
New Classes of Multivariate Gamma

Survival and Reliability Models

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Norou Dini Diawara

Certificate of Approval:

Asheber Abebe
Assistant Professor
Mathematics and Statistics

Mark Carpenter, Chair
Associate Professor
Mathematics and Statistics

Nedret Billor
Associate Professor
Mathematics and Statistics

Olav Kallenberg
Professor
Mathematics and Statistics

Jerzy Szulga
Professor
Mathematics and Statistics

Stephen L. McFarland
Dean
Graduate School



New Classes of Multivariate Gamma

Survival and Reliability Models

Norou Dini Diawara

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
August 7, 2006



New Classes of Multivariate Gamma

Survival and Reliability Models

Norou Diawara

Permission is granted to Auburn University to make copies of this dissertation at its

discretion, upon the request of individuals or institutions and at their expense.

The author reserves all publication rights.

Signature of Author

August 7, 2006
Date of Graduation

iii



Vita

Norou Dini Diawara, son of Moustapha Bassirou Diawara and Khady Diatou Dieng,
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Multivariate modeling and analysis based on the multivariate normal distribution is

well established and widely used. However, when the marginal distributions have only

a positive support, such as time-to-event models, that are positively skewed, often the

multivariate normal theory and resulting approximations fail. Accordingly, over the last fifty

years, thousands of papers have been published suggesting many ways of generating families

of positive support multivariate distributions, such as gamma, Weibull and exponential.

As evidenced by recent literature, this quest is still rigorously pursued even today. In

this dissertation, we provide a large and flexible class of multivariate gamma distributions

that contains both absolutely continuous and discontinuous distributions on the positive

hypercube support. All of these models are applicable to the area of reliability and survival

modeling.
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Notations

Notation Description
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Chapter 1

Introduction

1.1 Motivation

Multivariate survival or reliability analysis refers to the multivariate modeling of the

different times to multiple events that are recorded on the same experimental unit. In such

cases, when more than one time-to-event is observed for each individual under study, it is

reasonable to assume that the event times are dependent. However, it is common practice

to assume “working independence” (see Lawless (2003) [56] for example) where each event

is analyzed separately, while ignoring this dependence (effectively treating them as inde-

pendent events). This seemingly pragmatic approach can lead to confusing interpretations

and incorrect results. Carpenter et al. (2006) [12] showed that ignoring dependence be-

tween variables comes at a great cost in terms of bias, mean square error (MSE), and other

objective criteria in the bivariate exponential case.

This idea is quite intuitive, because ignoring dependence requires maximizing the wrong

or misspecified likelihood function. That is, the maximum likelihood estimators (MLE’s) of

the parameters based on the marginal likelihoods are not necessarily the same as the MLE’s

derived from the joint likelihood.

Another problem with ignoring dependence is that such an analysis would require one to

adjust for the multiple testing problem. In clinical trials, the Food and Drug Administration,

for example, routinely requires conservative adjustments for multiple endpoints such as a

primary endpoint of time-to-death due to a brain tumor, and a secondary endpoint of

time-to-recurrence of the tumor after surgery.
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Because the marginal distributions are of positive support and often very positively

skewed, treating the observations as multivariate normal can lead to incorrect results and/or

convergence issues. For example, the multivariate mixture model is used in many appli-

cations for unsupervised classification. Hougaard (2001) [37] advises cautions using the

multivariate normal when the underlying distribution does not apply to it.

Also, these methods can be computationally intensive (see Borovkov and Utev (1984)

[7], Chen (1982) [14], Mclachlan and Peel (2000) [67], Johnson and Wichern (1998) [48] )

even if the underlying latent populations are multivariate normal. In fact, Mclachlan and

Peel (2000) [67] provide a whole chapter on mixture models for failure time data.

Therefore, over the last fifty years there has been great interest in deriving and char-

acterizing multivariate distributions with positive support and skewed marginals. A few of

the many widely known references are from Arnold (1967) [2], Barlow and Proschan (1965)

[5], Fang (1990) [24], Furman (2005) [28], Gosh and Gelfand (1998) [30], Hanagal (1996)

[32], Hougaard (2000) [36], Hougaard (2001) [37], Joe (1997) [44], Kotz et al. (2000) [53],

Lee (1979) [57], Lu and Bhattacharyya (1990) [59], Marshall and Olkin (1967) [61], Mathai

and Moschopoulos (1991) [63], Mathai and Moschopoulos (1992) [64], Moran (1969) [69],

Sivazlian (1981) [76], and Walker and Stephens (1999) [79].

In this dissertation, we provide a large and flexible class of multivariate gamma dis-

tributions that contains both absolutely continuous and discontinuous distributions on the

positive hypercube support. All of these models are applicable to the area of reliability and

survival modeling. Also, since this theoretical research resulted from a real world application

we provide methods for parameter estimation for a variety of applications.
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1.2 Research Question

Our focus is on generating multivariate survival and reliability models with specified

marginal distributions of the same family, i.e., exponential, Weibull and gamma. One

common use of these models, in survival analysis, is to examine the survival times of patients

in medical or biological settings, based on factors such as treatment, age, education, to

predict the time to death, or time to certain events. In the industrial engineering setting,

the study of time to failure of devices, machines or components in a system, are referred

to as reliability analysis. Although the applications are very different, these models can be

used in both contexts of survival and reliability analysis.

Our approach to creating a dependence structure between multiple events, is to in-

directly associate the random variables (r.v.’s) linearly with latent, unobservable r.v.’s.

Specially, let p be some fixed integer, and X0, X1, ..., Xp be r.v.’s with specified distribu-

tions of the same family, say f(x|θ), that are linked through the mutually independent r.v.’s

Z1, Z2, ..., Zp in the following way:

Xi = aiX0 + Zi (1.1)

where ai’s are some nonnegative constants, and Zi independent of X0 for i = 1, 2, · · · , p.

Note that X0, Z1, Z2, · · · , Zp are considered latent, unobservable r.v.’s , that generate the

observable multivariate vector X = (X1, X2, · · · , Xp)′.

Much of the research in this dissertation is on the derivation and characterization of the

classes of distributions of Z1, Z2, · · · , Zp, that produce the specified marginal distributions
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of X1, X2, · · · , Xp, respectively. We derive and study estimators of the parameters under

the resulting dependence structure.

Interestingly, if we treat the latent variables, X0, Z1, · · · , Zp, as missing observations,

then methods based on conditional expectation and/or expectation-maximization (EM)

algorithms have great potential in estimating the parameters associated with the latent

population. We develop such approaches as well as a missing value substitution techniques

in improving our estimates of the parameters of the marginal distributions and parameters

associated with the latent terms.

Since in this dissertation we focus on a new multivariate gamma distribution, in the

sections that follow, we review the univariate gamma and other multivariate gammas in

their various forms found in the literature and in practice.

1.3 The Univariate Gamma Distribution

Positively skewed distributions on a positive support occur quite often in practical

applications such as in reliability and survival analysis. Lawless (2003) [56] gives some

examples of the most common models, and their applications. The gamma family of dis-

tributions is right tailed, and seems a natural choice for positive valued distributions with

heavy tails. It is widely used in reliability and survival. For example, the gamma dis-

tribution is used in statistical studies of times between earthquakes. So estimation of its

parameters is very important.

The gamma distribution belongs to the class of exponential distributions on the real

line with respect to Lebesgue measure. See McCullagh and Nelder (1989) [66] for example.
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This family plays an important role in many areas of probability and statistics through the

normal, exponential, gamma, Poisson, binomial distributions, and many other ones.

The exponential family distribution is a large class that allow us to handle a wide

category of distributions, and many of the properties are similar to the normal distribution.

Lehmann(1986) [58] gives some results for that class of distributions.

McCullagh and Nelder (1989) [66] give some examples of models where the gamma

distribution is used in the regression structure under generalized linear model (GLM). GLM

allows a unified theory for many models in practical statistics, including models for gamma

responses and survival data.

We consider the univariate three parameter gamma distribution X, denoted here as

Ga(µ, λ, α). If µ = 0, we denote the two parameter gamma distribution X as Ga(λ, α).

Definition 1.1 The three parameter gamma distribution, see Cohen and Whitten (1986)

[16] and Billingsley (1986) [6] for examples, is defined by the density function

fX(.;µ, λ, α) : t ∈ (µ,∞) 7→ fX(t;µ, λ, α) ∈ R+ of the three parameters µ ∈ R, λ > 0 and

α > 0 given as

fX(t;µ, λ, α) =
λα

Γ(α)
(t− µ)α−1e−λ(t−µ)I[µ,∞)(t) (1.2)

where

µ ∈ R, λ > 0, and α > 0 are the location, scale and shape parameters, respectively.

Γ(α) =
∫ ∞

0
xα−1e−xdx is called the gamma function.

The three parameter gamma distribution is also known as Type III of distributions

in the Pearson’s system of distributions. Rather than considering the distribution at the

7



origin, it is sometimes more appropriate to shift it on the real axis, allowing the domain to

be [µ,∞), as it is done in (1.2). The scale parameter λ is also called the rate or inverse scale

under inverse parametrization. The smaller the value of λ, the wider the spread, and vice

versa. Whereas for the normal distribution, the scale parameter is the standard deviation.

When 0 < α < 1, the distribution has a vertical asymptote. When α > 1, the distribution

has a mode at
α− 1

λ
+ µ and heavy tails. See Figure 1.1 and Figure 1.2 below for the cdf

and pdf, respectively.

The gamma function Γ(α) =
∫ ∞

0
xα−1e−xdx with Γ

(
1
2

)
=
√

π is the normalizing

constant of the distribution, and satisfies the relation αΓ(α) = Γ(α + 1). The incom-

plete gamma is defined as I(α, t) =
1

Γ(α)

∫ t

0
xα−1e−xdx, as in Lawless (2003) [56], and

Γ(α, t) =
1

Γ(α)

∫ ∞

t
xα−1e−xdx is called the complementary incomplete gamma function.

Several special cases of the gamma , such as the Erlang or the exponential, exist, and

are widely used. The gamma distribution of (1.2) with location at the origin and scale 1 is

known as the standard exponential distribution. Most statistical packages, such as SASr

and S-Plus generate standard exponential distributions. Its pdf is:

f(t) = λe−λt, where λ > 0, and t ≥ 0. (1.3)

The displaced exponential is the exponential shifted by some value µ, denoted exp(µ, λ)

and defined as

f(t) = λe−λ(t−µ), where λ > 0, and t ≥ µ. (1.4)

8



Gamma pdf with lambda=1/2, 

Low thickness: alpha=1, Medium thickness: alpha=3, High thickness: alpha=5
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Figure 1.1: Graph of gamma pdf

The Erlang distribution is also a particular case of the gamma distribution where the

shape parameter α in (1.2), is a positive integer value, denoted here as n. Its pdf is:

f(t) =
λn

Γ(n)
(t− µ)n−1e−λ(t−µ) ∈ R+, where λ > 0, and n ∈ N. (1.5)

The Erlang distribution is often used to model the waiting times in queuing systems,

particularly in the case of telephone traffic engineering. The Erlang distribution is the

probability distribution of the waiting time until the nth arrival in a one-dimensional Poisson

process with intensity λ. The case n = 1 reduces to the exponential distribution. The

9



Gamma cdf with lambda=1/2, 

Low tickness: alpha=1, Medium tickness: alpha=3, High tickness: alpha=5
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Figure 1.2: Graph of gamma cdf

exponential distribution is the difference between successive occurrences of events given by

a Poisson process.

Another interpretation due to Barlow and Proschan (1965) [5], explains the Erlang

distribution as the waiting time until failure by a random shock in a device. The device

fails when there are exactly α shocks that occur randomly over time, α ∈ N, at a Poisson

rate with parameter λ. That is the convolution of α exponential distributions.
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1.3.1 Properties

The class of gamma distributions which includes the exponential, the Erlang and the

Chi-Square distributions, is widely used in applied and theoretical statistics. Unlike the

normal distribution, the gamma distribution is asymmetric, and cannot be distinguished

by its mean and variance alone, known as first and second moments, respectively. In

addition to the mean and variance, this distribution is characterized by its third and fourth

order moments known as skewness and kurtosis, and by higher moments. See Grove and

Coddington (2005) [31] for example.

The expected value of the gamma distribution in (1.2) and its variance are

EX =
α

λ
+ µ and V ar(X) =

α

λ2
, (1.6)

respectively.

The probability that an event of interest has not occurred by time x, the survival or

reliability function, is given by

SX(x) = 1− FX(x) = 1− I

(
α;λ(x− µ)

)
, (1.7)

where I(α, t) =
1

Γ(α)

∫ t

0
xα−1e−xdx.

The instantaneous rate of occurrence of an event, also called hazard function, or failure

rate function, is obtained from (1.7) and is defined as:

h(x) =
f(x)
S(x)

=
λα

Γ(α)
(x− µ)α−1

(1− I(α;λ(x− µ)))
e−λ(x−µ), (1.8)
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and the cumulative hazard rate is

H(x) =
∫ x

µ
h(u)du = − log S(x). (1.9)

The hazard function (1.8), for the gamma density in (1.2), is increasing when α > 1

from 0 to λ, decreasing when α < 1 from ∞ to λ, and constant when α = 1 (exponential

case).

Many authors have recognized the importance of modeling and studying the hazard

function (1.8) or the cumulative hazard rate (1.9). For example, Cox (1972) [20] used the

hazard function to get estimators of the effects of different covariates on the times to failures

of a system, by his famously proposed Cox proportional hazard model.

Balakrishnan and Wang (2000) [4] showed that the estimation problem for the three

parameter gamma has always been a challenging and interesting one, in particular when the

shape parameter α is small (less than 2.5). As the shape α → ∞, the gamma distribution

in (1.2) approaches normality.

Another property related with the gamma pdf is that it is closed under scalar product.

More precisely, if X ∼ Ga(µ, λ, α), then

Y = cX ∼ Ga(cµ,
λ

c
, α) (1.10)

for all c > 0,

and fY (y) = fX(
y

c
) ∗ 1

c
=

(λ/c)α

Γ(α)
(y − cµ)α−1e−

λ
c
(y−cµ).

12



The Laplace transform of (1.2) is given by

LX (t) = e−µt

(
λ

λ + t

)α

. (1.11)

Some advantages of the gamma distribution are in the simple forms of its density (1.2)

and its Laplace transform (1.11) further discussed in Example 2.2.

Another important property is that in the Erlang type distribution, G(µ, λ, m) can be

thought of as the sum of m independent distributions that are each displaced exponential

as in (1.4) with parameters µi and λ such that
m∑

i=1

µi = µ.

More precisely, if Xi ∼ exp(µi, λ) i = 1, 2, · · · ,m, then X =
m∑

i=1

Xi ∼ G(
m∑

i=1

µi, λ, m).

Dudewicz and Mishra (1988) [23], and Billingsley (1986) [6] showed that a sum of inde-

pendent gamma r.v.’s with same location and scale parameters µ and λ, is again a gamma

r.v. with the added shape parameters. The class of distributions {Ga(µ, λ, m); m ∈ N}

is then additive as its sum operation is well defined. This is analogous to the informally

defined multiplicative distribution for distributions that have a well defined multiplicative

operation.

1.3.2 Estimation of Parameters

Since the gamma distribution has many applications and is widely used, obtaining

reliable estimates of its parameters is a key issue, especially since the gamma can model

a variety of hazard functions. There are several methods of estimation such as graphical

methods, methods of moments, the least squares method, and the maximum likelihood

method.

13



The estimations of the shape and scale are affected if the location has to be estimated

using method of moments. Refer to Bowman and Shenton (2002) [9] for an example.

The location parameter µ, in most cases non-negative, is typically called the threshold

parameter. Here, it is interpreted as the minimum possible lifetime and can be estimated

by the minimum order statistics, as the condition x ≥ µ must be always satisfied, although

it is only an MLE in the exponential case. Note that Balakrishnan and Wang (2000) [4]

also considered a general linear combination of the order statistics,

µ̂ =
∑n

i=1 cix(i),

where x(1), x(2), · · · , x(n) are the order statistics from a given sample of size n.

However, as mentioned for example in Bowman and Shenton (1988) [8], there is a high

degree of deviation of the estimates from the parent distribution if one uses the method

of moments. In exploratory data analysis, the sample mean and the sample standard de-

viation are two quantities often computed as measures of center and spread, respectively.

In the normal distribution case, the population mean and variance are mathematically in-

dependent, and the sample mean and variance are known to be statistically independent.

However, in the non normal case, the population mean and variance are often linked math-

ematically (See McCullagh and Nelder (1989) [66]), i.e. the higher the mean, the higher the

standard deviation, and in fact the sample mean and sample variance are not independent.

The coefficient of variation establishes a similar independence property for the gamma

case. The population coefficient of variation, CV , for a distribution X with mean µX and

standard deviation σX is defined as CV =
σX

µX
. Estimates are obtained for example by

Hwang and Huang (2002) [41], among other authors. They derive the results, establishing

that the sample mean X̄ and the sample variance S2
n are unbiased estimators of (1.6),

14



respectively. (See Hwang and Hu (1999)[39] and Hwang and Hu (2000)[40]). We recall from

Dudewicz and Mishra (1986) [23] and Casella and Berger (1990) [13], that the independence

of the sample mean and sample standard deviation characterizes the normal distribution.

Theorem 1.2 establishes a similar characterization for the gamma distribution through the

sample coefficient of variation CVn =
Sn

X̄n
.

Theorem 1.2 Suppose that n ≥ 3. X1, X2, . . . , Xn are independent Ga(µ, λ, α) r.v.’s iff

X̄n and CVn are independent.

Proof: Proved in Hwang and Hu (1999) [39].

Hwang and Hu (1999) [39] use this characterization to obtain estimates of shape and

scale parameters for the gamma distribution. They showed that these new estimators

perform better that the MLE, and the method of moments estimators for a sample of size

n ≤ 25.

Using (1.2), the likelihood function based on an independent identically gamma dis-

tributed random sample X1, X2, · · · , Xn of size n is called , is given by:

L(µ, λ, α) =
λnα

Γn(α)

n∏

i=1

(xi − µ)α−1e−λ
Pn

i=1(xi−µ)I(µ,∞)(xi).

The likelihood is viewed as a function of the parameters µ, λ, and α conditioned on

the data. To ease the computations, one often deals with the logarithmic of the likelihood,

and the log likelihood is given as

l(µ, λ, α) = nα log λ− n log Γ (α) + (α− 1 )
n∑

i=1

log(xi − µ)− λ
n∑

i=1

(xi − µ).
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Based on the strong law of large numbers or ergodic theorems, the maximum likelihood

estimators have useful properties such as consistency and sufficiency. They achieve the

Cramér-Rao minimum variance asymptotically. They have the smallest variance among all

possible estimators asymptotically as the sample size increases. In other words, MLE’s are

statistically efficient and given better and often more reliable estimates than the method of

moments.

1.4 Literature Review

Several approaches and models have been suggested and developed for constructing the

multivariate gamma distribution by many authors such as Johnson and Kotz (1970) [45],

Hougaard (2001) [37], Marshall and Olkin (1967) [61], Tanner (1996) [77], Moran (1969)

[69], Mathai and Moschopoulos (1992) [64], and Walker and Stephens (1999) [79].

Defining the multivariate gamma distribution can be quite intuitive, but properties are

difficult to illustrate. That could explain why numerous versions of multivariate gamma

distributions are proposed in the literature. In particular, various forms of bivariate models

have been described from combinations of independent gamma distributions. Johnson et

al. (1997) [53] gives a coverage of a useful variety. One approach is to start with certain

desirable statistical properties in the univariate case, and build the multivariate extension

through various mechanisms. We take one such approach in this dissertation. See for

example Mathai and Moschopoulos (1991) [63], Gaver and Lewis (1980) [29], and Hanagal

(1996) [32]. Another approach, which defines the multivariate gamma from the bivariate,

is not as straightforward, since many bivariate gamma do not have a natural extension

to multivariate dependence. For example, see Marshall and Olkin (1967) [61], Marshall
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and Olkin (1983) [62], and Sivazlian (1981) [76]. In fact, Marshall and Olkin (1967) [61],

and Marshall and Olkin (1983) [62] proposed an approach that does not extend to the

multivariate case easily. Sivazlian (1981) [76] gives a form of multivariate gamma with

independent structure.

Walker and Stephens (1999) [79] define a multivariate family of distributions on Rp
+

in the context of survival analysis. It includes the Weibull, with interesting properties for

which the marginal distribution is of the same family, with a flexible relationship between

the components, straightforward analysis, and is applicable for censored data. As they

stated, the extension to the multivariate setting has proved quite problematic. Our goal

is to solve that problem and maintain these properties as well in our construction of the

multivariate gamma distribution.

