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Abstract

Clatworthy described the eleven group divisible designs with three groups, block size

four, and replication number at most 10. Each of these can be generalized in natural ways.

In this dissertation neat constructions are provided for these new families of group divisible

designs. In a previous paper the existence of one such design was settled. Here we essentially

settle the existence of generalizations of eight of the remaining ten Clatworthy designs. In

each case (namely, λ1 = 4 and λ2 = 5, λ1 = 4 and λ2 = 2, λ1 = 8 and λ2 = 4, λ1 = 2 and

λ2 = 1, λ1 = 10 and λ2 = 5, λ1 = 6 and λ2 = 3, λ1 = 3 and λ2 = 1, and λ1 = 6 and λ2 = 2),

we have proved that the necessary conditions found are also sufficient for the existence of

such GDD’s with block size four and three groups, with one possible exception.
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Chapter 1

Introduction

In this dissertation, a group divisible design GDD(n,m, k;λ1, λ2) is defined to be an

ordered pair (V,B), where V is a set of mn elements called symbols, together with a partition

of V into m sets of size n, each element of which is called a group, and a collection B of

k-subsets of V called blocks, such that each pair of symbols occurring in the same group

appears together in precisely λ1 blocks, while each pair of symbols occurring in different

groups appears together in exactly λ2 blocks. Symbols occuring in the same or different

groups are known as first or second associates respectively. A restricted version of this

original definition with λ1 = 0 is more commonly used as the definition of GDD in the

milieu of combinatorial designs; in this setting, a GDD(n,m, k; 0, λ) is more commonly

known as a (k, λ)-GDD of type nm. The existence of a GDD(n,m, 3;λ1, λ2) was completely

settled by Fu, Rodger, and Sarvate [5, 6]. The most difficult and novel constructions were

required when the number of groups, m, was less than k, namely when m = 2 [5]. The

existence of GDDs when m < k is, in general, a difficult case to solve. Indeed, when k = 4,

little is known about the existence of such GDDs. For example, when k = 4 Henson, Hurd,

and Sarvate [9, 11, 12] reported existence results for GDDs that are necessary and sufficient

for small values of m and n, and were then used to construct some infinite families of GDDs.

They also considered a restricted version of the problem in which the number of symbols

in each block in any group had the same parity as in any other group. Hurd, Mishra, and

Sarvate [10] reported some results when k = 5 and m = 6. Clatworthy’s table from 1973 [2]

lists eleven such designs (all with replication number at most 10). (See Table 1)

Recently Henson and Sarvate [8] generalized one of these 11 designs, namely R127,

proving the following theorem.
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name n m k λ1 λ2

S1 2 3 4 2 1
S2 2 3 4 4 2
S3 2 3 4 6 3
S4 2 3 4 8 4
S5 2 3 4 10 5

R96 2 3 4 4 5
R104 3 3 4 3 1
R105 3 3 4 6 2
R111 4 3 4 2 3
R117 5 3 4 1 2
R127 8 3 4 2 1

Table 1.1: Clatworthy’s Table

Theorem 1.1. There exists a GDD(n, 3, 4; 2, 1) if and only if n ≡ 2 (mod 6).

In this dissertation we provide necessary and sufficient conditions for the existence of

designs which generalize eight more designs in the Clatworthy table. The construction used

for two such designs, namely, R96 and S2 (see Theorem 3.1 and Theorem 4.1), is a neat

method that can also be used to provide another proof of Theorem 1.1. We also provide a

similar generalization of S4 in the Clatworthy table (see Corollary 4.1.1), easily following

from Theorem 4.1. Nestings are introduced and used in the generalizations of the rest of the

designs, namely, S1, S5, S3, R104, and R105 (see Theorem 5.1, Corollary 5.1.1, Theorem

6.1, Theorem 7.1, and Theorem 8.1 respectively). These results were successfully submitted

for review in two papers, one published in 2010 by the Journal of Statistical Planning and In-

ference [13], the other accepted for publication by the Journal of Combinatorial Mathematics

and Combinatorial Computing [14].
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Chapter 2

Preliminaries

The neat method mentioned in the previous section makes use of holey self orthogonal

latin squares(HSOLSs). For the purposes of this dissertation, it is convenient to define

H(n) =


{{2i, 2i+ 1} × {2i, 2i+ 1} | i ∈ Zn/2} if n is even

{{2i− 1, 2i} × {2i− 1, 2i} | i ∈ (Zbn/2c \ Z3)} ∪ (Z5 × Z5) if n is odd

and n ≥ 17

Each element h of H(n) is a subset of Zn × Zn called a hole. A HSOLS of order n and

of type 2n/2 if n is even and of type 2(n−5)/251 if n is odd, on the set of symbols Zn with holes

in H(n), is an n× n array, L, in which:

1. Each cell (x, y) in L contains at most one symbol, containing no symbols if and only

if (x, y) ∈ h for some h ∈ H(n);

2. Each symbol x occurs in row y of L if and only if (x, y) /∈ h for all h ∈ H(n);

3. Each symbol x occurs in column y of L if and only if (x, y) /∈ h for all h ∈ H(n); and

4. For each (x, y) in no hole of H(n), there is exactly one ordered pair (k, l) such that in

L, cell (k, l) contains x and cell (l, k) contains y.

Throughout this dissertation we will adopt quasigroup notation by denoting the symbol

in cell (i, j) of a HSOLS by i ◦ j. The set H(n) will also be routinely used. From Existence

of frame SOLS of type anb1 by Xu, Zhang, and Zhu [16] (or Theorem 5.18 in [3] on page

214) we obtain the following result.
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Theorem 2.1. Let n ≥ 6. There exists a HSOLS of order n and

1. type 2n/2 if n is even; and

2. type 2(n−5)/251 if and only if n ≥ 17 and n is odd.

We also use the following design constructed by Brouwer, Schrijver, and Hanani [1] (for

a more general setting see also [17] and Theorem 4.6 in [7] on page 256).

Theorem 2.2. Necessary and sufficient conditions for the existence of a (4, λ)-GDD of type

mu are:

1. u ≥ 4,

2. λ(u− 1)m ≡ 0 (mod 3), and

3. λu(u− 1)m2 ≡ 0 (mod 12),

with the exception of (m,u, λ) ∈ {(2, 4, 1), (6, 4, 1)}, in which case no such GDD exists.

It is also fruitful to describe these designs as graph decompositions, each symbol being

represented by a vertex. Let G(n, 3;λ1, λ2) be the graph with vertex set Zn × Z3 in which

(u, i) is joined to (v, j) with

1. λ1 edges if i = j, and

2. λ2 edges if i 6= j.

