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Abstract

In this work, we will study several examples of countably compact, countably tight, non-

compact spaces. After reviewing the important basic notions, we will examine a construction

of several such spaces first given by Manes in “Monads in Topology” and will then detail

how to construct such spaces using a more direct and explicit topological process. We will

then use this new framework to describe several new spaces and to prove several propositions

which are much more transparent from this new viewpoint.
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Chapter 1

Introduction

A vast body of literature is devoted to the study of compact Hausdorff spaces. The class

of compact Hausdorff spaces is well behaved in many important ways, but there is at least

one sense in which compact Hausdorff spaces may be quite poorly behaved: any metric space

is sequential, i.e. the topology is entirely determined by convergent sequences in the space,

but there are non-trivial compact Hausdorff spaces with no non-trivial convergent sequences.

A natural question is: are there topological spaces satisfying a weaker form of compactness

but which are to some degree determined by sequences in the space? In this work, we will

single out countable compactness as the weaker form of compactness under consideration.

When considering countable compactness, there is a natural question: what can be said

about spaces which are countably compact but not compact? For instance, no such space can

be Lindelöf. The specific question “is every separable, countably compact, countably tight

space compact?” was posed as a “classic problem” by Nyikos in [2]. A series of examples

of countably compact, countably tight, non-compact spaces satisfying successively stronger

separation properties has been constructed [3] [4], but most such constructions require the

assumption of additional axioms beyond ZFC. The strongest such example currently known

to exist in ZFC was constructed by Manes in [1] using the category-theoretical concept of a

monad.

In this work, we will give a construction of the spaces first described by Manes using a

new and more explicit topological approach. In Chapter 2, we review the basic background

notions. In Chapter 3, we summarize Manes’ construction using monads. In Chapter 4, we

will detail the new topological construction of Manes’ spaces and prove, using our description,

that they give examples of countably compact, countably tight, non-compact spaces and
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discuss their other properties. We will also use this topological framework to construct a new

larger class of spaces with many similar properties. Finally, in Chapter 5, we will discuss some

applications of this new framework by providing several propositions and constructions that

would be either much more opaque or outright impossible from the categorical perspective.
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Chapter 2

Background Definitions and Theorems

The material in this section is standard and can be found in any introductory topology

book, but definitions and proofs can be found in [5]. Basic set theory notions are assumed,

and whenever unspecified, notation matches that used in [5].

The following terms are well known and will be used without further comment: topol-

ogy, topological space, subspace topology, finer topology, open set, neighborhood, closed set,

limit point, closure, sequence, continuous function, homeomorphism, compact, T1, Hausdorff,

regular, completely regular, connected, dense.

We will often consider two different topologies on the same space. For clarity, we make

the following definition:

Definition 2.1. If τ is a topology on a set X and A ⊂ X, clτ (A) is the closure of A in

(X, τ). More specifically:

clτ (A) = ∩{C | A ⊂ C,X \ C ∈ τ}

We may use cl(A) or simply A if τ is clear from context.

Throughout this chapter, X will denote an arbitrary topological space. The following

propositions are well known:

Proposition 2.2. If C ⊂ X is closed and X is compact, then C is compact.

Proposition 2.3. If C ⊂ X is compact and X is Hausdorff then C is closed in X.

Proposition 2.4. If C ⊂ X is compact and f : X → Y is continuous then f(C) ⊂ Y is

compact.
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Proposition 2.5. If xn → x in X and f : X → Y continuous then f(xn)→ f(x) in Y .

Proposition 2.6. If D ⊂ X is dense, Y is Hausdorff, and f, g : X → Y are continuous

with f |D = g|D, then f = g.

The following definitions are less widely known, and so they are included for complete-

ness:

Definition 2.7. X is Urysohn provided that for every pair of points x, y ∈ X there are open

sets Ux, Uy ⊂ X with x ∈ Ux and y ∈ Uy with Ux ∩ Uy = ∅.

Note that any Urysohn space is clearly Hausdorff.

Definition 2.8. X is extremally disconnected if for every open O ⊂ X, O is open.

The next several results outline the basic construction of and results about the Stone-

Čech compactification. Proofs are omitted, but may be found in [7].

Definition 2.9. A filter F on a set S is a collection of nonempty subsets of S such that:

• If A,B ∈ F then A ∩B ∈ F .

• If A ∈ F and C ⊃ A then C ∈ F .

Definition 2.10. An ultrafilter u on a set S is maximal filter on S.

Note that we must appeal to some form of the Axiom of Choice to show that ultrafilters

exist. By using Zorn’s Lemma, any filter can be extended to an ultrafilter.

Proposition 2.11. Let F be a filter on a set S. The following are equivalent:

1. F is an ultrafilter.

2. For every A ⊂ S, either A ∈ F or S \ A ∈ F .

3. If A ∪B = S, then either A ∈ F or B ∈ F .
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4. If A ⊂ S and A ∩B 6= ∅ for every B ∈ F , then A ∈ F .

Definition 2.12. C ⊂ X is a zero-set in X if there is a continuous f : X → R with

C = f−1(0).

Definition 2.13. A z-filter is a filter F on X so that for every C ∈ F , C is a zero-set in X.

Definition 2.14. A z-ultrafilter is a filter which is maximal among z-filters.

Definition 2.15. For x ∈ X, prin(x) = {B ⊂ X | B a zero-set, x ∈ B}.

A z-ultrafilter of the form prin(x) is called a principal ultrafilter.

Definition 2.16. βX is the set of all z-ultrafilters on X. The standard topology on βX

is defined as follows: if F ⊂ X is a zero-set, let F = {u ∈ βX | F ∈ u}. A basis for the

standard topology consists of all sets of the form βX \ F for F a zero-set in X.

We will primarily consider the case when X is discrete, in which case every subset is a

zero-set and βX can be described more simply as the set of all ultrafilters on X with basic

open sets of the form O for any O ⊂ X.

We will typically regard X as a subset of βX by identifying x ∈ X with prin(x) ∈ βX.

With this identification,

Proposition 2.17. X ⊂ βX is dense.

Proposition 2.18. βX is a compact Hausdorff space.

If X is a completely regular, Hausdorff space, the inclusion map X ↪→ βX is an embed-

ding and βX is often referred to as the Stone-Čech compactification of X.

Proposition 2.19. If Y is any compact Hausdorff space and f : X → Y is a continuous

function, there is a unique continuous function F : βX → Y so that F |X = f . Moreover,

this property uniquely characterizes βX.
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Proposition 2.20. If C,D ⊂ X are disjoint zero-sets, then clβX(C) and clβX(D) are dis-

joint.