Another classical multivariate gamma is known as Cheriyan and Ramabhadran’s gamma

distribution and is given in Kotz et al. (2000) [53]. It is a multivariate additive distribution

which is a simple case of the one we define in (1.1) where the nonnegative constant is taken

to be unity. Results for this distribution are also noted in Mathai and Moschopoulos (1991)

[63], which they further extend.

Henderson and Shimakura (2003) [34] presented a version of multivariate gamma dis-

tribution with gamma marginal distributions and correlation matrix without a closed form

for the density. Moreover, the estimation of parameters and asymptotic properties are not

well studied in those cases.

One needs to develop a multivariate gamma distribution that can be used in modeling

processes, such as those defined by Marshall and Olkin (1983) [62] for the bivariate logistic

model, or the bivariate exponential model by Mardia (1970) [60]. These methods and
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others are given in Coles and Tawn (1994) [19], where it is shown how statistical methods

in the multivariate context may be applied to problems of data analysis in the extremes in

particular.

As we said earlier, for the multivariate normal X = (X1, X2, · · · , Xp)′, with p ×

p positive definite covariance matrix Σ having V ar(Xi) = σ2
i (1 ≤ i ≤ p) as diago-

nal elements of Σ, Chen (1987) [15], among others, obtained a characterization of X as

U(X,Σ) = 1, where

U(X,Σ) = supg∈C
V ar[g(X)]

E[∇tg(X)Σ∇g(X)]
.

Here C is the class of measurable functions g : Rp 7→ R such that E[g(X)]2 < ∞ and

V ar[g(X)] > 0 and ∇g(X) represents the gradient operator.

Then for the multivariate gamma, U(X,Σ) > 1. While in the Gaussian case, where the

correlation matrix and the marginal distributions completely specify the joint distribution,

those two components (correlation matrix and marginal distributions) do not induce a

unique joint distribution for correlated gamma r.v.’s.

We cannot arbitrarily set X such that the marginal distributions are gamma, i.e Xi ∼

Ga(0, λi, αi) for i = 1, · · · , n, and Corr(Xi, Xj) = ρij ∈ [−1, 1] for i, j ∈ {1, 2, · · · , n}.

The difficulty arises from the fact that the mean and variance/covariance cannot be modeled

arbitrary as in the normal case, because in the gamma case, the {ρij}1≤i,j≤n are functions

of the shape parameters. This is true for all multivariate gamma motivated in the literature

to date.

Using the spirit of the multivariate normal density, several versions of the multivari-

ate gamma can be found. Fang and Zhang (1990) [24] describe a family of multivariate
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distributions called p-dimensional r.v. X = (X1, X2, · · · , Xp)′ with symmetric Kotz type

distribution (KTD) denoted as X ∼ KTDp(µ,Σp×p, α, m, β) where

• µ represents the location vector in Rp,

• Σp×p is the positive definite covariance matrix,

• α is such that α > (2− p)/2,

• m > 0 and β > 0.

It is defined as having a joint density of the form

fX(x) = Cp|Σ|−1[(x− µ)tΣ−1(x− µ)]α−1 exp { −m[(x− µ)tΣ−1(x− µ)]β},

where Cp is the normalizing constant given by,

Cp =
βΓ(p/2)mp/2β+(α−1)/β

πp/2Γ(p/2β + (α− 1)/p)
.

When β = 1, α = 1, and m = 1
2 , we obtain the multivariate normal distribution.

Using Fang and Zhang (1990) [24] approach, and modifying the multivariate normal,

we hope to have properties similar to the multivariate normal. We define the square root

of a vector as the square root of its components. We introduce the type of multivariate

gamma as follows:

fX(x) = Cp|Σ|−1[(m[x− µ])(1/2)]tΣ−1(m[x− µ])1/2]α−1

× exp { − [(m[x− µ])(1/2)tΣ−1(m[x− µ])1/2]β}.
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Taking β = 1,m = (
√

α1, · · · ,√αp)t, we have the form of the multivariate gamma

distribution. When the Xi’s are independent, we have the desired form. The result is

not obtained when there is dependence. This multivariate gamma is an example of the

multivariate dispersion model introduced by Jorgensen (1987) [49].

1.5 Marginal, Conditional and Joint Distributions

Here, we review the relevant concepts of marginal, joint and conditional distributions

that are referred to frequently in this dissertation. These concepts can be found in text-

books such as Feller (1971) [25], Dudewicz and Mishra (1988) [23], Folland (1999) [26], and

Kallenberg (2002) [51]. We also define the concept of conditional independence.

Definition 1.3 Let (Ω,A,P) be a probability space, i.e. Ω is a set, A is a σ-algebra, a

family of subsets of Ω and P is a mapping, P : A → [0,1] such that (i) P (Ω) = 1 and (ii)

if {An, n ∈ N} disjoints sets in A, then P (
⋃

n An) =
∑∞

n=1 P (An).

Definition 1.4 Let B(R) be the Borel σ−field generated on R. A random variable (r.v.) X

is a measurable function on a probability space, i.e. X is a mapping X : Ω → R such that

for every B ∈ B(R), X−1B ∈ A.

Definition 1.5 The cumulative distribution function (cdf) of X is a function FX , also

denoted as F if there is no confusion, F : R→ [0, 1] defined as

F (x) = (P ◦X−1)((−∞, x]) = P (X ≤ x), x ∈ R.

The cdf is a nondecreasing, right continuous, and has the following limits:

limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.
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For a fixed integer p ∈ N, the joint cumulative distribution of p−r.v.’s, or p−variate

denoted X = (X1, · · · , Xp)′ is an extension of the above concept, and is defined on a

probability space (Ω,A, P ). When Ω = Rp, the joint cdf of X is defined as F : Rp → [0, 1]

by:

F (x1, · · ·xp) = P (X1 ≤ x1, · · · , Xp ≤ xp). (1.12)

The joint cdf is right continuous, and satisfies the following:

limxi→∞ F (x1, · · · , xi, · · · , xp) = F (x1, · · · , xi−1, xi+1, · · · , xp),

which is the joint distribution of the remaining p− 1-variates and

limx1,···,xp→−∞ F (x1, · · · , xp) = 0 and limx1,···,xp→∞ F (x1, · · · , xp) = 1.

The marginal cdf of Xk, with 1 ≤ k ≤ p, is defined as

F (xk) = limx1,···,xk−1,xk+1,···,xp→∞ F (x1, · · · , xp).

The p−r.v’s. are said to be independent if (1.12) can be written as

F (x1, · · · , xp) = FX1(x1) · · ·FXp(xp),

and then E(X1 · · ·Xp) = E(X1) · · ·E(Xp) provided that all the expectations exist. In addi-

tion, the r.v.’s {gi(Xi), 1 ≤ i ≤ p} are independent. It is also known that uncorrelated r.v.’s

can be deduced from independence, but uncorrelated does not always imply independence.

Another concept that is useful is that of conditional distributions.

Definition 1.6 Suppose (X1, X2, · · · , Xp)′ is a random vector. The conditional distribu-

tion of (X1, X2, · · · , Xk)′, with 1 ≤ k ≤ p, given (Xk+1, · · · , Xp)′, is given by the ratio of

the joint distribution of all the r.v.’s over the joint marginal distribution of the conditioned
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r.v.’s. It is given by:

fX1,X2,···,Xk|Xk+1,···,Xp
(x1, x2, · · · , xk|xk+1, · · · , xp) =

fX1,X2,···,Xp(x1, x2, · · · , xp)
fXk+1,···,Xp(xk+1, · · · , xp)

,

provided that fXk+1,···,Xp(xk+1, · · · , xp) > 0, where f could be a pdf or a pmf.

Definition 1.7 The p−variate vector X = (X1, X2, · · · , Xp)′ is said to be conditionally

independent, conditioned on a variable, say X0, if

f(x1, x2, · · · , xp|x0) = f1(x1|x0)f2(x2|x0) · · · fp(xp|x0). (1.13)

where fi(·|x0) represents the conditional pdf of Xi, i = 1, · · · , p given X0.

(1.13) is equivalent to F (x1, x2, · · · , xp|x0) = F1(x1|x0)F2(x2|x0) · · ·Fp(xp|x0)

where Fi(·|x0) represents the conditional cdf of Xi, for i = 1, · · · , p given X0.

Theorem 1.8 The joint density of (X0, X1, . . . , Xp) satisfying (1.1) is expressed as:

f(x0, x1, x2, · · · , xp) = f(x0)
p∏

i=1

fZi(xi − aix0).

and (X1, X2, · · · , Xp)′ are conditionally independent given the latent variable X0.

Proof: Using the independence of Zi’s, i = 1, .., p, of each other and of X0, we have that

the joint density of X0, Z1, Z2, · · · , Zp , given as:

f(x0, z1, z2, · · · , zp) = f(x0)f(z1)f(z2) · · · f(zp).

Hence based on the linear transformation Xi = aiX0 +Zi ⇐⇒ Zi = Xi− aiX0, for i =

1, 2, .., p, we have that:

f(x0, x1, x2, · · · , xp) = f(x0)f(x1 − a1x0) · · · f(xp − apx0)
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= f(x0)
p∏

i=1

fZi(xi − aix0).

From Definition 1.7, (X1, X2, · · · , Xp)′ given X0 are independent as the conditional

distribution of (X1, X2, · · · , Xp)′ given X0 is:

f(x1, x2, · · · , xp|x0) =
f(x0, x1, x2, · · · , xp)

f(x0)

= fZ1(x1 − a1x0)fZ2(x2 − a2x0) · · · fZp(xp − apx0)

=
p∏

i=1

fZi(xi − aix0)

=
p∏

i=1

fXi(xi|x0).

Note that, given x0, aix0 plays the role of a location parameter. So xi ≥ aix0 for all

i = 1, 2, · · · , p. In Chapter 3, we see that when x0 is unknown, a possible estimate for it is

the minimum of the xi/ai’s, i = 1, · · · , p.

Definition 1.9 : The random vector X = (X1, X2, · · · , Xp)′ is multivariate gamma if its

components Xi, i = 1, · · · , p, marginally are of gamma family following the structure de-

scribed in (1.1), and each subset of X has a multivariate gamma form.

1.6 Thesis Outline

In this dissertation, we are concerned with the three parameter gamma distribution.

The characterization of the joint gamma distribution of X = (X1, X2, · · · , Xp) based on

(1.1):

23



• has Mathai and Moschopoulos (1992) [64] as a special case and a more flexible linear

structure,

• has Iyer et al. (2004) [43] as a special case both in terms of structure and dimension,

• has Nadarajah and Kotz (2005) [72] as a special case,

• and shares similar properties to the Marshall and Olkin (1967) [61] model, that in-

cludes the continuous and discontinuous portions. Marshall and Olkin’s expression

for the bivariate exponential model has received a lot of attention due to its allowance

for the simultaneous failure of several system components induced from a fatal shock.

We provide different inference procedures for the parameters, and characterize location-

scale families of multivariate gamma distributions. The marginal distributions are tradi-

tional location-scale gammas, and their joint distribution contains absolutely continuous

classes, as well as, the Marshall-Olkin (1967) [61] type of distributions with a positive

probability mass on a set of measure zero. MLE’s are developed in the bivariate case.

The dissertation is organized as follows. In Chapter 2, we start with preliminary

materials and fundamental concepts used in these new classes of survival and reliability

models. In Chapter 3, we derive and characterize the generalized multivariate gamma

distribution. The continuous case of the multivariate gamma is studied in Chapter 4. In

Chapter 5, a discontinuous case of the multivariate gamma, in the form of multivariate

exponential, is given.
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Chapter 2

Preliminaries

The necessary mathematical concepts for this dissertation are concentrated in this

chapter. We review the notions of Laplace transforms (See Feller (1971) [25], Abramowitz

and Stegun (1972) [1], and Billingsley (1986) [6]) and Dirac delta (See Cohen-Tannoudji et

al. (1977), and Khuri (2004) [52]), infinite and stable distributions (See Feller (1971) [25],

and Hougaard (2000) [36]).

2.1 The Laplace Transform

The Laplace transform (the equivalent concept of moment generating function) is used

in many areas of statistics, probability theory, and risk analysis. We are interested in the

Laplace transform associated with real arguments. The characterization by the means of

the real Laplace transform does not presume the existence of moments

Definition 2.1 If X is a r.v. defined on R+ with cdf FX , satisfying P (X = 0) < 1, then

its Laplace-Stieltjes transform (LST) is the function valued in R defined in Abramowitz and

Stegun (1972) [1] as:

LX (s) = Ee−sX =
∫ ∞

0
e−sxdFX (x ). (2.1)

Here are some properties associated with the LST:

• existence: the integral in (2.1) is with respect to Lebesgue-Stieltjes integration. In our

cases of positive support distributions, (2.1) always exists. In fact, 0 < LX (s) ≤ 1 .

• LX (s) is infinitely differentiable, and
dnLX

dsn
(s) exists for all n ∈ N.
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• For m ∈ N, the mth moment of X is given by EXm = (−1)mL(m)
X (0).

• additivity: the LST of the sum of independent r.v.’s is obtained by taking the product

of the LST of the individual r.v. For X1, . . . , Xn independent r.v.’s, then X =
∑n

i=1 Xi

has LST:

LX (s) = Ee−sX = E
n∏

i=1

esXi =
n∏

i=1

EesXi =
n∏

i=1

LXi (s).

• the LST can be defined for a p−variate distribution, say X = (X1, X2, . . . , Xp)′ as:

LX(s) = Ee−(s1X1+···+spXp), for s = (s1, s2, · · · , sp)′ ∈ Rp
+.

• uniqueness: if X1 and X2 are two r.v.’s such that LX1 (s) = LX2 (s) then fX1(x) =

fX2(x), for all x except on a set of measure 0. Therefore, the LST completely charac-

terizes the distribution.

The LST helps in the computations and in the linear combinations of r.v.’s associated

with some distributions.

Example 2.2 If X ∼ Ga(µ, λ, α) with pdf (1.2), then its LST is given by (1.11), as:

LX(s) =
∫ ∞

µ
e−sx λα

Γ(α)
(x− µ)α−1e−λ(x−µ)dx

= e−sµ

∫ ∞

µ
e−s(x−µ) λα

Γ(α)
(x− µ)α−1e−λ(x−µ)dx

= e−sµ

∫ ∞

µ

λα

Γ(α)
(x− µ)α−1e−(λ+s)(x−µ)dx

= e−sµ

∫ ∞

0

λα

Γ(α)
tα−1e−(λ+s)tdt

= e−sµ λα

(λ + s)α

∫ ∞

0

(λ + s)α

Γ(α)
tα−1e−(λ+s)tdt

= e−sµ

(
λ

λ + s

)α

.
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The gamma distribution, shifted at the origin, with unit mean has LST

LX (t) = e−µt

(
1

1 + t/α

)α

−→ e−µte−t = e−(µ+1 )t as α →∞.

Example 2.3 : Let X1, X2, · · · , Xn, n > 1, be independent r.v.’s distributed as Ga(µi, λ, αi)

for 1 ≤ i ≤ n. It is well known that X = X1 +X2 + · · ·Xn has density Ga(
n∑

i=1

µi, λ,
n∑

i=1

αi).

This is easily shown using LST. The Laplace transform of the gamma distribution Xi, i =

1, · · · , n, given in Example 2.2 becomes:

LXi (s) = e−sµi

(
λ

λ + s

)αi

.

Using the properties of the LST, we have

LX (s) =
n∏

i=1

LXi (s) =
n∏

i=1

e−sµi

(
λ

λ + s

)αi

= e−s
Pn

i=1 µi

(
λ

λ + s

)Pn
i=1 αi

⇒ X ∼ Ga(
n∑

i=1

µi, λ,

n∑

i=1

αi).

In the remaining cases, we consider situations where the λ’s are different. When two

or more of the gamma distributions have same parameter λ, we can add the r.v.’s to obtain

another gamma distribution with the same parameter λ, but a different shape parameter.

Example 2.4 Suppose X and Y are independent discrete and positive support continuous

distributions with pmf and pdf p(x) and f(y), respectively. Then

LXY (s) = Ee−sXY =
∫ ∞

0

∑
x

e−sxyf(y)p(x)dy

=
∑

x

( ∫ ∞

0
e−sxyf(y)dy

)
p(x)

=
∑

x

LY (sx )p(x ).
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We later use Example 2.4 in the case when X is a Bernoulli random variable with

probability p, and Y is a positive support distribution. In that case, we have that:

LXY (s) = p + (1 − p)LY (s).

We are also interested in the sum of r.v.’s. For two continuous r.v.’s X1 ∼ f1 and

X2 ∼ f2, their sum, X = X1 + X2, has density obtained from the joint pdf as:

fX(x) =
∫ ∞

−∞

∫ x−x1

−∞
f(x1, x2)dx1dx2.

The convolution of two functions f, g : R→ R is the function

(f ? g)(x) =
∫ ∞

−∞
f(t)g(x− t)dt.

If the r.v.’s are independent, the density of their sum is the convolution of their densi-

ties, and can be represented as below.

Theorem 2.5 Assume that X1 and X2 are independent r.v.’s defined on R+ with pmf/pdf

f1 and f2, respectively. Then X = X1 + X2 has density

fX(x) = (f1 ? f2)(x) =
∫ x

0
f1(t)f2(x− t)dt.

Proof: Proved in Hunter and Nachtergaele (2001) [38]

However, a lot of work can be alleviated as the LST of X in Theorem 2.5 is given by:

LX (t) = LX1 (t)LX2 (t), and is recognized in some distributional form.

Example 2.6 Consider X to be the sum of two iid of exponential type r.v.’s with parame-

ter λ. Then fX(x) =
∫ x

0
f1(t)f2(x − t)dt =

∫ x

0
λe−λtλe−λ(x−t)dt = λ2xe−λx, which is a

Ga(0, λ, 2).
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Theorem 2.7 For X1 ∼ Ga(µ1, λ1, α1) and X2 ∼ Ga(µ2, λ2, α2), the r.v. X = X1 + X2

has a gamma distribution Ga(µ1 + µ2, λ, α1 + α2) iff λ1 = λ2 = λ.

Proof: The LST of X is given by LX (s) = e−(µ1+µ2 )s λα1
1 λα2

2

(λ1 + s)α1 (λ2 + s)α2

If λ1 6= λ2, then the LST is not representative of a gamma distribution.

Considering the case where λ1 = λ2 = λ, then the LST and the density of the sum X =

X1 + X2 become:

LX (s) = e−sµ

(
λ

λ + s

)α

fX(x) =
λα

Γ(α)
(x− µ)α−1e−λ(x−µ)

where α = α1 + α2 and µ = µ1 + µ2.

We generalize this above result later in Theorem 3.3. The sum of independent gamma

distributions with same scale parameter gives a gamma distribution with same scale para-

meter with the location and scale updated. In that sense, the gamma distribution follows

an additive property. Mathai and Moschopoulos (1992) [64] use this property to generate

their class of multivariate gamma distributions.

2.2 The Dirac Delta Function

Another important collection of tools that we use are the properties of the Dirac dis-

tribution, sometimes referred to as the Dirac delta function. See Cohen-Tannoudji et al.

(1977) [18], and Khuri (2004) [52].

Definition 2.8 Dirac delta function at the point c ∈ R, is a point mass distribution denoted

δc, and we say that a r.v. X has point mass δc distribution at c if its pmf is given by

f(x|c) = δc(x) = δ(x− c) = 0 if x 6= c, and
∫ ∞

−∞
f(x|c)dx = 1. (2.2)
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The integral notation in (2.2) is not mathematically justified. δ is not rigourously

defined as a function, but as a distribution, and there have been several references on this

function. Cohen-Tannoudji et al. (1977) [18] gives a complete discussion.

Despite its name, the Dirac delta function is not a function in the classical sense. One

reason for this is that because the function f(x) = δ(x), and g(x) = 0 a.e. , are equal

almost everywhere, yet their (Lebesgue) integrals are different. See Folland (1999) [26]

and Rudin (1976) [74]. Another reason is that it is singular. Instead, it is said to be a

distribution. It is a generalized idea of functions, and can be used inside integrals. The well

known mathematician Laurent Schwartz gave it in 1947 a rigorous mathematical definition

as a linear functional on the space of test functions D, the set of all real valued infinitely

differentiable functions with compact support on R such that for a given f(x) ∈ D, the

value of the functional is given by Kallenberg (1986) [50], and Hunter and Nachtergaele

(2001) [38]. Such linear functionals are called generalized functions or distributions. For

this reason, the delta function is more appropriately called Dirac’s delta distribution. Thus,

the value of the Dirac delta function δx is defined by its action of a function f(x) ∈ D when

used in integral as in formula (2) in Khuri (2004) [52].

