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Abstract 
 

 
 Water is vital for life.  The increased demand for freshwater resources dictates that 

current water practices must ensure access to and availability of high-quality water for future 

generations.  Phytoplankton community structure is indicative of, and can influence, water 

quality.  In freshwater systems, bloom-forming cyanobacteria are the primary group of 

phytoplankton that dominate nutrient-rich (eutrophic), aquatic habitats.  Cyanobacteria can cause 

noxious blooms and have the potential to produce toxic secondary metabolites.  Microcystin, a 

hepatotoxin associated with many cyanobacterial species, has been linked to the deaths of 

livestock, fishes and humans.   

Over 70% of the 89 sites sampled in Alabama during the 2008, 2009, and 2010 summers 

were classified as “eutrophic” based on chlorophyll concentration, and 90% of sites had 

detectable levels of the cyanotoxin, microcystin.  Given the prevalence of cyanobacteria and 

their related toxin, microcystin predictive correlation and regression tree (CART) and multiple 

linear regression models were created for algal, cyanobacterial, and cyanotoxin abundances as a 

function of chlorophyll (µg/L), phycocyanin (µg/L), and microcystin (µg/L) respectively.  The 

CART models created have the potential to become a powerful tool for both resource managers 

and citizen scientists.    

 In an effort to understand the processes favoring toxic cyanobacterial blooms, scientists 

often examine the intraspecific variation of blooms through the use of molecular markers.  In the 

case presented, detection sensitivity for unique isolates was compared using the well-established 
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phycocyanin spacer and a newly described multilocus approach using housekeeping genes.  In 

the population tested, the new approach was able to differentiate all isolates as unique strains.     
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Chapter One: Cyanobacteria and Their Distribution  
 
Cyanobacterial Distribution 

 The cyanobacterial phylum is defined by the evolution of photosynthesis (Knoll 2003).  

These gram-negative, prokaryotes belong to the negibacteria subkingdom and are significantly 

older than eukaryotes (Cavalier-Smith 2010).  Modern chloroplasts found in eukaryotes 

developed from ancient cyanobacteria phagocytized by eukaryotes ~600 Myr ago (Cavalier-

Smith 2010).  Ancestral cyanobacteria played a crucial role in the development of the modern 

environment.  Throughout the Proterozoic Era (2500-543 Ma), cyanobacteria were the dominate 

primary producers in the oceans playing a critical roles in the carbon and nitrogen cycles while 

oxygenating the atmosphere (Knoll 2003).  The essential role of this early phylum has been 

maintained to present day and is reflected by their sheer abundance and diversity, in addition to 

chloroplasts’ maintained functionality in higher plant species.  Current research shows that 

cyanobacteria are still a crucial component in the ocean-atmosphere feedback cycles through 

their association with carbon and nitrogen fixation (Zehr 2011).    

 In addition to the open ocean, symbiotic cyanobacteria fix nitrogen in coral reef systems 

on the continental shelf (Lesser 2004).  However, cyanobacteria are more often negatively 

associated with coral reef systems and coral black band disease (Frias-Lopez et al. 2003).  

Cyanobacteria have a global distribution and can be found in terrestrial, freshwater, and marine 

systems in addition to latitudinal and elevational extremes.  For example, in high Arctic 

microbial mats and high Chilean saline wetlands, freshwater and terrestrial cyanobacterial 

species co-exist to dominate phototrophic communities (Dorador et al. 2008, Jungblut et al. 

2009).  The cyanobacteria phylum also includes thermophiles, forming mats in hot spring beds 

(Papke et al. 2003).  In slow moving or standing freshwaters, some buoyancy-regulating 
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cyanobacterial genera (Microcystis, Anabaena, Aphanizomenon, etc.) form surface scums instead 

of benthic mats.  Cyanobacterial surface scum formations typically occurs in standing or low-

flow freshwater systems during warm times of the year when the water column stratifies based 

on temperature-mediated density differences.  

 In the early 1970s, the United States government attempted to remediate anthropogenic 

eutrophic ecosystems through the abatement of phosphorus via the Clean Water Act of 1972.  

This law sparked an ongoing debate about the importance of nitrogen (N) and phosphorus (P) in 

controlling algal abundance.  Early evidence supported the sole importance of P, however these 

early studies relied on unreplicated observational data collected during the reduction of point 

source pollution in Lake Washington (Edmondson 1970) and whole lake experiments in the 

Canadian Shield area (Schindler 1978).  Supporting the role of P in stimulating phytoplankton 

growth, a significant positive correlation between algal biomass via chlorophyll and P has been 

observed on a global scale (Schindler 1978).  However, this correlation eventually reaches an 

asymptote suggesting another limiting factor, such as light or N (McCauley et al. 1989).  Trends 

become less complex when narrowed to only include only cyanobacterial species.  Since some 

species of cyanobacteria are capable of fixing atmospheric nitrogen, many argue and have 

demonstrated the sole importance of P (Downing et al. 2001, Watson et al. 1997).  Nitrogen 

fixing species are thought to have a competitive advantage at low concentrations of N (Paerl 

1988).  When cyanobacterial biomass is divided into those capable of fixing nitrogen and non-

nitrogen fixers, clearer patterns of dominance emerge across an N:P ratio.  However it is unclear 

if the energetically costly act of nitrogen fixing is the mediating mechanism instead of a more 

efficient phosphorus uptake system (Jensen et al. 1994).  Conflicting results from lab and field-
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based studies sustain the two competing theories (P vs. N & P) and resulting debate (reviewed by 

Smith and Schindler 2009).  

 The expected increased prevalence and persistence of cyanobacterial blooms under global 

climate change is far less controversial.  Increased atmospheric temperatures leading to fewer 

and more severe precipitation events will increase nutrient loading and retention times (Paerl and 

Huisman 2008).  Lakes will also stratify sooner and longer with increased epilimnetic 

temperatures, creating an environment conducive for photosynthetic cyanobacteria to 

outcompete eukaryotic algal species by a variety of mechanisms (Paerl and Huisman 2009).  

First, earlier and longer stratification periods will increase phytoplankton death rates for algal 

species unable to regulate their buoyancy (Paerl and Huisman 2009).  Increased sinking rates are 

compounded by the decreased viscosity of warmer water.  Second, cyanobacteria are tolerant of 

and may require high temperatures for optimal growth.  As temperatures increase > 25°C, 

eukaryotic algal growth may decline while cyanobacterial growth rates approach their maxima 

(Coles and Jones 2000, Robarts and Zohary 1987).   Third, the number of man-made reservoirs is 

expected to increase to meet an increasing global demand for reliable freshwater supplies 

(Schindler 2009).  The alteration of flowing systems to reservoirs will create more suitable 

habitat leading to cyanobacterial range expansion.  Finally, in addition to the previously 

mentioned competitive advantages, some bloom-forming cyanobacterial species are more salt 

tolerant, if not halophilic, relative to other eukaryotic algal groups.  This tolerance will be 

advantageous as expected salinity increases in reservoirs and coastal areas that are infiltrated by 

rising sea levels (Paerl and Huisman 2008).  
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Harmful Algal Blooms 

The increased frequency of cyanobacterial blooms has meaningful social and economic 

impacts.  Scum forming cyanobacterial species are included in a group of organisms including 

dinoflagellates and diatoms known to form harmful algal blooms (HABs).  These blooms are 

harmful due to their sheer density and/or through the production of toxic compounds.  In coastal 

waters, shellfish filter-feed on planktonic dinoflagellates and diatoms, concentrating the toxins 

that lead to a variety of shellfish poisoning, such as amnesic, diarrhetic and neutotoxic shellfish 

poisoning.  Toxins produced by harmful dinoflagellate species forming HABs are the most 

diverse and include five unique classes of toxins (Backer and McGillicuddy 2006).  For example, 

Karenia brevis, is a brevetoxin-producing dinoflagellate (Backer et al. 2005).  Victims of 

brevetoxin poisoning have shown symptoms of neurotoxic shellfish poisoning after ingesting 

oysters, clams, and other filter feeders exposed to K. brevis blooms (Steidinger 1993).  These 

symptoms include (but are not limited to) diarrhea, headache, bradycardia, temperature sensation 

reversal, and vertigo (Baden 1983, Hughes and Merson 1976, McFarren et al. 1965, Sakamoto et 

al. 1987).  Marine HABs also affect the consumption risk associated with reef fish.  The lipid 

soluble gambiertoxin produced by the dinoflagellate, Gambierdiscus toxicus, can be passed 

through multiple trophic levels in the coral reef food chain and bioaccumulate in large predatory 

fish (Lange 1987).  The victim consumes the seemingly healthy fish before displaying symptoms 

of ciguatera fish poisoning, which is similar to neurotoxic shellfish poisoning (Backer and 

McGillicuddy 2006).   

