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Abstract 

	
  
In spite of advances to improving cache efficiency, memory access bottlenecks still prevent 

processors from executing at full speed. This research evaluates a fundamentally new concept of 

using a secondary bus, connecting the level-2 cache to memory, for committing cache write-

backs. Simulations, using the Sim-Alpha version of the SimpleScalar tool set, demonstrate the 

feasibility and advantages of such a secondary bus. Based on simulation results, the added 

secondary bus can decrease queuing delays on the system bus by 6% to 99%, with an average of 

87%, when sufficient write-backs are present.  Such reduction in queuing delays leads to a 

decrease in worst-case execution times, and offers superior temporal determinacy in real-time 

environments.  Real-time and near real-time embedded applications that depend on intense 

graphics processing and movement of large blocks of data, such as printer controllers and 

medical imaging, are prime candidates for applications of the secondary bus. 

Simulations using small cache sizes serve as a basis that verifies that the microarchitecture is 

viable and that it produces interesting and significant results. Then, updates to large cache sizes 

comparable to those in current commercial processors and benchmarks taken from the industry-

standard SPEC CPU2006 benchmark suite expand and validate the results. Decreases of 31% to 

94%, with an average of 82%, in the maximum execution time of any instruction, and of 77% to 

100%, with an average of 97%, in the number of instructions requiring more than 1000 cycles to 

execute point to a decrease in worst-case execution times in real-time systems. The 

improvements in instructions per cycle point to possible applications in low-power systems, 
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where the clock frequency may be reduced while maintaining constant processing power. In 

addition to the real-time and low-power system benefits, overall system performance using the 

secondary bus microarchitecture is improved by up to 33% when I/O is present.	
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Chapter 1 

Introduction 

1.1. Problem Statement 

As the speed of high performance processors continues to increase, there are a number of 

bottlenecks within computer system architectures that prevent those processors from achieving 

their full potential. Processor speeds continue to outpace memory access speeds. Because of this, 

cache memory has long been an important part of any computer system architecture. The faster 

access time provided by cache memory is essential for allowing high-speed processors to operate 

with slower and much more cost-efficient main memory. Cache memory is generally connected 

to main memory via a main system bus. The system bus that connects the cache memory to main 

memory represents a serious system bottleneck, one that can leave a high performance processor 

sitting idle while waiting for data to be transferred to and from main memory. 

1.2. Research Objective 

The secondary bus was proposed [2] and designed [4] to more effectively retire the cache 

write-back buffer entries to the main memory.   The goal of this research is to study, via 

simulation, the impact and feasibility of a low bandwidth, low cost, non-intrusive secondary bus 

on the performance of a computer system.  The study includes its impact on queuing delays on 
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the main bus and the reduction in main bus access contention between processor and I/O 

accesses to main memory.   Such bottleneck reduction is expected to result in a system with: 

1)    Increased determinacy, leading to a system with greater real-time performance, 

2)    Increased overall performance, and 

3)    Lowered power usage. 

1.3. Background 

When a cache miss occurs, the processor must delay to wait for data to be retrieved from 

main memory, placed into the cache, and transferred to the processor. When the miss occurs in a 

cache that employs a write-back scheme and is already full, a cache line must be evicted before 

the new data can be retrieved from main memory. When the line that is chosen for eviction is 

dirty, it must be written to memory before the new line can be read. This leads to several data 

transfers on the bus connecting the cache to the main memory. The processor must remain idle 

during those transfers and cannot continue until the needed data is available. 

Various techniques have been developed in an attempt to decrease the time spent by the 

processor waiting for this cache processing to occur, but none has approached the problem from 

the viewpoint of using an additional, secondary bus for communication between the cache and 

main memory. 

Many current cache configurations include some form of non-blocking mechanism. Miss-

status holding registers [14], write buffers [7], and victim buffers [8] are all mechanisms that 

provide storage where dirty cache lines can be written efficiently without requiring the processor 

to stall waiting for the writes to complete. The eager write-back technique [15] attempts to 

address the problem of clustered bus accesses caused by graphics applications. The technique 
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writes dirty cache blocks back to memory before they are evicted, using otherwise idle time on 

the bus and attempting to avoid clusters of bus usage. 

This research represents a unique approach to the problem, and one that can be used to 

provide improvements in addition to other techniques. This research shows that a secondary bus 

is feasible, and that use of the bus will increase the performance of computer systems by 

reducing bus contention. 

In addition, the research presents possible implementations for a secondary bus. Areas of 

investigation include a serial line and wireless communication. A reasonable bandwidth 

expectation for the secondary is presented, based on potential hardware and protocol support. 

1.4. Outline 

The remainder of this dissertation is organized as follows:  Chapter 2 presents some 

background in relevant current literature on the subjects of cache performance enhancements, 

microprocessor simulation, and possible secondary bus implementations. Chapter 3 presents the 

results of the secondary bus microarchitecture in a small cache system. In Chapter 4, the 

secondary bus microarchitecture is demonstrated in a large cache system using the standard 

SPEC CPU2006 benchmarks. Chapter 5 presents the real-time system performance 

improvements with the serial bus, and Chapter 6 presents the low-power system improvements. 

Conclusions are presented in Chapter 7. 
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Chapter 2 

Background 

Relevant current literature explores possible methods of improving cache performance, 

microprocessor simulation, and performance measurement. Since wireless communication is a 

possible implementation of a secondary bus, literature describing wireless protocols and possible 

hardware support for a wireless bus is also relevant. 

2.1. Cache performance enhancements 

Cache memory has long been an important part of any computer system architecture. The 

faster access time supplied by cache memory is essential for allowing high-speed processors to 

operate with slower and much more cost-efficient main memory. The hierarchy formed by CPU 

registers, cache memory, main memory, and external disk storage represents an attempt by 

system designers to improve system performance while controlling costs. Each lower level in the 

hierarchy consists of slower, larger, and less expensive storage. The system depends on the 

principal of locality to maintain system performance. 

When an entry in a cache is changed, the new value must be transferred into the lower-level 

memory. Two techniques, called write-back and write-through, may be used. In the write-back 

technique, when a memory location is written, it is marked as dirty. All entries are held in the 

cache until a read from the lower-level memory occurs when the cache is full. At that time, an 

entry that has been marked as dirty is removed, and the contests are written to the lower-level 
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memory. This means that when a cache is full, a read miss in a write-back cache requires one 

memory accesses to retrieve the needed memory entry, and another access to write replaced data 

from the cache to the next memory level. 

In the write-through technique, when a memory location is written, it is written into the cache 

and the appropriate lower-level memory location at the same time. This type of caching provides 

worse performance than write-back, but is simpler to implement and has the advantage of 

internal consistency, because the cache is never out of sync with the memory. The write-back 

cache technique has been shown to be superior to write-through for reducing bus usage and 

memory accesses [11]. 

Many current cache configurations include some form of non-blocking mechanism. Miss-

status holding registers (MSHR) [14], write buffers [7], and victim buffers [8] are all 

mechanisms that provide storage where dirty cache lines can be written efficiently without 

requiring the processor to stall waiting for the writes to complete. The purpose of an MSHR is to 

merge pending cache misses to the same cache block into one transaction, therefore preventing 

subsequent references that occur during an in-process cache miss from generating additional 

reads to the memory hierarchy. When the line becomes available based on the initial cache miss, 

the MSHR responds to all pending loads. The write buffer is meant to hold cache lines that are 

being written to memory. It can hold a small number of lines, and it allows the processor to 

continue after a write without waiting for the memory operation to complete. The victim buffer 

holds a few recently evicted cache lines. If a read misses in the cache, but hits in the victim 

buffer, the line is moved back into the cache faster than with a normal miss. AMD refers to its 

write buffer as a victim buffer, so there is some conflict and confusion in terms. The eager write-

back technique [15] attempts to address the problem of clustered bus accesses caused by graphics 
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applications. The technique writes dirty cache blocks back to memory before they are evicted, 

using otherwise idle time on the bus and attempting to avoid clusters of bus usage. 

2.2. Microprocessor simulation 

The SimpleScalar Tool Set [1] is a widely used tool for microprocessor simulation and 

architectural modeling. The tool set consists of well-documented, open source tools for detailed 

modeling of microprocessors, and permits researchers to examine and analyze numerous aspects 

of processor execution. Using these tools, researchers can experiment with new architectures 

without incurring the expense and effort of developing new hardware. The base simulation 

system supports numerous configuration options to control aspects of the processor, execution 

cycles, and memory. In addition, the open source nature of the tools allows unlimited potential 

for enhancement by other researchers. The structure of the SimpleScalar simulator is show in 

Figure 1 [27]. 
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Figure 1: SimpleScalar Simulator Structure 

 

Simplescalar has been verified using four approaches [22]: micro-benchmark validation, in 

which a number of small programs were executed to test various parts of the machine, 

correlation with independent simulators, regression correlation with previous simulator releases, 

and code inspections. 

Memory hierarchy extensions [5] introduced into the base SimpleScalar tools support more 

extensive modeling and analysis of the cache and bus systems within a processor. These 

extensions support modeling of an arbitrary hierarchy of caches, associated buses, address 

translation, and translation look-aside buffers. A flexible configuration mechanism permits all 

aspects of the cache, bus, and memory parameters to be easily modified. The Sim-alpha [9] tools 

are based on SimpleScalar, and include the memory extensions. Sim-alpha provides an easily 
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expandable simulator of the Alpha 21264 processor [8]. The architecture of the Alpha 21264 is 

show in Figure 2 [8]. 

 
Figure 2: Alpha 21264 Architecture 

 

2.3. Simulation using SPEC CPU2006 Benchmarks 

The SPEC CPU2006 benchmark suite [21] is an industry-standard, CPU-intensive group of 

benchmarks meant to stress a system’s processor, memory subsystem, and compiler using 
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workloads developed from real user applications. Simulation using the SPEC CPU2006 

benchmarks on a cycle-accurate simulator such as SimpleScalar is difficult because of the time 

required to execute the simulations. One effective method of dealing with this problem is 

through the use of Simulation Points [19]. Simpoints permit execution of a representative subset 

of a program, and can be used to greatly reduce the time required to execute a simulation. Table 

1 shows the time required to execute the benchmarks during generation of simpoints for the 

benchmark suite, and Table 2 shows the speed-up that was obtained by using simpoints [10]. 

Table 1: Simulation Times of SPEC Benchmarks 

 

Table 2:Speed-up Using Simpoints 
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The simpoints method has been shown to product valid results. The cycles per instruction 

measured when using simpoints to simulate the SPEC CPU2006 benchmarks used here was 

within 5% of the full run values. Measurements of cache miss rates and DTLB miss rates were 

also within 5%. 

2.4. Protocols and hardware for secondary bus implementation 

Currently available serial line technologies may provide sufficient bandwidth for a secondary 

bus. The Inter-Chip USB specification [23] requires full speed operation of 12 Mb/sec, and 

contains future support for the high-speed mode of 480 Mb/sec. IEEE1394 [12] supports 400 

Mb/sec. Proprietary versions of the 802.11g wireless standard support up to 108Mb/sec, and the 

proposed 802.11n standard includes support for up to 600Mb/sec [24]. Several emerging 

technologies [20] may also serve as possible implementations. Inter-chip communication [6] 

creates a miniature wireless LAN on a chip, and may reach speeds of 100Gb/sec. Using 

inductive coupling between chips, speeds of 1.25Gb/sec have been achieved [16]. Alternatively, 

bus frequency sharing techniques such as CDMA [13] may allow the secondary bus signal to 

share the primary bus. 
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Chapter 3 

Analysis of Small Cache Systems with a Secondary Bus 

3.1. Introduction 

High performance processors use cache memory extensively to compensate for the speed 

difference between processors and main memory. Numerous advancements have improved the 

efficiency of cache memory usage, yet bottlenecks remain which prevent processors from 

executing at full speed. By introducing a secondary bus connecting the cache and main 

memories, and using that bus for cache write-backs, we may improve a fundamental bottleneck, 

namely the write-back latency [17]. The advantages of the additional bus are demonstrated using 

the Sim-alpha version of the SimpleScalar Tool Set.  Simulations show that using a secondary 

bus for cache write-back decreases the queuing delay experienced on the primary bus, therefore 

increasing the temporal determinacy in real-time environments.  