The theory of distributions in mathematics has been highly developed, and as a result,

the Dirac delta function is well established and accepted in mathematics as a generalized

function or distribution. Note also that it has been modified from the original version

defined by Dirac in 1920.

It is well known that the Heaviside step function is an antiderivative of the Dirac

distribution. The Heaviside step function, also called unit step function, see for example
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Abramowitz and Stegun (1972) [1], is a discontinuous function defined as

H(x) =
∫ x

−∞
δ(t)dt =





0, if x ≤ 0;

1, if x > 0.
(2.3)

The value of the Heaviside function at 0 is sometimes taken to be 0, or 1
2 (most popular

for symmetry purposes) or 1. Here, we take it to be 0.

Both Dirac and Heaviside functions have been used in a variety of fields of science and

engineering. Their use in statistics is relatively new. For another reference see the paper

by Pazman and Pronzato (1996) [73].

The Dirac delta function is a very useful tool in approximating tall narrow spike func-

tions (also called impulse functions), and the following integral
∫ −∞

−∞
f(x)δ(x)dx = δ[f ] = f(0)

for any (test) function f(x), is more a notation for convenience, and not a true integral.

It can be regarded as an ”operator” or a linear functional on the space of (test) functions,

which gives the value of the function at 0. It is important to see that the integral is simply

a notational convenience, and not a true integral.

More details are given in Kallenberg (1986) [50], Williamson (1962) [80], Au and Tam

(1999) [3] and Shilov and Gurevich (1977) [75] for examples. So as a distribution, the Dirac

delta function δ(x− s) is a pdf with mean median and mode s, cdf H(x− s), variance and

skewness 0 satisfying the following:

•
∫ ∞

−∞
δ(αx)dx =

∫ ∞

−∞
δ(u)

du

|α| =
1
|α|

• δ(αx) =
δ(x)
|α|
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• δ(x) = lim
a→0

δa(x) where δa(x) =
1

a
√

π
e−x2/a2

as limit of a normal distribution.

To end this review, we note the following results:

c > 0, H(cx) = H(x),

H(x− a) = 1−H(−x + a) = 1−H(a− x) and
∫

H(x− a)dx = (x− a)H(x− a).

The Dirac delta distribution can be thought as the limit case of a distribution whose

density must be concentrated at the origin point. So for a r.v. X with Dirac density

δ(x− c), c ≥ 0, the LST is given by LX (t) = e−ct .

The moments for the Dirac delta function δc are given by: EXk = ck, V ar(X) = 0,

and its characteristic function is given by φ(t) = eitc.

The Dirac function provides a very helpful tool in mathematical statistics as it provides

a unifying approach in the treatment of discrete and continuous distributions and their

transformations. We give two examples in each case below.

Example 2.9 Khuri (2004) [52]

Suppose X is a discrete r.v. that takes values a1, a2, · · · , an with corresponding probabili-

ties p1, p2, · · · , pn, respectively. Assume that
∑n

i=1 pi = 1. Then the pdf p(x) of X can be

represented as p(x) =
∑n

i=1 piδ(x− ai).

For example, if X ∼ B(n, p) where B(n, p) is the binomial distribution, then

p(x) =
∑n

i=0 pi(1− p)n−iδ(x− i) and the kth noncentral moment of X is given by

∫ ∞

−∞
xkp(x)dx =

n∑

i=1

pi

∫ ∞

−∞
xkδ(x− ai)dx =

n∑

i=1

ak
i pi.
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Example 2.10 Khuri (2004) [52]

Let X1 and X2 be independent r.v. distributed as X1 ∼ Ga(λ =
1
2
, α) and X2 ∼ Ga(λ =

1
2
, β). The joint distribution of Y = X1

X1+X2
and Z = X1 + X2 can expressed as:

f(y, z) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)δ[

x1

x1 + x2
− y]δ(x1 + x2 − z)dx1dx2

=
1

Γ(α)Γ(β)2α+β

∫ ∞

0
xβ−1

2 dx2

∫ ∞

0
xα−1

1 e−
1
2
(x1+x2)

×δ(
x1

x1 + x− 2
− y)δ[x1 − (z − x2)]dx1

=
1

Γ(α)Γ(β)2α+β

∫ ∞

0
xβ−1

2 (z − x2)α−1e−
1
2
zδ[

z − x2

z
− y]dx2

=
1

Γ(α)Γ(β)2α+β
yα−1(1− y)β−1zα+β−1e−

1
2
z.

The cumulants are alternative ways of summarizing the properties of the r.v.’s specially

when the moments are not easily obtained. The moments of X are not directly related to

the moments of aX + b, for a and b positive constants. The moments of X = X1 + X2

do not have simple relation with the moments of X1 and X2. The idea is then to use the

cumulants.

Definition 2.11 The function κ(s) = log LX (−s) is called the cumulant generating func-

tion of X.

Expanding κ(s) in its power series, κ(s) =
∞∑

i=1

κi

i!
si, gives coefficients κi called ith

cumulant of the distribution X. The cumulant generating function allows one to relate the

cumulants to the moments. It allows us to characterize infinitely divisible LST’s which is

given in Subsection 2.3. See Feller (1971) [25].
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2.3 Infinite Divisibility

There are important results obtained from the concept of infinite divisibility which have

many applications in the theory of limit distributions for the sum of independent r.v.’s. In

general it is difficult to determine whether a given distribution is infinitely divisible or

not. We would like to consider what conditions are required for the pdf of the gamma

distributions and its mixture to be infinitely divisible. We also consider the exponential

distribution.

We first give notations and a definition. Let the symbol d= denote equality in distribu-

tion, and d−→ denote convergence in distribution.

Definition 2.12 Consider a random vector X. Its distribution is said to be infinitely divis-

ible if for every n ∈ N there exist iid random vectors Xn1, Xn2, · · · , Xnn with
∑

k Xnk
d= X.

In other words, an infinitely divisible r.v. X has pdf f(x) that can be represented as the

sum of an arbitrary number of iid r.v.’s X1, X2, · · · , Xn, with cdf Fn , that is:

X
d= X1 + X2 + · · ·+ Xn

hence the term infinitely divisible. Borrowing from Billingsley (1985) [6] pp. 383-384, the

distribution F of X is the n-fold convolution Fn ∗ Fn ∗ · · · ∗ Fn where Fn is the distribution

function of Xi, 1 ≤ i ≤ n.

We use that property of infinitely divisible to characterize the distribution of the un-

known r.v. from a linear relationship as given in (1.1).

Two simple examples of infinitely divisible distributions are the Poisson distribution

and the negative Binomial distribution.
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Definition 2.13 : A function φ on the interval I = [0,∞) is completely monotone if it

possesses derivatives φ(n) at all orders which alternate in sign, i.e. if

(−1)nφ(n)(s) ≥ 0, for all s in the interior of I, and n = 0, 1, 2, . . .

Theorem 2.14 φ is completely monotone iff φ is the Laplace transform of some measure.

Proof: See Feller (1971) [25].

For two real valued functions φ1 and φ2 that are completely monotone, so is their

product and their compositions, when appropriately chosen.

It is important to note that any completely monotone probability density function is

infinitely divisible. See Feller (1971) [25]. Moreover, if φ is completely monotone on [0,∞)

and φ(c) = 0 for some c > 0, then φ must be identically zero on [0,∞).

All Erlang type distributions are infinitely divisible. The Erlang distribution defined

in (1.5), is infinitely divisible in the sense that it can be represented as the sum of n

independent r.v.’s with a common distribution. (See Feller (1971) [25] pages 176-177). In

fact, n need not be an integer as the gamma can be expressed in a canonical form of an

infinitely divisible distribution.

Notice that the distribution of the sum of mutually independent gamma r.v.’s with

different scale parameters, is not gamma, even if they are mutually independent. Rather,

it is described as a mixed gamma with mixing shape parameter. Using ideas from Mathai

and Moschopoulos (1991) [63] and Mathai and Saxena (1978) [65], we characterize the

distribution of the sums in Chapter 4.
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2.4 Stable Distributions

There are many results about the limit theorems. See Kallenberg (2002) [51] and

Billingsley (1986) [6]. We study the class of positive stable distributions. The results could

also apply to distributions other than gamma. Here we introduce the necessary definitions

and recall limit laws for the joint distribution of the sum of independent distributions from

Feller (1971) [25].

Definition 2.15 (Stable distribution, Feller (1971) [25]) Let X0, X1, X2, · · · be an iid se-

quence of r.v.’s with common distribution F . The r.v. X0 is stable or the distribution F

is stable (in the broad sense) if for each n there exist constants cn > 0 and γn such that

Sn
d= cnX0 + γn, where Sn = X1 + X2 + · · · + Xn and F is not concentrated at one point.

We say F is stable in the strict sense if the above holds with γn = 0.

Stable distributions are a rich class of probability distributions that allow one to gen-

eralize the Central Limit Theorem (CLT), replacing the assumption of finite variance with

a less restrictive condition on the infinite variance. For data with heavy tails, stable distri-

butions should fit better than a normal distribution.

From Definition 2.12 above, the two r.v.’s X0 and Sn are of the same type as

fSn(x) = fX

(
x− γn

cn

)
.

Stable distributions can be characterized with the concept of domain of attraction.

Definition 2.16 (Domain of Attraction, Feller (1971) [25]) The distribution of the inde-

pendent sequence of r.v.’s X1, X2, · · · belongs to the domain of attraction of a r.v. X0 with

distribution F , if there exist norming or scaling constants an > 0 and bn such that

Sn

an
− bn =

X1 + X2 + · · ·+ Xn

an
− bn

d−→ X0 as n →∞.
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The above definition is different from Definition 2.12 in the sense that there is not

equality in distribution, but convergence in distribution. In fact, Billingsley (1985) [6] page

389, gives a more restrictive version of Definition 2.13, where for each n, there exit constants

an > 0 and bn such that
Sn

an
− bn has same distribution as the iid r.v.’s X1, X2, · · · , Xn , and

calls it stable. Also, the distribution of X0 is not necessarily the same as the distribution of

the sequence. Finally, this definition recaptures the CLT when we take a sequence of r.v.’s

with mean µ and variance σ2, where an =
√

n

σ
and bn =

n3/2µ

σ
with X0 being the standard

normal distribution. The definition also states that similar limit theorems are possible for

distributions without variance, that is stable distributions.

The next result states the equivalence of Definition 2.12 and Definition 2.13.

Theorem 2.17 A r.v. X0 with distribution F possesses a domain of attraction iff it is

stable.

Proof: Given in Feller (1971) [25].

Hence the non-degenerate limiting distribution of a sum of gamma distributions must

be a member of a stable class.

However, gamma distributions are not stable, although they are infinitely divisible.

Stable distributions are infinitely divisible, but not the opposite. For another example,

consider the case of the Poisson distribution. The Poisson distribution, although infinitely

divisible, is not stable (See Billingsley (1986) [6] Section 28 page 389). The class of infinitely

divisible distribution is larger than the class of stable distributions. That leads us to explore

other possibilities.
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Consider now two independent gamma distributions X1 ∼ Ga(µ1, λ1, α1) and X2 ∼

Ga(µ2, λ2, α2). The graph of the joint distribution is given below in Figure 2.1.

Figure 2.1: Graph of bivariate gamma distribution

We characterize the multivariate gamma distribution in the next chapter.
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Chapter 3

The Multivariate Gamma

In this chapter, we propose and characterize a quite general multivariate gamma dis-

tribution, with specified three parameter gamma marginals of Type III in the Pearson’s

system. We introduce some notations and basic concepts of multivariate gamma distribu-

tions. Because a multivariate distribution function is completely characterized by its mean,

variance and covariance structure, we give these properties. We also propose a series of pa-

rameter estimation techniques that can be adapted to special classes of distributions such

as those discussed in Chapter 4 (Continuous class) and Chapter 5 (Fatal shock).

Multivariate gamma distributions belong in the class of multivariate lifetime distri-

butions, since all the components of the random vector have positive support and their

marginals follow a typical lifetime distribution. Hougaard (2000) [36] among other authors

give many applications of the multivariate lifetime distributions. As he mentioned, the field

has gaps and is still growing both in theory and application.

The bivariate exponential, one simple case of bivariate gamma, plays a fundamental role

in survival and reliability analysis because of its adaptation to many practical situations.

The complexity of the model, in its notation and estimation technique, increases with the

number of components. Within this framework, Moran (1969) [69], among other authors,

had also described a form of a bivariate gamma process and given estimation techniques

of one parameter using the other variate as a control. It has been difficult to work with

until the development of proportional hazard models or frailty models. See Cox (1972)

[20], Ghosh and Gelfand (1998) [30] and Hougaard (2000) [36] to mention a few. However,
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we do not deal with the proportional hazard model here, since it is primarily used for the

univariate survival case. In fact, Cox’s proportional hazard model, sometimes considered as

nonparametric, is typically treated as multivariate in only the recurring events situations,

such as monitoring times until repeated hospitalizations of the same individual, or repeated

failures of a device in a system. Our model is truly multivariate in the sense that the

associated parameters are mathematically independent and we can model components with

different means and variances.

3.1 Properties and Characterization

In the next definition, we formally define our multivariate gamma that was briefly

described in (1.1).

Definition 3.1 : Let X0, X1, . . . , Xp gamma r.v.’s with shape parameters αi, scale para-

meters λi and location parameters µi, i.e Xi ∼ Ga(µi, λi, αi) for i = 0, 1, . . . , p as given

in (1.2). Let Z1, Z2, . . . , Zp be mutually independent r.v.’s satisfying Xi = aiX0 + Zi for

some ai > 0 and Zi independent of X0 for i = 1, 2, . . . , p. We define the joint distribution

of the random vector X = (X1, X2, . . . , Xp)′ as the multivariate gamma distribution for a

fixed integer p.

Although the density function is not explicitly expressed in Definition 3.1, we can study

various properties of the multivariate gamma distribution by using the linear relationship

given in (1.1), and the fact that Zi, i = 1, .., p, are independent of each other and of X0.

Note that the distribution of Zi, i = 1, .., p, has not been specified. As we will explain later,

depending on the choice of the constants ai, the distributions of Zi take on many forms. In

fact, in some cases, Zi is a gamma, and in other cases, Zi is a mixture of distributions.
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The linear correlation between Xi and the latent term X0 is expressed as:

ρ(Xi, X0) =
Cov(Xi, X0)√

V ar(Xi)
√

V ar(X0)
,

where Cov(Xi, X0) = E(X0Xi) − E(X0)E(Xi) is the covariance between X0 and Xi, and

V ar(X0) and V ar(Xi) denote the variances of X0 and Xi, respectively.

Note that if the Zi were degenerate, say Zi ≡ bi, or P (Zi = bi) = 1, bi ∈ R+, i =

1, 2, .., p, then the linear correlation, a measure of linear dependence, would be perfect. That

is Zi ≡ bi ⇒ Xi = aiX0 + bi, which gives ρ(X0, Xi) = ±1, or more precisely ρ(Xi, Xj) =

sgn(aiaj). The degenerate case is the only case where |ρ| = 1.

This linear relation (1.1) seems to be natural as pointed out and motivated in Carpenter

et al. (2006) [12], where properties for the exponential model are given. Similarly, from

this structural relationship, we derive the following values of the means, variances, and

covariances:

E(Xi) =
αi

λi
+ µi, (3.1)

E(Zi) = E(Xi)− aiE(X0) = (
αi

λi
− ai

α0

λ0
) + (µi − aiµ0), (3.2)

V ar(Xi) =
αi

λ2
i

, (3.3)

V ar(Zi) = V ar(Xi)− a2
i V ar(X0) =

αi

λ2
i

− a2
i

α0

λ2
0

> 0 ⇐⇒ αi

α0
>

(
aiλi

λ0

)2

, (3.4)

Cov(Xi, Xj) = aiajV ar(X0) = aiaj
α0

λ2
0

⇐⇒ ρ(Xi, Xj) = aiaj
λiλj

λ2
0

α0√
αiαj

, (3.5)

Cov(Zi, Zj) = 0, (3.6)

for i 6= j, i, j = 1, .., p.
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It is clear from Definition 3.1 and Equation (3.5) that Xi and Xj , i 6= j, i, j = 1, .., p,

are positively correlated. This is a restriction in our model, but not unusual in this field.

See He and Lawless (2005) [33] for more examples of positive correlations in lifetime data.

Also, note that (3.1), (3.3), (3.4) and (3.5) can be more concisely expressed in the mean

vector of the mean of X:

E(X) =
(

α1

λ1
+ µ1,

α2

λ2
+ µ2, · · · , αp

λp
+ µp

)′
, (3.7)

the variance/covariance matrix:

Σ =




α1

λ2
1

a1a2
α0

λ2
0

· · · a1ap
α0

λ2
0

a2a1
α0

λ2
0

α2

λ2
2

· · · a2ap
α0

λ2
0

...
...

...
...

apa1
α0

λ2
0

· · · apap−1
α0

λ2
0

αp

λ2
p




=
α0

λ2
0




λ2
0

λ2
1

α1
α0

a1a2 · · · a1ap

a2a1
λ2
0

λ2
2

α2
α0

· · · a2ap

...
...

...
...

apa1 · · · apap−1
λ2
0

λ2
p

αp

α0




,

and the correlation matrix:

ρ =
α0

λ2
0




λ2
0

α0

a1a2λ1λ2√
α1α2

· · · a1apλ1λp√
α1αp

a2a1λ2λ1√
α1α2

λ2
0

α0
· · · a2apλ2λp√

α2αp

...
...

...
...

apa1λpλ1√
αpα1

· · · apap−1λpλp−1√
αpαp−1

λ2
0

α0




.

For Xi ∼ Ga(µi, λi, αi) for i = 0, 1, · · · , p, based on the LST given in (2.1) and using

the binomial theorem, we have the following:

dmLXi(s)
dsm

= λα
m∑

k=0

(
m

k

){
dk(λi + s)−α

dsk

}{
dm−ke−µis

dsm−k

}
, for m ∈ N.

Setting s = 0, we have that
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E(Xm
i ) =

m∑

k=0

(
m

k

)
λα+k

i µm−k
i (αi)k,

where (α)k = α(α + 1) · · · (α + k − 1).

The moments and cross-moments are given for m and l ∈ N, by:

E(Xm
i ) = E(aiX0 + Zi)m =

m∑

r=0

(
m

r

)
ar

i EXr
0EZm−r

i

=
m∑

r=0

(
m

r

)
EZm−r

i ar
i

r∑

k=0

(
r

k

)
λα+k

i µr−k
i (αi)k

and E(Xm
i X l

j) = E(aiX0 + Zi)m(ajX0 + Zj)l

= E
m∑

r=0

(
m

r

)
ar

i X
r
0Zm−r

i

l∑

s=0

(
l

s

)
as

jX
s
0Z l−s

j

=
m∑

r=0

l∑

s=0

(
m

r

)(
l

s

)
ar

i a
s
jEXr+s

0 EZm−r
i EZ l−s

j , i 6= j, i, j = 1, 2, . . . , p.

The LST has many helpful properties as discussed in Section 2.1. In particular, in this

dissertation, we use it for many of the derivations of the distributions of the latent variables.

The multivariate LST for any p-variate random vector X defined in (1.1) is:

LX(s) = Ee−s’X = Ee−
Pp

i=1 siXi

= Ee−
Pp

i=1 si(aiX0+Zi) = E

p∏

i=1

e−aisiX0e−siZi

= Ee−X0
Pp

i=1 aisi

p∏

i=1

Ee−siZi = LX0

( p∑

i=1

aisi

) p∏

i=1

LZi(si)

= LX0

( p∑

i=1

aisi

) p∏

i=1

LXi (si)
LX0 (aisi)

,
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for s = (s1, s2, . . . , sp)′, regardless of the underlying distributions as long as the LST exists.

If X0 ∼ Ga(µ0, λ0, α0), then the above becomes

LX(s) = e−µ0
Pp

i=1 aisi

(
λ0

λ0 +
∑p

i=1 aisi

)α0 p∏

i=1

LXi (si)
LX0 (aisi)

. (3.8)

Note that from the above, the LST of Zi is:

LZi (s) =
LXi (s)

LX0 (ais)
, for i = 1 , 2 , .., p. (3.9)

As long as LZi in Equation (3.9) is completely monotone as in Definition 2.13, the

conditions of Definition 3.1 are satisfied, and the marginals are gamma. Equation (3.9)

will be used extensively throughout this dissertation, but for now we present an important

theorem that gives some properties on the scale and shift transformations of the multivariate

gamma distribution given in Definition 3.1.