Definition 2.21. ω is the first infinite ordinal.

Proposition 2.22. |βω| = 22ω .

Proposition 2.23. If X is discrete, βX contains no non-trivial convergent sequences. That

is, any sequence that converges in βX is eventually constant.

Definition 2.24. If f : X → Y and u ∈ βX, then f(u) = {B ⊂ Y | f−1(B) ∈ u} = {C ⊂

Y | C ⊃ f(A) for some A ∈ u}.

The notation fu is often used in place of f(u).

Definition 2.25. X∗ = βX \X with the subspace topology inherited from βX.

Thus an element of X∗ is a non-principal ultrafilter. Such an ultrafilter is often called

free.

Proposition 2.26. Let p ∈ ω∗. p contains no finite subsets of ω.

Proof. Suppose there is some finite F ∈ p of smallest cardinality. If |F | > 1 and n ∈ F ,

then either {n} ∈ p or F \ {n} ∈ p by 2.11.2, contradicting the minimality of |F |. Thus

F = {n} for some n ∈ ω and so for every B ⊂ ω, with n ∈ B, B ∈ p since p is a filter. Thus

p = prin(n) and so p 6∈ ω∗.

Definition 2.27. A set S ⊂ X is a weak P -set in X if for every countable C ⊂ X with

C ∩ S = ∅, C ∩ S = ∅.

Definition 2.28. A point x ∈ X is a weak P -point in X if {x} ⊂ X is a weak P -set in X.

An important fact which we will use frequently is:

Proposition 2.29. There are weak P -points in ω∗.
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In fact, ω∗ contains a dense set of weak P -points [7], but we will not have need of this

stronger result.

A central notion in this work is that of a p-limit:

Definition 2.30. If p ∈ ω∗ and (xn) is a sequence in X, then a point y ∈ X is the p-

limit of (xn), denoted y = p-limxn provided that for every open O ⊂ X containing y,

{n ∈ ω | xn ∈ O} ∈ p.

The definition of a p-limit depends essentially on the topology of X. We may use p-

limX xn or p-limτ xn to emphasize the space X or topology τ with respect to which the limit

is taken.

Note that if xn → x in the usual sense then for any open O about x, {n | xn ∈ O} is

cofinite in ω and so this set is in every p ∈ ω∗ by 2.26. Thus the notion of a p-limit is a

weakening of the usual notion of a limit.

The importance of p-limits can be seen in the following proposition:

Proposition 2.31. Let (xn) be a sequence in X. y ∈ {xn} if and only if y = p-limxn for

some p ∈ βω.

Proof. Suppose y = p-limxn. Then for any open O containing y, {n | xn ∈ O} ∈ p and since

every set in p is nonempty, O ∩ {xn} 6= ∅ and y ∈ {xn}.

Conversely, if y ∈ {xn}, let F = {{n | xn ∈ O}| O a neighborhood of y}. For any

A,B ∈ F , A∩B ∈ F and so F can be extended to an ultrafilter p ∈ βω. Then by definition,

for any neighborhood O of y, {n | xn ∈ O} ∈ F ⊂ p and so y = p-limxn.

Let us record a few basic facts about p-limits:

Proposition 2.32. Let (xn) be a sequence in X and p ∈ ω∗. If X is Hausdorff, then p-limxn

is unique if it exists.

Proof. Suppose x and y are both p-limits of (xn). If X is Hausdorff, there are open Ux, Uy

containing x and y respectively with Ux ∩ Uy = ∅. Since x is a p-limit of (xn), the set
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Ax = {n | xn ∈ Ux} ∈ p and similarly Ay = {n | xn ∈ Uy} ∈ p. But Ax ∩ Ay = ∅ since

Ux ∩ Uy = ∅, which contradicts the fact that p is a filter.

Thus we are justified in referring to “the” p-limit of a sequence.

Proposition 2.33. Let (xn) be a sequence in X, p ∈ ω∗ and x = p-limxn. For any

continuous f : X → Y , f(x) = p-lim f(xn).

Proof. Let f : X → Y be continuous and O ⊂ Y be an open neighborhood of f(x). Then

x ∈ f−1(O), which is open since f is continuous. Since x = p-limxn, {n | xn ∈ f−1(O)} =

{n |f(xn) ∈ O} ∈ p as required.

Proposition 2.34. Let (xn), (yn) be sequences in X and p ∈ ω∗. If {n | xn = yn} ∈ p then

p-limxn = p-lim yn.

Proof. Suppose A = {n | xn = yn} ∈ p. For any open neighborhood O of p-limxn, B =

{n | xn ∈ O} ∈ p. Since p is a filter, A∩B ∈ p and for every n ∈ A∩B, yn = xn ∈ O. Thus

A ∩B ⊂ {n | yn ∈ O} ∈ p since p is a filter and so p-limxn = p-lim yn.

Definition 2.35. For p ∈ ω∗, X is p-compact if for every sequence (xn) in X, p-limxn ∈ X

(in particular, p-limxn exists).

p-compactness is a weakening of compactness:

Proposition 2.36. If X is compact, then X is p-compact for every p ∈ ω∗.

Proof. Let (xn) be a sequence in X. For B ⊂ ω, let xB = {xn | n ∈ B}. Then for any p ∈ ω∗,

{xB | B ∈ p} is a collection of closed subsets of X with the finite intersection property. Since

X is compact, there is some x ∈ ∩{xB | B ∈ p}. Let O be an open neighborhood of x and

A = {n | xn ∈ O}. For every B ∈ p, x ∈ xB, so there is some n ∈ B with xn ∈ O. Thus

A∩B 6= ∅ for each B ∈ p and since p is an ultrafilter, A ∈ p by 2.11.4. Thus x = p-limxn.

Definition 2.37. X is ultracompact if X is p-compact for every p ∈ ω∗.
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p-compactness can be used to define an important partial order on βω:

Definition 2.38. For p, q ∈ ω∗, the Comfort preorder ≤C on βω is defined by p ≤C q ⇐⇒

every q-compact space is p-compact.

Definition 2.39. For p, q ∈ ω∗, the Rudin-Keisler preorder ≤RK on βω is defined by p ≤RK

q ⇐⇒ p = fq for some f : ω → ω.

Definition 2.40. X is countably compact if every countable open cover has a finite subcover.

Proposition 2.41. If X is p-compact and T1, then X is countably compact.

Proof. If X is p-compact, then every infinite set has a limit point by 2.31. Since X is T1, it

is countably compact by [5].

