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Abstract

The purpose of this paper is to explain the construction of orthonormal multivariate
wavelets associated with a multiresolution analysis. This paper primarily uses the work of R.
A. Zalik [10], where he outlines a method of constructing orthonormal multivariate wavelets
given an existing orthonormal multivariate wavelet associated with an MRA, and attempts
to clarify it for a wider audience. In the last section, I use the result in constructing some

orthonormal multivariate wavelets in various examples.
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Chapter 1

Introduction

In what follows, d > 1 will be an integer, arbitrary but fixed; Z will denote the set of
integers and R the set of real numbers; boldface lowcase letters will always denote elements
of R% x -y will stand for the standard dot product of the vectors x and y; i will be reserved
for the imaginary number y/—1. The inner product of two functions f,g € L*(R%) will be

denoted by (f, g), their bracket product by [f, g], and the norm of f by ||f||; thus,

(f,9) = » f(t)g(t)dt,
[fgl(t) = ) flt+k)g(t +K),

keZzd

and

AN} = VAL f)-

The Fourier transform of a function f will be denoted by ]/”\ If f € L(RY),
foo = [ emexpeyae
Rd
For every j € Z and k € Z¢, the operators D’ and Ty are defined in L?(R¢) by
DI f(t) = 29 (25t)

and

Tif(t) :== f(t — k)



A set of functions {¢y, ..., %} C L*(RY) is called an orthonormal multivariate wavelet, if

the sequence

{D'hytj €2,k e 2,1 <1 <m}

it generates is an orthonormal basis of L?(R?).

A multiresolution analysis (MRA) in L?(RY) is a sequence {Vj;j € Z} of closed linear

subspaces of L%(R?) such that:

V; C Viyy for every jeZ (i)
For every j € Z, f(t) € V; if and only if f(2t) € V14 (ii)
JV; is dense in L*(RY). (iii)
jez
There is a function u such that {Tju;k € Z%} is an orthonormal basis of Vj. (iv)

Let T := [0,1], and let T¢ denote the d-dimensional torus. A function f will be called
Z%-periodic if it is defined in R, and for every k € Z¢ and x € R? we have f(x + k) = f(x).
Claim: It follows from the definition of MRA that there is a Z%periodic function p € L?(T%)
such that

u(2x) = p(x)u(x) a.e.

Proof. Let {Tyu;k € Z?} be an orthonormal basis of Vj. In particular, u(t) € V;. Thus, by

(i), u(%) € V1. By (i) and (iv), we can write

u(%) = axTiu(t)

kezd



Where ay = <u(%), Tku(t)>. By taking the Fourier transform of both sides, we get

—2mit-x t/2)dt :/ —2mit-x t — k)dt.
/Rde u(t/2) e Z axu( )

d
R Kkezd

By changing variables, we get

/ eZwi(Qs)-xu(S)2ddS_/ o 2mi(s+k)x Z axu(s)ds.
Rd

d
R Kkezd

Which yields,

2dﬂ(2x) = Z ake_ka'xiZ(X)

kezd

If we let p(x) =274 Z axe” 2™ * then the result follows. O
keZd

The function u is called a scaling function for the MRA, and p is called the low pass filter
associated with w.
We will denote the orthogonal complement of V; in V;,y by W;. Thus, V4, =V, ® W;.
Let {t1,...,¢,} be an orthonormal multivariate wavelet in L?(R?); for j € Z, let P; denote

the closure of the linear span of
{D'Ti k € 24,1 <1 <m}

and let V; := ZPT' Note that 1, ...,%, € V1. We say that {u1,...,1,,} is associated
r<j
with an MRA if M := {V};j € Z} is a multiresolution analysis. If this is the case, we also

say that {t1,...,%,} is associated with M. The definition implies that {¢1,...,%¢,,} is an
orthonormal multivariate wavelet associated with M if and only if {Tyxt;; k € Z4,1 <1 < m}
is an orthonormal basis of Wj.