Theorem 3.2 The class of multivariate gamma distributions based on Definition 3.1 is

closed under scale transformation in the sense of products with diagonal matrices with pos-

itive entries, shift transformations, and under finite independent convolutions.

Proof: Consider a multivariate gamma X = (X1, · · · , Xp)′, and let C = (ci)i=1,..,p be a

diagonal matrix with positive entries. Set Y = CX. Then we have that

LY(s) = Ee−s’Y = Ee−
Pp

i=1 siYi

= Ee−
Pp

i=1 cisi(aiX0+Zi) = E

p∏

i=1

e−aicisiX0e−cisiZi

= Ee−X0
Pp

i=1 aicisi

p∏

i=1

Ee−cisiZi = LX0(
p∑

i=1

aicisi)
p∏

i=1

LZi(cisi)
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= e−µ0
Pp

i=1 aicisi

(
λ0

λ0 +
∑p

i=1 aicisi

)α0 p∏

i=1

LXi (cisi)
LX0 (aicisi)

,

for s = (s1, s2, . . . , sp), which is of the same form as in (3.8). The mean EY = CEX and

the variance is expressed as: V ar(Y) = C ′V ar(X)C.

Let d = (d1, d2, · · · , dp) and W defined as: W = (W1,W2, · · · ,Wp)′ := X + d =

(X1 + d1, X2 + d2, · · · , Xp + dp). Then, we have the following:

LW(s) = Ee−s’W = Ee−
Pp

i=1 siWi = Ee−
Pp

i=1 si(Xi+di)

= Ee−
Pp

i=1 sidie−
Pp

i=1 si(aiX0+Zi) = Ee−
Pp

i=1 sidi

p∏

i=1

e−aisiX0e−siZi

= e−
Pp

i=1 sidiEe−X0
Pp

i=1 aisi

p∏

i=1

Ee−siZi

= e−
Pp

i=1 sidiLX0(
p∑

i=1

aisi)
p∏

i=1

LZi(si)

= e−
Pp

i=1 sidie−µ0
Pp

i=1 aisi

(
λ0

λ0 +
∑p

i=1 aisi

)α0 p∏

i=1

LXi (si)
LX0 (aisi)

= e−
Pp

i=1(di+µ0ai)si

(
λ0

λ0 +
∑p

i=1 aisi

)α0 p∏

i=1

LXi (si)
LX0 (aisi)

,

which is of the same form as in (3.8). So the multivariate gamma is closed under shift

transformation of the form W = X + d.

Consider now n independent p-variate gamma distributions Xi=(Xi1, Xi2, · · · , Xip)′

for i = 1, · · · , n, and set

X = X1 + · · ·+ Xn= (X11 + · · ·+ Xn1, X12 + · · ·+ Xn2, · · · , X1p + · · ·+ Xnp)′.

LX(s) = Ee−s′(X1+···+Xn) = Ee−
Pp

i=1 si(X1i+···+Xni)
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=
p∏

i=1

Ee−si(X1i+···+Xni) = LX1(s) · · ·LXn(s),

which has the form of n product of (3.8).

Recall that the distribution of Zi has not been specified, but its LST is given in (3.9). In

the next theorem, we state a very interesting property, as it gives a necessary and sufficient

condition for all the latent variables Zi to be of the gamma type distributions (1.2).

Theorem 3.3 Suppose that for some ai > 0, i=1,. . . ,p, Xi ∼ Ga(λi, αi) i=0,1,. . . ,p,

are related as in Definition 3.1 with Zi, i = 1, . . . , p; then

Zi ∼ Ga(λi, αi − α0) ⇐⇒ ai =
λ0

λi
and pi = P (Zi = 0) = 0.

Proof: From the expression of ai =
λ0

λi
and the result in (1.10), we have that aiX0 ∼

Ga(λi, α0). Since Xi ∼ Ga(λi, αi), it follows from Example 2.3 (the additive property of the

gamma distribution) that Z must be distributed as Zi ∼ Ga(λi, αi − α0).

Conversely, assume that Zi ∼ Ga(λi, αi−α0). Then from Example 2.2 and the independence

between X0 and Zi, we have that:

LXi (t) = LX0 (ai t)LZi (t) =⇒ LX0 (ai t) =
(

λ0

λ0 + ai t

)α0

=
(

λi

λi + t

)αi
(

λi

λi + t

)α0−αi

.

Hence
λ0

λ0 + ait
=

λi

λi + t
, and solving for ai gives

λ0 + ait

λ0
=

λi + t

λi
=⇒ 1 +

ait

λ0
= 1 +

t

λi
or ai =

λ0

λi
.

Mathai and Moschopoulos (1991) [63] among other authors made use of this particular

coefficient of linear relationship between two gamma distributions, and developed properties,
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approximations, and inequalities based on that particular model. In this dissertation, we

allow for more general representations.

In Chapter 4, we examine further this specific form, and call it the continuous class of

distributions. In all other cases where the conditions of Theorem 3.3 are not satisfied, we call

that form the “fatal shock” class, because there is a positive probability of simultaneous

or proportional occurrences. In the Section 3.2, we focus on the characterization of the

distribution of Zi, i = 1, 2, .., p in the fatal shock class. This last type of distributions is

further studied in Chapter 5.

All the Zi’s take on similar structures. To simplify the notations, without lost of

generality, we drop the indices, and we rewrite (1.1) as:

Y = aX + Z, for some a > 0, (3.10)

where Y, X, a and Z in (3.10) play the role of Xi, X0, ai and Zi in (1.1) respectively.

A simple computation shows that the cdf of Z is:

P (Z ≤ z) = P (Y − aX ≤ z)

= P (Y = aX) + (1− p)P (X ≥ Y − z

a
)

= P (Y = aX) + (1− p)
[
1− P (X ≤ Y − z

a
)
]

= P (Y = aX) + (1− p)
[
1−

∫ ∞

z
FX(

y − z

a
)fY (y)dy

]
.

Since

∫ ∞

z
FX(

y − z

a
)fY (y)dy = FX(

y − z

a
)FY (y)

]∞

z

−
∫ ∞

z

1
a
fX(

y − z

a
)FY (y)dy
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= 1−
∫ ∞

z

1
a
fX(

y − z

a
)FY (y)dy,

the cdf can be further simplified as

P (Z ≤ z) = P (Y = aX) +
1− p

a

∫ ∞

z
fX(

y − z

a
)FY (y)dy,

where P (Y = aX) = P (Z = 0) is the probability of proportional occurrence.

Note that if the conditions of Theorem 3.3 are not satisfied, then

P (Y = aX) = P (Z = 0) > 0. In Section 3.2, we further characterize the distribution of Z.

3.2 The Fatal Shock Model

In this section, we study the form of the distribution of Z obtained in (3.10) for a

general a > 0 where a 6= λ0

λi
.

Suppose that X and Y are distributed as X ∼ Ga(µ, λ, α) and Ga(µ′, α′, λ′), respec-

tively. Assuming a linear relationship as in (3.10), and from Equation (3.9), where a is some

positive constant, and Z is independent of X, the LST of Z becomes:

LZ (s) =
LY (s)
LX (as)

= e(µ−µ′)s
(

λ′

λ′ + s

)α′(λ + as
λ

)α

.

All distributions Z satisfying this relation (3.10) for all a ∈ (0, 1), are called members

of the self decomposable r.v.’s. See also Gaver and Lewis (1980) [29].

Previously, we have studied the properties of the r.v. Z, derive its LST in (3.9), mean

in (3.2), variance and covariance in (3.4) and (3.6), respectively. However, the form of the

distribution of Z has not been given. In the next theorems, we give the required forms that
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the distribution of Z must take on to give gamma marginals. We state the main theorems,

and start with the Erlang case defined in (3.10).

Theorem 3.4 Erlang type distributions.

Let X ∼ Ga(µ, λ, α) and Y ∼ Ga(µ′, λ′, α′) such that α, α′ ∈ N, α ≤ α′ and as in (3.10), Z

is independent of X. Then Z is the shifted sum of independent:

• α r.v.’s, each being product of Bernoulli and exponential distribution with parameter

λ′,

• and of α′ − α gamma r.v.’s with scale λ′ and shape k = 1, .., α′ − α.

Proof: Using the Laplace transform technique, we have:

LZ (s) =
LY (s)
LX (as)

= e−(µ−µ′)s λ′α′

λα

(λ + as)α

(λ′ + s)α′

= e−(µ−µ)s λ′α′

λα

(λ + as)α

(λ′ + s)α

[
1

(λ′ + s)α′−α

]

By the theorem of expansion in partial fractions, with α instead of α′ − α,

1
(λ′ + s)α

=
α∑

k=1

Ck

(λ′ + s)k
where Ck are real numbers.

Hence:

LZ (s) = e−(µ−µ′)s λ′α′

λα

[
p + (1 − p)LY (s)

]α α′−α∑

k=1

Ck

λ′k

(
λ′

λ′ + s

)k

.

where Ck, k = 1, 2, . . . , α′ − α, are constant and p = a
λ

λ′
. Based on the properties of the

LST from Section 2.1, we have that
[
p + (1 − p)LY (s)

]
is the product of Bernoulli and

exponential r.v.’s as discussed in Example 2.4 and in Carpenter et al. (2006) [12]. So[
p + (1− p)LY (s)

]α

is the product of α independent of those terms.
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Also, since the LST of a sum of functions is the sum of their LST, then
α′−α∑

k=1

Ck

λ′k

(
λ′

λ′ + s

)k

is the LST of the sum of α′ − α gamma distributions.

The special case of the exponential where α = α′ = 1 has been studied in Carpenter et

al. (2006) [12], and by Iyer et al. (2002) [42]. A similar result in the gamma context has

been given in Carpenter and Diawara (2006) [11].

Theorem 3.5 Suppose X ∼ Ga(µ, λ, α), with α ∈ N, and Y ∼ Ga(µ′, λ′, α′) as in (3.10),

and α ≤ α′. Then Z is the sum of two r.v.’s:

• a Ga(µ− µ′, λ′, α′ − α) and

• another distribution which is the sum of α independent r.v.’s each of which is a product

of a Bernoulli and an exponential with parameter λ′.

Proof: From the expression of LZ ,

LZ (s) =
[
λ′

λ

(λ + as)
(λ′ + s)

]α

e(µ−µ′)s
[

λ′

λ′ + s

]α′−α

,

the result follows.

Also, assuming Z = X2 − aX1, and using the Taylor approximation of

log(1 + s) =
∞∑

n=0

(−1)n+1

(n + 1)!
sn+1,

the cumulants of Z are obtained as

log LZ (s) = log LX2 (s)− log LX1 (as)

= α1 log (1− as

λ1
)− α2 log (1− s

λ2
)
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= α1

∞∑

n=0

(−1)n+1

(n + 1)!
(
as

λ1
)n+1 − α2

∞∑

n=0

(−1)n+1

(n + 1)!
(

s

λ2
)n+1

=
∞∑

n=0

(−1)n+1

(n + 1)!
sn+1

[
α1(

a

λ1
)n+1 − α2(

1
λ2

)n+1

]

Another characterization of Z is obtained by considering several cases for the Ga(µ, λ, α)

and Ga(µ′, λ′, α′).

Corollary 3.6 Let α = α′ ∈ N, then Z is a shifted sum of α independent r.v.’s, each being

a product of a Bernoulli with mean (1− p) and an exponential with parameter λ′, where the

value of the shift is µ− µ′.

Proof: α ∈ N. Then the LST of Z can be expressed as:

LZ (s) = e(µ−µ′)s
[
λ′

λ

(λ + as)
(λ′ + s)

]α

= e(µ−µ′)s
[
(1− p)(

λ′

λ′ + s
) + p

]α

.

Theorem 3.7 Suppose X ∼ Ga(µ, λ, α), and Y ∼ Ga(µ′, λ′, α′) as in (3.10), with α < α′,

and assume that [α + 1] ≤ α′. Then Z is is the sum of

• [α + 1] independent r.v.’s, each being a product of a Bernoulli with mean (1− p) and

an exponential with parameter λ′

• Ga(µ− µ′, λ′, α′ − [α + 1])

• Ga(0, λ/a, [α + 1]− α)
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Proof:

LZ (s) =
[
λ′

λ

λ + as
λ′ + s

][α+1 ]

e(µ−µ′)s
[

λ′

λ′ + s

]α′−[α+1 ][λ + as
λ

]α−[α+1 ]

and notice that: [
λ + as

λ

]α−[α+1]

=
[

λ

λ + as

][α+1]−α

.

In fact, instead of assuming [α+1] ≤ α′, it suffices to assume that [α+ ε] ≤ α′ for some

ε ∈ [0, 1].

Theorem 3.8 Suppose X ∼ Ga(µ, λ, α), and Y ∼ Ga(µ′, λ′, α′) as in (3.10), with α =

α′ /∈ N, then Z does not have the LST of some measure.

Proof: α /∈ N The explicit formula in terms of the LST is

LZ (s) =
[
λ′

λ

(λ + as)
(λ′ + s)

][α]

∗
[

λ′

λ′ + s

]α−[α]

∗ e(µ−µ′)s
[
λ + as

λ

]α−[α]

The question we have is how to interpret

[
λ + as

λ

]α−[α]

.

However, set φ(s) =
[
λ + as

λ

]β

, where β = α− [α] ∈ [0, 1].

φ(1)(s) = β
a

λ

[
λ + as

λ

]β−1

φ(2)(s) = β(β − 1)
(

a

λ

)2[λ + as

λ

]β−2

...

φ(n)(s) = β(β − 1) · · · (β − n + 1)
(

a

λ

)n[
λ + as

λ

]β−n

,
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So φ(0) = 1, and has derivatives that alternate in sign. However, by Theorem 2.14,

from Feller (1971) [25], (−1)nφ(s) ≤ 0, for all n = 0, 1, 2, . . . φ is not completely monotone.

We have that φ is not the Laplace transform of some probability distribution.

Theorem 3.9 Let X ∼ Ga(µ, λ, α) and Y ∼ Ga(µ′, λ′, α′) such that α ∈ N, α′ ∈ R+, α′ ≤

α and as in (3.10). Then Z has LST of some measure iff α = α′.

Proof:

LZ (s) =
LY (s)
LX (as)

= e(µ−µ′)s
(

λ′

λ′ + s

)α′(λ + as
λ

)α

= e(µ−µ′)s
[
λ′

λ

(λ + as)
(λ′ + s)

]α[
λ + as

λ

]α−α′

.

The expression
[
λ + as

λ

]α−α′

is completely monotone iff α ≤ α′. Since α′ ≤ α

must be satisfied also, then α = α′.

We have seen that the distribution of Z takes on many different forms depending on the

parameters that are given. In Theorem 3.3, we found the only case where the latent variable

is of continuous gamma type as the marginals. This case is further studied in Chapter 4.

The results from Theorem 3.4 up to Theorem 3.9 give the various forms that the distribution

of Z can take. Theorem 3.4 and Theorem 3.5 are similar, as they express the distribution

of Z as a sum of product of Bernoulli and exponential, and that of gamma r.v.’s. The

special case, given in the Corollary 3.6, states that the Erlang case where α = α′ ∈ N,

leads to just the product of α Bernoulli and exponential. These results give alternative

ways of characterizing the distribution of the latent variables, an opportunity to replace the

unconditional expectation, density by the unconditional expectation, density. That allow

to increase the efficiency in the variance covariance matrix of parameters. In all those cases,
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α ≤ α′ is a required condition for the model validation. The Theorem 3.7 shows that there

must be an integer value between α and α′ to justify the gamma marginals for Y and X in

the Equation (3.10). If there is no such integer value between α and α′, then Z does not

have the LST of some measure. It is not be represented by a distributional form. Theorem

3.9 confirms that finding in the sense that it gives back the result obtained in Corollary 3.6.

3.3 The Multivariate Gamma

The previous section overviews the possible forms of distribution that Z, based on

Equation (3.10), can take. Our primary goal is to obtain the multivariate gamma form of

X as in Definition 3.1. That means we need to study the distribution of Z = (Z1, Z2, · · · , Zp)

based on Equation (1.1) and Definition 3.1.

In Chapter 4, we study the case where the latent variables Zi are all of gamma types

as in the result obtained from Theorem 3.3. In that case the probability of proportional

occurrence is pi = 0, for i = 1, 2, .., p. Many authors have suggested that formulation.

Mathai and Moschopoulos (1991) [63] use that form to give a version of multivariate gamma.

They give properties of such model in terms of means, variance and covariance of parameters,

approximations, and inequalities. In this dissertation, we have proposed a general model as

in Definition 3.1 of a multivariate gamma, that simplifies to the one proposed by Mathai

and Moschopoulos (1991) [63], and Mathai and Moschopoulos (1992) [64]. Nadarajah and

Kotz (2005) [72] derive a linear combination of exponential and gamma r.v.’s. They assume

that there is no probability of simultaneous occurrence between Xi and X0. However, as

given in the famous paper by Marshall and Olkin (1969) [61], that is not meaningful in

“shock model” conditions. Our model captures the shock model that Marshall and Olkin
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(1967) [61] studied in the simple case of the multivariate exponential distribution. That

lead us to elaborate on the multivariate exponential distribution, and the results are given

in Chapter 5.

When ai =
λ0

λi
, , i = 1, 2, .., p in Equation (1.1), then X reduces to multivariate gamma

proposed by Mathai and Moschopoulos (1991) [63]. We give the form of the joint distribution

of Z in the next chapter, its interprtation and estimation procedures of its parameters.

Iyer et al. (2002) [42] and Iyer et al. (2004) [43] dealt with the case of positive fixed

ai’s in the one dimensional case assuming that X0 and Xi are exponential with parameters

λ0 and λi, , i = 1, 2, .., p, respectively. Carpenter et al. (2006) [12] showed that the density

of Zi is then expressed as:

fZi(z) = piδ(z) + (1− pi)fXi(z)I(z>0), (3.11)

where pi = P (Zi = 0) = ai
λi
λ0

, i = 1, 2, .., p and δ is the Dirac delta function given in

Equation (2.2). The result from Carpenter et al. (2006) [12] is an adaptation of Corollary

3.6, and the multivariate form of the distribution of Z is given in Chapter 5.

Based on the multivariate form of Z, we derive the form of the multivariate distribution

of X. We then avoid problems that many authors, say Fang and Zhang (1990) [24] and

Walker and Stephens (1999) [79] for examples, run into when trying to characterize the

multivariate gamma distribution. We have a close form expression, a feature that was

difficult to derive from Henderson and Shimakura (2003) [34]. The expression is not simple,

but it is tractable in contrast to what Mathai and Saxena (1978) [65] have suggested in

terms of infinite series.
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3.4 The Autoregressive Model

In this section, we focus on another approach to obtain a model similar to the direct

linkage. This is an important extension to the multivariate distribution with correlation

structure following the first order autoregressive scheme as stated for further research in

the conclusion of Minhajuddin et al. (2003) [68]. In some applications, the parameter of

interest depends on time. Time series could then be applied to the phenomena which is

described linearly as

Xt = atXt−1 + Zt for t ∈ N.

Brockwell and Davis (1996) [10] describe a similar model with some fixed at = a, |at| <

1 and the Zt are iid normal with EZ2
t = σ2. That gives that E(Xt|Ft−1) = aXt−1 where

Ft−1 is the set of measurable information up to time t− 1.

Let Xt denote the observation at time t. The sequence of r.v.’s (X1, X2, · · ·) is known as

a time series. A graph of Xt against t = 1, 2, · · · is a time plot, and can reveal trends (upward,

downward, variant) or seasonal variation. A model for a time series is described by the joint

distributions of the r.v.’s (X1, X2, · · · , Xn), which is P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) for

every integer n = 1, 2, . . .

However, in practice, only partial information (such as mean, variance) may be avail-

able. Also, we cannot write the joint density as the product of the marginal densities since

independence between the Xi’s is not a workable assumption in our case. The time series

model appears in the class of self decomposable distributions.

Definition 3.10 A r.v. X is called self decomposable if for every 0 < a < 1, there exists a

r.v. Z = Z(a) independent of X such that X
d= aX + Z.
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Some desirable properties follow:

• Self decomposable r.v.’s are contained in the class of infinitely divisible r.v’s. See

Feller (1971) [25].

• The time series version is Xt = aXt−1 + Zt where Zt are independent of each other of

of Xs, s < t.

