
Enhancing Flash Lifetime in Secondary Storage

by

Chengjun Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 6, 2011

Keywords: Flash, Lifetime, Storage Systems

Copyright 2011 by Chengjun Wang

Approved by

Sanjeev Baskiyar, Chair
Associate Professor of Computer Science and Software Engineering

Hari Narayanan, Professor of Computer Science and Software Engineering
Cheryl Seals, Associate Professor of Computer Science and Software Engineering

Abstract

This research addresses the limited usable life of NAND flash-based storage systems.

Unlike a magnetic disk drive, a NAND flash suffers from limited number of write cycles

ranging from 10-100K depending on the specific type of flash. As flash memory densities

increase and cell sizes shrink, further decrease in write endurance is expected. Although

substantial research has been conducted to solve or mitigate the problem by wear leveling,

write endurance remains a concern for write intensive applications.

We have proposed to use a DRAM cache to filter write traffic to flash memory. Intuition

tells us that DRAM cache can filter writes to flash by coalescing and merging overwrites.

However, the effectiveness of such a mechanism is not obvious considering that a large file

system cache already exists which also merges overwrites. Since DRAM is volatile, to handle

integrity of data upon power failure, we propose to use a supercapacitor backup which

can provide short duration power during which the DRAM data can be retired to flash

memory. The use of supercapacitors is superior to traditional use of battery-backed DRAMs

as batteries, unlike supercapacitors, suffer from limited number of charge/discharge cycles

as well as slow charge times.

We studied the effectiveness of DRAM cache in reducing write traffic to flash and the

resulting response time and throughput changes. We investigated the use of a DRAM cache

under two settings: a) when flash is used as a disk cache within a magnetic disk controller

and b) when flash is used as a full secondary storage. Under the first setting, we used two

levels of disk cache: DRAM disk cache and flash disk cache. Under the second setting, we

used a single DRAM cache to filter the traffic to the full flash secondary storage. For both

settings, we compared two policies to retire data from DRAM to flash memory: early vs.

lazy retirement. In early retirement policy, flash is updated at the same time DRAM is

ii

updated. In lazy retirement policy, flash is updated only upon data eviction from DRAM

cache. Conventionally, early update policy has been used to avoid data loss upon power

failure. With early update, write traffic to flash is not reduced via DRAM cache. In contrast,

lazy update policy substantially reduces write traffic thereby extending the flash lifetime.

Our simulation results show that using a medium-sized DRAM cache, flash lifetime doubles

with lazy update policy compared to early update policy. Moreover, miss ratio and average

response time decrease as well. With little effort, our technique can be extended to improve

the usable life of other emerging non volatile memory systems, such as PCM and MRAM.

iii

Acknowledgments

It is a pleasure to thank those who made this dissertation possible. I would never have

been able to finish my dissertation without the guidance of my committee members, help

from friends, and support from my family and my wife.

I would like to express my deepest gratitude to my advisor, Dr. Sanjeev Baskiyar, for

his excellent guidance, caring, patience, and providing me with an excellent atmosphere for

doing research during my study and research at Auburn University. His perpetual energy

and enthusiasm in research had motivated all his advisees, including me. In addition, he was

always accessible and willing to help his students with their research. As a result, research

life became smooth and rewarding for me.

Dr. Hari Narayanan, Dr. Cheryl Seals, and Dr. Victor P. Nelson deserve special thanks

as my advisory committee members and advisors for guiding my research and lending me

encouragement. I attended Dr. Narayanan HCI course. I was moved by his rigor and passion

on research. I asked Dr. Seals some questions when I took my Ph.D. qualifying exams. She

was (still is and will be) very nice and willing to help her students. All of my classmates

had the same impression. I would like to thank Dr. Nelson for willing to serve as a outside

reader to assure the quality and validity. He spent so much time on reading and correcting

my dissertation. His advice made this dissertation much better.

I would like to thank Dr. Prathima Agrawal for granting me Vodafone Fellowship for

two years, which is a special honor and an encouragement for me.

I am grateful to Dr. David Umphress. He has been hiring me as Graduate Teaching

Assistant since Fall of 2008, during which I have worked with Dr. Sanjeev Baskiyar, Dr. Kai

Chang, Dr. Saad Biaz, Dr. Alvin Lim, Dr.Richard Chapman, and Dr. Daniela Marghitu.

They are all helpful to my understanding of teaching.

iv

I would like to extend my thanks and appreciation to Ms. Jacqueline Hundley, who

served as my mentor for the summer course COMP1200 (MATLAB for Engineers) that I

taught at Auburn University. It was her help that made my teaching easier and successful.

I would like to thank the faculty and staff of the CSSE department as they have guided

me through this process. Special thanks to Ms. Barbara McCormack, Ms. JoAnn Lauraitis,

Ms. Michelle Brown, and Ms. Kelly Price. They are all quick in response.