Then a GDD(n, 3, 4;λ1, λ2) is clearly equivalent to a partition of the edges of

G(n, 3;λ1, λ2) into sets of size 6, each of which induces a copy of K4; for each i ∈ Z3, Zn×{i}

is a group. These two notions will be used interchangeably throughout this dissertation.

To complete these designs we must first define the nesting of a GDD. A nesting of a

GDD(V, P,B) with associated graph G(n, 3;λ1, λ2) is defined to be a function of f : B → V
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such that {{x, f(b)} | x ∈ b ∈ B} = E(G(n, 3;λ1, λ2)). More informally, a GDD with block

size 3 is said to be nested if a fourth point can be added to each block such that the edges

gained from the nesting cover precisely the same edges as the original GDD. So each pair

{u, v} of vertices occurs together in twice as many blocks of size 4 in the nested design as the

number of triples containing {u, v} in the original GDD. We will use the following theorem

provided by Jin Hua Wang [15].

Theorem 2.3. There exists a nesting of a GDD(t, n, 3;λ1 = 0, λ2 = λ) if and only if

λt(n− 1) ≡ 0 (mod 6) and n ≥ 4.
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Chapter 3

Generalizing Clatworthy Design R96

In this chapter we generalize R96-designs (see Figure 3.1), completely settling their

existence. For completeness, we present a cyclic construction for the smallest R96-design.

Figure 3.1: R96

Lemma 3.0.1. There exists a GDD(2, 3, 4; 4, 5).

Proof. (Z6, B) with B = {{i, i+1, i+3, i+5}, {i, i+1, i+2, i+5} | i ∈ Z6} is such a design,

where the groups are (i, i+ 3) for each i ∈ Z3. (See Figure 3.2.)

We now use this small R96-design to obtain the following result.

Theorem 3.1. There exists a GDD(n, 3, 4; 4, 5) if and only if n ≡ 2 (mod 6).

Proof. We start by proving the necessity, so suppose there exists a GDD(n, 3, 4; 4, 5). Let us

begin by looking at the number of blocks. Since each block contains six edges, the number

of blocks in any such design is
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Figure 3.2: R96, n = 3

b =
|E(G(n, 3; 4, 5))|

6
=

3(4n(n−1)
2

+ 5n2)

6
=

7n2 − 2n

2
.

Clearly the number of blocks is an integer, so n must be even.

Each time a vertex (u, i) is used in a block, 3 of its incident edges are used. So the

number of blocks containing (u, i) is

dG(n,3;4,5)(u, i) =
4(n− 1) + 10n

3
=

14

3
n− 4

3
,

which also must be an integer. So n ≡ 2 (mod 3). So n ≡ 2 (mod 6) is a necessary

condition.

Next we prove the sufficiency, so suppose that n ≡ 2 (mod 6). We will show there exists

a GDD(n, 3, 4; 4, 5), (Zn × Z3, B) with groups Zn × {l} for each l ∈ Z3. Since Lemma 3.0.1

produces a GDD(2, 3, 4; 4, 5), we can assume that n ≥ 8. The design will be described as a

graph decomposition of the graph G(n, 3; 4, 5).

For each i ∈ Zn/2 let B(i) be a copy of R96 on the vertices in C(i) = {2i, 2i+ 1} × Z3,

where for each l ∈ Z3, {2i, 2i + 1} × {l} is a group. Since n ≥ 8 > 6, by Theorem 2.1

we can let S be a HSOLS of order n and of type 2n/2 on the set of symbols, Zn with

holes in H(n). By Theorem 2.2 (since n ≥ 8 and u = n/2 ≥ 4), for each l ∈ Z3 let

7



B′(l) be a copy of a (4, 2)-GDD of type 2n/2 on the vertex set Zn × {l} with groups in

H ′(l) = {{2i, 2i+ 1} × {l} | i ∈ Zn/2}. Then define the blocks in the design as follows:

B = (
⋃

i∈Zn/2
B(i)) ∪ (

⋃
l∈Z3

B′(l))

∪ {{(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 2)} | 0 ≤ i, j < n, (i, j) /∈ h for each

h ∈ H(n), a ∈ Z3},
reducing the sum in the second component of each vertex modulo 3.

We first count the number blocks we get in the construction to see if it equals b =

(7n2 − 2n)/2 (calculated above when proving the necessity).

|B| = |(
⋃

i∈Zn/2
B(i))|+ |(

⋃
l∈Z3

B′(l))|

+|({(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 2) | 0 ≤ i, j < n, (i, j) /∈ h for each

h ∈ H(n), a ∈ Z3})|

= (12)(n/2) + 3(n(n−1)−n
6

) + 3(2(
(
n
2

)
− (n/2)))

= 6n+ n(n−1)−n
2

+ (3n)(n− 1)− (3n)

= 7n2−2n
2

Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ1 or λ2) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/2. Then clearly e occurs in λ1 = 4

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 5 blocks

in B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where for each

i ∈ Zn/2, e does not join two vertices in C(i). The λ1 = 4 blocks containing the edge

{(x, a), (y, a)} are as follows:

{(x, a), (y, a), (x ◦ y, a + 1), (y ◦ x, a + 2)}, {(x, a), (y, a), (y ◦ x, a + 1), (x ◦ y, a + 2)},

and two blocks in B′(a).

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). By

8



properties (2) and (3) of a HSOLS, there exist unique symbols z1, ..., z4 in S such that

x ◦ z1 = y, z2 ◦ x = y, y ◦ z3 = x, and z4 ◦ y = x. By property (4) of a HSOLS,

there exists a unique pair z5, z6 in S such that z5 ◦ z6 = x and z6 ◦ z5 = y. Therefore

e = {(x, a), (y, b = a+ 1)} occurs in the following λ2 = 5 blocks:

{(x, a), (z1, a), (y = x ◦ z1, a+ 1), (z1 ◦ x, a+ 2)}, {(x, a), (z2, a), (y = z2 ◦ x, a+ 1), (x ◦

z2, a+2)}, {(y, a+1), (z3, a+1), (z3◦y, a+2), (x = y◦z3, a)}, {(z4, a+1), (y, a+1), (y◦

z4, a+2), (x = z4◦y, a)}, and {(z5, a+2), (z6, a+2), (x = z5◦z6, a), (y = z6◦z5, a+1)}.

Thus, every edge is covered the correct number of times by the blocks, so n ≡ 2 (mod

6) is a sufficient condition for a GDD(n, 3, 4; 4, 5) to exist.

9



Chapter 4

Generalizing Clatworthy Design S2

With one exception, the existence of generalized S2-designs (see Figure 4.1) is settled

in this section. We use a similar construction that is used in the previous section. As before,

we first find some small S2-designs.