 Freshwater HABs, specifically cyanoHABs, are of greater health concern since humans 

directly consume freshwater.  CyanoHABs are thick surface scums often composed of 

Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia, Planktothrix, and/or Microcystis 
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genera.  These blooms negatively impact potable water quality and food web dynamics through 

the production of a wide range of toxins that can be classified as either 1) neurotoxic, 2) 

hepatotoxic, or 3) cytotoxic (Aráoz et al. 2010).  Anatoxin-a, a potent neurotoxin, produced by 

Anabaena spp. blocks cholinergic synapses and sodium channels (Spivak et al. 1980, Thomas et 

al. 1993).  CyanoHABs producing anatoxin-a have contaminated drinking water for wildlife and 

domestic animals causing the deaths of Lesser flamingos (Krienitz et al. 2003), cows 

(Carmichael and Gorham 1978), and dogs (Edwards et al. 1992, Gugger et al. 2005).  In addition 

to deaths, anatoxin-a produced by Anabaena spp. can be concentrated by shellfish creating a 

consumption risk similar to marine shellfish and paralytic shellfish poisoning (Negri and Jones 

1995).  Microcystin, a hepatotoxin, is not as acute as cyanobacterial neurotoxins.  However, 

microcystin-contaminated medical water has caused human deaths (Carmichael et al. 2001).  

Sub-lethal chronic exposure of microcystin in contaminated water sources also negatively affects 

human health (Zhang et al. 2009).  Like other cyanotoxins, microcystin can be concentrated in 

primary and secondary consumer tissues, typically the liver or hepatopancreas (Garcia et al. 

2010).   

CyanoHABs also negatively impact energy flow in food webs.  Organisms relying on 

cyanoHABs as a food source show signs of stressed metabolisms.  Zooplankton and rotifers fed 

diets of toxic cyanoHABs species have reduced feeding rates, fecundity and increased mortality 

(Demott et al. 1991, Gilbert 1990, 1994, Hietala et al. 1995, Reinikainen et al. 1994).  A meta-

analysis of the many feeding assays examining the possible combinations of cyanobacterial food 

source and grazer species indicated the Microcystis genus was the most detrimental to growth 

rates (Tillmanns et al. 2008).  Interestingly, toxicity did not have a significant negative impact on 

population growth rates, implying reduced growth rates are a response to the poor nutritional 



 6

value of cyanobacteria (Tillmanns et al. 2008, Wilson et al. 2006).  The reduced fecundity and 

population growth rate of planktonic grazers has major food web implications.  Reductions in a 

trophic level’s productivity can have cascading effects reducing the overall productivity of the 

ecosystem along with ecologically and economically important predators (Carpenter et al. 1985, 

Hoagland et al. 2002).  The reduced productivity of a system due to depressed herbivore growth 

rates may only be temporary since some zooplankton have been able to locally adapt to 

cyanobacterial food source (Sarnelle and Wilson 2005).   

Microcystis aeruginosa  

 Microcystis is a well-studied clonal freshwater cyanobacterial genus.  The cocci cells, 

roughly 2-6 µm in diameter, form amorphous colonies protected by a polysaccharide mucilage 

(Yang et al. 2008).  The complete genome of the strain NIES-843, isolated from Lake 

Kasumigaura, was recently sequenced. The 5Mbp circular genome has a GC content of 42% and 

contains around 6,000 putative genes (Kaneko et al. 2007).  Insertion sequences and miniaturized 

inverted repeat transposable elements composed roughly 12% of the entire genome (Kaneko et 

al. 2007), which is indicative of the plasticity observed within the genome (ie. mcy operon, 

(Tooming-Klunderud et al. 2008).  

 Colony morphology within the genus is also highly plastic, which has led to the 

classification of multiple species; however, low nucleotide diversity in the 16S rDNA and 16S-

23S rDNA internal transcribed spacer (ITS) in addition to greater than 70% DNA-DNA 

hybridization among the morphologically-defined species prompted their unification under M. 

aeruginosa (Kondo et al. 2000, Otsuka et al. 2001).  M. aeruginosa is globally distributed and 

often described as cosmopolitan species.  The lack of a global biogeographical structure 

displayed by the rDNA ITS reinforces the cosmopolitan description suggesting intercontinental 



 7

dispersal of Microcystis is not a rare occurrence given the distance (Van Gremberghe et al. 

2011).  Within Japan, intraspecific lineages have been identified based on the typing of seven 

housekeeping loci (Tanabe and Watanabe 2011).  The Japanese populations suggest local 

adaptation forming ecotypes and possible endemic lineages (Tanabe and Watanabe 2011). 

Geographical isolation is normally not considered a possible evolutionary mechanism for free-

living bacteria, but other endemic clades have been described for thermophilic cyanobacteria 

(Hongmei et al. 2005, Ionescu et al. 2010, Papke et al. 2003)  However, M. aeruginosa 

populations outside of Japan need to be examined before accepting this unlikely evolutionary 

mechanism.  The disparity of driving forces at the global and local scales demonstrates the need 

for further biogeographical research. Additionally, the studies used different genomic molecular 

approaches which have yet to be compared possibly adding another level of complexity to the 

questions examined.    

Microcystin 

 The cyanotoxin, microcystin, named after the original source Microcystis spp., has been 

shown to be produced by a variety of cyanobacterial genera, including Anabeana spp. and 

Oscillatoria spp.  The hydrophilic cyclic polypeptide is a non-ribosomally synthesized secondary 

metabolite with no clear cellular regulation or function.  The non-ribosomal enzyme complex 

that assembles microcystin is encoded by the 55 kb mcy operon (Tillett et al. 2000).  The operon 

contains 10 genes which are divergently transcribed (Tillett et al. 2000).  The mcy gene cluster 

consists of polypeptide synthases, polyketide synthases, tailoring genes and an ABC like 

transport gene (Pearson et al. 2004).  This complex synthesis leads to roughly 80 different 

microcystin variants. Since microcystin-LR (lucine and arginine) is the most common, toxicity is 
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often measured and discussed in microcystin-LR equivalents.  For example, widely used 

commercial ELISA kits are optimized for the -LR variant.  

 The effects of the metabolite are very clear; it is a powerful protein phosphatase inhibitor.  

Microcystin covalently binds protein phosphatases 1 and 2A (Labine and Minuk 2009), leading 

to hyperphosphorylation in the cell signaling pathway.  In vertebrates, microcystin is actively 

transported into hepatocytes ultimately leading to hepatic hemorrhage and death (Tillett et al. 

2000).  At chronic sub-lethal doses, microcystin is thought to act as a tumor promoter that can 

increase the risk of developing hepatocellular carcinoma (Yu 1995, reviewed by Labine and 

Minuk 2009).  Exposure to microcystin can occur through dermal, respiratory, or ingestion 

routes.  The World Health Organization has set a safe potable and recreational thresholds of 

microcystin at 1µg/L and <20µg/L, respectively. 

Cyanobacteria in Alabama Waterbodies 

 Favorable habitats for cyanobacteria in Alabama include numerous man-made 

impoundments given the lack of glacial relic lakes throughout the state.  Small impoundments 

used for the state’s aquaculture industry are typically stagnant and nutrient rich, an ideal setting 

for thick cyanobacterial blooms. Maintaining intensive aquaculture systems is not trivial given 

the need to balance maximum harvest yield and water quality.  Nutrient inputs via fish feed not 

only allows for higher production yields but also creates a hypereutrophic environment 

supporting massive algal blooms. These thick blooms can quickly lead to anoxic conditions 

through intense respiration during night as well as through microbial respiration associated with 

the degradation of decaying algal material.  Anoxic conditions can lead to catastrophic harvest 

losses. 
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 Cyanobacterial dominated blooms in aquaculture systems add another level of risk 

through the production of cyanotoxins.  These toxins may have a two-fold negative impact on 

aquaculture systems.  Cyanotoxins have the potential to negatively impact fish health or growth 

at various life stages (reviewed by Malbrouck and Kestemont 2006).  Many unexplained catfish 

deaths could be explained by liver failure due to microcystin, as observed in a Mississippi 

aquaculture pond (Zimba et al. 2001).  Microcystin also has the potential to enter human food 

supply through bioaccumulation in fish liver and tissue (Freitas de Magalhães et al. 2001).  

