

	

	

	

	

	

Enhanced	
 Secondary	
 Bus	
 Microarchitecture	

by	

John	
 William	
 O’Farrell	

	

	

	

A	
 dissertation submitted	
 to	
 the	
 Graduate	
 Faculty	
 of	

Auburn	
 University	

in	
 partial	
 fulfillment	
 of	
 the	

requirements	
 for	
 the	
 Degree	
 of	

Doctor	
 of	
 Philosophy	

	

Auburn,	
 Alabama	

August	
 6,	
 2011	

	

	

	

	

Keywords:	
 real-­‐time	
 systems,	
 computer	
 architecture,	
 low-­‐power	
 systems,	
 simulation	

	

	

Copyright	
 © 2011 John William O’Farrell
	

	

Approved	
 by	

	

Sanjeev	
 Baskiyar,	
 Chair,	
 Associate	
 Professor	
 of	
 Computer	
 Science	
 Software	
 Engineering	

Kai	
 H.	
 Chang,	
 Professor	
 of	
 Computer	
 Science	
 Software	
 Engineering	

James	
 H.	
 Cross,	
 Professor	
 of	
 Computer	
 Science	
 Software	
 Engineering	
 	

 ii

Abstract

	

In spite of advances to improving cache efficiency, memory access bottlenecks still prevent

processors from executing at full speed. This research evaluates a fundamentally new concept of

using a secondary bus, connecting the level-2 cache to memory, for committing cache write-

backs. Simulations, using the Sim-Alpha version of the SimpleScalar tool set, demonstrate the

feasibility and advantages of such a secondary bus. Based on simulation results, the added

secondary bus can decrease queuing delays on the system bus by 6% to 99%, with an average of

87%, when sufficient write-backs are present. Such reduction in queuing delays leads to a

decrease in worst-case execution times, and offers superior temporal determinacy in real-time

environments. Real-time and near real-time embedded applications that depend on intense

graphics processing and movement of large blocks of data, such as printer controllers and

medical imaging, are prime candidates for applications of the secondary bus.

Simulations using small cache sizes serve as a basis that verifies that the microarchitecture is

viable and that it produces interesting and significant results. Then, updates to large cache sizes

comparable to those in current commercial processors and benchmarks taken from the industry-

standard SPEC CPU2006 benchmark suite expand and validate the results. Decreases of 31% to

94%, with an average of 82%, in the maximum execution time of any instruction, and of 77% to

100%, with an average of 97%, in the number of instructions requiring more than 1000 cycles to

execute point to a decrease in worst-case execution times in real-time systems. The

improvements in instructions per cycle point to possible applications in low-power systems,

 iii

where the clock frequency may be reduced while maintaining constant processing power. In

addition to the real-time and low-power system benefits, overall system performance using the

secondary bus microarchitecture is improved by up to 33% when I/O is present.	

 iv

Acknowledgements
	

	

I	
 would	
 like	
 to	
 thank	
 Dr.	
 Sanjeev	
 Baskiyar	
 for	
 his	
 tireless	
 encouragement	
 and	

contribution	
 to	
 this	
 work.	
 He	
 was	
 always	
 inspiring,	
 and	
 helped	
 push	
 me	
 to	
 keep	
 making	

progress.	
 Thank	
 you	
 also	
 to	
 my	
 committee	
 members,	
 Dr.	
 Kai	
 H.	
 Chang	
 and	
 Dr.	
 James	
 Cross.	

I	
 appreciated	
 the	
 dedication	
 of	
 these	
 men	
 to	
 the	
 students	
 of	
 my	
 beloved	
 Auburn.	
 I	
 have	

been	
 blessed	
 with	
 a	
 wonderful	
 family,	
 and	
 this	
 dissertation	
 would	
 not	
 have	
 been	
 possible	

without	
 the	
 loving	
 help	
 and	
 encouragement	
 of	
 my	
 wife,	
 Joy.	
 I	
 would	
 also	
 like	
 to	
 thank	
 my	

parents,	
 Joan	
 and	
 Lamar,	
 and	
 my	
 sons	
 Ryan	
 and	
 Tim,	
 for	
 lots	
 of	
 love	
 and	
 moral	
 support.	

The	
 simulations	
 required	
 significant	
 time	
 to	
 set	
 up	
 and	
 execute,	
 and	
 I	
 am	
 thankful	

for	
 Rakshith	
 Venkatesh’s	
 help	
 executing	
 the	
 simulations	
 of	
 the	
 SPEC	
 benchmarks.

Simulations	
 were	
 carried	
 out	
 together	
 with	
 Rakshith,	
 and	
 the	
 code	
 changes	
 and	
 results	

were	
 unified. I	
 am	
 also	
 grateful	
 to	
 the	
 Alabama	
 Supercomputing	
 Authority	
 for	
 giving	
 us	

access	
 to	
 the	
 supercomputer	
 clusters	
 for	
 running	
 the	
 simulations. This	
 research	
 was	

supported	
 in	
 part	
 by	
 a	
 grant	
 from	
 DARPA/AFRL.	

	
 	

 v

	

	

Table	
 of	
 Contents	

	

	

Abstract ... ii

Acknowledgements .. iv

List of Figures .. ix

List of Tables .. x

Chapter 1 Introduction .. 1

1.1. Problem Statement .. 1

1.2. Research Objective ... 1

1.3. Background ... 2

1.4. Outline ... 3

Chapter 2 Background .. 4

2.1. Cache performance enhancements .. 4

2.2. Microprocessor simulation .. 6

2.3. Simulation using SPEC CPU2006 Benchmarks ... 8

2.4. Protocols and hardware for secondary bus implementation 10

Chapter 3 Analysis of Small Cache Systems with a Secondary Bus .. 11

3.1. Introduction .. 11

3.2. Background .. 11

3.3. Secondary bus architecture .. 12

3.4. Simulation framework .. 13

3.5. Maximum speedup using free write-back .. 14

 vi

3.6. Benchmarks .. 15

3.7. Simulation results and analysis .. 15

3.7.1. Bus queuing delay .. 15

3.7.2. Secondary bus analysis .. 17

3.7.3. Write-back rates ... 18

3.8. Conclusions .. 19

Chapter 4 Analysis of Large Cache Systems with a Secondary Bus .. 20

4.1. Introduction ... 20

4.2. Architecture of the Secondary Bus ... 20

4.3. Simulation Speedup Using Simpoints .. 23

4.4. SPEC CPU2006 Benchmarks ... 24

4.5. Simulation Setup ... 28

4.6. Simulation Results and Analysis .. 31

4.6.1. Queuing Delay ... 32

4.6.2. Overall Speed-Up .. 34

Chapter 5 Analysis of Real-Time System Performance with a Secondary Bus 37

5.1. Introduction .. 37

5.2. New Measurement: Max Instruction Cycles .. 38

5.3. New Measurement: Instructions requiring more than 1000 cycles 41

5.4. Details of SPEC CPU2006 benchmark results ... 46

5.4.1. 400.pearlbench .. 46

5.4.2. 410.bwaves ... 47

5.4.3. 433.milc ... 48

 vii

5.4.4. 434.zeusmp .. 49

5.4.5. 435.gromacs ... 50

5.4.6. 436.cactusADM ... 51

5.4.7. 437.leslie3d .. 51

5.4.8. 447.dealII ... 52

5.4.9. 450.soplex .. 53

5.4.10. 458.jseng .. 54

5.4.11. 459.GemsFDTD ... 55

5.4.12. 462.libquantum .. 56

5.4.13. 464.h264ref .. 56

5.4.14. 471.omnetp ... 57

5.4.15. 471.astar ... 58

5.4.16. 482.sphinx3 .. 59

Chapter 6 Analysis of Power Consumption with a Secondary Bus .. 60

6.1. Introduction .. 60

6.2. Instructions per Cycle Analysis ... 60

6.3. Reduced Power Consumption .. 64

Chapter 7 Conclusion .. 67

References ... 70

Appendix A Simulation Configuration Values ... 73

A.1 Sim-alpha Configuration for Base System .. 73

A.2 Sim-alpha configuration including secondary bus .. 74

A.3 Sim-alpha configuration for free write-back ... 76

 viii

Appendix B SPEC CPU2006 Simulation SimPoints .. 78

	

 	

 ix

	

List of Figures

	

Figure 1: SimpleScalar Simulator Structure ... 7	

Figure 2: Alpha 21264 Architecture ... 8	

Figure 3: Secondary Bus Architecture .. 13	

Figure 4: Queuing delay on primary bus - small cache .. 17	

Figure 5: Bus timing ... 18	

Figure 6: Large cache architecture with secondary bus .. 21	

Figure 7: Simplified bus state diagram ... 22	

Figure 8: Evolution of the SPEC Benchmarks ... 25	

Figure 9: Decrease in queued cycles on system bus - large cache .. 34	

Figure 10: Percentage improvement with secondary bus ... 35	

Figure 11: Change in Max Cycles .. 39	

Figure 12: Change in max instructions with 1.2GB/s I/O .. 40	

Figure 13: Change in Max Instructions with 1.8GB/s I/O .. 41	

Figure 14: Change in instructions > 1000 cycles .. 43	

Figure 15: Instructions > 1000 cycles with 1.2GB/s I/O .. 44	

Figure 16: Instructions > 1000 cycles with 1.8GB/s I/O .. 45	

Figure 17: Change in Instructions per Cycle .. 61	

Figure 18: IPC Change with 1.2GB/s I/O ... 63	

Figure 19: IPC Change with 1.8GB/s I/O ... 64	

 x

	

List of Tables
	

	

Table 1: Simulation Times of SPEC Benchmarks .. 9	

Table 2:Speed-up Using Simpoints .. 9	

Table 3: Baseline Processor Configuration ... 13	

Table 4: Bus Latencies .. 14	

Table 5: Small Cache Benchmarks ... 15	

Table 6: Decrease in requests on system bus - small cache .. 16	

Table 7: Decrease in queued cycles - small cache .. 16	

Table 8: Decrease in queuing delay on system bus - small cache .. 16	

Table 9: Queuing delay on secondary bus - small cache (cycles) .. 18	

Table 10: Write-back rates - small cache benchmarks ... 19	

Table 11: SPEC CPU2006 Integer Benchmarks ... 27	

Table 12: SPEC CPU2006 floating-point benchmarks ... 28	

Table 13: Large cache simulation parameters .. 30	

Table 14: SPEC CPU2006 benchmark write-back rates ... 31	

Table 15: SPEC CPU2006 benchmark level-2 cache usage ... 31	

Table 16: Decrease in queuing delay - large cache ... 33	

Table 17: Increase in cycles per instruction with secondary bus .. 34	

Table 18: Max Cycles Used by Any Instruction ... 38	

Table 19: Max Instruction Cycles with 1.2GB/s I/O .. 39	

 xi

Table 20: Max Instructions with 1.8GB/s I/O .. 40	

Table 21: Instruction using > 1000 cycles .. 42	

Table 22: Instructions > 1000 cycles with 1.2GB/s I/O ... 43	

Table 23: Instructions > 1000 cycles with 1.8GB/s I/O ... 44	

Table 24: Instructions per Cycle ... 60	

Table 25: Instructions per Cycle w/ 1.2GB/s I/O ... 62	

Table 26: Instructions per Cycle with 1.8GB/s I/O .. 63	

Table 27: Frequency change with secondary bus ... 65	

Table 28: Decrease in power usage with secondary bus ... 66	

	

	

	

	

	

1

Chapter 1

Introduction

1.1. Problem Statement

As the speed of high performance processors continues to increase, there are a number of

bottlenecks within computer system architectures that prevent those processors from achieving

their full potential. Processor speeds continue to outpace memory access speeds. Because of this,

cache memory has long been an important part of any computer system architecture. The faster

access time provided by cache memory is essential for allowing high-speed processors to operate

with slower and much more cost-efficient main memory. Cache memory is generally connected

to main memory via a main system bus. The system bus that connects the cache memory to main

memory represents a serious system bottleneck, one that can leave a high performance processor

sitting idle while waiting for data to be transferred to and from main memory.

1.2. Research Objective

The secondary bus was proposed [2] and designed [4] to more effectively retire the cache

write-back buffer entries to the main memory. The goal of this research is to study, via

simulation, the impact and feasibility of a low bandwidth, low cost, non-intrusive secondary bus

on the performance of a computer system. The study includes its impact on queuing delays on

2

the main bus and the reduction in main bus access contention between processor and I/O

accesses to main memory. Such bottleneck reduction is expected to result in a system with:

1) Increased determinacy, leading to a system with greater real-time performance,

2) Increased overall performance, and

3) Lowered power usage.

1.3. Background

When a cache miss occurs, the processor must delay to wait for data to be retrieved from

main memory, placed into the cache, and transferred to the processor. When the miss occurs in a

cache that employs a write-back scheme and is already full, a cache line must be evicted before

the new data can be retrieved from main memory. When the line that is chosen for eviction is

dirty, it must be written to memory before the new line can be read. This leads to several data

transfers on the bus connecting the cache to the main memory. The processor must remain idle

during those transfers and cannot continue until the needed data is available.

Various techniques have been developed in an attempt to decrease the time spent by the

processor waiting for this cache processing to occur, but none has approached the problem from

the viewpoint of using an additional, secondary bus for communication between the cache and

main memory.

Many current cache configurations include some form of non-blocking mechanism. Miss-

status holding registers [14], write buffers [7], and victim buffers [8] are all mechanisms that

provide storage where dirty cache lines can be written efficiently without requiring the processor

to stall waiting for the writes to complete. The eager write-back technique [15] attempts to

address the problem of clustered bus accesses caused by graphics applications. The technique

3

writes dirty cache blocks back to memory before they are evicted, using otherwise idle time on

the bus and attempting to avoid clusters of bus usage.