Figure 4.1: S2

Lemma 4.0.2. There exists a GDD(2, 3, 4; 4, 2), and a GDD(5, 3, 4; 4, 2).

Proof. To produce a GDD(2, 3, 4; 4, 2), let V = Z2 × Z3 and B = {{(i, a), (i + 1, a), (i, a +

1), (i+ 1, a+ 1)} | i ∈ Z2, a ∈ Z3}; for each l ∈ Z3, Z2 × {l} is a group. (See Figure 4.2.)

When n = 5, 3 base blocks are provided that can be rotated “vertically and horizontally”

producing 45 blocks as required (see (∗) below). Formally, a GDD(5, 3, 4; 4, 2) is produced

by (Z5 × Z3, B), where

B = {{(i, a), (i + 1, a), (i + 2, a), (i + 3, a)}, {(i, a), (i + 2, a), (i + 1, a + 1), (i + 1, a +

2)}, {(i, a), (i+ 1, a), (i+ 3, a+ 1), (i+ 3, a+ 2)} | i ∈ Z5, a ∈ Z3},

and where for each l ∈ Z3, Z5 × {l} is a group. (See Figure 4.3.)

10



Figure 4.2: S2, n = 2

Figure 4.3: S2, n = 5

We now use these small S2-designs to obtain the following result.

Theorem 4.1. There exists a GDD(n, 3, 4; 4, 2) if and only if n ≡ 2 (mod 3), except possibly

if n = 11.

Proof. Again, we start by proving the necessity, so suppose there exists a

GDD(n, 3, 4; 4, 2). Each block containing a vertex (u, i) uses 3 of its incident edges. So

the number of blocks containing (u, i) is

dG(n,3;4,2)(u, i) =
4(n− 1) + 4n

3
=

8n− 4

3
,

which must be an integer. Thus n ≡ 2 (mod 3) is a necessary condition.
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To prove the sufficiency we assume that n ≡ 2 (mod 3), n 6= 11, and show there exists

a GDD(n, 3, 4; 4, 2). We will consider two cases in turn: n ≡ 2 (mod 6) and n ≡ 5 (mod 6).

First, suppose n ≡ 2 (mod 6). Since Lemma 4.0.2 produces a GDD(2, 3, 4; 4, 2), we can

assume that n ≥ 8.

For each i ∈ Zn/2 let B(i) be a copy of S2 on the vertices in C(i) = {2i, 2i + 1} × Z3,

where for each l ∈ Z3, {2i, 2i + 1} × {l} is a group. Since n ≥ 8 > 6, by Theorem 2.1

we can let S be a HSOLS of order n and of type 2n/2 on the set of symbols, Zn, with

holes in H(n). By Theorem 2.2 (since n ≥ 8 and u = n/2 ≥ 4), for each l ∈ Z3 let

B′(l) be a copy of a (4, 2)-GDD of type 2n/2 on the vertex set Zn × {l} with groups in

H ′(l) = {{2i, 2i+ 1} × {l} | i ∈ Zn/2}. Then define the blocks in the design as follows:

B = (
⋃

i∈Zn/2
B(i)) ∪ (

⋃
l∈Z3

B′(l))

∪ {{(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 1)} | 0 ≤ i < j < n, (i, j) 6∈ h for

each h ∈ H(n), a ∈ Z3},
reducing the sum in the second component of each vertex modulo 3.

First we check to see the right number of blocks has been defined. Since each block

contains six edges, the number of blocks in any such design is

b =
|E(G(n, 3; 4, 2))|

6
=

3(4n(n−1)
2

+ 2n2)

6
= 2n2 − n. (∗)

We now count the number of blocks we get in our construction to see if it equals

b = 2n2 − n.

12



|B| = |(
⋃

i∈Zn/2
B(i))|+ |(

⋃
l∈Z3

B′(l))|

+|({(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 1) | 0 ≤ i < j < n, (i, j) 6∈ h for

each h ∈ H(n), a ∈ Z3})|

= (6)(n/2) + 3(
((n

2)−
n
2
)2

6
) + 3(

(
n
2

)
− (n/2))

= 3n+ n(n−1)−n
2

+ 3(n(n−1)−n
2

)

= 3n+ 4(n(n−1)−n
2

)

= 3n+ 2n2 − 4n

= 2n2 − n
Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ1 or λ2) of blocks in B. We consider each edge, e, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/2. Then clearly e occurs in λ1 = 4

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 2 blocks

in B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x < y < n where for

each i ∈ Zn/2, e does not join two vertices in C(i). By property (4) of a HSOLS there

exists a unique pair of symbols z1, z2 in S such that z1 ◦ z2 = x and z2 ◦ z1 = y. The

λ1 = 4 blocks containing the edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (x ◦ y, a+ 1), (y ◦ x, a+ 1)}, {(z1, a+ 2), (z2, a+ 2), (x = z1 ◦ z2, a), (y =

z2 ◦ z1, a)}, and in two blocks in B′(a).

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i), say b ≡ a+ 1 (mod 3). By properties (2) and (3)

of a HSOLS, there exist unique symbols z3, z4 in S such that x ◦ z3 = y and z4 ◦ x = y.

Then edge {(x, a), (y, b = a+ 1)} occurs in the following λ2 = 2 blocks:

{(x, a), (z3, a), (y = x ◦ z3, a+ 1), (z3 ◦ x, a+ 1)} and {(x, a), (z4, a), (x ◦ z4, a+ 1), (y =

z4 ◦ x, a+ 1)}.

Thus, n ≡ 2 (mod 6) is a sufficient condition for a GDD(n, 3, 4; 4, 2) to exist.

13



Now suppose n ≡ 5 (mod 6). Again, the smallest case when n = 5 is constructed in

Lemma 4.0.2, and the case n = 11 is excluded in the theorem, so we can assume that n ≥ 17.

For each i ∈ (Zbn/2c\Z3) letB(i) be a copy of S2 on the vertices in C(i) = {2i−1, 2i}×Z3,

where for each l ∈ Z3, {2i− 1, 2i} × {l} is a group. Let B(2) be the GDD(5, 3, 4; 4, 2) from

Lemma 4.0.2. Since n ≥ 17 > 6, by Theorem 2.1 we can let S be a HSOLS of order n

and of type 2(n−5)/251 on the set of symbols Zn, with holes in H(n). By Theorem 2.2 (since

n ≥ 17 and u = (n − 5)/2 ≥ 6 > 4), for each l ∈ Z3 let B′(l) be a copy of a (4, 2)-GDD of

type 2(n−5)/251 on the vertex set Zn × {l} with groups in H ′(l) = {{{2i − 1, 2i} × {l} | i ∈

Zbn/2c \ Z3} ∪ (Z5 × {l})}. Then define the blocks in the design as follows:

B = (
⋃

i∈(Zbn/2c\Z2)
B(i)) ∪ (

⋃
l∈Z3

B′(l))

∪ {{(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 1)} | 0 ≤ i < j < n, (i, j) 6∈ h for

each h ∈ H(n), a ∈ Z3},
reducing the sum in the second component of each vertex modulo 3.