I would like to thank Dr. Xiao Qin for offering a course on ”storage system”, which

helps me a lot in my research of storage systems. Furthermore, he sets a example for me on

how productive a researcher can be.

I would like to thank my Master advisor Professor Yantai Shu and Professor Jianqing

Pang when I was in Chinese Academy of Sciences. They inspired me to do research.

I would like to thank my fellow students Shaoen Wu, Qing Yang, Cong Liu, and Xiaojun

Ruan. Shaoen was my office mate from whom I learned Latex, Cygwin, Microsoft Visio, and

other tools. Qing was my roommate of the first year at Auburn. We spent the first year

together. Cong was my classmate, with whom I took many courses together at Auburn and

we spent some time to discuss research. Xiaojun has provided me with recently published

papers related to my research and we had good time together to talk about DiskSim 4.0, the

well regarded storage simulator.

I would like to thank Professor Emeritus Dr. Donald Street and his wife Dr. Mary

Street. They kept on inviting my family to their family, which gave me opportunities to

know more about American culture. I have learned a lot from them.

I would like to thank my colleagues Jianlin Nie, Tianshu Zheng, and Xin Yang. We

co-founded our company in 1992 in China. I still received financial support after I left the

company. It would not have been possible for me to pursue my Ph.D. in the US without

them.

I would like to thank my wife, Jinhua Li. She has been encouraging me and standing

by me through the good times and bad.

v

I would regret my doctoral years at Auburn University if I did not join Auburn Chinese

Bible Study Group and Lakeview Baptist Church. It was not only a turning point in my

life, but also a wonderful experience. I cherished the prayers and support between me and

them, and the friendships with my Christian brothers and sisters. Special thanks to Dr.

Kai Chang, Prof. Tin-man Lau, Mr. Paul Froede, Dr. Rob Martin, and Associate Paster

Grady Smith. They have helped me grow spiritually. They have been a constant source of

encouragement during my graduate study.

Above all, thanks be to God for giving me wisdom and guidance throughout my life.

You were with me through all the tests in the past several years. You have made my life

more bountiful. May your name be honored, may your kingdom come, may your will be

done on earth as it is in heaven.

This dissertation is dedicated to my beloved wife Jinhua, my lovely daugh-

ter Helen and all my family.