Given {uy, ..., up,} C L*(R%), we will adopt the following notation:

T(ub 7Um> = {TkUl,k € Z’d7 1 < l < m}7

3



and

S(Uqy eeey Upp) :=Span T (uy, ..., Upy,).
The following is a special case of a theorem by Guo, Lebate et al. [4, Proposition 2.1]

Theorem 1. Assume that T(uy,...,uy) and T(hq,...,h,) are orthonormal sequences in

L2(R%) such that S(uy, ..., uy) = S(hi, ..., hy,). Then m = n.

Proof. Since S(uy, ..., Up) = S(hi, ..., hpm),

= ) (u, Tih)Tihj(x) 1=1,...m. and hj(x) =Y > (hy, Tiw)Tew(x)

kezd j=1 kezd 1=1

This implies that

L=lul® =) > N, Tihy)* and 1= |hl> =Y > [{hy, Tiw)?

kezd j=1 kezd 1=1

Also note that (u;, Txh;) = (T_xu;, hj) Thus we can show,

m:i||ul||2:i2i|(ul,Tk |_ZZZ| L, ZHM\Q

=1 kezd j=1 Jj=1kezd I=1
]

In [7] Wilson and Weiss showed that if {11, ..., ¢, } is an orthonormal multivariate wavelet
in L?(R%) associated with a multiresolution analysis, then m = 2¢—1. Hence, when combined
with Theorem 1, we have that in the case of orthonormal multivariate wavelets associated
with the same MRA, m =n =29 — 1.

The following theorem is from [5, p. 57], which we adapt to suit the above definition of

the Fourier transform.

Theorem 2. If ¢ is a scaling function for an MRA {V;;j € Z} and p is the associated low

pass filter, then h € L*(R) is an orthonormal wavelet associated with this MRA if and only



if there is a measurable unimodular and Z-periodic function v(x), such that
2(2;1:) = ™y (2x)p(x + 1/2)ng5(:(:) a.e.

The main results of this paper will be generalizing the following corollary to wavelets in

L2(RY).

Corollary 1. If h is an orthonormal wavelet associated with an MRA, then 1 is an orthonor-
mal wavelet associated with the same MRA if and only if there is a measurable unimodular

and Z-periodic function q(x) such that

The following theorems will be referenced multiple times in the paper and will be in-

cluded here as a reference.

Theorem 3. (Parseval’s Identity) Let f € L*(T?), and ¢y := f(k) be the Fourier coefficients
of f. Then

> le® = 11£1172ra)

kecZzd

Theorem 4. (Plancherel’s Theorem) Let f, g € L*(R?). Then,

[t = [ 1o ax

Corollary 2.

_ P —

[ gt = | Feoaioix

Theorem 5. (Fubini’s Theorem) Let X, Y be measure spaces. If

Z;Jﬂ%wW%w<al



Then

/X/Y|f(93,y)|dydx:/Y/X|f(:v,y)|dxdy:/Xxy|f(x,y)|d(x’y)

Corollary 3. If

S [ 1t lax < o,
n JA
then,

S [ i [ s

Theorem 6. (Gram-Schmidt Orthogonalization) Let {uy,...,u,} € S linearly independent,
where S is an inner product space. Then we can find a set {uy,...,0,} € S of orthonormal

vectors that span the same space.



Chapter 2

Main Results

Lemma 1. (a) T'(uy...u,,) is an orthogonal sequence in L*(R?) if and only if
[, 4] (x) =0 ae, L,j=1,..m l#]
(b) T(uy...u,,) is an orthonormal sequence in L*(R®) if and only if
[, 5] (x) =6, ae., L,j=1,...,m

Proof. 1t suffices to prove (b).

Let a,b € Z? and k = b — a. Then

(Taw, Touj) = (w, Tiu;j)
:/ w(t)u;(t —k)dt
Rd

= / i (x)u;(x)e*™™ *dx (Plancherel’s Theorem)
Ra

= Z /d U(y 4+ n)a;(y + n)e™ gy (“periodize” the integral)
T

nezd

— / Z @y +n)a;(y +n)e*™™ ¥dy (Fubini’s Theorem)
Td

ncZzd

- [ @ al m)emdy ()

Thus (Taw, Tou;) are the Fourier coefficients of [, @], and Parseval’s Identity implies that

12, @1 ey = Y Wuw Ticws)? (2)

kezd



Assume T'(uq, ..., u,,) is an orthonormal sequence in L2(R%). Then for [ # j, we have
that the right hand side of (2) is equal to 0, which implies that [, @;](x) = 0 a.e.. When
[ = j, we have that the (u;, Tyw;) are the Fourier coefficients of the function 1, and by the
uniqueness of Fourier coefficients (since [, @](x) is Z-periodic and in L?(T?)), we have
that [@, w](x) = 1 a.e., and thus [0, 4;](x) = d;,; a.e..