We first count the number of blocks we get in our construction to see if it equals

b = 2n2 − n (see (∗)).

|B| = |(
⋃

i∈(Zbn/2c\Z2)
B(i))|+ |(

⋃
l∈Z3

B′(l))|

+|({(i, a), (j, a), (i ◦ j, a+ 1), (j ◦ i, a+ 1) | 0 ≤ i < j < n, (i, j) 6∈ h for

each h ∈ H(n), a ∈ Z3})|

= 45 + (6)(n−5
2

) + 3(
((n

2)−
n−5
2
−10)2

6
) + 3(

(
n
2

)
− n−5

2
− 10)

= 45 + 3n− 15 + (n(n−1)−n−15
2

) + 3(n(n−1)−n−15
2

)

= 30 + 3n+ 4(n
2−2n−15

2
)

= 30 + 3n+ 2n2 − 4n− 30

= 2n2 − n
Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ1 or λ2) of blocks in B; the proof is essentially identical to the previous case, so is

left to the reader.

Thus, n ≡ 5 (mod 6) is a sufficient condition for a GDD(n, 3, 4; 4, 2) to exist.
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4.1 A Corollary - Generalizing S4

It turns out that the necessary conditions for the existence of a GDD(n, 3, 4; 8, 4),

generalizing the Clatworthy design S4, are the same as for the existence of a

GDD(n, 3, 4; 4, 2) (i.e. S2-design). So we immediately obtain the following corollary.

Corollary 4.1.1. There exists a GDD(n, 3, 4; 8, 4) if and only if n ≡ 2 (mod 3), except

possibly if n = 11.

Proof. The necessity follows since the degree of each vertex, namely (8(n− 1) + 8n)/3 must

be an integer. The sufficiency follows by taking two copies of the S2-design constructed in

Theorem 4.1.
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Chapter 5

Generalizing Clatworthy Design S1

We first find a small S1-design.

Figure 5.1: S1

Lemma 5.0.2. There exists a GDD(2, 3, 4; 2, 1).

Proof. To produce a GDD(2, 3, 4; 2, 1), let V = Z2 × Z3 and B = {{(0, a), (1, a), (0, a +

1), (1, a+ 1)} | a ∈ Z3}; for each l ∈ Z3, Z2 × {l} is a group. (See Figure 5.2.)

Figure 5.2: S1, n = 2
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Theorem 5.1. There exists a GDD(n, 3, 4; 2, 1) if and only if n ≡ 2 (mod 6).

Proof. We start by proving the necessity, so suppose there exists a

GDD(n, 3, 4; 2, 1). Since each block contains six edges, the number of blocks in any

such design is

b =
|E(G(n, 3; 2, 1))|

6
=

3(2n(n−1)
2

+ 3n2)

6
= n2 − n

2
.

Clearly the number of blocks is an integer, so n must be even.

For each block, each vertex contains 3 of its incident edges. So the number of blocks

containing each vertex v is

dG(n,3;2,1)(v) =
2(n− 1) + 2n

3
=

4n− 2

3
,

which must be an integer. Thus n ≡ 2 (mod 3). Since n must also be even, n ≡ 2 (mod

6) is a necessary condition.

Next we prove the sufficiency, so suppose that n ≡ 2 (mod 6). We will show there exists

a GDD(n, 3, 4; 2, 1), (Zn × Z3, B) with groups Zn × {l} for each l ∈ Z3. Since Lemma 5.0.2

produces a GDD(2, 3, 4; 2, 1), we can assume that n ≥ 8. The design will be described as a

graph decomposition of the graph G(n, 3; 2, 1).

For each i ∈ Zn/2, let B(i) be a copy of S2 on the vertices in C(i) = {2i, 2i + 1} × Z3,

where for each l ∈ Z3, {2i, 2i + 1} × {l} is a group. By Theorem 2.3, there exists a (3, 1)-

GDD, (Zn, {{2i, 2i + 1} | i ∈ Zn/2}, B1), that has nesting f of type 2n/2. Let B1(l) =

{{(x, l), (y, l), (z, l), (f(b), l+ 1)}, {(x, l+ 1), (y, l+ 1), (z, l+ 1), (f(b), l)} | l ∈ Z3, {x, y, z} ∈

B1}, reducing the sums in the second coordinate of each vertex modulo 3. Then define the

blocks in the design as follows:

B = (
⋃

i∈Zn/2
B(i)) ∪ (

⋃
l∈Z3

B1(l))
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We first count the number of blocks we get in the construction to see if it equals b = n2−n
2

(calculated above when proving the necessity).

|B| = |(
⋃

i∈Zn/2
B(i))|+ |(

⋃
l∈Z3

B1(l))|

= (3)(n/2) + (2)(3)((n(n−1)−n
2

)/3)

= 3n
2

+ 2(n(n−1)−n)
2

= 3n+2n2−2n−2n
2

= 2n2−n
2

= n2 − n
2

Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ1 or λ2) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/2. Then clearly e occurs in λ1 = 2

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 1 block in

B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where for each

i ∈ Zn/2, e does not join two vertices in C(i). Let {x, y, z1} be the triple in B1(a) that

contains {x, y}, and suppose f({x, y, z1}) = z2 is the vertex added to the triple by the

nesting. Then the λ1 = 2 blocks containing the edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (z1, a), (z2, a+ 1)}, {(x, a), (y, a), (z1, a), (z2, a+ 2)}.

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). Since

{x, y} ∈ G(n, 3; 2, 1), exactly one of the following occurs: either there exists a triple

t1 = {x, z3, z4} ∈ B1(a) such that f(t1) = y or there exists a triple t2 = {y, z3, z4} ∈

B1(a) such that f(t2) = x. Therefore e = {(x, a), (y, b = a + 1)} occurs in λ2 = 1 of

the following blocks:

{(x, a), (z3, a), (z4, a), (y, a+ 1)} or {(x, a), (y, a+ 1), (z3, a+ 1), (z4, a+ 1)}.
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Thus, every edge is covered the correct number of times by the blocks, so n ≡ 2 (mod

6) is a sufficient condition for a GDD(n, 3, 4; 2, 1) to exist.

