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Abstract

The purpose of this paper is to explain the construction of orthonormal multivariate

wavelets associated with a multiresolution analysis. This paper primarily uses the work of R.

A. Zalik [10], where he outlines a method of constructing orthonormal multivariate wavelets

given an existing orthonormal multivariate wavelet associated with an MRA, and attempts

to clarify it for a wider audience. In the last section, I use the result in constructing some

orthonormal multivariate wavelets in various examples.
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Chapter 1

Introduction

In what follows, d > 1 will be an integer, arbitrary but fixed; Z will denote the set of

integers and R the set of real numbers; boldface lowcase letters will always denote elements

of Rd; x ·y will stand for the standard dot product of the vectors x and y; i will be reserved

for the imaginary number
√
−1. The inner product of two functions f, g ∈ L2(Rd) will be

denoted by 〈f, g〉, their bracket product by [f, g], and the norm of f by ||f ||; thus,

〈f, g〉 :=

∫
Rd

f(t)g(t)dt,

[f, g](t) :=
∑
k∈Zd

f(t + k)g(t + k),

and

||f || :=
√
〈f, f〉.

The Fourier transform of a function f will be denoted by f̂ . If f ∈ L(Rd),

f̂(x) :=

∫
Rd

e−2πit·xf(t)dt

For every j ∈ Z and k ∈ Zd, the operators Dj and Tk are defined in L2(Rd) by

Djf(t) := 2dj/2f(2jt)

and

Tkf(t) := f(t− k)
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A set of functions {ψ1, ..., ψm} ⊂ L2(Rd) is called an orthonormal multivariate wavelet, if

the sequence

{DjTkψ
l; j ∈ Z,k ∈ Zd, 1 ≤ l ≤ m}

it generates is an orthonormal basis of L2(Rd).

A multiresolution analysis (MRA) in L2(Rd) is a sequence {Vj; j ∈ Z} of closed linear

subspaces of L2(Rd) such that:

Vj ⊂ Vj+1 for every j ∈ Z (i)

For every j ∈ Z, f(t) ∈ Vj if and only if f(2t) ∈ Vj+1 (ii)

⋃
j∈Z

Vj is dense in L2(Rd). (iii)

There is a function u such that {Tku;k ∈ Zd} is an orthonormal basis of V0. (iv)

Let T := [0, 1], and let Td denote the d-dimensional torus. A function f will be called

Zd-periodic if it is defined in Rd, and for every k ∈ Zd and x ∈ Rd we have f(x + k) = f(x).

Claim: It follows from the definition of MRA that there is a Zd-periodic function p ∈ L2(Td)

such that

û(2x) = p(x)û(x) a.e.

Proof. Let {Tku;k ∈ Zd} be an orthonormal basis of V0. In particular, u(t) ∈ V0. Thus, by

(ii), u( t
2
) ∈ V−1. By (i) and (iv), we can write

u

(
t

2

)
=
∑
k∈Zd

akTku(t)

2



Where ak =

〈
u( t

2
), Tku(t)

〉
. By taking the Fourier transform of both sides, we get

∫
Rd

e−2πit·xu(t/2)dt =

∫
Rd

e−2πit·x
∑
k∈Zd

aku(t− k)dt.

By changing variables, we get

∫
Rd

e−2πi(2s)·xu(s)2dds =

∫
Rd

e−2πi(s+k)·x
∑
k∈Zd

aku(s)ds.

Which yields,

2dû(2x) =
∑
k∈Zd

ake
−2πik·xû(x)

If we let p(x) = 2−d
∑
k∈Zd

ake
−2πik·x, then the result follows.

The function u is called a scaling function for the MRA, and p is called the low pass filter

associated with u.

We will denote the orthogonal complement of Vj in Vj+1 by Wj. Thus, Vj+1 = Vj ⊕Wj.

Let {ψ1, ..., ψm} be an orthonormal multivariate wavelet in L2(Rd); for j ∈ Z, let Pj denote

the closure of the linear span of

{DjTkψl;k ∈ Zd, 1 ≤ l ≤ m}

and let Vj :=
∑
r<j

Pr. Note that ψ1, ..., ψm ∈ V1. We say that {ψ1, ..., ψm} is associated

with an MRA if M := {Vj; j ∈ Z} is a multiresolution analysis. If this is the case, we also

say that {ψ1, ..., ψm} is associated with M . The definition implies that {ψ1, ..., ψm} is an

orthonormal multivariate wavelet associated with M if and only if {Tkψl;k ∈ Zd, 1 ≤ l ≤ m}

is an orthonormal basis of W0.