• If a → 0, then Xt are independent. If a → 1, then Xt are perfectly dependent.

Joe (1997) [44] chapter 8, discusses some special cases.

• If X is exponential with mean 1, then Z is a mixture of a point mass with weight a

and the exponential with mean 1.

• If X is an Erlang distribution Ga(θ, 1), θ ∈ N, then Z is again a mixture Z =



0, with prob. aθ;

Erlang Ga(j, 1), with prob. pj

where pj , 1 ≤ j ≤ θ, are prob. from binomial (θ, 1− a).

• If X is Ga(θ, 1), θ ∈ R− N, then εt =





0, with prob. aθ;

Ga(j,a), with prob. pj ,

where pj , j ≥ 1, are prob. from negative binomial (θ, a), pj = Γ(θ+j)
j!Γ(θ) aθ(1− a)j .

The class of linear relations is quite large, and may contain unobservable factors.

Among the alternatives, we consider the compound autoregressive model given by X =

(Xt)t≥0.

Since the beginning of time series analysis, one popular model assume that the variable

Xt of the process is related to its past development and on a random disturbance sequence
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Zn which is not related to the past. The process is called a Markov process if the densities

of Xt are normally distributed.

Definition 3.11 The process X is called a compound autoregressive process of order p,

denoted CAR(p) if and only if the conditional distribution of Xt given Xt−1 admits the

conditional Laplace form:

E[e−sXt |Xt−1] = e−a1Xt−1−a2Xt−2−···−apXt−p+b

where ai = ai(s) i = 1, . . . , p and b = b(s) are functions of the admissible values s in R.

Our goal is to represent the data based on our probability model (1.2) and on this

family of model (1.1). Then it becomes possible to estimate parameters, check for goodness

of fit, and use our understanding of the mechanism to generate adjustments.

We assume that Xt = aXt−1 + Zt, t = 1, 2, . . . where Zt are independent, and also each

Zt is independent of Xt′ for each t′ < t.

If Z = {Zt}t were normally distributed with mean 0 and variance σ2, then the model

would be an autoregressive model, denoted AR(1), and the Zt are commonly referred to as

white noise. The process would then be stationary linear if |a| < 1.

Here, we have that:

Xt = aXt−1 + Zt = a(aXt−2 + Zt−1) + Zt = a2Xt−2 + aZt−1 + Zt

=
...

= atX0 + at−1Z1 + at−2Z2 + · · ·+ aZt−1 + Zt

= atX0 +
t−1∑

k=0

akZt−k

Therefore µt = EXt = atEX0 +
∑t−1

k=0 akEZt−k
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and V ar(Xt) = a2tV ar(X0) +
∑t−1

k=0 a2kV ar(Zt−k).

Also, it follows that:

Cov(Xt+k, Xt) = Cov(aXt+k−1 + Zt, Xt) = aCov(Xt+k−1, Xt)

= a2Cov(Xt+k−2, Xt) = · · · = akCov(Xt, Xt)

= akV ar(Xt)

The dependence decreases with the lag. That is, as k increases, (Xt+k, Xt) has less depen-

dence. We would like the model to be stationary. The process X = (Xn)(n=0,1,2,···) and its

k shift, θkX = (Xn+k)n=0,1,2,···, share similar similar properties, and we write: X
d= θkX.

We say that X is weakly stationary if it satisfies the following two properties:

1. the mean of Xt does not depend on t

2. for each k = 1, 2, · · · , Cov(Xt+k, Xt) does not depend on t.

This weakly stationarity property is achieved only if a = 1, and EZt = 0.

Rather than considering only nonnegative values of t, one could consider a shifted

sequence on Z.

Assume that X0 = aX−1 +Z0 and that X−1 = aX−2 +Z−1 and so on... It follows that:

Xt = atX0 +
t−1∑

k=0

akZt−k = at+1X−1 +
t∑

k=0

akZt−k

=
...

=
∞∑

k=0

akZt−k.
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Then Xt =
∞∑

k=0

akZt−k.

For the series X to be stationary, i.e its mean and covariance independent of t, the

required condition is that of absolute summability of the coefficients {ak}k=0,1,2,.... i.e.
∞∑

j=0

|ak| =
∞∑

j=0

ak < ∞. This is achieved if and only if |a| = a < 1.

Let us denote the coefficients ak as φk. Then Xt =
∑∞

j=0 φkZt−k.

Moreover, if we can express Zt in terms of Xt’s, then we say that the process is in-

vertible. This is achieved, and we can express Zt =
∞∑

j=0

πjXt−j , where π0 = 1, π1 =

−a, and πj = 0 for j > 1.

The compound autoregressive process defined earlier in terms of the Laplace transform

with autoregressive path dependence can be expressed as:

E[e−sXt |Xt−1] = e−asXt−1−sZt

and the log of the conditional Laplace transform is a linear function of Xt−1.

3.5 Summary

In this chapter, we have generated a general class of multivariate gamma distributions.

We call it generalized gamma distribution, not because the marginals are the generalized

gamma distribution as defined in Kotz et al. (2000) [53], but because it generates two very

distinct and broad subclasses of distributions:

• The continuous class model, where the latent variable is of the same gamma family. We

study that class in Chapter 4. This class has no discontinuities in the joint densities.
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• The fatal shock model, where all marginal distributions are gamma, but all the latent

variables are gamma mixtures, and there are discontinuities due to the probability of

simultaneous occurrence. In Chapter 5, we study that model under the exponential

case, because of the wide use and applications of the exponential distributions.
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Chapter 4

The Continuous Case Model

This chapter studies the continuous class of the model given in Chapter 3. The latent

variables are all continuous, and of specific same family gamma type distributions. Our goal

is to find the joint multivariate density of the latent variables Zi’s defined in (1.1), assuming

that the conditions of Theorem 3.3 are satisfied, that is the Zi’s are independent gamma

distributed for i = 1, 2, .., p. Nadarajah and Kotz (2005) [72] describe the distribution of

the linear combinations of exponential and gamma type r.v.’s. Our approach is different

as the mariginal distributions are specified, and the coefficients ai in (1.1) are chosen such

that the Zi’s are of the same family of gamma distributions, for i = 1, 2, .., p. Methods of

estimations of parameters associated with the latent variables are also proposed.

4.1 Definition of Model

Mathai and Moschopoulos (1991) [63] considered a multivariate gamma model where

the dependence structure is obtained by adding a factored common r.v. to every univariate

marginal, exploiting the additive property. In their following paper [64], they consider an

additive form of gamma distributions with common scale parameter. In Kotz et al. (2000)

[53, page 468], a model in reliability applications is described as a system where a failing

component is replaced by an identical one so that the process never stops until the total

items in the system fail.

The Definition 3.1 is in the spirit of the Mathai and Moschopoulos (1991) [63] mul-

tivariate gamma with a flexible dependence structure for non-symmetric and nonnegative
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support. It provides a model fit for many situations. A slightly similar idea has been sug-

gested by Hougaard (1986) [35], where the class of multivariate lifetime distributions had

a dependence created by an unobserved quantity. We next recall the definitions and most

important properties of the multivariate gamma distribution in the sense of Mathai and

Moschopoulos (1991) [63]. The distribution of the sum with any shape and scale parame-

ters is also analyzed.

Note that X in Definition 3.1 does not necessarily follow the multivariate gamma

unless we pick appropriate values for the ai, i = 1, 2, · · · , p, as it is proved in Mathai and

Moschopoulos (1991) [63] and (1992) [64].

If α0 → 0, then X0 → 0 a.s., and then the multivariate gamma consists of n indepen-

dent gamma distributions.

Carpenter et al. (2006) [12] marginally defined the Xi’s as exponential, and showed that

Zi is then a product of a point mass and an exponential distribution. Despite the theoretical

universality, the difference is in the concept. They start from a bivariate distribution, say

X1 and X0, and derive the conditional distribution of the associated Z1, whereas in most

general situations, one describes the joint distribution of X0 and X1 with Z1 known.

Mathai and Moschoupolos (1992) [64] showed that for X0 = Z0, Z1, Z2, · · · , Zp, mutu-

ally independent gamma r.v.’s with parameters such that X0 = Z0 ∼ Ga(µ0, λ0, α0) and

Zi ∼ Ga

(
µi − α0

λ0
λi, λi, αi − α0

)
for i = 1, · · · , p, then Xi satisfying Xi = aiX0 + Zi for

ai = λi
λ0

, are also gamma distributed as Xi ∼ Ga(µi, λi, αi). This result is now in this

dissertation an application of Theorem 3.3. We next give some properties and the form of

the multivariate density function.
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4.2 Properties

Some important features, as in Section 4.1, follow from Equation (3.8) and Equation

(3.9) of the Laplace transform LX.

LX(s) = e−µ0
Pp

i=1 aisi

(
λ0

λ0 +
∑p

i=1 aisi

)α0 p∏

i=1

LXi (si)
LX0 (aisi)

.

And then, it is sufficient to explain the nature of
LXi (si)

LX0 (aisi)
. We next present two

important theorems of this chapter.

Theorem 4.1 The joint pdf of the multivariate gamma X = (X1, X2, · · · , Xp) based on

Definition 3.1, when Xi ∼ Ga(µi, λi, αi), i = 0, 1, · · · , p is explicitly given in terms of

hypergeometric series ( the Lauricella function of type B) in the special case where Zi, 1 ≤

i ≤ p, are gamma type.

Proof:

We follow the ideas in Mathai and Saxena (1978) [65].

Assume that Zi ∼ Ga(µ′i, λ
′
i, α

′
i) for i = 1, 2, · · · , p. Using the idea from Mathai and

Moschopoulos (1991) [63], the joint density of X0, Z1, · · · , Zp is given as:

f(x0, z1, · · · , zp) = C(x0 − µ0)α0−1exp{−λ0(x0 − µ0)}

×
p∏

i=1

(zi − µ′i)
α′i−1exp{−λi(zi − µ′i)}

where C = λ
α0
0

Γ(α0)

∏p
i=1

λ
′α′i
i

Γ(α′i)
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Even in the simplified case, integrating out x0 is possible only in very special cases as

it is noted in Krzanowski and Marriot (1994) [54].

Now putting zi = xi − aix0, we have that the joint density of (X0, X1, X2, · · · , Xp) is

given by:

g(x0, x1, · · · , xp) = C(x0 − µ0)α0−1exp{−λ0(x0 − µ0)}

×
p∏

i=1

(xi − aix0 − µ′i)
α′i−1exp{−λ′i(xi − aix0 − µ′i)}.

Set u0 = x0 − µ0 and ui + µ0 =
1
ai

(xi − µ′i) for 1 ≤ i ≤ p.

Then the density of can be written as:

g(u0, u1, · · · , up) = C

p∏

i=1

a
α′i−1
i uα0−1

0 exp{−λ0u0)}

×
p∏

i=1

(ui − u0)α′i−1exp{−λ′iai(ui − u0), }

where 0 < u0 < min{u1, · · · , up}

The joint density of (u1, · · · , up) is available by integrating out u0. Hence

g(u1, · · · , up) = C1

∫ min{u1,···,up}

0
uα0−1

0 exp{−λ0u0)}(u1 − u0)α′1−1 · · · (up − u0)α′p−1

× exp{−[λ′1a1(u1 − u0) + · · ·+ λ′pap(up − u0)]}du0

where C1 = C

p∏

i=1

a
α′i−1
i .
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It follows that the density depends on the different forms of the k! possible orderings

of u1, u2, · · · , up. For example u1 < u2 < · · · < up. We have

g(u1, · · · , up) = C1{
p∏

i=1

u
α′i−1
i }

∫ u1

0
uα0−1

0 exp{−λ0u0)}(1− u0

u1
)α1−1 · · · (1− u0

up
)αp−1

× exp{−[λ′1a1u1(1− u0

u1
) + · · ·+ λ′papup(1− u0

up
)]}du0.

Set y =
u0

u1
. Then the above is expressed as:

g(u1, · · · , up) = C1{
p∏

i=1

u
α′i−1
i }uα0

1

∫ 1

0
yα0−1exp{−λ0u1y)}

= ×(1− y)α′1−1 × (1− u1

u2
y)α′2−1 · · · (1− u1

up
y)α′p−1

= × exp{−[λ′1a1u1(1− y) + λ′2a2u2(1− u1

u2
y) · · ·+ λ′papup(1− u1

up
y)]}dy.

Expanding the exponentials in series form, we obtain:

g(u1, · · · , up) = C1{
p∏

i=1

u
α′i−1
i }uα0

1

×
∞∑
r0

∞∑
r1

· · ·
∞∑
rp

(−λ0u1)r0

r0!
(−λ′1a1u1)r1

r1!
· · · (−λ′papup)rp

rp!

×
∫ 1

0
yα0+r0−1(1− y)α′1+r1−1 × (1− u1

u2
y)α′2+r2−1 · · · (1− u1

up
y)α′p+rp−1dy

= C1{
p∏

i=1

u
α′i−1
i }uα0

1 × Γ(α0 + r0)Γ(α′1 + r1)
Γ(α0 + r0 + α′1 + r1)

×
∞∑
r0

∞∑
r1

· · ·
∞∑
rp

(−λ0u1)r0

r0!
(−λ′1a1u1)r1

r1!
· · · (−λ′papup)rp

rp!

×FD(α0 + r0;α′2 + r2, · · · , α′p + rp;α0 + r0 + α′1 + r1;
u1

u2
, · · · , u1

up
),

where FD is sometimes referred to as the Lauricella function of n variables.
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The theorem is proved when substituting back xi in terms of ui.

Recall that Lauricella FD, or more precisely F
(n)
D , is a function of n variables and n+2

parameters defined by the power series as:

F
(n)
D (a; b1, · · · , bn; c;x1, · · · , xn) =

∞∑

m1=0

· · ·
∞∑

mn=0

(a)m1+···+m2(b1)m1 · · · (bn)mn

(c)m1+···+mnm1! · · ·mn!
xm1!

1 · · ·xmn
n .

We have a characterization in terms of an infinite sum of distributions. The question

of how to generate variates from this distribution is then raised. Also relevant is how to

implement a fit for this distribution. To answer these questions, a further study is then

needed. We want to obtain another representation although we can tell by now that there

is no unique way of expressing the joint density of a set of correlated gamma marginals.

Note from the above theorem, relations between means and variances of Xi and Zi can

be obtained. In particular,

µ′i = µi − aiµ0 and
α′i
λ′i

=
αi

λi
− ai

α0

λ0
,

α′i
λ′i

2 =
αi

λ2
i

− a2
i

α0

λ2
0

,

Hence

λ′i =
αi
λi
− ai

α0
λ0

αi

λ2
i
− a2

i
α0

λ2
0

and

α′i =
(αi

λi
− ai

α0
λ0

)2
αi

λ2
i
− a2

i
α0

λ2
0

.
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However, in order to obtain a better parameter estimates, a more tractable version of

the joint density is desired.

The notion of frailty is used as a measure of general random effect. Vaupel et al.

(1979) [78] gave a description of frailty as a measure of susceptibility to all causes of death

in heterogeneous populations, with applications assuming gamma distributions, based on

the advantages of the gamma in the simple forms of its density in Equation (1.2) and its

LST in Example 2.2.

In the particular case where X1 ∼ Ga(µ1 = 0, λ1, α1 = 1) and X2 ∼ Ga(µ2 =

0, λ2, α2 =
1
2
), the density of the sum X = X1 + X2 can be expressed as:

fX(x) =
√

λ1λ2e
− (λ1+λ2)

2
xI0[

(λ2 − λ1)
2

x],

where I0 is the Bessel function of first kind and zero order

I0(t) = 1 +
t2

22
+

t4

22 · 42
+

t6

22 · 42 · 62
+ · · · .

The result of the convolution of n independent gammas, is given by Moschopoulos

(1985) [70], and is as follows:

fX(x) =
∏n

i=1 λαi
i

Γ(
∑n

i=1 αi)
x
Pn−1

i=1 αi−1e−λnx
∞∑

k=0

bn(k)(
∑n−1

i=1 αi)
k!(

∑n
i=1 αi)k

[(λn − λn−1)x]k

where the coefficients bi are obtained recursively by:

bi =





1, i = 2;
∑k

j=0

bi−1(
Pn−2

p=1 αp)j(−k)j

j!(
Pi−1

p=1 αp)j
Cj

i , i = 3, 4, · · · , n,
with Ci =

λi−2 − λi−1

λi − λi−1
.

Moschopoulos (1985) [70], and Furman and Landsman (2005) [28], give an interpretation

of the distribution of X as a sum of gamma distributions the location being at the origin.
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Theorem 4.2 The distribution of the sum X is a mixed gamma with mixing shape para-

meter given by α+K and scale parameter λmax = max{λ1, · · · , λp} where α =
∑p

i=1 αi and

K is a non negative integer r.v. with distribution

pk = f(k) = Cdk, k = 0, 1, 2, ...

C =
∏p

i=1 ( λi
λmax

)αi and d0 = 1, dk = 1
k

∑k
i=1

∑p
j=1 αj(1− λj

λmax
)idk−i

i.e f(x) =
∑∞

k=0 pkfYk
(x), Yk ∼ Ga(λmax, α + k)

Proof: See Furman (2005) [28].

In the case of the sum of two gamma X1 ∼ Ga(λ1, α1) and X2 ∼ Ga(λ2, α2), the

distribution of X = X1 + X2 is given as:

f(x) =
∑∞

k=0 pkfYk
(x), pk = Cdk, C = λ

α1
1 λ

α2
2

λ
α1+α2
max

d0 = 1, d1 = α1(1− λ1
λmax

) + α2(1− λ2
λmax

)

d2 = d1
2 [α1(1− λ1

λmax
) + α2(1− λ2

λmax
)] + d0

2 [α1(1− λ1
λmax

)2 + α2(1− λ2
λmax

)2]

dk = 1
k

∑k
i=1

∑p
j=1 αj(1− λj

λmax
)idk−i, for k ≥ 3.

Yk ∼ Ga(λmax, α1 + α2 + k).

The form of the exact distribution Theorem 4.1, and in Theorem 4.2, in an infinite

series, is quite complicated in practical situations. Because the sum involves an infinite

number of distributions, there is a need in developing a mathematically tractable theory

and result. We consider some results in the gamma cases, and explain the case of the

exponential distribution.

4.3 Estimation Procedures

Because of the complexity of the likelihood, no MLE can be done in the usual way

in estimating model parameters. Alternatives for the MLE have been suggested by many
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authors such as Cohen and Whitten (1986) [16] and Cohen and Whitten (1988) [17]. They

used method called modified moments estimators or modified MLE. Our approach builds

the probability criteria from the EM algorithm. It can be used to compute the MLE

for incomplete data. Disregarding the missing data is usually not safe. After separating

the data into missing and non missing, we start by taking a guess of parameters within

a corresponding domain. The idea is to replace the missing value by its expectation or

predicted score given the starting guessed parameter values. We use an expected value

of the likelihood function, computed using sufficient statistics, in turn computed from the

data, and maximize the likelihood function to obtain new parameter estimates. From the

famous paper by Dempster et al. (1977) [22], the basic EM theorem states that improving

the expected log likelihood leads to an increase in the likelihood itself l(θ|X) = log L(θ|X).

The data X = (Xobs,Xmis) has 2 parts: an observed part denoted as Xobs and a missing

part we denote as Xmis and is assumed to follow a gamma distribution with unknown

parameter θ, i.e. its pdf is expressed as in (1.2).

The idea is to fill in the missing values and iterate. Each iteration is done in two steps:

the expectation (or E step) and the maximization (or M step).

At the expectation or E step, we find the conditional expectation of the log likelihood

function for the complete data denoted here as X given the observed data say Xobs, i.e.

Q(θ|θ(k)) = E

[
log f(X|θ)|θ(k),Xobs

]
.

The next step of the EM algorithm, the M-step, is to maximize the Q function; i.e. we

find the parameter θ = θk+1 maximizing Q(θ|θ(k)). The EM algorithm guarantees that the

likelihood function is increased by increase of the function Q.
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The EM algorithm has a generalization called generalized EM (GEM), where in the M

step, one finds only a value θ such that Q(θ|θ(k)) is strictly increasing in k.

The density in our example is of multivariate type. Using ideas from Mathai and

Moschopoulos (1991) [63], the likelihood function can be thought as a sum of p terms. One

idea is to maximize each term separately.

The data vectors Xj = (x1j , x2j , · · · , xpj) ∈ Rp for j = 1, · · · , n are observed and what

are missing (unobserved) is the group of units X0 = (x01, x02, · · · , x0n). We wish to calculate

the ML estimates of θ.