5.1 A Corollary - Generalizing S5

It turns out that the necessary conditions for the existence of a GDD(n, 3, 4; 10, 5),

generalizing the Clatworthy design S5, are the same as for the existence of a

GDD(n, 3, 4; 2, 1) (i.e. S1-design). So we immediately obtain the following corollary.

Corollary 5.1.1. There exists a GDD(n, 3, 4; 10, 5) if and only if n ≡ 2 (mod 6).

Proof. The necessity follows since the degree of each vertex, namely (20n − 10)/3 must be

an integer. The sufficiency follows by taking five copies of the S1-design constructed in

Theorem 5.1.
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Chapter 6

Generalizing Clatworthy Design S3

To complete this design we will use the nesting described in the Preliminaries section,

as well as Theorem 2.3 provided by Jin Hua Wang [15].

Figure 6.1: S3

We first find a small S3-design.

Lemma 6.0.2. There exists a GDD(2, 3, 4; 6, 3); and a GDD(4, 3, 4; 6, 3).

Proof. To produce a GDD(2, 3, 4; 6, 3), let V = Z2×Z3 and each l ∈ Z3, Z2×{l} is a group,

and take three copies of each block produced in the small S1-design described in the proof

of Lemma 5.0.2. (See Figure 6.2.)

When n = 4, four base blocks are provided that can be rotated “vertically and hor-

izontally” producing 42 blocks as required. Formally, a GDD(4, 3, 4; 6, 3) is produced by

(Z4 × Z3, B), where

B = {{(i, a), (i + 1, a), (i + 2, a), (i, a + 1)}, {(i, a), (i + 1, a), (i + 1, a + 1), (i + 2, a +

1)}, {(i, a), (i + 2, a), (i, a + 1), (i + 3, a + 2)} | i ∈ Z4, a ∈ Z3} ∪ {{(i, a), (i + 1, a), (i +
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Figure 6.2: S3, n = 2 (Take 3 copies of each K4)

2, a), (i+ 3, a)} | i ∈ Z2, a ∈ Z3}, and where for each l ∈ Z3, Z4×{l} is a group. (See Figure

6.3.)

Figure 6.3: S3, n = 4 (The top K4 only rotates halfway horizontally on each level)

Theorem 6.1. There exists a GDD(n, 3, 4; 6, 3) if and only if n is even, except possibly if

n = 6.

Proof. We start by proving the necessity, so suppose there exists a

GDD(n, 3, 4; 6, 3). Since each block contains six edges, the number of blocks in any

such design is

b =
|E(G(n, 3; 6, 3))|

6
=

3(6n(n−1)
2

) + 3(3n2)

6
= 3n2 − 3n

2
.
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Clearly the number of blocks is an integer, so n must be even.

For each block, each vertex contains 3 of its incident edges. So the number of blocks

containing each vertex v is

dG(n,3;6,3)(v) =
6(n− 1) + 2(3n)

3
= 4n− 2,

which makes no restrictions on n. Thus n is even is a necessary condition.

To prove the sufficiency we assume that n is even, n 6= 6, and show there exists a

GDD(n, 3, 4; 6, 3). We will consider three cases in turn: n ≡ 2 (mod 6), n ≡ 4 (mod 6), and

n ≡ 0 (mod 6).

First suppose n ≡ 2 (mod 6). Since n ≡ 2 (mod 6) is the necessary condition for

the existence of a GDD(n, 3, 4; 2, 1) (i.e. S1-design), we immediately obtain the following

corollary.

Corollary 6.0.3. There exists a GDD(n, 3, 4; 6, 3) if and only if n ≡ 2 (mod 6)

Proof. The necessity follows since the number of blocks, namely 3n2− 3n
2

must be an integer.

The sufficiency follows by taking three copies of the S1-design constructed in Theorem

5.1.

Now suppose n ≡ 4 (mod 6). Since Lemma 6.0.2 produces a GDD(4, 3, 4; 6, 3), we can

assume that n ≥ 10. The design will be described as a graph decomposition of the graph

G(n, 3; 6, 3).

For each i ∈ Zn/2, let B(i) be a copy of S3 on the vertices in C(i) = {2i, 2i + 1} × Z3,

where for each l ∈ Z3, {2i, 2i + 1} × {l} is a group. By Theorem 2.3, there exists a (3, 3)-

GDD, (Zn, {{2i, 2i + 1} | i ∈ Zn/2}, B1), that has nesting f of type 2n/2. Let B1(l) =

{{(x, l), (y, l), (z, l), (f(b), l+ 1)}, {(x, l+ 1), (y, l+ 1), (z, l+ 1), (f(b), l)} | l ∈ Z3, {x, y, z} ∈

B1}, reducing the sums in the second coordinate of each vertex modulo 3. Then define the

blocks in the design as follows:
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B = (
⋃

i∈Zn/2
B(i)) ∪ (

⋃
l∈Z3

B1(l))

We first count the number of blocks we get in the construction to see if it equals b =

3n2 − 3n
2

(calculated above when proving the necessity).

|B| = |(
⋃

i∈Zn/2
B(i))|+ |(

⋃
l∈Z3

B1(l))|

= (9)(n/2) + (3)(2)(3)((n(n−1)−n
2

)/3)

= 9n
2

+ 6(n(n−1)−n)
2

= 9n+6n2−6n−6n
2

= 6n2−3n
2

= 3n2 − 3n
2

Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ1 or λ2) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/2. Then clearly e occurs in λ1 = 6

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 3 block in

B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where

for each i ∈ Zn/2, e does not join two vertices in C(i). Let {x, y, z1}, {x, y, z3}, and

{x, y, z5} be the triples in B1(a) that contain {x, y}, and suppose f({x, y, z1}) = z2,

f({x, y, z3}) = z4, and f({x, y, z5}) = z6 are the vertices added to the triples by the

nesting. Then the λ1 = 6 blocks containing the edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (z1, a), (z2, a+ 1)}, {(x, a), (y, a), (z1, a), (z2, a+ 2)}, {(x, a), (y, a),

(z3, a), (z4, a + 1)}, {(x, a), (y, a), (z3, a), (z4, a + 2)}, {(x, a), (y, a), (z5, a), (z6, a + 1),

and {(x, a), (y, a), (z5, a), (z6, a+ 2).