Conversely, assume [, @;| = §;; a.e.. Then when [ # j, (1) implies that (Tau;, Thu;) =
Jpa0 dy = 0. When [ = j, (1) implies that (Taw, Tow) = [r.e*™ Ydy = 0ap. Thus

T(u1, ..., Uy) is an orthonormal sequence in L?(RY). O

Lemma 2. If T'(hy,...,h,) is an orthonormal sequence in L*(R?) and S(uy,...,uy) C
S(hy...hy,), then there are Z-periodic functions p;j(x) € L*(T?), uniquely defined a.e., such

that

= Zplm(x)h:(x) ae., l=1,....m (3)
r=1

Proof. Since T'(h;...h,,) is an orthonormal sequence in L*(RY) we can write the orthogonal

projection of u; onto S(h;), which we will denote by v, as

w - (t Zalrkh (t—k

kezd

Where a;,x = (w, Txh,), and since S(uy...uy,) C S(hy...hy,), we can write

- Zulﬂ"(t) = Z Z arrxhe(t —k
r=1

r=1 kezd

If we take the Fourier Transform of both sides, we get

E a . kh ) —2mik-x

1 kezd
—2mik-x
E Qayr k€

kczd

v



If we let p;.(x) = Z almke_%ik'x, then the result follows. O
keZd

Lemma 3. Assume that T(hy, ..., hy) s an orthonormal sequence in L?(R%) and that S(uy, ..., Up) C
S(hi, ..., hm), and assume there are Z-periodic functions p,;(x) € L*(T?) such that (3) is

satisfied. Then T'(uq, ..., un) is an orthonormal sequence if and only if

iplm(x)m =0, ae, l,j=1,..,m (4)
Proof. Let u;, denote the orthogonal projection of u; onto S(h,). Then

- (x) = pr(x Vo (x) ae. Lr=1,..m.

Note that w;(x Zu” and that since T'(hq, ..., h,,) is an orthonormal sequence in

L*(R), uy, is orthogonal to u; for any r # s.

Hence,
Ul,TkU] = <Z ul,r( ZTku]s >
/ Zul +(t)u;,(t — k)dt (by orthogonality)
R? r=1
/ Zul N uj L (x)e?™**dx  (Plancherel’s Theorem)
R4 r=1
5 [ ST,
nezd
= / <Z[171\1~, @](y)) e*™ ¥ dy (Fubini’s Theorem)
Te r=1
Thus, we have that (u;, Txu;) are Fourier coefficients of Z[ﬁﬁ, uj,](x). But these are
r=1
the same Fourier coefficients as |4, u;] (x), found in our proof of Lemma 1. Hence, by the
m
uniqueness of Fourier coefficients, [, 4] (x) = Z[Jﬁ, u;,](x) a.e. and thus, by Lemma 1,
r=1



T(uq, ..., Uy,) is an orthonormal sequence if and only if
>l a5](x) = [, @](x) = &y ae. Lj=1,.,m

r=1

But,

[, @) (%) = ) @y (x + k) g, (x + k)

kezd

= D P+ 2R (x4 )ps (x + K (x + K)
kezd

= Z pl,r(x)pj,r(x)i?r(x + k)f/L\T(X +k) (since p is Z%-periodic)
kezd

Hence, T'(uy, ..., u,,) is an orthonormal sequence if and only if

o = |

£)

u5)(x) ae. [,j=1,..,m (Lemma 1)

—~

[, 5,7 (x)

[
NE

1

%
I

I
NE

P (X)pjr(X)

\3
Il

]