Given {u1, ..., um} ⊂ L2(Rd), we will adopt the following notation:

T (u1, ..., um) := {Tkul;k ∈ Zd, 1 ≤ l ≤ m},
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and

S(u1, ..., um) := span T (u1, ..., um).

The following is a special case of a theorem by Guo, Lebate et al. [4, Proposition 2.1]

Theorem 1. Assume that T (u1, ..., um) and T (h1, ..., hn) are orthonormal sequences in

L2(Rd) such that S(u1, ..., um) = S(h1, ..., hm). Then m = n.

Proof. Since S(u1, ..., um) = S(h1, ..., hm),

ul(x) =
∑
k∈Zd

n∑
j=1

〈ul, Tkhj〉Tkhj(x) l = 1, ...,m. and hj(x) =
∑
k∈Zd

m∑
l=1

〈hj, Tkul〉Tkul(x)

This implies that

1 = ||ul||2 =
∑
k∈Zd

n∑
j=1

|〈ul, Tkhj〉|2 and 1 = ||hj||2 =
∑
k∈Zd

m∑
l=1

|〈hj, Tkul〉|2

Also note that 〈ul, Tkhj〉 = 〈T−kul, hj〉 Thus we can show,

m =
m∑
l=1

||ul||2 =
m∑
l=1

∑
k∈Zd

n∑
j=1

|〈ul, Tkhj〉|2 =
n∑
j=1

∑
k∈Zd

m∑
l=1

|〈T−kul, hj〉|2 =
n∑
j=1

||hj||2 = n

In [7] Wilson and Weiss showed that if {ψ1, ..., ψl} is an orthonormal multivariate wavelet

in L2(Rd) associated with a multiresolution analysis, then m = 2d−1. Hence, when combined

with Theorem 1, we have that in the case of orthonormal multivariate wavelets associated

with the same MRA, m = n = 2d − 1.

The following theorem is from [5, p. 57], which we adapt to suit the above definition of

the Fourier transform.

Theorem 2. If φ is a scaling function for an MRA {Vj; j ∈ Z} and p is the associated low

pass filter, then h ∈ L2(R) is an orthonormal wavelet associated with this MRA if and only
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if there is a measurable unimodular and Z-periodic function v(x), such that

ĥ(2x) = e2πixv(2x)p(x+ 1/2)φ̂(x) a.e.

The main results of this paper will be generalizing the following corollary to wavelets in

L2(Rd).

Corollary 1. If h is an orthonormal wavelet associated with an MRA, then ψ is an orthonor-

mal wavelet associated with the same MRA if and only if there is a measurable unimodular

and Z-periodic function q(x) such that

ψ̂(x) = q(x)ĥ(x) a.e.

The following theorems will be referenced multiple times in the paper and will be in-

cluded here as a reference.

Theorem 3. (Parseval’s Identity) Let f ∈ L2(Td), and ck := f̂(k) be the Fourier coefficients

of f . Then ∑
k∈Zd

|ck|2 = ||f ||2L2(Td)

Theorem 4. (Plancherel’s Theorem) Let f, g ∈ L2(Rd). Then,

∫
Rd

|f(t)|2dt =

∫
Rd

|f̂(x)|2dx

Corollary 2. ∫
Rd

f(t)g(t)dt =

∫
Rd

f̂(x)ĝ(x)dx

Theorem 5. (Fubini’s Theorem) Let X, Y be measure spaces. If

∫
X×Y
|f(x, y)|d(x, y) <∞.
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Then ∫
X

∫
Y

|f(x, y)|dydx =

∫
Y

∫
X

|f(x, y)|dxdy =

∫
X×Y
|f(x, y)|d(x, y)