When tissue with higher toxin concentrations is exposed to the cooking process, the effects of 

bioaccumulation can be magnified.  Temperature mediated degradation of proteins in the fish 

tissue leads to the release of phosphatase-bound microcystins (Zhang et al. 2010).  However, the 

cooking process reduced the effects of bioaccumulation in raw tissue with low (> 157 ng/g 

microcystin) toxin concentrations (Berry et al. 2011). This would imply studies measuring 

microcystin concentrations in uncooked tissue may not accurately estimate human consumption 

risk (Ernst et al. 2005, Mohamed et al. 2003, Wilson et al. 2008).  

In an attempt to mitigate the negative effects of dense algal blooms, copper sulfate is a 

commonly used algaecide.  A crude understanding of the negative effect that copper treatments 

have on the biomass of algal communities exists, but little is known about copper exposure 

influences on the microbial populations and their structure. The few available studies suggest 

that species exhibit varying responses (Le Jeune et al. 2006) and an increase in copper resistance 

(Gustavson and Wangberg 1995) when exposed to elevated copper levels. These responses are 

indicative of a directional selection by a destabilizing positive feedback cycle.  While extensively 

studied, the role of microcystin is still poorly understood (Babica et al. 2006). One known 

transcriptional regulator of microcystin production is the ferric uptake regulator (Fur) protein, 
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which also regulates part of the intracellular oxidative stress response (Martin-Luna et al. 2006). 

Co-regulation by Fur suggests that microcystin is also part of the oxidative stress response.  If 

this is true, cellular oxidative stress caused by copper based algaecides (Knauert and Knauer 

2008) could favor directional selection towards cyanobacterial genotypes with higher toxin 

quotas.  This in would imply current management practices are creating less desirable systems.   

 Cyanobacteria will continue to significantly impact ecosystems globally.  They maintain 

crucial positive biogeochemical feedback cycles, but also have the potential to negatively affect 

ecosystems with their high densities and toxins.  As anthropogenic eutrophication worsens, 

cyanobacteria have the potential to expand and dominate naive waters with negative ecological, 

social and economic consequences.  

Objectives 

The southeastern United States is experiencing a population boom requiring substantial 

alterations to land usage and infrastructure.  These changes increase the likelihood of 1) 

cyanobacterial blooms through anthropogenic eutrophication, and 2) human exposure to these 

blooms.  Given this increased risk, the prevalence and intensity of algal blooms, cyanoHABs, 

and cyanotoxins in the southeast should be better understood.  Data collected throughout the 

southeast, over a period of three growing seasons, will provide a snap shot of current conditions.  

This data will then be used to obtain the first objective (Chapter 2): predicting environmental 

conditions linked to degraded waters as a result of cyanoHABs and their toxins.  Additionally, 

the ecological processes, including intraspecific competition and diversity, leading to toxigenic 

cyanoHABs are often examined using molecular markers.  The accurate description of a 

population requires an understanding of the molecular methods’ sensitivity.  In this case, the 
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second objective (Chapter 3) will compare the commonly used phycocyanin intergenic spacer to 

a new multilocus approach using housekeeping genes for a single geographic population. 
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Chapter Two: Predicting Phytoplankton, Cyanobacterial, and Microcystin Concentrations 
throughout the Southeastern U.S. 
 
Introduction  

Safe and abundant freshwater resources are vital for properly functioning aquatic 

ecosystems and necessary for human survival.  Climate change, eutrophication, and land use 

changes continue to degrade our limited freshwater systems.  Phytoplankton, the dominant 

primary producers in pelagic systems, can strongly mediate water quality.  For example, toxic, 

bloom-forming cyanobacteria (blue-green algae) can produce toxic secondary metabolites, such 

as the hepatotoxin, microcystin, which can harm zooplankton, fishes, pets, livestock, and humans 

(Carmichael et al. 2001, Zimba et al. 2001).  Moreover, changes in water quality can profoundly 

affect phytoplankton species composition and abundance.  For example, excessive phosphorus 

loading can lead to increased algal standing stock (Schindle.D.W. 1974, Smith and Shapiro 

1981) which may have beneficial bottom-up effects on ecologically and economically important 

consumers in the food web (Carpenter et al. 1985).  However, excessive nutrient loading may 

push ecosystems towards undesirable situations.  Dense algal blooms,for example, reduce water 

usability for domestic, recreational, and aquaculture purposes due to associated cyanobacterial 

odor and flavor compounds (Graham et al. 2011, Zimba and Grimm 2003).  In addition, algal 

blooms supported by nutrient enrichment may create deadly anoxic environments increasing 

overnight oxygen demands via respiration or through the decomposition of decaying algal 

material by bacteria (Barica 1975).  Finally, increased phosphorus loading may shift 

phytoplankton communities toward cyanobacterial dominance (Watson et al. 1997).  Global 

warming may further exaggerate the negative consequences of eutrophication on aquatic 

communities (Smith and Schindler 2009).   
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 Understanding the prevalence and persistence of algal blooms is critical for the effective 

management of ecologically and economically important freshwater ecosystems.  Consequently, 

a large number of models have been produced to understand the variables responsible for blooms 

of freshwater phytoplankton (Heisler et al. 2008).  A majority of these studies in North America 

have focused on waterbodies in the midwestern U.S. (Jones et al. 1998), Florida (Bachmann et 

al. 2003), the Canadian shield region (Ogbebo et al. 2009), as well as the Great Lakes region 

(Millie et al. 2006).  Although findings from these studies vary, in general, phytoplankton 

abundance (typically measured as chlorophyll a concentration or algal biomass) has been shown 

to be related to ambient nutrient concentrations, such as total phosphorus (Brown et al. 2000, 

Jones et al. 1998) or total nitrogen (Paerl 1988).  Cyanobacterial biomass measured in absolute 

or relative concentrations has also been shown to increase along a nutrient gradient (Downing et 

al. 2001, Watson et al. 1997).  However, the debate continues whether nitrogen and/or 

phosphorus concentrations limit phytoplankton growth (Paerl 2009, Schindler et al. 2008).  

Finally, microcystin concentrations have been shown to correlate with Secchi depth and 

chlorophyll a (Bigham et al. 2009, Giani et al. 2005).  And, at least one study (Graham et al. 

2004) aimed to describe environmental thresholds that are associated with microcystin 

concentrations above the World Health Organization (WHO) threshold for microcystin in 

potable water (1 μg/L). 

Despite the explosive human population growth and concomitant infrastructural 

development throughout the southeastern U.S., the region has largely been ignored regarding the 

development of predictive models for freshwater algal blooms, with the exception of Florida 

(Bigham et al. 2009, Canfield Jr 1983).  Water quality models developed for Florida freshwater 

systems have shown a strong relationship between total phosphorus and chlorophyll as well as 
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between phytoplankton and cyanobacterial biomass (Brown et al. 2000, Canfield et al. 1989).  In 

this study, we develop linear and non-linear predictive water quality models for the southeastern 

U.S. which are accessible to water resource managers as well as the general public.  The three 

general water quality models aimed to predict abundances of freshwater phytoplankton 

(measured as chlorophyll a concentration), cyanobacteria (measured as the cyanobacteria-

specific pigment, phycocyanin concentration), and toxic cyanobacteria (measured as microcystin 

concentration).      

Methods 

 Data used to generate the models was collected by us or our collaborators at state 

agencies throughout the Southeast from June to September in 2008 (Alabama (AL)), 2009 (AL 

and Georgia (GA)), and 2010 (AL, GA, Florida (FL), Kentucky (KY), and Tennessee (TN) 

(Figure 1, Table 1).  The 217 waterbodies surveyed varied in size, morphology, bathymetry, and 

usage and included small fishing impoundments, large river reservoirs, and natural lakes.  

Sampling locations varied across waterbodies, but we tended to sample the deepest location in 

the largest basin, near the confluence of tributaries, and close to recreational areas.  Sampling 

frequencies varied across waterbodies (range = 1-51, mean = 3, median = 1) from 2008 to 2010.  

Some waterbodies were sampled only once while other sites were sampled multiple times across 

sampling years (Table 1).    

Water Sampling and Analysis 

 Using a handheld meter, temperature and dissolved oxygen concentration profiles were 

used to calculate the maximum depth of the epilimnion prior to sampling.  In general, depth-

integrated water samples were collected with rigid or flexible tube samplers from the surface to a 

depth of ≈1.5 m.  Some of our agency collaborators collected discrete samples at a depth 
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between 0.25 – 1.0 m.  No surface-collected samples were considered in this study, given that 

depth-integrated epilimnetic water samples well describe the near surface mixed layer and that 

surface algal scums can over-estimate phytoplankton and toxin concentrations for a waterbody 

(Tillmanns et al. 2008, Sarnelle et al. 2010).  Mixed-layer water samples were stored on ice and 

processed within 24 hours of collection.  Water transparency was measured with a Secchi desk.    