Proposition 2.42. If X is countably compact and {Cn | n ∈ ω} is a countable collection of

nonempty closed sets such that Cn+1 ⊂ Cn, then ∩Cn 6= ∅.

Proof. Let Un = X \Cn. Each Un is open. If ∩Cn = ∅ then ∪Un = X \∩Cn = X so {Un} is a

cover. If X is countably compact, there is some N ∈ ω so that ∩n≤NCn = X \ ∪n≤NUn = ∅,

contrary to the assumption that ∩n≤NCn = CN 6= ∅.

Definition 2.43. X is sequential if for every non-closed A ⊂ X, there is a sequence (xn) in

A with xn → x 6∈ A.

A sequential space is one in which the topology is entirely determined by convergent

sequences. Using p-limits we can weaken this definition in the obvious way:

Definition 2.44. For p ∈ ω∗, a space X is p-sequential if for every non-closed A ⊂ X, there

is a sequence (xn) in A with p-limxn 6∈ A.

We can weaken this even further to get the following definition:

Definition 2.45. X is countably tight if for every set A ⊂ X and x ∈ A, there is some

countable C ⊂ A with x ∈ C.
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That this is a weaker notion will be shown shortly, but first let us introduce some

notation to aid in the proof:

Definition 2.46. For Y ⊂ X and S ⊂ ω∗, define AXα (S, Y ) for each α ≤ ω1 by transfinite

induction as follows:

• AX0 (S, Y ) = Y

• AXα+1(S, Y ) = {x ∈ X | x = p-limxn for some p ∈ S and some sequence (xn) in AXα (S, Y )}

for successor ordinals

• AXα (S, Y ) = ∪β<αAβ(S, Y ) for limit ordinals

We may write Aα(S, Y ) if X is clear from context.

Proposition 2.47. Let p ∈ ω∗. If X is p-sequential and Y ⊂ X, then clX(Y ) = AXω1
({p}, Y ).

Proof. Fix Y ⊂ X. Suppose that AXω1
({p}, Y ) is not closed. Then since X is p-sequential,

there is some sequence (xn) in AXω1
({p}, Y ) with p-limxn 6∈ AXω1

({p}, Y ). But then by con-

struction, there is some α < ω1 with {xn} ⊂ AXα ({p}, Y ) and so p-limxn ∈ AXα+1({p}, Y ) ⊂

AXω1
({p}, Y ), a contradiction. Thus AXω1

({p}, Y ) is closed and so clX(Y ) ⊂ AXω1
({p}, Y ).

Clearly A0({p}, Y ) ⊂ clX(Y ). Suppose Aβ({p}, Y ) ⊂ clX(Y ) for all β < α. If α is a limit

ordinal then Aα({p}, Y ) ⊂ clX(Y ) trivially. If not, then α = γ+1 and for any a ∈ Aα({p}, Y ),

a = p-limxn for some sequence (xn) in Aγ({p}, Y ). Thus a ∈ Aγ({p}, Y ) ⊂ clX(Y ) by 2.31

and the induction hypothesis. Thus Aω1({p}, Y ) ⊂ clX(Y ) by transfinite induction.

Proposition 2.48. If S ⊂ ω∗ so that for any Y ⊂ X, clX(Y ) = AXω1
(S, Y ), then X is

countably tight.

Proof. Suppose S ⊂ ω∗ satisfies the hypotheses. We claim that for any α < ω1 and y ∈

AXα (S, Y ) there is a countable B ⊂ Y with y ∈ B. If y ∈ A1(S, Y ) then this is clear from

2.31. Proceeding by transfinite induction, suppose y ∈ AXα (S, Y ). If α = γ + 1, then y = p-

lim yn ∈ {yn} for some sequence (yn) in AXγ (S, Y ) by 2.31. By induction, for each n there is
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Bn ⊂ Y with yn ∈ Bn. Then y ∈ ∪Bn. If α is a limit ordinal, then y ∈ AXγ (S, Y ) for some

γ < α already.

If Y ⊂ X and y ∈ clX(Y ) = AXω1
(S, Y ) then y ∈ AXα (S, Y ) for some α < ω1 and so

y ∈ B for some countable B ⊂ Y . Thus X is countably tight.

Corollary 2.49. Every p-sequential space is countably tight.

Definition 2.50. C(X) = {f : X → R | f is continuous}.

Definition 2.51. C(X, Y ) = {f : X → Y | f is continuous}.

Definition 2.52. A category C is a collection of objects ob(C), morphisms mor(C) and

a composition operator ◦ so that for every collection of objects A,B,C and morphisms

f : A→ B and g : B → C, g ◦ f : A→ C with the following properties:

• If f, g, h are morphisms, (f ◦ g) ◦h = f ◦ (g ◦h), provided both expressions are defined.

• For each object A there is a unique identity morphism idA : A→ X such that for any

morphism f : A→ B, f ◦ idA = f = idB ◦ f .

Definition 2.53. A (covariant) functor F is a function F : C → D between categories so

that for every A ∈ ob(C), F (A) ∈ ob(D), for every f : A→ B in C, F (f) : F (A)→ F (B) in

D and F (f ◦ g) = F (f) ◦ F (g) whenever the composition f ◦ g is defined.

For convenience, F (A) and F (f) may be denoted FA and Ff , respectively.

Definition 2.54. The identity functor 1C : C → C is defined by 1CA = A and 1Cf = f for

every object A and morphism f .

Definition 2.55. If F,G are two functors from C to D a natural transformation η is a

collection of morphisms ηA - called the component functions of η - one for each A ∈ ob(C) so

that for every f : A→ B in C, the following diagram commutes:
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FA
Ff
//

ηA
��

FB

ηB
��

GA
Gf
// GB

Definition 2.56. A semigroup operation on a set S is an associative binary operation,

usually denoted a ∗ b for a, b ∈ S.
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Chapter 3

Monads of Ultrafilters and Their Algebras

Definition 3.1. Given a category C, a monad is a triple (T, η, µ) where T is a functor

T : C → C, η is a natural transformation η : 1C → T and µ is a natural transformation

µ : T 2 → T so that the following diagrams commute:

T 3 Tµ
//

µT
��

T 2

µ

��

T 2
µ
// T

T
ηT
//

Tη
��

id

  

T 2

µ

��

T 2
µ
// T

Where Tµ is the natural transformation with component functions T (µX) : T 3X → T 2X

and µT is the natural transformation with component functions µTX : T 3X → T 2X for each

object X ∈ ob(C).