Corollary 3. If ∑
n

∫
A

|f(n,x)|dx <∞,

then, ∑
n

∫
A

f(n,x)dx =

∫
A

∑
n

f(n,x)dx

Theorem 6. (Gram-Schmidt Orthogonalization) Let {u1, ...,un} ∈ S linearly independent,

where S is an inner product space. Then we can find a set {ũ1, ..., ũn} ∈ S of orthonormal

vectors that span the same space.
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Chapter 2

Main Results

Lemma 1. (a) T (u1...um) is an orthogonal sequence in L2(Rd) if and only if

[ûl, ûj] (x) = 0 a.e., l, j = 1, ...,m l 6= j

(b) T (u1...um) is an orthonormal sequence in L2(Rd) if and only if

[ûl, ûj] (x) = δl,j a.e., l, j = 1, ...,m

Proof. It suffices to prove (b).

Let a,b ∈ Zd and k = b− a. Then

〈Taul, Tbuj〉 = 〈ul, Tkuj〉

=

∫
Rd

ul(t)uj(t− k)dt

=

∫
Rd

ûl(x)ûj(x)e2πik·xdx (Plancherel’s Theorem)

=
∑
n∈Zd

∫
T d

ûl(y + n)ûj(y + n)e2πik·(y+n)dy (“periodize” the integral)

=

∫
Td

∑
n∈Zd

ûl(y + n)ûj(y + n)e2πik·ydy (Fubini’s Theorem)

=

∫
Td

[ûl, ûj] (y)e2πik·ydy (1)

Thus 〈Taul, Tbuj〉 are the Fourier coefficients of [ûl, ûj], and Parseval’s Identity implies that

||[ûl, ûj]||2L2(Td) =
∑
k∈Zd

|〈ul, Tkuj〉|2 (2)
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Assume T (u1, ..., um) is an orthonormal sequence in L2(Rd). Then for l 6= j, we have

that the right hand side of (2) is equal to 0, which implies that [ûl, ûj](x) = 0 a.e.. When

l = j, we have that the 〈ul, Tkul〉 are the Fourier coefficients of the function 1, and by the

uniqueness of Fourier coefficients (since [ûl, ûl](x) is Zd-periodic and in L2(Td)), we have

that [ûl, ûl](x) = 1 a.e., and thus [ûl, ûj](x) = δl,j a.e..

Conversely, assume [ûl, ûj] = δl,j a.e.. Then when l 6= j, (1) implies that 〈Taul, Tbuj〉 =∫
Td 0 dy = 0. When l = j, (1) implies that 〈Taul, Tbul〉 =

∫
Td e

2πik·ydy = δa,b. Thus

T (u1, ..., um) is an orthonormal sequence in L2(Rd).

Lemma 2. If T (h1, ..., hm) is an orthonormal sequence in L2(Rd) and S(u1, ..., um) ⊂

S(h1...hm), then there are Zd-periodic functions pl,j(x) ∈ L2(Td), uniquely defined a.e., such

that

ûl(x) =
m∑
r=1

pl,r(x)ĥr(x) a.e., l = 1, ...,m (3)

Proof. Since T (h1...hm) is an orthonormal sequence in L2(Rd) we can write the orthogonal

projection of ul onto S(hj), which we will denote by ul,r, as

ul,r(t) =
∑
k∈Zd

al,r,khr(t− k).

Where al,r,k = 〈ul, Tkhr〉, and since S(u1...um) ⊂ S(h1...hm), we can write

ul(t) =
m∑
r=1

ul,r(t) =
m∑
r=1

∑
k∈Zd

al,r,khr(t− k).

If we take the Fourier Transform of both sides, we get

ûl(x) =
m∑
r=1

∑
k∈Zd

al,r,kĥr(x)e−2πik·x

=
m∑
r=1

ĥr(x)
∑
k∈Zd

al,r,ke
−2πik·x
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If we let pl,r(x) =
∑
k∈Zd

al,r,ke
−2πik·x, then the result follows.

Lemma 3. Assume that T (h1, ..., hm) is an orthonormal sequence in L2(Rd) and that S(u1, ..., um) ⊂

S(h1, ..., hm), and assume there are Zd-periodic functions pl,j(x) ∈ L2(Td) such that (3) is

satisfied. Then T (u1, ..., um) is an orthonormal sequence if and only if

m∑
r=1

pl,r(x)pj,r(x) = δl,j a.e., l, j = 1, ...,m (4)

Proof. Let ul,r denote the orthogonal projection of ul onto S(hr). Then

ûl,r(x) = pl,r(x)ĥr(x) a.e. l, r = 1, ...,m.