This research represents a unique approach to the problem, and one that can be used to

provide improvements in addition to other techniques. This research shows that a secondary bus

is feasible, and that use of the bus will increase the performance of computer systems by

reducing bus contention.

In addition, the research presents possible implementations for a secondary bus. Areas of

investigation include a serial line and wireless communication. A reasonable bandwidth

expectation for the secondary is presented, based on potential hardware and protocol support.

1.4. Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents some

background in relevant current literature on the subjects of cache performance enhancements,

microprocessor simulation, and possible secondary bus implementations. Chapter 3 presents the

results of the secondary bus microarchitecture in a small cache system. In Chapter 4, the

secondary bus microarchitecture is demonstrated in a large cache system using the standard

SPEC CPU2006 benchmarks. Chapter 5 presents the real-time system performance

improvements with the serial bus, and Chapter 6 presents the low-power system improvements.

Conclusions are presented in Chapter 7.

4

Chapter 2

Background

Relevant current literature explores possible methods of improving cache performance,

microprocessor simulation, and performance measurement. Since wireless communication is a

possible implementation of a secondary bus, literature describing wireless protocols and possible

hardware support for a wireless bus is also relevant.

2.1. Cache performance enhancements

Cache memory has long been an important part of any computer system architecture. The

faster access time supplied by cache memory is essential for allowing high-speed processors to

operate with slower and much more cost-efficient main memory. The hierarchy formed by CPU

registers, cache memory, main memory, and external disk storage represents an attempt by

system designers to improve system performance while controlling costs. Each lower level in the

hierarchy consists of slower, larger, and less expensive storage. The system depends on the

principal of locality to maintain system performance.

When an entry in a cache is changed, the new value must be transferred into the lower-level

memory. Two techniques, called write-back and write-through, may be used. In the write-back

technique, when a memory location is written, it is marked as dirty. All entries are held in the

cache until a read from the lower-level memory occurs when the cache is full. At that time, an

entry that has been marked as dirty is removed, and the contests are written to the lower-level

5

memory. This means that when a cache is full, a read miss in a write-back cache requires one

memory accesses to retrieve the needed memory entry, and another access to write replaced data

from the cache to the next memory level.

In the write-through technique, when a memory location is written, it is written into the cache

and the appropriate lower-level memory location at the same time. This type of caching provides

worse performance than write-back, but is simpler to implement and has the advantage of

internal consistency, because the cache is never out of sync with the memory. The write-back

cache technique has been shown to be superior to write-through for reducing bus usage and

memory accesses [11].

Many current cache configurations include some form of non-blocking mechanism. Miss-

status holding registers (MSHR) [14], write buffers [7], and victim buffers [8] are all

mechanisms that provide storage where dirty cache lines can be written efficiently without

requiring the processor to stall waiting for the writes to complete. The purpose of an MSHR is to

merge pending cache misses to the same cache block into one transaction, therefore preventing

subsequent references that occur during an in-process cache miss from generating additional

reads to the memory hierarchy. When the line becomes available based on the initial cache miss,

the MSHR responds to all pending loads. The write buffer is meant to hold cache lines that are

being written to memory. It can hold a small number of lines, and it allows the processor to

continue after a write without waiting for the memory operation to complete. The victim buffer

holds a few recently evicted cache lines. If a read misses in the cache, but hits in the victim

buffer, the line is moved back into the cache faster than with a normal miss. AMD refers to its

write buffer as a victim buffer, so there is some conflict and confusion in terms. The eager write-

back technique [15] attempts to address the problem of clustered bus accesses caused by graphics

6

applications. The technique writes dirty cache blocks back to memory before they are evicted,

using otherwise idle time on the bus and attempting to avoid clusters of bus usage.

2.2. Microprocessor simulation

The SimpleScalar Tool Set [1] is a widely used tool for microprocessor simulation and

architectural modeling. The tool set consists of well-documented, open source tools for detailed

modeling of microprocessors, and permits researchers to examine and analyze numerous aspects

of processor execution. Using these tools, researchers can experiment with new architectures

without incurring the expense and effort of developing new hardware. The base simulation

system supports numerous configuration options to control aspects of the processor, execution

cycles, and memory. In addition, the open source nature of the tools allows unlimited potential

for enhancement by other researchers. The structure of the SimpleScalar simulator is show in

Figure 1 [27].

7

Figure 1: SimpleScalar Simulator Structure

Simplescalar has been verified using four approaches [22]: micro-benchmark validation, in

which a number of small programs were executed to test various parts of the machine,

correlation with independent simulators, regression correlation with previous simulator releases,

and code inspections.

Memory hierarchy extensions [5] introduced into the base SimpleScalar tools support more

extensive modeling and analysis of the cache and bus systems within a processor. These

extensions support modeling of an arbitrary hierarchy of caches, associated buses, address

translation, and translation look-aside buffers. A flexible configuration mechanism permits all

aspects of the cache, bus, and memory parameters to be easily modified. The Sim-alpha [9] tools

are based on SimpleScalar, and include the memory extensions. Sim-alpha provides an easily

8

expandable simulator of the Alpha 21264 processor [8]. The architecture of the Alpha 21264 is

show in Figure 2 [8].

Figure 2: Alpha 21264 Architecture

2.3. Simulation using SPEC CPU2006 Benchmarks

The SPEC CPU2006 benchmark suite [21] is an industry-standard, CPU-intensive group of

benchmarks meant to stress a system’s processor, memory subsystem, and compiler using

9

workloads developed from real user applications. Simulation using the SPEC CPU2006

benchmarks on a cycle-accurate simulator such as SimpleScalar is difficult because of the time

required to execute the simulations. One effective method of dealing with this problem is

through the use of Simulation Points [19]. Simpoints permit execution of a representative subset

of a program, and can be used to greatly reduce the time required to execute a simulation. Table

1 shows the time required to execute the benchmarks during generation of simpoints for the

benchmark suite, and Table 2 shows the speed-up that was obtained by using simpoints [10].

Table 1: Simulation Times of SPEC Benchmarks

Table 2:Speed-up Using Simpoints

10

The simpoints method has been shown to product valid results. The cycles per instruction

measured when using simpoints to simulate the SPEC CPU2006 benchmarks used here was

within 5% of the full run values. Measurements of cache miss rates and DTLB miss rates were

also within 5%.

2.4. Protocols and hardware for secondary bus implementation

Currently available serial line technologies may provide sufficient bandwidth for a secondary

bus. The Inter-Chip USB specification [23] requires full speed operation of 12 Mb/sec, and

contains future support for the high-speed mode of 480 Mb/sec. IEEE1394 [12] supports 400

Mb/sec. Proprietary versions of the 802.11g wireless standard support up to 108Mb/sec, and the

proposed 802.11n standard includes support for up to 600Mb/sec [24]. Several emerging

technologies [20] may also serve as possible implementations. Inter-chip communication [6]

creates a miniature wireless LAN on a chip, and may reach speeds of 100Gb/sec. Using

inductive coupling between chips, speeds of 1.25Gb/sec have been achieved [16]. Alternatively,

bus frequency sharing techniques such as CDMA [13] may allow the secondary bus signal to

share the primary bus.

11

Chapter 3

Analysis of Small Cache Systems with a Secondary Bus

3.1. Introduction

High performance processors use cache memory extensively to compensate for the speed

difference between processors and main memory. Numerous advancements have improved the

efficiency of cache memory usage, yet bottlenecks remain which prevent processors from

executing at full speed. By introducing a secondary bus connecting the cache and main

memories, and using that bus for cache write-backs, we may improve a fundamental bottleneck,

namely the write-back latency [17]. The advantages of the additional bus are demonstrated using

the Sim-alpha version of the SimpleScalar Tool Set. Simulations show that using a secondary

bus for cache write-back decreases the queuing delay experienced on the primary bus, therefore

increasing the temporal determinacy in real-time environments.

3.2. Background

When a cache miss occurs, the processor must wait for data to be retrieved from main

memory, placed into the cache, and transferred to the processor. In a write-back cache, a line

must be evicted before this can occur. When the line that is chosen for eviction is dirty, it must

be written to memory before the new line can be read. Various techniques have been developed

in an attempt to decrease the time spent by the processor waiting for such cache processing to

occur.

12

A secondary bus used for cache write-back addresses the issue of bus contention caused by

writes to memory to remove dirty cache lines and reads to retrieve new cache lines. The

secondary bus can be used in addition to existing non-blocking mechanisms and along with eager

write-back to provide even further performance improvements.

3.3. Secondary bus architecture

A modified version of the Alpha 21264 architecture was created using the Sim-alpha

simulator. The base configuration was modified to create an architecture containing a secondary

bus. Sim-alpha was chosen as a simulation tool because it contains the memory extensions

necessary to accurately model cache and bus activity. The base configuration contained two

buses. The onboard bus connected the L1 cache to the L2 cache, and the primary bus connected

the L2 cache to main memory. In the modified configuration, an additional, secondary bus was

added to connect the L2 cache to main memory for use only for cache write-backs (see Figure 3).

Since the new configuration allows both buses to access memory simultaneously, simple dual-

ported memory or some additional logic or buffer to allow two simultaneous accesses to memory

is also required.

13

Level 1 Data Cache

Level 1 Instruction Cache

Level 2 Cache

onboard bus

Main Memory

Primary
bus

Secondary bus

Figure 3: Secondary Bus Architecture

3.4. Simulation framework

The parameters used for the simulations are shown in Tables 1 and 2. The parameters are

similar to those of a modern microprocessor, within the limitations of the simulation

environment, with the exception of the secondary bus, which is only eight bits wide. The

bandwidth of the secondary bus was chosen to be much less than that of the primary bus as the

lower bandwidth is sufficient and allows for a variety of possible implementations of the bus,

such as a serial line or a wireless link. Miss status holding registers and victim buffers were

included in the simulated environment.

Table 3: Baseline Processor Configuration
Processor

Parameter
Specification

Core Frequency 2 GHz

Level 1 Data Cache 4-way, 8192 sets, 4B line, virtually-indexed physically-

14

tagged

Level 1 Instruction
Cache

2-way, 8192 sets, 32B line, virtually-indexed physically-
tagged

Level 2 Cache 4-way, 32768 sets, 32B line, physically-indexed physically-
tagged

Onboard bus 64 bits wide,2 CPU cycles/bus cycle

Primary bus 64 bits wide 5 CPU cycles/bus cycle

Secondary bus 8 bits wide, 5 CPU cycles/bus cycle

Victim buffer 8 entries

MSHR 8 per cache

Table 4: Bus Latencies
Parameter Cycles in bus

clocks

Level 1 Instruction and Data
cache

3

Level 2 Cache 18

Onboard bus arbitration 4

Primary bus arbitration 10

Secondary bus arbitration 10

3.5. Maximum speedup using free write-back

In order to determine the maximum possible speedup that may be obtained by using a

secondary bus for cache write-back, modifications to the simulator allowed the entire write-back

process to be bypassed for the L2 cache. The modifications created a situation in which write-

backs from the L2 cache required no processor cycles and were therefore “free”. This free write-

back behavior represents an upper bound on the improvements possible when using the

15

secondary bus. A comparison of performance when using a secondary bus with free write-back

demonstrates the efficiency of the secondary bus.

3.6. Benchmarks

The three benchmarks detailed in Table 5 were used for the simulations. The benchmarks

include two forms of matrix manipulation: matrix transpose and scalar multiplication, and a

simulation of a graphics engine. These benchmarks represent a cross-section of applications for

which cache and bus usage is high, and for which an additional bus might provide performance

gains.

Table 5: Small Cache Benchmarks
Benchmark Description

matscalar multiplication of a scalar with a matrix

mattrans matrix transpose

minigeo the mini-geometry kernel described in [15]

3.7. Simulation results and analysis

The simulation results showed that the addition of a secondary bus for cache write-back

could reduce the bus queuing delay and provide improved determinacy in real-time systems. An

analysis of the bus usage and queuing delay improvement when using a secondary bus follows.

3.7.1. Bus queuing delay

Bus queuing delays can prove significant in real-time systems where unexpected latencies

can cause hard deadlines to be missed. Significant changes in the usage of buses within the

system were observed with the addition of the secondary bus. Decrease in the number of requests

16

on the primary bus (see Table 6) is attributable to the use of the secondary bus for cache write-

backs, since that was the only change. This decrease lead to a significant decrease in the number

of cycles during which requests to the primary bus were queued (see Table 7) and decreased the

queuing delay experienced by requests on the primary bus (see Table 8 and Figure 4).

Table 6: Decrease in requests on system bus - small cache

Benchmark
Requests w/o

secondary bus
Requests with

secondary bus % decrease

matscalar 3,355,430 2,323,798 30.75%

mattrans 1,515,039 1,104,512 27.10%

minigeo 2,194,937 1,552,028 29.29%

Table 7: Decrease in queued cycles - small cache

Benchmark
Cycles queued w/o

secondary
Cycles queued with

secondary
%

decrease

matscalar 58,109,468 883,571 98.48%

mattrans 37,005,612 4,208,484 88.63%

minigeo 62,802,508 9,534,934 84.82%

Table 8: Decrease in queuing delay on system bus - small cache

Benchmark Improvement with secondary bus Improvement free writeback

matscalar 98.22% 98.22%

matttans 84.40% 84.43%

minigeo 78.52% 83.22%

17

Figure 4: Queuing delay on primary bus - small cache

3.7.2. Secondary bus analysis

The queuing delay on the secondary bus is shown in Table 9. In all cases the delay is small,

and is much smaller than the queuing delay on the primary bus. This shows that the limited

bandwidth of the secondary bus is sufficient to support the write-back traffic.