This is the standard definition of a monad, given, for instance, in [8]. In [1], Manes

gives the following equivalent definition if C = Set:

Definition 3.2. A monad over Set is a triple (T, η, (·)#) where T is a function T : Set →

Set, ηX : X → TX for every set X, and for every pair of sets X, Y and function f : X → TY ,

an extension f# : TX → TY so that:

1. f# ◦ ηX = f

2. (ηX)# = idTX
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3. (g] ◦ f)] = g] ◦ f ] for any g : Y → TZ

That the two definitions of a monad are equivalent is given by the following:

Proposition 3.3. A monad (T, η, µ) over Set is equivalent to a monad over Set (T, η, (·)]).

Proof. First, suppose we are given a monad as (T, η, (·)]). Extend T to a functor by defining,

for f : X → Y , Tf = (ηY ◦ f)] : TX → TY . T is a functor since if g : Y → Z,

T (g◦f) = (ηZ◦g◦f)] whereas Tg◦Tf = (ηZ◦g)]◦(ηY ◦f)] = ((ηZ◦g)]◦ηY ◦f)] = (ηZ◦g◦f)].

For any such f , Tf ◦ηX = (ηY ◦f)] ◦ηX = ηY ◦f so η is a natural transformation η : 1C → T .

For each set X let µX = id]TX : TTX → TX. µ : T 2 → T is a natural transformation

since for any f : X → Y , µY ◦TTf = id]TY ◦(ηTY ◦Tf)] = (id]TY ◦ηTY ◦Tf)] = (idTY ◦Tf)] =

(Tf)] and Tf ◦µX = (ηY ◦f)]id]TX = ((ηY ◦f)]◦idTX)] = (Tf)]. The following computations

show that the diagrams in 3.1 commute and so (T, η, µ) is a monad:

µX ◦ ηTX = id]TX ◦ ηTX = idTX

µX ◦ T (ηX) = id]TX ◦ (ηTX ◦ ηX)] = (id]TX ◦ ηTX ◦ ηX)] = (idTX ◦ ηTX)] = (ηTX)] = idTX

µX ◦µTX = id]TX ◦ id
]
TTX = (id]TX ◦ idTTX)] = id]]TX and µX ◦T (µX) = id]TX ◦T (id]TX) =

id]TX ◦ (ηTX ◦ id]TX)] = (id]TX ◦ ηTX ◦ id
]
TX)] = (idTX ◦ id]TX)] = id]]TX

Conversely, suppose we are given (T, η, µ). If f : X → TY , define f ] = µY ◦Tf : TX →

TY . Then we can check that for any f : X → TY and g : Y → TZ,

1. f ] ◦ ηX = µY ◦ Tf ◦ ηX = µY ◦ ηTY ◦ f = f

2. (ηX)] = µTX ◦ T (ηX) = idTX

3. (g]◦f)] = µZ◦T (g]◦f) = µZ◦T (g])◦Tf = µZ◦T (µZ◦Tg)◦Tf = µZ◦T (µZ)◦TTg◦Tf =

µZ ◦ µTZ ◦ TTg ◦ Tf = µZ ◦ Tg ◦ µY ◦ Tf = g] ◦ f ]

Given (·)] and defining µX = id]TX , note that for any f : X → TY , µY ◦ Tf =

id]TY ◦Tf = id]TY ◦ (ηTY ◦f)] = (id]TY ◦ηTY ◦f)] = (idTY ◦f)] = f ] so we recover our original
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notion of (·)]. Conversely, given µ and defining f ] = µY ◦ Tf for f : X → TY , we have

id]TX = µX ◦ T (idTX) = µX ◦ idTTX = µX and we recover our original notion of µ. Thus

these two definitions are equivalent.

We will sometimes refer to T as a monad when η and µ (or (·)]) are clear from context.

The prototypical example of a monad over Set is β, with ηX : X → βX by x 7→ prin(x)

for each set X and x ∈ X and (·)] defined by f ](u) = {B ⊂ Y | {x ∈ X | B ∈ f(x)} ∈ u}

for each f : X → βY and u ∈ βX.

Given a monad T , there is an important classical notion of an algebra of T :

Definition 3.4. Given a monad T on a category C, an algebra of T is an object X ∈ C with

a morphism ξ : TX → X so that the following diagrams commute:

T 2X
Tξ
//

µX
��

TX

ξ
��

TX
ξ
// X

TX
ξ

!!

X

ηX

OO

id
// X

Definition 3.5. If A is an algebra of the monad T over Set, B ⊂ A is a subalgebra if there

is a set map ξ0 which makes the following diagram commute:

TB

ξ0
��

T i // TA

ξ
��

B
i
// A

where i : B → A is the inclusion map.

Note that if B is a subalgebra of (A, ξ) as above then (B, ξ0) is itself an algebra.
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3.1 Tpω

Throughout this section, p will denote an arbitrary free ultrafilter on ω. The following

definitions are taken from [1].

Definition 3.6. GpX = {r ∈ βX | r = fp for some f : ω → X}

Definition 3.7. Tp is the smallest submonad of (β, η, (·)]) over Set such that GpX ⊂ TpX

for each set X.

The importance of this definition is established by the following:

Theorem 3.8. Define a topology on Tpω by declaring A ⊂ Tpω closed if and only if A is a

subalgebra of (Tpω, id
]
TX). With this topology, Tpω is a countably compact, countably tight,

separable, Urysohn, non-compact, non-sequential space.

In [1], Manes established this fact, giving the first ZFC construction of such a space.

We will prove this result later by giving a topological construction of the space Tpω.
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Chapter 4

Topological Descriptions and Properties

4.1 βpX

Given any topological space X and p ∈ ω∗, the set of p-compact subsets of X form the

closed sets of a new topology on X. We’ll examine some properties of this new topology and

then look at this construction on a particular space to get the example we seek.

Throughout this section, let (X, τ) be an arbitrary completely regular, Hausdorff space

and p ∈ ω∗ a free ultrafilter.

Definition 4.1.

τp = {U ⊂ X | X \ U is p-compact in (X, τ)} ∪ {∅}

Proposition 4.2. τp is a topology on X.

Proof. ∅ ∈ τp by definition and X ∈ τp trivially. We show that the finite union and arbitrary

intersection of p-compact subsets of X are p-compact.

First, let C1 and C2 be p-compact subsets of X and (xn) a sequence in C1 ∪ C2. Let

Bi = {n | xn ∈ Ci}. Since p is an ultrafilter and B1 ∪ B2 ∈ p, by 2.11.3 we may assume

without loss of generality that B1 ∈ p. Fix an arbitrary z ∈ C1 and let x′n = xn for all

n ∈ B1 and x′n = z otherwise. Then (x′n) is a sequence in C1, so p-limx′n exists and is in

C1 by assumption and p-limxn = p-limx′n by 2.34. Thus p-limxn ∈ C1 ∪ C2 and C1 ∪ C2 is

p-compact.