Note that ûl(x) =
m∑
r=1

ûl,r(x) and that since T (h1, ..., hm) is an orthonormal sequence in

L2(Rd), ul,r is orthogonal to uj,s for any r 6= s.

Hence,

〈ul, Tkuj〉 =

〈
m∑
r=1

ul,r(t),
m∑
s=1

Tkuj,s(t)

〉

=

∫
Rd

m∑
r=1

ul,r(t)uj,r(t− k)dt (by orthogonality)

=

∫
Rd

m∑
r=1

ûl,r(x)ûj,r(x)e2πik·xdx (Plancherel’s Theorem)

=
∑
n∈Zd

∫
Td

m∑
r=1

ûl,r(y + n)ûj,r(y + n)e2πik·(y+n)dy

=

∫
Td

(
m∑
r=1

[ûl,r, ûj,r](y)

)
e2πik·ydy (Fubini’s Theorem)

Thus, we have that 〈ul, Tkuj〉 are Fourier coefficients of
m∑
r=1

[ûl,r, ûj,r](x). But these are

the same Fourier coefficients as [ûl, ûj] (x), found in our proof of Lemma 1. Hence, by the

uniqueness of Fourier coefficients, [ûl, ûj] (x) =
m∑
r=1

[ûl,r, ûj,r](x) a.e. and thus, by Lemma 1,

9



T (u1, ..., um) is an orthonormal sequence if and only if

m∑
r=1

[ûl,r, ûj,r](x) = [ûl, ûj](x) = δl,j a.e. l, j = 1, ...,m

But,

[ûl,r, ûj,r](x) =
∑
k∈Zd

ûl,r(x + k)ûj,r(x + k)

=
∑
k∈Zd

pl,r(x + k)ĥr(x + k)pj,r(x + k)ĥr(x + k)

=
∑
k∈Zd

pl,r(x)pj,r(x)ĥr(x + k)ĥr(x + k) (since p is Zd-periodic)

= pl,r(x)pj,r(x)
[
ĥr, ĥr

]
(x)

= pl,r(x)pj,r(x) (by Lemma 1)

Hence, T (u1, ..., um) is an orthonormal sequence if and only if

δl,j = [ûl, ûj](x) a.e. l, j = 1, ...,m (Lemma 1)

=
m∑
r=1

[ûl,r, ûj,r](x)

=
m∑
r=1

pl,r(x)pj,r(x)

Lemma 4. Assume that T (u1, ..., um) and T (h1, ..., hm) are orthonormal sequences in L2(Rd).

Then S(u1, ..., um) = S(h1, ..., hm) if and only if there are Zd-periodic functions pl,r(x) ∈

L2(Td) that satisfy (3) and the matrix

P (x) :=

(
pl,r(x)

)m
l,r=1

(5)

is nonsingular almost everywhere.
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Proof. First, assume there are Zd-periodic functions pl,j(x) ∈ L2(Td) that satisfy (1) and the

matrix (5) is nonsingular almost everywhere. Let

U(x) :=


û1(x)

...

ûm(x)

 and H(x) :=


ĥ1(x)

...

ĥm(x)

 .

Then

U(x) = P (x)H(x) a.e.

If P (x) is nonsingular almost everywhere, setting

Q(x) :=

 [P (x)]−1 if P (x) is nonsingular

0 if P (x) is singular
,

yields that Q(x) is Zd-periodic and

H(x) = Q(x)U(x) a.e.

If we let

Q(x) :=

(
ql,r(x)

)m
l,r=1

,

then

ĥl(x) =
m∑
r=1

ql,r(x)ûr(x).