3.2. Background 

When a cache miss occurs, the processor must wait for data to be retrieved from main 

memory, placed into the cache, and transferred to the processor. In a write-back cache, a line 

must be evicted before this can occur. When the line that is chosen for eviction is dirty, it must 

be written to memory before the new line can be read. Various techniques have been developed 

in an attempt to decrease the time spent by the processor waiting for such cache processing to 

occur. 
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A secondary bus used for cache write-back addresses the issue of bus contention caused by 

writes to memory to remove dirty cache lines and reads to retrieve new cache lines. The 

secondary bus can be used in addition to existing non-blocking mechanisms and along with eager 

write-back to provide even further performance improvements. 

3.3. Secondary bus architecture 

A modified version of the Alpha 21264 architecture was created using the Sim-alpha 

simulator. The base configuration was modified to create an architecture containing a secondary 

bus. Sim-alpha was chosen as a simulation tool because it contains the memory extensions 

necessary to accurately model cache and bus activity. The base configuration contained two 

buses. The onboard bus connected the L1 cache to the L2 cache, and the primary bus connected 

the L2 cache to main memory. In the modified configuration, an additional, secondary bus was 

added to connect the L2 cache to main memory for use only for cache write-backs (see Figure 3). 

Since the new configuration allows both buses to access memory simultaneously, simple dual-

ported memory or some additional logic or buffer to allow two simultaneous accesses to memory 

is also required. 
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Level 1 Data Cache

Level 1 Instruction Cache

Level 2 Cache

onboard bus

Main Memory

Primary
bus

Secondary bus

 

Figure 3: Secondary Bus Architecture 
  

3.4. Simulation framework 

The parameters used for the simulations are shown in Tables 1 and 2. The parameters are 

similar to those of a modern microprocessor, within the limitations of the simulation 

environment, with the exception of the secondary bus, which is only eight bits wide. The 

bandwidth of the secondary bus was chosen to be much less than that of the primary bus as the 

lower bandwidth is sufficient and allows for a variety of possible implementations of the bus, 

such as a serial line or a wireless link. Miss status holding registers and victim buffers were 

included in the simulated environment. 

Table 3: Baseline Processor Configuration 
Processor 

Parameter 
Specification 

Core Frequency 2 GHz 

Level 1 Data Cache 4-way, 8192 sets, 4B line, virtually-indexed physically-
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tagged 

Level 1 Instruction 
Cache 

2-way, 8192 sets, 32B line, virtually-indexed physically-
tagged 

Level  2 Cache 4-way, 32768 sets, 32B line, physically-indexed physically-
tagged 

Onboard bus 64 bits wide,2 CPU cycles/bus cycle 

Primary bus 64 bits wide 5 CPU cycles/bus cycle 

Secondary bus 8 bits wide, 5 CPU cycles/bus cycle 

Victim buffer 8 entries 

MSHR 8 per cache 

 

Table 4: Bus Latencies 
Parameter Cycles in bus 

clocks 

Level 1 Instruction and Data 
cache 

3 

Level 2 Cache 18 

Onboard bus arbitration 4 

Primary bus arbitration 10 

Secondary bus arbitration 10 

 

3.5. Maximum speedup using free write-back 

In order to determine the maximum possible speedup that may be obtained by using a 

secondary bus for cache write-back, modifications to the simulator allowed the entire write-back 

process to be bypassed for the L2 cache. The modifications created a situation in which write-

backs from the L2 cache required no processor cycles and were therefore “free”. This free write-

back behavior represents an upper bound on the improvements possible when using the 
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secondary bus. A comparison of performance when using a secondary bus with free write-back 

demonstrates the efficiency of the secondary bus. 

3.6. Benchmarks 

The three benchmarks detailed in Table 5 were used for the simulations. The benchmarks 

include two forms of matrix manipulation: matrix transpose and scalar multiplication, and a 

simulation of a graphics engine. These benchmarks represent a cross-section of applications for 

which cache and bus usage is high, and for which an additional bus might provide performance 

gains. 

Table 5: Small Cache Benchmarks 
Benchmark Description 

matscalar multiplication of a scalar with a matrix 

mattrans matrix transpose 

minigeo the mini-geometry kernel described in [15] 

 

3.7. Simulation results and analysis 

The simulation results showed that the addition of a secondary bus for cache write-back 

could reduce the bus queuing delay and provide improved determinacy in real-time systems. An 

analysis of the bus usage and queuing delay improvement when using a secondary bus follows. 

3.7.1. Bus queuing delay 

Bus queuing delays can prove significant in real-time systems where unexpected latencies 

can cause hard deadlines to be missed. Significant changes in the usage of buses within the 

system were observed with the addition of the secondary bus. Decrease in the number of requests 
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on the primary bus (see Table 6) is attributable to the use of the secondary bus for cache write-

backs, since that was the only change. This decrease lead to a significant decrease in the number 

of cycles during which requests to the primary bus were queued (see Table 7) and decreased the 

queuing delay experienced by requests on the primary bus (see Table 8 and Figure 4). 

Table 6: Decrease in requests on system bus - small cache 

Benchmark 
Requests w/o 

secondary bus 
Requests with 

secondary bus % decrease 

matscalar 3,355,430 2,323,798 30.75% 

mattrans 1,515,039 1,104,512 27.10% 

minigeo 2,194,937 1,552,028 29.29% 

 

Table 7: Decrease in queued cycles - small cache 

Benchmark 
Cycles queued w/o 

secondary 
Cycles queued with 

secondary 
% 

decrease 

matscalar 58,109,468 883,571 98.48% 

mattrans 37,005,612 4,208,484 88.63% 

minigeo 62,802,508 9,534,934 84.82% 

 

Table 8: Decrease in queuing delay on system bus - small cache 

Benchmark Improvement with secondary bus Improvement free writeback 

matscalar 98.22% 98.22% 

matttans 84.40% 84.43% 

minigeo 78.52% 83.22% 
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Figure 4: Queuing delay on primary bus - small cache 

 

3.7.2. Secondary bus analysis  

The queuing delay on the secondary bus is shown in Table 9. In all cases the delay is small, 

and is much smaller than the queuing delay on the primary bus. This shows that the limited 

bandwidth of the secondary bus is sufficient to support the write-back traffic. 

Figure 5 illustrates the usage of the buses in the system during a cache miss that requires a 

write-back, with and without the secondary bus. When the secondary bus is not present, the 

write-back request must be queued until the read transfer is complete. If a subsequent request 

occurs during this time, it must also be queued, leaving the onboard bus idle waiting for the 

transaction to complete. When the secondary bus is present, the primary bus becomes free 

sooner, permitting a subsequent request to begin sooner and experience a shorter queuing delay, 

0 5 10 15 20 25 30 35

matscalar

mattrans

minigeo

Cycles

free writeback
with secondary bus
without secondary bus
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and also reducing the time during which the onboard bus must remain idle waiting for data to be 

returned. 

Table 9: Queuing delay on secondary bus - small cache (cycles) 

Benchmark Queuing delay on secondary bus 

matscalar 0.028 

matttans 0.785 

minigeo 0.139 

 

Primary bus

memory read

onboard bus

Primary bus

memory

onboard bus

Secondary bus

Without secondary bus

With secondary bus

Read Request - Addr Read data transfer
(writeback queued) writeback addr/data

Read Request - Addr

read

Read data transfer

writeback addr/data

Read Request - Addr Read dats transfer

Read Request - Addr Read dats transfer

 

Figure 5: Bus timing 
 

3.7.3. Write-back rates 

As expected, the most important value that affects the potential usefulness of a secondary bus 

for cache write-back is the write-back rate. Table 10 shows the L2 cache write-back rates 
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observed during the various benchmarks, where the write-back rate is defined as the ratio of the 

number of write-backs to the total number of accesses.  The secondary bus provides significant 

decrease in bus queuing delay for programs that have a sufficient cache write-back rate. 

Table 10: Write-back rates - small cache benchmarks 
Benchmark L2 write-back rate 

matscalar 24.2% 

mattrans 24.0% 

minigeo 42.0% 

 

3.8. Conclusions 

The results obtained during these simulations show a large reduction in the queuing delay 

experienced by requests to the primary bus when using a secondary bus for cache write-back.  

However, significant speedup results can only be obtained for applications such as graphics-

intensive applications in which the write-back rate is sufficient to require significant use of the 

secondary bus. The reduction in bus queuing delays could have a positive impact on real-time 

system temporal determinacy by reducing unexpected execution delays. Real-time and near real-

time embedded applications that depend on intense graphics processing and movement of large 

blocks of data, such as printer controllers and medical imaging that involve significant I/O, are 

prime candidates for applications of the secondary bus. 

Comparison of the secondary bus to the theoretical maximum speedup shown by the free 

write-back case show that the secondary bus provides decreases in queuing delay that are near 

the maximum possible. 
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Chapter 4 

Analysis of Large Cache Systems with a Secondary Bus 

4.1. Introduction 

In order to further demonstrate the feasibility of the secondary bus microarchitecture, it is 

necessary to show its advantages in a system with larger caches while executing industry-

standard benchmarks. The small cache secondary bus microarchitecture depended on dual-ported 

memory, which may add significant cost to the design. Adding a control mechanism in addition 

to the memory controller would eliminate the need for dual-ported memory and enable the 

secondary bus to snoop the main bus and initiate memory write-back when the later is not being 

used for memory operations or busy with I/O transactions between the CPU and the I/O devices. 

This additional control mechanism could be added for small cost. 

4.2. Architecture of the Secondary Bus 

The motivation behind the secondary bus architecture design is to first provide separate paths 

from write buffers to main memory so that stalls due to the buffer becoming full can be avoided 

[18]. Additionally, even during I/O transactions on the main bus, the secondary bus could be 

used as an alternate path to commit the dirty cache lines to the memory. The main memory is 

assumed to be a single port memory in this design, i.e. only one unit can access the memory at 

any point in time. The design of the secondary bus based architecture has been shown in Figure 4 

[4].   
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Figure 6: Large cache architecture with secondary bus 

 
 

As seen in Figure 6 [18] [25], the secondary bus supports the main bus during write-backs 

and I/O transactions. This is made possible by the secondary bus controller, which snoops the 

main bus and identifies bus cycles that are not involved in memory accesses. These cycles will 

be used to retire the dirty cache lines to the memory over the secondary bus. The control inputs 

to the secondary bus controller are made up of the main bus control lines that give information 

about the type of transaction happening on the bus. The signals ‘s1’ and ‘s2’ are sent in 

accordance with the states of the main bus to arbitrate accesses. A simple main bus state diagram 

is shown in Figure 7 [18]. 
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                        Address Strobe for I/O 

                   
              Operation completed 
 
                                                   Operation completed             
 

                                Address Strobe for Memory 
 
 
 

 

Figure 7: Simplified bus state diagram 
 

 In state T3 the main bus is idle and is waiting for an address strobe to move to the next 

state. If the address supplied is for an I/O operation, the main bus would move to T2. For the 

duration when the main bus is busy with I/O, it will be in T2 and upon completion of I/O will 

return to T3.  In state T1 the bus is busy with memory accesses. In states T2 and T3 write-back 

entries can be retired through the secondary bus. The controller is designed so that s1 in state T1 

is a connection-enabling signal and s2 is a disabling signal.   In states T2 and T3 the reverse is 

true.   

 There can be situations where the main bus state would change from T3 to T1 or from T2 

to T1 via T3 in the middle of a cache write-back commit via the secondary bus.  To handle this 

situation, the first option is to queue the main bus request until the write operation completes and 

the write-back buffer is empty.  The second option aborts the write-back and enables the main 

bus to access memory. This option of giving the main bus access priority was adopted in our 

design in order to not add to the queuing delay on the bus and for consistency with exiting 

T3 
Idle 
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T1 

Busy 
with 

Memory 
operations 

T2 

Busy 

with I/O 
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architectures.  Note that the state transitions of the secondary bus depend on the state of the main 

bus. 

The addition of the secondary bus and its bus controller adds minimal overhead to the 

motherboard and the memory controller hub respectively. The secondary bus is narrow (8-bits), 

of a smaller bandwidth, and is only used for write-backs. On average fewer than 30% of all 

memory accesses in the SPEC CPU2006 benchmarks are writes, so a narrow bus could provide 

ample bandwidth.  If the bandwidth of the secondary bus is adequate, our design ensures that the 

performance of a processor with the secondary bus will be no worse than one without.  The 

usefulness of the secondary bus depends on the amount of time the main bus spends in the states 

of T2 and T3.  Thus memory bound applications such as graphics-intensive applications and I/O 

bound applications such as database systems will see significant benefits. 