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). Since

{x, y} ∈ G(n, 3; 6, 3), exactly one of the following occurs for each of the λ2 = 3 {x, y}
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edges: either there exists a triple t1 = {x, z7, z8} ∈ B1(a) such that f(t1) = y or

there exists a triple t2 = {y, z7, z8} ∈ B1(a) such that f(t2) = x. The same argu-

ment can be made for the other two {x, y} edges using {z9, z10, z11, z12}. Therefore

e = {(x, a), (y, b = a+ 1)} occurs in λ2 = 3 of the following blocks:

{(x, a), (z7, a), (z8, a), (y, a+1)} or {(x, a), (y, a+1), (z7, a+1), (z8, a+1)}, {(x, a), (z9, a),

(z10, a), (y, a+1)} or {(x, a), (y, a+1), (z9, a+1), (z10, a+1)}, and {(x, a), (z11, a), (z12, a),

(y, a+ 1)} or {(x, a), (y, a+ 1), (z11, a+ 1), (z12, a+ 1)}.

Thus, n ≡ 4 (mod 6) is a sufficient condition for a GDD(n, 3, 4; 6, 3) to exist.

Now suppose n ≡ 0 (mod 6). Since n = 6 is the possible exception, we can assume that

n ≥ 12. Similarly to the n ≡ 4 (mod 6) case, there exists a (3, 3)-GDD, (Zn, {{2i, 2i + 1} |

i ∈ Zn/2}, B1), that has nesting f of type 2n/2 by Theorem 2.3. Therefore, the arguments

for the n ≡ 0 (mod 6) case are essentially the same for the n ≡ 4 (mod 6) case.

Thus, n ≡ 0 (mod 6) is a sufficient condition for a GDD(n, 3, 4; 6, 3) to exist.
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Chapter 7

Generalizing Clatworthy Design R104

With two possible exceptions, the existence of a generalized R104-design (see Figure

7.1) is settled in this section. We use a similar construction that is used in the previous

section. As before, we first find some small R104-designs.

Figure 7.1: R104

Lemma 7.0.4. There exists a GDD(3, 3, 4; 3, 1), and a GDD(12, 3, 4; 3, 1).

Proof. To produce a GDD(3, 3, 4; 3, 1), let V = Z3 × Z3 and B = {{(i, a), (i + 1, a), (i +

2, a), (i, a+ 1)} | i ∈ Z3, a ∈ Z3}; for each l ∈ Z3, Z3 × {l} is a group. (See Figure 7.2.)

When n = 12, 4 base blocks are provided that can be rotated producing 144 blocks

towards the required number of blocks. Let the 36 vertices be labeled 0, 1, 2, ..., 35 and

partitioned into three groups such that vertices with labels that are 0 (mod 3) are one group, 1

(mod 3) are the second group, and 2 (mod 3) are the third group. Then consider the following

four blocks: {0, 2, 6, 9}, {0, 9, 10, 22}, {0, 6, 18, 21}, and {0, 8, 20, 25}. (See Figure 7.3; the

first block is depicted.) When these four blocks are rotated they cover the edges of difference
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Figure 7.2: R104, n = 3

3, 6, 9, 15, 18 twice, difference 12 three times, and differences 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17

once. In other words, we have covered the mixed edges the required one time and the pure

edges two of the required three times, with the exception of the pure edges of difference 12

which are completely covered. Finally, to cover the pure edges that are left we use Theorem

2.2; this exists since n = 12 and u = n/3 ≥ 4, to put a (4, 1) − GDD of type 3n/3 on each

level with group Gi. The edges of difference 12 make 4 triangles so the vertices in each

triangle form a group in the (4, 1) − GDD of type 34. On each level, the (4, 1) − GDD of

type 3n/3 produces 9 blocks for a total of 27 blocks. Thus, the 144 + 27 = 171 which is the

required number of blocks (see (∗) below).

Figure 7.3: R104, n = 12; the first block of four base blocks is depicted
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Theorem 7.1. There exists a GDD(n, 3, 4; 3, 1) if and only if n ≡ 0, 3 (mod 12), except

possibly if n = 24, 36.

Proof. We start by proving the necessity, so suppose there exists a

GDD(n, 3, 4; 3, 1). Since each block contains six edges, the number of blocks in any

such design is

b =
|E(G(n, 3; 3, 1))|

6
=

3(3n(n−1)
2

) + 3(n2)

6
=

5n2 − 3n

4
. (∗)

Clearly the number of blocks is an integer, so n ≡ 0, 3 (mod 12).

For each block, each vertex contains 3 of its incident edges. So the number of blocks

containing each vertex v is

dG(n,3;3,1)(v) =
3(n− 1) + 2(n)

3
=

5

3
n− 3,

which means n ≡ 0 (mod 3). Thus n ≡ 0, 3 (mod 12) is a necessary condition.

To prove the sufficiency we assume that n ≡ 0, 3 (mod 12), n 6= 24, 36, and show there

exists a GDD(n, 3, 4; 3, 1). We will consider two cases in turn: n ≡ 3 (mod 12) and n ≡ 0

(mod 12), n ≥ 48.

First suppose n ≡ 3 (mod 12). Since Lemma 7.0.4 produces a GDD(3, 3, 4; 3, 1), we can

assume that n ≥ 15. The design will be described as a graph decomposition of the graph

G(n, 3; 3, 1).

For each i ∈ Zn/3, let B(i) be a copy of R104 on the vertices in C(i) = {3i, 3i +

1, 3i + 2} × Z3, where for each l ∈ Z3, {3i, 3i + 1, 3i + 2} × {l} is a group. By Theorem

2.3, there exists a (3, 1)-GDD, (Zn, {{3i, 3i + 1, 3i + 2} | i ∈ Zn/3}, B1), that has nesting

f of type 3n/3. Let B1(l) = {{(x, l), (y, l), (z, l), (f(b), l + 1)}, {(x, l + 1), (y, l + 1), (z, l +

1), (f(b), l)} | l ∈ Z3, {x, y, z} ∈ B1}, reducing the sums in the second coordinate of each

vertex modulo 3. By Theorem 2.2 (since n ≥ 15 and u = n/3 ≥ 4), for each l ∈ Z3 let
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B′(l) be a copy of a (4, 1) − GDD of type 3n/3 on the vertex set Zn × {l} with groups in

{{3i, 3i+ 1, 3i+ 2} × {l} | i ∈ Zn/3}. Then define the blocks in the design as follows:

B = (
⋃

i∈Z3
B(i)) ∪ (

⋃
l∈Z3

B1(l)) ∪ (
⋃

l∈Z3
B′(l))

We first count the number of blocks we get in the construction to see if it equals b =

5n2−3n
4

(calculated above when proving the necessity).

|B| = |(
⋃

i∈Z3
B(i))|+ |(

⋃
l∈Z3

B1(l))|+ |(
⋃

l∈Z3
B′(l))|

= (9)(n/3) + (2)(3)((n(n−1)−2n
2

)/3) + 3(
((n

2)−n)
6

)

= 9n
3

+ n2 − n− 2n+
n(n−1)

2
−n

2

= 3n+ n2 − 3n+ n2−n
4
− n

2

= 4n2+n2−n−2n
4

= 5n2−3n
4

Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ3 or λ1) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/3. Then clearly e occurs in λ1 = 3

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 1 block in

B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where for each

i ∈ Zn/2, e does not join two vertices in C(i). Let {x, y, z1} be the triple in B1(a) that

contains {x, y}, and suppose f({x, y, z1}) = z2 is the vertex added to the triple by the

nesting. Then the λ1 = 3 blocks containing the edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (z1, a), (z2, a+ 1)}, {(x, a), (y, a), (z1, a), (z2, a+ 2)}, and in one block in

B′(a).