11



We then have

1 = ||ĥl||2 = ||
m∑
r=1

ql,rûr||2 =

〈
m∑
r=1

ql,r(x)ûr(x),
m∑
s=1

ql,s(x)ûs(x)

〉

=

∫
Rd

m∑
r=1

m∑
s=1

ql,r(x)ûr(x)ql,s(x)ûs(x)dx

=
∑
k∈Zd

∫
Td

m∑
r=1

m∑
s=1

ql,r(y + k)ûr(y + k)ql,s(y + k)ûs(y + k)dy

=

∫
Td

m∑
r=1

m∑
s=1

ql,r(y)ql,s(y)
∑
k∈Zd

ûr(y + k)ûs(y + k)dy (since q is Zd periodic)

=

∫
Td

m∑
r=1

m∑
s=1

ql,r(y)ql,s(y)[ûr, ûs](y)dy

=

∫
Td

m∑
r=1

|ql,r(y)|2dy (by Lemma 1)

≥
∫
Td

|ql,n(y)|2dy for any n ∈ [1, ...,m]

= ||ql,n||2L2(Td)

Therefore ql,n ∈ L2(Td) for l, n = 1, ...,m and thus S(u1, ..., um) = S(h1, ..., hm).

Conversely, assume that S(u1, ..., um) = S(h1, ..., hm). Then (3) implies that there are

Zd-periodic matrices

P (x) =

(
pl,r(x)

)m
l,r=1

and Q(x) =

(
ql,r(x)

)m
l,r=1

such that

pl,r, ql,r ∈ L2(Td), l, r = 1, ...,m

U(x) = P (x)H(x) a.e.

H(x) = Q(x)U(x) a.e.

Thus

U(x) = P (x)Q(x)U(x) a.e.
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Which implies that

P (x)Q(x) = I a.e.

and thus P (x) is nonsingular almost everywhere.

Theorem 7. Assume that T (h1, ..., hm) is an orthonormal sequence in L2(Rd), and let

{u1, ..., un} be a set of functions defined on Rd. Then T (u1, ..., un) is an orthonormal se-

quence and

S(h1, ..., hm) = S(u1, ..., un)

if and only if m = n, there are Zd-periodic functions pl,r(x) ∈ L2(Td) such that (3) is satisfied

and the matrix (5) is orthogonal almost everywhere.

Proof. Assume that T (h1, ..., hm) and T (u1, ..., un) are orthonormal and such that S(h1, ..., hm) =

S(u1, ..., un). Then m = n by Theorem 1. Lemma 2 implies that (3) is satisfied. Since (3)

is satisfied and T (h1, ..., hm) is orthonormal, Lemma 3 implies that (4) is satisfied. If we

define Pl(x) as the l-th row of P (x), we see that the left hand side of (4) is equivalent to

Pl(x) · Pj(x) , which tells us that (5) is orthogonal.

Now assume m = n, there are Zd-periodic functions pl,r(x) ∈ L2(Td) such that (3) is

satisfied and (5) is orthogonal a.e.. Since (3) is satisfied,

S(u1, ..., um) ⊂ S(h1, ..., hm).

Since (5) is orthogonal a.e., (4) is satisfied. We can then use Lemma 3 to show that

T (u1, ..., um) is an orthonormal sequence. Since (5) is orthogonal a.e., it is also nonsingular

a.e., and we can then use Lemma 4 to conclude that

S(h1, ..., hm) = S(u1, ..., um).
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As we remarked above, if {φ1, ..., φm} is an orthonormal multivariate wavelet in L2(Rd)

associated with an MRA, then m = 2d − 1. Thus, an immediate consequence of Theorem 7

is

Theorem 8. Assume that {φ1, ..., φm} is an orthonormal multivariate wavelet in L2(Rd)

associated with an MRA, and let {ψ1, ..., ψn} be a set of functions defined in L2(Rd). Then

{ψ1, ..., ψn} is an orthonormal multivariate wavelet associated with the same MRA as

{φ1, ..., φm}, if and only if m = n = 2d − 1, and there are Zd-periodic functions pl,r(x) ∈

L2(Td) such that

ψ̂l(x) =
m∑
r=1

pl,r(x)φ̂r(x) a.e., l = 1, ...,m

and the matrix (5) is orthogonal a.e.

14



Chapter 3

Examples

We’ll start with some basic constructions of the matrix P (x), and then move to some

more complicated formulations. The following definitions will hold for all of the examples

section.