vi

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . xi

List of Tables . xv

1 Introduction . 1

1.1 Problem Statement . 2

1.1.1 Flash Memory . 2

1.1.2 Flash Trends . 3

1.1.3 Limitations of Existing Solutions . 5

1.2 Scope of the Research . 8

1.3 Contributions . 10

1.4 Dissertation Organization . 10

2 Literature Review . 11

2.1 Flash Basics . 11

2.2 Flash Disk Cache . 15

2.3 System Memory Model . 16

2.4 Solid State Drives and Reliability . 17

2.5 Reducing Write Traffic . 19

3 System Architecture . 20

4 Comparison of Traffic Mitigation Techniques . 23

4.1 Battery-backed DRAM as a write cache . 23

4.2 SLC as a write cache for MLC . 24

4.3 PCM as a write cache . 24

vii

4.4 HDDs as a write cache . 25

4.5 Summary . 26

5 Methodology . 28

5.1 Simulator . 28

5.2 System Setup . 28

5.3 Workloads and Traces . 30

5.4 Performance Metrics . 31

5.5 DiskSim 4.0 modifications . 34

5.5.1 Trace formats: SRT1.6 and SPC . 34

5.5.2 Secondary flash cache . 36

5.5.3 Smart controller and MS SSD add-on 36

5.6 Validation . 36

6 Traffic Savings for Flash as a Victim Disk Cache 39

6.1 Early Update vs. Lazy Update . 39

6.2 Lazy Update Policy for Reads . 42

6.3 Lazy Update Policy for Writes . 42

6.4 The Benefits of Lazy Update Policy . 42

6.5 Simulation Parameters . 45

6.6 Performance Metrics . 48

6.7 Experimental Results . 48

6.7.1 Write Traffic Savings . 48

6.7.2 DRAM Size Need Not to be Very Large to be Effective 55

6.7.3 Flash size has little effect on Write Traffic Savings 55

6.7.4 Miss Ratio Is improved Slightly . 55

6.7.5 Response Time Is Improved Slightly 55

6.7.6 Summary . 55

7 Traffic Savings for Flash as a Major Storage Medium 75

viii

7.1 Early Update for reads . 75

7.2 Early Update for writes . 76

7.3 Lazy Update for reads . 76

7.4 Lazy Update writes . 79

7.5 Simulation Parameters . 80

7.6 Performance Metrics . 82

7.7 Experimental Results . 82

7.7.1 Write Traffic Savings . 82

7.7.2 DRAM Size Needs not to be Large to Be Effective 85

7.7.3 Response Time . 85

7.7.4 Summary . 85

8 Fault Tolerance Issue . 93

8.1 What are Supercapacitors? . 93

8.2 Why Supercapacitors not Batteries? . 95

8.3 How to calculate the Capacitance of Supercapacitors? 95

9 Conclusions and Future Work . 98

9.1 Main Contributions . 98

9.2 Future Work . 99

9.3 Conclusions . 100

Bibliography . 101

Appendices . 107

A DiskSim 4.0 Flowcharts, Modifications, and Post Processing Scripts 108

A.1 Overview . 108

A.2 System Diagram . 108

A.3 DiskSim 4.0 flowcharts . 110

A.3.1 Main loop . 110

A.3.2 Message routing . 110

ix

A.3.3 HDD reads with dumb controller (type:1) 110

A.3.4 HDD writes with dumb controller (type:1) 110

A.3.5 HDD reads with smart controller (type:3) 116

A.3.6 HDD writes with smart controller (type:3) 116

A.3.7 SSD reads with dumb controller (type:1) 116

A.3.8 SSD writes with dumb controller (type:1) 121

A.3.9 SSD reads with smart controller (type:3) 121

A.3.10 SSD writes with smart controller (type:3) 121

A.4 Post Processing Scripts . 121

A.4.1 fig hplajw.sh source code . 125

A.4.2 hplajw.sh source code . 128

A.4.3 process.sh source code . 129

A.4.4 miss ratio.p source code . 130

A.4.5 res time.p source code . 130

x

List of Figures

1.1 Lifetime of Flash . 4

1.2 Memory taxonomy . 6

1.3 Non volatile memory roadmap . 7

1.4 Memory hierarchy of computers . 9

2.1 Flash cell structure . 12

2.2 Flash programmed state . 12

2.3 Flash erased state . 13

2.4 SLC vs. MLC . 14

3.1 System architecture of Hybrid Hard Drives . 21

3.2 System architecture of Solid State Drives . 22

5.1 System architecture of modified DiskSim 4.0 . 37

6.1 Early update for reads . 40

6.2 Early update for writes . 41

6.3 Lazy update for reads . 43

6.4 Lazy update for writes . 44

xi

6.5 Relative traffic for OpenMail . 49

6.6 Relative traffic for OpenMail . 50

6.7 Relative traffic for Synthetic workload . 51

6.8 Relative traffic for Synthetic workload . 52

6.9 Relative traffic for Websearch3 . 53

6.10 Relative traffic for Websearch3 . 54

6.11 Miss Ratio for OpenMail . 56

6.12 Miss Ratio for OpenMail . 57

6.13 Miss Ratio for Synthetic workload . 58

6.14 Miss Ratio for Synthetic workload . 59

6.15 Miss Ratio for Websearch3 . 60

6.16 Miss Ratio for Websearch3 . 61

6.17 Response Time for OpenMail . 62

6.18 Response Time for OpenMail . 63

6.19 Response Time for Synthetic workload . 64

6.20 Response Time for Synthetic workload . 65

6.21 Response Time for Websearch3 . 66

6.22 Response Time for Websearch3 . 67

xii

6.23 Improvement of lazy update policy over early update policy for OpenMail . . . 68

6.24 Improvement of lazy update policy over early update policy for OpenMail . . . 69

6.25 Improvement of lazy update policy over early update policy for UMTR(websearch3) 70

6.26 Improvement of lazy update policy over early update policy for UMTR(websearch3) 71

6.27 Improvement of lazy update policy over early update policy for synthetic workload 72

6.28 Improvement of lazy update policy over early update policy for synthetic workload 73

7.1 Early update for reads . 76

7.2 Early update for writes . 77

7.3 Lazy update for reads . 78

7.4 Lazy update for writes . 79

7.5 Relative traffic for OpenMail . 83

7.6 Relative traffic for Synthetic workloads . 84

7.7 Relative traffic for Websearch3 . 86

7.8 Response time for OpenMail . 87

7.9 Response time for Synthetic workloads . 88

7.10 Response time for Websearch3 . 89

7.11 Improvement of lazy update policy over early update policy for OpenMail . . . 90

7.12 Improvement of lazy update policy over early update policy for UMTR(websearch3) 91

xiii

7.13 Improvement of lazy update policy over early update policy for synthetic workload 92

8.1 Flash as major store with a supercapacitor backup power 94

8.2 Flash as disk cache with a supercapacitor backup power 94

8.3 Supercapacitor and rechargeable batteries . 96

A.1 System architecture of DiskSim 4.0 . 109

A.2 The main loop of DiskSim 4.0 . 111

A.3 Run simulation . 112

A.4 io-internal-event . 113

A.5 Message routing . 114

A.6 Flowchart for HDD reads (controller type:1) . 115

A.7 Flowchart for HDD writes (controller type:1) 117

A.8 Flowchart for HDD reads (controller type:3) . 118

A.9 Flowchart for HDD writes (controller type:3) 119

A.10 Flowchart for SSD reads (controller type:1) . 120

A.11 Flowchart for SSD writes (controller type:1) . 122

A.12 Flowchart for SSD reads (controller type:3) . 123

A.13 Flowchart for SSD writes (controller type:3) . 124

A.14 Miss Ratio for Hplajw workload . 126

A.15 Response Time for Hplajw workload . 127

xiv

List of Tables

4.1 Comparison of traffic mitigation techniques . 27

5.1 System environment . 29

5.2 Workload characteristics . 30

5.3 Validation of modified DiskSim 4.0 . 38

6.1 Disk parameters (QUANTUM QM39100TD-SW) 45

xv

Chapter 1

Introduction

The performance gap between the processor and storage of computers is widening with