4.3. Simulation Speedup Using Simpoints 

The initial simulations using a small cache size were executed successfully on a Linux-based 

PC in a reasonable amount of time. When the cache size of the system was increased, and the 

SPEC CPU2006 benchmarks were used, the execution times became unacceptable. Execution of 

those benchmarks takes weeks or months of machine time [10], and there were several 

benchmarks to execute, each requiring multiple runs with varying system parameters. This 

problem was overcome by using the Simulation Points method [19] of only executing a small, 

representative subset of the entire benchmark. The SimPoint tool uses a profiling method called 

Basic Block Vectors to find blocks of code with similar execution behavior. The output of the 

SimPoint tool is a list of points to be simulated and their corresponding weights. Using those 

points, simulation time is greatly reduced. Errors with SimPoint have been shown to be always 
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less than 8.4%. The use of simpoints allowed the execution time of the simulations to be reduced 

from weeks to days. In addition, the simulations were executed on the Alabama Supercomputer. 

With this combination, each of the simulations could be executed within about two days, and the 

entire suite of benchmarks with all combinations could then be executed in a reasonable amount 

of time. 

4.4. SPEC CPU2006 Benchmarks 

The SPEC CPU2006 benchmark suite consists of 29 benchmarks (12 integer and 17 floating-

point). The SPEC benchmarks are real-world applications that have been modified to be easily 

portable and to minimize the effects of I/O on performance. The evolution of the SPEC 

benchmarks is shown in Figure 8 [11].  
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Figure 8: Evolution of the SPEC Benchmarks 
 

In order to execute the benchmarks on the Sim-alpha simulator, it was necessary to obtain 

Alpha binaries for the benchmarks, obtain the simpoints information for the benchmarks, and 

then successfully execute the tests on the simulator. In addition, those benchmarks that did not 

generate any cache write-backs did not exercise the secondary bus at all, and were therefore of 

no use in the evaluation. Alpha binaries for the benchmarks were obtained from Kenneth Hoste 



26 

 

of Ghent University in Belgium. The following benchmarks were not executed because they 

would not execute on the Alpha simulator: 

• 401.bzip 
• 445.gobmk 
• 453.povray 
• 456.hmmer 

 

The following benchmarks were not executed because simpoints were not available for 

those tests: 

• 403.gcc 
• 429.mfc 
• 454.calculix 
• 465.tonto 
• 470.lbm 
• 481.wrf 
• 483.xalanbmk 

 

The following benchmarks had no write-backs at all, and therefore were of no value to the 

evaluation: 

• 416.gamess 
• 444.namd 

 

The following benchmarks had very small write-back rates, and therefore very little speedup: 

• 400.perlbench 
• 435.gromacs 
• 458.jsend 
• 464.h264ref 
• 473.astar 

 

The remaining benchmarks, with their respective speedup values using the secondary bus 

microarchitecture, are shown below: 



27 

 

• 410.bwaves: 18.83% 
• 433.milc: 4.89% 
• 434.zeusmp: 7.79% 
• 436.cactusADM: 4.78% 
• 437.leslie3D: 2.89% 
• 447.dealII: 14.90% 
• 450.soplex: 17.57% 
• 459.gemsFTDT: 18.93% 
• 462.libquantum: 18.02% 
• 471.omnetp: 10.91% 
• 482.sphinx3: 13.61% 

 

Tables 9 and 10 summarize the simulation details for all of the SPEC CPU2006 benchmarks. 

Table 11: SPEC CPU2006 Integer Benchmarks 
400.perlbench: PERL 

programming language 
checkspam test 

Small write-back rate 
(0.53%) 

0.25% speedup 

 400.perlbench 
diffmail test 

Small write-back rate 
(0.03%) 

no speedup 

401.bzip: Compression. Would not execute on 
Alpha simulator. 

 

403.gcc: C compiler Simpoints not available.  
429.mcf: Combinatorial 

optimization.  
Simpoints not available.  

445.gobmk: Artificial 
intelligence: GO 

Would not execute on 
Alpha simulator 

 

456.hmmer: Search gene 
sequence 

Would not execute on 
Alpha simulator 

 

458.jseng: Artificial 
intelligence: chess 

Small write-back rate 
(0.63%) 

0.10% speedup 

462.libquantum: Physics: 
quantum computing 

36.42% write-back rate 18.02% speedup 

464.h264ref: Video 
compression 

Small write-back rate 
(0.27%) 

0.08% speedup 

471.omnetp Discrete event 
simulation 

16.82% write-back rate 10.91% speedup 

473.astar: Path-finding 
algorithm 

Small write-back rate 
(0.88%) 

0.42% speedup 

483.xalancbmk: XML 
processing 

Simpoints not available.  
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Table 12: SPEC CPU2006 floating-point benchmarks 
410.bwaves: Fluid 

dynamics 
45.16% write-back rate 18.83% speedup 

416.gamess: Quantum 
chemistry 

No write-backs  

433.milc: Physics: 
Quantum Chromodynamics 

44.84% write-back rate 4.89% speedup 

434.zeusmp: Physics/CFD 11.56% write-back rate 7.79% speedup 
435.gromacs: 

Biochemistry/Molecular 
dynamics 

Small write-back rate 
(1.84%) 

0.38% speedup 

436.cactusADM: 
Physics/general relativity 

26.85% write-back rate 4.78% speedup 

437.leslie3d: Fluid 
dynamics 

30.9% write-back rate 2.89% speedup 

444.namd: 
Biology/Molecular dynamics 

No write-backs  

447.dealII: Finite element 
analysis 

20.2% write-back rate 14.90% speedup 

450.soplex: Linear 
programming, optimization 

22.12% write-back rate 17.57% speedup 

453.povray:  Image ray-
tracing 

Will not execute on Alpha 
simulator 

 

454.calculix: Structural 
mechanics 

Simpoints not available  

459.GemsFDTD:  
Computational 
electromagnetics 

36.35% write-back rate 18.93% speedup 

465.tonto: Quantum 
chemistry 

Simpoints not available  

470.lbm: Fluid dynamics Simpoints not available  
481.wrf: Weather 

prediction 
Simpoints not available  

482.sphinx3: Speech 
recognition 

35.26% write-back rate 13.61% speedup 

 

4.5. Simulation Setup 

The usefulness of the secondary bus architecture was demonstrated using microprocessor 

simulation techniques. The simulation was again conducted using the SimAlpha simulator of the 

SimpleScalar tool set. The SPEC CPU 2006 benchmark suite was used for evaluating the design. 
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These benchmark programs were found to exercise the memory hierarchy better than SPEC 2000 

[10]. SimAlpha was used with the simpoints to simulate the programs at those critical points and 

the results were later averaged using specific weights for each of those simpoints. The 

specifications used for the simulation are given in Table 13 [18] [25]. The SimAlpha simulator 

was modified to incorporate the bus controller mechanism and a write-back buffer capable of 

holding 256 cache lines. The L2 cache used the write back technique for cache coherency and 

hence a write-back buffer was required for smaller write back latencies. The secondary bus was 

connected between the write-back buffer and the main memory. The bus controller, as mentioned 

in the design, regulates when the secondary bus may gain access to the memory while giving 

higher priority to the main bus. The write-back buffer was implemented in the simulator as an 

additional cache connected to the L2 cache. In addition, the simulator code was modified so that 

writes from the write-buffer to memory via the secondary bus did not occur until the write buffer 

was full, at which point all of the entries were written to memory in burst mode. The 

functionality of the write-back buffer is similar to that of a cache, therefore simulating it as a 

cache is an elegant way to include its functionality in the SimAlpha simulator. 

To further test the secondary bus architecture, an I/O injection mechanism was incorporated 

into the SimAlpha simulator code so that a given number of bytes could be injected into the bus 

at a user provided frequency. It was used for simulating the communication between the various 

devices connected to the chipset and the CPU. The bandwidth of the main bus used in the 

simulations was 4.8 GB/Second with quad data rate and hence I/O injection frequencies of 1.2 

GB/Sec and 1.8 GB/Sec are a good estimate of the amount of bandwidth used by I/O on the main 

bus. The L2 cache sizes that were chosen are comparable to the latest embedded processor 

specifications. 
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The simulations were run in three different modes: 

1. Zero I/O traffic, so that the main bus was used only by the processor to communicate 

with the memory via the controller for reading data and instruction blocks, and the 

secondary bus was used for the writing. Both the base and the secondary bus 

architectures were simulated. 

2. With an I/O traffic injection into the main bus at an injection frequency of 200 Bytes/100 

Cycles, which resulted in a bandwidth injection of 1.2 GB/Second. 

3. An injection frequency of 300 Bytes/100 Cycles was used to provide a bandwidth of 1.8 

GB/Second in the last case. 

Table 13: Large cache simulation parameters 
Processor Parameter Specifications 

Processor Speed 3 GHz 
Level 1 Data Cache 8 way, 32KB, virtual-index virtual-tag 

Level 1 Instruction Cache 8 way, 32KB, virtual-index virtual-tag 
Level 2 Cache 8 way, 2MB, physical-index physical-tag 

Number of MSHRs per Cache 8 
Write Mechanism for Level 1 Cache Victim Buffer, No Writeback Buffer 
Write Mechanism for Level 2 Cache Writeback Buffer, No Victim Buffer 

Main Bus (Front Side Bus) 
600MHz, 8B wide, 10 cycles of arbitration 

latency 

Secondary Bus 
600MHz, 1B wide, 10 cycles of arbitration 

latency 
 
The results obtained during the simulations were based on simulation methods that have been 

shown to be valid. The comparison of the results obtained using the secondary bus with those of 

free write-back verify that the secondary bus microarchitecture delivers results that are close to 

but never exceed the maximum obtainable results of free write-back. In addition, the lack of any 

change in the results for tests with zero write-backs show that, as expected, the addition of the 

secondary bus has no affect in that case. 
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4.6. Simulation Results and Analysis 

The results of the simulation demonstrate the ability of the secondary bus to improve 

performance. Most significantly, the queuing delay on the system bus is reduced. This reduction 

leads to improved performance in real-time systems, as well as improved overall system 

performance. In order to use the secondary bus, software programs must include write-backs 

from the level 2 cache to main memory. Table 14 shows the write-back rates of the SPEC 

CPU2006 benchmarks. 

Table 14: SPEC CPU2006 benchmark write-back rates 
Test Write-back Rate 
perlbench 0.53% 
bwaves  45.16% 
zeusmp  11.56% 
milc 44.84% 
gromacs  1.84% 
cactusADM 26.85% 
namd 0.00% 
deal 20.20% 
soplex 22.12% 
sjeng 0.63% 
GemsFDTD 36.35% 
libquantum 36.42% 
h264ref 0.27% 
omnetpp 16.82% 
astar_rivers 0.88% 
sphinx 35.26% 

 

In addition to the write-back rate, the overall usage of the cache by the benchmarks is important. 

Table 15 shows the number of accesses to the level-2 cache for each benchmark. 

Table 15: SPEC CPU2006 benchmark level-2 cache usage 
test L2 cache accesses 
perlbench  1295680 
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bwaves  209418624 
milc  427381376 
zeusmp  57956608 
gromacs  1948608 
cactusADM  861056000 
leslie  183522560 
deal  1759232 
soplex  239954496 
sjeng  1798656 
GemsFDTD  147450688 
libquantum  169901760 
h264ref  2355328 
omnetpp  133807744 
astar_rivers  65588480 
sphinx  132398080 

 

4.6.1. Queuing Delay 

When the bus is being used to service requests, any newly arriving requests must be queued.  

In real-time systems, these queuing delays can become significant, resulting in unexpected 

latencies and hard deadlines being missed. For instance, if an I/O device is requesting the use of 

the processor during a memory read/write it must wait until the main bus is free. 

The main bus in the simulations has a bandwidth of 4.8 GBs that was shared among the I/O 

traffic of around 1.2 GBs, the write-back traffic, and the read traffic. Table 16 and Figure 9 show 

the percentage queuing delay reduction achieved with the secondary bus against the base 

architecture for each of the SPEC programs [25]. Almost all of the programs showed great 

reduction in the queuing delays, with an average reduction of nearly 87% with no I/O traffic on 

the main bus. The presence of the secondary bus helped in making the main bus less prone to bus 

contention as the write traffic was diverted. Observe that the percentage reduction starts to 
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diminish as the I/O traffic becomes a larger portion of the main bus bandwidth. This is because 

the write traffic is now a smaller fraction of the total traffic between the CPU and the peripherals. 

Even in these conditions a reduction averaged to 80% and 77% during the two cases of I/O 

injected simulations. 