φ(x) = χ[0,1)(x)

ψ(x) =


1 if x ∈ [0, 1

2
)

−1 if x ∈ [1
2
, 1)

0 elsewhere

Note that ψ(x) is known as the Haar Wavelet. For more information on its construction and

properties, see [5, 6, 7]

Let

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y)

The construction of {ψ1, ψ1, ψ3} is outlined in [6, p.82], and is shown to be orthonormal

wavelet in L2(R2) generated by the scaling function φ(x, y) = φ(x)φ(y). For information

regarding the construction of multivariate wavelets from a scaling function, see [9, Theorem
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9].

Since each ψj is separable, the Fourier transforms are easily found and equal to,

ψ̂1(u, v) = φ̂(u)ψ̂(v)

ψ̂2(u, v) = ψ̂(u)φ̂(v)

ψ̂3(u, v) = ψ̂(u)ψ̂(v)

Example 1. Let

P (u, v) =


cos(2πu) −sin(2πu) 0

sin(2πu) cos(2πu) 0

0 0 1


This is a basic rotation matrix, which has the property of being Z2-periodic and or-

thogonal, hence fulfilling the conditions for Theorem 8. If we apply this to our equation, we

get, 
̂̃ψ1(u, v)̂̃ψ2(u, v)̂̃ψ3(u, v)

 =


cos(2πu) −sin(2πu) 0

sin(2πu) cos(2πu) 0

0 0 1



ψ̂1(u, v)

ψ̂2(u, v)

ψ̂3(u, v)


Recall that cos(2πu) = 1

2
(e2πiu + e−2πiu) and sin(2πu) = 1

2i
(e2πiu − e−2πiu). Hence,


ψ̃1(x, y)

ψ̃2(x, y)

ψ̃3(x, y)

 =



[
1
2

(
φ(x+ 1) + φ(x− 1)

)
− 1

2i

(
φ(x+ 1)− φ(x− 1)

)]
ψ(y)[

1
2i

(
ψ(x+ 1)− ψ(x− 1)

)
+ 1

2

(
ψ(x+ 1) + ψ(x− 1)

)]
φ(y)

ψ(x)ψ(y)


Note that in the above example, the new wavelets are linear combinations of shifted

versions of our original φ(·) and ψ(·) in each variable. Thus, it is clear that the new wavelets

have bounded support since φ(·) and ψ(·) have bounded support. This will hold true for all

of the future examples by the same reasoning.
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Example 2. For a more general case, we can look back to our introduction of pl,r(x), where

we defined it as
∑
k∈Zd

al,r,ke
2πik·x. Hence, we can choose each pl,r(u, v) to be linear com-

binations of two-dimensional Zd-periodic complex exponentials. We will maintain the or-

thogonality condition by only using the main diagonal and single terms, rather than linear

combinations.

Let

P (u, v) =


e4πiue12πiv 0 0

0 −e2πiue−6πiv 0

0 0 e−2πiu


Once again, finding the inverse Fourier transform is simple since the wavelet and each

pl,r(u, v) are separable. Thus,


ψ̃1(x, y)

ψ̃2(x, y)

ψ̃3(x, y)

 =


φ(x+ 2)ψ(y + 6)

−ψ(x+ 1)φ(y − 3)

ψ(x− 1)ψ(y)


Example 3. For the most general case, we begin with three rows which are linearly inde-

pendent, and use the Gram-Schmidt Process to orthogonalize the rows, and thus create an

orthogonal matrix.

Let

P̃ (u, v) =


3e4πiu 0 4

e4πiu 4e−2πiue−2πiv 0

0 0 5e10πiv


Note that all these rows are linearly independent. If we define our inner product

〈Pl(x), Pj(x)〉 :=
3∑
r=1

∫
T2

pl,r(u, v)pj,r(u, v)dudv,
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then by using Gram-Schmidt orthogonalization on our example P̃ (u, v), we get that

P (u, v) =


3
5
e4πiu 0 4

5

4
25
√
26
e4πiu 1√

26
e−2πi(u+v) − 3

25
√
26

0 0 e10πiv


Which yields our new wavelet,


ψ̃1(x, y)

ψ̃2(x, y)

ψ̃3(x, y)

 =


3
5
φ(x+ 2)ψ(y) + 4

5
ψ(x)ψ(y)

4
25
√
26
φ(x+ 2)ψ(y) + 1√

26
ψ(x− 1)φ(y − 1)− 3

25
√
26
ψ(x)ψ(y)

ψ(x)ψ(y + 5)


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