approximately 60% and 10% annual improvement in the processor and hard disk drives

(HDDs) respectively [1]. The trend is becoming more marked with the advent of multi-

socket, multi-core processors architectures. The I/O performance, especially I/O operations

per second (IOPS), has not caught up with the corresponding improvements in processor

performance. The processor utilization stays low due to the need to wait for the data being

fed from the storage system [2]. Therefore, storage performance is becoming the bottleneck

of a computer system.

Fortunately, there are emerging memory technologies that try to bridge the growing

performance gap, such as flash memory, Phase Change RAM (PCM), and Magnetic RAM

(MRAM). Noticeable among them is flash memory, which has been the most widely used

nonvolatile memory. There are two types of flash: NOR flash and NAND Flash. NOR

flash is byte addressable while NAND flash is page addressable. In this paper, we are only

concerned about NAND flash, which is referred to as flash for short hereafter. Not only has

flash been widely used on portable devices as storage media, but also flash-based Solid State

Drives (SSDs) are being installed into data centers.

SSDs can provide as much as 3,300 write IOPS and 35,000 read IOPS consuming 2.5

watts of power, whereas even the best HDDs (15K RPM drives) can only offer 300-400 IOPS

while consuming 15-20 watts of power[2]. In comparison, the processor can offer 1,000,000

IOPS. Performance in term of IOPS is critical for enterprise applications serving a large

number of users, like web servers, email servers, cloud computing, and cloud storage. The

common method used to close the gap is to deploy multiple HDDs working in parallel to

1

support peak workloads. In order to meet the IOPS requirement, more HDDs are added,

which results in environments that have underutilized storage (well below 50% of their useful

storage capacity). The extra storage in turn incurs power and cooling waste.

However, flash can only be written a limited number of times, ranging from 10K to

100K depending on the type of flash used. Traditional solutions to limited lifetime of flash

focused on the algorithms used within Flash Translation Layer (FTL), which spread the

writes evenly across the medium. It is referred to as wear leveling, in which no single cell

fails ahead of others. Wear leveling does nothing but uses up as much as the flash potential

lifetime. Although wear leveling increase the lifetime to some extent, it remains a concern

for write intensive applications.

The reminder of the chapter is organized as follows: Section 1.1 presents the problem

statement. In Section 1.2, we talk about the scope of the research. In Section 1.3, we show

our contributions briefly. Finally, Section 1.4 gives the organization of this dissertation.

1.1 Problem Statement

1.1.1 Flash Memory

As mentioned above, one of flash drawbacks is write endurance. The endurance issue

stems from cell degradation caused by each burst of high voltage (10V) across the cell. This

problem shows no imminent sign of vanishing for Multi-Level Cell (MLC) write endurance

is worse compared to Single Level Cell (SLC). For example, the write cycles of 2X MLCs

drop to 10,000 from 100,000 of that of SLC. Furthermore, write endurance becomes worse

as cells become smaller.

In order to mitigate the such drawbacks, a Flash Translation Layer (FTL) has been

proposed to manage how the flash resources are used [3]. FTL has mapping tables between

logical and physical address spaces. When an update to a file is issued, FTL writes the

file to a blank page and marks the old page as invalid. FTL updates the mapping tables

accordingly. A technique called wear leveling attempts to evenly use all of the memory cells.

2

In spite of all these efforts, endurance is still a concern for flash based storage systems.

The flash lifetime over I/Os per second is shown in Figure 1.1 [4]. The lifetime drops as the

number of I/Os increases. As Kim et al. [4] put it, “Although MTTFs for HDDs tend to

be of the order of several decades, recent analysis has established that other factors (such as

replacement with next, faster generation) implies a much shorter actual lifetime and hence

we assume a nominal lifetime of 5 years in the enterprise.” As we can see from the figure,

when the number of I/Os exceeds approximately 50 IOPS, the lifetime of flash is less than

5 years. For example, the OpenMail workloads we used have 98 I/Os per second, which

corresponds to a lifetime less than 2 years. Therefore, endurance is one of the factors that

would hinder further applications of flash-based storage systems to a heavy write-intensive

workload environment like some embedded or enterprise systems, where the storage system

needs to work 24/7 with heavy write traffic. Therefore, enhancing the flash endurance is

demanded.