Table 16: Decrease in queuing delay - large cache 
test No I/O 1.2 GB/s I/O 1.8 GB/s I/O 
perlbench 8 7.90% 6.00% 
bwaves  98.11% 85.12% 77.63% 
milc  71.38% 68.10% 66.84% 
zeusmp  99.68% 94.15% 92.28% 
gromacs  95.34% 66.39% 61.95% 
cactusADM  87.88% 65.05% 61.47% 
leslie  88.80% 80.76% 79.50% 
deal  6.56% 1.92% 1.60% 
soplex  91.44% 69.74% 65.40% 
sjeng  98.20% 79.59% 77.32% 
GemsFDTD  97.03% 86.02% 82.47% 
libquantum  99.19% 84.71% 81.63% 
h264ref  94.96% 79.83% 75.39% 
omnetpp  98.62% 89.26% 86.44% 
astar_rivers  96.20% 86.60% 84.20% 
sphinx  98.02% 89.85% 86.26% 
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Figure 9: Decrease in queued cycles on system bus - large cache 

4.6.2.  Overall Speed-Up 

A comparison of the ‘cycles per instruction’ between the secondary bus architecture and the 

base architecture gives us the speed-up achieved. Table 17 and Figure 10 show the percentage 

speed-up achieved across a range of programs from the SPEC CPU 2006 benchmark suite. 

Table 17: Increase in cycles per instruction with secondary bus 
test No I/O 1.2GB/s I/O 1.8GB/s I/O 

perlbench 0.25% 0.79% 0.94% 
bwaves  18.83% 32.29% 32.81% 
milc  4.89% 6.29% 6.81% 
zeusmp  7.79% 18.77% 20.52% 
gromacs  0.38% 1.20% 1.44% 
cactusADM  4.78% 12.20% 13.83% 
leslie  2.89% 3.83% 4.27% 
deal  14.90% 18.47% 18.68% 
soplex  17.57% 24.62% 25.01% 
sjeng  0.10% 0.33% 0.32% 
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GemsFDTD  18.93% 30.12% 30.90% 
libquantum  18.02% 19.99% 20.07% 
h264ref  0.08% 0.19% 0.21% 
omnetpp  10.91% 20.67% 21.79% 
astar_rivers  0.42% 1.20% 1.44% 
sphinx  13.61% 29.12% 30.11% 
 

 
Figure 10: Percentage improvement with secondary bus 

In the absence of I/O traffic on the main bus, speed-ups of up to 19% were achieved due to 

the addition of the secondary bus. The main reason for the performance improvement is the 

offloading of the write traffic on the main bus onto the secondary bus, as well as the timing of 

the memory access.  With the presence of the secondary bus, the main bus never had to wait for 

the dirty write-back traffic to be written to the main memory whenever it requested data due to 

an L2 cache miss. In the presence of I/O traffic, further improvement was seen, with speed-ups 

of up to 33%. The secondary bus alleviates the performance degradation that normally happens 

on the main bus due to access contention by peripherals and memory. 
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Results also show that the speed-up depends on how much the program strains the memory 

hierarchy. Processors using smaller second level caches lead to higher number of cache misses 

and hence more write-backs. Thus programs having a very large working set could benefit 

compared to the ones using smaller caches and working sets such as gromacs, sjeng, and 

h264ref. The program namd did not have any write-backs to the memory and hence the 

architecture was never put to test during the simulations. Programs such as bwaves, zeusmp, 

gemsFDTD, and sphinx were highly write-back intensive with nearly 30% of the traffic on the 

main bus being write-back traffic [25].  
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Chapter 5 

Analysis of Real-Time System Performance with a Secondary Bus 

5.1. Introduction 

Worst-case execution time (WCET) is a measure of the longest time that a program could 

take to execute on a target hardware system. Measurement of the WCET is necessary in safety-

critical hard real-time systems to insure that critical system-dependent timing constraints are met. 

Examples of this type of system are brake control systems and flight controls. Additionally, 

numerous systems have soft real-time requirements that must meet real-time constraints during 

critical execution times, for example video processing systems and printers. 

Accurately estimating the WECT of a real-time system is difficult. The two chief 

methods for determining WCET are either static analysis of the software and underlying 

hardware, or actual execution of the software on the target hardware with a variety of inputs. 

WCET estimates attempt to find measurements that reflect the actual worst-case behavior of the 

system without overestimating. Underestimating the WCET will lead to a system that fails, and 

overestimates lead to wasted resources and over-designed systems. 

The underlying hardware architecture has a major impact on the WCET. Underlying 

architecture elements such as cache memory and instruction pipelining can lead to large 

variability in execution times. When the secondary bus microarchitecture is applied to real-time 

applications, it can deliver significant reductions in WCET. 
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5.2. New Measurement: Max Instruction Cycles 

In addition to original SimpleScalar measurements, two additional metrics were added to the 

Sim-alpha simulations. First, measurements were taken of the maximum number of cycles used 

by any instruction during the entire benchmark. A reduction in this number has a direct 

correlation to a reduction of the WCET of the benchmark. Table 18 and Figure 11 show the 

significant decrease in the maximum cycles used by any instruction for the SPEC CPU2006 

benchmarks. The reductions of up to 93% show that the addition of the secondary bus has a 

major impact on the WCET of the benchmark tests. 

Table 18: Max Cycles Used by Any Instruction 
Test Original Max Secondary Bus Max Change 
perlbench 14685 926 93.69% 
bwaves  14575 2024 86.11% 
milc 562 372 33.81% 
zeusmp  15247 2090 86.29% 
gromacs  14836 1098 92.60% 
cactusADM  15370 3984 74.08% 
leslie 674 464 31.16% 
deal  14410 1047 92.73% 
soplex  15732 1762 88.80% 
sjeng  15192 1542 89.85% 
GemsFDTD  15180 1880 87.62% 
libquantum  14817 1002 93.24% 
h264ref  15192 2080 86.31% 
omnetpp  14860 1118 92.48% 
astar_rivers  15080 1210 91.98% 
sphinx  15190 1224 91.94% 
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Figure 11: Change in Max Cycles 
  

With I/O injection, the contention and hence the queuing delay on the main bus increased 

significantly and therefore instructions resulting in cache misses took more cycles than without 

I/O. As seen in Table 19, Table 20, Figure 12, and Figure 13, the reduction in the maximum 

cycles per instruction is still significant when I/O is present. 

Table 19: Max Instruction Cycles with 1.2GB/s I/O 
Test Original Max Secondary Bus 

Max 
Max Cycles 

Change 
perlbench  16404 4035 75.40% 
bwaves  25300 4264 83.15% 
milc  962 465 51.66% 
zeusmp  28868 6563 77.27% 
gromacs  16119 4359 72.96% 
cactusADM  27758 9964 64.10% 
leslie  760 505 33.55% 
deal  14970 4426 70.43% 
soplex  37097 7418 80.00% 
sjeng  27652 5679 79.46% 
GemsFDTD  27600 25090 9.09% 
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libquantum  26050 3312 87.29% 
h264ref  27582 4820 82.52% 
omnetpp  25191 4179 83.41% 
astar_rivers  28175 4560 83.82% 
sphinx  27640 5110 81.51% 

 

 

Figure 12: Change in max instructions with 1.2GB/s I/O 
 

Table 20: Max Instructions with 1.8GB/s I/O 
Test Original Max Secondary Bus 

Max 
Max Cycles 

Change 
perlbench  18295 4835 73.57% 
bwaves  27002 4574 83.06% 
milc  1127 425 62.29% 
zeusmp  30238 7503 75.19% 
gromacs  18969 5114 73.04% 
cactusADM  29380 9279 68.42% 
deal  15085 5446 63.90% 
soplex  32432 9003 72.24% 
sjeng  29067 7134 75.46% 
GemsFDTD  29095 6660 77.11% 
libquantum  27485 4077 85.17% 
h264ref  29067 6041 79.22% 
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omnetpp  29139 5417 81.41% 
astar_rivers  29865 5715 80.86% 
sphinx  28645 6115 78.65% 
 

 

Figure 13: Change in Max Instructions with 1.8GB/s I/O 
 

While there is no guarantee that the instruction requiring the maximum number of execution 

cycles is a part of the WCET path, a reduction in the max execution cycles is an obvious 

improvement in an attempt to reduce the WCET. The secondary bus delivers reductions of an 

order of magnitude in max execution cycles over the original system. This reduction, along with 

those measured in the next section, lead to a significant gain for hard real-time systems. 

5.3. New Measurement: Instructions requiring more than 1000 cycles 

In addition to the maximum number of cycles required by any instruction, the number of 

instructions per benchmark requiring more than 1000 cycles to execute was also measured. 

Although a majority of the simulated 100 million instructions took only 100 to 200 cycles to 
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execute, there were instructions that took more than 1000 cycles due to cache misses. These 

additional cycles were mainly due to the latencies of memory accesses and main bus contention 

[25]. Even without I/O traffic, the base architecture was severely impacted by the contention 

between write-backs and reads on the main bus compared to the secondary bus architecture.  

With the secondary bus there was an average 97% decrease in the number of instructions taking 

more than 1000 cycles across the benchmark suite. This measure is also linked to the WCET, and 

the reduction in this metric shown with the addition of the secondary bus further demonstrates its 

ability to reduce the WCET in real-time systems. Table 21 and Figure 14 show the large decrease 

in the number of instructions requiring more than 1000 cycles in the SPEC benchmarks. Notice 

that the milc and lesie tests did not have any instructions that required more than 1000 cycles in 

the original setup, so they are not included in the table. When the secondary bus is present, the 

instructions requiring more than 1000 cycles is reduced by 100% in several of the benchmarks. 

Table 21: Instruction using > 1000 cycles 
Test Original insn > 1000 Secondary Bus inst > 1000 Change 
perlbench 64.93 0.00 100.00% 
bwaves  6186.40 0.74 99.99% 
zeusmp  1655.53 13.61 99.18% 
gromacs  71.52 0.01 99.99% 
cactusADM  1000.91 2.00 99.80% 
deal  4946.94 3.56 99.93% 
soplex  7177.96 639.41 91.09% 
sjeng  23.99 2.92 87.85% 
GemsFDTD  5417.60 7.52 99.86% 
libquantum  6201.98 0.08 100.00% 
h264ref  18.96 4.37 76.93% 
omnetpp  3390.06 0.15 100.00% 
astar_rivers  91.98 0.81 99.12% 
sphinx  3591.36 16.25 99.55% 
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Figure 14: Change in instructions > 1000 cycles 
 

When I/O is present, the reduction is also significant, as shown in Table 22, Table 23, Figure 

15, and Figure 16. This decrease in the number of such time consuming instructions was more 

significant compared to the case where the I/O traffic was absent, which explains the increased 

speed-up with I/O injection as well. The results seen by measuring these two metrics indicate 

that the secondary bus microarchitecture is an excellent choice for real-time systems. 

Table 22: Instructions > 1000 cycles with 1.2GB/s I/O 
Test Original insn > 

1000 
Secondary Bus inst > 

1000 
Change 

perlbench 536.62 113.48 78.85% 
bwaves  81290.82 17892.46 77.99% 
zeusmp  22265.92 8565.09 61.53% 
gromacs  546.07 23.76 95.65% 
cactusADM  23282.93 19176.33 17.64% 
deal  54567.71 38.94 99.93% 
soplex  210101.78 158631.79 24.50% 
sjeng  141.72 41.33 70.84% 
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GemsFDTD  105763.27 57626.26 45.51% 
libquantum  50477.19 27.64 99.95% 
h264ref  169.24 84.01 50.36% 
omnetpp  43065.19 12517.53 70.93% 
astar_rivers  656.21 146.00 77.75% 
sphinx  32724.39 870.50 97.34% 
 

 

Figure 15: Instructions > 1000 cycles with 1.2GB/s I/O 
 

Table 23: Instructions > 1000 cycles with 1.8GB/s I/O 
Test Original insn > 

1000 
Secondary Bus inst > 

1000 
Change 

perlbench 729.09 202.87 72.17% 
bwaves  165052.12 91615.23 44.49% 
zeusmp  31779.34 15193.67 52.19% 
gromacs  745.82 59.56 92.01% 
cactusADM  27643.48 22485.62 18.66% 
deal  80185.21 1249.17 98.44% 
soplex  317720.40 263260.83 17.14% 
sjeng  177.41 62.76 64.62% 
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GemsFDTD  158155.37 101660.01 35.72% 
libquantum  66725.11 47.20 99.93% 
h264ref  244.45 144.03 41.08% 
omnetpp  61919.20 22989.39 62.87% 
astar_rivers  817.24 183.42 77.56% 
sphinx  42519.00 1457.06 96.57% 
 

 

Figure 16: Instructions > 1000 cycles with 1.8GB/s I/O 
 

 The difficulty inherent in measuring WCET in any system, and the necessity to couple a 

real-time system with a specific microarchitecture in order to get accurate measurements mean 

that significant testing will be required to prove the advantages of the secondary bus 

microarchitecture. However, the significant reduction provided by the secondary bus 

microarchitecture in instructions requiring more that 1000 cycles to execute and in maximum 

cycles used by any instruction demonstrate its impact in reducing the cycles required for any 
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sequence of instructions, including those that are included in the WCET path. Since the purpose 

of measuring the WCET is to guarantee that the timing constraints of the system are met, the 

most important measurement in a particular system is to guarantee that the absolute maximum 

execution times of the time-critical code segments are less that the required values. An additional 

advantage of the secondary bus architecture is to reduce the uncertainty and improve the 

predictability in execution times when using cache memories. This improvement can allow real-

time system designers to take advantage of improved cache performance without risking missed 

timing constraints due to erratic cache-induce behavior.  

