shown in Figure 6-35 to produce a 

calibration data set [XC](8 x 2655).  A set of 3 samples with concentrations given in Table 6-11 were 

combined as shown in Figure 6-36 to produce a prediction data set [XP](3 x 2655) for PCR.  In the 

case of the PCC, a single data set [X](11 x 2655) consisting of the calibration and prediction data 
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sets were combined and PCA was simultaneously performed on all 11 samples to extract out the 

pure components in each spectra.   

 

Figure 6-34: Formaldehyde (CH2O), Acrolein (C3H4O), and Water (H2O) Pure Spectra for Simulated Data Sets 

Illustrating Spectral Overlap Between All Three Components 

 

Table 6-10: CH2O/C3H4O/H2O Spectra Compositions for Calibration Data Set, [XC](8 x 2655), Ordered from Low to 

High Concentration of CH2O 

Sample # 
Amount of CH2O 

(x100 ppm) 

Amount of C3H4O  

(x100 ppm) 

Amount of H2O 

(x100 ppm) 

1 0.00 2.50 0.00 

2 0.50 1.00 50.00 

3 1.00 0.50 1.00 

4 1.50 2.00 25.00 

5 2.00 1.50 40.00 

6 3.00 4.75 33.30 

7 4.75 3.00 20.00 

8 10.00 10.00 5.00 
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Figure 6-35: CH2O/C3H4O/H2O Gas Mixtures Calibration Data Set, [XC](8 x 2655); Note – Only 3 of 8 Calibration 

Spectra Shown 

 

Table 6-11: CH2O/C3H4O/H2O Spectra Compositions for Prediction Data Set, [XP](3 x 2655), Ordered from Low to 

High Concentration of CH2O 

Sample # 
Amount of CH2O  

(x100 ppm) 

Amount of C3H4O 

(x100 ppm) 

Amount of H2O  

(x100 ppm) 

9 1.33 8.00 30.00 

10 2.50 0.00 10.00 

11 8.00 1.33 6.67 
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Figure 6-36: CH2O/C3H4O/H2O Gas Mixtures Prediction Data Set, [XP](3 x 2655) 

 

As shown in the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is three (Figure 6-37).  The first principal component 

explains 71.9% of the total calibration data set variance, the second principal component 

explains of 26.9%, and the third principal component explains 1.2% of the total calibration data 

set variance.  With these three principal components, 100.0% of the original data variance can be 

explained.   
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Figure 6-37: SCREE Plot Indicating Eigenvalues for Each Principal Component for CH2O/C3H4O/H2O Gas 

Mixtures Data Set; Principal Components 1, 2, and 3 Explain 71.9%, 26.9%, and 1.2%, respectively, of the Total 

Calibration Data Set Variance 

 

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data set as shown in Figures 6-38, 6-39, and 6-40 for CH2O, 

H2O, and C3H4O, respectively.  With the PCR technique, the RMSE for the calibration and 

prediction data sets in regards to concentration of CH2O, H2O, and C3H4O are is found to be 0 

ppm.  
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Figure 6-38: Principal Component Regression (PCR) – CH2O Concentrations in CH2O/C3H4O/H2O Gas Mixtures; 

RMSE Calibration = 0 ppm, RMSE Prediction = 0 ppm 

 

 

Figure 6-39: Principal Component Regression (PCR) – H2O Concentrations in CH2O/C3H4O/H2O Gas Mixtures; 

RMSE Calibration = 0 ppm, RMSE Prediction = 0 ppm 
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Figure 6-40: Principal Component Regression (PCR) – C3H4O Concentrations in CH2O/C3H4O/H2O Gas Mixtures; 

RMSE Calibration = 0 ppm, RMSE Prediction = 0 ppm 

 

PCA on the entire set of collected spectra isolates the peaks associated with each 

particular component as shown in Figures 6-41, 6-42, and 6-43.  The variables V-1, V-2, and V-3 

can be easily identifiable as corresponding to the pure spectra of CH2O, H2O, and C3H4O and, 

respectively.  With the components separated, the contribution of each component to the sample 

mixtures can be determined for the CH2O calibration and prediction data sets, for the H2O 

calibration and prediction data sets, and for the C3H4O calibration and prediction data set.   
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Figure 6-41: PCA Separated CH2O Spectra in CH2O/C3H4O/H2O Gas Mixtures 

 

 

Figure 6-42: PCA Separated H2O Spectra in CH2O/C3H4O/H2O Gas Mixtures 
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Figure 6-43: PCA Separated C3H4O Spectra in CH2O/C3H4O/H2O Gas Mixtures 

 

 The calculated proportionality constants (kCH2O = 0.08, kH2O = 1.25,  kC3H4O = 0.39) are 

used to calculate the concentration of the mixtures for CH2O, H2O, and C3H4O shown in Figures 

6-44, 6-45 and 6-46, respectively.  With the PCC method, the RMSE for CH2O, H2O, and C3H4O 

calibration data sets are found to be 1 ppm, 9 ppm, and 1 ppm, respectively, while the RMSE of 

the prediction data sets for CH2O, H2O, and C3H4O are found to be 2 ppm, 6 ppm, and 1 ppm, 

respectively.  
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Figure 6-44: PCC CH2O Calibration and Prediction Data Sets in CH2O/C3H4O/H2O Gas Mixtures; kCH2O = 0.08; 

RMSE Calibration = 1 ppm, RMSE Prediction = 2 ppm 

 

 

Figure 6-45: PCC H2O Calibration and Prediction Data Sets in CH2O/C3H4O/H2O Gas Mixtures; kH2O = 1.25; 

RMSE Calibration = 9 ppm, RMSE Prediction = 6 ppm 

 



 108

 

Figure 6-46: PCC C3H4O Calibration and Prediction Data Sets in CH2O/C3H4O/H2O Gas Mixtures; kC3H4O = 0.39; 

RMSE Calibration = 1 ppm, RMSE Prediction = 1 ppm 

 

 As shown in Table 6-12, the comparison of the PCR and PCC techniques indicate that the 

PCC technique could be a viable alternative quantitative analysis method to the PCR technique.  

The PCC technique for this example does not perform as well as PCR due to the strong overlap 

of the two components that make the separation of the three spectra more difficult for PCA.  The 

PCA representation for H2O still contains small amounts of spectra that are due to CH2O and 

C3H4O and thus the calculated for the area under the curve for each concentration introduces 

error within the PCC technique.  In addition, similar to the two-component CH2O/C3H4O gas 

mixtures, the PCA representation for C3H4O does not contain the entire spectra for the 

wavenumber range of 2900-2700 cm
-1

, where there is a strong overlap of the CH2O spectra. 
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Table 6-12: Comparison of Errors Associated with the Principal Component Regression (PCR) and Proportionality 

Constant Calculation (PCC) Analysis Techniques; CH2O/C3H4O Gas Mixtures 

Analysis Technique RMSE Calibration (ppm) RMSE Prediction (ppm) 

CH2O: PCR 0
 

0
 

CH2O: PCC 1 2 

H2O: PCR 0 0 

H2O: PCC 9 6 

C3H4O: PCR 0 0 

C3H4O: PCC 1
 

1
 

 

CO/CO2/H2O Experimental Data Set 

From the experimental FTIR spectral analysis of the CO/CO2/H2O gas mixtures, a set of 

8 samples (n = 8) at 1,001 different wavenumbers (p = 1,001) with concentrations given in Table 

6-13 were collected as shown in Figure 6-47 to produce a calibration data set [XC](8 x 1001).  A set 

of 4 samples with concentrations given in Table 6-14 were collected as shown in Figure 6-48 to 

produce a prediction data set [XP](4 x 1001) for PCR.  In the case of the PCC, a single data set [X](12 

x 1001) consisting of the calibration and prediction data sets were combined and PCA was 

simultaneously performed on all 12 samples to extract out the pure components in each spectra.  