1.1.2 Flash Trends

According to [5], flash trends can be expressed as: bigger, faster, and cheaper, but not

better.

Bigger: Flash component densities are doubling at a rate greater than Moore’s Law.

With a new type of 3D stacking technique, called TSOP stacking, the density can be doubled

again. In addition, more dies can be stacked in some types of BGA packages. Currently,

MLC technology makes it possible for SSD to have capacities of 512 GB to 1TB in 2.5-inch

form factors.

Faster: A single operation is needed for programming an entire page or erasing an entire

block. Depending on component density, currently page size varies from 2KB, 4KB to 8KB

in 2009 while block size can range from 16KB to 512KB. The amount of time is independent

of page size and block size. Therefore, as page size and block size are becoming bigger, the

effective program/erasure speed becomes faster.

3

Figure 1.1: Lifetime of Flash

4

Cheaper: As the densities are going up, price is going down. For example, 2X MLC is

roughly half the cost of the equivalent density SLC component. In 2004, 8GB SLC-based

SSDs sold for about $4,000 while 40GB Intel X25-V sells for $129.99 in January of 2010– 5

times the capacity at about 1/30 price in about 6 years.

Not better: Better means more reliable in terms of endurance and data retention. Data

retention is defined as the length of time a charge remains on the floating gate after the

last program. The cells are worn out over program/erasure and make it more difficult to

keep the electrons in place. Therefore, there is an inverse relationship between endurance

and data retention – the more program/erasure, the shorter the data retention. As NAND

manufactures are struggling for lower cost per bit, they keep sacrificing endurance and data

retention. The most renowned trade-off is in MLC vs. SLC, in which 2:1 or 3:1 cost benefit

is obtained through 10:1 reduction in rated endurance.

A classification of memory technologies is given in Figure 1.2 [6]. Flash has been clas-

sified as ”mature nonvolatile memory”. Most importantly, flash is likely not to disappear in

the near future, which can be seen in Figure 1.3 [7]. Although there are emerging memories,

such as PCM (PCRAM) and MRAM, they have not reached the maturity level to replace

flash. Flash will coexist with the emerging memories for 5-10 years. Therefore, extending

the flash lifetime needs to be explored.

1.1.3 Limitations of Existing Solutions

There are two basic methods to solve or mitigate the short flash lifetime 1) efficiently

use cells, 2) reduce the write traffic to flash. Most research uses the first method, e.g.,

wear leveling. Since flash lifetime is directly related to cycles of program/erase, reducing

write traffic to flash will extend the flash lifetime. However, little research has employed

the second method. We did find Soundararajan et al.’s paper [8] using the second method.

However, they use disk-based write cache instead of DRAM cache to save write traffic.

RAM buffer has been proposed to improve the flash performance. Park et al. [9] reduce

5

Figure 1.2: Memory taxonomy

writes by evicting clean data first. Jo et al. [10] propose a flash aware buffer management

scheme to decrease the number of erase operations by choosing victims based upon page

utilization. Kim et al. [11] use three key techniques, block-level LRU, page padding, and

LRU compensation to improve random write performance. Gupta et al. [12] enhance random

write performance by selectively caching page-level address mappings. However, the above

studies except Soundararajan’s work did not concentrate on the lifetime issue although Kim

et al. mentioned the erase counts in their papers. Next, a common problem of using DRAM is

the fault tolerance issue inherent in the volatile memory. Although Kim et al. [11] suggested

using a small battery or capacitor to delay shutdown until the RAM content is backed up

to flash, both batteries and capacitors have their limitations. Batteries have short lifetime,

which require maintenance and replacements during the lifetime of devices while capacitors

of a reasonable size do not have enough energy sustaining enough time, during which the

6

Figure 1.3: Non volatile memory roadmap

7

data is transferred to flash. Finally, flash as a disk cache has not been studied in their

research.

1.2 Scope of the Research

In this dissertation, we focus on extending the flash lifetime, where flash is used at the

device level shown in 1.4.

We propose to use flash as a victim device of a DRAM disk cache with a supercapacitor

backup power to prolong its lifetime. Unlike traditional solutions, our method uses the

second method listed above to decrease the traffic to flash.

Intuition tells us that DRAM disk cache can reduce writes by coalescing and merging

multiple writes into a single write. However, on second thought, we doubt that it

would be effective given that there is a larger file system cache in main memory

above the device level which already merges writes. For example, typical DRAM

disk cache size in HDDs is 16MB/32MB whereas file system cache can be 512MB or all free

memory for a PC with 4GB main memory. Thus, it is far from clear whether such a small

DRAM disk cache at device level could indeed reduce traffic to persistent storage.

Moreover, researchers are reluctant to use DRAM in the disk-cache for this purpose

because [8] DRAM is volatile memory and thus could cause loss of data upon power failure.