5.4. Details of SPEC CPU2006 benchmark results 

The function of each of the SPEC CPU2006 benchmarks used in the simulations is 

described below [21], along with details of the simulation results obtained with each test. The 

results show that the overall system speed-up is highest when the write-back rate is high and the 

use of the L2 cache is moderate. When the L2 cache usage goes up, the low bandwidth of the 

secondary bus does not permit additional speed-up. Also, the addition of the secondary bus to the 

system decreased memory latencies even when the write-back rate was small, leading to 

improved real-time performance in all cases. 

5.4.1.  400.pearlbench 

400.perlbench is a slimmed-down version of the popular scripting language Perl v5.8.7 

with most of the OS-specific features removed. In addition to the core interpreter, the following 

third-party modules are used: SpamAssassin v2.61, Digest-MD5 v2.33, HTML-Parser v3.35, 

MHonArc v2.6.8, IO-stringy v1.205, MailTools v1.60, and TimeDate v1.16. The primary 
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component of the workload is the Open Source spam checking software SpamAssassin. 

SpamAssassin is used to score a couple of known corpora of both spam and ham (non-spam), as 

well as a sampling of mail generated from a set of random components. It was heavily patched to 

avoid doing file I/O. 

The write-back rate of less than 1% for this benchmark lead to an overall speed-up of less 

than 1%. The small usage of the secondary bus was, however, enough to reduce the number of 

queued cycles on the system bus by 69% when no I/O was present, 8% with 1.2GB/s of I/O, and 

6% with 1.8GB/s of I/O. The maximum number of cycles used was reduced by 95%, 75%, and 

74%, and the number of instructions requiring more than 1000 cycles was reduced by 100%, 

79%, and 72%. This test is a good example of the ability of the secondary bus microarchitecture 

to improve real-time performance even when overall system performance is not affected. 

5.4.2. 410.bwaves 

410.bwaves numerically simulates blast waves in three-dimensional transonic transient 

laminar viscous flow.  The algorithm implemented is an un-factored solver for the implicit 

solution of the compressible Navier-Stokes equations using the Bi-CGstab algorithm, which 

solves systems of non-symmetric linear equations iteratively. The initial configuration of the 

blast waves problem consists of a high pressure and density region at the center of a cubic cell of 

a periodic lattice, with low pressure and density elsewhere. Periodic boundary conditions are 

applied to the array of cubic cells forming an infinite network. Initially, the high-pressure volume 

begins to expand in the radial direction as classical shock waves. At the same time, the expansion 

waves move to fill the void at the center of the cubic cell. When the expanding flow reaches the 

boundaries, it collides with its periodic images from other cells, thus creating a complex structure 
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of interfering nonlinear waves. These processes create a nonlinear damped periodic system with 

energy being dissipated in time. Finally, the system will come to an equilibrium and steady state. 

This test had the largest write-back rate at 45%, leading to an overall speed-up of 19% 

with no I/O, 32% with 1.2GB/s of I/O, and 33% with 18.GB/s of I/O. The queuing delay on the 

system bus was reduced by 98%, 85%, and 78% for the three cases. The maximum number of 

cycles used was reduced by 86%, 83%, and 83%, and the number of instructions requiring more 

than 1000 cycles was reduced by 100%, 78%, and 44%. This test demonstrated the usefulness of 

the secondary bus for applications with high write-back rates. 

5.4.3. 433.milc 

The MILC Code is a set of codes developed by the MIMD Lattice Computation (MILC) 

collaboration for doing simulations of four-dimensional lattice gauge theory on MIMD parallel 

machines, and is used for millions of node hours at DOE and NSF supercomputer centers. 

433.milc in SPEC CPU2006 uses the serial version of the su3imp program. The single processor 

version of this application is important and relevant, because parallel performance depends on 

good single processor performance. The program generates a gauge field, and is used in lattice 

gauge theory applications involving dynamical quarks. Lattice gauge theory involves the study 

of some of the fundamental constituents of matter, namely quarks and gluons. 

This test has a 45% write-back rate, but the overall speed-up obtained with the secondary 

bus was only 5% with no I/O, 6% with 1.2GB/s of I/O, and 7% with 1.8GB/s of I/O. The small 

cycles per instruction of the base system… The queuing delay on the system bus was reduced by 

71%, 68%, and 67% for the three cases. The maximum number of instructions used was reduced 

by 34%, 52%, and 62%. The number of instructions requiring more than 1000 cycles was not 



49 

 

affected, since this test did not have any instructions requiring more than 1000 cycles in the base 

architecture. 

5.4.4. 434.zeusmp 

434.zeusmp is based on ZEUS-MP, a computational fluid dynamics code developed at 

the Laboratory for Computational Astrophysics (NCSA, University of Illinois at Urbana-

Champaign) for the simulation of astrophysical phenomena. ZEUS-MP solves problems in three 

spatial dimensions with a wide variety of boundary conditions. The program solves the equations 

of ideal (non-resistive), non-relativistic, hydrodynamics and magnetohydrodynamics, including 

externally applied gravitational fields and self-gravity. The physical problem solved in SPEC 

CPU2006 is a 3-D blastwave simulated with the presence of a uniform magnetic field along the 

x-direction. The original ZEUS-MP is based on ZEUS-3D and parallelized using the MPI 

message-passing library; for SPEC CPU2006, the MPI calls have been removed to create the 

single processor version 434.zeusmp. 

This test has a 12% write-back rate, and the overall speed-up with the secondary bus was 

8% with no I/O, 19% with 1.2GB/s of I/O, and 21% with 1.8GB/s of I/O. These speed-up values 

are consistent with the relatively small number of write-backs and subsequent use of the 

secondary bus. The queuing delay on the system bus was reduced by 99%, 94%, and 92% for the 

three I/O variations. The maximum number of cycles used was reduced by 86%, 77%, and 75%, 

and the number of instructions requiring more than 1000 cycles was reduced by 99%, 62%, and 

52%. 
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5.4.5. 435.gromacs 

435.gromacs is derived from GROMACS, a versatile package that performs molecular 

dynamics by simulating the Newtonian equations of motion for systems with hundreds to 

millions of particles. Although it is primarily designed for biochemical molecules such as 

proteins and lipids that have many complicated bonded interactions, GROMACS is also 

extremely fast at calculating the non-bonded interactions that usually dominate the simulation 

cost. Therefore, many groups are also using it for research on non-biological systems, such as 

polymers. The benchmark version performs a simulation of the protein Lysozyme in a solution 

of water and ions. The structure of a protein is normally determined by experimental techniques 

such as X-ray crystallography of NMR spectroscopy. By simulating the atomic motions of these 

structures, one can gain significant understanding of protein dynamics and function, and, in some 

cases, it might even be possible to predict the structure of new proteins. A dodecahedron-shaped 

box is used to reduce the amount of solvent water, but there are still 23179 atoms in the system. 

The simulation time is completely dominated by the inner loops where the non-bonded Lennard-

Jones and Coulomb interactions are calculated between atoms that are closer than 1.4 nm in 

space. 

This test has a write-back rate of less than 2%, leading to an overall speed-up of less that 

1% with no I/O, and just over 1% when I/O was present. The queuing delay on the system bus 

was reduced by 95% when I/O was not present, 66% with 1.2GB/s of I/O, and 62% with 1.8GB/s 

of I/O. The maximum number of cycles was reduced by 93% with no I/O, and 73% when I/O 

was present. The number of instructions requiring more than 1000 cycles was reduced by 100%, 
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96%, and 92% for the three cases. This test indicates once again the improvements given by the 

secondary bus even when it not used extensively. 

5.4.6. 436.cactusADM 

CactusADM is a combination of Cactus, an open source problem-solving environment, 

and BenchADM, a computational kernel representative of many applications in numerical 

relativity. CactusADM solves the Einstein evolution equations, which describe how space-time 

curves in response to its matter content, and are a set of ten-coupled nonlinear partial differential 

equations, in their standard ADM 3+1 formulation. 

This test has a 27% write-back rate. An overall speed-up of 5% with no I/O present, 12% 

with 1.2GB/s of I/O, and 14% with 1.8GB/s of I/O was seen with the secondary bus 

microarchitecture. The queuing delay on the system bus was reduced by 88%, 65%, and 61%. 

The maximum number of cycles used was reduced by 74%, 64%, and 68%. The number of 

instructions requiring more than 1000 cycles was reduced by 99%, 18%, and 19%. 

5.4.7. 437.leslie3d 

437.leslie3d is derived from LESlie3d (Large-Eddy Simulations with Linear-Eddy Model 

in 3D), a research-level Computational Fluid Dynamics (CFD) code. It is the primary solver used 

to investigate a wide array of turbulence phenomena such as mixing, combustion, acoustics and 

general fluid mechanics. For CPU2006, the program was set up to solve a test problem that 

represents a subset of such flows, namely the temporal mixing layer. This type of flow occurs in 

the mixing regions of all combustors that employ fuel injection. LESlie3d uses a strongly-

conservative, finite-volume algorithm with the MacCormack Predictor-Corrector time 
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integration scheme. The accuracy is fourth-order spatially and second-order temporally. The 

SPEC version performs limited file I/O to isolate the workload to CPU and memory subsystems. 

The write-back rate for this test is 31%. The overall speed-up with the secondary bus is 

only 3% with no I/O and 4% when I/O is present. The queuing delay on the system bus was 

reduced by 89% when no I/O was present, 81% with 1.2GB/s of I/O, and 79% with 1.8 GB/s of 

I/O. The maximum number of cycles was reduced by 31%, 34%, and 35% for the three cases. 

The number of instructions requiring more than 1000 cycles was not affected, since this test did 

not have any instructions requiring more than 1000 cycles in the base architecture. 

5.4.8. 447.dealII 

 447.dealII uses a C++ program library targeted at adaptive finite elements and error 

estimation. The library uses state-of-the-art programming techniques of the C++ programming 

language, including the Boost library. It offers a modern interface to the complex data structures 

and algorithms and enables use of a variety of finite elements in one, two, and three space 

dimensions, as well as time-dependent problems. The deal.II library provides the application 

programmer with grid handling and refinement, handling of degrees of freedom, input of meshes 

and output of results in graphics formats. Also, support for several space dimensions at once is 

included in a way that allows programs to be independent of the space dimension, without 

unreasonable penalties on run-time and memory consumption. The test case for the benchmark 

version, 447.dealII, solves an equation (a Helmholtz-type equation with non-constant 

coefficients) that is at the heart of solvers for a wide variety of applications. For example, solvers 

for incompressible fluid flow, static or time-harmonic electromagnetics, static and quasi-static 

elasto-plasticity, general relativity, and implicit time stepping schemes for seismic, acoustic, and 
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electromagnetic applications spend most of their computing time solving one form or other of 

this equation. The code uses modern adaptive methods based on duality weighted error estimates 

to generate optimal meshes. The equation is solved in 3d. 

This test has a 20% write-back rate, and the secondary bus provides an overall system 

speed-up of 15% when no I/O is present, 18% with 1.2GB/s of I/O, and 19% with 1.8 GB/s of 

I/O. The queuing delay on the secondary bus was reduced by 7% without I/O and 2% when I/O 

was present, giving this test the smallest change in that metric. The maximum number of cycles 

was reduced by 93%, 70%, and 64% for the three cases. The number of cycles requiring more 

than 1000 cycles to execute was reduced by 99%, 99%, and 98%. 