  

Table 6-13: CO/CO2/H2O Spectra Compositions for Calibration Data Set, [XC](8 x 1001) 

Sample # Amount of CO (ppm) Amount of CO2 (ppm) Amount of H2O (ppm) 

1 91 1 1376 

2 113 1 2454 

3 96 2 4366 

4 90 3 5385 

9 71 15 6771 

10 25 18 6675 

11 34 23 6704 

12 8 28 8231 
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Figure 6-47: CO/CO2/H2O Gas Mixtures Calibration Data Set, [XC](8 x 1001); Note – Only 2 of 8 Calibration Spectra 

Shown 

 
Table 6-14: CO/CO2/H2O Spectra Compositions for Prediction Data Set, [XP](4 x 1001) 

Sample # Amount of CO (ppm) Amount of CO2 (ppm) Amount of H2O (ppm) 

5 108 5 5059 

6 80 5 5792 

7 58 7 5734 

8 46 10 6157 
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Figure 6-48: CO/CO2/H2O Gas Mixtures Prediction Data Set, [XP](4 x 1001); Note – Only 2 of 4 Prediction Spectra 

Shown 

From the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is determined to be five (Figure 6-49).  The first 

principal component explains 69.7% of the total calibration data set variance, the second 

principal component explains of 12.1%, the third explains of 7.7% of the total calibration data set 

variance, the fourth explains 4.4%, and the fifth explains 3.0%.  With these five principal 

components, 96.9% of the original data variance can be explained.  

The analysis indicates that the spectra may contain beneficial data beyond the three 

principal components expected in the system that explain 89.5% of the original calibration data 

set variation.  This may be an indication that the variance for the IR spectra of individual 

components in the CO/CO2/H2O mixed gas environment is partitioned among multiple principal 

components instead of just one.  By utilizing more principal components, the quantification of 

the gas concentrations for each component may be improved but there is no evidence to support 

five distinct components in the experimentally collected IR spectra. 



 112

 

Figure 6-49: SCREE Plot Indicating Eigenvalues for Each Principal Component for CO/CO2/H2O Gas Mixtures 

Data Set; Principal Components 1, 2, and 3 Explain 69.7%, 12.1%, and 7.7% of the Total Calibration Data Set 

Variance 

 

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data set as shown in Figures 6-50, 6-51, and 6-52 for CO, 

CO2, and H2O, respectively.  With the PCR technique, the RMSE for calibration for CO is found 

to be 14 ppm, while the RMSE for prediction for CO is found to be 18 ppm.  The RMSEC for 

CO2 is found to be 2 ppm, while the RMSEP for CO2 is found to be 4 ppm.  The RMSEC for 

H2O is found to be 157 ppm, while the RMSEP for H2O is found to be 519 ppm.   
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Figure 6-50: Principal Component Regression (PCR) – CO Concentrations in CO/CO2/H2O Gas Mixtures; RMSE 

Calibration = 14 ppm, RMSE Prediction = 18 ppm 

 

 

Figure 6-51: Principal Component Regression (PCR) – CO2 Concentrations in CO/CO2/H2O Gas Mixtures; RMSE 

Calibration = 2 ppm, RMSE Prediction = 4 ppm 
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Figure 6-52: Principal Component Regression (PCR) – H2O Concentrations in CO/CO2/H2O Gas Mixtures; RMSE 

Calibration = 157 ppm, RMSE Prediction = 519 ppm 

 

As shown in Figures 6-53 including more than three principal components does not 

improve the RMSE for calibration and prediction significantly.  In the case of RMSE for 

prediction, the inclusion of more than three principal components actually makes the results 

worse, most likely due to the inclusion of repetitive data that causes numerical instability in the 

regression model.  This indicates that even though five principal components are necessary to 

represent at least 95% of the original calibration data set variance, that no beneficial and 

quantitative analysis is provided by including more than the three known components within the 

CO/CO2/H2O mixed gas system.  In an unknown system, the determined number of components 

necessary for the analysis would be five and thus the actual system would not perform as well in 

terms of quantifying the CO, CO2, and H2O concentrations.   
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Figure 6-53: CO RMSE Calibration and RMSE Prediction as a Function of the Number of Principal Components 

Used to Represent the Original Data Set in CO/CO2/H2O Gas Mixtures 

 

PCA on the entire set of collected experimental data set spectra was not capable of 

isolating the peaks associated with each particular component.  This failure was due to the strong 

absorbance of the H2O in comparison to the CO and CO2 gas species.  The strong contrast 

between the components is highlighted in the dynamic range values found in the previous PCR 

regression coefficient analysis, where CO had values of -4.6 to 6.4 (dynamic range of 11.0), CO2 

had values of -1.9 to 1.4 (dynamic range of 3.4), and H2O had values of -10.4 to 204.7 (dynamic 

range of 215.1).  With this large contrast between the three species, PCA can only identify that 

there are three main components in the mixed gas environment but cannot quantify the amounts 

of each.  This data set highlights a shortcoming of the PCC analysis technique in dealing with 

multi-component analysis that contains both significant IR absorbing species and relatively low 

IR absorbing species.  The PCR technique though was able quantitatively determine with 
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relatively low RMSE values the amounts of CO, CO2, and H2O in the three component gas 

mixture as shown in Table 6-15. 

Table 6-15: Errors Associated with the Principal Component Regression (PCR) Analysis Technique; CO/CO2/H2O 

Experimental Gas Mixtures 

Analysis Technique RMSE Calibration (ppm) RMSE Prediction (ppm) 

CO: PCR 14
 

18
 

CO2: PCR 2 4 

H2O: PCR 157 519 

 

 In an attempt to overcome the shortcoming of the PCC analysis technique in dealing with 

multi-component analysis that contains both significant IR absorbing species and relatively low 

IR absorbing species, PCA was conducted on the experimentally collected IR spectra from 2500 

to 2075 cm
-1

, which removes the IR spectra of the H2O component.  This truncated the analysis 

to a set of 8 samples (n = 8) at 501 different wavenumbers (p = 425) with concentrations given in 

Table 6-13 for the calibration data set [XC](8 x 425).  A set of 4 samples with their concentrations 

given in Table 6-14 were used for the prediction data set [XP](4 x 425) for PCR.  In the case of the 

PCC, a single data set [X](12 x 425) consisting of the calibration and prediction data sets were 

combined and PCA was simultaneously performed on all 12 samples. 