Yet, whether DRAM is suitable for reducing traffic depends on the following factors:

• How much write traffic would be reduced by using DRAM cache?

• What is the minimal size of DRAM cache to be effective as a traffic saver?

• How would flash size impact the traffic savings?

• What sort of update policy should be used?

In this dissertation, we attempt to answer these questions.

8

CPU

L1 cache

L2 cache

Main memory
(File system cache)

Disk cache
(DRAM, Flash)

HDDs/SSDs

System Level

Device Level

Figure 1.4: Memory hierarchy of computers

9

1.3 Contributions

A storage system is an indispensable part of a computer system. The success of this

dissertation will widen the horizon of using flash in the storage systems, where the endurance

issue hinders its wider applications. It will narrow the widening performance gap between

the processor and the storage systems, which has plagued the computer system for several

decades. It also prepares the storage systems for transition to new kinds of memory tech-

nologies. Surely, it will have a big impact on almost all areas, which use computers as a

tool since the storage system is a fundamental part of a computer system. More detailed

contributions are presented in Chapter 9.1.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 presents literature review. Chapter

3 shows the system architecture. In Chapter 4, we compare three traffic saving methods.

In Chapter 5, our research methodology is discussed. Chapter 6 presents our experimental

results when flash acts as a victim disk cache. In Chapter 7, we show our experimental results

when flash is used as a primary store. In Chapter 8, the fault tolerance issue is discussed.

In Chapter 9, we conclude this dissertation and talk about the future work.

10

Chapter 2

Literature Review

In this chapter, we briefly present previous literature related to flash fundamentals and

research on flash endurance that is most relevant to our research.

The remainder of the chapter is organized as follows: Section 2.1 presents the funda-

mentals of flash physics. In Section 2.2, we show the work related to flash acting as disk

cache. In Section 2.3, we talk about the work related to flash being used as part of system

memory. In Section 2.4, we show the work related to SSDs and reliability. Finally, Section

2.5 shows the work related to using write traffic savings to extend the lifetime of flash.

2.1 Flash Basics

The fundamentals of flash physics help us understand the properties of flash. The flash

cell structure is shown in Figure 2.1 [5]. Each cell is made up of one of these transistors. In

a SLC device, one of these transistors can hold 1-bit of data while holding multiple bits for

a MLC. Data is written to the cell by electron tunneling; a high enough voltage is applied

to the gate, creating a powerful electric field such that electrons will tunnel through the

oxide and into the floating gate as shown in Figure 2.2. The electrons remain in the floating

gate after the voltage is removed. Apply the voltage across the channel instead of the gate,

reversing the bias, and the electrons will go in the other direction as shown in Figure 2.3. We

have two states, 0 and 1, and the state is unchanged even if the cell has no power, making

it ideal for a storage device.

There are two types of flash memory: NOR and NAND [13]. They were invented

to replace EPROMs and EEPROMs. Both types can be read and written. Like their

predecessors, a non-blank flash cell must be erased before further writing. A single cell

11

Figure 2.1: Flash cell structure

Figure 2.2: Flash programmed state

12

Figure 2.3: Flash erased state

cannot be erased; only a block of cells can be erased together. NOR flash is byte accessible,

meaning that an individual byte can be read or written. This characteristic is suitable

for holding code. Thus, NOR flash was quickly adopted as a replacement for EPROMs and

EEPROMs. Unlike NOR flash, NAND flash cannot be byte-accessible but is page-accessible,

which means that only pages of data can be streamed in or out of the NAND flash. This

change makes NAND flash denser than NOR flash. The standard NAND cell is 2.5 times

smaller. Therefore, NAND flash is much cheaper than NOR flash and is more suitable for

mass storage. In this proposal, we are concerned about NAND flash. The words flash and

NAND flash will be used interchangeably to denote NAND flash.

Flash has been developed into two forms: single-level cell (SLC) and multilevel cell

(MLC) [14] as shown in Figure 2.4. In SLC technology, each cell represents one bit while in

MLC, each cell can represent more than one bit. 2-bit MLC has been commercially used.

3-bit and 4-bit MLC are on the manufacturers’ roadmaps. SLC needs one reference voltage

(V1) to distinguish 0 from 1. In a 2-bit MLC, three threshold voltages (V1, V2, and V3) are

needed. MLCs with more bits tend to be more error prone because the more the bits per

cell the smaller the voltage margins.

13

1

V1

11

V1

V2

V3

SLC
One bit per cell

2X MLC
Two bits per cell

0

10

01

00

Number of cells

Number of cells

Voltage

Voltage

Figure 2.4: SLC vs. MLC

14

There are three basic operations: reading, erasing, and programming [15]. The read

operation is performed by applying to the cell a gate voltage that is between the values of

the thresholds of the erased and programmed cells and sensing the current flowing through

the device. The write operation involves three main operations: read, erase, and program.