There are pn + n = n(p + 1) observations, and among them pn are observed and n are

missing.

Then setting θ = (µ0, λ0, α0, µ1, λ1, α1, · · · , µp, λp, αp)′, a vector of 3(p+1) parameters,

the log likelihood is

l(θ|X) = log
n∏

j=1

g(x0j , x1j , · · · , xpj |θ) =
n∑

j=1

log [g(x0j , x1j , · · · , xpj)|θ]

= n log C +
n∑

j=1

log [(x0j − µ0)α0−1exp{−λ0(x0j − µ0)}

×
p∏

i=1

(xij − aix0j − µ′i)
α′i−1exp{−λ′i(xij − aix0j − µ′i)}]

= n log C +
n∑

j=1

[(α0 − 1) log(x0j − µ0)− λ0(x0j − µ0)

+ log{
p∏

i=1

(xij − aix0j − µ′i)}+ log{
p∏

i=1

e−λ′i(xij−aix0j−µ′i)}]

= n log C + (α0 − 1)
n∑

j=1

log(x0j − µ0)− λ0

n∑

j=1

(x0j − µ0)

+
n∑

j=1

p∑

i=1

(α′i − 1) log(xij − aix0j − µ′i)−
n∑

j=1

p∑

i=1

λ′i(xij − aix0j − µ′i),
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where C =
p∏

i=0

λαi
i

Γ(αi)
and log C =

p∑

i=0

{
αi log(λi)− log(Γ(αi))

}
.

The log likelihood is not linear in the data. The sample and arithmetic means are

jointly sufficient and complete statistics for the parameters of the data. See Casella and

Berger (1990) [13]. They are functions of:
n∑

j=1

xij , and
n∑

j=1

xijxi′j , i, i′ = 1, · · · , p.

We wish to calculate

E[x0j |x1j , x2j , · · · , xpj ], j = 1, · · · , n

EX0j [ log(x0j − µ0)], j = 1, 2, · · · , n

EX0 [xij − aix0j − µi], i = 1, 2, · · · , p, j = 1, 2, · · · , n

EX0 [ log{xij − aix0j − µi}], i = 1, 2, · · · , p, j = 1, 2, · · · , n

Cov(x0j |x1j , x2j , · · · , xpj ; µ̂, Σ̂), j = 1, · · · , n

Using the same idea as the Bayes theorem, which states that

f(x0|x) =
f(x0,x)

f(x)
=

f(x0)f(x|x0)
f(x)

,

we have that the conditional density of x0j given x = (x1j , x2j , · · · , xpj)′ for j = 1, 2, · · · , n,

is given by:

f(x0j |x1j , x2j , · · · , xpj) =
(x0j − µ0)α0−1e−λ0(x0j−µ0)G(x0j ,x)

∫ xmin
j

µ0
(x0j − µ0)α0−1e−λ0(x0j−µ0)G(x0j ,x)dx0j

where

• the denominator represents the joint distribution of the jth response vector,

• xmin
j = mini=1,2,···,p{xij

ai
},
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• G(x0j ,x) =
∏p

i=1(xij − aix0j − µ′i)
α′i−1e−λ′i(xij−aix0j−µ′i).

It is then not possible to just have the conditional density of the observed data. We

cannot separate the component likelihood of the known parameter from the variance com-

ponent parameter. This complexity of the conditional density of x0j given x1j , x2j , · · · , xpj

for j = 1, 2, · · · , n, (not available in closed or simple form), prevents us from using the

EM algorithm. The problem is in the integration. To go around this problem, we could

approximate the integral or we could replace x0j by a reasonable estimate. Based on the

following relations,

xij = aix0j + zij ⇐⇒ x0j =
xij − zij

ai
, for i = 1, 2, · · · , p, and j = 1, 2, · · · , n.

Considering the minimum of the x0j is a natural idea one could use, i.e.

x0j = min
i=1,..,p

{
xij − zij

ai

}
.

In other words, the x0j ’s are estimable based on the nature of the structure. And hence the

parameters µ0, λ0, α0 are then estimated.

Now replace zij by E(zij) =
αi

λi
− ai

α0

λ0
+ µi − aiµ0. Then

x0j = mini=1,..,p

{
xij−αi

λi
−µi

ai

}
+

(
α0
λ0

+ µ0

)
.

So

E(x0j) = min
i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

(
α0

λ0
+ µ0

)
.

E log(x0j − µ0) = log
[

min
i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

(
α0

λ0

)]
.

E log(xij − aix0j − µi) = log
[
xij − ai min

i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

(
α0

λ0
+ µ0

)
− µi

]
.
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Hence,

Q(θ|θ(k−1)) = E

{
l(θ|θ(k−1 ),x)

}

= n log C + (α0 − 1)
n∑

j=1

E log(x0j − µ0)− λ0

n∑

j=1

E(x0j − µ0)

+
p∑

i=1

n∑

j=1

(αi − 1)E log(xij − aix0j − µi)−
p∑

i=1

n∑

j=1

λiE(xij − aix0j − µi)

= n log C + (α0 − 1)
n∑

j=1

log
[

min
i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

α0

λ0

]

−λ0

n∑

j=1

[
min

i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

α0

λ0

]

+
p∑

i=1

n∑

j=1

(αi − 1) log
[
xij − ai( min

i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

(
α0

λ0
+ µ0

))
− µi

]

−
p∑

i=1

n∑

j=1

λi

[
xij − ai

(
min

i=1,..,p

{
xij − αi

λi
− µi

ai

}
+

(
α0

λ0
+ µ0

))
− µi

]
,

where θ(k−1) = (α(k−1)
0 , λ

(k−1)
0 , µ

(k−1)
0 , α

(k−1)
1 , λ

(k−1)
1 , µ

(k−1)
1 , · · · , α(k−1)

p , λ
(k−1)
p , µ

(k−1)
p )′.

Then using maximum likelihood, find

θ(k) = (µ(k)
0 , λ

(k)
0 , α

(k)
0 , µ

(k)
1 , λ

(k)
1 , α

(k)
1 , · · · , µ(k)

p , λ
(k)
p , α

(k)
p )′

that maximizes Q(θ|θ(k−1)).

So in here, the parameters are computed iteratively. The following steps are suggested

to get the MLE’s of the parameters:

• step 1: update the unknown values x0j for each iteration along with the parameters

of interest.

• step 2: find estimates for µ0, λ0 and α0.

• step 3: find estimates for µi, λi and αi for 1 ≤ i ≤ p.
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Continue the process at to convergence, when there is no much difference gained in the

next iteration. The vector of parameters θ = (µ0, λ0, α0, µ1, λ1, α1, · · · , µp, λp, αp)′ has two

components: θ = (θ1, θ2)′ where θ1 = (µ0, λ0, α0)′ and θ2 = (µ1, λ1, α1, · · · , µp, λp, αp)′ is

estimated by MLE for θ1 fixed.

We continue the iterative process until some stopping criteria is reached. Although

the process seems very similar to the EM algorithm, it is not based on the conditional

distribution. It seems nevertheless very related to the EM algorithm. The estimation

is performed by a generalization of the EM algorithm which Tanner (1996) [77] called

the Expectation-Solution (ES) algorithm. For the ES algorithm, the M-step of the EM

algorithm is replaced by a step requiring the solution of an estimating equation, which

does not necessarily correspond to a maximization problem. The ES algorithm is a general

algorithm for solving equations with incomplete data. These authors used this algorithm

to fit a mixture model for independent and correlated data. The use of mixture of densities

gives more flexibility to the model the distribution. With this approach, we have a method

to calculate the variance-covariance matrix of the parameters.

The Markov Chain Monte Carlo (MCMC) allows the simulation of many complex and

multivariate types of random data. It also deals with calculating expectations, finding

conditional expectations for maximizing likelihood in missing data patterns, predicting the

missing data based on a normal distribution. Although the assumption of normality is not

always a negative aspect (specially when the missing information is not too large), this new

estimation technique can provide better answers as the values x0 are not missing at random.

To understand a statistical model, one idea would be to simulate many realizations

from that model, and study it. For example, consider a r.v. X with pdf f(x) and a
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function g such that E(g(X)) =
∫

X
g(x)f(x)dx is difficult to integrate. The integral can be

approximated after n realizations, x1, x2, · · · , xn, of X by the following sum:

1
n

n∑

i=1

g(xi).

In our example, the joint density has the form f(x) = f(x0, x1, x2, · · · , xp), and we are

interested in some features of the marginal density. Assume we can sample the p + 1 many

univariate conditional densities:

f(x0|x1, x2, · · · , xp)

f(x1|x0, x2, · · · , xp)

f(x2|x0, x1, x3, · · · , xp)
...

f(xp|x0, x1, x2, · · · , xp−1).

Indeed

f(xk|x0, x1, · · · , xk−1, xk+1, · · · , xp) =
f(x0, x1, · · · , xp)

f(x0, x1, · · · , xk−1, xk+1, · · · , xp)

=
λαk

k

Γ(αk)
(xk − akx0)αk−1e−λk(xk−aix0)

which is a gamma distribution with location akx0 and parameters α′k and λ′k denoted here

as αk and λk, respectively.

So choose arbitrarily p initial values: x1 = x
(0)
1 , x2 = x

(0)
2 , · · · , xp = x

(0)
p .

Then create

• x
(1)
0 by drawing from f(x0|x(0)

1 , · · · , x(0)
p )

• x
(1)
1 by drawing from f(x1|x(1)

0 , x
(0)
2 , · · · , x(0)

p )
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• x
(1)
2 by drawing from f(x2|x(1)

0 , x
(1)
1 , x

(0)
3 , · · · , x(0)

p )

• ...

• x
(1)
p by drawing from f(xp|x(1)

0 , x
(1)
1 , x

(1)
2 , · · · , x(1)

p−1)

This is one Gibbs pass through the p + 1 conditional densities that gives values

(x(1)
0 , x

(1)
1 , x

(1)
2 , · · · , x(1)

p ).

Thus, we can take the last n of x0 values after many Gibbs passes and we set that:

E(X0) =
1
n

m+n∑

i=m

xi
0.

The Monte Carlo EM algorithm is an important sampling technique to generate random

variates to construct Monte Carlo approximations.

As said earlier, the identification of parameters is an important topic. We have proposed

a novel procedure to identify the parameters which uses ideas of the EM algorithm, with a

computation cost not so large.
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Chapter 5

The Multivariate Exponential

The multivariate exponential plays an important role in survival and reliability analysis.

Marshall and Olkin (1967) [61], Joe (1997), Ghosh and Gelfand (1998) [30], and Hougaard

(2000) [36], to mention a few authors, gave several examples to motivate this research

problem. In this chapter, we focus on the multivariate exponential distribution. More

specifically, we consider the p−variate X1, X2, · · · , and Xp be fixed marginally as exponential

r.v.’s with hazard rates λ1, λ2, · · · , and λp, respectively. Then by introducing two types of

latent non-negative variables, X0 and Z1, Z2, · · · , and Zp, statistically independent between

themselves and of X0, a linear relationship is formed between X0 and X1, X2, · · · , Xp as in

(1.1). Note that this structure was introduced in Chapter 3, and is a special family within

the generalized gamma distribution.

We focus on the exponential class of distributions because of its importance in the

literature. This class is large, and includes the continuous (examined in Chapter 4) and

discontinuous cases. We also study the bivariate case approach where X0 is unobserved,

and missing, and lay out the joint density function along with the joint survival function.

We also developed estimators for the parameters associated with the model. Carpenter et

al. (2006) [12] defined a similar approach at the univariate level. They characterize through

Laplace transforms, the distribution of the latent variable in the exponential case as mixture

of a point mass at zero and an exponential with hazard rate λi as shown in Corollary 3.6.

Note that when Zi = 0, there is a positive probability that Xi is proportional to X0 with

proportionality constant ai, i.e. P (Xi = aiX0) > 0, i = 1, . . . , p.
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We show that our model possesses the property of conditional independence in Def-

inition 1.7 and Equation (1.13), given a random latent effect. Hougaard (2000) [36] calls

this random latent effect frailty. Frailty models are common in describing the dependence.

See Vaupel et al. (1979) [78], Hougaard (2000) [36], and Henderson and Shimakura (2003)

[34]. Hougaard (1986) [35] and Hougaard (2000) [36] consider the random latent effect

as parameter, and we are treating it as latent variable. As described in Carpenter et al.

(2005) [12], the joint distribution is not absolutely continuous. The multivariate survival

data of the experiment gives multiple events and involves several members or components

in a system.

The multivariate lifetime distributions by Hougaard (2000) [36], has a dependence

created by an unobservable quantity. This is a typical scenario we adopt here also. Hougaard

(1986) [35] proposed a continuous multivariate lifetime distribution where the marginal

distributions are Weibull (continuous) and does not allow the property of simultaneous or

proportional failures of individuals or components.

5.1 The Multivariate Exponential

In this section, we give our version of the p−variate exponential distribution through

Definition 5.1. We study its various properties, and characterize its density function.

Definition 5.1 Let X0, X1, · · · , Xp be exponential r.v.’s as in (1.3) with scale parameters

λi, 0 ≤ i ≤ p. Let Zi, i = 1, .., p, be independent r.v.’s satisfying (1.1). We define the joint

distribution of X = (X1, X2, · · · , Xp) as the p−variate exponential distribution.

79



From Equation (3.7), the mean of X is given as

E(X) =
(

1
λ1

,
1
λ2

, · · · , 1
λp

)′
, (5.1)

and the variance/covariance matrix is given as

Σ =
1
λ2

0




λ2
0

λ2
1

a1a2 · · · a1ap

a2a1
λ2
0

λ2
2

· · · a2ap

...
...

...
...

apa1 · · · apap−1
λ2
0

λ2
p




. (5.2)

From (5.2), the correlation matrix is given as

ρ =
1
λ2

0




λ2
0 a1a2λ1λ2 · · · a1apλ1λp

a2a1λ2λ1 λ2
0 · · · a2apλ2λp

...
...

...
...

apa1λpλ1 · · · apap−1λpλp−1 λ2
0




.

Note that since we consider the exponential case, the shape parameters αi = 1 in (1.2)

for i = 1, 2, .., p. From Theorem 3.4 and Equation (1.1), the LST of Zi is

LZi (s) = pi + (1 − pi)LXi (s), with pi = ai
λi

λ0
, i = 1 , 2 , .., p.

That is Zi is a mixture of Bernoulli r.v. with probability pi and exponential r.v. with

parameter λi as in Example 2.4.
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From Equation (3.11), the conditional survival function of Xi given X0, is obtained as

S(t|x0) = P (Xi > t|x0) = P (aix0 + Zi > t|x0) = P (Zi > t− aix0|x0)

=
∫ ∞

t−aix0

fZi(z)dz =
∫ ∞

t−aix0

[
piδ(z) + (1− pi)λie

−λiz

]
dz

= pi

∫ ∞

t−aix0

δ(z)dz + (1− pi)
∫ ∞

t−aix0

e−λizdz

= pi(1−H(t− aix0)) + (1− pi)e−λi(t−aix0), i = 1, .., p,

where H is the Heaviside function defined in Equation (2.3).

From the conditional independence property and (1.13), the joint conditional survival

function is

S(x1, · · · , xp|x0) =
p∏

i=1

[
pi(1−H(xi − aix0)) + (1− pi)e−λi(xi−aix0)

]
. (5.3)

The distribution of the minimum lifetime distribution X(1) = min

{
X1

a1
,
X2

a2
, · · · , Xp

ap

}

can be derived directly from (5.3) and from properties of the Heaviside function in Equation

(2.3). It is given as

P (X(1) > t|x0) =
p∏

i=1

P

(
Xi

ai
> t|x0

)
=

p∏

i=1

P (Xi > ait|x0)

=
p∏

i=1

[
pi(1−H(xi − x0)) + (1− pi)e−λiai(xi−x0)

]
.

Note that, as we should expect,

S(0, 0, · · · , 0) = 1 and S(∞,∞, · · · ,∞) = 0.
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The Equation (5.3) above is quite interesting and could be deduced intuitively from

the nature of the conditional distribution. It also captures the method of copula that many

authors have suggested. According to that method, the joint survival function of X1, · · · , Xp

is represented as:

S(x1, x2, · · · , xp) = C(P (X1 > x1), P (X2 > x2), · · · , P (Xp > xp))

= C(SX1(x1), SX2(x2), · · · , SXp(xp)),

where C(u1, u2, · · · , up) is a copula: a function mixing the univariate survival function u1, u2

and up. For example, Hougaard (2001) [37] proposed the following copula function C at

the bivariate level:

C(u1, u2) = exp [− {(− lnu1)β + (− lnu2)β}1/β ]

with β ≥ 1 coefficient of association. The case β = 1 corresponds to the independence

between u1 and u2.

There are some problems associated with the form of the copula, as it can lead to

misrepresentation of the association. The false estimation of β could then lead to false

estimates for the parameters of interest.

Taking the derivative of the ith survival function in Equation (5.3), and using Equation

(2.3), the conditional density is given by

fXi|X0
(t) = piδ(t− aix0) + (1− pi)λie

−λi(t−aix0), i = 1, .., p. (5.4)
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and from (5.4), the conditional expectation is

EXi|X0
(Xi) =

∫ ∞

0
tfXi|X0

(t)dt

= pi

∫ ∞

0
tδ(t− aix0)dt + (1− pi)

∫ ∞

aix0

λite
−λi(t−aix0)dt

= piaix0 + (1− pi)(
1
λi

+ aix0) = aix0 + (1− pi)
1
λi

, i = 1, .., p.

Note that taking the expectation of the above with respect to X0 gives

EXi = EX0EXi|X0
(Xi) = EX0 [piaix0 + (1− pi)(

1
λi

+ aix0)]

= pi
ai

λ0
+ (1− pi)(

1
λi

+
ai

λ0
)

=
ai

λ0
+ (1− pi)

1
λi

=
1
λi

, i = 1, .., p,

since pi = ai
λi

λ0
, confirming earlier results in Equation (5.1) and in Carpenter et al. (2006)

[12].

Although the joint density of (X0, X1, X2, · · · , Xp)′ is easy to find (see Equation in

proof of Theorem 1.8), the density of (X1, X2, · · · , Xp)′ is not. However, we can study the

density of (X0, X1, X2, · · · , Xp)′ through the latent variables Z1, Z2, · · · , Zp, with relative

ease. Using the independence of the Zi’s, i = 1, 2, .., p, between each other and of X0, and

Theorem 1.8, we have that:

f(x0, x1, · · · , xp) = λ0e
−λ0x0

p∏

i=1

[
piδ(xi − aix0)− (1− pi)λie

−λi(xi−aix0)I(xi>aix0)

]
, (5.5)

83



To demonstrate the complicated form of the above density, we give the explicit form

in the case of three r.v.’s X1 = a1X0 + Z1, X2 = a2X0 + Z2, and X3 = a3X0 + Z3. Hence,

Equation (5.5) becomes:

f(x0, x1, x2, x3) = f(x0)f(x1 − a1x0)f(x2 − a2x0)f(x3 − a3x0)

= f(x0)[p1δ(x1 − a1x0) + (1− p1)fX1(x1 − a1x0)I(x1>a1x0)]

[p2δ(x2 − a2x0) + (1− p2)fX2(x2 − a2x0)I(x2>a2x0)]

[p3δ(x3 − a3x0) + (1− p3)fX3(x3 − a3x0)I(x3>a3x0)]

= f(x0)[p1p2p3δ(x1 − a1x0)δ(x2 − a2x0)δ(x3 − a3x0)

+p1(1− p2)p3δ(x1 − a1x0)δ(x3 − a3x0)fX2(x2 − a2x0)

+p1p2(1− p3)δ(x1 − a1x0)δ(x2 − a2x0)fX3(x3 − a3x0)

+p1(1− p2)(1− p3)δ(x1 − a1x0)fX2(x2 − a2x0)fX3(x3 − a3x0)

+(1− p1)p2p3δ(x2 − a2x0)δ(x3 − a3x0)fX1(x1 − a1x0)

+(1− p1)(1− p2)p3δ(x3 − a3x0)fX1(x1 − a1x0)fX2(x2 − a2x0)

+(1− p1)p2(1− p3)δ(x2 − a2x0)fX1(x1 − a1x0)fX3(x3 − a3x0)

+(1− p1)(1− p2)(1− p3)fX1(x1 − a1x0)fX2(x2 − a2x0)fX3(x3 − a3x0)].