From the plot of eigenvalues as a function of principal components, the number of 

significant eigenvalues obtained from PCA is determined to be four (Figure 6-54).  The first 

principal component explains 73.4% of the total calibration data set variance, the second 

principal component explains of 12.6%, the third explains of 6.2% of the total calibration data set 

variance, and the fourth explains 4.5%.  With these four principal components, 96.7% of the 

original data variance can be explained.  
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Figure 6-54: SCREE Plot Indicating Eigenvalues for Each Principal Component for CO/CO2/H2O Gas Mixtures 

Data Set; Principal Components 1, 2, and 3 Explain 73.4%, 12.6%, and 6.2% of the Total Calibration Data Set 

Variance 

 

As shown in Figures 6-55 including more than two principal components does not 

improve the RMSE for calibration and prediction significantly.  In the case of RMSE for 

prediction, the inclusion of more than the expected number of principal components actually 

makes the results worse as more principal components are used in the PCR analysis.  This 

indicates that even though five principal components are necessary to represent at least 95% of 

the original calibration data set variance, that no beneficial and quantitative analysis is provided 

by including more than the two known components within the CO/CO2 mixed gas system.  In 

addition, the RMSE for calibration and prediction are significantly worse when PCA is 

performed on the three-component system where the spectral data is truncated to include only 

contributions from two components. 
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Figure 6-55: CO RMSE Calibration and RMSE Prediction as a Function of the Number of Principal Components 

Used to Represent the Original Data Set in CO/CO2/H2O Gas Mixtures with the IR Spectral Data Truncated to 

Include Only Contributions from CO and CO2 (2500 cm
-1

 to 2075 cm
-1

)
 
for PCA 

 

PCA on the entire set of collected experimental truncated data set spectra was not capable 

of isolating the peaks associated with each particular component, as was the case with PCA on 

the entire set of collected experimental data.  This failure indicates that due to the strong 

absorbance of the H2O in comparison to the CO and CO2 gas species within each FTIR scan, the 

data analysis for wavenumbers containing information for only CO and CO2 is still adversely 

affected.  Because of this, to determine quantitatively the amount of CO and CO2 gas species 

within the system, FTIR scans avoiding the H2O absorbance range are necessary as was shown in 

the CO/CO2 Experimental Data Set where the wavenumber range was 2500-2000 cm
-1

.  This 

method of analysis covering the wavenumber range of 2500-1500 cm
-1

 though is still beneficial 

as it identifies that only three components are present at significant amounts within the spectra as 

was discussed in relation to Figure 6-62. 
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Chapter 7: PCA Application to FTIR Spectroscopy Data of Potential Bleed Air 

Contaminants within the Aircraft Cabin 

 

Discussion of Analyzed Data Sets 

Data set 1 was comprised of experimentally obtained IR spectra from four different 

engine oils used in commercial aircraft engines.  The oils analyzed were BP Turbo Oil 2380, BP 

Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560.  These engine oils samples 

were heated in a thermogravimetric analysis (TGA) chamber (Thermo-Microbalance TG 209 F1 

Iris®) with a programmed heat treatment of 20° C per minute ramp rate until evaporation of the 

oil was completed.  Coupled with the TGA were a FTIR (Bruker FTIR Tensor® 27) and a mass 

spectrometry (MS) analyzer (QMS 403 C Aëolos®) via heated transfer lines.  The FTIR scans 

were recorded at the temperature of greatest mass loss, which for the BP Turbo Oil 2380, BP 

Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560 were 306 °C (583 °F), 301 °C 

(574 °F), 306 °C, and 326 °C (619 °F), respectively.  The IR spectra for data set 1 was obtained 

using the FTIR spectrometer over a wavenumber scan range from 4000 cm
-1

 to 600 cm
-1

 with a 

spectral resolution of 2 cm
-1

.  PCA was performed on data set 1 without PCR or PCC to 

determine the number of components most likely present in the evolved gas species from the 

heated engine oil samples.  This data was then compared to the MS data for verification and the 

MS data was used to determine the identity of the components.   

Data set 2 was comprised of a simulated calibration data set with 10 spectra containing 

various concentrations of methanol (CH4O), CH2O, and CO2.  These gas components were 
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identified in the MS analysis of data set 1 in addition to PCA identifying three significant 

components present in data set 1.  The prediction data set for data set 2 consisted of the 

experimental engine oil samples from data set 1.  The purpose of this was to determine not only 

the component present but to quantify the concentrations of each of the identified gases through 

PCR.  With the concentrations of the individual gases determined from PCR for the engine oil 

samples, predicted spectra were calculated and compared to the original FTIR scan data over the 

wavenumber range of 4000 cm
-1

 to 600 cm
-1

 at a resolution of 2 cm
-1

.  The RMSE between the 

predicted spectra and actual spectra of the engine oils after completion of PCA with PCR was 

computed based on absorbance values at each wavenumber.  The experimental data used in data 

sets 1 and 2 were collected by Netzsch Instruments, Inc. (Burlington, MA, USA). 

Data set 3 consisted of time-evolved room temperature (23-24 °C/ 74-75 °F) gas analysis 

of heated BP Turbo Oil 2380.  The 1mL sample of engine oil was heated in a cylindrical furnace 

with a programmed heat treatment of 10° C per minute ramp rate until the hold temperature was 

reached, which in this case was an oil temperature of approximately 275 °C (527 °F).  The 

engine oil heating system was operated by Amanda Neer (M.S. Graduate Student, Materials 

Engineering, Auburn University).  The specific details of the system can be found in her Master 

Thesis.  The gas was monitored with a temperature sensor and allowed to cool to room 

temperature as it was transferred to the Spectrum GX FTIR with variable pathlength long path 

gas cell discussed in Chapter 2 with the use of a vacuum pump.  The FTIR scans were recorded 

at time intervals every 5 minutes while the engine oil was held at 275 °C for 1 hour before the 

heating furnace was shut off and the sample allowed to return to room temperature.  The IR 

spectra for data set 3 were obtained over a wavenumber scan range from 4000 cm
-1

 to 600 cm
-1

 

with a spectral resolution of 2 cm
-1

.  The pathlength of the gas cell was 2.24 m. 
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PCA Results and Discussions 

Data Set 1 – Engine Oil Samples at Temperatures of Greatest Mass Loss  

From the experimental FTIR spectral analysis of the engine oils at temperature of greatest 

mass loss, a set of 4 samples (n = 4) at 1763 different wavenumbers (p = 1763) were collected as 

shown in Figure 7-1 for PCA.  As shown in Figure 7-2, the number of significant eigenvalues 

obtained from PCA is three.  The first principal component explains 76.1% of the total 

calibration data set variance, the second principal component explains of 21.6% of the total 

calibration data set variance, and the third principal component explains of 2.3% of the total 

calibration data set variance.  With these three principal components, 100.0% of the original data 

variance can be explained.      