 Our primary response variables, including chlorophyll (µg/L), phycocyanin (µg/L), and 

microcystin (µg/L) concentrations, were measured by Auburn University personnel from seston 

collected on filters (Type A/E, Pall Corp.).  Chlorophyll a concentrations were determined using 

fluorometry following a 24 hr extraction in 90% aqueous ethanol (Wilson et al. 2008); model 

7200-000, Turner Design Instruments, Sunnyvale, California).  Phycocyanin samples were 

briefly (30 sec) ground in 50mM phosphate buffer (cat. #LC18560-2, Fisher Scientific) and 

allowed to extract for 3 hrs prior to purifying the extract with an inline filter (0.2 μm) and 

analyzing the filtrate using fluorescence (Sarada et al. 1999, as modified by Randolph 2007; 

model 7200-000, Turner Design Instruments, Sunnyvale, California).  Microcystin 

concentrations were determined colorimetrically using enzyme-linked immunosorbent assay 

(ELISA; cat #20-0068, Beacon Analytical Systems, Inc., Maine; plate reader model ELx808, 

BioTek , Inc., Vermont) following two 1 hr extractions in acidic 75% aqueous methanol (Wilson 

et al. 2008).  

 Water samples were also analyzed for total phosphorus (TP; µg/L), total nitrogen (TN; 

µg/L), and total suspended solids (TSS (mg/L).  Our state collaborators used standard methods 

for these analyses. For water samples collected by Auburn University personnel, TP and TN 

were measured using a single digestion colorimetric approach (Gross and Boyd 1998; model 

Lambda 25 UV/Vis Spectometer, Perkin Elmer, Waltham, Mass.).  TSS was determined by 



 22

calculating the weight of the material collected on pre-combusted and tared glass fiber filters 

(GF/C) which were dried at 55°C for a minimum of 24 hours.   

Modeling 

 For our biotic variables of interest (chlorophyll, phycocyanin, and microcystin), we 

developed simple Secchi depth-based models for the general public as well as more complex 

models incorporating more water quality parameters (i.e., Secchi, TP, TN, N:P (by atoms), and 

TSS) for natural resource managers.  Chlorophyll a concentrations were included in the complex 

models used to estimate phycocyanin and microcystin concentrations; however the latter 

parameters were not used in the complex chlorophyll a models.  Likewise, phycocyanin was 

included as a possible explanatory variable in the complex microcystin models.       

 The data set included 217 waterbodies sampled a total of 656 times (range = 1-51). 

Despite the range in sampling frequencies across the waterbodies surveyed in our study, the 

modeling data set included only one case from each waterbody therefore equally representing 

each waterbody.  For waterbodies that were sampled more than once, the median chlorophyll 

value was used to choose the case to represent the waterbody in the model building data set.  

When two median values were possible (i.e., even number of samplings), the most complete case 

(ie. case with data for the most variables) was selected.  If the two median cases had equal 

number of measured parameters, the case for the waterbody was chosen by a coin flip.   The 

reduced modeling data set included 217 cases including each waterbody once.  Given the range 

and variability of water quality parameters across our study sites, all data was normalized by log 

transformation prior to analyses.  Using these data, two modeling approaches were explored, 

specifically 1) multiple linear regression and 2) classification and regression tree (CART).  All 
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models were created using only complete cases with the R statistical software package (R 

Development Core Team 2009; version 2.11.1).   

Multiple Linear Regression 

 The three response variables were modeled separately using a combination forward and 

backward stepwise linear regression using the stepAIC function of the MASS package (Venables 

and Ripley 2002).  The most parsimonious model was chosen based on AIC values.  

CART modeling 

  CART modeling is non-parametric and assumes little about the normality and 

relationships between the response and explanatory variables (Breiman et al. 1984).  A tree is 

constructed to reduce the residual sum of squares of the response variable by sequential binary 

partitioning of data based upon the suite of possible explanatory variables (Breiman et al. 1984).  

The resulting nodes created by the partitions increase homogeneity of the response variable 

within the sub-groups.  Leafs, the terminal nodes, are associated with a mean of the response 

variable for that particular subset of data determined by the branching path.  The trees were 

grown and pruned using the rpart package in R (Therneau and Atkinson 2010) according to 

Faraway (2006).  To ease use and interpretation, CART models are presented using back 

transformed linear values.  

Model Bias  

 Model bias was examined by randomly partitioning the data into training and testing data 

sets with a 70/30 split, respectively.  Models were built as described above with the training data 

set.  The model was then challenged with the testing data set to obtain the predicted values.  

Model bias was estimated by regressing the observed testing data set against the predicted values 

(Pineiro et al. 2008).  A model was considered biased if a slope of 1 and an intercept of 0 did not 
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fall within the 95% confidence interval of the respective variable.  This process was repeated 100 

times for each model.  If significant bias (> 25%) was not detected, the entire data set was used 

to create the final model.  

Results 

Limnological data 

 Limnological conditions varied significantly across our study sites (Table 2).  For 

example, total phosphorus and total nitrogen concentrations spanned two orders of magnitude 

from 2.6 µg/L to 871.0 µg/L and 43.7 µg/L to 4365.1 µg/L, respectively.  This variability was 

also reflected in the three response variables.  Chlorophyll a spanned three orders of magnitude 

(0.65 µg/L to 316.2 µg/L).  Phycocyanin and microcystin-LR equivalents had the widest range 

covering 4 orders of magnitude (Table 2).  The relationships between the three response 

variables and abiotic variables weakened with increasing specificity (Figure 2).    

Model Accuracy  

Testing all twelve models (i.e., Secchi or complex models for chlorophyll a, 

phycocyanin, or microcystin) for bias using 100 random 70/30 training/testing samplings showed 

to have no more than 20% bias (Table 3).  Tables 4 and 5 provide one example of the models’ 

ability to accurately predict the response variable of interest.  The complex linear regression and 

CART models’ significant predictors were equally complex and able to explain a similar amount 

of variation in the testing data set.  The Secchi and complex chlorophyll models predicted 

chlorophyll a concentrations with high accuracy (Tables 4 and 5).  The error surrounding the 

predicted responses increased in the phycocyanin and microcystin models (Tables 4 and 5).  

However, the increased error did not lead to significantly different observed and predicted values 

(p > 0.05, Tables 4 and 5).  Moreover, the testing data sets’ model performance was not spatially 
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autocorrelated (Moran’s I, p-value > 0.05).  These findings indicate that our modeling parameters 

are robust, thus allowing the collapse of training and testing data sets into a single complete data 

set for the final models presented below.   

Final Models 

 The Secchi models explained less variation with increasing model specificity (Table 6, 

Figure 3).  For example, fit for the Secchi linear and CART models estimating chlorophyll 

concentration were much higher (R2 = 0.74 – 0.77) than for phycocyanin or microcystin 

concentrations (R2 = 0.34 – 0.43; Table 6, Figure 3).  CART models always explained more 

variation in the response variable than the linear regression models (Table 6).  The complex 

models always showed better fit and predictive ability than the Secchi models (R2, Table 6, 

Table 7). The rigorous models show the same patterns observed for the Secchi models regarding 

their decreasing explanatory power with model specificity.  The complexity of the models or the 

number of significant predictor variables was similar between the complex linear regression and 

CART models.  Unlike the Secchi-based models, the linear regression models are better able to 

fit the data for chlorophyll and phycocyanin when compared to the CART models.  Regardless of 

the number of explanatory parameters, a greater portion of the variation within the microcystin 

models was explained by the non-parametric CART modeling approach, suggesting non-

linearities in the microcystin data set.   

Discussion 

 Using a broad collection of diverse freshwater systems throughout the southeastern U.S., 

we developed a suite of models aimed at predicting concentrations of chlorophyll a, phycocyanin 

and microcystin.  In addition, we tested the models’ accuracy when predicting new data, an 

important but often overlooked necessity when evaluating applicability to water resource 
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managers.  The CART modeling approach has similar predictive powers as the linear regression 

models but does not require calculations and can be easily integrated into current management 

practices and interpreted by scientists and non-scientists alike.  Consequently, we emphasize the 

CART models while only mentioning results generated from the traditional linear models as a 

way to connect past studies.  