5.4.9. 450.soplex 

450.soplex is based on SoPlex Version 1.2.1, which solves a linear program using the 

Simplex algorithm. The LP is given as a sparse m by n matrix A, together with a right hand side 

vector b of dimension m and an objective function coefficient vector c of dimension n. In 

general, the problem is to find the vector x to: 

minimize  c'x                                                         

subject to Ax  <= b                                               

with        x  >= 0 .                                              

In practice, x may also have upper bounds and the A(i,.)x <= b(i) constraints could also 

be greater-than-or-equal-to constraints or equality constraints (where A(i,.) is row i of the matrix 

A). Note that the matrix A is rather sparse in practice. Therefore SoPlex, like most other 

implementations of the simplex algorithm, employs algorithms for sparse linear algebra, in 
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particular a sparse LU-Factorization and appropriate solving routines for the resulting triangular 

equation systems. 

This test has a 22% write-back rate. The secondary bus generated an 18% speed-up with 

no I/O and 25% when I/O was present. The system bus queuing delay was reduced by 91% when 

no I/O was present, 70% for 1.2GB/s of I/O, and 65% for 1.8GB/s of I/O. The maximum number 

of cycles used by any instruction was reduced by 89%, 80%, and 72% for the three cases. The 

number of instructions requiring more than 1000 cycles was reduced by 91%, 24%, and 17%. 

5.4.10. 458.jseng 

458.sjeng is based on Sjeng 11.2, a program that plays chess and several chess variants. It 

attempts to find the best move via a combination of alpha-beta or priority proof number tree 

searches, advanced move ordering, positional evaluation and heuristic forward pruning. 

Practically, it will explore the tree of variations resulting from a given position to a given base 

depth, extending interesting variations but discarding doubtful or irrelevant ones. From this tree 

the optimal line of play for both players is determined, as well as a score reflecting the balance of 

power between the two. The SPEC version is an enhanced version of the free Sjeng 11.2 

program, modified to be more portable and more accurately reflect the workload of current 

professional programs. 

The write-back rate for this test was very small (less than 1%), with a corresponding 

overall system speed-up of less than 1%. The queuing delay on the system bus was reduced by 

98%, 80%, and 77%. The maximum number of cycles was reduced by 90%, 79%, and 75%. The 

number of cycles requiring more than 1000 cycles was reduced by 88%, 71%, and 65%. 
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5.4.11. 459.GemsFDTD 

GemsFDTD solves the Maxwell equations in 3D in the time domain using the finite-

difference time-domain (FDTD) method. The radar cross section (RCS) of a perfectly 

conducting (PEC) object is computed. GemsFDTD is a subset of the code GemsTD developed in 

the General ElectroMagnetic Solvers (GEMS) project. The code consists of three steps, 

initialization, time stepping and post-processing. More than 99% of the time is spent in the time 

stepping. The core of the FDTD method is second-order accurate central-difference 

approximations of the Faraday's and Ampere's laws. These central-differences are employed on a 

staggered Cartesian grid resulting in an explicit finite-difference method. An incident plane wave 

is generated using so-called Huygens' surfaces. This means that the computational domain is 

split into a total-field part and a scattered field part, where the scattered field part surrounds the 

total-field part. The computational domain is truncated by an absorbing layer in order to 

minimize the artificial reflections at the boundary. The Uni-axial perfectly matched layer 

(UPML) by Gedney is used here. A time-domain near-to-far-field transformation computes the 

RCS according to the Martin and Pettersson. 

This test has a large write-back rate of 36%. The overall system speed-up was 19% with 

no I/O, 30% with 1.2GB/s of I/O, and 31% with 1.8GB/s of I/O. The system bus queuing delay 

was reduced by 97%, 86%, and 82% for the three cases. The maximum number of cycles was 

reduced by 88%, 80%, and 77%. The number of instructions requiring more than 1000 cycles 

was reduced by 99%, 46%, and 36%. 
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5.4.12. 462.libquantum 

libquantum is a library for the simulation of a quantum computer. Quantum computers 

are based on the principles of quantum mechanics and can solve certain computationally hard 

tasks in polynomial time. In 1994, Peter Shor discovered a polynomial-time algorithm for the 

factorization of numbers, a problem of particular interest for cryptanalysis, as the widely used 

RSA cryptosystem depends on prime factorization being a problem only to be solvable in 

exponential time. An implementation of Shor's factorization algorithm is included in libquantum. 

libquantum provides a structure for representing a quantum register and some elementary gates. 

Measurements can be used to extract information from the system. Additionally, libquantum 

offers the simulation of decoherence, the most important obstacle in building practical quantum 

computers. It is thus not only possible to simulate any quantum algorithm, but also to develop 

quantum error correction algorithms. As libquantum allows you to add new gates, it can easily be 

extended to fit the ongoing research, e.g. it has been deployed to analyze quantum cryptography. 

The write-back rate of 36% made good use of the secondary bus and lead to an overall 

speed-up of 18% with no I/O and 20% when I/O was present. The queuing delay on the system 

bus was reduced by 99%, 84%, and 82%. The maximum number of cycles used was reduced by 

93% 87%, and 85%, and the number of instructions using more than 1000 cycles was reduced to 

nearly zero in all three cases. 

5.4.13. 464.h264ref 

464.h264ref is a reference implementation of H.264/AVC (Advanced Video Coding), the 

latest state-of-the-art video compression standard. This standard replaces the currently widely 
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used MPEG-2 standard, and is being applied for applications such as the next-generation DVDs 

(Blu-ray and HD DVD) and video broadcasting. The 464.h264ref source code, which is part of 

SPEC CPU2006, is based on version 9.3 of the h264avc reference implementation downloaded 

from Karsten Sühring's website. The original sources have been modified to ensure portability, 

validation, and fairness across multiple hardware and software platforms.  

The write-back rate of less than 1% lead to an overall speed-up of less than 1%. The 

queuing delay on the system bus was reduced by 95% with no I/O, 80% with 1.2GB/s of I/O, and 

75% with 1.8GB/s of I/O. The maximum number of cycles used was reduced by 86%, 83%, and 

79%. The number of instructions requiring more than 1000 cycles was reduced by 77%, 50%, 

and 41%. 

5.4.14. 471.omnetp 

This benchmark performs discrete event simulation of a large Ethernet network, based on 

the OMNeT++ discrete event simulation system (www.omnetpp.org). OMNeT++'s primary 

application area is the simulation of communication networks, but its generic and flexible 

architecture allows for its use in other areas such as the simulation of IT systems, queuing 

networks, hardware architectures or business processes as well.  For the reference workload, the 

simulated network models a large Ethernet campus backbone, with several smaller LANs of 

various sizes hanging off each backbone switch. The model contains altogether about 8000 

computers (hosts), and 900 switches and hubs. It mixes all kinds of Ethernet technology: Gigabit 

Ethernet, 100Mb full duplex, 100Mb half duplex, 10Mb UTP, 10Mb bus ("thin Ethernet"), 

switched hubs, repeating hubs. 
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This test’s 17% write-back rate led to an 11% overall speed-up with no I/O, 21% with 

1.2GB/s of I/O, and 22% with 1.8 GB/s of I/O. The system bus queuing delay was reduced by 

99%, 89%, and 86% for the three cases. The maximum number of cycles used was reduced by 

92%, 83%, and 81%, and the number of instructions requiring more than 1000 cycles was 

reduced by 100%, 71%, and 63%. 

5.4.15. 471.astar 

471.astar is derived from a portable 2D path-finding library that is used in game AI. This 

library implements three different path-finding algorithms: First is the well known A* algorithm 

for maps with passable and non-passable terrain types. Second is a modification of the A* path 

finding algorithm for maps with different terrain types and different move speed. Third is an 

implementation of A* algorithm for graphs that is formed by map regions with neighborhood 

relationship. The library also includes pseudo-intellectual functions for map region 

determination. 

The write-back rate of this test was very small (less than 1%), leading to an overall 

speed-up with the secondary bus of less than 1% with no I/O, and just over 1% when I/O was 

present. The queuing delay on the system bus was reduced by 96%, 87%, and 84% for the three 

cases. The maximum number of cycles used was reduced by 92%, 84%, and 81%. The number 

of instructions requiring more than 1000 cycles was reduced by 99% with no I/O and 78% with 

I/O. 
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5.4.16. 482.sphinx3 

Sphinx-3 is a widely known speech recognition system from Carnegie Mellon University. 

CMU supplies a program known as livepretend, which decodes utterances in batch mode, but 

otherwise operates as if it were decoding a live human. In particular, it starts from raw audio, not 

from an intermediate format. Although in real life I/O efficiency is important to any speech 

recognition system, the SPEC version concentrates on the CPU-intensive portions of the task. 

This test has a large write-back rate of 35%. The overall system speed-up using the 

secondary bus is 14% when I/O is not present, 29% with 1.2GB/s of I/O, and 30% with 1.8GB/s 

of I/O. The queuing delay on the system bus was reduced by 98%, 90%, and 86% in the three 

cases. The maximum number of cycles used was reduced by 92%, 82%, and 79% for the three 

cases, and the number of instructions requiring more than 1000 cycles was reduced by 99% with 

no I/O and 97% when I/O was present.  
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Chapter 6 

Analysis of Power Consumption with a Secondary Bus 

6.1. Introduction 

In embedded and real-time processing systems and increasingly in higher-end systems, 

power consumption is often as important as performance. Modern embedded devices require low 

power in order to improve battery life and increase product reliability. Assuming a goal of 

obtaining minimum power at a given performance level, the secondary bus microarchitecture has 

clear benefits when applied to systems that require low energy consumption. The single most 

efficient method of reducing the power consumption of a processor is to reduce the voltage [26]. 

A reduction in voltage leads to a reduction in frequency. The increase in instructions per cycle 

measured when the secondary bus is present shows that when the secondary bus is used, a low-

power system may reduce its clock rate to reduce power while still maintaining a high level of 

processing power. By reducing the voltage along with the clock rate, energy consumption is 

reduced. This makes the secondary bus microarchitecture a good choice for low-power systems. 

6.2. Instructions per Cycle Analysis 

The instructions per cycle that were measured for the SPEC CPU2006 benchmarks are 

shown in Table 24 and Figure 17, and show an increase in the IPC of up to 18%. 

Table 24: Instructions per Cycle 
Test Original 

IPC 
Secondary Bus IPC IPC 

Change 
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perlbench 0.32 0.32 0.25% 
bwaves  0.22 0.27 18.61% 
milc  0.37 0.39 4.80% 
zeusmp  0.35 0.38 6.96% 
gromacs  0.42 0.42 0.36% 
cactusADM  0.38 0.40 4.77% 
leslie  0.40 0.41 2.87% 
deal  0.27 0.29 7.82% 
soplex  0.20 0.24 16.47% 
sjeng  0.38 0.38 0.05% 
GemsFDTD  0.25 0.31 18.54% 
libquantum  0.23 0.27 16.27% 
h264ref  0.34 0.35 0.08% 
omnetpp  0.24 0.26 10.83% 
astar_rivers  0.39 0.39 0.31% 
sphinx  0.28 0.32 13.59% 
 

 

Figure 17: Change in Instructions per Cycle 
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When I/O is included, the secondary bus microarchitecture once again shows improvements. 

Table 25 and Figure 18 show the change in instructions per cycle when 1.2GB/s of I/O are 

present of up to 31%. When the I/O is increased to 1.8GB/s, increases in IPC of up to 32% are 

seen, as show in Table 26 and Figure 19. 