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). Since

{x, y} ∈ G(n, 3; 3, 1), exactly one of the following occurs: either there exists a triple

t1 = {x, z3, z4} ∈ B1(a) such that f(t1) = y or there exists a triple t2 = {y, z3, z4} ∈
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B1(a) such that f(t2) = x. Therefore e = {(x, a), (y, b = a + 1)} occurs in λ2 = 1 of

the following blocks:

{(x, a), (z3, a), (z4, a), (y, a+ 1)} or {(x, a), (y, a+ 1), (z3, a+ 1), (z4, a+ 1)}.

Thus, n ≡ 3 (mod 12) is a sufficient condition for a GDD(n, 3, 4; 3, 1) to exist.

Now suppose n ≡ 0 (mod 12), n ≥ 48.

For each i ∈ Zn/12, let B(i) be a copy of the GDD(12, 3, 4; 3, 1) created in Lemma 7.0.4

on the vertices in C(i) = {12i, 12i+ 1, 12i+ 2, 12i+ 3, 12i+ 4, 12i+ 5, 12i+ 6, 12i+ 7, 12i+

8, 12i+ 9, 12i+ 10, 12i+ 11}×Z3, where for each l ∈ Z3, {12i, 12i+ 1, 12i+ 2, 12i+ 3, 12i+

4, 12i+ 5, 12i+ 6, 12i+ 7, 12i+ 8, 12i+ 9, 12i+ 10, 12i+ 11} × {l} is a group. By Theorem

2.3, there exists a (3, 1) − GDD, (Zn, {{12i, 12i + 1, 12i + 2, 12i + 3, 12i + 4, 12i + 5, 12i +

6, 12i + 7, 12i + 8, 12i + 9, 12i + 10, 12i + 11} | i ∈ Zn/12}, B1), that has nesting f of type

12n/12. Let B1(l) = {{(x, l), (y, l), (z, l), (f(b), l+1)}, {(x, l+1), (y, l+1), (z, l+1), (f(b), l)} |

l ∈ Z3, {x, y, z} ∈ B1}, reducing the sums in the second coordinate of each vertex modulo

3. By Theorem 2.2 (since n ≥ 48 and u = n/3 ≥ 4), for each l ∈ Z3 let B′(l) be a copy of a

(4, 1)−GDD of type 12n/12 on the vertex set Zn × {l} with groups in {{12i, 12i + 1, 12i +

2, 12i+ 3, 12i+ 4, 12i+ 5, 12i+ 6, 12i+ 7, 12i+ 8, 12i+ 9, 12i+ 10, 12i+ 11}×{l} | i ∈ Zn/3}.

Then define the blocks in the design as follows:

B = (
⋃

i∈Z12
B(i)) ∪ (

⋃
l∈Z3

B1(l)) ∪ (
⋃

l∈Z3
B′(l))

We first count the number of blocks we get in the construction to see if it equals b =

5n2−3n
4

(calculated above when proving the necessity).

|B| = |(
⋃

i∈Z12
B(i))|+ |(

⋃
l∈Z3

B1(l))|+ |(
⋃

l∈Z3
B′(l))|

= (171)(n/12) + (2)(3)((n(n−1)−11n
2

)/3) + 3(
(n
2)−(

(12)(11)
2

)( n
12

)

6
)

= 171n
12

+ n2 − n− 11n+
n(n−1)

2
− 11n

2

2

= 57n
4

+ n2 − 12n+ n2−n
4
− 11n

4

= 57n+4n2−48n+n2−n−11n
4

= 5n2−3n
4
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Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ3 or λ1) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/3. Then clearly e occurs in λ1 = 3

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 1 block in

B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where for each

i ∈ Zn/2, e does not join two vertices in C(i). Let {x, y, z1} be the triple in B1(a) that

contains {x, y}, and suppose f({x, y, z1}) = z2 is the vertex added to the triple by the

nesting. Then the λ1 = 3 blocks containing the edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (z1, a), (z2, a+ 1)}, {(x, a), (y, a), (z1, a), (z2, a+ 2)}, and in one block in

B′(a).

3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). Since

{x, y} ∈ G(n, 3; 3, 1), exactly one of the following occurs: either there exists a triple

t1 = {x, z3, z4} ∈ B1(a) such that f(t1) = y or there exists a triple t2 = {y, z3, z4} ∈

B1(a) such that f(t2) = x. Therefore e = {(x, a), (y, b = a + 1)} occurs in λ2 = 1 of

the following blocks:

{(x, a), (z3, a), (z4, a), (y, a+ 1)} or {(x, a), (y, a+ 1), (z3, a+ 1), (z4, a+ 1)}.

Thus, n ≡ 0 (mod 12), n ≥ 48, is a sufficient condition for a GDD(n, 3, 4; 3, 1) to

exist.
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Chapter 8

Generalizing Clatworthy Design R105

With one possible exception, the existence of a generalized R105-design (see Figure 8.1)

is settled in this chapter.

Figure 8.1: R105

Lemma 8.0.5. There exists a GDD(6, 3, 4; 6, 2) and a GDD(9, 3, 4; 6, 2).