Next, let Ci be p-compact for each i in some index set. If (xn) is a sequence in ∩Ci, then

(xn) is a sequence in Ci for each i so p-limxn ∈ Ci for each i and thus ∩Ci is p-compact.
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As observed in the preceding proof, τp may defined by declaring C ⊂ (X, τp) closed if

and only if C ⊂ (X, τ) is p-compact.

Proposition 4.3. If X is p-compact and C ⊂ X is closed, then C is p-compact.

Proof. If (xn) is a sequence in C then x = p-limxn exists sinceX is p-compact and x ∈ C = C

by 2.31. Thus C is p-compact in the subspace topology inherited from X.

Corollary 4.4. If X is p-compact, then τp is finer than τ .

Note that even though τp is usually finer than τ in the examples we’ll consider, p-limits

are still the same when considered in τ or τp:

Proposition 4.5. Let (xn) be a sequence in X. If p-limτ xn exists, then p-limτp xn = p-

limτ xn.

Proof. Let x = p-limτ xn. Suppose x 6= p-limτp xn. Then there is some O ∈ τp such that

x ∈ O but {n | xn ∈ O} 6∈ p. Thus {n | xn 6∈ O} ∈ p since p is a z-ultrafilter. Fix z ∈ X \O

and define a new sequence (x′n) by x′n = xn if xn 6∈ O and x′n = z otherwise. Then (x′n) is a

sequence in X \ O which is p-compact in (X, τ) and so p-limτ x
′
n ∈ X \ O. But xn = x′n for

all n ∈ {n | xn 6∈ O}, so by 2.34 p-limτ xn = p-limτ x
′
n 6∈ O, a contradiction.

Corollary 4.6. If (X, τ) is p-compact, (X, τp) is p-compact.

Proposition 4.7. If (X, τ) is p-compact, then (X, τp) is p-sequential.

Proof. Let A ⊂ X be non-closed in τp. Then A ⊂ X is not p-compact in τ . So by definition

there is a sequence (xn) in A so that x = p-limxn ∈ X \ A.

Corollary 4.8. If (X, τ) is p-compact, clτp(Y ) = Aω1({p}, Y )

Proof. By 2.47.

Corollary 4.9. If X is p-compact and Y ⊂ X, |clτp(Y )| ≤ |Y |ω.

18



Mimicking the proof of 2.47, we can show that the two corollaries above are true even

if (X, τ) is not p-compact to begin with, but we will not need this fact in what follows.

Now let’s look at the specific example of interest:

Definition 4.10. Let θ be the standard topology on βX. βpX = clθp(X) with the subspace

topology inherited from (βX, θp).

Note that βpX = ∩{Y ⊂ βX | X ⊂ Y and Y is p-compact}, so this notation is com-

mensurate with the notation found in [9], although there they consider βpX to have the

subspace topology inherited from βX.

We will show that βpω is a countably compact, countably tight, separable, Urysohn

space that is not compact or sequential. We will then show that TpX = βpX (regarding X

as a set and a discrete space, respectively), giving a topological proof of 3.8.

Proposition 4.11. βpω is p-compact and thus countably compact.

Proof. βω is compact and so p-compact by 2.36. This follows from 4.6 and 2.41.

Proposition 4.12. βpω is p-sequential and thus countably tight.

Proof. By 4.7 and 2.49.

Proposition 4.13. βpω is separable.

Proof. ω ⊂ βpω is a countable dense set.

Proposition 4.14. βpω is Urysohn.

Proof. By 4.4, if θ is the standard topology on βω, θp is finer than θ. Given x, y ∈ βpω, since

βω is Urysohn, there are Ux, Uy ∈ θ containing x and y respectively with clθ(Ux)∩clθ(Uy) = ∅.

Since θp is finer than θ, Ux, Uy ∈ θp and clθp(Ux)∩ clθp(Uy) ⊂ clθ(Ux)∩ clθ(Uy) = ∅ so (βω, θp)

is Urysohn. Since βpω is a subspace of (βω, θp), it is Urysohn as well.

Proposition 4.15. βpω is not compact.
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Proof. Let i : βpω → βω denote the inclusion map. i is continuous since the topology on

βpω is finer than the standard topology on βω by 4.4. If βpω were compact, then i(βpω)

would be a compact set (by 2.4) with ω ⊂ i(βpω) ⊂ βω, and since compact subsets of βω

are closed (by 2.18 and 2.3) and ω ⊂ βω is dense (by 2.17), i(βpω) = βω. But |βpω| ≤ 2ω by

4.9 and |βω| = 22ω by 2.22, a contradiction.

Proposition 4.16. βpω contains no non-trivial convergent sequences.

Proof. Since the topology on βpω is finer than the standard topology, the inclusion map

i : βpω → βω is continuous. Thus if xn → x in βpω, i(xn)→ i(x) in βω by 2.5 and thus (xn)

is eventually constant by 2.23.

Corollary 4.17. βpω is not sequential.

Proof. If F ⊂ βpω and (xn) is a sequence in F with xn → x then x = xm for some m so

x ∈ F . Thus every subset of βpω is sequentially closed. But βpω is not discrete (ω ⊂ βpω is

not closed), so βpω is not sequential.

We can now recover a proof of 3.8 by showing the following:

Theorem 4.18. Let X be a set. The topological spaces TpX and βpX (considering X as a

discrete space) are identical.

The proof will follow from the next several propositions. For the remainder of this

section, suppose that X is discrete. Recall the definitions related to Tp from 3.1. TpX

denotes the functor Tp applied to the underlying set of X.

Proposition 4.19. For any A ⊂ TpX and g : ω → A, if i : A→ TpX is the inclusion map,

id#TpX
(
(Tpi)(gp)

)
= p-limβX g(n).