 

Figure 7-1: FTIR Scans of Engine Oil Samples at Temperatures of Greatest Mass Loss used for PCA; BP Turbo Oil 

2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560 at 306 °C (583 °F), 301 °C (574 °F), 306 

°C, and 326 °C (619 °F), respectively 
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Figure 7-2: SCREE Plot Indicating Eigenvalues for Each Principal Component for Engine Oil Data Set 1; Principal 

Components 1, 2, and 3 Explain 76.1%, 21.6%, and 2.3% of the Total Engine Oil Data Set 1 Variance 

 

 Figure 7-3 highlights the MS data for the BP Turbo Oil 274 at 301 °C (574 °F), and 

Mobile Jet Oil II at 306 °C (583 °F).  This MS data corresponds to characteristic MS data for 

CH4O, CH2O, and CO2, whose database spectra are shown in Figure 7-4.  As evident based on 

relative intensities of the two oils analyzed in Figure 7-3, the amount of CH2O is significantly 

higher than that of CO2.  In addition, in regards to Figure 7-3, the peak that corresponds to CH4O 

at atomic mass unit (amu) 32 is not included because it is such a high intensity that the relative 

intensities for the other components would become indistinguishable.  This indicates that a 

majority of the evolved gas at the temperature of highest mass loss for the engine oils is due to 

CH4O.  The analysis could have been possible with the MS data, but a comparison of the FTIR 

plot would have to have been made to numerous alcohol and aldehyde based molecules to 

determine the exact gas species present.   
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Figure 7-3: Mass Spectrometry (MS) Data of Engine Oil Samples at Temperatures of Greatest Mass Loss; BP 

Turbo Oil 274, and Mobile Jet Oil II at 301 °C (574 °F), and 306 °C (578 °F), respectively 

 

 

Figure 7-4: Mass Spectrometry (MS) Data Database Files for Formaldehyde (CH2O), Methanol (CH4O), and 

Carbon Dioxide (CO2) 
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Data Set 2 – Simulated CH4O/CH2O/CO2 Gas Mixtures & Engine Oil Samples at Temperatures 

of Greatest Mass Loss  

 

From the simulated FTIR spectral analysis of the pure CH4O/CH2O/CO2 gas mixtures 

shown in Figure 7-5, a set of 10 samples (n = 10) at 1,763 different wavenumbers (p = 1,763) 

with concentrations given in Table 7-1 were calculated as shown in Figure 7-6 to produce a 

calibration data set [XC](10 x 1763).  The experimental data used in data set 1 (Figure 7-1) was used 

as the prediction data set [XP](4 x 1763) for PCR.     

 

Figure 7-5: Formaldehyde (CH2O), Methanol (CH4O), and Carbon Dioxide (CO2) Pure Spectra for Simulated Data 

Set Illustrating Spectral Overlap Between CH2O and CH4O 
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Table 7-1: Calibration Data Set 2 Composed of Simulated Spectra of Various Concentrations of Methanol (CH4O), 

Formaldehyde (CH2O), and Carbon Dioxide (CO2) 

Sample 
CH4O Concentration  

(x100 ppm) 

CH2O Concentration  

(x100 ppm) 

CO2 Concentration 

(x100 ppm) 

1 0.0
 

3.0
 

2.0 

2 0.5 2.0 4.0 

3 1.0 0.0 3.5 

4 2.0 6.0 5.5 

5 3.5 7.0 0.0 

6 5.0 1.5 0.5 

7 6.5 3.5 4.5 

8 8.0 4.5 2.5 

9 9.0 0.5 3.0 

10 10.0
 

5.0
 

1.0 

 

 

Figure 7-6: CH4O/CH2O/CO2 Gas Mixtures Calibration Data Set, [XC](10 x 1763); Note – Only 3 of 10 Calibration 

Spectra Shown 

 

As shown in Figure 7-7, the number of significant eigenvalues obtained from PCA is 

three.  The first principal component explains 86.8% of the total calibration data set variance, the 

second principal component explains of 8.6%, and the third principal component explains 4.6% 

of the total calibration data set variance.  With these three principal components, 100.0% of the 

original data variance can be explained.   
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Figure 7-7: SCREE Plot Indicating Eigenvalues for Each Principal Component for CH4O/CH2O/CO2 Gas Mixtures 

Data Set; Principal Components 1, 2, and 3 Explain 86.8%, 95.4%, and 4.6%, respectively, of the Total Calibration 

Data Set Variance 

 

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data sets as shown in Figures 7-8, 7-9, and 7-10 for CH4O, 

CH2O, and CO2, respectively.  The RMSE for the calibration data set in regards to concentrations 

of CH4O, CH2O, and CO2 are found to be 0 ppm (simulated data sets).  The predicted CH4O 

concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell 

Turbine Oil 560 were 206, 221, 214, and 292 ppm, respectively.  The predicted CH2O 

concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell 

Turbine Oil 560 were 145, 190, 142, and 263 ppm, respectively.  The predicted CO2 

concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell 

Turbine Oil 560 were 30, 49, 20, and 63 ppm, respectively. 
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Figure 7-8: Principal Component Regression (PCR) – CH4O Concentrations in CH4O/CH2O/CO2 Gas Mixtures; 

RMSE Calibration = 0 ppm; Predicted concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, 

and Aeroshell Turbine Oil 560 were 206, 221, 214, and 292 ppm, respectively 

 

 

Figure 7-9: Principal Component Regression (PCR) – CH2O Concentrations in CH4O/CH2O/CO2 Gas Mixtures; 

RMSE Calibration = 0 ppm; Predicted concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, 

and Aeroshell Turbine Oil 560 were 145, 190, 142, and 263 ppm, respectively 
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Figure 7-10: Principal Component Regression (PCR) – CO2 Concentrations in CH4O/CH2O/CO2 Gas Mixtures; 

RMSE Calibration = 0 ppm; Predicted concentrations for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, 

and Aeroshell Turbine Oil 560 were 30, 49, 20, and 63 ppm, respectively 

 

After using PCR to determine concentrations of CH4O, CH2O, and CO2 for the four 

engine oil samples (Table 7-2), a reconstructed prediction spectrum can be calculated and 

compared to the experimentally obtained FTIR data as shown in Figures 7-11 thru 7-14 for BP 

Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560, 

respectively.  The RMSE between the predicted and actual spectra for each of the engine oils are 

shown in Table 7-3.  The calculation of RMSE with this method is necessary because the actual 

amounts of the gas components are unknown.  

 

Table 7-2: PCR Calculated Concentrations of CH4O, CH2O, and CO2 for BP Turbo Oil 2380, BP Turbo Oil 274, 

Mobile Jet Oil II, and Aeroshell Turbine Oil 560 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

BP Turbo Oil 2380 206
 

145
 

30 

BP Turbo Oil 274 221 190 49 

Mobile Jet Oil II 214 142 20 

Aeroshell Turbine Oil 560 292 263 63 
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Figure 7-11: Predicted Spectra for BP Turbo Oil 2380 based on PCR Calculated Concentrations of CH4O, CH2O, 

and CO2 Gas Mixtures; RMSE = 2.4% 

 

 

Figure 7-12: Predicted Spectra for BP Turbo Oil 274 based on PCR Calculated Concentrations of CH4O, CH2O, and 

CO2 Gas Mixtures; RMSE = 3.1% 
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Figure 7-13: Predicted Spectra for Mobile Jet Oil II based on PCR Calculated Concentrations of CH4O, CH2O, and 

CO2 Gas Mixtures; RMSE = 2.7% 

 

 

Figure 7-14: Predicted Spectra for Aeroshell Turbine Oil 560 based on PCR Calculated Concentrations of CH4O, 

CH2O, and CO2 Gas Mixtures; RMSE = 3.9% 
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Table 7-3: RMSE for Predicted Spectra based on PCR Calculated Concentrations of CH4O, CH2O, and CO2 for BP 

Turbo Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560 

Sample RMSE (%) 

BP Turbo Oil 2380 2.4 

BP Turbo Oil 274 3.1 

Mobile Jet Oil II 2.7 

Aeroshell Turbine Oil 560 3.9 

 

From the predicted spectra, it was noted that the peaks associated with methanol did not 

line up properly at the expected wavenumbers, particularly the wavenumbers associated with the 

C-O stretching (1150 cm
-1

 – 1050 cm
-1

) and the O-H stretching (3700 cm
-1

 – 3500 cm
-1

).  This 

indicates that there are disturbances in the hydrogen bonding present within CH4O due to the 

clustering of CH4O molecules.  This is similar to observed and theoretical predicted shifts 

reported in literature, where the peaks associated with the C-O stretching shift towards higher 

wavenumbers (blue shifts, i.e. shift to lower frequency) and the peaks associated with the O-H 

stretching shift towards lower wavenumbers (red shifts, i.e. shift to higher frequency) [51-54].  