Lemma 4. Assume that T(uy, ..., up) and T'(hy, ..., h,,) are orthonormal sequences in L*(R?).
Then S(uty ..., um) = S(hi, ..., hm) if and only if there are Z%-periodic functions p;,.(x) €
L*(TY) that satisfy (3) and the matriz

P(x) :

Il

7 N\

kS

3

—~

X
~~
T 3
i

G

15 nonsingular almost everywhere.
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Proof. First, assume there are Z%-periodic functions p; ;(x) € L*(T¢) that satisfy (1) and the

matrix (5) is nonsingular almost everywhere. Let

(%) ha(x)
U(x) := and H(x) :=
i () fin(x)

Then

If P(x) is nonsingular almost everywhere, setting
[P(x)]~! if P(x) is nonsingular

Qx) =
0 if P(x) is singular

yields that Q(x) is Z?-periodic and

If we let

Qb= (1)
then

fx) = fj 01 (X)),

11



We then have

L= [l =1 aei|* = <Z ql,r(x)m(x),Zq,,s(x)u}(x)>
r=1 r=1 s=1

= [ 323 060 ()G K

r=1 s=1
=2 / DY any + Ky + Ky + k)i (y + k)dy
kezd VT r=1 s=1
- / Z Z @ (Y)a,s(y) Z u,(y + k)us(y + k)dy  (since q is Vi periodic)
T4 r=1 s=1 kezd
= [ 33 0 antla @iy
T r=1 s=1

:/ Z g (y)*dy  (by Lemma 1)
T4 r=1

> / ln(y)Pdy  for any n € [L, ....m]
Td

= llanllZe(ra)

Therefore ¢, € L*(T?) for l,n = 1,...,m and thus S(uy, ..., up) = S(h1, ..., hp).
Conversely, assume that S(uy, ..., u;,) = S(hi, ..., hy). Then (3) implies that there are

Z4-periodic matrices

m m

Pe0 = (o) and Q0 = (,0)

l,r=1 lr=1

such that
@ € L2(TY, Lir=1,...,m
Ux)=Px)H(x) a.e.
H(x) = Q(x)U(x) ae.
Thus

12



Which implies that
Px)Q(x)=1 a.e.

and thus P(x) is nonsingular almost everywhere. O

Theorem 7. Assume that T(hy, ..., h,,) is an orthonormal sequence in L*(RY), and let
{uy,...;u,} be a set of functions defined on R, Then T(uy,...,u,) is an orthonormal se-

quence and

S(hiy ey hin) = S(uy, ..., up)

if and only if m = n, there are Z-periodic functions p;,(x) € L*(T%) such that (3) is satisfied

and the matriz (5) is orthogonal almost everywhere.

Proof. Assume that T'(hy, ..., hy,) and T'(uy, ..., u, ) are orthonormal and such that S(hy, ..., hy,) =
S(uq,...,u,). Then m = n by Theorem 1. Lemma 2 implies that (3) is satisfied. Since (3)
is satisfied and T'(hy, ..., hy,) is orthonormal, Lemma 3 implies that (4) is satisfied. If we
define Pj(x) as the I-th row of P(x), we see that the left hand side of (4) is equivalent to
P(x) - Pj(x) , which tells us that (5) is orthogonal.

Now assume m = n, there are Z%-periodic functions p;,.(x) € L*(T¢) such that (3) is

satisfied and (5) is orthogonal a.e.. Since (3) is satisfied,

S(Ul, ,Um) C S(hl, cee hm)

Since (5) is orthogonal a.e., (4) is satisfied. We can then use Lemma 3 to show that
T(uy,...,un) is an orthonormal sequence. Since (5) is orthogonal a.e., it is also nonsingular

a.e., and we can then use Lemma 4 to conclude that

S(hiy ooy hum) = S(ug, ...y Up,).

13



As we remarked above, if {¢1, ..., ¢, } is an orthonormal multivariate wavelet in L?(R?)
associated with an MRA, then m = 2% — 1. Thus, an immediate consequence of Theorem 7

18

Theorem 8. Assume that {¢y,...,¢m} is an orthonormal multivariate wavelet in L*(RY)
associated with an MRA, and let {11, ..., } be a set of functions defined in L*(R?). Then
{1, ..., 0} is an orthonormal multivariate wavelet associated with the same MRA as
{d1,.es dm}, if and only if m = n = 2% — 1, and there are Z-periodic functions p;,(x) €
L*(T%) such that

{D\l(x) = Zpl7r(x)gz/5\r(x) ae, l=1,..m
r=1

and the matriz (5) is orthogonal a.e.