Chlorophyll 

 Our data set used to train, test and build the final models had an equivalent range 

described for average chlorophyll a concentrations in Florida (2-265 µg/L; Bachmann et al. 

2003).  Chlorophyll a (µg/L) within the data set was strongly correlated with Secchi depth (r = -

0.86), total phosphorus (r = 0.84), and total suspended solids (r = 0.80). The correlation of 

chlorophyll a concentration with total nitrogen (r = 0.64) or N:P ratio (r = -0.34) were significant 

but showed weaker correlation with chlorophyll a than the other variables.  Despite the strong 

correlation between chlorophyll and total phosphorus, the complex linear chlorophyll model did 

not indicate total phosphorus as a significant predictor.  The CART model describes a less 

complex relationship between chlorophyll a and commonly associated limnological parameters 

including: total phosphorus, total nitrogen and Secchi depth.  Given the CART topography, in 

some instances chlorophyll a can be estimated by total phosphorus alone (TP < 26 µg/L).  Total 

phosphorus has long been established as the driver of chlorophyll a within and across lakes 

(Jones et al. 1998, Smith and Shapiro 1981, reviewed by Smith 2003).  However, studies have 

shown the relationship between the two variables reaches an asymptote (McCauley et al. 1989, 

Vollenwein et al. 1974), indicating at high levels of total phosphorus other resource(s) become 

limiting, such as another nutrient or sunlight.  Regarding the complex CART chlorophyll model, 

total nitrogen becomes the driving nutrient when total phosphorus is above 26 µg/L, which is 
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well below the described global total phosphorus asymptote of ~100 µg/L TP (Brown et al. 

2000).  A similar chlorophyll a– total phosphorus curvilinear response has been described for 

large flowing systems (Van Nieuwenhuyse 2007) and lentic lakes and ponds (McCauley et al. 

1989).  Consequently, the decline of total phosphorus influence on chlorophyll a at 

concentrations exceeding 26 µg/L (TP) could be due to confounding effects of including a 

mixture of waterbodies that include rivers, reservoirs, ponds, and lakes in the model data set.  

The differing relationships between chlorophyll and abiotic factors between waterbody types 

should be explored as more data becomes available for the SE region.   

 Few related studies attempted to test the quality and bias of their models (McCauley et al. 

1989, Van Nieuwenhuyse 2007).  Such testing is necessary to determine the predictive utility of 

the new models.  The presented example testing models (Tables 4 and 5) allowed closer 

examination of the predictive performance using new data.  The Secchi and complex chlorophyll 

models have similar predictive power (r ~ 0.90, EF ≥ 0.75). The leaf distributions of the complex 

and Secchi CART models are extremely similar (e.g., the same node is used to split the two 

largest means Secchi depth < 0.351m, Figure 3a, Figure 4a).  This similarity in leaf distribution 

and the congruent predictive abilities between the Secchi and complete models suggest the 

Secchi models have a much greater return in accuracy given the resources required, thus 

providing managers and the general public with an accurate and easily accessible tool for 

managing chlorophyll concentrations.  The related strong performance of the Secchi models (r = 

0.88) when compared to previously tested models (CHL - TP; r = 0.86, Brown et al. 2000) 

reinforces the managerial appeal of the Secchi model.  
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Phycocyanin 

 Phycocyanin was shown to be significantly correlated with several environmental 

variables, including chlorophyll a (r = 0.72) and Secchi depth (r = -0.59).  Similar results have 

been documented in Florida lakes where a strong correlation was observed between 

cyanobacterial biomass and phytoplankton biomass (r = 0.90; Canfield et al. 1989).  In general, 

phycocyanin is less well studied than chlorophyll which might explain the slow adoption of 

phycocyanin as a metric for cyanobacterial abundance.  However, phycocyanin is quick to 

measure relative to enumerating phytoplankton samples.  As more labs measure phycocyanin 

and use this pigment to understand dynamics in freshwater systems, a better understanding of 

phycocyanin analyses and concentrations will be more readily available.   

 The Secchi models do not predict phycocyanin as well as the complex models (0.52 ≤ r ≤ 

0.69; 0.14 ≤  EF ≤ 0.54, Table 4, Table 5).  The complex phycocyanin linear regression and 

CART models explain a similar amount of variation in the data set (linear R2=0.59; CART R2 = 

0.56) while using chlorophyll a as the sole predictor.  However, the linear model proved to be a 

better predictor when challenged with new data (linear r = 0.69; CART r = 0.53).  The overall 

increased performance of the linear regression models regardless of the number of predictive 

parameters would imply a positive parametric relationship between chlorophyll a and 

phycocyanin concentrations (linear r = 0.57, 0.69; CART r = 0.52, 0.53; Secchi and complex 

model respectively).  This same trend has been documented previously for algal and 

cyanobacterial biomass (Canfield et al. 1989, Watson et al. 1997). 

 Since the CART Secchi and complex models have similar accuracy, it may be 

advantageous for water resource managers to use the simpler Secchi model.  Additionally, the 

largest mean leaf in both CART models fall close to the cyanobacterial biovolume medium alert 
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level threshold of 0.2 mm3/L (House et al. 2004) which was calculated from the previously 

described relationship (cyanobacterial biovolume (mm3/L) = 0.0034 * Phycocyanin (µg/L) + 

0.126, r = 0.88, derived from Fig 7a, Randolph 2007).  The range of phycocyanin in the data set 

limits the models’ ability to distinguish between medium and high risk (cyanobacterial 

biovolume ≥ 0.4 mm3/L), but the models may still be useful for “risk vs. no risk” management.  

The phycocyanin to cyanobacterial biovolume regression is a promising relationship for 

managers to exploit and was recently used to describe a managerial protocol using in-vivo 

phycocyanin concentrations for a Polish drinking water source (Izydorczyk et al. 2009).  

Effective use of the presented models with the biovolume risk alert system relies on a manager’s 

ability to identify dominate cyanobacterial species as toxigenic.  However, once the dominate 

species are identified as belonging to a “toxic” or “non-toxic” genera, management becomes an 

issue of controlling eutrophication to reduce algal abundance.   

Microcystin 

 The range of microcystin (0.0002 µg/L to 5.25 µg/L) which was lower than observed in a 

past survey of Florida lakes (<0.1 ug/L to 12 ug/L; Bigham et al. 2009) may be a result of 

sampling and analyses differences.  While the range of microcystin was lower in our 

southeastern data set, the significant but weak correlations between microcystin-total phosphorus 

(r = 0.57) and microcystin – chlorophyll a (r = 0.66) remained (Bigham et al. 2009).  The 

observed variability in the microcystin data negatively impacted the models fit and accuracy.   

 The complete microcystin models, like the phycocyanin models, are better predictors of 

new data when compared to the simpler Secchi models.  The complex microcystin CART model 

has an increased fit of the training data (CART R2 = 0.63; linear R2 = 0.42).  However, this 

increased fit does not translate to better performance when given testing data (CART r = 0.59; 
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linear r = 0.66).  As in the other complex models, there is not a meaningful difference in the 

linear regression and CART models predictive ability.  Both final complex microcystin models 

require five of the possible seven predictor variables (Table 7).  The Secchi CART model 

partitions microcystin concentrations into seven leafs ranging from 0.001 µg/L to 0.1 µg/L, while 

the complex model creates six terminal nodes ranging from 0.002 µg/L to 0.85 µg/L.  Given the 

data set range, the highest mean terminal nodes of the two models include values above and 

below the W.H.O threshold of 1.0 µg/L microcystin, reducing the practical application of the 

model.  

 The root mean square error (RMSE) surrounding the regression line of observed and 

predicted values does not have a large practical implication for the chlorophyll and phycocyanin 

models.  However, the acceptable error surrounding the microcystin models is much smaller 

given the health implications of one unit (1 µg/L) increase or decrease.  The RMSE surrounding 

the microcystin models ranges from 6-8 ug/L microcystin.  These large errors compared to the 

data set mean (0.01 µg/L) and W.H.O. safe potable water threshold (1 µg/L) makes these models 

very impractical in application.   

 The poor performance of the linear microcystin models should be expected given 

previous findings of non-linear relationship between environmental factors and microcystin 

(Giani et al. 2005, Graham et al. 2004).  Additionally, microcystin concentrations have been 

significantly associated with chlorophyll and cyanobacterial biomass (Kotak et al. 2000, Wu et 

al. 2006) explaining the reoccurrence of chlorophyll a and phycocyanin as significant predictors.  