Erasing sets all of the bits to 1. Programming only occurs on pages that are erased since

program operation can only change a bit from 1 to 0. The erasure operation requires a high

voltage pulse to be applied to the source when the control gate is grounded and the drain

floating. Programming is an iterative process. The controller will apply voltage to the gate

(or the channel),allow some electrons to tunnel and check the threshold voltage of the cell.

When the threshold voltage has reached some predetermined value, the data is stored.

NAND flash consists of blocks, which are composed of pages. A block is the smallest

erasable unit of storage. Erasing a block is an expensive operation, taking about 1.5-2 ms in

a SLC device, and about 3 ms in a MLC device. Each block consists of a set of addressable

pages, where SLC usually has 64 pages per block and MLC has 128 pages per block. A page

is the smallest programmable unit. Each SLC page is usually 2 KB in size, and a 2X MLC

page is 4 KB in size.

2.2 Flash Disk Cache

One usage model of flash is for flash to act as disk cache.

Hsieh et al. [16] proposed to use flash as disk cache for saving energy and improving

performance. They did not study the relationship between the flash disk cache and the

upper layer DRAM disk cache. They focused on a lookup mechanism. They compared

several lookup mechanisms in terms of energy efficiency and product lifetime. However, they

cited 1M as endurance cycles (106) to estimate the product lifetime. The current high density

chip has fewer endurance cycles (105). The MLC NAND Flash has even fewer endurance

cycles, typically being rated at about 5K-10K cycles. Therefore, the estimated lifetime by

Hsieh et al. is no longer accurate with regard to the current technology. In addition, they

15

assumed that all the reads and writes are inserted into the flash disk cache. However, some

data, such as stream data, are unlikely to be reused frequently. Allowing such data to go

through the cache will waste the lifetime of flash.

Bisson et al. [17] presented four techniques to improve system performance using the

characteristics of hybrid disks. They made use of the NVCache provided in hybrid disks to

keep the spin down time longer. They divided the NVCache into two: one for writes and

one for reads.

Another work that Bisson et al. [18] [19] have done was to use flash as a backup write

buffer, in which the data stored in flash is used only in case of power failure. Flash acts as

mirror storage to a DRAM write buffer. The limitation of this method is that endurance

would suffer for a small size of flash. It will not be suitable for heavy write workloads.

Microsoft ReadyDrive [20] makes use of hybrid hard disk drives. Microsoft ReadyDrive

is used to control the pinned set. The flash is mainly used to store boot or program launch

related data. It is also used as a non-volatile write buffer while the hard disk drives are

in sleep mode. However, the details of how ReadyDrive controls flash remain a commercial

secret.

Kim et al. [21] proposed using a PCM and NAND flash hybrid architecture for embedded

storage systems. They used PCM to overcome the random and small write issue of flash.

Their findings are beneficial for our research in the general mass storage system with PCM

and flash.

Joo et al. [22] take advantage of pinned-set flash in a hybrid drive to hold application

code. They demonstrate how to decrease the application launch times with only a small

part of applications stored into pinned set of flash memory. By pinning 5% and 10% of the

application launch sequences, launch times are improved by 15% and 24% respectively.

2.3 System Memory Model

Another usage model of flash is to present flash as part of the system memory.

16

Microsoft ReadyBoost belongs to this category. It can use nonvolatile flash memory

devices, such as universal serial bus (USB) flash drives, to improve performance. The flash

memory device serves as an additional memory cache. Windows ReadyBoost relies on the

intelligent memory management of Windows SuperFetch. Intel TurboMemory [23] can be

used as ReadyDrive and ReadyBoost.

Kgil et al. [24] [25] [26] also proposed flash cache at the main memory level. They also

split flash cache into a write region and read region. But such splitting would decrease the

lifetime of flash memory because small portions of flash are overused while a large unified

flash would mitigate the flash write endurance issues by wear-leveling across a large range.

2.4 Solid State Drives and Reliability

The third usage model of flash is to use flash as the main storage medium in solid state

drives.

A solid state drive (SSD) is a storage device that uses solid-state memory. A SSD is

commonly composed of flash memory along with DRAM [27].

Several techniques, such as wear leveling, error detection and correction, and block

management algorithms, have been employed to extend the life of a SSD at the drive or

system level.

Wear Leveling: it is a technique for extending the service life of some kinds of erasable

computer storage media, such as EEPROM and flash [28]. Wear leveling attempts to work

around these limitations by arranging data so that erasures and re-writes are distributed

evenly across the medium. Therefore, it prevents some portions of flash cells from being

overused so no single cell fails ahead of others. Wear leveling is implemented in the Flash

Translation Layer (FTL). It can also be implemented in software by special-purpose file

systems such as JFFS2 [29], YAFFS [30], and ZFS [31].

FTL falls into three categories based on the mapping granularity [32].