The blue shift in the C-O stretching peak is due to a shortening of the bond, while the red shift in 

the O-H stretching is due to the elongation of the bond, which occur due to the mutual 

interactions within the hydroxyl group via the hydrogen bonded CH4O clusters [55].  This 

mutual interaction within the hydroxyl group is illustrated in Figure 7-15.  Wavenumber shifts 

are not observed in the CH2O or CO2 spectrum components and are not to be expected since 

these molecules do not have hydrogen bonding present.   
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Figure 7-15: Illustration of Mutual Interactions within the Hydroxyl Group via Hydrogen Bonded Methanol (CH4O) 

Clusters that Leads to O-H Bong Lengthening and C-O Bond Shortening Explaining the Observed Red and Blue 

Wavenumber Shifts, Respectively, within the CH4O IR Spectra Component of the Engine Oil at High Temperature 

 

An additional method to describe the observed shifts in characteristic wavenumber for the 

C-O and O-H stretching modes is to recognize that molecular vibrations can be treated utilizing 

Newtonian mechanics.  In this case, each vibration or stretching mode corresponds to a spring 

with a spring or force constant, k, as defined in Equation 7.1 (Hooke’s Law), which can then be 

related to effective mass of the molecule, µ (defined in Equation 7.2), and the acceleration using 

Newton’s 2
nd

 Law of Motion (Equation 7.3).  In Equation 7.2, m1 and m2 correspond to the mass 

of the bonded atoms.   

 

kxF −=       (Hooke’s Law)    (7.1) 
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=µ            (7.2) 
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Rearranging Equation 7.3 yields the homogenous linear differential equation of 2
nd

 order shown 

in Equation 7.4, which has a standard general solution in which the force constant can be related 

to the vibrational mode characteristic wavenumber, v (cm
-1

), through Equation 7.5, where c is the 

speed of light in cm/s
2
. 
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With the observed shifts, a new calibration data set for the PCA can be created that has 

the CH4O modified as shown in Figure 7-16, with a C-O stretch blue shifted by approximately 

121 cm
-1

 and the O-H stretch red shifted by approximately 121 cm
-1

.  Using Equation 7.5, the 

room temperature C-O stretch with a peak located at ~1033 cm
-1

 corresponds to kC-O = 4.3 N/cm, 

while the shifted peak located at ~1154 cm
-1

 corresponds to kC-O = 5.4 N/cm.  Again using 

Equation 7.5, the room temperature O-H stretch with a peak located at ~3682 cm
-1

 corresponds 

to kO-H = 7.6 N/cm, while the shifted peak located at ~3561 cm
-1

 corresponds to kO-H = 7.1 N/cm.  

These force constant values and their respective changes are consistent with those reported in 

literature of hydrogen bonding associated with methanol [51-55].  The actual determination of 

wavenumber shifts as a function of temperature can only be estimated through inspection at this 
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time but as detailed in the future work section found in Chapter 9, more experiments could be 

undertaken to better quantify these shifts.   

 

Figure 7-16: Comparison of Actual Methanol (CH4O) Spectra to Modified CH4O Spectra with the O-H Stretching 

Bands Red Shifted and the C-O Stretching Bands Blue Shifted Bands Due to High Temperature Disturbance of 

Hydrogen Bonds 

 

From the simulated FTIR spectral analysis of the pure CH4O (modified)/CH2O/CO2 gas 

mixtures, a set of 10 samples (n = 10) at 1,763 different wavenumbers (p = 1,763) with the same 

concentrations given in Table 7-1 were calculated as shown in Figure 7-17 to produce a 

calibration data set [XC](10 x 1763).  The experimental data used in data set 1 (Figure 7-1) was used 

as the prediction data set [XP](4 x 1763) for PCR. 
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Figure 7-17: CH4O (Modified)/CH2O/CO2 Gas Mixtures Calibration Data Set, [XC](10 x 1763); Note – Only 3 of 10 

Calibration Spectra Shown 

 

After using PCA with PCR to determine concentrations of CH4O, CH2O, and CO2 with 

the modified methanol calibration spectra for the four engine oil samples (Table 7-4), a 

reconstructed prediction spectrum can be calculated.  This predicted spectrum is then compared 

to the experimentally obtained FTIR data as shown in Figures 7-18 thru 7-21 for BP Turbo Oil 

2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560, respectively.  The 

RMSE between the predicted and actual spectra for the standard CH4O and modified CH4O 

spectra for each of the engine oils are shown in Table 7-5.  

Table 7-4: PCR Calculated Concentrations of CH4O (Modified), CH2O, and CO2 for BP Turbo Oil 2380, BP Turbo 

Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

BP Turbo Oil 2380 350
 

127
 

30 

BP Turbo Oil 274 417 166 49 

Mobile Jet Oil II 407 118 20 

Aeroshell Turbine Oil 560 511 235 63 
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Figure 7-18: Modified Predicted Spectra for BP Turbo Oil 2380 based on PCR Calculated Concentrations of CH4O, 

CH2O, and CO2 Gas Mixtures; RMSE = 2.1% 

 

 

Figure 7-19: Modified Predicted Spectra for BP Turbo Oil 274 based on PCR Calculated Concentrations of CH4O, 

CH2O, and CO2 Gas Mixtures; RMSE = 2.7% 
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Figure 7-20: Modified Predicted Spectra for Mobile Jet Oil II based on PCR Calculated Concentrations of CH4O, 

CH2O, and CO2 Gas Mixtures; RMSE = 2.2% 

 

 

Figure 7-21: Modified Predicted Spectra for Aeroshell Turbine Oil 560 based on PCR Calculated Concentrations of 

CH4O, CH2O, and CO2 Gas Mixtures; RMSE = 3.4% 
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Table 7-5: Comparison of RMSE using the Standard CH4O Spectra and the Modified CH4O Spectra for Predicted 

Spectra based on PCR Calculated Concentrations 

Sample 
RMSE (%) 

Std. CH4O 

RMSE (%) 

Mod. CH4O 

BP Turbo Oil 2380 2.4 2.1 

BP Turbo Oil 274 3.1 2.7 

Mobile Jet Oil II 2.7 2.2 

Aeroshell Turbine Oil 560 3.9 3.4 

 

 In an attempt to reduce further the RMSE values of the predicted spectra, PCA along with 

PCR was conducted on truncated simulated and experimentally collected IR spectra data from 

3200 to 1600 cm
-1

.  This removes the IR spectra due to the shifted C-O and O-H stretching bands 

of the CH4O component.  Within the 3200 to 1600 cm
-1

 wavenumber range, IR spectra for all 

three components are still present.  The truncated analysis consisted of a set of 10 samples (n = 

10) at 830 different wavenumbers (p = 830) with the same concentrations given in Table 7-1, 

shown in Figure 7-22, to produce a calibration data set [XC](10 x 830).  The experimental data used 

in data set 1 (Figure 7-1) was truncated and used as the prediction data set [XP](4 x 830) for PCR.  