In the midwestern U.S. waterbodies with maximum microcystin concentrations were found to 

contain between 1,500 and 4,000 µg/L TN (Graham et al. 2004), which is similar to the node 

(TN ≥ 2113 µg/L) leading to the leaf with the highest median (0.856 µg/L MC) of the complex 
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CART model.  The model presented here follows previous findings; however this is the first set 

of microcystin models to be tested using an independent data set.   

 The poor predictive nature of the microcystin models indicates further parameters need to 

be explored to better describe the indirect link between environmental conditions and 

microcystin expression.  Methods for measuring microcystin-LR equivalents have been 

described and robust commercial kits are available leading to a plethora of microcystin data. 

Despite easily available data, few region specific models (China: Wu et al. 2006; Canada: Giani 

et al. 2005, Kotak et al. 2000; USA: Bigham et al. 2009, Graham et al. 2004) have been 

developed for microcystin.  This gap in scientific knowledge can easily be filled, and would be 

eagerly applied by water resource managers.  

Final Models and Application 

The models presented for the southeastern United States were built using data collected 

from natural waterbodies, small impoundments, rivers, and large reservoirs.  The inclusion of a 

wide range of sources allows the greatest applicability for the end user.  The lack of bias within 

the training models allowed the collapse of the data into a final building data set, while being 

able to comment on the predictive nature of the models.  The models are less accurate with 

decreasing scope from chlorophyll to microcystin due to the decreased strength of the 

relationship between the environmental and response variables.  The diversity of waterbody type 

is possibly a confounding factor leading to the phycocyanin and microcystin models’ poor 

accuracy since most regional studies to date limit the data set to a single waterbody type.  This is 

an area to explore as we are able to describe definitive waterbody types, and grow the data set to 

include a variety of sites types dispersed throughout each state in the region.  All three response 
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variables can be described as a function of Secchi depth without sacrificing meaningful accuracy 

when compared to the complex models.  

The CART models have the potential to become valuable tools for managers.  First, the 

CART models’ binary function is similar to commonly used decision trees allowing easier 

integration into current managerial plans.  Secondly, the CART models, in some cases, can also 

be useful with an incomplete set of known predictor variables.  Lastly, they give defined 

thresholds that lead to different outcomes.  These reasons along with the flexibility of input 

variables by the creation of the full and Secchi models should make the CART models a well- 

received tool by managers.   
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Table 1. Geographic distribution of waterbodies and sites sampled by year 

Year 
State Resampled 

Waterbodies Total Waterbodies Total Sites AL FL GA KY TN 

2008 7 - - - - 4 7 55 
2009 60 - 9 - - 36 69 292 
2010 11 104 6 9 11 24 141 308 

total  64 217 655 
 

 

 

 

 

Table 2. Summary of data set used to build models  
Environmental Parameter Annotation n mean median min max 

chlorophyll (µg/L) CHL 203 15.10 15.85 0.65 316.23 
phycocyanin (µg/L) PHY 128 4.95 4.07 0.03 707.95 
microcystin (µg/L) MC 176 0.01 0.01 0.0002 5.25 
Secchi depth (m) SEC 197 1.06 1.00 0.15 10.47 
total phosphorus (µg/L) TP 198 35.28 33.89 2.57 870.96 
total nitrogen (µg/L) TN 198 710.53 707.95 43.65 4365.16 
total nitrogen: total phosphorus by moles N:P 198 43.91 39.81 2.00 467.74 
total suspended solids (mg/L) TSS 193 5.25 6.03 0.50 74.13 
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Table 3. Percent bias in models.  Biased models' observed 
verses predicted regression line 95% confidence interval does 
not include a slope of 1 and an intercept of 0.    
  Secchi Full 
Response  CART Linear CART Linear 

Chlorophyll 5 9 15 15 
Phycocyanin 5 2 14 7 
Microcystin 20 7 13 1 
 

 

 

Table 4. Example Secchi models including significant predictor and model performance based on predicted values of the testing data set 

Response 
Variable 

Predictor     
Variable  n R2 leaves 

Testing 
Sample 
Size 

Pearson's 
Correlation EF MSE 

 
RMSE 

Paired 
 T-test 
significant 

Moran’s I 
significant 

Linear  

Chlorophyll   log(SEC) 133 0.72 N/A 55 0.88 0.76 0.06 0.25 no no 

Phycocyanin   log(SEC) 83 0.38 N/A 32 0.57 0.32 0.50 0.71 no no 

Microcystin   log(SEC) 114 0.40 N/A 48 0.49 0.16 0.87 0.93 no no 

CART 
Chlorophyll   log(SEC) 133 0.77 5 55 0.88 0.76 0.06 0.25 no no 

Phycocyanin   log(SEC) 83 0.43 4 32 0.52 0.26 0.54 0.74 no no 

Microcystin   log(SEC) 114 0.46 4 48 0.49 0.13 0.90 0.95 no no 

EF; modeling efficiency  
MSE; mean square error 
RMSE; root mean square error 
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Table 5. Example full models including significant predictor and model performance based on predicted values of the testing data set 

Response 
Variable Significant Predictor Variable  n R2 leaves 

Testing 
Sample 
Size 

Pearson's 
Correlation EF MSE  RMSE 

Paired  
T-test 
significant  

Moran’s I 
significant 

Linear 
Chlorophyll - log(SEC) + log(TN) - log(N:P) 116 0.82 N/A 48 0.90 0.81 0.06 0.243 no no 

Phycocyanin log(CHL) 71 0.59 N/A 28 0.69 0.42 0.34 0.581 no no 
Microcystin log(TN) + log(TSS) 66 0.42 N/A 24 0.66 0.38 0.66 0.814 no no 

CART 
Chlorophyll log(SEC),log(TP), log(TN), log(TSS) 116 0.86 7 48 0.90 0.80 0.06 0.249 no no 

Phycocyanin log(CHL) 71 0.56 3 28 0.53 0.14 0.50 0.707 no no 
Microcystin log(TN), log(TSS) 66 0.63 6 24 0.59 0.32 0.72 0.851 no no 

EF; modeling efficiency  
MSE; mean square error 
RMSE; root mean square error 
 

 

Table 6. Final Secchi models. Simplistic models were built from the 
entire data set, Secchi depth is the only predictor in models.   
Model n R2 leafs 

Linear 
log(CHL) = 1.23 -1.40log(SEC) 188 0.74 N/A 
log(PHY) = 0.55 -1.64log(SEC) 115 0.34 N/A 
log(MC) = -2.02 – 1.84log(SEC) 164 0.34 N/A 
CART 
log(CHL) ~ log(SEC) 188 0.77 5 
log(PHY) ~ log(SEC) 115 0.38 3 
log(MC) ~ log(SEC) 164 0.43 7 
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Table 7. Final full models. Models were built using the entire data set using all environmental variables as possible 
predictors. 
Model n R2 leafs 

Linear 
log(CHL) =  -0.41log(SEC) + 0.76log(TN) – 0.49log(N:P) + 0.24log(TSS) 164 0.82 N/A 
log(PHY) = -0.82 + 1.65log(CHL) 99 0.56 N/A 
log(MC) = -8.22 – 1.54log(SEC) + 1.81log(TP) + 1.27(N:P) + 1.75log(TSS) 90 0.43 N/A 
CART 
log(CHL) ~ log(TP), log(TN), log(SEC) 164 0.78 5 
log(PHY) ~ log(CHL) 99 0.49 2 
log(MC) ~ log(CHL), log(PHY), log(TN), log(N:P)  90 0.57 6 
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Figure 1. Distribution of waterbodies 
sampled in Alabama, Florida, Georgia, 
Kentucky and Tennessee broken down by 
year of case used in model building data 
set. 
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Figure 2. Trends between response 
and predictor variables.  
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Figure 3a. Secchi chlorophyll CART model built from the complete data set.  
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Figure 3b. Secchi phycocyanin CART model built from the complete data set.  
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Figure 3c. Secchi microcystin CART model built from the complete data set.  
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Figure 4a. Full chlorophyll CART model built from the complete data set.  
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Figure 4b. Full phycocyanin CART model built from the complete data set. 
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Figure 4c. Full microcystin CART model built from the complete data set.  
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Chapter Three: A multilocus alternative to the phycocyanin operon reveals hidden genetic 
diversity within a Microcystis population 
 
Introduction 

Microbial diversity is necessary to maintain ecosystem functions and stability (Bell et al. 