Figure 5 illustrates the usage of the buses in the system during a cache miss that requires a

write-back, with and without the secondary bus. When the secondary bus is not present, the

write-back request must be queued until the read transfer is complete. If a subsequent request

occurs during this time, it must also be queued, leaving the onboard bus idle waiting for the

transaction to complete. When the secondary bus is present, the primary bus becomes free

sooner, permitting a subsequent request to begin sooner and experience a shorter queuing delay,

0 5 10 15 20 25 30 35

matscalar

mattrans

minigeo

Cycles

free writeback
with secondary bus
without secondary bus

18

and also reducing the time during which the onboard bus must remain idle waiting for data to be

returned.

Table 9: Queuing delay on secondary bus - small cache (cycles)

Benchmark Queuing delay on secondary bus

matscalar 0.028

matttans 0.785

minigeo 0.139

Primary bus

memory read

onboard bus

Primary bus

memory

onboard bus

Secondary bus

Without secondary bus

With secondary bus

Read Request - Addr Read data transfer
(writeback queued) writeback addr/data

Read Request - Addr

read

Read data transfer

writeback addr/data

Read Request - Addr Read dats transfer

Read Request - Addr Read dats transfer

Figure 5: Bus timing

3.7.3. Write-back rates

As expected, the most important value that affects the potential usefulness of a secondary bus

for cache write-back is the write-back rate. Table 10 shows the L2 cache write-back rates

19

observed during the various benchmarks, where the write-back rate is defined as the ratio of the

number of write-backs to the total number of accesses. The secondary bus provides significant

decrease in bus queuing delay for programs that have a sufficient cache write-back rate.

Table 10: Write-back rates - small cache benchmarks
Benchmark L2 write-back rate

matscalar 24.2%

mattrans 24.0%

minigeo 42.0%

3.8. Conclusions

The results obtained during these simulations show a large reduction in the queuing delay

experienced by requests to the primary bus when using a secondary bus for cache write-back.

However, significant speedup results can only be obtained for applications such as graphics-

intensive applications in which the write-back rate is sufficient to require significant use of the

secondary bus. The reduction in bus queuing delays could have a positive impact on real-time

system temporal determinacy by reducing unexpected execution delays. Real-time and near real-

time embedded applications that depend on intense graphics processing and movement of large

blocks of data, such as printer controllers and medical imaging that involve significant I/O, are

prime candidates for applications of the secondary bus.

Comparison of the secondary bus to the theoretical maximum speedup shown by the free

write-back case show that the secondary bus provides decreases in queuing delay that are near

the maximum possible.

20

Chapter 4

Analysis of Large Cache Systems with a Secondary Bus

4.1. Introduction

In order to further demonstrate the feasibility of the secondary bus microarchitecture, it is

necessary to show its advantages in a system with larger caches while executing industry-

standard benchmarks. The small cache secondary bus microarchitecture depended on dual-ported

memory, which may add significant cost to the design. Adding a control mechanism in addition

to the memory controller would eliminate the need for dual-ported memory and enable the

secondary bus to snoop the main bus and initiate memory write-back when the later is not being

used for memory operations or busy with I/O transactions between the CPU and the I/O devices.

This additional control mechanism could be added for small cost.

4.2. Architecture of the Secondary Bus

The motivation behind the secondary bus architecture design is to first provide separate paths

from write buffers to main memory so that stalls due to the buffer becoming full can be avoided

[18]. Additionally, even during I/O transactions on the main bus, the secondary bus could be

used as an alternate path to commit the dirty cache lines to the memory. The main memory is

assumed to be a single port memory in this design, i.e. only one unit can access the memory at

any point in time. The design of the secondary bus based architecture has been shown in Figure 4

[4].

21

Figure 6: Large cache architecture with secondary bus

As seen in Figure 6 [18] [25], the secondary bus supports the main bus during write-backs

and I/O transactions. This is made possible by the secondary bus controller, which snoops the

main bus and identifies bus cycles that are not involved in memory accesses. These cycles will

be used to retire the dirty cache lines to the memory over the secondary bus. The control inputs

to the secondary bus controller are made up of the main bus control lines that give information

about the type of transaction happening on the bus. The signals ‘s1’ and ‘s2’ are sent in

accordance with the states of the main bus to arbitrate accesses. A simple main bus state diagram

is shown in Figure 7 [18].

22

 Address Strobe for I/O

 Operation completed

 Operation completed

 Address Strobe for Memory

Figure 7: Simplified bus state diagram

 In state T3 the main bus is idle and is waiting for an address strobe to move to the next

state. If the address supplied is for an I/O operation, the main bus would move to T2. For the

duration when the main bus is busy with I/O, it will be in T2 and upon completion of I/O will

return to T3. In state T1 the bus is busy with memory accesses. In states T2 and T3 write-back

entries can be retired through the secondary bus. The controller is designed so that s1 in state T1

is a connection-enabling signal and s2 is a disabling signal. In states T2 and T3 the reverse is

true.

 There can be situations where the main bus state would change from T3 to T1 or from T2

to T1 via T3 in the middle of a cache write-back commit via the secondary bus. To handle this

situation, the first option is to queue the main bus request until the write operation completes and

the write-back buffer is empty. The second option aborts the write-back and enables the main

bus to access memory. This option of giving the main bus access priority was adopted in our

design in order to not add to the queuing delay on the bus and for consistency with exiting

T3
Idle

State

T1

Busy
with

Memory
operations

T2

Busy

with I/O

23

architectures. Note that the state transitions of the secondary bus depend on the state of the main

bus.

The addition of the secondary bus and its bus controller adds minimal overhead to the

motherboard and the memory controller hub respectively. The secondary bus is narrow (8-bits),

of a smaller bandwidth, and is only used for write-backs. On average fewer than 30% of all

memory accesses in the SPEC CPU2006 benchmarks are writes, so a narrow bus could provide

ample bandwidth. If the bandwidth of the secondary bus is adequate, our design ensures that the

performance of a processor with the secondary bus will be no worse than one without. The

usefulness of the secondary bus depends on the amount of time the main bus spends in the states

of T2 and T3. Thus memory bound applications such as graphics-intensive applications and I/O

bound applications such as database systems will see significant benefits.

4.3. Simulation Speedup Using Simpoints

The initial simulations using a small cache size were executed successfully on a Linux-based

PC in a reasonable amount of time. When the cache size of the system was increased, and the

SPEC CPU2006 benchmarks were used, the execution times became unacceptable. Execution of

those benchmarks takes weeks or months of machine time [10], and there were several

benchmarks to execute, each requiring multiple runs with varying system parameters. This

problem was overcome by using the Simulation Points method [19] of only executing a small,

representative subset of the entire benchmark. The SimPoint tool uses a profiling method called

Basic Block Vectors to find blocks of code with similar execution behavior. The output of the

SimPoint tool is a list of points to be simulated and their corresponding weights. Using those

points, simulation time is greatly reduced. Errors with SimPoint have been shown to be always

24

less than 8.4%. The use of simpoints allowed the execution time of the simulations to be reduced

from weeks to days. In addition, the simulations were executed on the Alabama Supercomputer.

With this combination, each of the simulations could be executed within about two days, and the

entire suite of benchmarks with all combinations could then be executed in a reasonable amount

of time.

4.4. SPEC CPU2006 Benchmarks

The SPEC CPU2006 benchmark suite consists of 29 benchmarks (12 integer and 17 floating-

point). The SPEC benchmarks are real-world applications that have been modified to be easily

portable and to minimize the effects of I/O on performance. The evolution of the SPEC

benchmarks is shown in Figure 8 [11].

25

Figure 8: Evolution of the SPEC Benchmarks

In order to execute the benchmarks on the Sim-alpha simulator, it was necessary to obtain

Alpha binaries for the benchmarks, obtain the simpoints information for the benchmarks, and

then successfully execute the tests on the simulator. In addition, those benchmarks that did not

generate any cache write-backs did not exercise the secondary bus at all, and were therefore of

no use in the evaluation. Alpha binaries for the benchmarks were obtained from Kenneth Hoste

26

of Ghent University in Belgium. The following benchmarks were not executed because they

would not execute on the Alpha simulator:

• 401.bzip
• 445.gobmk
• 453.povray
• 456.hmmer

The following benchmarks were not executed because simpoints were not available for

those tests:

• 403.gcc
• 429.mfc
• 454.calculix
• 465.tonto
• 470.lbm
• 481.wrf
• 483.xalanbmk

The following benchmarks had no write-backs at all, and therefore were of no value to the

evaluation:

• 416.gamess
• 444.namd

The following benchmarks had very small write-back rates, and therefore very little speedup:

• 400.perlbench
• 435.gromacs
• 458.jsend
• 464.h264ref
• 473.astar

The remaining benchmarks, with their respective speedup values using the secondary bus

microarchitecture, are shown below:

27

• 410.bwaves: 18.83%
• 433.milc: 4.89%
• 434.zeusmp: 7.79%
• 436.cactusADM: 4.78%
• 437.leslie3D: 2.89%
• 447.dealII: 14.90%
• 450.soplex: 17.57%
• 459.gemsFTDT: 18.93%
• 462.libquantum: 18.02%
• 471.omnetp: 10.91%
• 482.sphinx3: 13.61%

Tables 9 and 10 summarize the simulation details for all of the SPEC CPU2006 benchmarks.

Table 11: SPEC CPU2006 Integer Benchmarks
400.perlbench: PERL

programming language
checkspam test

Small write-back rate
(0.53%)

0.25% speedup

 400.perlbench
diffmail test

Small write-back rate
(0.03%)

no speedup

401.bzip: Compression. Would not execute on
Alpha simulator.

403.gcc: C compiler Simpoints not available.
429.mcf: Combinatorial

optimization.
Simpoints not available.

445.gobmk: Artificial
intelligence: GO

Would not execute on
Alpha simulator

456.hmmer: Search gene
sequence

Would not execute on
Alpha simulator

458.jseng: Artificial
intelligence: chess

Small write-back rate
(0.63%)

0.10% speedup

462.libquantum: Physics:
quantum computing

36.42% write-back rate 18.02% speedup

464.h264ref: Video
compression

Small write-back rate
(0.27%)

0.08% speedup

471.omnetp Discrete event
simulation

16.82% write-back rate 10.91% speedup

473.astar: Path-finding
algorithm

Small write-back rate
(0.88%)

0.42% speedup

483.xalancbmk: XML
processing

Simpoints not available.

28

Table 12: SPEC CPU2006 floating-point benchmarks
410.bwaves: Fluid

dynamics
45.16% write-back rate 18.83% speedup

416.gamess: Quantum
chemistry

No write-backs

433.milc: Physics:
Quantum Chromodynamics

44.84% write-back rate 4.89% speedup

434.zeusmp: Physics/CFD 11.56% write-back rate 7.79% speedup
435.gromacs:

Biochemistry/Molecular
dynamics

Small write-back rate
(1.84%)

0.38% speedup

436.cactusADM:
Physics/general relativity

26.85% write-back rate 4.78% speedup

437.leslie3d: Fluid
dynamics

30.9% write-back rate 2.89% speedup

444.namd:
Biology/Molecular dynamics

No write-backs

447.dealII: Finite element
analysis

20.2% write-back rate 14.90% speedup

450.soplex: Linear
programming, optimization

22.12% write-back rate 17.57% speedup

453.povray: Image ray-
tracing

Will not execute on Alpha
simulator

454.calculix: Structural
mechanics

Simpoints not available

459.GemsFDTD:
Computational
electromagnetics

36.35% write-back rate 18.93% speedup

465.tonto: Quantum
chemistry

Simpoints not available

470.lbm: Fluid dynamics Simpoints not available
481.wrf: Weather

prediction
Simpoints not available

482.sphinx3: Speech
recognition

35.26% write-back rate 13.61% speedup

4.5. Simulation Setup

The usefulness of the secondary bus architecture was demonstrated using microprocessor

simulation techniques. The simulation was again conducted using the SimAlpha simulator of the

SimpleScalar tool set. The SPEC CPU 2006 benchmark suite was used for evaluating the design.

29

These benchmark programs were found to exercise the memory hierarchy better than SPEC 2000

[10]. SimAlpha was used with the simpoints to simulate the programs at those critical points and

the results were later averaged using specific weights for each of those simpoints. The

specifications used for the simulation are given in Table 13 [18] [25]. The SimAlpha simulator

was modified to incorporate the bus controller mechanism and a write-back buffer capable of

holding 256 cache lines. The L2 cache used the write back technique for cache coherency and

hence a write-back buffer was required for smaller write back latencies. The secondary bus was

connected between the write-back buffer and the main memory. The bus controller, as mentioned

in the design, regulates when the secondary bus may gain access to the memory while giving

higher priority to the main bus. The write-back buffer was implemented in the simulator as an

additional cache connected to the L2 cache. In addition, the simulator code was modified so that

writes from the write-buffer to memory via the secondary bus did not occur until the write buffer

was full, at which point all of the entries were written to memory in burst mode. The

functionality of the write-back buffer is similar to that of a cache, therefore simulating it as a

cache is an elegant way to include its functionality in the SimAlpha simulator.

To further test the secondary bus architecture, an I/O injection mechanism was incorporated

into the SimAlpha simulator code so that a given number of bytes could be injected into the bus

at a user provided frequency. It was used for simulating the communication between the various

devices connected to the chipset and the CPU. The bandwidth of the main bus used in the

simulations was 4.8 GB/Second with quad data rate and hence I/O injection frequencies of 1.2

GB/Sec and 1.8 GB/Sec are a good estimate of the amount of bandwidth used by I/O on the main

bus. The L2 cache sizes that were chosen are comparable to the latest embedded processor

specifications.

30

The simulations were run in three different modes:

1. Zero I/O traffic, so that the main bus was used only by the processor to communicate

with the memory via the controller for reading data and instruction blocks, and the

secondary bus was used for the writing. Both the base and the secondary bus

architectures were simulated.