 

Figure 7-22: Truncated (3200 – 1600 cm
-1

) CH4O/CH2O/CO2 Gas Mixtures Calibration Data Set, [XC](10 x 830); Note 

– Only 3 of 10 Calibration Spectra Shown 
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After using PCA with PCR to determine concentrations of CH4O, CH2O, and CO2 with 

the truncated calibration and prediction data sets, shown in Table 7-6, a reconstructed prediction 

spectrum is calculated.  This predicted spectrum is then compared to the experimentally obtained 

FTIR data as shown in Figures 7-23 thru 7-26 for BP Turbo Oil 2380, BP Turbo Oil 274, Mobile 

Jet Oil II, and Aeroshell Turbine Oil 560, respectively.     

Table 7-6: Truncated (3200 – 1600 cm
-1

) PCR Calculated Concentrations of CH4O, CH2O, and CO2 for BP Turbo 

Oil 2380, BP Turbo Oil 274, Mobile Jet Oil II, and Aeroshell Turbine Oil 560 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

BP Turbo Oil 2380 437
 

111
 

31 

BP Turbo Oil 274 378 159 50 

Mobile Jet Oil II 468 106 21 

Aeroshell Turbine Oil 560 567 221 65 

 

 

Figure 7-23: Modified Predicted Spectra for BP Turbo Oil 2380 based on Truncated (3200 – 1600 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, and CO2 Gas Mixtures; RMSE = 2.1% 
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Figure 7-24: Modified Predicted Spectra for BP Turbo Oil 274 based on Truncated (3200 – 1600 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, and CO2 Gas Mixtures; RMSE = 2.7% 

 

 

Figure 7-25: Modified Predicted Spectra for Mobile Jet Oil II based on Truncated (3200 – 1600 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, and CO2 Gas Mixtures; RMSE = 2.3% 
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Figure 7-26: Modified Predicted Spectra for Aeroshell Turbine Oil 560 based on Truncated (3200 – 1600 cm
-1

) 

PCR Calculated Concentrations of CH4O, CH2O, and CO2 Gas Mixtures; RMSE = 3.4% 

 

A comparison of the RMSE between the predicted and actual spectra using each analysis 

method for each of the engine oils are shown in Table 7-7.  A summary of the calculated 

concentrations of each of the three components is shown in Tables 7-8 thru 7-11 for each engine 

oil sample and each method of analysis. 

Table 7-7: Comparison of RMSE using the Standard CH4O Spectra, the Modified CH4O Spectra, and the Truncated 

Spectra for Predicted Spectra based on PCR Calculated Concentrations 

Sample 
RMSE (%) 

Std. CH4O 

RMSE (%) 

Mod. CH4O 

RMSE (%) 

Truncated 

BP Turbo Oil 2380 2.4 2.1 2.1 

BP Turbo Oil 274 3.1 2.7 2.7 

Mobile Jet Oil II 2.7 2.2 2.3 

Aeroshell Turbine Oil 560 3.9 3.4 3.4 

 

Table 7-8: PCR Calculated Concentrations of CH4O, CH2O, and CO2 for BP Turbo Oil 2380 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

Standard CH4O Spectra 206 145 30 

Modified CH4O Spectra 350 127 30 

Truncated Spectra 437 111 31 
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Table 7-9: PCR Calculated Concentrations of CH4O, CH2O, and CO2 for BP Turbo Oil 274 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

Standard CH4O Spectra 221 190 49 

Modified CH4O Spectra 417 166 49 

Truncated Spectra 378 159 50 

 

Table 7-10: PCR Calculated Concentrations of CH4O, CH2O, and CO2 for Mobile Jet Oil II 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

Standard CH4O Spectra 214 142 20 

Modified CH4O Spectra 407 118 20 

Truncated Spectra 468 106 21 

 

Table 7-11: PCR Calculated Concentrations of CH4O, CH2O, and CO2 for Aeroshell Turbine Oil 560 

Sample 
CH4O Concentration  

(ppm) 

CH2O Concentration  

(ppm) 

CO2 Concentration 

(ppm) 

Standard CH4O Spectra 292 263 63 

Modified CH4O Spectra 511 235 63 

Truncated Spectra 567 221 65 

 

Performing PCA with the modified CH4O spectra in the calibration data set improves the 

RMSE for the predicted engine oil samples, in addition to calculating a higher concentration of 

CH4O in each of the engine oil samples.  The higher concentration is due to a better alignment of 

the peaks that shift in the CH4O component.  With more of the spectra of the engine oil samples 

being attributed to the CH4O component, the calculated concentrations for the CH2O component 

slightly decrease.  When the analysis is performed with a truncated calibration data set, the 

CH4O concentrations are slightly increased and the CH2O concentrations are further reduced.  

The concentration values calculated with the truncated method have the highest probability of 

best representing the actual values since they do not analyze portions of the spectra that contain 

peak-shifted areas.  An additional source of error for concentration calculations in the prediction 

data sets can be attributed to the broadening of the peaks due to the increase in the gas 

temperature.  The calculated amount of CO2 for each of the three cases, standard CH4O, 
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modified CH4O, and truncated spectrum, is unaffected because the CO2 IR spectra do not overlap 

with either CH4O or the CH2O spectra.  This analysis indicates that PCA on simulated calibration 

data sets is capable of identifying and quantifying gas species within experimental and unknown 

prediction data sets. 

 

Data Set 3 – Simulated CH4O/CH2O/CO2/CO/H2O Gas Mixtures & BP Turbo Oil 2380 Engine 

Oil Time-Evolved Samples 

   

From the simulated FTIR spectral analysis of the pure CH4O/CH2O/CO2/CO/H2O gas 

mixtures shown in Figure 7-27, a set of 10 samples (n = 10) at 1,763 different wavenumbers (p = 

1,763) with concentrations given in Table 7-12 were calculated to produce a calibration data set 

[XC](10 x 1763).  The experimental data consisting of time evolved IR spectra of the heated BP 2380 

engine oil (Figure 7-28) was used as the prediction data set [XP](20 x 1763) for PCR.     

 

Figure 7-27: Methanol (CH4O), Formaldehyde (CH2O), Carbon Dioxide (CO2), Carbon Monoxide (CO), and Water 

(H2O) Pure Spectra for Simulated Data Set Illustrating Spectral Overlap Between CH4O, CH2O, and H2O 
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Table 7-12: Calibration Data Set 2 Composed of Simulated Spectra of Various Concentrations of Methanol (CH4O), 

Formaldehyde (CH2O), Carbon Dioxide (CO2), Carbon Monoxide (CO), and Water (H2O) 

Sample 

CH4O 

Concentration  

(x100 ppm) 

CH2O 

Concentration  

(x100 ppm) 

CO2 

Concentration 

(x100 ppm) 

CO 

Concentration 

(x100 ppm) 

H2O 

Concentration 

(x1000 ppm) 

1 0.0
 

3.0
 

2.0 4.5 5.0 

2 0.5 2.0 4.0 6.0 6.5 

3 1.0 0.0 3.5 0.5 1.0 

4 2.0 6.0 5.5 0.0 3.5 

5 3.5 7.0 0.0 1.5 2.0 

6 5.0 1.5 0.5 0.6 3.0 

7 6.5 3.5 4.5 2.0 0.0 

8 8.0 4.5 2.5 3.0 0.5 

9 9.0 0.5 3.0 0.2 4.5 

10 10.0
 

5.0
 

1.0 5.0 6.0 

 

 

Figure 7-28: BP Turbo Oil 2390 Time Evolved Spectra Used for Prediction Data Set, [XP](20 x 1763); Note – Only 2 of 

20 Prediction Spectra Shown, Time 5 minutes and 90 minutes 

 

Applying PCR, a plot can be created that shows the calibration data set used to determine 

the concentrations in the prediction data sets.  The RMSE for the calibration data set in regards to 

concentrations of CH4O, CH2O, CO2, CO, and H2O are found to be 0 ppm (simulated data sets).  