2005).  Within aquatic systems, increased microbial diversity has been shown to contribute to 

ecologically important cycles, such as decomposition (Gessner et al. 2010).  Cyanobacteria, 

ubiquitous autotrophic prokaryotes, can have negative impacts on ecosystem services through the 

formation of harmful algal blooms (HABs).  Microcystis aeruginosa, a cyanobacterium that 

often dominates HABs in nutrient-enriched freshwater systems, produces a hepatotoxin, 

microcystin, which has major public-health impacts (Carmichael et al. 2001).  Molecular studies 

have identified high genetic diversity within Microcystis populations (Dadheech et al. 2010, 

Yoshida et al. 2008), and at least one recent study identified large variation in a critical 

ecological trait that appears to have a genetic basis (Bozarth et al. 2010).  Given these findings, a 

better understanding of within-population genetic variance is needed for this important 

phytoplankter.   

Studies to date have described genetic diversity within and between Microcystis 

populations via application of one of several polymorphic markers (Allender et al. 2009, Haande 

et al. 2007, Humbert et al. 2005).  Since 1995, ~50 studies have used the intergenic spacer region 

of the phycocyanin gene (PC-igs) to quantify genetic diversity of Microcystis populations (Baker 

et al. 2001, Neilan et al. 1995, Tillett et al. 2001), making it the most popular method in active 

use.  An alternative method originally developed for pathogenic bacteria, multilocus sequence 

typing (MLST), has recently been developed for Microcystis that may provide greater sensitivity 

for detecting genetic variation within and among populations of this cyanobacterium (Tanabe et 

al. 2007).   
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Multilocus typing, which examines sequence variation at five to seven core housekeeping 

genes, is capable of detecting clonal subdivisions as well as horizontal gene transfer (Maiden et 

al. 1998).  The sensitivity of MLST for various pathogenic bacteria has been compared with 

other methods for examining clonality based on virulence (e.g., serotype, pulse field gel 

electrophoresis, multi-virulence gene loci sequence typing). MLST has had variable success 

describing unique clones when compared these other techniques (Peacock et al. 2002, Zhang et 

al. 2004).  As MLST is applied in non-epidemiological contexts, the organisms’ population level 

variation as described by MLST needs to be understood.  We addressed this by comparing 

genetic diversity within a Microcystis population as measured by MLST versus PC-igs.  We 

expected that MLST would reveal greater diversity given the increased sampling of the genome, 

relative to the single locus PC-igs approach.  Our results show that MLST can detect genetic 

differences that the PC-igs method completely misses, a finding that can be critical when 

correlating ecological traits to evolutionary relationships. 

Methods 

Here, six clones of Microcystis aeruginosa were isolated over a four-year period (2006-

2009) from Gull Lake (Hickory Corners, MI, USA). Colonies were collected from the mixed 

layer.  Individual colonies were then sequentially pipetted through a series of DI washes until 

finally placed the growth media.  Isolateswere cultured in half-strength WC-S medium 

(Stemberger 1981).  In assessing genetic variation among the six isolates, we compared PC-igs 

with an abbreviated MLST scheme.   

DNA was extracted from pelleted cultures using Lyse-N-Go PCR reagent (Pierce 

Chemical Co, Rockford, IL). The PC-igs in addition to five housekeeping genes for MLST, ftsZ, 

glnA, pgi, gltX, and gyrB, were amplified using primer and PCR conditions previously described 
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(Neilan et al. 1995, Tanabe et al. 2007).  This is the first study of which we are aware of that uses 

MLST to genetically differentiate M. aeruginosa strains collected in the United States.  

Amplified PCR fragments were purified using QiagenQIAquick® PCR purification kit (Cat # 

28104) and sequenced bidirectionally using an ABI 3730 Genetic Analyzer.  Contiguous 

sequences were assembled using Sequencher 4.10.1(Gene Codes Corporation).  PC-igs 

sequences were aligned with MEGA4 (Tamura et al. 2007).  Protein coding sequences were 

examined for non-synonymous mutations (Tamura et al. 2007).  A pair-wise comparison of the 

average number of nucleotide differences per a site (π) was conducted, in addition to estimating 

the haplotype diversity (h) of the PC-IGS region and MLST loci using DnaSP version 4.90.1 

(Rozas et al. 2003).  All sequences were submitted to GenBank (accession number JN226766-

JN226772; HQ847833-HQ847857). 

Results and Discussion 

The PC-igs method revealed no nucleotide diversity among the six M. aeruginosa 

isolates.  In contrast, the abbreviated MLST approach clearly differentiated all six isolatesas 

unique strains (Table 1, N) despite the fact that observed nucleotide diversity (π) was at least an 

order of magnitude lower than previously described for Asian Microcystis populations (Tanabe 

et al. 2007).  Within our study population, the increased sensitivity of MLST with respect to PC-

igs is not simply due to the increase sampling of the genome but is also a function of increased 

variability in housekeeping loci vs the PC-igs locus (as measured by nucleotide diversity per site 

(π)).  For our focal population, the added investment of sampling the two additional loci (recA 

and tpi) described for the Microcystis MLST could not have differentiated more unique clones 

but may increase confidence of evolutionary relationships.  This disparity in detected genetic 

diversity (Table 1, π, Ka/Ks) among housekeeping loci should be kept in mind along with the 
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study’s purpose (describing evolutionary relationships or quantifying diversity) when choosing 

loci for an abbreviated MLST scheme.  

MLST analysis is not ideal for all situations given the higher costs associated with 

increased loci sampling as well as larger amounts of required DNA template.  However, the 

added cost associated with the sequencing of multiple loci can be overcome with next generation 

sequencing technology (Brockhurst et al. 2011).  In contrast, the increased DNA requirement 

may not be as easily overcome.  Since multiple loci along the genome need to be related back to 

a single individual or clone, MLST approaches require the successful culturing of Microcystis 

colonies.  Successful isolation into culture has the potential to introduce bias with respect to the 

goal of describing diversity in the source population, but our isolation techniques have been 

refined to the point where most isolated colonies (~80%, personal observation) result in 

successful cultures.  Although the MLST requirement of culturing individuals may not be 

practical for large-scale (n ≥ 1000) population studies, the housekeeping loci are superior to the 

PC-igs marker for capturing fine-scale genetic diversity within Microcystis populations per unit 

effort as reflected by the observed nucleotide diversity (π) in our study.   

We thank Jeff White for providing the Microcystis strains used in this study.  Scott R. 

Santos aided in sequence assembly and calculating nucleotide diversity.  The MLST analysis was 

greatly improved by assistance from Covadonga Arias.   

 

 

 

 

 



53 
 

References 

Allender, C.J., LeCleir, G.R., Rinta-Kanto, J.M., Small, R.L., Satchwell, M.F., Boyer, G.L., and 
Wilhelm, S.W. 2009. Identifying the source of unknown microcystin genes and predicting 
microcystin variants by comparing genes within uncultured cyanobacterial cells. Applied and 
Environmental Microbiology 75(11): 3598-3604. 
 
Baker, J., Neilan, B.A., Entsch, B., and Mckay, D.B. 2001. Identification of cyanobacteria and 
their toxigenicity in environmental samples by rapid molecular analysis. Environmental 
Toxicology 16(6): 471-482. 
 
Bell, T., Newman, J.A., Silverman, B.W., Turner, S.L., and Lilley, A.K. 2005. The contribution 
of species richness and composition to bacterial services. Nature 436(7054): 1157-1160. 
 
Bozarth, C.S., Schwartz, A.D., Shepardson, J.W., Colwell, F.S., and Dreher, T.W. 2010. 
Population turnover in a Microcystis bloom results in predominantly nontoxigenic variants late in 
the season. Applied and Environmental Microbiology 76(15): 5207-5213. 
 
Brockhurst, M.A., Colegrave, N., and Rozen, D.E. 2011. Next-generation sequencing as a tool to 
study microbial evolution. Molecular Ecology 20(5): 972-980. 
 
Carmichael, W.W., Azevedo, S., An, J.S., Molica, R.J.R., Jochimsen, E.M., Lau, S., Rinehart, 
K.L., Shaw, G.R., and Eaglesham, G.K. 2001. Human fatalities from cyanobacteria: Chemical 
and biological evidence for cyanotoxins. Environmental Health Perspectives 109(7): 663-668. 
 
Dadheech, P.K., Ballot, A., Casper, P., Kotut, K., Novelo, E., Lemma, B., Proschold, T., and 
Krienitz, L. 2010. Phylogenetic relationship and divergence among planktonic strains of 
Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 
16S-23S ITS and phycocyanin operon sequences. Phycologia 49(4): 361-372. 
 