2. With an I/O traffic injection into the main bus at an injection frequency of 200 Bytes/100

Cycles, which resulted in a bandwidth injection of 1.2 GB/Second.

3. An injection frequency of 300 Bytes/100 Cycles was used to provide a bandwidth of 1.8

GB/Second in the last case.

Table 13: Large cache simulation parameters
Processor Parameter Specifications

Processor Speed 3 GHz
Level 1 Data Cache 8 way, 32KB, virtual-index virtual-tag

Level 1 Instruction Cache 8 way, 32KB, virtual-index virtual-tag
Level 2 Cache 8 way, 2MB, physical-index physical-tag

Number of MSHRs per Cache 8
Write Mechanism for Level 1 Cache Victim Buffer, No Writeback Buffer
Write Mechanism for Level 2 Cache Writeback Buffer, No Victim Buffer

Main Bus (Front Side Bus)
600MHz, 8B wide, 10 cycles of arbitration

latency

Secondary Bus
600MHz, 1B wide, 10 cycles of arbitration

latency

The results obtained during the simulations were based on simulation methods that have been

shown to be valid. The comparison of the results obtained using the secondary bus with those of

free write-back verify that the secondary bus microarchitecture delivers results that are close to

but never exceed the maximum obtainable results of free write-back. In addition, the lack of any

change in the results for tests with zero write-backs show that, as expected, the addition of the

secondary bus has no affect in that case.

31

4.6. Simulation Results and Analysis

The results of the simulation demonstrate the ability of the secondary bus to improve

performance. Most significantly, the queuing delay on the system bus is reduced. This reduction

leads to improved performance in real-time systems, as well as improved overall system

performance. In order to use the secondary bus, software programs must include write-backs

from the level 2 cache to main memory. Table 14 shows the write-back rates of the SPEC

CPU2006 benchmarks.

Table 14: SPEC CPU2006 benchmark write-back rates
Test Write-back Rate
perlbench 0.53%
bwaves 45.16%
zeusmp 11.56%
milc 44.84%
gromacs 1.84%
cactusADM 26.85%
namd 0.00%
deal 20.20%
soplex 22.12%
sjeng 0.63%
GemsFDTD 36.35%
libquantum 36.42%
h264ref 0.27%
omnetpp 16.82%
astar_rivers 0.88%
sphinx 35.26%

In addition to the write-back rate, the overall usage of the cache by the benchmarks is important.

Table 15 shows the number of accesses to the level-2 cache for each benchmark.

Table 15: SPEC CPU2006 benchmark level-2 cache usage
test L2 cache accesses
perlbench 1295680

32

bwaves 209418624
milc 427381376
zeusmp 57956608
gromacs 1948608
cactusADM 861056000
leslie 183522560
deal 1759232
soplex 239954496
sjeng 1798656
GemsFDTD 147450688
libquantum 169901760
h264ref 2355328
omnetpp 133807744
astar_rivers 65588480
sphinx 132398080

4.6.1. Queuing Delay

When the bus is being used to service requests, any newly arriving requests must be queued.

In real-time systems, these queuing delays can become significant, resulting in unexpected

latencies and hard deadlines being missed. For instance, if an I/O device is requesting the use of

the processor during a memory read/write it must wait until the main bus is free.

The main bus in the simulations has a bandwidth of 4.8 GBs that was shared among the I/O

traffic of around 1.2 GBs, the write-back traffic, and the read traffic. Table 16 and Figure 9 show

the percentage queuing delay reduction achieved with the secondary bus against the base

architecture for each of the SPEC programs [25]. Almost all of the programs showed great

reduction in the queuing delays, with an average reduction of nearly 87% with no I/O traffic on

the main bus. The presence of the secondary bus helped in making the main bus less prone to bus

contention as the write traffic was diverted. Observe that the percentage reduction starts to

33

diminish as the I/O traffic becomes a larger portion of the main bus bandwidth. This is because

the write traffic is now a smaller fraction of the total traffic between the CPU and the peripherals.

Even in these conditions a reduction averaged to 80% and 77% during the two cases of I/O

injected simulations.

Table 16: Decrease in queuing delay - large cache
test No I/O 1.2 GB/s I/O 1.8 GB/s I/O
perlbench 8 7.90% 6.00%
bwaves 98.11% 85.12% 77.63%
milc 71.38% 68.10% 66.84%
zeusmp 99.68% 94.15% 92.28%
gromacs 95.34% 66.39% 61.95%
cactusADM 87.88% 65.05% 61.47%
leslie 88.80% 80.76% 79.50%
deal 6.56% 1.92% 1.60%
soplex 91.44% 69.74% 65.40%
sjeng 98.20% 79.59% 77.32%
GemsFDTD 97.03% 86.02% 82.47%
libquantum 99.19% 84.71% 81.63%
h264ref 94.96% 79.83% 75.39%
omnetpp 98.62% 89.26% 86.44%
astar_rivers 96.20% 86.60% 84.20%
sphinx 98.02% 89.85% 86.26%

34

Figure 9: Decrease in queued cycles on system bus - large cache

4.6.2. Overall Speed-Up

A comparison of the ‘cycles per instruction’ between the secondary bus architecture and the

base architecture gives us the speed-up achieved. Table 17 and Figure 10 show the percentage

speed-up achieved across a range of programs from the SPEC CPU 2006 benchmark suite.

Table 17: Increase in cycles per instruction with secondary bus
test No I/O 1.2GB/s I/O 1.8GB/s I/O

perlbench 0.25% 0.79% 0.94%
bwaves 18.83% 32.29% 32.81%
milc 4.89% 6.29% 6.81%
zeusmp 7.79% 18.77% 20.52%
gromacs 0.38% 1.20% 1.44%
cactusADM 4.78% 12.20% 13.83%
leslie 2.89% 3.83% 4.27%
deal 14.90% 18.47% 18.68%
soplex 17.57% 24.62% 25.01%
sjeng 0.10% 0.33% 0.32%

35

GemsFDTD 18.93% 30.12% 30.90%
libquantum 18.02% 19.99% 20.07%
h264ref 0.08% 0.19% 0.21%
omnetpp 10.91% 20.67% 21.79%
astar_rivers 0.42% 1.20% 1.44%
sphinx 13.61% 29.12% 30.11%

Figure 10: Percentage improvement with secondary bus

In the absence of I/O traffic on the main bus, speed-ups of up to 19% were achieved due to

the addition of the secondary bus. The main reason for the performance improvement is the

offloading of the write traffic on the main bus onto the secondary bus, as well as the timing of

the memory access. With the presence of the secondary bus, the main bus never had to wait for

the dirty write-back traffic to be written to the main memory whenever it requested data due to

an L2 cache miss. In the presence of I/O traffic, further improvement was seen, with speed-ups

of up to 33%. The secondary bus alleviates the performance degradation that normally happens

on the main bus due to access contention by peripherals and memory.

36

Results also show that the speed-up depends on how much the program strains the memory

hierarchy. Processors using smaller second level caches lead to higher number of cache misses

and hence more write-backs. Thus programs having a very large working set could benefit

compared to the ones using smaller caches and working sets such as gromacs, sjeng, and

h264ref. The program namd did not have any write-backs to the memory and hence the

architecture was never put to test during the simulations. Programs such as bwaves, zeusmp,

gemsFDTD, and sphinx were highly write-back intensive with nearly 30% of the traffic on the

main bus being write-back traffic [25].

37

Chapter 5

Analysis of Real-Time System Performance with a Secondary Bus

5.1. Introduction

Worst-case execution time (WCET) is a measure of the longest time that a program could

take to execute on a target hardware system. Measurement of the WCET is necessary in safety-

critical hard real-time systems to insure that critical system-dependent timing constraints are met.

Examples of this type of system are brake control systems and flight controls. Additionally,

numerous systems have soft real-time requirements that must meet real-time constraints during

critical execution times, for example video processing systems and printers.

Accurately estimating the WECT of a real-time system is difficult. The two chief

methods for determining WCET are either static analysis of the software and underlying

hardware, or actual execution of the software on the target hardware with a variety of inputs.

WCET estimates attempt to find measurements that reflect the actual worst-case behavior of the

system without overestimating. Underestimating the WCET will lead to a system that fails, and

overestimates lead to wasted resources and over-designed systems.

The underlying hardware architecture has a major impact on the WCET. Underlying

architecture elements such as cache memory and instruction pipelining can lead to large

variability in execution times. When the secondary bus microarchitecture is applied to real-time

applications, it can deliver significant reductions in WCET.

38

5.2. New Measurement: Max Instruction Cycles

In addition to original SimpleScalar measurements, two additional metrics were added to the

Sim-alpha simulations. First, measurements were taken of the maximum number of cycles used

by any instruction during the entire benchmark. A reduction in this number has a direct

correlation to a reduction of the WCET of the benchmark. Table 18 and Figure 11 show the

significant decrease in the maximum cycles used by any instruction for the SPEC CPU2006

benchmarks. The reductions of up to 93% show that the addition of the secondary bus has a

major impact on the WCET of the benchmark tests.

Table 18: Max Cycles Used by Any Instruction
Test Original Max Secondary Bus Max Change
perlbench 14685 926 93.69%
bwaves 14575 2024 86.11%
milc 562 372 33.81%
zeusmp 15247 2090 86.29%
gromacs 14836 1098 92.60%
cactusADM 15370 3984 74.08%
leslie 674 464 31.16%
deal 14410 1047 92.73%
soplex 15732 1762 88.80%
sjeng 15192 1542 89.85%
GemsFDTD 15180 1880 87.62%
libquantum 14817 1002 93.24%
h264ref 15192 2080 86.31%
omnetpp 14860 1118 92.48%
astar_rivers 15080 1210 91.98%
sphinx 15190 1224 91.94%

39

Figure 11: Change in Max Cycles

With I/O injection, the contention and hence the queuing delay on the main bus increased

significantly and therefore instructions resulting in cache misses took more cycles than without

I/O. As seen in Table 19, Table 20, Figure 12, and Figure 13, the reduction in the maximum

cycles per instruction is still significant when I/O is present.

Table 19: Max Instruction Cycles with 1.2GB/s I/O
Test Original Max Secondary Bus

Max
Max Cycles

Change
perlbench 16404 4035 75.40%
bwaves 25300 4264 83.15%
milc 962 465 51.66%
zeusmp 28868 6563 77.27%
gromacs 16119 4359 72.96%
cactusADM 27758 9964 64.10%
leslie 760 505 33.55%
deal 14970 4426 70.43%
soplex 37097 7418 80.00%
sjeng 27652 5679 79.46%
GemsFDTD 27600 25090 9.09%

40

libquantum 26050 3312 87.29%
h264ref 27582 4820 82.52%
omnetpp 25191 4179 83.41%
astar_rivers 28175 4560 83.82%
sphinx 27640 5110 81.51%

Figure 12: Change in max instructions with 1.2GB/s I/O

Table 20: Max Instructions with 1.8GB/s I/O
Test Original Max Secondary Bus

Max
Max Cycles

Change
perlbench 18295 4835 73.57%
bwaves 27002 4574 83.06%
milc 1127 425 62.29%
zeusmp 30238 7503 75.19%
gromacs 18969 5114 73.04%
cactusADM 29380 9279 68.42%
deal 15085 5446 63.90%
soplex 32432 9003 72.24%
sjeng 29067 7134 75.46%
GemsFDTD 29095 6660 77.11%
libquantum 27485 4077 85.17%
h264ref 29067 6041 79.22%

41

omnetpp 29139 5417 81.41%
astar_rivers 29865 5715 80.86%
sphinx 28645 6115 78.65%

Figure 13: Change in Max Instructions with 1.8GB/s I/O

While there is no guarantee that the instruction requiring the maximum number of execution

cycles is a part of the WCET path, a reduction in the max execution cycles is an obvious

improvement in an attempt to reduce the WCET. The secondary bus delivers reductions of an

order of magnitude in max execution cycles over the original system. This reduction, along with

those measured in the next section, lead to a significant gain for hard real-time systems.

5.3. New Measurement: Instructions requiring more than 1000 cycles

In addition to the maximum number of cycles required by any instruction, the number of

instructions per benchmark requiring more than 1000 cycles to execute was also measured.

Although a majority of the simulated 100 million instructions took only 100 to 200 cycles to

42

execute, there were instructions that took more than 1000 cycles due to cache misses. These

additional cycles were mainly due to the latencies of memory accesses and main bus contention

[25]. Even without I/O traffic, the base architecture was severely impacted by the contention

between write-backs and reads on the main bus compared to the secondary bus architecture.

With the secondary bus there was an average 97% decrease in the number of instructions taking

more than 1000 cycles across the benchmark suite. This measure is also linked to the WCET, and

the reduction in this metric shown with the addition of the secondary bus further demonstrates its

ability to reduce the WCET in real-time systems. Table 21 and Figure 14 show the large decrease

in the number of instructions requiring more than 1000 cycles in the SPEC benchmarks. Notice

that the milc and lesie tests did not have any instructions that required more than 1000 cycles in

the original setup, so they are not included in the table. When the secondary bus is present, the

instructions requiring more than 1000 cycles is reduced by 100% in several of the benchmarks.

Table 21: Instruction using > 1000 cycles
Test Original insn > 1000 Secondary Bus inst > 1000 Change
perlbench 64.93 0.00 100.00%
bwaves 6186.40 0.74 99.99%
zeusmp 1655.53 13.61 99.18%
gromacs 71.52 0.01 99.99%
cactusADM 1000.91 2.00 99.80%
deal 4946.94 3.56 99.93%
soplex 7177.96 639.41 91.09%
sjeng 23.99 2.92 87.85%
GemsFDTD 5417.60 7.52 99.86%
libquantum 6201.98 0.08 100.00%
h264ref 18.96 4.37 76.93%
omnetpp 3390.06 0.15 100.00%
astar_rivers 91.98 0.81 99.12%
sphinx 3591.36 16.25 99.55%

43

Figure 14: Change in instructions > 1000 cycles

When I/O is present, the reduction is also significant, as shown in Table 22, Table 23, Figure

15, and Figure 16. This decrease in the number of such time consuming instructions was more

significant compared to the case where the I/O traffic was absent, which explains the increased

speed-up with I/O injection as well. The results seen by measuring these two metrics indicate

that the secondary bus microarchitecture is an excellent choice for real-time systems.