Proof. Let A, g and i be as in the hypothesis. By definition,

id#TpX
(
(Tpi)(gp)

)
= {D ⊂ X | {x ∈ TpX | D ∈ x} ∈ (Tpi)(gp)}
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and

{x ∈ TpX | D ∈ x} ∈ (Tpi)(gp) ⇐⇒

∃C ∈ gp(C ⊂ {x ∈ TpX | D ∈ x}) ⇐⇒

∃C ∈ gp(∀y ∈ C(y ∈ {x ∈ TpX | D ∈ x})) ⇐⇒

∃C ∈ gp(∀y ∈ C(D ∈ y)) ⇐⇒

∃B ∈ p ∧ ∃C ⊃ g(B)(∀y ∈ C(D ∈ y)) ⇐⇒

∃B ∈ p(∀y ∈ g(B)(D ∈ y))

The last equivalence follows from taking C = g(B). Thus D ∈ id#TpX
(
(Tpi)(gp)

)
⇐⇒ ∃B ∈

p with D ∈ ∩g(B), and so id#TpX
(
(Tpi)(gp)

)
= ∪B∈p ∩ g(B)

Given any basic open O ⊂ βX containing ∪B∈p ∩ g(B), O ∈ ∪B∈p ∩ g(B) so there is

some B ∈ p so that O ∈ x for every x ∈ g(B). Thus B ⊂ {n | O ∈ g(n)} = {n | g(n) ∈ O}

and so {n | g(n) ∈ O} ∈ p and ∪B∈p ∩ g(B) = p-lim g(n) as required.

Corollary 4.20. For any g : ω → TpX, id
#
TpX

(gp) = p-lim g(n).

Proof. Tp(idTpX) = idTpTpX .

Proposition 4.21. TpX = βpX as sets.

Proof. Since (Tp, η, (·)]) is a monad and idTpX : TpX → TpX, id#TpX(TpTpX) ⊂ TpX. For

any sequence (xn) in TpX, let g : ω → TpX by n 7→ xn, so gp ∈ TpTpX and id#TpX(gp) = p-

limxn ∈ TpX. Thus TpX is p-compact with X ⊂ TpX ⊂ βX and so TpX ⊃ βpX.

On the other hand, recalling definition 2.46, A0({p}, X) = X ⊂ TpX trivially. If

Aβ({p}, X) ⊂ TpX for all β < α, then if α is a limit ordinal, Aα({p}, X) ⊂ TpX trivially. If

not, let α = γ + 1 and x ∈ Aα({p}, X). Then there is a sequence (xn) in Aγ({p}, X) with

x = p-limxn. Let g : ω → Aγ({p}, X) ⊂ TpX by n 7→ xn. Then x = p-limxn = id#TpX(gp) ∈

TpX. Thus Aα({p}, X) ⊂ TpX for all α ≤ ω1 and so βpX ⊂ TpX.

21



Proposition 4.22. The topologies on TpX and βpX coincide.

Proof. Recall that A ⊂ TpX is closed provided there is a set map ξ0 : TpA → A with

id#TpX ◦ Tpi = i ◦ ξ0, where i is the inclusion map. Such a ξ0 will exist if and only if

id#Tpω
(
(Tpi)(TpA)

)
⊂ A, or ∀gp ∈ TpA, id#Tpω

(
(Tpi)(gp)

)
= p-lim g(n) ∈ A. Thus A ⊂ TpX ⊂

βX is closed in TpX if and only if it is p-compact when considered as a subset of βX.

4.2 UX

For different choices of p, each βpω captures only a small part of the structure of βω

(since |βpω| = 2ω and |βω| = 22ω). For this section, fix a completely regular, Hausdorff space

X. In what follows, we’ll describe a general way to glue together the various βpX into a new

topology on the entire set βX.

By [9], if p ≤C q then βpX ⊂ βqX.

Definition 4.23. For p ≤C q, let ιpq : βpX ↪→ βqX denote the inclusion map.

Definition 4.24. For any p ∈ ω∗, let ιp : βpX ↪→ βX denote the inclusion map.

Proposition 4.25. If p ≤C q then ιpq is continuous.

Proof. Suppose p ≤C q. If C ⊂ βqX is closed, then C is q-compact. Since p ≤C q, C is also

p-compact. Thus ι−1pq (C) = C ∩ βpX is p-compact and so closed in βpX.

Definition 4.26. let UX = lim−→{βpX, ιpq} where ιpq : βpX → βqX is the inclusion map.

As a set, UX = {[r] | r ∈ βpω for some p} with [r] = [r′] if ιpq(r) = ιp′q(r
′). Since each

ι is an inclusion map, we will identify UX with βX as a set. By definition, O ⊂ UX is open

if and only if ι−1p (O) is open for every p.

Proposition 4.27. UX is ultracompact.

Proof. Let (xn) be a sequence in UX and p ∈ ω∗. For each n, xn ∈ βpnX for some pn ∈ ω∗.

By [9], there is an r ∈ ω∗ with p ≤C r and pn ≤C r for each n. Also by [9], βpnX ⊂ βrX
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and so {xn} ⊂ βrX. βrX is r-compact and since p ≤C r, βrX is p-compact. Thus p-

limxn ∈ βrX ⊂ UX.

We can characterize the topology on UX in several ways:

Proposition 4.28. The following are equivalent:

1. C ⊂ UX is closed.

2. C is ultracompact.

3. C ∩ βpX is p-compact for every p ∈ ω∗.

4. UX \ C is a weak P -set in βX.

Proof. (1) ⇒ (2): Since UX is ultracompact and a closed subset of a p-compact space is

p-compact, any closed C ⊂ UX is ultracompact.

(2) ⇒ (3): Given p ∈ ω∗, if C is ultracompact, C is p-compact and thus C ∩ βpX is

p-compact.

(3) ⇒ (1): By definition of the direct limit, C ⊂ UX is closed if and only if ι−1p (C) =

C ∩ βpX is closed for each p. But C ∩ βpX is closed in βpX if and only if C ∩ βpX is

p-compact.

(2) ⇐⇒ (4): Suppose C ⊂ UX is ultracompact. Let O = UX \C. If D ⊂ UX \O = C

is countable and y is a limit point of D, then by 2.31, y = p-limxn for some sequence (xn)

in D ⊂ C and p ∈ ω∗. Since C is ultracompact, y ∈ C = UX \ O. Thus O is a weak P -set.

Conversely, suppose O is a weak P -set. Let C = UX \ O and let (xn) be a sequence in C.

For any p ∈ ω∗, p-limxn ∈ {xn}, so p-limxn 6∈ O by assumption. Thus p-limxn ∈ C and C

is ultracompact.

Uω gives us another (much larger) example of a countably compact, countably tight,

separable, Urysohn, non-compact, non-sequential space, as the next several propositions

demonstrate:
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Proposition 4.29. Uω is countably compact.

Proof. Uω is ultracompact and thus p-compact for every p. Thus Uω is countably compact

by 2.41.