Proof. To produce a GDD(6, 3, 4; 6, 2), let V = Z9 × Z2 where the groups are vertices 0

(mod 3)×Z2, 1 (mod 3)×Z2, and 2 (mod 3)×Z2. Now, consider the following nine blocks

{(0, 1), (1, 1), (3, 1), (4, 2)}, {(0, 1), (1, 1), (5, 1), (0, 2)}, {(0, 1), (3, 1), (6, 1), (0, 2)},

{(4, 1), (0, 2), (1, 2), (3, 2)}, {(3, 1), (0, 2), (1, 2), (5, 2)}, {(0, 1), (0, 2), (3, 2), (6, 2)}, {(0, 1),

(2, 1), (2, 2), (5, 2)}, {(0, 1), (3, 1), (1, 2), (3, 2)}, and {(0, 1), (3, 1), (0, 2), (6, 2)}. (See Figure

8.2; the first block is depicted.) When rotated, these nine blocks cover the edges within a

group the required six times and the edges between groups the required two times. Also, note

that each block produces nine blocks giving 81 total blocks, which is the required number of

blocks.
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Figure 8.2: R105, n = 6; the first block of nine base blocks is depicted

To produce a GDD(9, 3, 4; 6, 2), let V = Z27 where the groups are vertices 0 (mod 3), 1

(mod 3), and 2 (mod 3). Then consider the following seven blocks: {0, 1, 3, 9}, {0, 3, 9, 13},

{0, 3, 12, 16}, {0, 3, 15, 20}, {0, 6, 11, 12}, {0, 6, 8, 15}, {0, 3, 9, 12}. (See Figure 8.3; the first

block is depicted.) When rotated, these seven blocks cover the edges of differences 3, 6, 9, 12

six times and the edges of differences 1, 2, 4, 5, 7, 8, 10, 11, 13 twice. In other words, we have

covered the pure edges the required six times and the mixed edges the required two times.

Also, note that each of these seven blocks produces 27 blocks giving 189 total blocks, which

is the required number of blocks.

Theorem 8.1. There exists a GDD(n, 3, 4; 6, 2) if and only if n ≡ 0 (mod 3).

Proof. We start by proving the necessity, so suppose there exists a

GDD(n, 3, 4; 6, 2). Since each block contains six edges, the number of blocks in any

such design is
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Figure 8.3: R105, n = 9; the first of seven base blocks is depicted

b =
|E(G(n, 3; 6, 2))|

6
=

3(6n(n−1)
2

) + 3(2n2)

6
=

5n2 − 3n

2
=
n(5n− 3)

2
. (∗)

Clearly the number of blocks is an integer, so there are no restrictions on n because

either n or 5n− 3 is even.

For each block, each vertex contains 3 of its incident edges. So the number of blocks

containing each vertex v is

dG(n,3;6,2)(v) =
6(n− 1) + 2(2n)

3
=

10

3
n− 2,

which means n ≡ 0 (mod 3) is a necessary condition.

To prove the sufficiency we assume that n ≡ 0 (mod 3), n 6= 9, and show there exists a

GDD(n, 3, 4; 6, 2).

For each i ∈ Zn/3, let B(i) be a copy of R105 on the vertices in C(i) = {3i, 3i +

1, 3i + 2} × Z3, where for each l ∈ Z3, {3i, 3i + 1, 3i + 2} × {l} is a group. By Theorem

2.3, there exists a (3, 2)-GDD, (Zn, {{3i, 3i + 1, 3i + 2} | i ∈ Zn/3}, B1), that has nesting

f of type 3n/3. Let B1(l) = {{(x, l), (y, l), (z, l), (f(b), l + 1)}, {(x, l + 1), (y, l + 1), (z, l +
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1), (f(b), l)} | l ∈ Z3, {x, y, z} ∈ B1}, reducing the sums in the second coordinate of each

vertex modulo 3. By Theorem 2.2 (since n ≥ 12 and u = n/3 ≥ 4), for each l ∈ Z3 let

B′(l) be a copy of a (4, 1) − GDD of type 3n/3 on the vertex set Zn × {l} with groups in

{{3i, 3i+ 1, 3i+ 2} × {l} | i ∈ Zn/3}. Then define the blocks in the design as follows:

B = (
⋃

i∈Z3
B(i)) ∪ (

⋃
l∈Z3

B1(l)) ∪ (
⋃

l∈Z3
B′(l))

We first count the number of blocks we get in the construction to see if it equals b =

5n2−3n
2

(calculated above when proving the necessity).

|B| = |(
⋃

i∈Z3
B(i))|+ |(

⋃
l∈Z3

B1(l))|+ |(
⋃

l∈Z3
B′(l))|

= (18)(n/3) + (2)(2)(3)((n(n−1)−2n
2

)/3) + (2)(3)(
((n

2)−n)
6

)

= 18n
3

+ 2n2 − 2n− 4n+ n(n−1)−2n
2

= 6n+ 2n2 − 6n+ n2−3n
2

= 4n2+n2−3n
2

= 5n2−3n
2

Since |B| = b it suffices to check that each edge occurs in at least the correct number

(that is, λ3 or λ1) of blocks in B. We consider each edge, e = {(x, a), (y, b)}, in turn.

1. Suppose e joins two vertices in C(i) for some i ∈ Zn/3. Then clearly e occurs in λ1 = 6

blocks in B(i) if e joins two vertices in the same group and e occurs in λ2 = 2 block in

B(i) if e joins two vertices in different groups, as required.

2. Next suppose that e = {(x, a), (y, a)} for some a ∈ Z3 and 0 ≤ x, y < n where for each

i ∈ Zn/2, e does not join two vertices in C(i). Let {x, y, z1} and {x, y, z3} be the triples

in B1(a) that contain {x, y}, and suppose f({x, y, z1}) = z2 and f({x, y, z3}) = z4 are

the vertices added to the triples by the nesting. Then the λ1 = 6 blocks containing the

edge {(x, a), (y, a)} are as follows:

{(x, a), (y, a), (z1, a), (z2, a+ 1)}, {(x, a), (y, a), (z1, a), (z2, a+ 2)}, {(x, a), (y, a),

(z3, a), (z4, a+ 1)}, {(x, a), (y, a), (z3, a), (z4, a+ 2)} and in two blocks in B′(a).
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3. Finally suppose e = {(x, a), (y, b)} where a, b ∈ Z3, a 6= b and where for each i ∈ Zn/2,

e does not join two vertices in C(i). We can assume that b ≡ a + 1 (mod 3). Since

{x, y} ∈ G(n, 3; 6, 2), exactly one of the following occurs: either there exists a triple

t1 = {x, z5, z6} ∈ B1(a) such that f(t1) = y or there exists a triple t2 = {y, z5, z6} ∈

B1(a) such that f(t2) = x. The same argument can be made for the other {x, y} edge

using {z7, z8}. Therefore e = {(x, a), (y, b = a + 1)} occurs in λ2 = 2 of the following

blocks:

{(x, a), (z5, a), (z6, a), (y, a+1)} or {(x, a), (y, a+1), (z5, a+1), (z6, a+1)}, and {(x, a),

(z7, a), (z8, a), (y, a+ 1)} or {(x, a), (y, a+ 1), (z7, a+ 1), (z8, a+ 1)}.

Thus, n ≡ 6, 9 (mod 12), n 6= 6, 9, is a sufficient condition for a GDD(n, 3, 4; 6, 2) to

exist.
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