Figure 7-29 shows the predicted CH4O, CH2O, and CO concentrations for the time evolved BP 

Turbo Oil 2380, while Figures 7-30 and 7-31 shown the predicted CO2 and H2O time evolved 



 145

concentrations, respectively.  Noted on the figures are the times at which the heater reached the 

set point (Time = 25 min.) and the time at which the heater was turned off (Time = 90 min.). 

 

Figure 7-29: Principal Component Regression (PCR) Calculated Gas Concentrations for CH4O, CH2O, and CO of 

BP Turbo Oil 2380 Time Evolved Spectra; Time = 25 min. Heater Reached Set Point, Time = 90 min. Heater 

Turned Off 
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Figure 7-30: Principal Component Regression (PCR) Calculated Gas Concentrations for CO2 of BP Turbo Oil 2380 

Time Evolved Spectra; Time = 25 min. Heater Reached Set Point, Time = 90 min. Heater Turned Off 

 

 

Figure 7-31: Principal Component Regression (PCR) Calculated Gas Concentrations for H2O of BP Turbo Oil 2380 

Time Evolved Spectra; Time = 25 min. Heater Reached Set Point, Time = 90 min. Heater Turned Off 
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After using PCR to determine concentrations for CH4O, CH2O, CO2, CO, and H2O of the 

BP Turbo Oil 2380 time evolved samples, reconstructed prediction spectra are calculated.  These 

reconstructed spectra are then compared to the experimentally obtained FTIR data as shown in 

Figures 7-32 thru 7-35 for BP Turbo Oil 2380 at Time = 10 min., 30 min., 60 min., and 90 min.  

The RMSE between the predicted and actual spectra for each of the time-evolved spectra are 

calculated to be 2.7%, 8.4%, 9.2%, and 9.0% for 10 min., 30 min., 60min., and 90 min., 

respectively.  The average RMSE between the predicted and actual spectra for all 20 of the time-

evolved spectra is found to be 7.5%.   

 

Figure 7-32: Predicted Spectra for BP Turbo Oil 2380 at Time = 10 min. based on PCR Calculated Concentrations 

of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 2.7% 
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Figure 7-33: Predicted Spectra for BP Turbo Oil 2380 at Time = 30 min. based on PCR Calculated Concentrations 

of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 8.4% 

 

 

Figure 7-34: Predicted Spectra for BP Turbo Oil 2380 at Time = 60 min. based on PCR Calculated Concentrations 

of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 9.2% 
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Figure 7-35: Predicted Spectra for BP Turbo Oil 2380 at Time = 90 min. based on PCR Calculated Concentrations 

of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 9.0% 

 

In an attempt to reduce the RMSE values of the predicted spectra, PCA along with PCR 

was conducted on truncated simulated and experimentally collected IR spectra data from 4000 to 

2000 cm
-1

.  This removes the region in IR spectra that has considerable overlap between the 

CH2O and H2O components.  Within the 4000 to 2000 cm
-1

 wavenumber range, characteristics of 

IR spectra for all five components are still present.  The truncated analysis consisted of a set of 

10 samples (n = 10) at 1037 different wavenumbers (p = 1037) with the same concentrations 

given in Table 7-12, to produce a calibration data set [XC](10 x 1037).  The BP 2390 time-evolved 

spectra data was truncated and used as the prediction data set [XP](20 x 1037) for PCR.  Figure 7-36 

shows the predicted CH4O, CH2O, and CO concentrations from the truncated analysis for the 

time evolved BP Turbo Oil 2380, while Figure 7-37 shows the predicted H2O time evolved 

concentrations from the truncated analysis, respectively.  The predicted CO2 time evolved 

concentrations from the truncated analysis does not change significantly from Figure 7-30. 
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Figure 7-36: Principal Component Regression (PCR) Calculated Gas Concentrations for CH4O, CH2O, and CO of 

BP Turbo Oil 2380 Time Evolved Spectra; Time = 25 min. Heater Reached Set Point, Time = 90 min. Heater 

Turned Off 

 

 

Figure 7-37: Principal Component Regression (PCR) Calculated Gas Concentrations for H2O of BP Turbo Oil 2380 

Time Evolved Spectra; Time = 25 min. Heater Reached Set Point, Time = 90 min. Heater Turned Off 
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After using PCR to determine concentrations for CH4O, CH2O, CO2, CO, and H2O of the 

BP Turbo Oil 2380 time evolved samples, reconstructed prediction spectra are calculated.  These 

reconstructed spectra are then compared to the experimentally obtained FTIR data as shown in 

Figures 7-38 thru 7-41 for BP Turbo Oil 2380 at Time = 10 min., 30 min., 60 min., and 90 min.  

The RMSE between the predicted and actual spectra for each of the time-evolved spectra are 

calculated to be 2.2%, 7.2%, 7.8%, and 7.5% for 10 min., 30 min., 60min., and 90 min., 

respectively.  The average RMSE between the predicted and actual spectra for all 20 of the time-

evolved spectra is found to be 6.4%.  A comparison of the RMSE between the predicted and 

actual spectra using full and truncated spectral analysis method for each of the time-evolved 

samples are shown in Table 7-13.     

 

Figure 7-38: Predicted Spectra for BP Turbo Oil 2380 at Time = 10 min. based on Truncated (4000-2000 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 2.2% 
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Figure 7-39: Predicted Spectra for BP Turbo Oil 2380 at Time = 30 min. based on Truncated (4000-2000 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 7.2% 

 

 

Figure 7-40: Predicted Spectra for BP Turbo Oil 2380 at Time = 60 min. based on Truncated (4000-2000 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 7.8% 
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Figure 7-41: Predicted Spectra for BP Turbo Oil 2380 at Time = 90 min. based on Truncated (4000-2000 cm
-1

) PCR 

Calculated Concentrations of CH4O, CH2O, CO2, CO, and H2O Gas Mixtures; RMSE = 7.5% 

 

Table 7-13: Comparison of RMSE using the Full and the Truncated Spectra, for the PCR Calculated Concentrations 

Sample 
RMSE (%) 

Full Spectra 

RMSE (%) 

Truncated 

Time = 10 min. 2.7 2.2 

Time = 30 min. 8.4 7.2 

Time = 60 min. 9.2 7.8 

Time = 90 min. 9.0 7.5 

Average over 20 Samples 7.5 6.4 

 

Performing PCA with the truncated spectra in the calibration data set improves the 

RMSE (reduced from an average of 7.5% to 6.4%) for the predicted time-evolved BP 2380 