Coming back to the multivariate form obtained from Equation (5.5), there are 2p terms

in the sum expressed from the power set of P, the set of subsets of {1, 2, · · · , p}. Hence,

f(x0, x1, · · · , xp) =
p∑

|A|=k,A∈P
pA(1)

· · · pA(k)
δ(xA(1)

− aA(1)
x0) · · · δ(xA(k)

− aA(k)
x0)

×f(x0)(1− pAc
(1)

) · · · (1− pAc
(p−k)

)
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×fAc
(1)

(xAc
(1)
− aAc

(1)
x0) · · · fAc

(p−k)
(xAc

(p−k)
− aAc

(p−k)
x0),

where A is a subset of P, with k elements, 0 ≤ k ≤ p, denoted as A(1), A(2), · · · , A(k),

and we then can deduce the subset Ac = {1, 2, . . . , p} \ A, whose elements are denoted as

Ac
(1), A

c
(2), · · · , Ac

(p−k). Hence,

f(x0, x1, · · · , xp) =
p∑

|A|=k,A∈P
pA(1)

· · · pA(k)
δ(xA(1)

− aA(1)
x0) · · · δ(xA(k)

− aA(k)
x0)

×(1− pAc
(1)

) · · · (1− pAc
(p−k)

)

×λ0λAc
(1)
· · ·λAc

(p−k)
e
−λAc

(1)
xAc

(1) · · · e−λAc
(p−k)

xAc
(p−k)

×e
−(λ0−aAc

(1)
λAc

(1)
−···−aAc

(p−k)
λAc

(p−k)
)x0

.

Therefore the joint density of (X1, X2, · · · , Xp)′ the multivariate exponential is obtained

by integrating the above expression with respect to x0, giving

f(x1, · · · , xp) =
p−1∑

|A|=k,A∈P

pA(1)
· · · pA(k)

aA(1)
· · · aA(k)

δ(
xA(1)

aA(1)

− xA(k)

aA(k)

)δ(
xA(k−1)

aA(k−1)

− xA(k)

aA(k)

)

×(1− pAc
(1)

) · · · (1− pAc
(p−k)

)

×λ0λAc
(1)
· · ·λAc

(p−k)
e
−λAc

(1)
xAc

(1) · · · e−λAc
(p−k)

xAc
(p−k)

×e
−(λ0−aAc

(1)
λAc

(1)
−···−aAc

(p−k)
λAc

(p−k)
)

xA(1)
aA(1)

+ (1− p1) · · · (1− pp)
λ0λ1 · · ·λp

λ0 − a1λ1 − · · · − apλp

×e−λ1x1 · · · e−λpxp(1− e−(λ0−a1λ1−···−apλp)ϕ),

where ϕ = mini

(
xi

ai

)
.
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Similarly, to get the unconditional survival function, one would derive it from (5.3),

and therefore compute

S(x1, x2, · · · , xp) =
∫ ∞

0

p∏

i=1

S(xi|x0)fX0(x0)dx0

= λ0

∫ ∞

0

p∏

i=1

[
pi(1−H(xi − aix0)) + (1− pi)e−λi(xi−aix0)

]
e−λ0x0dx0.

As we can see, we cannot interchange integration and product in this above expression,

and then there are substantial number of cases, 2p precisely, to consider in order to find the

survival function. We discuss the case of p = 2 in the next section and explain each of the

components of the survival in that bivariate case. We also obtain estimates of the unknown

parameters in that case.

5.2 The Bivariate Exponential Model and MLE

In this section, we study the bivariate case of the multivariate exponential distribution

of the previous section. The bivariate exponential distribution from Definition 5.1 can be

expressed as:





X1 = a1X0 + Z1 ;

X2 = a2X0 + Z2 .
(5.6)

Then, from Carpenter et al. (2006) [12], the joint density of (X0, X1) is given by

f(x0, x1) =





p1fX0(x0)δ(x1 = a1x0)

(1− p1)fX0(x0)fX1(x1 − a1x0)I(x1>a1x0) ,
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=





p1λ0e
−λ0x0 , if x0 = x1

a1

(1− p1)λ0λ1e
−λ0x0e−λ1(x1−a1x0), if x0 < x1

a1
,

where p1 = a1
λ1

λ0
. Similarly based on the expression X2 = a2X0+Z2, we have for p2 = a2

λ2

λ0
,

f(x0, x2) =





p2fX0(x0)δ(x2 = a2x0)

(1− p2)fX0(x0)fX2(x2 − a2x0)I(x2>a2x0) ,

=





p2λ0e
−λ0x0 , if x0 = x2

a2

(1− p2)λ0λ2e
−λ0x0e−λ2(x2−a2x0), if x0 < x2

a2
.

Hence, using the independence between X0, Z1, Z2 and Theorem 1.8, the joint density

of (X0, X1, X2) related as in (5.6), is given from (5.5) by:

f(x0, x1, x2) = λ0e
−λ0x0

[
p1δ(x1 − a1x0) + (1− p1)fX1(x1 − a1x0)I(x1>a1x0)

]

×
[
p2δ(x2 − a2x0) + (1− p2)fX2(x2 − a2x0)I(x2>a2x0)

]

= p1p2λ0e
−λ0x0δ(x1−a1x0)δ(x2−a2x0)

+p1(1− p2)λ0e
−λ0x0fX2(x2 − a2x0)δ(x1−a1x0)

+(1− p1)p2λ0e
−λ0x0fX1(x1 − a1x0)δ(x2−a2x0)

+(1− p1)(1− p2)λ0e
−λ0x0fX1(x1 − a1x0)fX2(x2 − a2x0)I(x1>a1x0,x2>a2x0).

The expression f(x0, x1, x2) is one way to obtain an estimate for x0 or the parameter

associated with it, λ0. Let’s assume that ϕ = min

(
x1

a1
,
x2

a2

)
=

x1

a1
≤ x2

a2
.
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Also, set r
(1)
i = I(z1i=0) = I(x1=a1x0) =





1 , if z1i = 0

0 , if z1i 6= 0,

and r
(2)
i = I(z2i=0) = I(x2=a2x0) =





1 , if z2i = 0

0 , if z2i 6= 0.

Then the full likelihood function based on a random sample of size n is the product of

n contributed likelihoods and is given as:

L(λ0, λ1, λ2) =
n∏

i=1

[
p1p2λ0e

−λ0x0i

]r
(1)
i r

(2)
i

×
[
p1(1− p2)λ0λ2e

−(λ0−a2λ2)x0ie−λ2x2i

](1−r
(1)
i )r

(2)
i

×
[
(1− p1)p2λ0λ1e

−(λ0−a1λ1)x0ie−λ1x1i

]r
(1)
i (1−r

(2)
i )

×
[
(1− p1)(1− p2)λ0λ1λ2e

−(λ0−a1λ1−a2λ2)x0ie−λ1x1ie−λ2x2i

](1−r
(1)
i )(1−r

(2)
i )

=
n∏

i=1

[
a1a2

λ1λ2

λ0
e−λ0x0i

]r
(1)
i r

(2)
i

×
[
a1

λ1λ2

λ0
(λ0 − a2λ2)e−(λ0−a2λ2)x0ie−λ2x2i

](1−r
(1)
i )r

(2)
i

×
[
a2

λ1λ2

λ0
(λ0 − a1λ1)e−(λ0−a1λ1)x0ie−λ1x1i

]r
(1)
i (1−r

(2)
i )

×
[
λ1λ2

λ0
(λ0 − a1λ1)(λ2 − a2λ2)

×e−(λ0−a1λ1−a2λ2)x0ie−λ1x1ie−λ2x2i

](1−r
(1)
i )(1−r

(2)
i )

=
(

a1a2
λ1λ2

λ0

)P
i r

(1)
i r

(2)
i

e−λ0
P

i x0ir
(1)
i r

(2)
i

×
(

a1a2
λ1λ2

λ0

)P
i(1−r

(1)
i )r

(2)
i

(λ0 − a2λ2)
P

i(1−r
(1)
i )e−(λ0−a2λ2)

P
i x0i(1−r

(1)
i )r

(2)
i
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×
(

a1a2
λ1λ2

λ0

)P
i r

(1)
i (1−r

(2)
i )

(λ0 − a1λ1)
P

i(1−r
(2)
i )e−(λ0−a1λ1)

P
i x0ir

(1)
i (1−r

(2)
i )

×
(

λ1λ2

λ0

)P
i(1−r

(1)
i )(1−r

(2)
i )

e−λ1
P

i x1i(1−r
(2)
i )e−λ2

P
i x2i(1−r

(1)
i )

×e−(λ0−a1λ1−a2λ2)
P

i x0i(1−r
(1)
i )(1−r

(2)
i ).

Hence,

L(λ0, λ1, λ2) = a
P

i r
(2)
i

1 a
P

i r
(1)
i

2 (
λ1λ2

λ0
)ne−λ0

P
i x0ir

(1)
i r

(2)
i

(λ0 − a2λ2)
P

i(1−r
(1)
i )e−(λ0−a2λ2)

P
i x0i(1−r

(1)
i )r

(2)
i

(λ0 − a1λ1)
P

i(1−r
(2)
i )e−(λ0−a1λ1)

P
i x0ir

(1)
i (1−r

(2)
i )

e−λ1
P

i x1i(1−r
(2)
i )e−λ2

P
i x2i(1−r

(1)
i )

e−(λ0−a1λ1−a2λ2)
P

i x0i(1−r
(1)
i )(1−r

(2)
i ).

Hence the log likelihood is

LL(λ0, λ1, λ2) = log(a1)
∑

i

r
(2)
i + log(a2)

∑

i

r
(1)
i + n log(

λ1λ2

λ0
)

+ log(λ0 − a1λ1)
∑

i

(1− r
(2)
i ) + log(λ0 − a2λ2)

∑

i

(1− r
(1)
i )

−(λ0 − a1λ1)
∑

x0ir
(1)
i (1− r

(2)
i )− (λ0 − a1λ1)

∑
x0i(1− r

(1)
i )r(2)

i

−λ1

∑

i

x1i(1− r
(2)
i )− λ2

∑

i

x2i(1− r
(1)
i )

−(λ0 − a1λ1 − a2λ2)
∑

i

x0i(1− r
(1)
i )(1− r

(2)
i ),

and
∂LL

∂λ0
= − n

λ0
+

∑
i(1− r

(2)
i )

λ0 − a1λ1
+

∑
i(1− r

(1)
i )

λ0 − a2λ2
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−
∑

i

x0ir
(1)
i (1− r

(2)
i )−

∑

i

x0i(1− r
(1)
i )r(2)

i

−
∑

i

x0i(1− r
(1)
i )(1− r

(2)
i )

= − n

λ0
+

∑
i(1− r

(2)
i )

λ0 − a1λ1
+

∑
i(1− r

(1)
i )

λ0 − a2λ2
−

∑

i

x0i(1− r
(1)
i r

(2)
i ).

Similarly

∂LL

∂λ1
=

n

λ1
− a1

∑
i(1− r

(2)
i )

λ0 − a1λ1
+ a1

∑

i

x0i(1− r
(2)
i )−

∑

i

x1i(1− r
(2)
i )

So setting
∂LL

∂λ1
= 0 gives

∑
i(1− r

(2)
i )

λ0 − a1λ1
=

n

a1λ1
+

∑

i

x0i(1− r
(2)
i )−

∑
i x1i(1− r

(2)
i )

a1
,

and
∂LL

∂λ2
=

n

λ2
− a2

∑
i(1− r

(1)
i )

λ0 − a2λ2
+ a2

∑

i

x0i(1− r
(1)
i )−

∑

i

x2i(1− r
(1)
i ).

So setting
∂LL

∂λ2
= 0 gives

∑
i(1− r

(1)
i )

λ0 − a2λ2
=

n

a2λ2
+

∑

i

x0i(1− r
(1)
i )−

∑
i x2i(1− r

(1)
i )

a2
.

Now setting
∂LL

∂λ0
= 0, and substituting values for

∑
i(1− r

(2)
i )

λ0 − a1λ1
and

∑
i(1− r

(1)
i )

λ0 − a2λ2
gives

1
λ0

=
1

a1λ1
+

1
a2λ2

−
∑

i {x2i(1− r
(1)
i )− a2x0i(1− r

(1)
i )}

a2n
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−
∑

i {x1i(1− r
(2)
i )− a1x0i(1− r

(2)
i )}

a1n
−

∑
i x0i(1− r

(1)
i r

(2)
i )

n

=
1

a1λ1
+

1
a2λ2

−
∑

i z1i(1− r
(2)
i )

a1n
−

∑
i z2i(1− r

(1)
i )

a2n
−

∑
i x0i(1− r

(1)
i r

(2)
i )

n

=
1
a1

(
1
λ1
−

∑
i z1i(1− r

(2)
i )

n
) +

1
a2

(
1
λ2
−

∑
i z2i(1− r

(1)
i )

n
)−

∑
i x0i(1− r

(1)
i r

(2)
i )

n
.

The above likelihood equations can be used to estimate λ0, λ1 and λ2 if the x0i’s,

1 ≤ i ≤ n, were known. We address this question, by developing estimators of these latent

terms, and use results that were obtained previously in Section 4.3. It is worth noting that

no approximations has been used here in contrast with the technique used in Chapter 3 and

Chapter 4.

To develop the unconditional MLE, we integrate out x0 from the joint density f(x0, x1, x2),

and we have that:

f(x1, x2) =
∫

x0

f(x0, x1, x2)dx0

= p1p2

∫
λ0e

−λ0x0δ(x1−a1x0)δ(x2−a2x0)dx0

+p1(1− p2)
∫

λ0e
−λ0x0fX2(x2 − a2x0)I(x2>a2x0)δ(x1−a1x0)dx0

+(1− p1)p2

∫
λ0e

−λ0x0fX1(x1 − a1x0)I(x1>a1x0)δ(x2−a2x0)dx0

+(1− p1)(1− p2)
∫

λ0e
−λ0x0fX1(x1 − a1x0)fX2(x2 − a2x0)I(

x1
a1

>x0,
x2
a2

>x0)dx0

= p1p2PartA1 + p1(1− p2)PartA2

+(1− p1)p2PartA3 + (1− p1)(1− p2)PartA4,

where PartA1 =
∫

λ0e
−λ0x0δ(x1−a1x0)δ(x2−a2x0)dx0
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=
1

a1a2
λ0

∫
e−λ0x0δ(

x1
a1
−x0)δ(

x2
a2
−x0)dx0

=





1
a1a2

λ0e
−λ0

x2
a2 δ(

x1
a1
−x2

a2
) ;

or

1
a1a2

λ0e
−λ0

x1
a1 δ(

x1
a1
−x2

a2
) .

PartA2 =
∫

λ0e
−λ0x0fX2(x2 − a2x0)I(x2>a2x0)δ(x1−a1x0)dx0

=
1
a1

∫
λ0e

−λ0x0fX2(x2 − a2x0)I(x2>a2x0)δ(
x1
a1
−x0)dx0

=
1
a1

λ0e
−λ0

x1
a1 fX2(x2 − a2

x1

a1
)I(x2>a2

x1
a1

)

=
1
a1

λ0λ2e
−λ0

x1
a1 e

−λ2(x2−a2
x1
a1

)
I(x2>a2

x1
a1

)

=
1
a1

λ0λ2e
−x1

a1
(λ0−a2λ2)

e−λ2x2I(x2>a2
x1
a1

)

=
1
a1

λ0λ2e
−x1

a1
(λ0−a2λ2)

e−λ2x2I(
x2
a2

>
x1
a1

)

=
1
a1

λ0λ2e
−λ1x1e−λ2x2e

−x1
a1

(λ0−a1λ1−a2λ2)
I(

x2
a2

>
x1
a1

)

=
1
a1

λ0λ2e
−λ1x1e−λ2x2e−λ∗ϕI(

x2
a2

>
x1
a1

),

where ϕ = min

(
x1

a1
,
x2

a2

)
and λ∗ = λ0 − a1λ1 − a2λ2.

Similarly, PartA3 =
∫

λ0e
−λ0x0fX1(x1 − a1x0)I(x1>a1x0)δ(x2−a2x0)dx0

=
1
a2

∫
λ0e

−λ0x0fX1(x1 − a1x0)I(x1>a1x0)δ(
x2
a2
−x0)dx0

=
1
a2

λ0e
−λ0

x2
a2 fX1(x1 − a1

x2

a2
)I(x1>a1

x2
a2

)
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=
1
a2

λ0λ1e
−λ0

x2
a2 e

−λ1(x1−a1
x2
a2

)
I(x1>a1

x2
a2

)

=
1
a2

λ0λ1e
−x2

a2
(λ0−a1λ1)

e−λ1x1I(x1>a1
x2
a2

)

=
1
a2

λ0λ1e
−x2

a2
(λ0−a1λ1)

e−λ1x1I(
x1
a1

>
x2
a2

)

=
1
a2

λ0λ1e
−λ1x1e−λ2x2e

−x2
a2

(λ0−a1λ1−a2λ2)
I(

x1
a1

>
x2
a2

)

=
1
a2

λ0λ1e
−λ1x1e−λ2x2e−λ∗ϕI(

x1
a1

>
x2
a2

),

and PartA4 =
∫

λ0e
−λ0x0fX1(x1 − a1x0)fX2(x2 − a2x0)I(x1>a1x0,x2>a2x0)dx0

=
∫ ϕ

0
λ0λ1λ2e

−λ0x0e−λ1(x1−a1x0)e−λ2(x2−a2x0)dx0

=
∫ ϕ

0
λ0λ1λ2e

−λ1x1e−λ2x2e−(λ0−a1λ1−a2λ2)x0dx0

= λ0λ1λ2e
−λ1x1e−λ2x2

∫ ϕ

0
e−λ∗x0dx0

=
λ0λ1λ2

λ∗
e−λ1x1e−λ2x2(1− e−λ∗ϕ).

Hence the expression for the joint density becomes:

f(x1, x2) = p1p2
λ0

a1a2
e
−λ0

x2
a2 δ(

x1
a1
−x2

a2
)

+p1(1− p2)
1
a1

λ0λ2e
−λ1x1e−λ2x2e−λ∗ϕI(

x2
a2

>
x1
a1

)

+(1− p1)p2
1
a2

λ0λ1e
−λ1x1e−λ2x2e−λ∗ϕI(

x1
a1

>
x2
a2

)

+(1− p1)(1− p2)
λ0λ1λ2

λ∗
e−λ1x1e−λ2x2(1− e−λ∗ϕ),

where ϕ = min

(
x1

a1
,
x2

a2

)
and λ∗ = λ0 − a1λ1 − a2λ2,

with a similar form as in previous section.
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Based on a random sample of size n denoted (x11, x21), (x12, x22), · · · , (x1n, x2n), let’s

define

r
(1)
j =





1, if x0j = x1j

a1
≤ x2j

a2
;

0, if x1j

a1
>

x2j

a2

and r
(2)
j =





1, if x0j = x2j

a2
≤ x1j

a1
;

0, if x2j

a2
>

x1j

a1
.

Then

L(λ0 , λ1 , λ2 ) =
n∏

j=1

f(x1j , x2j)

=
n∏

j=1

[
p1p2

λ0

a1a2
e
−λ0

x2
a2

]r
(1)
j r

(2)
j

[
p1(1− p2)

1
a1

λ0λ2e
−λ1x1e−λ2x2e−λ∗ϕ

]r
(1)
j (1−r

(2)
j )

[
(1− p1)p2

1
a2

λ0λ1e
−λ1x1e−λ2x2e−λ∗ϕ

](1−r
(1)
j )r

(2)
j

[
(1− p1)(1− p2)

λ0λ1λ2

λ∗
e−λ1x1e−λ2x2(1− e−λ∗ϕ)

](1−r
(1)
j )(1−r

(2)
j )

.

In order to obtain estimators, the log likelihood is:

l(λ0 , λ1 , λ2 ) = log L(λ0 , λ1 , λ2 )

=
∑

i

r
(1)
i r

(2)
i

[
log(p1p2) + log(λ0)− log(a1a2)− λ0ϕi

]

+ r
(1)
i (1− r

(2)
i )

[
log p1(1− p2) + log λ0 + log λ2 − log a1 − λ1x1i − λ2x2i − λ∗ϕi

]

+ (1− r
(1)
i )r(2)

i

[
log(1− p1)p2 + log λ0 + log λ1 − log a2 − λ1x1i − λ2x2i − λ∗ϕi

]

+ (1− r
(1)
i )(1− r

(2)
i )

[
log(1− p1)(1− p2) + log λ0 + log λ1λ2 − log λ∗

−λ1x1i − λ2x2i + log(1− e−λ∗ϕi)
]
.
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Assume that p1 and p2 are fixed known constant. Then

∂l
∂λ0

=
∑

i

r
(1)
i r

(2)
i

[
1
λ0
− ϕi

]
+ r

(1)
i (1− r

(2)
i )

[
1
λ0
− ϕi

]

+(1− r
(1)
i )r(2)

i

[
1
λ0
− ϕi

]
+ (1− r

(1)
i )(1− r

(2)
i )

[
1
λ0
− 1

λ∗
− ϕe−λ∗ϕi

1− e−λ∗ϕi

]

=
∑

i

[
1
λ0
− ϕi

(
r
(1)
i + r

(2)
i − r

(1)
i r

(2)
i

)

−(1− r
(1)
i )(1− r

(2)
i )

(
1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi

)]

=
n

λ0
−

∑

i

ϕi

(
r
(1)
i + r

(2)
i − r

(1)
i r

(2)
i

)

−
∑

i

(1− r
(1)
i )(1− r

(2)
i )

(
1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi

)
.