Proposition 4.30. For any Y ⊂ Uω, clUω(Y ) = Aω1(ω
∗, Y ).

Proof. For any sequence (xn) in Aω1(ω
∗, Y ) and p ∈ ω∗, {xn} ⊂ Aα(ω∗, Y ) for some α <

ω1 and so, by construction, p-limxn ∈ Aα+1(ω
∗, Y ) ⊂ Aω1(ω

∗, Y ). Thus Aω1(ω
∗, Y ) is

ultracompact and so closed. Thus clUω(Y ) ⊂ Aω1(ω
∗, Y )

On the other hand, A0(ω
∗, Y ) ⊂ clUω(Y ) trivially. Suppose Aβ(ω∗, Y ) ⊂ clUω(Y ) for all

β < α. If α is a limit ordinal, Aα(ω∗, Y ) ⊂ clUω(Y ) trivially. If α = γ+ 1 and x ∈ Aα(ω∗, Y )

then x = p-limxn for some sequence (xn) in Aγ(ω
∗, Y ) and p ∈ ω∗. Since {xn} ⊂ clUω(Y ) and

x ∈ {xn} by 2.31, x ∈ clUω(Y ). Thus, by transfinite induction, Aω1(ω
∗, Y ) ⊂ clUω(Y ).

Corollary 4.31. Uω is countably tight.

Proof. By 2.48, taking S = ω∗.

Proposition 4.32. The topology on Uω is strictly finer than that of βω.

Proof. If C ⊂ βω is closed in the usual topology, C is compact by 2.2 and thus p-compact

for every p ∈ ω∗ by 2.36. Thus C is closed in Uω as well. If p ∈ ω∗ is a weak P -point in ω∗

(which exist by 2.29) then ω∗ \ {p} is ultracompact in βω, so {p} ∪ ω is open in Uω but not

open in βω.

Corollary 4.33. Uω is Urysohn and not compact.

Proposition 4.34. Uω is not p-sequential for any p.

Proof. By 4.9, since |Uω| = |βω| = 22ω .

Unfortunately, Uω does not satisfy any stronger separation axioms.

Proposition 4.35. Uω is not regular.
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Proof. If p ∈ ω∗ is a weak P -point, then ω ∪ {p} is open in Uω. If p ∈ V ⊂ U with V open,

then V ∩ ω must be infinite and so V 6⊂ U .

Though the topologies on Uω and βω differ, continuous functions on each space behave

very similarly.

Proposition 4.36. C(Uω) = C(βω)

Proof. Since the topology on Uω is finer, any continuous f : βω → R is also continuous

when considered as a map f : Uω → R. Thus C(Uω) ⊃ C(βω).

On the other hand, suppose f : Uω → R is continuous. If im(f) were not compact, there

would be a sequence yn ∈ im(f) with no limit point. Choose xn ∈ Uω so that f(xn) = yn.

Then since Uω is ultracompact, for any p ∈ ω∗, p-limxn exists and f(p-limxn) = p-lim yn is

a limit point of {yn}, a contradiction. Thus f : Uω → im(f) is a map into a compact set. By

the universal property of βω (2.19), f |ω extends to a unique continuous F : βω → im(f) ⊂ R.

F is still continuous when considered as a map from Uω into R and F and f agree on the

dense set ω. Since R is Hausdorff, F = f by 2.6 and so f is a continuous as a map from βω

into R.

Proposition 4.37. C(Uω,Uω) = C(βω, βω).

Proof. If f : βω → βω is continuous and C is closed in Uω, then C is ultracompact in βω.

Let (xn) be a sequence in f−1(C) and yn = f(xn) ∈ C. Given p ∈ ω∗, let x = p-limxn. Then

by 2.33, f(x) = p-lim f(xn) = p-lim yn ∈ C. Thus x ∈ f−1(C) and so f−1(C) is ultracompact

and thus closed in Uω.

Conversely, suppose f : Uω → Uω is continuous. Let i : Uω ↪→ βω be the inclusion

map. Then i ◦ f is continuous. By the universal property of βω, i ◦ f |ω extends to a unique

continuous function F : βω → βω. As above, F is still continuous when considered as a

function from Uω to βω. F and i◦ f agree on the dense subset ω and since Uω is Hausdorff,

F = i ◦ f , so f is continuous considered as a map from βω to βω.
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Proposition 4.38. C(Uω \ ω) 6= C(ω∗).

Proof. Let p ∈ ω∗ be a weak P -point (2.29). Let χp : ω∗ → R by p 7→ 0 and q 7→ 1 for all

q 6= p. χp 6∈ C(ω∗) since p is not isolated in βω. But since p is a weak P -point, p is isolated

in Uω \ ω and thus χp ∈ C(Uω \ ω).
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Chapter 5

Applications of the Topological Viewpoint

Historically, the spaces Tpω were of interest primarily because they satisfied the strongest

separation properties among ZFC examples of countably compact, countably tight, non-

compact spaces. Tpω is Urysohn for every p ∈ ω∗ so a natural question is: could Tpω be

regular for any p? While this is not known in general, we do know

Proposition 5.1. If p is a weak P -point in ω∗, βpω is not regular.

Proof. Let p be a weak P -point in ω∗. First note that p-limn = p since if O ⊂ βω is a basic

open set about p then O = {n | n ∈ O} ∈ p. Thus p ∈ βpω.

Since p is a weak P -point, p is not a limit point of any countable subset of ω∗ \ {p} and

so ω∗ \ {p} is p-compact. Thus ω ∪ {p} ⊂ βpω is open.

Suppose p ∈ U ⊂ U ⊂ ω ∪ {p} for an open U ⊂ βpω. {n ∈ ω | n ∈ U} ∈ p and so ω ∩U

must be infinite. But then it follows that |ω ∩ U | > ω, so |U | > |ω∪{p}|, a contradiction.

With what we have established so far about Tpω, we can answer a question posed by

Manes in [1].

Definition 5.2. p ∈ ω∗ is an m-point if Gpω ( Tpω.

Manes showed that there is an m-point if we assume the Continuum Hypothesis and

further conjectured that every p ∈ ω∗ is an m-point in ZFC. We will prove Manes’ conjecture

using some tools from [9]. The key idea lies in the following:

Definition 5.3. If ∗ is a semigroup operation on ω, we may extend ∗ to a semigroup

operation on βω. The extension, also denoted ∗, may be defined as follows: for m ∈ ω and

q ∈ ω∗, let m ∗ q = q-limm ∗ n as n ranges over ω; for p, q ∈ ω∗, let p ∗ q = p-limm ∗ q as m

ranges over ω.
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Proposition 5.4. No p ∈ ω∗ is an m-point.