Table 25: Instructions per Cycle w/ 1.2GB/s I/O 
Test Original IPC Secondary Bus 

IPC 
IPC 

Change 
perlbench 0.31 0.32 0.81% 
bwaves  0.11 0.17 31.86% 
milc  0.35 0.38 6.12% 
zeusmp  0.28 0.33 15.22% 
gromacs  0.41 0.42 1.09% 
cactusADM  0.30 0.34 12.15% 
leslie  0.39 0.40 3.79% 
deal  0.20 0.21 3.87% 
soplex  0.09 0.12 21.13% 
sjeng  0.38 0.38 0.12% 
GemsFDTD  0.13 0.18 28.05% 
libquantum  0.10 0.12 16.25% 
h264ref  0.34 0.34 0.20% 
omnetpp  0.14 0.17 21.32% 
astar_rivers  0.39 0.39 0.81% 
sphinx  0.18 0.25 29.09% 
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Figure 18: IPC Change with 1.2GB/s I/O 
 

Table 26: Instructions per Cycle with 1.8GB/s I/O 
Test Original IPC Secondary Bus IPC Change 
perlbench 0.31 0.31 0.96% 
bwaves  0.10 0.14 32.39% 
milc  0.35 0.37 6.59% 
zeusmp  0.26 0.31 16.55% 
gromacs  0.41 0.42 1.29% 
cactusADM  0.28 0.32 13.77% 
leslie  0.38 0.40 4.22% 
deal  0.19 0.20 3.36% 
soplex  0.08 0.10 20.90% 
sjeng  0.38 0.38 0.14% 
GemsFDTD  0.12 0.16 29.05% 
libquantum  0.09 0.10 16.25% 
h264ref  0.34 0.34 0.22% 
omnetpp  0.12 0.15 22.53% 
astar_rivers  0.38 0.39 0.96% 
sphinx  0.15 0.22 30.10% 
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Figure 19: IPC Change with 1.8GB/s I/O 
 

Energy efficiency in processors is typically measured using the energy-delay product (EDP) 

or energy-delay-square product (ED2P), and expressed in terms of MIPS/W or MIPS2/W, 

respectively. These metrics combine the total energy consumed to perform a unit of work with 

the execution time. Since the execution time is squared in ED2P, it puts more emphasis on the 

execution time. The measurements quantify energy efficiency in a single value, and take into 

account the loss of processing power that generally accompanies a reduction in power usage. In a 

system using the secondary bus architecture, it is possible to reduce the frequency, and therefore 

the power consumption, without reducing the system performance. This leads to an increase in 

the MIPS/W or MIPS2/W values of the system. 

6.3. Reduced Power Consumption 

The runtime of a program is computed as: 

Runtime = Instructions * Cycles/Instruction * Seconds/Cycle 
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When the secondary bus is present, the cycles/instruction value is decreased (see Table 17). 

Because of the decrease in CPI, the runtime of the program or the system throughput in MIPS 

can be kept constant by reducing the clock frequency. Table 27 shows the reduced clock 

frequency that can be used for the SPEC benchmarks when the secondary bus is present without 

changing the program runtimes. 

Table 27: Frequency change with secondary bus 
Test	
   Frequency	
  with	
  Secondary	
  Bus	
  (GHz)	
   Decrease	
  
perlbench	
   2.00	
   0.25%	
  
bwaves	
  	
   1.62	
   18.83%	
  
milc	
  	
   1.90	
   4.89%	
  
zeusmp	
  	
   1.84	
   7.79%	
  
gromacs	
  	
   1.99	
   0.38%	
  
cactusADM	
  	
   1.90	
   4.78%	
  
leslie	
  	
   1.94	
   2.89%	
  
deal	
  	
   1.70	
   14.90%	
  
soplex	
  	
   1.65	
   17.57%	
  
sjeng	
  	
   2.00	
   0.10%	
  
GemsFDTD	
  	
   1.62	
   18.93%	
  
libquantum	
  	
   1.64	
   18.02%	
  
h264ref	
  	
   2.00	
   0.08%	
  
omnetpp	
  	
   1.78	
   10.91%	
  
astar_rivers	
  	
   1.99	
   0.42%	
  
sphinx	
  	
   1.73	
   13.61%	
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The dynamic power consumption in a processor is given by 

P = C * V2 * F 

Where C is the capacitance, V is the voltage, and F is the clock frequency. Consider an example 

processor with a dynamic power of about 65 watts, which is comparable to that of an Intel 

Pentium Core 2 processor. If the system clock frequency is 2 GHz, and the voltage is 2.8 volts, 

then a capacitance is 4.2x10-9 coulombs/volt would lead to power consumption of 65.86 watts. 

By adding a secondary bus to that example system, the frequency may be reduced as shown in 

Table 27 without reducing program runtimes. This reduction in frequency leads to the power 

usage reduction show in Table 28. 

Table 28: Decrease in power usage with secondary bus 
Test	
   Power	
  with	
  secondary	
  bus	
  (watts)	
   Decrease	
  
perlbench	
   65.69	
   0.25%	
  
bwaves	
  	
   53.46	
   18.83%	
  
milc	
  	
   62.63	
   4.89%	
  
zeusmp	
  	
   60.73	
   7.79%	
  
gromacs	
  	
   65.60	
   0.38%	
  
cactusADM	
  	
   62.71	
   4.78%	
  
leslie	
  	
   63.95	
   2.89%	
  
deal	
  	
   56.05	
   14.90%	
  
soplex	
  	
   54.29	
   17.57%	
  
sjeng	
  	
   65.79	
   0.10%	
  
GemsFDTD	
  	
   53.39	
   18.93%	
  
libquantum	
  	
   53.99	
   18.02%	
  
h264ref	
  	
   65.80	
   0.08%	
  
omnetpp	
  	
   58.67	
   10.91%	
  
astar_rivers	
  	
   65.58	
   0.42%	
  
sphinx	
  	
   56.90	
   13.61%	
  
 

This reduction in power consumption leads to a corresponding energy savings when the 

secondary bus is present. 
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Chapter 7 

Conclusion 

A novel idea to reduce latencies due to bus contentions on the main system bus between the 

CPU and memory has been evaluated. The technique of introducing an additional, low-

bandwidth, secondary bus into a microarchitecture, and using that bus specifically for cache 

write-backs has been shown to give significant performance improvements compared to existing 

architectures. Simulations carried out using the widely accepted SimpleScalar toolset 

demonstrate the feasibility and advantages of the secondary bus. A microarchitecture using a 

small cache size and simple benchmarks showed that the ability of the secondary bus to reduce 

queuing delays on the system bus could significantly improve worst-case execution times in real-

time systems. The small cache system also demonstrated the ability of the secondary bus 

microarchitecture to approach the optimal improvement level represented by free write-backs. 

Additional simulations with large cache sizes, comparable to those in current commercial 

processors, and the industry-standard SPEC CPU2006 benchmark suite demonstrated the further 

advantages of the secondary bus microarchitecture to improve determinacy and worst-case 

execution time in real-time systems, decrease power consumption, as well as increase overall 

system performance. Additional simulations with I/O injections to replicate a real world scenario 

where there will be a number of communications between the peripherals and the processor not 
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involving the memory indicate that the secondary bus microarchitecture advantages are viable in 

that instance as well. 

The major advantage offered by the secondary bus microarchitecture derives from the 

reduction in queuing delay on the system bus. The queuing delay reduction of 6% to 99%, with 

an average of 87%, leads to a corresponding reduction in the maximum execution time of any 

instruction, and in the number of instructions that require more than 1000 cycles to execute. 

These results indicate that the secondary bus microarchitecture is an excellent choice for real-

time, embedded system applications. In addition, the secondary bus microarchitecture generates 

an overall system speed-up of up to 19% when no I/O is present, and of up to 33% in the 

presence of external I/O. The speed-up achieved suggests an additional application, in which the 

new microarchitecture is used in low-power systems where the energy consumption may be 

reduced while maintaining consistent processing throughput. 

Current commercial microprocessors contain various mechanisms designed to reduce cache 

access latencies and minimize processor delays caused by cache misses. None of those 

mechanisms includes a secondary path to allow dirty cache lines to be more efficiently moved 

back into memory. The secondary bus method can therefore be used in addition to those 

mechanisms to present even further improvements. Since current multi-core processors tend to 

contain separate level-1 caches but share the level-2 cache among all cores, the secondary bus 

method, which provides a connection between the L2 cache and memory, is applicable to multi-

core systems as well. 

The secondary bus can be implemented in many ways. The simulated system used an 8-bit-

wide bus to evaluate the design for different traffic intensities. As future work, various other 

implementations of the secondary bus can be evaluated. One such design could be of a serial line 
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using a high speed signaling mechanism for fast data transfer. Split bus or pipelined transactions 

can be tried on the secondary bus with multiple bit lines [25]. The number of bit lines that can be 

used for the secondary bus depends on the L2 cache write-back rate. A smaller cache can result 

in more write-backs and may require a wider bus for transferring data faster to the memory. The 

secondary bus provides benefits for single ported memories at a cost of a small hardware 

addition for controlling the bus access and a smaller bus compared to the main bus. A truly novel 

implementation of the secondary bus is through the use of wireless communication [3]. 

Implementation of the secondary bus with a wireless interconnect could lead to a large number 

of additional applications that would be permitted by monitoring the wireless signal using 

external devices.  
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Appendix A 

Simulation Configuration Values 

A.1 Sim-alpha Configuration for Base System 

 
-fetch:ifqsize 4 
-fetch:width 4 
-fetch:speed 1 
-slot:width 4 
-map:width 4 
-issue:intwidth 4 
-issue:fpwidth 2  
-commit:width 11 
-res:iclus 2 
-res:ialu 4  
-res:imult 4 
-res:fpclus 1  
-res:fpalu 1 
-res:fpmult 1 
-res:delay 1 
-mach:freq 3000000000 
-bpred:ras 32 
-line_pred:ini_value 0 
-reg:int_p_regs 41 
-reg:fp_p_regs 41 
 
# cache configuration 
-cache:define  DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus 
-cache:define  IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus 
-cache:define  L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus 
-cache:define  WBB:4096:64:0:8:f:10:pipt:0:1:0:Secbus 
 
# flush caches on system calls 
-cache:flush  false 
 
-cache:writeback true 
 
 
# defines name of first-level data cache 
-cache:dcache  DL1 
 
# defines name of first-level instruction cache 



74 

 

-cache:icache  IL1 
 
# number of regular mshrs for each cache 
-cache:mshrs  8 
 
# number of prefetch mshrs for each cache 
-cache:prefetch_mshrs 4 
 
# number of targets for each cache 
-cache:mshr_targets 8 
 
# bus configuration 
# For original long timing runs, Onbus was set at 2 GHz, now at 4 
-bus:define  Onbus:64:2:1:0:1:0:L2 
-bus:define  Membus:64:5:2:0:1:0:SDRAM 
-bus:define  Wirelessbus:8:5:1:0:1:0:WBB 
-bus:define  Secbus:8:5:1:0:1:0:SDRAM 
 
# memory bank configuration 
-mem:define  SDRAM 
 
# define tlbs 
-tlb:define  DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
-tlb:define  ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
 
# data TLB config, i.e., {<config>|none} 
-tlb:dtlb  DTLB 
 
# instruction TLB config, i.e., {<config>|none} 
-tlb:itlb  ITLB 
 
-cache:addr_trap 0         
-wb:diffsize_trap 0         
-cache:target_trap 0         
-cache:mshrfull_trap 0 
-prefetch:dist 0 
 

 

A.2 Sim-alpha configuration including secondary bus 

 
-fetch:ifqsize 4 
-fetch:width 4 
-fetch:speed 1 
-slot:width 4 
-map:width 4 
-issue:intwidth 4 
-issue:fpwidth 2  
-commit:width 11 
-res:iclus 2 
-res:ialu 4  
-res:imult 4 
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-res:fpclus 1  
-res:fpalu 1 
-res:fpmult 1 
-res:delay 1 
-mach:freq 3000000000 
-bpred:ras 32 
-line_pred:ini_value 0 
-reg:int_p_regs 41 
-reg:fp_p_regs 41 
 
# cache configuration 
-cache:define  DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus 
-cache:define  IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus 
-cache:define  L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus 
-cache:define  WBB:4096:64:0:8:f:10:pipt:0:1:0:Secbus 
 
# flush caches on system calls 
-cache:flush  false 
 
-cache:writeback true 
 
 
# defines name of first-level data cache 
-cache:dcache  DL1 
 
# defines name of first-level instruction cache 
-cache:icache  IL1 
 
# number of regular mshrs for each cache 
-cache:mshrs  8 
 
# number of prefetch mshrs for each cache 
-cache:prefetch_mshrs 4 
 
# number of targets for each cache 
-cache:mshr_targets 8 
 
# bus configuration 
# For original long timing runs, Onbus was set at 2 GHz, now at 4 
-bus:define  Onbus:64:2:1:0:1:0:L2 
-bus:define  Membus:64:5:2:0:1:0:SDRAM 
-bus:define  Wirelessbus:8:5:1:0:1:0:WBB 
-bus:define  Secbus:8:5:1:0:1:0:SDRAM 
 
# memory bank configuration 
-mem:define  SDRAM 
 
# define tlbs 
-tlb:define  DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
-tlb:define  ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
 
# data TLB config, i.e., {<config>|none} 
-tlb:dtlb  DTLB 
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# instruction TLB config, i.e., {<config>|none} 
-tlb:itlb  ITLB 
 
-cache:addr_trap 0         
-wb:diffsize_trap 0         
-cache:target_trap 0         
-cache:mshrfull_trap 0 
-prefetch:dist 0 
 

 