Table 22: Instructions > 1000 cycles with 1.2GB/s I/O
Test Original insn >

1000
Secondary Bus inst >

1000
Change

perlbench 536.62 113.48 78.85%
bwaves 81290.82 17892.46 77.99%
zeusmp 22265.92 8565.09 61.53%
gromacs 546.07 23.76 95.65%
cactusADM 23282.93 19176.33 17.64%
deal 54567.71 38.94 99.93%
soplex 210101.78 158631.79 24.50%
sjeng 141.72 41.33 70.84%

44

GemsFDTD 105763.27 57626.26 45.51%
libquantum 50477.19 27.64 99.95%
h264ref 169.24 84.01 50.36%
omnetpp 43065.19 12517.53 70.93%
astar_rivers 656.21 146.00 77.75%
sphinx 32724.39 870.50 97.34%

Figure 15: Instructions > 1000 cycles with 1.2GB/s I/O

Table 23: Instructions > 1000 cycles with 1.8GB/s I/O
Test Original insn >

1000
Secondary Bus inst >

1000
Change

perlbench 729.09 202.87 72.17%
bwaves 165052.12 91615.23 44.49%
zeusmp 31779.34 15193.67 52.19%
gromacs 745.82 59.56 92.01%
cactusADM 27643.48 22485.62 18.66%
deal 80185.21 1249.17 98.44%
soplex 317720.40 263260.83 17.14%
sjeng 177.41 62.76 64.62%

45

GemsFDTD 158155.37 101660.01 35.72%
libquantum 66725.11 47.20 99.93%
h264ref 244.45 144.03 41.08%
omnetpp 61919.20 22989.39 62.87%
astar_rivers 817.24 183.42 77.56%
sphinx 42519.00 1457.06 96.57%

Figure 16: Instructions > 1000 cycles with 1.8GB/s I/O

 The difficulty inherent in measuring WCET in any system, and the necessity to couple a

real-time system with a specific microarchitecture in order to get accurate measurements mean

that significant testing will be required to prove the advantages of the secondary bus

microarchitecture. However, the significant reduction provided by the secondary bus

microarchitecture in instructions requiring more that 1000 cycles to execute and in maximum

cycles used by any instruction demonstrate its impact in reducing the cycles required for any

46

sequence of instructions, including those that are included in the WCET path. Since the purpose

of measuring the WCET is to guarantee that the timing constraints of the system are met, the

most important measurement in a particular system is to guarantee that the absolute maximum

execution times of the time-critical code segments are less that the required values. An additional

advantage of the secondary bus architecture is to reduce the uncertainty and improve the

predictability in execution times when using cache memories. This improvement can allow real-

time system designers to take advantage of improved cache performance without risking missed

timing constraints due to erratic cache-induce behavior.

5.4. Details of SPEC CPU2006 benchmark results

The function of each of the SPEC CPU2006 benchmarks used in the simulations is

described below [21], along with details of the simulation results obtained with each test. The

results show that the overall system speed-up is highest when the write-back rate is high and the

use of the L2 cache is moderate. When the L2 cache usage goes up, the low bandwidth of the

secondary bus does not permit additional speed-up. Also, the addition of the secondary bus to the

system decreased memory latencies even when the write-back rate was small, leading to

improved real-time performance in all cases.

5.4.1. 400.pearlbench

400.perlbench is a slimmed-down version of the popular scripting language Perl v5.8.7

with most of the OS-specific features removed. In addition to the core interpreter, the following

third-party modules are used: SpamAssassin v2.61, Digest-MD5 v2.33, HTML-Parser v3.35,

MHonArc v2.6.8, IO-stringy v1.205, MailTools v1.60, and TimeDate v1.16. The primary

47

component of the workload is the Open Source spam checking software SpamAssassin.

SpamAssassin is used to score a couple of known corpora of both spam and ham (non-spam), as

well as a sampling of mail generated from a set of random components. It was heavily patched to

avoid doing file I/O.

The write-back rate of less than 1% for this benchmark lead to an overall speed-up of less

than 1%. The small usage of the secondary bus was, however, enough to reduce the number of

queued cycles on the system bus by 69% when no I/O was present, 8% with 1.2GB/s of I/O, and

6% with 1.8GB/s of I/O. The maximum number of cycles used was reduced by 95%, 75%, and

74%, and the number of instructions requiring more than 1000 cycles was reduced by 100%,

79%, and 72%. This test is a good example of the ability of the secondary bus microarchitecture

to improve real-time performance even when overall system performance is not affected.

5.4.2. 410.bwaves

410.bwaves numerically simulates blast waves in three-dimensional transonic transient

laminar viscous flow. The algorithm implemented is an un-factored solver for the implicit

solution of the compressible Navier-Stokes equations using the Bi-CGstab algorithm, which

solves systems of non-symmetric linear equations iteratively. The initial configuration of the

blast waves problem consists of a high pressure and density region at the center of a cubic cell of

a periodic lattice, with low pressure and density elsewhere. Periodic boundary conditions are

applied to the array of cubic cells forming an infinite network. Initially, the high-pressure volume

begins to expand in the radial direction as classical shock waves. At the same time, the expansion

waves move to fill the void at the center of the cubic cell. When the expanding flow reaches the

boundaries, it collides with its periodic images from other cells, thus creating a complex structure

48

of interfering nonlinear waves. These processes create a nonlinear damped periodic system with

energy being dissipated in time. Finally, the system will come to an equilibrium and steady state.

This test had the largest write-back rate at 45%, leading to an overall speed-up of 19%

with no I/O, 32% with 1.2GB/s of I/O, and 33% with 18.GB/s of I/O. The queuing delay on the

system bus was reduced by 98%, 85%, and 78% for the three cases. The maximum number of

cycles used was reduced by 86%, 83%, and 83%, and the number of instructions requiring more

than 1000 cycles was reduced by 100%, 78%, and 44%. This test demonstrated the usefulness of

the secondary bus for applications with high write-back rates.

5.4.3. 433.milc

The MILC Code is a set of codes developed by the MIMD Lattice Computation (MILC)

collaboration for doing simulations of four-dimensional lattice gauge theory on MIMD parallel

machines, and is used for millions of node hours at DOE and NSF supercomputer centers.

433.milc in SPEC CPU2006 uses the serial version of the su3imp program. The single processor

version of this application is important and relevant, because parallel performance depends on

good single processor performance. The program generates a gauge field, and is used in lattice

gauge theory applications involving dynamical quarks. Lattice gauge theory involves the study

of some of the fundamental constituents of matter, namely quarks and gluons.

This test has a 45% write-back rate, but the overall speed-up obtained with the secondary

bus was only 5% with no I/O, 6% with 1.2GB/s of I/O, and 7% with 1.8GB/s of I/O. The small

cycles per instruction of the base system… The queuing delay on the system bus was reduced by

71%, 68%, and 67% for the three cases. The maximum number of instructions used was reduced

by 34%, 52%, and 62%. The number of instructions requiring more than 1000 cycles was not

49

affected, since this test did not have any instructions requiring more than 1000 cycles in the base

architecture.

5.4.4. 434.zeusmp

434.zeusmp is based on ZEUS-MP, a computational fluid dynamics code developed at

the Laboratory for Computational Astrophysics (NCSA, University of Illinois at Urbana-

Champaign) for the simulation of astrophysical phenomena. ZEUS-MP solves problems in three

spatial dimensions with a wide variety of boundary conditions. The program solves the equations

of ideal (non-resistive), non-relativistic, hydrodynamics and magnetohydrodynamics, including

externally applied gravitational fields and self-gravity. The physical problem solved in SPEC

CPU2006 is a 3-D blastwave simulated with the presence of a uniform magnetic field along the

x-direction. The original ZEUS-MP is based on ZEUS-3D and parallelized using the MPI

message-passing library; for SPEC CPU2006, the MPI calls have been removed to create the

single processor version 434.zeusmp.

This test has a 12% write-back rate, and the overall speed-up with the secondary bus was

8% with no I/O, 19% with 1.2GB/s of I/O, and 21% with 1.8GB/s of I/O. These speed-up values

are consistent with the relatively small number of write-backs and subsequent use of the

secondary bus. The queuing delay on the system bus was reduced by 99%, 94%, and 92% for the

three I/O variations. The maximum number of cycles used was reduced by 86%, 77%, and 75%,

and the number of instructions requiring more than 1000 cycles was reduced by 99%, 62%, and

52%.

50

5.4.5. 435.gromacs

435.gromacs is derived from GROMACS, a versatile package that performs molecular

dynamics by simulating the Newtonian equations of motion for systems with hundreds to

millions of particles. Although it is primarily designed for biochemical molecules such as

proteins and lipids that have many complicated bonded interactions, GROMACS is also

extremely fast at calculating the non-bonded interactions that usually dominate the simulation

cost. Therefore, many groups are also using it for research on non-biological systems, such as

polymers. The benchmark version performs a simulation of the protein Lysozyme in a solution

of water and ions. The structure of a protein is normally determined by experimental techniques

such as X-ray crystallography of NMR spectroscopy. By simulating the atomic motions of these

structures, one can gain significant understanding of protein dynamics and function, and, in some

cases, it might even be possible to predict the structure of new proteins. A dodecahedron-shaped

box is used to reduce the amount of solvent water, but there are still 23179 atoms in the system.

The simulation time is completely dominated by the inner loops where the non-bonded Lennard-

Jones and Coulomb interactions are calculated between atoms that are closer than 1.4 nm in

space.

This test has a write-back rate of less than 2%, leading to an overall speed-up of less that

1% with no I/O, and just over 1% when I/O was present. The queuing delay on the system bus

was reduced by 95% when I/O was not present, 66% with 1.2GB/s of I/O, and 62% with 1.8GB/s

of I/O. The maximum number of cycles was reduced by 93% with no I/O, and 73% when I/O

was present. The number of instructions requiring more than 1000 cycles was reduced by 100%,

51

96%, and 92% for the three cases. This test indicates once again the improvements given by the

secondary bus even when it not used extensively.

5.4.6. 436.cactusADM

CactusADM is a combination of Cactus, an open source problem-solving environment,

and BenchADM, a computational kernel representative of many applications in numerical

relativity. CactusADM solves the Einstein evolution equations, which describe how space-time

curves in response to its matter content, and are a set of ten-coupled nonlinear partial differential

equations, in their standard ADM 3+1 formulation.

This test has a 27% write-back rate. An overall speed-up of 5% with no I/O present, 12%

with 1.2GB/s of I/O, and 14% with 1.8GB/s of I/O was seen with the secondary bus

microarchitecture. The queuing delay on the system bus was reduced by 88%, 65%, and 61%.

The maximum number of cycles used was reduced by 74%, 64%, and 68%. The number of

instructions requiring more than 1000 cycles was reduced by 99%, 18%, and 19%.

5.4.7. 437.leslie3d

437.leslie3d is derived from LESlie3d (Large-Eddy Simulations with Linear-Eddy Model

in 3D), a research-level Computational Fluid Dynamics (CFD) code. It is the primary solver used

to investigate a wide array of turbulence phenomena such as mixing, combustion, acoustics and

general fluid mechanics. For CPU2006, the program was set up to solve a test problem that

represents a subset of such flows, namely the temporal mixing layer. This type of flow occurs in

the mixing regions of all combustors that employ fuel injection. LESlie3d uses a strongly-

conservative, finite-volume algorithm with the MacCormack Predictor-Corrector time

52

integration scheme. The accuracy is fourth-order spatially and second-order temporally. The

SPEC version performs limited file I/O to isolate the workload to CPU and memory subsystems.

The write-back rate for this test is 31%. The overall speed-up with the secondary bus is

only 3% with no I/O and 4% when I/O is present. The queuing delay on the system bus was

reduced by 89% when no I/O was present, 81% with 1.2GB/s of I/O, and 79% with 1.8 GB/s of

I/O. The maximum number of cycles was reduced by 31%, 34%, and 35% for the three cases.

The number of instructions requiring more than 1000 cycles was not affected, since this test did

not have any instructions requiring more than 1000 cycles in the base architecture.

5.4.8. 447.dealII

 447.dealII uses a C++ program library targeted at adaptive finite elements and error

estimation. The library uses state-of-the-art programming techniques of the C++ programming

language, including the Boost library. It offers a modern interface to the complex data structures

and algorithms and enables use of a variety of finite elements in one, two, and three space

dimensions, as well as time-dependent problems. The deal.II library provides the application

programmer with grid handling and refinement, handling of degrees of freedom, input of meshes

and output of results in graphics formats. Also, support for several space dimensions at once is

included in a way that allows programs to be independent of the space dimension, without

unreasonable penalties on run-time and memory consumption. The test case for the benchmark

version, 447.dealII, solves an equation (a Helmholtz-type equation with non-constant

coefficients) that is at the heart of solvers for a wide variety of applications. For example, solvers

for incompressible fluid flow, static or time-harmonic electromagnetics, static and quasi-static

elasto-plasticity, general relativity, and implicit time stepping schemes for seismic, acoustic, and

53

electromagnetic applications spend most of their computing time solving one form or other of

this equation. The code uses modern adaptive methods based on duality weighted error estimates

to generate optimal meshes. The equation is solved in 3d.