Turbo Oil samples, in addition to calculating a higher concentration of CH4O in each of the 

engine oil samples.  The higher concentration is due to a more accurate calculation concentration 

of the CH2O component when the significant overlap region between H2O and CH2O is not 

analyzed.  With more of the spectra of the engine oil samples being attributed to the H2O 

component, the calculated concentrations for the CH2O component significantly decrease.  As 

was the case with the data set 2, the concentration values calculated with the truncated method 
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have the highest probability of best representing the actual values since they do not analyze 

portions of the spectra that contain areas of significant overlap with a H2O, which is a strong IR 

absorbing gas.  In addition to improving the calculated concentration of CH2O, removal of the 

wavenumbers below 2000 cm
-1

 better quantifies the CO concentration in the time-evolved gas 

mixture.  This is due to the relatively small but critical overlap between the CO and H2O IR 

spectra.  The calculated amount of CO2 for each of the two cases, full and truncated spectrum, is 

unaffected because the CO2 IR spectra do not overlap with either CH4O, CH2O, CO or the H2O 

spectra.  This analysis indicates that PCA on simulated calibration data sets is capable of 

identifying and quantifying gas species within experimental and unknown prediction data sets.
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Chapter 8: Conclusions 

 

The specific purpose of this research was to utilize a mathematical technique called 

principal component analysis (PCA) in conjunction with principal component regression (PCR) 

and proportionality constant calculations (PCC) to simplify complex, multi-component infrared 

(IR) spectra data sets into a reduced data set used for determination of the concentrations of the 

individual components.  The application of this analytical numerical technique to IR spectrum 

analysis could play an important role in improving performance of commercial sensors that 

airlines and aircraft manufacturers could potentially use in an aircraft cabin environment for 

multi-gas component monitoring. 

PCA along with PCR and PCC was successfully applied to the monitoring of H2O2 

concentration in an aqueous solution in which analysis was performed on variable volumes of 

solutions in both the calibration and prediction data set.  The analysis was then applied to both 

simulated and experimental two and three component gas systems that could be potential 

environmental air contaminants within the aircraft cabin.  These analyzed systems consisted of 

mixtures of CH2O/C3H4O, CO/CO2, CH2O/C3H4O/H2O, and CO/CO2/H2O gas spectra.  After the 

PCA application to two and three component systems, the technique was further expanded to 

include the monitoring of potential bleed air contaminants from engine oil combustion, in which 

a simulation data set was utilized to predict gas components and concentrations in unknown 

engine oil samples at high temperatures as well as time-evolved gas from heating of engine oil.  
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Chapter 9: Future Work 

 

Based on the success of PCA application to the H2O2 solutions, it is recommended that 

the engine oils, as received, in liquid form be analyzed.  This analysis should indicate the major 

components of the engine oil and these can then be compared to the gas species that evolved 

when the liquid engine oil is heated up to the point of combustion.  Another segment of this 

future work should be the development of a model that accurately simulates the observed shifts 

in methanol at higher temperatures.  Within this research, the shift was estimated for the 

particular temperature that the engine oils experienced the greatest mass loss.  With further 

experiments monitoring a much wider temperature profile, the movement in the characteristic IR 

spectra of methanol should be readily observed.   

Further experiments should be performed where analysis of the gas phase products 

released at various temperatures are monitored with the FTIR at or near room temperature.  The 

experimental setup best simulate the monitoring of the bleed air contaminants as would be 

measured in the aircraft cabin.  Additional holding temperatures of the heating furnace used in 

the time-evolved engine oil study should be investigated to determine if other gas components 

are released and if the concentrations of the gas species significantly change as a function of 

temperature.  In addition, other aircraft engine oils should be investigated to determine 

characteristics of each.   

As discussed in Chapter 2, engine oils are known to contain a toxic chemical called 

tricresyl phosphate (TCP) and to understand more thoroughly its IR characteristics within the 
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aircraft cabin environment, experiments similar to those performed with the engine oil should be 

carried out.  TCP in the liquid phase, diluted with methanol, would be an ideal solution to 

monitor in the gas phase with FTIR to determine characteristics temperatures that the TCP 

solution could be released within an aircraft cabin. 
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Appendix A: Principal Component Analysis MATLAB® Source Code 
 

% data.txt is the location of the file with absorbance values for each wavenumber and sample 

fid=fopen('data.txt'); 

% [fileData_x fileData_y] = [wavenumbers+1 samples] 

% extract data from data.txt file into a fileData matrix 

[fileData]=fscanf(fid,'%f %f',[1764 17]); 

X=fileData'; 

fclose(fid); 

 

% data matrix [X] 

[n,p]=size(X); 

% n-1=num of samples 

% p=num of wavenumbers 

Xdata=zeros(n,p-1); 

y=zeros(n,1); 

for i=1:n 

    for j=1:p-1 

        Xdata(i,j)=X(i,j+1); 

    end 

end 

for i=1:n 

    y(i,1)=X(i,1); 

end 

 

[n,p]=size(Xdata) 

Xdata_mean=mean(Xdata); 

Xdata_meanAdj=Xdata-repmat(Xdata_mean,[n 1]); 

y_mean=mean(y); 

y_meanAdj=y-repmat(y_mean,[n 1]); 

eigValues=flipud(eig(Xdata_meanAdj'*Xdata_meanAdj)); 

cumVar_explained=cumsum(eigValues./sum(eigValues)); 

num_sig_eigValues=0; 

 

% determine number of significant eigValues until cumulative variance explained >= XX% 

i=1; 

while cumVar_explained(i)<0.95 

    num_sig_eigValues=num_sig_eigValues+1; 

    i=i+1; 

end 

num_sig_eigValues=6 
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% [loadings] loadings matrix 

% [scores] score matrix 

% columns are in order of decreasing component variance 

% princomp automatically subtracts of column means (use raw data) 

[loadings,scores,latent]=princomp(Xdata); 

% reduced loadings & scores based on num_sig_eigValues 

reduced_loadings=zeros(p,num_sig_eigValues); 

reduced_scores=zeros(n,num_sig_eigValues); 

for i=1:p 

    for j=1:num_sig_eigValues 

        reduced_loadings(i,j)=loadings(i,j); 

    end 

end 

for i=1:n 

    for j=1:num_sig_eigValues 

        reduced_scores(i,j)=scores(i,j); 

    end 

end 

 

% ***** PCR VARIABLES ***** 

% vector of estimates of the regression coeffecients 

% [b] is product of eigenvectors [loadings] and y-loadings [q] 

% y-loadings [q] determined by regression of [y] on [scores] 

% [D] is diagonal matrix with each diagonal element equal to 1/tk 

% tk is eigenvalue of factor k 

% [q] = [D][scores]'[y] 

D=zeros(num_sig_eigValues,num_sig_eigValues); 

for i=1:num_sig_eigValues 

    for j=1:num_sig_eigValues 

        if(i==j) 

            D(i,j)=1/eigValues(i); 

        end 

    end 

end 

q=D*reduced_scores'*y; 

b=reduced_loadings*q; 

a=y_mean-Xdata_mean*b; 

 

% output key program variables to .txt files for further analysis in Excel 

dlmwrite('output1.txt',X,'delimiter', '\t', 'precision', 4); 

dlmwrite('output2.txt',reduced_loadings,'delimiter', '\t', 'precision', 4); 

dlmwrite('output4.txt',latent,'delimiter', '\t', 'precision', 4); 

dlmwrite('output5.txt',q,'delimiter', '\t', 'precision', 4); 

dlmwrite('output6.txt',b,'delimiter', '\t', 'precision', 4); 

dlmwrite('output7.txt',a,'delimiter', '\t', 'precision', 4); 