14



Chapter 3

Examples

We'll start with some basic constructions of the matrix P(x), and then move to some
more complicated formulations. The following definitions will hold for all of the examples

section.

P(x) = xjo,1)()
1 ifzel0,3)
() =q -1 ifae[i1)

0 elsewhere

Note that 9 (x) is known as the Haar Wavelet. For more information on its construction and
properties, see [5, 6, 7]

Let

Yi(z,y) = o(x)Y(y)
Yo(z,y) = ¥ (x)o(y)
V3(z,y) = P(x)P(y)

The construction of {i1,11,13} is outlined in [6, p.82], and is shown to be orthonormal
wavelet in L?(R?) generated by the scaling function ¢(x,y) = ¢(x)¢(y). For information

regarding the construction of multivariate wavelets from a scaling function, see [9, Theorem

15



9.
Since each 1); is separable, the Fourier transforms are easily found and equal to,

Example 1. Let

cos(2mu) —sin(2ru) 0
P(u,v) = | sin(2mu)  cos(2mu) 0
0 0 1

This is a basic rotation matrix, which has the property of being Z2-periodic and or-

thogonal, hence fulfilling the conditions for Theorem 8. If we apply this to our equation, we

get,

@El(u, v) cos(2ru) —sin(2mu) 0 1 (u,v)
;ZQ(U, v) | = | sin(2mu)  cos(2wu) 0 {D\g(u, v)
$3(u, v) 0 0 1 @;;(u, v)

Recall that cos(2mu) = 1(e*™™ + e72™) and sin(2mu) = 5 (e*™™ — e~*™). Hence,

oo+ 0+ o= 1) = 366+ 1 - 0o - 1) [ow

1;1(‘7:73/>
balay) | = %<w<x+1>—w<x—1>)+§ w<x+1>+w<x—1>) o(y)
Us(,y) P(2)(y)

Note that in the above example, the new wavelets are linear combinations of shifted
versions of our original ¢(-) and v (-) in each variable. Thus, it is clear that the new wavelets

have bounded support since ¢(-) and 3 (-) have bounded support. This will hold true for all

of the future examples by the same reasoning.

16



Example 2. For a more general case, we can look back to our introduction of p;.(x), where

we defined it as E almke%’k'x. Hence, we can choose each py,(u,v) to be linear com-
kezd
binations of two-dimensional Z%-periodic complex exponentials. We will maintain the or-

thogonality condition by only using the main diagonal and single terms, rather than linear

combinations.
Let
e47riu6127riv 0 0
P(u’ U) — 0 _ p2miu,—6miv 0
0 0 e—27riu

Once again, finding the inverse Fourier transform is simple since the wavelet and each

pir(u, v) are separable. Thus,

U (z,y) d(x + 2)1(y + 6)
Uo(z,y) | = | vz + Doy — 3)
Us(z,y) Uz — 1) (y)

Example 3. For the most general case, we begin with three rows which are linearly inde-
pendent, and use the Gram-Schmidt Process to orthogonalize the rows, and thus create an

orthogonal matrix.

Let
3647riu 0 4
p(u’ U) — 647riu Ae—2miup—2miv 0
0 0 561071’1'1)

Note that all these rows are linearly independent. If we define our inner product

(P(x), Pj(x)) == Z/T? pir(u, v)pj . (u, v)dudv,

17



then by using Gram-Schmidt orthogonalization on our example p(u, v), we get that

ge4mu 0 %
P(u7 U) — ﬁﬁellmu \/%766727Ti(u+v) _ 25\3/%
0 0 elOTriv
Which yields our new wavelet,
(2, y) 26(x +2)9(y) + $9 ()Y (y)
Ual,y) | = | i@ + 20 () + A=v(e — Doly — 1) — 2= (x)u(y)
ba(,y) U(z)Y(y +5)

18
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