This test has a 20% write-back rate, and the secondary bus provides an overall system

speed-up of 15% when no I/O is present, 18% with 1.2GB/s of I/O, and 19% with 1.8 GB/s of

I/O. The queuing delay on the secondary bus was reduced by 7% without I/O and 2% when I/O

was present, giving this test the smallest change in that metric. The maximum number of cycles

was reduced by 93%, 70%, and 64% for the three cases. The number of cycles requiring more

than 1000 cycles to execute was reduced by 99%, 99%, and 98%.

5.4.9. 450.soplex

450.soplex is based on SoPlex Version 1.2.1, which solves a linear program using the

Simplex algorithm. The LP is given as a sparse m by n matrix A, together with a right hand side

vector b of dimension m and an objective function coefficient vector c of dimension n. In

general, the problem is to find the vector x to:

minimize c'x

subject to Ax <= b

with x >= 0 .

In practice, x may also have upper bounds and the A(i,.)x <= b(i) constraints could also

be greater-than-or-equal-to constraints or equality constraints (where A(i,.) is row i of the matrix

A). Note that the matrix A is rather sparse in practice. Therefore SoPlex, like most other

implementations of the simplex algorithm, employs algorithms for sparse linear algebra, in

54

particular a sparse LU-Factorization and appropriate solving routines for the resulting triangular

equation systems.

This test has a 22% write-back rate. The secondary bus generated an 18% speed-up with

no I/O and 25% when I/O was present. The system bus queuing delay was reduced by 91% when

no I/O was present, 70% for 1.2GB/s of I/O, and 65% for 1.8GB/s of I/O. The maximum number

of cycles used by any instruction was reduced by 89%, 80%, and 72% for the three cases. The

number of instructions requiring more than 1000 cycles was reduced by 91%, 24%, and 17%.

5.4.10. 458.jseng

458.sjeng is based on Sjeng 11.2, a program that plays chess and several chess variants. It

attempts to find the best move via a combination of alpha-beta or priority proof number tree

searches, advanced move ordering, positional evaluation and heuristic forward pruning.

Practically, it will explore the tree of variations resulting from a given position to a given base

depth, extending interesting variations but discarding doubtful or irrelevant ones. From this tree

the optimal line of play for both players is determined, as well as a score reflecting the balance of

power between the two. The SPEC version is an enhanced version of the free Sjeng 11.2

program, modified to be more portable and more accurately reflect the workload of current

professional programs.

The write-back rate for this test was very small (less than 1%), with a corresponding

overall system speed-up of less than 1%. The queuing delay on the system bus was reduced by

98%, 80%, and 77%. The maximum number of cycles was reduced by 90%, 79%, and 75%. The

number of cycles requiring more than 1000 cycles was reduced by 88%, 71%, and 65%.

55

5.4.11. 459.GemsFDTD

GemsFDTD solves the Maxwell equations in 3D in the time domain using the finite-

difference time-domain (FDTD) method. The radar cross section (RCS) of a perfectly

conducting (PEC) object is computed. GemsFDTD is a subset of the code GemsTD developed in

the General ElectroMagnetic Solvers (GEMS) project. The code consists of three steps,

initialization, time stepping and post-processing. More than 99% of the time is spent in the time

stepping. The core of the FDTD method is second-order accurate central-difference

approximations of the Faraday's and Ampere's laws. These central-differences are employed on a

staggered Cartesian grid resulting in an explicit finite-difference method. An incident plane wave

is generated using so-called Huygens' surfaces. This means that the computational domain is

split into a total-field part and a scattered field part, where the scattered field part surrounds the

total-field part. The computational domain is truncated by an absorbing layer in order to

minimize the artificial reflections at the boundary. The Uni-axial perfectly matched layer

(UPML) by Gedney is used here. A time-domain near-to-far-field transformation computes the

RCS according to the Martin and Pettersson.

This test has a large write-back rate of 36%. The overall system speed-up was 19% with

no I/O, 30% with 1.2GB/s of I/O, and 31% with 1.8GB/s of I/O. The system bus queuing delay

was reduced by 97%, 86%, and 82% for the three cases. The maximum number of cycles was

reduced by 88%, 80%, and 77%. The number of instructions requiring more than 1000 cycles

was reduced by 99%, 46%, and 36%.

56

5.4.12. 462.libquantum

libquantum is a library for the simulation of a quantum computer. Quantum computers

are based on the principles of quantum mechanics and can solve certain computationally hard

tasks in polynomial time. In 1994, Peter Shor discovered a polynomial-time algorithm for the

factorization of numbers, a problem of particular interest for cryptanalysis, as the widely used

RSA cryptosystem depends on prime factorization being a problem only to be solvable in

exponential time. An implementation of Shor's factorization algorithm is included in libquantum.

libquantum provides a structure for representing a quantum register and some elementary gates.

Measurements can be used to extract information from the system. Additionally, libquantum

offers the simulation of decoherence, the most important obstacle in building practical quantum

computers. It is thus not only possible to simulate any quantum algorithm, but also to develop

quantum error correction algorithms. As libquantum allows you to add new gates, it can easily be

extended to fit the ongoing research, e.g. it has been deployed to analyze quantum cryptography.

The write-back rate of 36% made good use of the secondary bus and lead to an overall

speed-up of 18% with no I/O and 20% when I/O was present. The queuing delay on the system

bus was reduced by 99%, 84%, and 82%. The maximum number of cycles used was reduced by

93% 87%, and 85%, and the number of instructions using more than 1000 cycles was reduced to

nearly zero in all three cases.

5.4.13. 464.h264ref

464.h264ref is a reference implementation of H.264/AVC (Advanced Video Coding), the

latest state-of-the-art video compression standard. This standard replaces the currently widely

57

used MPEG-2 standard, and is being applied for applications such as the next-generation DVDs

(Blu-ray and HD DVD) and video broadcasting. The 464.h264ref source code, which is part of

SPEC CPU2006, is based on version 9.3 of the h264avc reference implementation downloaded

from Karsten Sühring's website. The original sources have been modified to ensure portability,

validation, and fairness across multiple hardware and software platforms.

The write-back rate of less than 1% lead to an overall speed-up of less than 1%. The

queuing delay on the system bus was reduced by 95% with no I/O, 80% with 1.2GB/s of I/O, and

75% with 1.8GB/s of I/O. The maximum number of cycles used was reduced by 86%, 83%, and

79%. The number of instructions requiring more than 1000 cycles was reduced by 77%, 50%,

and 41%.

5.4.14. 471.omnetp

This benchmark performs discrete event simulation of a large Ethernet network, based on

the OMNeT++ discrete event simulation system (www.omnetpp.org). OMNeT++'s primary

application area is the simulation of communication networks, but its generic and flexible

architecture allows for its use in other areas such as the simulation of IT systems, queuing

networks, hardware architectures or business processes as well. For the reference workload, the

simulated network models a large Ethernet campus backbone, with several smaller LANs of

various sizes hanging off each backbone switch. The model contains altogether about 8000

computers (hosts), and 900 switches and hubs. It mixes all kinds of Ethernet technology: Gigabit

Ethernet, 100Mb full duplex, 100Mb half duplex, 10Mb UTP, 10Mb bus ("thin Ethernet"),

switched hubs, repeating hubs.

58

This test’s 17% write-back rate led to an 11% overall speed-up with no I/O, 21% with

1.2GB/s of I/O, and 22% with 1.8 GB/s of I/O. The system bus queuing delay was reduced by

99%, 89%, and 86% for the three cases. The maximum number of cycles used was reduced by

92%, 83%, and 81%, and the number of instructions requiring more than 1000 cycles was

reduced by 100%, 71%, and 63%.

5.4.15. 471.astar

471.astar is derived from a portable 2D path-finding library that is used in game AI. This

library implements three different path-finding algorithms: First is the well known A* algorithm

for maps with passable and non-passable terrain types. Second is a modification of the A* path

finding algorithm for maps with different terrain types and different move speed. Third is an

implementation of A* algorithm for graphs that is formed by map regions with neighborhood

relationship. The library also includes pseudo-intellectual functions for map region

determination.

The write-back rate of this test was very small (less than 1%), leading to an overall

speed-up with the secondary bus of less than 1% with no I/O, and just over 1% when I/O was

present. The queuing delay on the system bus was reduced by 96%, 87%, and 84% for the three

cases. The maximum number of cycles used was reduced by 92%, 84%, and 81%. The number

of instructions requiring more than 1000 cycles was reduced by 99% with no I/O and 78% with

I/O.

59

5.4.16. 482.sphinx3

Sphinx-3 is a widely known speech recognition system from Carnegie Mellon University.

CMU supplies a program known as livepretend, which decodes utterances in batch mode, but

otherwise operates as if it were decoding a live human. In particular, it starts from raw audio, not

from an intermediate format. Although in real life I/O efficiency is important to any speech

recognition system, the SPEC version concentrates on the CPU-intensive portions of the task.

This test has a large write-back rate of 35%. The overall system speed-up using the

secondary bus is 14% when I/O is not present, 29% with 1.2GB/s of I/O, and 30% with 1.8GB/s

of I/O. The queuing delay on the system bus was reduced by 98%, 90%, and 86% in the three

cases. The maximum number of cycles used was reduced by 92%, 82%, and 79% for the three

cases, and the number of instructions requiring more than 1000 cycles was reduced by 99% with

no I/O and 97% when I/O was present.

60

Chapter 6

Analysis of Power Consumption with a Secondary Bus

6.1. Introduction

In embedded and real-time processing systems and increasingly in higher-end systems,

power consumption is often as important as performance. Modern embedded devices require low

power in order to improve battery life and increase product reliability. Assuming a goal of

obtaining minimum power at a given performance level, the secondary bus microarchitecture has

clear benefits when applied to systems that require low energy consumption. The single most

efficient method of reducing the power consumption of a processor is to reduce the voltage [26].

A reduction in voltage leads to a reduction in frequency. The increase in instructions per cycle

measured when the secondary bus is present shows that when the secondary bus is used, a low-

power system may reduce its clock rate to reduce power while still maintaining a high level of

processing power. By reducing the voltage along with the clock rate, energy consumption is

reduced. This makes the secondary bus microarchitecture a good choice for low-power systems.

6.2. Instructions per Cycle Analysis

The instructions per cycle that were measured for the SPEC CPU2006 benchmarks are

shown in Table 24 and Figure 17, and show an increase in the IPC of up to 18%.

Table 24: Instructions per Cycle
Test Original

IPC
Secondary Bus IPC IPC

Change

61

perlbench 0.32 0.32 0.25%
bwaves 0.22 0.27 18.61%
milc 0.37 0.39 4.80%
zeusmp 0.35 0.38 6.96%
gromacs 0.42 0.42 0.36%
cactusADM 0.38 0.40 4.77%
leslie 0.40 0.41 2.87%
deal 0.27 0.29 7.82%
soplex 0.20 0.24 16.47%
sjeng 0.38 0.38 0.05%
GemsFDTD 0.25 0.31 18.54%
libquantum 0.23 0.27 16.27%
h264ref 0.34 0.35 0.08%
omnetpp 0.24 0.26 10.83%
astar_rivers 0.39 0.39 0.31%
sphinx 0.28 0.32 13.59%

Figure 17: Change in Instructions per Cycle

62

When I/O is included, the secondary bus microarchitecture once again shows improvements.

Table 25 and Figure 18 show the change in instructions per cycle when 1.2GB/s of I/O are

present of up to 31%. When the I/O is increased to 1.8GB/s, increases in IPC of up to 32% are

seen, as show in Table 26 and Figure 19.

Table 25: Instructions per Cycle w/ 1.2GB/s I/O
Test Original IPC Secondary Bus

IPC
IPC

Change
perlbench 0.31 0.32 0.81%
bwaves 0.11 0.17 31.86%
milc 0.35 0.38 6.12%
zeusmp 0.28 0.33 15.22%
gromacs 0.41 0.42 1.09%
cactusADM 0.30 0.34 12.15%
leslie 0.39 0.40 3.79%
deal 0.20 0.21 3.87%
soplex 0.09 0.12 21.13%
sjeng 0.38 0.38 0.12%
GemsFDTD 0.13 0.18 28.05%
libquantum 0.10 0.12 16.25%
h264ref 0.34 0.34 0.20%
omnetpp 0.14 0.17 21.32%
astar_rivers 0.39 0.39 0.81%
sphinx 0.18 0.25 29.09%

63

Figure 18: IPC Change with 1.2GB/s I/O

Table 26: Instructions per Cycle with 1.8GB/s I/O
Test Original IPC Secondary Bus IPC Change
perlbench 0.31 0.31 0.96%
bwaves 0.10 0.14 32.39%
milc 0.35 0.37 6.59%
zeusmp 0.26 0.31 16.55%
gromacs 0.41 0.42 1.29%
cactusADM 0.28 0.32 13.77%
leslie 0.38 0.40 4.22%
deal 0.19 0.20 3.36%
soplex 0.08 0.10 20.90%
sjeng 0.38 0.38 0.14%
GemsFDTD 0.12 0.16 29.05%
libquantum 0.09 0.10 16.25%
h264ref 0.34 0.34 0.22%
omnetpp 0.12 0.15 22.53%
astar_rivers 0.38 0.39 0.96%
sphinx 0.15 0.22 30.10%

64

Figure 19: IPC Change with 1.8GB/s I/O

Energy efficiency in processors is typically measured using the energy-delay product (EDP)

or energy-delay-square product (ED2P), and expressed in terms of MIPS/W or MIPS2/W,

respectively. These metrics combine the total energy consumed to perform a unit of work with

the execution time. Since the execution time is squared in ED2P, it puts more emphasis on the

execution time. The measurements quantify energy efficiency in a single value, and take into

account the loss of processing power that generally accompanies a reduction in power usage. In a

system using the secondary bus architecture, it is possible to reduce the frequency, and therefore

the power consumption, without reducing the system performance. This leads to an increase in

the MIPS/W or MIPS2/W values of the system.