A.3 Sim-alpha configuration for free write-back 

 
   -fetch:ifqsize 4 

-fetch:width 4 
-fetch:speed 1 
-slot:width 4 
-map:width 4 
-issue:intwidth 4 
-issue:fpwidth 2  
-commit:width 11 
-res:iclus 2 
-res:ialu 4  
-res:imult 4 
-res:fpclus 1  
-res:fpalu 1 
-res:fpmult 1 
-res:delay 1 
-mach:freq 3000000000 
-bpred:ras 32 
-line_pred:ini_value 0 
-reg:int_p_regs 41 
-reg:fp_p_regs 41 
 
# cache configuration 
-cache:define  DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus 
-cache:define  L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus 
-cache:define  IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus 
-cache:define  WBB:64:64:0:8:f:10:pipt:0:1:0:Membus 
 
# flush caches on system calls 
-cache:flush  false 
 
-cache:writeback false 
 
# defines name of first-level data cache 
-cache:dcache  DL1 
 
# defines name of first-level instruction cache 
-cache:icache  IL1 
 
# number of regular mshrs for each cache 
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-cache:mshrs  8 
 
# number of prefetch mshrs for each cache 
-cache:prefetch_mshrs 4 
 
# number of targets for each cache 
-cache:mshr_targets 8 
 
# bus configuration 
# For original long timing runs, Onbus was set at 2 GHz, now at 4 
-bus:define  Onbus:64:2:4:0:1:0:L2 
-bus:define  Membus:64:5:10:0:1:0:SDRAM 
-bus:define  Wirelessbus:64:2:0:0:1:0:WBB 
 
# memory bank configuration 
-mem:define  SDRAM 
 
# define tlbs 
-tlb:define  DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
-tlb:define  ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus 
 
# data TLB config, i.e., {<config>|none} 
-tlb:dtlb  DTLB 
 
# instruction TLB config, i.e., {<config>|none} 
-tlb:itlb  ITLB 
 
-cache:addr_trap 0         
-wb:diffsize_trap 0         
-cache:target_trap 0         
-cache:mshrfull_trap 0 
-prefetch:dist 0 

 
 
  



78 

 

 

 

Appendix B 

SPEC CPU2006 Simulation SimPoints 

Test Index Point Weight 
perlbench  0 1194 0.15122 
perlbench  1 1417 0.00325203 
perlbench  2 236 0.131165 
perlbench  3 3 0.00325203 
perlbench  4 355 0.0937669 
perlbench  5 692 0.148509 
perlbench  6 18 0.0124661 
perlbench  7 331 0.135501 
perlbench  8 1245 0.00813008 
perlbench  9 878 0.0861789 
perlbench  10 606 0.142005 
perlbench  11 53 0.0157182 
bwaves  0 11211 0.03089 
bwaves  1 20179 0.622676 
bwaves  2 10729 0.0787782 
bwaves  3 15057 0.0250226 
bwaves  4 5928 0.0257129 
bwaves  5 18870 0.032098 
bwaves  6 6099 0.0330472 
bwaves  7 2634 0.033608 
bwaves  8 5275 0.0330472 
bwaves  9 7183 0.0275681 
bwaves  10 1219 0.030588 
bwaves  11 15571 0.00664394 
milc  0 1213 0.0683082 
milc  1 2494 0.0463842 
milc  2 2141 0.0197971 
milc  3 608 0.0147251 
milc  4 3927 0.0013089 
milc  5 6502 0.0237238 
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milc  6 9397 0.0203698 
milc  7 3714 0.0429483 
milc  8 7689 0.0430301 
milc  9 5715 0.07518 
milc  10 11904 0.100867 
milc  11 10398 0.0634817 
milc  12 1134 0.0307592 
milc  13 1713 0.125245 
milc  14 824 0.0135798 
milc  15 9405 0.0251145 
milc  16 594 0.00466296 
milc  17 11647 0.0521106 
milc  18 2864 0.0463842 
zeusmp  0 2323 0.026255 
zeusmp  1 12021 0.0656627 
zeusmp  2 4404 0.0453313 
zeusmp  3 241 0.123845 
zeusmp  4 18408 0.00672691 
zeusmp  5 8129 0.025251 
zeusmp  6 2143 0.0203815 
zeusmp  7 9629 0.0942771 
zeusmp  8 6085 0.013253 
zeusmp  9 8524 0.0597892 
zeusmp  10 13947 0.0249498 
zeusmp  11 9181 0.0476406 
zeusmp  12 15831 0.0345884 
zeusmp  13 6180 0.0405622 
zeusmp  14 17760 0.0242972 
zeusmp  15 17993 0.00758032 
zeusmp  16 11615 0.0684237 
zeusmp  17 4233 0.0197289 
zeusmp  18 9353 0.0253012 
zeusmp  19 6487 0.0673193 
zeusmp  20 15846 0.0381024 
zeusmp  21 17154 0.0338353 
zeusmp  22 812 0.0320281 
zeusmp  23 9927 0.0062751 
gromacs  0 11510 0.0248848 
gromacs  1 21209 0.00640972 
gromacs  2 5917 0.0239631 
gromacs  3 7093 0.0147884 
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gromacs  4 14122 0.00712191 
gromacs  5 17073 0.0229996 
gromacs  6 8658 0.0314621 
gromacs  7 1185 0.169711 
gromacs  8 1684 0.0159615 
gromacs  9 11106 0.0201927 
gromacs  10 8285 0.00519481 
gromacs  11 18060 0.0158777 
gromacs  12 9077 0.105069 
gromacs  13 16094 0.020863 
gromacs  14 17719 0.0254713 
gromacs  15 7018 0.297863 
gromacs  16 2882 0.0201089 
gromacs  17 6926 0.117679 
cactusADM  0 36939 0.00109647 
cactusADM  1 18590 0.386834 
cactusADM  2 9583 0.00166663 
cactusADM  3 13068 0.563957 
cactusADM  4 26680 0.0202189 
cactusADM  5 2 0.000109647 
cactusADM  6 29070 0.0260301 
leslie  0 26086 0.044533 
leslie  1 23328 0.0329974 
leslie  2 22804 0.0377879 
leslie  3 5390 0.0541908 
leslie  4 21741 0.0265588 
leslie  5 6016 0.0580232 
leslie  6 10878 0.0462959 
leslie  7 5863 0.0220366 
leslie  8 25975 0.0534626 
leslie  9 12307 0.0378262 
leslie  10 17230 0.0384778 
leslie  11 2926 0.0456828 
leslie  12 18793 0.0416587 
leslie  13 12319 0.0528494 
leslie  14 9987 0.0461426 
leslie  15 612 0.0250642 
leslie  16 4082 0.0375963 
leslie  17 1594 0.0613958 
leslie  18 22908 0.0264439 
leslie  19 20177 0.0508566 
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leslie  20 4242 0.0362549 
leslie  21 9534 0.0395125 
namd  0 722 0.0672273 
namd  1 4395 0.097221 
namd  2 4909 0.0252271 
namd  3 4206 0.0135804 
namd  4 8674 0.0517583 
namd  5 7690 0.0571544 
namd  6 9974 0.04933 
namd  7 10851 0.0149294 
namd  8 14609 0.101808 
namd  9 21538 0.0259016 
namd  10 18067 0.0423599 
namd  11 8 0.00620559 
namd  12 2137 0.0884522 
namd  13 22043 0.0125911 
namd  14 19771 0.0294091 
namd  15 10858 0.0420901 
namd  16 17753 0.112015 
namd  17 9593 0.0502293 
namd  18 11040 0.0148395 
deal  0 15 0.611111 
soplex  0 2741 0.0444079 
soplex  1 320 0.0641447 
soplex  2 1705 0.0633224 
soplex  3 2984 0.0565378 
soplex  4 190 0.00349507 
soplex  5 1954 0.045847 
soplex  6 2478 0.0540707 
soplex  7 1098 0.0493421 
soplex  8 2831 0.0509868 
soplex  9 3012 0.0550987 
soplex  10 2543 0.0620888 
soplex  11 18 0.0462582 
soplex  12 2457 0.0310444 
soplex  13 1525 0.0676398 
soplex  14 1472 0.0532484 
soplex  15 554 0.000616776 
soplex  16 654 0.0234375 
soplex  17 1205 0.0331003 
soplex  18 1807 0.0904605 
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sjeng  0 17175 0.0940804 
sjeng  1 15619 0.155222 
sjeng  2 13137 0.0527653 
sjeng  3 6086 0.10415 
sjeng  4 10548 0.0625529 
sjeng  5 30639 0.0451109 
sjeng  6 4818 0.000501929 
sjeng  7 21707 0.0955234 
sjeng  8 5736 0.124918 
sjeng  9 1805 0.06569 
GemsFDTD  0 463 0.0250559 
GemsFDTD  1 1835 0.0402685 
GemsFDTD  2 1598 0.0205817 
GemsFDTD  3 1032 0.052349 
GemsFDTD  4 1118 0.0219239 
GemsFDTD  5 1907 0.0161074 
GemsFDTD  6 1444 0.0223714 
GemsFDTD  7 61 0.0456376 
GemsFDTD  8 1856 0.0178971 
GemsFDTD  9 1063 0.0362416 
GemsFDTD  10 1069 0.165101 
GemsFDTD  11 471 0.0192394 
GemsFDTD  12 185 0.0143177 
GemsFDTD  13 1239 0.0286353 
GemsFDTD  14 2197 0.0447427 
GemsFDTD  15 552 0.0183445 
GemsFDTD  16 2155 0.0326622 
GemsFDTD  17 693 0.0281879 
GemsFDTD  18 1842 0.177629 
GemsFDTD  19 1662 0.0223714 
GemsFDTD  20 984 0.0510067 
GemsFDTD  21 0 0.0299776 
GemsFDTD  22 651 0.0255034 
libquantum  0 12424 0.0999497 
libquantum  1 19813 0.0092006 
libquantum  2 291 0.0152338 
libquantum  3 19874 0.0025641 
libquantum  4 19824 0.00191051 
libquantum  5 9974 0.139367 
libquantum  6 5803 0.0581699 
libquantum  7 13400 0.0692308 
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libquantum  8 12732 0.0289593 
libquantum  9 18153 0.0335847 
libquantum  10 6917 0.0831574 
libquantum  11 1106 0.0499246 
libquantum  12 15532 0.0463047 
libquantum  13 13574 0.0933132 
libquantum  14 16856 0.120362 
libquantum  15 15642 0.071091 
libquantum  16 13674 0.0275013 
h264ref  0 26559 0.068356 
h264ref  1 36588 0.00321384 
h264ref  2 1517 0.0918418 
h264ref  3 53508 0.0906587 
h264ref  4 45541 0.00722232 
h264ref  5 732 0.00734593 
h264ref  6 9115 0.138337 
h264ref  7 29684 0.0536641 
h264ref  8 13267 0.0734593 
h264ref  9 44147 0.117376 
h264ref  10 49954 0.156419 
h264ref  11 37984 0.0593855 
omnetpp  0 2872 0.115221 
omnetpp  1 981 0.177559 
omnetpp  2 17 0.00630223 
omnetpp  3 2094 0.0293191 
omnetpp  4 204 0.0287711 
omnetpp  5 3093 0.0786409 
omnetpp  6 4892 0.0486368 
omnetpp  7 289 0.0224688 
omnetpp  8 2197 0.052884 
omnetpp  9 3315 0.147143 
omnetpp  10 7296 0.000685025 
omnetpp  11 6465 0.110015 
omnetpp  12 452 0.0165776 
astar_rivers  0 4 0.00186239 
astar_rivers  1 6223 0.0601138 
astar_rivers  2 2828 0.338024 
astar_rivers  3 2068 0.0973616 
astar_rivers  4 432 0.159027 
astar_rivers  5 8615 0.0973616 
astar_rivers  6 2452 0.168236 



84 

 

sphinx  0 34086 0.0760587 
sphinx  1 38691 0.0986067 
sphinx  2 30144 0.0412755 
sphinx  3 4727 0.0461946 
sphinx  4 37454 0.0282411 
sphinx  5 18411 0.0563324 
sphinx  6 7772 0.0563574 
sphinx  7 3008 0.0257441 
sphinx  8 23787 0.0443218 
sphinx  9 12598 0.0504395 
sphinx  10 4561 0.0163054 
sphinx  11 19771 0.0477177 
sphinx  12 0 0.000898921 
sphinx  13 13822 0.0453206 
sphinx  14 33472 0.0223482 
sphinx  15 3423 0.0356073 
sphinx  16 19390 0.0593038 
sphinx  17 8232 0.0462445 
sphinx  18 20352 0.0579555 
 
 