Proof. Pick any p ∈ ω∗. By [9, 2.1], Tpω = βpω = {q ∈ βω | q ≤C p} is always a sub-

semigroup under ∗, while Gpω = {q ∈ βω | q = fp for some f : ω → ω} = {q ∈ ω | q ≤RK p}

is never a sub-semigroup [9, 2.15].

We can also say a little bit more about the interplay between the order≤C , the semigroup

operation ∗ and the topology on βpω. The next result says, in effect, that for any p ∈ ω∗

there is an r ≤C p that is “infinitely right-divisible” by p:

Proposition 5.5. For any s ∈ ω and p ∈ ω∗, there is some q ≤C p so that for every n ∈ ω,

q = sn ∗ r ∗ pn for some r ≤C p.

Proof. Fix s ∈ ω and p ∈ ω∗. As observed in [9], the map f : βω → βω by r 7→ s ∗ r ∗ p is

continuous. By [9, 2.1], βpω ⊂ βω is a subsemigroup under ∗, so f restricts to a function

f : βpω → βpω. If C ⊂ βpω is closed and (xn) is a sequence in f−1(C) then f(p-limxn) = p-

lim f(xn) ∈ C since C is p-compact. Thus, since βpω is p-sequential, f−1(C) is closed and so

f is still continuous in the new topology on βpω. For each m ∈ ω, fm(βpω) = sm ∗βpω ∗pm is

p-compact and thus closed in βpω since for each m ∈ ω, p-lim sm ∗ rn ∗ pm = p-lim fm(rn) =

fm(p-lim rn) ∈ fm(βpω). Thus

βpω ⊃ s ∗ βpω ∗ p ⊃ s2 ∗ βpω ∗ p2 ⊃ . . .

is a countable descending chain of closed subsets of a countably compact space. Thus by

2.42 there is some q ∈ ∩sn ∗ βpω ∗ pn. Such a q has the property given in the statement.

We’ve seen that TpX and βpX define the same topological spaces when X is a discrete

space, but βpX can be defined for any arbitrary space X. This gives us more flexibility and

allows us to construct examples that could not be constructed using the monads Tp alone.

Fix a free ultrafilter p ∈ ω∗.

Proposition 5.6. For any set X, TpX contains no non-trivial convergent sequences.
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Proof. Let X be a set. This proposition can be seen from the definition of TpX, but in light

of 4.18, it is easier to see that βpX contains no non-trivial convergent sequences when X is

considered as a discrete space: since the topology on βpX is finer than the standard subspace

topology, the inclusion map i : βpX → βX is continuous. If a sequence (xn) converges in

βpX, then (i(xn)) converges in βX by 2.5 and so i(xn) is eventually constant by 2.23.

Proposition 5.7. There is a space X so that UX \ X contains a non-trivial convergent

sequence.

Proof. By [10], there is a completely regular space X so that X∗ contains a non-trivial

convergent sequence. Let xn → x be that sequence. We claim that xn → x in UX as well.

For any p ∈ ω∗, p-limxn exists because UX is p-compact. If p-limxn = y 6= x then let Ux

and Uy be disjoint open sets in βX around x and y respectively. Since xn → x, {n | xn ∈ Uy}

is finite and thus {n | xn ∈ Uy} 6∈ p by 2.26 since p ∈ ω∗.

Suppose (xn) does not converge to x in UX. Then there is some open O ⊂ UX so that

A = {n | xn 6∈ O} is infinite. Fix an ultrafilter p ∈ ω∗ with A ∈ p. Fix z 6∈ O and let x′n = xn

if xn 6∈ O and x′n = z otherwise. Then by 2.34, p-limβX xn = p-limβX x
′
n 6∈ O since βX \O is

ultracompact. In particular p-limβX xn 6= x, contradicting the fact that xn → x in βX.

Proposition 5.8. For any set X, TpX is extremally disconnected.

Proof. Let X be a discrete space. It suffices to show that βpX is extremally disconnected.

Let τ be the standard topology on βX. Suppose B,C ⊂ X with B ∩C = ∅ and B ∪C = X.

We claim that clτp(B) ∩ clτp(C) = ∅ and clτp(B) ∪ clτp(C) = βpω.

First, since τp is finer than τ , clτp(B) ⊂ clτ (B). Thus clτp(B)∩clτp ⊂ clτ (B)∩clτ (C) = ∅

by 2.20.

To prove the second assertion, recall that by 2.47 βpX = AYω1
({p}, X) where Y is the

space (βX, τp). So it suffices to show that Aα({p}, X) ⊂ Aα({p}, B) ∪ Aα({p}, C) for all

α < ω1 (the reverse inclusion is clear). Note that A0({p}, X) = A0({p}, B) ∪ A0({p}, C).

If Aβ({p}, X) ⊂ Aβ({p}, X) ∪ Aβ({p}, X) for all β < α and α is a limit ordinal, then
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Aα({p}, X) ⊂ Aα({p}, X) ∪ Aα({p}, X) trivially. On the other hand, if α = γ + 1 for some

γ and if a ∈ Aα({p}, X) then a = p-limxn for some sequence (xn) in Aγ({p}, X). By the

induction hypothesis, (xn) is a sequence in Aγ({p}, B) ∪ Aγ({p}, C). Let B′ = {n | xn ∈

Aγ({p}, B)} and C ′ = {n | xn ∈ Aγ({p}, C)}. B′ ∪ C ′ = X, so by 2.11.3 we may assume

without loss of generality that B′ ∈ p . Fix z ∈ Aγ({p}, B) and define x′n = xn if n ∈ B′ and

x′n = z otherwise. Then (x′n) is a sequence in Aγ({p}, B) and so p-limx′n ∈ Aα({p}, B). But

since {n | xn = x′n} ∈ p, by 2.34 a = p-limxn = p-limx′n ∈ Aα({p}, B) as required.

Now suppose U ⊂ βpX is open. Then since X is dense in βpX, clτp(U) = clτp(U ∩X).

By the above, clτp(U ∩ X) = βpX \ clτp(X \ U), so clτp(U) is open and βpX is extremally

disconnected.

Proposition 5.9. For any connected, completely regular, Hausdorff space X, βpX is con-

nected.

Proof. Suppose X satisfies the hypotheses. Since X is connected, clY (X) is connected for

any space Y ⊃ X [5]. βpX = clY (X) where Y is the space (βX, θp) for θ the standard

topology on βX.

Thus this new topological method allows us to describe a significantly larger class of

examples.
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