6.3. Reduced Power Consumption

The runtime of a program is computed as:

Runtime = Instructions * Cycles/Instruction * Seconds/Cycle

65

When the secondary bus is present, the cycles/instruction value is decreased (see Table 17).

Because of the decrease in CPI, the runtime of the program or the system throughput in MIPS

can be kept constant by reducing the clock frequency. Table 27 shows the reduced clock

frequency that can be used for the SPEC benchmarks when the secondary bus is present without

changing the program runtimes.

Table 27: Frequency change with secondary bus
Test	
 Frequency	
 with	
 Secondary	
 Bus	
 (GHz)	
 Decrease	

perlbench	
 2.00	
 0.25%	

bwaves	
 	
 1.62	
 18.83%	

milc	
 	
 1.90	
 4.89%	

zeusmp	
 	
 1.84	
 7.79%	

gromacs	
 	
 1.99	
 0.38%	

cactusADM	
 	
 1.90	
 4.78%	

leslie	
 	
 1.94	
 2.89%	

deal	
 	
 1.70	
 14.90%	

soplex	
 	
 1.65	
 17.57%	

sjeng	
 	
 2.00	
 0.10%	

GemsFDTD	
 	
 1.62	
 18.93%	

libquantum	
 	
 1.64	
 18.02%	

h264ref	
 	
 2.00	
 0.08%	

omnetpp	
 	
 1.78	
 10.91%	

astar_rivers	
 	
 1.99	
 0.42%	

sphinx	
 	
 1.73	
 13.61%	

66

The dynamic power consumption in a processor is given by

P = C * V2 * F

Where C is the capacitance, V is the voltage, and F is the clock frequency. Consider an example

processor with a dynamic power of about 65 watts, which is comparable to that of an Intel

Pentium Core 2 processor. If the system clock frequency is 2 GHz, and the voltage is 2.8 volts,

then a capacitance is 4.2x10-9 coulombs/volt would lead to power consumption of 65.86 watts.

By adding a secondary bus to that example system, the frequency may be reduced as shown in

Table 27 without reducing program runtimes. This reduction in frequency leads to the power

usage reduction show in Table 28.

Table 28: Decrease in power usage with secondary bus
Test	
 Power	
 with	
 secondary	
 bus	
 (watts)	
 Decrease	

perlbench	
 65.69	
 0.25%	

bwaves	
 	
 53.46	
 18.83%	

milc	
 	
 62.63	
 4.89%	

zeusmp	
 	
 60.73	
 7.79%	

gromacs	
 	
 65.60	
 0.38%	

cactusADM	
 	
 62.71	
 4.78%	

leslie	
 	
 63.95	
 2.89%	

deal	
 	
 56.05	
 14.90%	

soplex	
 	
 54.29	
 17.57%	

sjeng	
 	
 65.79	
 0.10%	

GemsFDTD	
 	
 53.39	
 18.93%	

libquantum	
 	
 53.99	
 18.02%	

h264ref	
 	
 65.80	
 0.08%	

omnetpp	
 	
 58.67	
 10.91%	

astar_rivers	
 	
 65.58	
 0.42%	

sphinx	
 	
 56.90	
 13.61%	

This reduction in power consumption leads to a corresponding energy savings when the

secondary bus is present.

67

Chapter 7

Conclusion

A novel idea to reduce latencies due to bus contentions on the main system bus between the

CPU and memory has been evaluated. The technique of introducing an additional, low-

bandwidth, secondary bus into a microarchitecture, and using that bus specifically for cache

write-backs has been shown to give significant performance improvements compared to existing

architectures. Simulations carried out using the widely accepted SimpleScalar toolset

demonstrate the feasibility and advantages of the secondary bus. A microarchitecture using a

small cache size and simple benchmarks showed that the ability of the secondary bus to reduce

queuing delays on the system bus could significantly improve worst-case execution times in real-

time systems. The small cache system also demonstrated the ability of the secondary bus

microarchitecture to approach the optimal improvement level represented by free write-backs.

Additional simulations with large cache sizes, comparable to those in current commercial

processors, and the industry-standard SPEC CPU2006 benchmark suite demonstrated the further

advantages of the secondary bus microarchitecture to improve determinacy and worst-case

execution time in real-time systems, decrease power consumption, as well as increase overall

system performance. Additional simulations with I/O injections to replicate a real world scenario

where there will be a number of communications between the peripherals and the processor not

68

involving the memory indicate that the secondary bus microarchitecture advantages are viable in

that instance as well.

The major advantage offered by the secondary bus microarchitecture derives from the

reduction in queuing delay on the system bus. The queuing delay reduction of 6% to 99%, with

an average of 87%, leads to a corresponding reduction in the maximum execution time of any

instruction, and in the number of instructions that require more than 1000 cycles to execute.

These results indicate that the secondary bus microarchitecture is an excellent choice for real-

time, embedded system applications. In addition, the secondary bus microarchitecture generates

an overall system speed-up of up to 19% when no I/O is present, and of up to 33% in the

presence of external I/O. The speed-up achieved suggests an additional application, in which the

new microarchitecture is used in low-power systems where the energy consumption may be

reduced while maintaining consistent processing throughput.

Current commercial microprocessors contain various mechanisms designed to reduce cache

access latencies and minimize processor delays caused by cache misses. None of those

mechanisms includes a secondary path to allow dirty cache lines to be more efficiently moved

back into memory. The secondary bus method can therefore be used in addition to those

mechanisms to present even further improvements. Since current multi-core processors tend to

contain separate level-1 caches but share the level-2 cache among all cores, the secondary bus

method, which provides a connection between the L2 cache and memory, is applicable to multi-

core systems as well.

The secondary bus can be implemented in many ways. The simulated system used an 8-bit-

wide bus to evaluate the design for different traffic intensities. As future work, various other

implementations of the secondary bus can be evaluated. One such design could be of a serial line

69

using a high speed signaling mechanism for fast data transfer. Split bus or pipelined transactions

can be tried on the secondary bus with multiple bit lines [25]. The number of bit lines that can be

used for the secondary bus depends on the L2 cache write-back rate. A smaller cache can result

in more write-backs and may require a wider bus for transferring data faster to the memory. The

secondary bus provides benefits for single ported memories at a cost of a small hardware

addition for controlling the bus access and a smaller bus compared to the main bus. A truly novel

implementation of the secondary bus is through the use of wireless communication [3].

Implementation of the secondary bus with a wireless interconnect could lead to a large number

of additional applications that would be permitted by monitoring the wireless signal using

external devices.

70

References

[1] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer System

Modeling,” IEEE Computer, pp. 59-67, February 2002.

[2] S. Baskiyar, “A New Technique to Solve Cache Coherence”, Tech Report TR CSSE03-06,
Dept. of Comp. Science and Software Engineering, June 25, 2003.

[3] S. Baskiyar, “Wireless Techniques in Architecture and Fault Tolerance,” National Science
Foundation Proposal, 2004.

[4] S. Baskiyar and C. Wang, “A secondary channel between cache and memory for decreasing
queuing delay,” US Provisional patent application filed no. 61/003,542 on Nov 17, 2007,
Auburn University, AL.

[5] D. Burger, A. Kägi, and M. Hrishikesh, “Memory Hierarchy Extensions to the SimpleScalar
Tool Set,” Technical Report TR-99-25, Department of Computer Sciences, University of
Texas at Austin, December 1999.

[6] M. F. Chang, V.P. Roychowdhury, L. Zhang, H. Shin, and Y. Qian. “RF/Wireless
Interconnect for Inter- and Intra-chip Communications,” Proceedings of the IEEE, Volume
89, Issue 4, pp. 456-466, April 2001.

[7] P.P. Chu and R. Gottipati, “Write Buffer Design for On-Chip Cache,” Proceedings, IEEE
International Conference on Computer Design: VLSI in Computers and Processors, pp.
311-316,October 1994.

[8] Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference
Manual, ftp://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html, July
1999.

[9] R. Desikan, D. Burger, S.W. Keckler, and T.M. Austin, “Sim-alpha: A Validated,
Execution-Driven Alpha 21264 Simulator,” Technical Report TR-01-23, Department of
Computer Sciences, University of Texas at Austin, 2001.

[10] K. Ganesan, D. Panwar and L. K. John, “Generation, Validation and Analysis of SPEC
CPU2006 Simulation Points Based on Branch, Memory and TLB Characteristics”,
Proceedings of the SPEC Benchmark Workshop on Computer Performance Evaluation and
Benchmarking, Section: Modeling and Sampling Techniques, pp. 121-137, Jan. 2009.

71

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 4th
Edition, Morgan Kaufmann Publishing Co., Menlo Park, CA. 2007.

[12] IEEE Standard for a High Performance Serial Bus,
http://standards.ieee.org/reading/ieee/std/busarch/1394-1995.pdf, 1995.

[13] J. Kim, Z. Xu, and M. F. Chang, “Reconfigurable Memory Bus Systems Using Multi-
Gbps/pin CDMA I/O Transceivers,” Proceedings of the 2003 International Symposium on
Circuits and Systems, Volume 2, pp. II-33 - II-36, May 2003.

[14] D. Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache Organization,” Proceedings of the
8th Annual Symposium on Computer Architecture, Minneapolis, Minnesota, United States,
pp. 81-87, 1981.

[15] H.H.S. Lee, G. Tyson, and M. Farrens, “Eager Writeback - A Technique for Improving
Bandwidth Utilization,” Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, Monterey, California, United States, p.11-21, December
2000.

[16] N. Miura, D. Mizoguchi,, T. Sakurai, and T. Kuroda, “Analysis and Design of Inductive
Coupling and Transceiver Circuit for Inductive Inter-chip Wireless Superconnect,” IEEE
Journal of Solid-State Circuits, Volume 40 , Issue 4, pp. 829 – 837, April 2005.

[17] J. O’Farrell and S. Baskiyar. “Improved Real-Time Performance Using a Secondary Bus,”
Proceedings of the ISCA 25th International Conference on Computers and Their
Applications, CATA 2010, pp. 31-36, Honolulu, Hawaii, USA.

[18] J. O’Farrell, R. Venkatesh, and S. Baskiyar, “Secondary Bus Performance in Retiring Cache
Write-backs to Memory”, 26th International Symposium on Computer and Information
Sciences, London, UK, 26-28 September 2011.

[19] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder. 2003. “Using
SimPoint for accurate and efficient simulation,” Proceedings of the 2003 ACM
SIGMETRICS international conference on Measurement and modeling of computer systems
(SIGMETRICS '03). ACM, pp. 318-319, New York, NY, USA.

[20] V. Raghunathan, M.B. Srivastava, and R.K. Gupta, “A Survey of Techniques for Energy
Efficient On-chip Communication,” Proceedings Design Automation Conference, 2003, pp.
900 – 905, June 2003.

[21] SPEC CPU2006, http://www.spec.org/cpu2006.

[22] SimpleScalar, LLC, http://simplescalar.com.

[23] USB 2.0 Specification, http://www.usb.org/developers/docs, April 2000.

72

[24] R. Van Nee, V.K. Jones, G. Awater, A. Van Zelst, J. Gardner, G. Steele, “The 802.11n
MIMO-OFDM Standard for Wireless LAN and Beyond,” Wireless Personal
Communications, Volume 37, Numbers 3-4, pp. 445-453, May, 2006.

[25] R. Venkatesh, Secondary Bus Performance in Reducing Cache Writeback Latency, Master’s
thesis, Auburn University, 2011.

[26] M. Weiser, B. Welch, A. Demer, and S. Shenker, :Scheduling for Reduced CPU Energy,”
The First USENIX Symp. on Operating Systems Design and Implementation (OSDI’94), pp.
13–23, 1994.

[27] What is SimpleScalar,
http://www.ecs.umass.edu/ece/koren/architecture/Simplescalar/SimpleScalar_introduction.ht
m

73

Appendix A

Simulation Configuration Values

A.1 Sim-alpha Configuration for Base System

-fetch:ifqsize 4
-fetch:width 4
-fetch:speed 1
-slot:width 4
-map:width 4
-issue:intwidth 4
-issue:fpwidth 2
-commit:width 11
-res:iclus 2
-res:ialu 4
-res:imult 4
-res:fpclus 1
-res:fpalu 1
-res:fpmult 1
-res:delay 1
-mach:freq 3000000000
-bpred:ras 32
-line_pred:ini_value 0
-reg:int_p_regs 41
-reg:fp_p_regs 41

cache configuration
-cache:define DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus
-cache:define IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus
-cache:define L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus
-cache:define WBB:4096:64:0:8:f:10:pipt:0:1:0:Secbus

flush caches on system calls
-cache:flush false

-cache:writeback true

defines name of first-level data cache
-cache:dcache DL1

defines name of first-level instruction cache

74

-cache:icache IL1

number of regular mshrs for each cache
-cache:mshrs 8

number of prefetch mshrs for each cache
-cache:prefetch_mshrs 4

number of targets for each cache
-cache:mshr_targets 8

bus configuration
For original long timing runs, Onbus was set at 2 GHz, now at 4
-bus:define Onbus:64:2:1:0:1:0:L2
-bus:define Membus:64:5:2:0:1:0:SDRAM
-bus:define Wirelessbus:8:5:1:0:1:0:WBB
-bus:define Secbus:8:5:1:0:1:0:SDRAM

memory bank configuration
-mem:define SDRAM

define tlbs
-tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus
-tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus

data TLB config, i.e., {<config>|none}
-tlb:dtlb DTLB

instruction TLB config, i.e., {<config>|none}
-tlb:itlb ITLB

-cache:addr_trap 0
-wb:diffsize_trap 0
-cache:target_trap 0
-cache:mshrfull_trap 0
-prefetch:dist 0