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H., and 
Hattenschwiler, S. 2010. Diversity meets decomposition. Trends in Ecology & Evolution 25(6): 
372-380. 
 
Haande, S., Ballot, A., Rohrlack, T., Fastner, J., Wiedner, C., and Edvardsen, B. 2007. Diversity 
of Microcystis aeruginosa isolates (Chroococcales,  Cyanobacteria) from East-African water 
bodies. Archives of Microbiology 188(1): 15-25. 
 
Humbert, J.F., Duris-Latour, D., LeBerre, B., Giraudet, H., and Salencon, M.J. 2005. Genetic 
diversity in Microcystis populations of a French storage reservoir assessed by sequencing of the 
16S-23S rRNA intergenic spacer. Microbial Ecology 49(2): 308-314. 
 
 
 
 
 



54 
 

Maiden, M.C.J., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q., Zhou, 
J.J., Zurth, K., Caugant, D.A., Feavers, I.M., Achtman, M., and Spratt, B.G. 1998. Multilocus 
sequence typing: A portable approach to the identification of clones within populations of 
pathogenic microorganisms. Proceedings of the National Academy of Sciences of the United 
States of America 95(6): 3140-3145. 
 
Neilan, B.A., Jacobs, D., and Goodman, A.E. 1995. Genetic diversity and phylogent of toxic 
cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and 
Environmental Microbiology 61(11): 3875-3883. 
 
Peacock, S.J., de Silva, G.D.I., Justice, A., Cowland, A., Moore, C.E., Winearls, C.G., and Day, 
N.P.J. 2002. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis as 
tools for typing Staphylococcus aureus isolates in a microepidemiological setting. Journal of 
Clinical Microbiology 40(10): 3764-3770. 
 
Rozas, J., Sanchez-DelBarrio, J., Messeguer, X., and Rozas, R. 2003. DnaSP, DNA 
polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18): 2496-2497. 
 
Stemberger, R.S. 1981. A  general approach to the culture of planktonic rotifers. Canadian 
Journal of Fisheries and Aquatic Sciences 38(6): 721-724. 
 
Tanabe, Y., Kasai, F., and Watanabe, M.M. 2007. Multilocus sequence typing (MLST) reveals 
high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis 
aeruginosa. Microbiology 153: 3695-3703. 
 
Tillett, D., Parker, D.L., and Neilan, B.A. 2001. Detection of toxigenicity by a probe for the 
microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis, comparison of  
toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. 
Applied and Environmental Microbiology 67(6): 2810-2818. 
 
Yoshida, M., Yoshida, T., Satomi, M., Takashima, Y., Hosoda, N., and Hiroishi, S. 2008. Intra-
specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. Journal 
of Applied Microbiology 105(2): 407-415. 
 
Zhang, W., Jayarao, B.M., and Knabel, S.J. 2004. Multi-virulence-locus sequence typing of 
Listeria monocytogenes. Applied and Environmental Microbiology 70(2): 913-920. 
 
 



55 
 

Table 1.  Genetic diversity by method (PC-igs and MLST) 
and individual genes for MLST. 

Locus 
bp 
length N S π * 100 Ka/Ks 

PC-igs 625 1 0 0.00 N/A 
Concatenated MLST 
loci 2131 6 17 0.32  

ftsZ 409 4 5 0.60 0.00 
glnA 452 4 5 0.46 0.07 
gltX 430 3 3 0.23 0.57 
pgi 424 2 3 0.24 0.15 

gyrB 416 2 1 0.08 0.00 
N, number of alleles 
S, number of segregating sites 
π, nucleotide diversity per nucleotide site  
Ka/Ks, ratio of non-synonymous to synonymous mutations in 
protein coding regions 
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Appendix: Use of Secchi models by citizen scientists   

What is a Secchi disk? 

 A Secchi disk is a tool that is used to describe water clarity based on how deep a person 
can see in water.  The disk is normally 20 cm wide and alternates black and white.  The depth of 
the disk in the water is determined by attaching the disk to a calibrated rope or measuring tape.  
Measurements can be taken from boats or docks.  Once the Secchi depth of your water is 
measured, you can predict the amount of phytoplankton (by chlorophyll a) and the 
cyanobacterial biovolume. 

How to use a Secchi disk 

Measurements are least reliable on cloudy days, and near dawn or dusk.  Remove sunglasses 
before taking measurements.  

1. Lower the disk into the water on the sunny side of the boat or dock. Wait for clouds 
overhead to pass before taking measurements.  

2. Lower the disk until it is out of sight.  Record the depth when the disk disappears. 
3. Raise the disk until reappears.  Record the depth*. 
4. The Secchi depth is the average of the two measurements.   
5. Be sure to note unit of measurement on the measuring tape.  Most metric measuring tapes 

will be in centimeters (cm), however Secchi depth is normally described using meters.  
Before predicting the amount of phytoplankton or cyanobacteria the Secchi depth must be 
converted to meters using the boxed equation below.  

*  All measurements presented here are metric, use the boxed equations below to convert 
inches to metric measurements.  

 

݉ܿ	݊݅	݄ݐ݌݁݀	݄݅ܿܿ݁ܵ
100

ൌ  ݏݎ݁ݐ݁݉	݊݅	݄ݐ݌݁݀	݄݅ܿܿ݁ܵ

 

 

ݏ݄݁ܿ݊݅	݊݅	݄ݐ݌݁݀	݄݅ܿܿ݁ܵ
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Appendix continued 

Making a Secchi Disk  

Materials 

 2 gallon plastic pail lid 

 2”-3” eye bolt, washer and large nut 

 Plastic metric measuring tape (found in sewing section of store) 

 Small cable ties 

 Black masking tape 

 Drill or hammer and nail 

Directions 

1. Cut rim off lid. 
2. Drill hole in center of rim-less lid. 
3. Cover 2 opposing quarters of the lid top with black masking tape. 
4. Thread eye bolt through hole in center of disk.  The hook should be on the top side of the 

lid. Add washer and tighten large nut below the disk.  
5. Attach zero end of measuring tape to eye bolt using cable ties.  Be sure to have the zero 

line flush with the lid when securing tape.  
6. Wrap connection between eye bolt and measuring tape for added stability.    

Finished Secchi disks 

 

 

Top 

Bottom 

Finished disk from side 

Finished disk from above 
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Appendix continued 

 

Using a Secchi disk to predict chlorophyll a 

1. Measure Secchi depth in meters (directions above). 
2. Find circle A in Figure 1. 
 
Step 3 
a. If your Secchi depth is greater than (<) 0.6 meters follow the right branch from circle A to 
circle B. Continue to Step 4. 
-OR- 
b. If your Secchi depth is less than or equal to (≥) 0.6 meters follow the left branch to circle 
C. Continue to Step 5. 
 
Step 4 
a. At circle B, if your Secchi depth is greater than (<) 0.3 meters follow the right branch to 
the box with your estimated value. 
-OR- 
b. At circle B, if your Secchi depth is less than or equal to (≥) 0.3 meters follow the left 
branch to the box with your estimated value. 
 
Step 5 
a. At circle C, if your Secchi depth is greater than (<) 2.2 meters follow the right branch to 
circle D.  Continue to Step 6. 
-OR- 
b. At circle C, if your Secchi depth is less than or equal to (≥) 2.2 meters follow the left 
branch to the box with your estimated value. 
 
Step 6 
a. At circle D, if your Secchi depth is greater than (<) 1.5 meters follow the right branch to 
the box with your estimated value. 
-OR- 
b. At circle D, if your Secchi depth is less than or equal to (≥) 1.5 meters follow the left 
branch to the box with your estimated value. 
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Appendix continued 

Figure 1. Chlorphyll a  

Oligotophic 

Eutrophic 

Mesotrophic 
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Appendix continued 

Using a Secchi disk to predict risk of cyanobacteria 

1. Measure Secchi depth in meters (directions above). 
2. Find circle A in Figure 2. 
3a. If your Secchi depth is greater than (<) 0.5 meters follow the right branch from circle A 
to the boxed estimated value. 

-OR- 
3b. If your Secchi depth is less than or equal to (≥) 0.5 meters follow the left branch to circle 
B. Continue to Step 4.   

4a. At circle B, if your Secchi depth is less than or equal to (≥) 0.9 meters follow the left 
branch to the boxed estimated value. 

-OR- 
4b. If your Secchi depth is greater than (<) 0.9 meters follow the right branch to the boxed 
estimated value. 

 
Figure 2. Cyanobacterial biovolume  
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