Similarly,
∂l
∂λ1

=
∑

i

r
(1)
i (1− r2

i )[− x1i + a1ϕi] + (1− r
(1)
i )r(2)

i [
1
λ1
− x1i + a1ϕi]

+(1− r
(1)
i )(1− r

(2)
i )[

1
λ1

+
a1

λ∗
− x1i +

aiϕie
−λ∗ϕi

1− e−λ∗ϕi
]

=
∑

i

−x1i(1− r
(1)
i r

(2)
i ) + a1ϕi[r

(1)
i (1− r

(2)
i ) + (1− r

(1)
i )r(2)

i ]

+
1
λ1

(1− r
(1)
i ) + a1(1− r

(1)
i )(1− r

(2)
i )(

1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi
).

So setting
∂l
∂λ1

= 0 and
∂l
∂λ0

= 0 gives

a1

∑

i

(1− r
(1)
i )(1− r

(2)
i )

(
1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi

)
=

∑

i

x1i(1− r
(1)
i r

(2)
i )− a1ϕi

[
r
(1)
i (1− r

(2)
i ) + (1− r

(1)
i )r(2)

i

]
− 1

λ1
(1− r

(1)
i ),
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and hence
n

λ0
=

1
a1

∑

i

x1i(1− r
(1)
i r

(2)
i ) +

∑

i

ϕir
(1)
i r

(2)
i − 1

a1λ1

∑

i

(1− r
(1)
i ),

or
1
λ0

=
1
a1

∑

i

x1i(1− r
(1)
i r

(2)
i )

n
+

∑

i

ϕir
(1)
i r

(2)
i

n
− 1

a1λ1

∑

i

(1− r
(1)
i )

n
.

A similar formula can be obtained by taking
∂l
∂λ2

and setting it equal to zero.

∂l
∂λ2

=
∑

i

r
(1)
i (1− r2

i )
[

1
λ2
− x2i + a2ϕi

]
+ (1− r

(1)
i )r(2)

i [− x2i + a2ϕi]

+(1− r
(1)
i )(1− r

(2)
i )

[
1
λ2

+
a2

λ∗
− x2i +

a2ϕie
−λ∗ϕi

1− e−λ∗ϕi

]

=
∑

i

−x1i(1− r
(1)
i r

(2)
i ) + a2ϕi

[
r
(1)
i (1− r

(2)
i ) + (1− r

(1)
i )r(2)

i

]

+
1
λ2

(1− r
(2)
i ) + a2(1− r

(1)
i )(1− r

(2)
i )

(
1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi

)
.

So, a2

∑

i

(1− r
(1)
i )(1− r

(2)
i )

(
1
λ∗

+
ϕie

−λ∗ϕi

1− e−λ∗ϕi

)
=

∑

i

x2i(1− r
(1)
i r

(2)
i )− a2ϕi

[
r
(1)
i (1− r

(2)
i ) + (1− r

(1)
i )r(2)

i

]
− 1

λ2
(1− r

(2)
i )

and hence,
n

λ0
=

1
a2

∑

i

x2i(1− r
(1)
i r

(2)
i ) +

∑

i

ϕir
(1)
i r

(2)
i − 1

a2λ2

∑

i

(1− r
(2)
i ),

or
1
λ0

=
1
a2

∑

i

x2i(1− r
(1)
i r

(2)
i )

n
+

∑

i

ϕir
(1)
i r

(2)
i

n
− 1

a2λ2

∑

i

(1− r
(2)
i )

n
.

This above equation gives estimate of the parameter associated with the unknown

latent variable x0.
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The distribution of the minimum is also exponential, so the need to characterize its

distribution. For X(1) denoting the minimum between
X1

a1
and

X2

a2
, we have, based on the

independence of X1|x0 and X2|x0 that:

P (X(1) > t|x0) = P (X1 > a1t|x0)P (X2 > a2t|x0). (5.7)

Equation (5.7) is obtained from Theorem 1.8 and the fact that X1|x0 and X2|x0 are

independent. But X1|x0 and X2|x0 are not identically distributed. So we cannot use the

results in say Dudewicz and Mishra (1988) [23] of the minimal order statistic. Hence, we

need to find P (Xi > ait|x0) for i = 1, 2.

P (Xi > ait|x0) = P (aix0 + Zi > ait|x0)

= P (Zi > ai(t− x0)|x0)

=
∫ ∞

ai(t−x0)
fZi(zi)dzi

=
∫ ∞

ai(t−x0)

[
piδ(zi) + (1− pi)λie

−λizi

]
dzi

= p

∫ ∞

ai(t−x0)
δ(zi)dzi + (1− pi)λi

∫ ∞

ai(t−x0)
e−λizidzi

= pi

[
1−H(ai(t− x0))

]
+ (1− pi)e−aiλi(t−x0)

= pi

[
1−H(t− x0)

]
+ (1− pi)e−aiλi(t−x0)

From the above, we can deduce the conditional density of Xi|x0 which is:

fXi|x0
(t) = − d

dt
P (Xi > ait|x0) = piδ(t− x0) + (1− pi)λie

−aiλi(t−x0).
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Our goal is to find fX(1)|X0
(t) = − d

dt
P (X(1) > t|x0).

So from Theorem 1.8, the hazard function of the minimum lifetimes is given by:

P (X(1) > t|x0) = P (X1 > a1t|x0)P (X2 > a2t|x0)

=
[
p1(1−H(t− x0)) + (1− p1)e−a1λ1(t−x0)

]

[
p2(1−H(t− x0)) + (1− p2)e−a2λ2(t−x0)

]

= p1p2

(
1−H(t− x0)

)

+p1(1− p2)
(

1−H(t− x0)
)

e−a2λ2(t−x0)

+(1− p1)p2

(
1−H(t− x0)

)
e−a1λ1(t−x0)

+(1− p1)(1− p2)e−(a1λ1+a2λ2)(t−x0).

Hence the conditional density of X(1) given X0 is:

f(X(1)|x0
(t) = − d

dt
P (X(1) > t|x0)

= p1p2δ(t− x0)

+p1(1− p2)
[
δ(t− x0)e−a2λ2(t−x0) + (1−H(t− x0))a2λ2e

−a2λ2(t−x0)

︸ ︷︷ ︸
]

+(1− p1)p2

[
δ(t− x0)e−a1λ1(t−x0) + (1−H(t− x0))a1λ1e

−a1λ1(t−x0)

︸ ︷︷ ︸
]

+(1− p1)(1− p2)(a1λ1 + a2λ2)e−(a1λ1+a2λ2)(t−x0)

= p1p2δ(t− x0)

+p1(1− p2)δ(t− x0)e−a2λ2(t−x0)

+(1− p1)p2δ(t− x0)e−a1λ1(t−x0)
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+(1− p1)(1− p2)(a1λ1 + a2λ2)e−(a1λ1+a2λ2)(t−x0)

where the underlined expression is zero by definition of the Heaviside function in Equation

(2.3).

Note that
∫ ∞

−∞
f(X(1)|x0

(t)dt = 1. Also,

E(X(1)|x0) =
∫ ∞

−∞
tfX(1)|x0

(t)dt

= p1p2

∫ ∞

−∞
tδ(t− x0)dt

+p1(1− p2)
∫ ∞

−∞
tδ(t− x0)e−a2λ2(t−x0)dt

+(1− p1)p2

∫ ∞

−∞
tδ(t− x0)e−a1λ1(t−x0)dt

+(1− p1)(1− p2)
∫ ∞

−∞
(a1λ1 + a2λ2)e−(a1λ1+a2λ2)(t−x0)dt

= p1p2x0 + p1(1− p2)x0 + (1− p1)p2x0 + (1− p1)(1− p2)
(

1
a1λ1 + a2λ2

+ x0

)

= x0 +
(1− p1)(1− p2)

a1λ1 + a2λ2
.

So, E(X(1)|x0) = x0 +
(1− p1)(1− p2)

a1λ1 + a2λ2
.

Hence, EX(1) = EX0E(X(1)|x0) = E(X0) + E

[
(1− p1)(1− p2)

a1λ1 + a2λ2

]

EX(1) =
1
λ0

+ E

[
(1− p1)(1− p2)

a1λ1 + a2λ2

]
.

Another way to obtain EX(1) using the densities is as follows:

fX(1),X0(t, x0) = fX(1)|X0
(t)fX0(x0)
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= p1p2λ0e
−λ0x0δ(t− x0)

+p1(1− p2)λ0e
−λ0x0e−a2λ2(t−x0)δ(t− x0)

+(1− p1)p2λ0e
−λ0x0e−a1λ1(t−x0)δ(t− x0)

+(1− p1)(1− p2)λ0(a1λ1 + a2λ2)e−λ0x0e−(a1λ1+a2λ2)(t−x0)δ(t− x0).

Hence the form of the density of the minimum order statistic is:

fX(1)
(t) =

∫ ∞

−∞
fX(1),X0(t, x0)dx0

= p1p2λ0

∫ ∞

−∞
e−λ0x0δ(t− x0)dx0

+p1(1− p2)λ0

∫ ∞

−∞
e−λ0x0e−a2λ2(t−x0)δ(t− x0)dx0

+(1− p1)p2λ0

∫ ∞

−∞
e−λ0x0e−a1λ1(t−x0)δ(t− x0)dx0

+(1− p1)(1− p2)λ0(a1λ1 + a2λ2)
∫ t

0
e−λ0x0e−(a1λ1+a2λ2)(t−x0)δ(t− x0)dx0

= p1p2λ0e
−λ0t

+p1(1− p2)λ0e
−λ0t

+(1− p1)p2λ0e
−λ0t

+(1− p1)(1− p2)
λ0(a1λ1 + a2λ2)

λ∗
(1− e−λ∗t)e−(a1λ1+a2λ2)t

= λ0e
−λ0t + (1− p1)(1− p2)[

λ0(a1λ1 + a2λ2)
λ∗

(1− e−λ∗t)e−(a1λ1+a2λ2)t − λ0e
−λ0t]

= λ0e
−λ0t + (1− p1)(1− p2)

λ0

λ∗

[
(a1λ1 + a2λ2)e−(a1λ1+a2λ2)t − λ0e

−λ0t

]
.

Hence

EX(1) =
1
λ0

+ (1− p1)(1− p2)
λ0

λ∗

[
1

a1λ1 + a2λ2
− 1

λ0

]
.
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Recall that:

P (Xi > xi|x0) = P (aix0 + Zi > xi|x0)

= P (Zi > xi − aix0|x0)

=
∫ ∞

xi−aix0

fZi(z)dz

=
∫ ∞

xi−aix0

[
piδ(z) + (1− pi)λie

−λiz

]
dz

= p

∫ ∞

xi−aix0

δ(z)dz + (1− pi)λi

∫ ∞

xi−aix0

e−λizdz

= pi

[
1−H(xi − aix0)

]
+ (1− pi)e−λi(xi−aix0).

Hence FXi|x0
(xi) = P (Xi ≤ xi|x0) = 1− P (Xi > xi|x0)

= piH(xi − aix0) + (1− pi)
[
1− e−λi(xi−aix0)

]
.

And, F (x1, x2|x0) =
{

p1H(x1 − a1x0) + (1− p1)
[
1− e−λ1(x1−a1x0)

]}

×
{

p2H(x2 − a2x0) + (1− p2)
[
1− e−λ2(x2−a2x0)

]}

= p1p2H(x1 − a1x0)H(x2 − a2x0)

+p1(1− p2)H(x1 − a1x0)
[
1− e−λ2(x2−a2x0)

]

+(1− p1)p2H(x2 − a2x0)
[
1− e−λ1(x1−a1x0)

]

+(1− p1)(1− p2)
[
1− e−λ1(x1−a1x0)

][
1− e−λ2(x2−a2x0)

]
.
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Also, F (x1,∞|x0) = lim
x2→∞

F (x1, x2|x0)

= p1p2H(x1 − a1x0) + p1(1− p2)H(x1 − a1x0)

+(1− p1)p2

[
1− e−λ2(x2−a2x0)

]
+ (1− p1)(1− p2)

[
1− e−λ1(x1−a1x0)

]

= p1H(x1 − a1x0) + (1− p1)
[
1− e−λ1(x1−a1x0)

]
.

Similarly, F (∞, x2|x0) = p2H(x2 − a2x0) + (1− p2)
[
1− e−λ2(x2−a2x0)

]
.

Hence S(x1, x2|x0) = 1 + p1p2H(x1 − a1x0)H(x2 − a2x0)

−p1p2H(x1 − a1x0)− p1(1− p2)H(x1 − a1x0)e−λ2(x2−a2x0)

−p1p2H(x2 − a2x0)− (1− p1)p2H(x2 − a2x0)e−λ1(x1−a1x0)

+(1− p1)(1− p2)
[
1− e−λ1(x1−a1x0)

][
1− e−λ2(x2−a2x0)

]

−(1− p1)
[
1− e−λ1(x1−a1x0)

]
− (1− p2)

[
1− e−λ2(x2−a2x0)

]
.

We have proposed a very general bivariate exponential class distributions, which in-

cludes all the work considered in Chapter 3 and in Chapter 4. We have described the form

of the joint distribution and survival functions. The distribution of the minimum has been

characterized. Estimations of the parameters are given based on the likelihood equation.

We have done all that retaining the form of the marginal exponential distribution, and the

fatal shock idea as in Marshall and Olkin (1967) [61].

These results are not easily generalized to the p-variate gamma distribution case. One

reason is that there is no need to approximate the likelihood function in the multivariate
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exponential in contrast with the results obtained from Chapter 4. In the next section, we

examine a simulated example to illustrate our proposed model.

5.3 Simulation Example

In this section, we perform a simulation study of the multivariate exponential to exam-

ine the properties of various estimators of the parameter from the latent distribution, λ0.

We focus on λ0 because it is an important portion of the correlation structure, and all of

the parameters associated with X1 through Xp can be easily estimated marginally, which is

well documented in the literature. We examine the multivariate exponential given in (1.1)

and (1.3) for various dimensions, from p = 2 to p = 5.

Based on 10,000 replications of sample size 50 each, of (X1, X2, . . . , Xp)′, we choose all

ai’s to be 1, λ0 to be 1, and solving for λi w.r.t. ρ, we have that λi =
ρ

ai
λ0 = ρ. Separate

simulations are done for ρ = 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 and 0.95.

Results for the bias and MSE are presented in Table 5.1 and Table 5.2, respectively.

Bias02 and Mse02 represent the bias and MSE for λ̂0 = 1/x̄0, where x̄0 =
∑n

i=1 x0i, if the

latent unobservable values, x01, . . . , x0n, were actually known. It is important to point out

that λ̂0 is not observable. However, if these values were observable, then λ̂0 would be MLE

and the best unbiased estimator for λ0. Therefore, the performance of λ̂0 serves as a good

benchmark to compare with all other estimators described in this chapter, which are based

on approximations. More precisely, if we denote xminp to be the minimum of x1/a1 up to

xp/ap for p = 2, .., 5, then

Bias02 =
1
x0
− λ0 and Bias1p =

1
xminp

− λ0, respectively,
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and the MSE are

Mse02 = Bias02
2 and Mse1p = Bias12

p.

xdiff represents the difference between the estimates and the true value of x0.

xdiffsq represents the MSE of the difference.

ρ Bias02 Bias12 Bias13 Bias14 Bias15 x0 xmin xdiff

0.05 -0.011197 -0.574 -0.39937 -0.28855 -0.17101 0.98249 1.23238 0.24989
0.10 0.009905 -0.421 -0.23330 -0.12258 -0.06381 0.99339 1.08727 0.09389
0.20 0.010300 -0.24054 -0.08718 -0.05341 -0.01757 1.01166 1.03754 0.02588
0.30 0.038332 -0.12648 -0.01558 -0.01427 -0.00735 1.02107 1.02898 0.00791
0.40 0.032919 -0.06926 -0.01205 0.01867 0.00780 1.00860 1.01026 0.00166
0.50 0.014231 -0.04644 0.02828 0.02922 0.01344 1.00713 1.00778 0.00065
0.60 0.002170 -0.03026 -0.01516 0.00538 0.00991 1.01039 1.01066 0.00027
0.70 0.017750 0.00292 0.02846 0.03072 0.03005 0.99122 0.99122 0.00001
0.80 0.003247 -0.00332 -0.01022 0.03713 0.00960 1.01068 1.01068 0.00000
0.90 0.0223014 0.02106 0.01377 0.00629 0.02209 0.99810 0.99810 0.00000
0.95 -0.009249 -0.00944 0.03343 0.00253 0.00857 1.00892 1.00892 0.00000

Table 5.1: Table of Bias and Estimation of x0 for different correlations

From Table 5.1, when the number of variates increasing, the bias reduces in magnitude.

That is something we could expect as the prediction of x0 becomes more accurate with the

higher number of variates. In fact, each one gives partial information about x0.

Also, as ρ increases, the estimate of x0 becomes more efficient.

It is also observable that the bias becomes satisfactory with higher correlation for the

2, 3, 4 and 5 variates.

We also present the MSE table of the estimates in Table 5.2.
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ρ Mse02 Mse12 Mse13 Mse14 Mse15 xdiffsq

0.05 0.018739 0.33305 0.16586 0.090732 0.044181 0.45044
0.10 0.019985 0.18484 0.06545 0.030232 0.020013 0.12077
0.20 0.018835 0.07029 0.02061 0.016686 0.019382 0.02934
0.30 0.020357 0.02646 0.01864 0.021683 0.022462 0.00687
0.40 0.020278 0.02136 0.02126 0.020382 0.017916 0.00080
0.50 0.019973 0.01946 0.02365 0.027534 0.022398 0.00022
0.60 0.019373 0.01839 0.01619 0.016020 0.021058 0.00026
0.70 0.031892 0.02974 0.01811 0.029901 0.023984 0.00000
0.80 0.017505 0.01730 0.02042 0.029010 0.020515 0.00000
0.90 0.018066 0.01788 0.01857 0.019959 0.022949 0.00000
0.95 0.015202 0.01517 0.02429 0.027867 0.018026 0.00000

Table 5.2: Table of MSE of x0 for different correlations

These estimated values show the effectiveness of the proposed estimation techniques de-

veloped. As we see from the Table 5.2 of MSE, the difference does appear to be consistently

small, although the high values of correlations do appear to give lower MSE’s.

The algorithm to the proposed estimation is not difficult to implement, maybe time

consuming. We implemented it using SASr program.
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Chapter 6

Conclusion

In this dissertation, we defined and characterized a new multivariate generalized location-

scale family of gamma distributions with potential applications in survival and reliability

modeling. This family possesses three-parameter gamma marginals (in most cases) and it

contains absolutely continuous classes, as well as, the Marshall Olkin type of distributions

with a positive probability mass on a set of measure zero. Interestingly, the variables mak-

ing up the multivariate vector were made linearly related indirectly through a collection

of latent random variables and the multivariate distribution is not necessarily restricted to

those with gamma marginal distributions. Maximum likelihood estimators and estimators

based on the EM algorithm were proposed for the unknown parameters, and, in addition,

methods were given to estimate the latent terms in the model.

We have shown that this distribution is shift invariant, closed under finite independent

convolutions, and closed under scale transformations. We have also shown that our model

has as special cases those models proposed by Mathai and Moschopoulos (1991) [63], Iyer

et al. (2002) [42], and Iyer et al. (2004) [43], and corrected some of their omissions.

The possible implication of this work is enormous. It takes into account the non iid

properties of real data. Assuming that ai’s are unknown is their structures will add a lot

more applications to the model. Further investigations of the shapes parameters will allow

a characterizations of more distributions. The estimation techniques can be refined, and

that will improve a lot in statistical decision approach. Extending the model to include

censoring is an attractive option for several applications.
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