A.2 Sim-alpha configuration including secondary bus

-fetch:ifqsize 4
-fetch:width 4
-fetch:speed 1
-slot:width 4
-map:width 4
-issue:intwidth 4
-issue:fpwidth 2
-commit:width 11
-res:iclus 2
-res:ialu 4
-res:imult 4

75

-res:fpclus 1
-res:fpalu 1
-res:fpmult 1
-res:delay 1
-mach:freq 3000000000
-bpred:ras 32
-line_pred:ini_value 0
-reg:int_p_regs 41
-reg:fp_p_regs 41

cache configuration
-cache:define DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus
-cache:define IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus
-cache:define L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus
-cache:define WBB:4096:64:0:8:f:10:pipt:0:1:0:Secbus

flush caches on system calls
-cache:flush false

-cache:writeback true

defines name of first-level data cache
-cache:dcache DL1

defines name of first-level instruction cache
-cache:icache IL1

number of regular mshrs for each cache
-cache:mshrs 8

number of prefetch mshrs for each cache
-cache:prefetch_mshrs 4

number of targets for each cache
-cache:mshr_targets 8

bus configuration
For original long timing runs, Onbus was set at 2 GHz, now at 4
-bus:define Onbus:64:2:1:0:1:0:L2
-bus:define Membus:64:5:2:0:1:0:SDRAM
-bus:define Wirelessbus:8:5:1:0:1:0:WBB
-bus:define Secbus:8:5:1:0:1:0:SDRAM

memory bank configuration
-mem:define SDRAM

define tlbs
-tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus
-tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus

data TLB config, i.e., {<config>|none}
-tlb:dtlb DTLB

76

instruction TLB config, i.e., {<config>|none}
-tlb:itlb ITLB

-cache:addr_trap 0
-wb:diffsize_trap 0
-cache:target_trap 0
-cache:mshrfull_trap 0
-prefetch:dist 0

A.3 Sim-alpha configuration for free write-back

 -fetch:ifqsize 4

-fetch:width 4
-fetch:speed 1
-slot:width 4
-map:width 4
-issue:intwidth 4
-issue:fpwidth 2
-commit:width 11
-res:iclus 2
-res:ialu 4
-res:imult 4
-res:fpclus 1
-res:fpalu 1
-res:fpmult 1
-res:delay 1
-mach:freq 3000000000
-bpred:ras 32
-line_pred:ini_value 0
-reg:int_p_regs 41
-reg:fp_p_regs 41

cache configuration
-cache:define DL1:64:64:0:8:F:3:vipt:0:1:0:Onbus
-cache:define L2:4096:64:0:8:l:10:pipt:0:2:0:Membus:Wirelessbus
-cache:define IL1:64:64:0:8:l:3:vipt:0:1:0:Onbus
-cache:define WBB:64:64:0:8:f:10:pipt:0:1:0:Membus

flush caches on system calls
-cache:flush false

-cache:writeback false

defines name of first-level data cache
-cache:dcache DL1

defines name of first-level instruction cache
-cache:icache IL1

number of regular mshrs for each cache

77

-cache:mshrs 8

number of prefetch mshrs for each cache
-cache:prefetch_mshrs 4

number of targets for each cache
-cache:mshr_targets 8

bus configuration
For original long timing runs, Onbus was set at 2 GHz, now at 4
-bus:define Onbus:64:2:4:0:1:0:L2
-bus:define Membus:64:5:10:0:1:0:SDRAM
-bus:define Wirelessbus:64:2:0:0:1:0:WBB

memory bank configuration
-mem:define SDRAM

define tlbs
-tlb:define DTLB:1:32:0:128:l:1:vivt:0:1:0:Onbus
-tlb:define ITLB:1:32:0:128:l:1:vivt:0:1:0:Onbus

data TLB config, i.e., {<config>|none}
-tlb:dtlb DTLB

instruction TLB config, i.e., {<config>|none}
-tlb:itlb ITLB

-cache:addr_trap 0
-wb:diffsize_trap 0
-cache:target_trap 0
-cache:mshrfull_trap 0
-prefetch:dist 0

78

Appendix B

SPEC CPU2006 Simulation SimPoints

Test Index Point Weight
perlbench 0 1194 0.15122
perlbench 1 1417 0.00325203
perlbench 2 236 0.131165
perlbench 3 3 0.00325203
perlbench 4 355 0.0937669
perlbench 5 692 0.148509
perlbench 6 18 0.0124661
perlbench 7 331 0.135501
perlbench 8 1245 0.00813008
perlbench 9 878 0.0861789
perlbench 10 606 0.142005
perlbench 11 53 0.0157182
bwaves 0 11211 0.03089
bwaves 1 20179 0.622676
bwaves 2 10729 0.0787782
bwaves 3 15057 0.0250226
bwaves 4 5928 0.0257129
bwaves 5 18870 0.032098
bwaves 6 6099 0.0330472
bwaves 7 2634 0.033608
bwaves 8 5275 0.0330472
bwaves 9 7183 0.0275681
bwaves 10 1219 0.030588
bwaves 11 15571 0.00664394
milc 0 1213 0.0683082
milc 1 2494 0.0463842
milc 2 2141 0.0197971
milc 3 608 0.0147251
milc 4 3927 0.0013089
milc 5 6502 0.0237238

79

milc 6 9397 0.0203698
milc 7 3714 0.0429483
milc 8 7689 0.0430301
milc 9 5715 0.07518
milc 10 11904 0.100867
milc 11 10398 0.0634817
milc 12 1134 0.0307592
milc 13 1713 0.125245
milc 14 824 0.0135798
milc 15 9405 0.0251145
milc 16 594 0.00466296
milc 17 11647 0.0521106
milc 18 2864 0.0463842
zeusmp 0 2323 0.026255
zeusmp 1 12021 0.0656627
zeusmp 2 4404 0.0453313
zeusmp 3 241 0.123845
zeusmp 4 18408 0.00672691
zeusmp 5 8129 0.025251
zeusmp 6 2143 0.0203815
zeusmp 7 9629 0.0942771
zeusmp 8 6085 0.013253
zeusmp 9 8524 0.0597892
zeusmp 10 13947 0.0249498
zeusmp 11 9181 0.0476406
zeusmp 12 15831 0.0345884
zeusmp 13 6180 0.0405622
zeusmp 14 17760 0.0242972
zeusmp 15 17993 0.00758032
zeusmp 16 11615 0.0684237
zeusmp 17 4233 0.0197289
zeusmp 18 9353 0.0253012
zeusmp 19 6487 0.0673193
zeusmp 20 15846 0.0381024
zeusmp 21 17154 0.0338353
zeusmp 22 812 0.0320281
zeusmp 23 9927 0.0062751
gromacs 0 11510 0.0248848
gromacs 1 21209 0.00640972
gromacs 2 5917 0.0239631
gromacs 3 7093 0.0147884

80

gromacs 4 14122 0.00712191
gromacs 5 17073 0.0229996
gromacs 6 8658 0.0314621
gromacs 7 1185 0.169711
gromacs 8 1684 0.0159615
gromacs 9 11106 0.0201927
gromacs 10 8285 0.00519481
gromacs 11 18060 0.0158777
gromacs 12 9077 0.105069
gromacs 13 16094 0.020863
gromacs 14 17719 0.0254713
gromacs 15 7018 0.297863
gromacs 16 2882 0.0201089
gromacs 17 6926 0.117679
cactusADM 0 36939 0.00109647
cactusADM 1 18590 0.386834
cactusADM 2 9583 0.00166663
cactusADM 3 13068 0.563957
cactusADM 4 26680 0.0202189
cactusADM 5 2 0.000109647
cactusADM 6 29070 0.0260301
leslie 0 26086 0.044533
leslie 1 23328 0.0329974
leslie 2 22804 0.0377879
leslie 3 5390 0.0541908
leslie 4 21741 0.0265588
leslie 5 6016 0.0580232
leslie 6 10878 0.0462959
leslie 7 5863 0.0220366
leslie 8 25975 0.0534626
leslie 9 12307 0.0378262
leslie 10 17230 0.0384778
leslie 11 2926 0.0456828
leslie 12 18793 0.0416587
leslie 13 12319 0.0528494
leslie 14 9987 0.0461426
leslie 15 612 0.0250642
leslie 16 4082 0.0375963
leslie 17 1594 0.0613958
leslie 18 22908 0.0264439
leslie 19 20177 0.0508566

81

leslie 20 4242 0.0362549
leslie 21 9534 0.0395125
namd 0 722 0.0672273
namd 1 4395 0.097221
namd 2 4909 0.0252271
namd 3 4206 0.0135804
namd 4 8674 0.0517583
namd 5 7690 0.0571544
namd 6 9974 0.04933
namd 7 10851 0.0149294
namd 8 14609 0.101808
namd 9 21538 0.0259016
namd 10 18067 0.0423599
namd 11 8 0.00620559
namd 12 2137 0.0884522
namd 13 22043 0.0125911
namd 14 19771 0.0294091
namd 15 10858 0.0420901
namd 16 17753 0.112015
namd 17 9593 0.0502293
namd 18 11040 0.0148395
deal 0 15 0.611111
soplex 0 2741 0.0444079
soplex 1 320 0.0641447
soplex 2 1705 0.0633224
soplex 3 2984 0.0565378
soplex 4 190 0.00349507
soplex 5 1954 0.045847
soplex 6 2478 0.0540707
soplex 7 1098 0.0493421
soplex 8 2831 0.0509868
soplex 9 3012 0.0550987
soplex 10 2543 0.0620888
soplex 11 18 0.0462582
soplex 12 2457 0.0310444
soplex 13 1525 0.0676398
soplex 14 1472 0.0532484
soplex 15 554 0.000616776
soplex 16 654 0.0234375
soplex 17 1205 0.0331003
soplex 18 1807 0.0904605

82

sjeng 0 17175 0.0940804
sjeng 1 15619 0.155222
sjeng 2 13137 0.0527653
sjeng 3 6086 0.10415
sjeng 4 10548 0.0625529
sjeng 5 30639 0.0451109
sjeng 6 4818 0.000501929
sjeng 7 21707 0.0955234
sjeng 8 5736 0.124918
sjeng 9 1805 0.06569
GemsFDTD 0 463 0.0250559
GemsFDTD 1 1835 0.0402685
GemsFDTD 2 1598 0.0205817
GemsFDTD 3 1032 0.052349
GemsFDTD 4 1118 0.0219239
GemsFDTD 5 1907 0.0161074
GemsFDTD 6 1444 0.0223714
GemsFDTD 7 61 0.0456376
GemsFDTD 8 1856 0.0178971
GemsFDTD 9 1063 0.0362416
GemsFDTD 10 1069 0.165101
GemsFDTD 11 471 0.0192394
GemsFDTD 12 185 0.0143177
GemsFDTD 13 1239 0.0286353
GemsFDTD 14 2197 0.0447427
GemsFDTD 15 552 0.0183445
GemsFDTD 16 2155 0.0326622
GemsFDTD 17 693 0.0281879
GemsFDTD 18 1842 0.177629
GemsFDTD 19 1662 0.0223714
GemsFDTD 20 984 0.0510067
GemsFDTD 21 0 0.0299776
GemsFDTD 22 651 0.0255034
libquantum 0 12424 0.0999497
libquantum 1 19813 0.0092006
libquantum 2 291 0.0152338
libquantum 3 19874 0.0025641
libquantum 4 19824 0.00191051
libquantum 5 9974 0.139367
libquantum 6 5803 0.0581699
libquantum 7 13400 0.0692308

83

libquantum 8 12732 0.0289593
libquantum 9 18153 0.0335847
libquantum 10 6917 0.0831574
libquantum 11 1106 0.0499246
libquantum 12 15532 0.0463047
libquantum 13 13574 0.0933132
libquantum 14 16856 0.120362
libquantum 15 15642 0.071091
libquantum 16 13674 0.0275013
h264ref 0 26559 0.068356
h264ref 1 36588 0.00321384
h264ref 2 1517 0.0918418
h264ref 3 53508 0.0906587
h264ref 4 45541 0.00722232
h264ref 5 732 0.00734593
h264ref 6 9115 0.138337
h264ref 7 29684 0.0536641
h264ref 8 13267 0.0734593
h264ref 9 44147 0.117376
h264ref 10 49954 0.156419
h264ref 11 37984 0.0593855
omnetpp 0 2872 0.115221
omnetpp 1 981 0.177559
omnetpp 2 17 0.00630223
omnetpp 3 2094 0.0293191
omnetpp 4 204 0.0287711
omnetpp 5 3093 0.0786409
omnetpp 6 4892 0.0486368
omnetpp 7 289 0.0224688
omnetpp 8 2197 0.052884
omnetpp 9 3315 0.147143
omnetpp 10 7296 0.000685025
omnetpp 11 6465 0.110015
omnetpp 12 452 0.0165776
astar_rivers 0 4 0.00186239
astar_rivers 1 6223 0.0601138
astar_rivers 2 2828 0.338024
astar_rivers 3 2068 0.0973616
astar_rivers 4 432 0.159027
astar_rivers 5 8615 0.0973616
astar_rivers 6 2452 0.168236

84

sphinx 0 34086 0.0760587
sphinx 1 38691 0.0986067
sphinx 2 30144 0.0412755
sphinx 3 4727 0.0461946
sphinx 4 37454 0.0282411
sphinx 5 18411 0.0563324
sphinx 6 7772 0.0563574
sphinx 7 3008 0.0257441
sphinx 8 23787 0.0443218
sphinx 9 12598 0.0504395
sphinx 10 4561 0.0163054
sphinx 11 19771 0.0477177
sphinx 12 0 0.000898921
sphinx 13 13822 0.0453206
sphinx 14 33472 0.0223482
sphinx 15 3423 0.0356073
sphinx 16 19390 0.0593038
sphinx 17 8232 0.0462445
sphinx 18 20352 0.0579555