• Page-level FTL

17

• Block-level FTL

• Hybrid FTL with mixture of page and block mapping

In page-level FTL, page is the mapping unit. The logical page number is used to map

the requests from upper layers such as the file system to any page of the flash. The advantage

of this scheme is the high utilization efficiency. However, the size of the mapping table is

big. For example, 32MB of space is needed to store the page-level mapping table for a 16GB

flash memory.

On the other hand, block-level FTL uses the logical block number to translate requests

between flash and the file system. Block-level FTL is better than page-level FTL in terms

of mapping table size but worse in terms of utilization efficiency. The size of the mapping

table is reduced by a factor of block size/page size (e.g., 128KB/2KB=64) as compared to

page-level FTL.

Hybrid FTL has been proposed to take advantage of both page-level FTL and block-

level FTL. In Hybrid FTL, flash blocks are divided into two groups: data blocks and log

blocks. Data blocks use block-level FTL while log blocks use page-level FTL.

According to Chang et al. [33] [34] [35], there are two kinds of wear leveling techniques:

dynamic wear leveling (DWL) and static wear leveling (SWL) [36] [33]. In DWL, only

updated data (hot data) is involved in wear leveling while unchanged data remain in place.

In contrast, the SWL technique proactively moves the static data so that all data has a role

in wear leveling. According to the authors, SWL achieves much better write endurance than

DWL.

Besides, there is much research [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] dealing with

write endurance through wear leveling. Although the detailed techniques they use may differ

from each other, their goals remain the same: evenly use the memory cells.

Error Detection and Correction: Like DRAM, Flash is not error free memory. Even

worse, flash wears over writes and exhibits more errors as the number of program/erasure

increases. Therefore, error detection and correction should be applied to flash memory to

18

guarantee correct data. An error-correcting code (ECC) or parity is used to detect and cor-

rect errors. There are trade-offs between the number of bits corrected, cost and complexity.

Storage Management Algorithms: To enhance endurance, the SSD controller man-

ages bad blocks and spare blocks. Bad blocks are recorded in a table. Spare blocks are used

to replace bad blocks. In general, a SSD is equipped with spare blocks that are 1 to 2 % of

the capacity. More (e.g., 50%) can be expected if more reliability is needed.

2.5 Reducing Write Traffic

Usually, a non-volatile write cache or log region is employed in front of the flash medium

to catch the write traffic so that less write traffic would reach the flash medium. Some works

[21] [47] use the emerging memory technologies (e.g., PCM) as the non-volatile log region.

Unlike flash, PCM supports in-place updating. In addition, PCM is faster than flash. Due

to the front end PCM log region, traffic to the flash is decreased.

Soundararajan et al. [8] even use disk-based write caches to extend SSD lifetimes. Their

design is based on the following observations. First, there are many overwrites of a small set

of popular blocks at the block device level. Second, thanks to the file system cache, there will

be not many immediate reads following a write. Finally, HDDs are excellent at sequential

writes and reads. Therefore, HDDs fit log-structured write cache perfectly.

Qureshi et al. [48] have proposed using a DRAM buffer to lazy-write to PCM in order

to improve write performance as well as lifetime of PCM. However, their target is at the

system level rather than at the device level. Additionally, they did not deal with the power

failure issue. Therefore, our research is complementary to theirs.

Using DRAM cache with supercapacitor backup power to save write traffic does not

need many extra efforts since DRAM is an indispensable part in almost all flash controllers.

A little larger DRAM might be needed to be used as a traffic saver.

19

Chapter 3

System Architecture

There are three major usage models of flash memory:

1. System memory model

2. Disk caches

3. Storage devices (SSDs)

Since our focus is on secondary storage, the system memory model is beyond the scope

of this dissertation. Therefore, we deal with two usage models: disk caches and storage

devices. For both categories, we propose to use flash as a victim device of the DRAM cache.

The first category is shown in Figure 3.1. There are two levels of disk caches: the primary

DRAM cache and the secondary flash cache. The flash cache is only updated upon data

being evicted from the DRAM cache. The second category is shown in Figure 3.2. There is

only one level of disk cache. Like the first category, flash is updated only when the data is

evicted from the DRAM cache. The main purpose for doing that is to reduce write traffic

to flash thereby extending the lifetime of flash.

There is a main issue here though: fault tolerance. The data in the DRAM cache will

be lost in the event of power failure and system crash. This issue must be solved before it is

considered as a practical choice. Unlike main memory, secondary storage is supposed to be

data safe by operating systems. We will provide our solution to this issue in Chapter 8.

20

Device driver

Disk controller

DRAM cache

Flash cache

Disk

Figure 3.1: System architecture of Hybrid Hard Drives

21

Device driver

SSD controller DRAM cache

SSD

Figure 3.2: System architecture of Solid State Drives

22

Chapter 4

Comparison of Traffic Mitigation Techniques

The idea of traffic mitigation is to have a non-volatile cache in front of the flash medium.

Apart from our solution (DRAM with a supercapacitor backup power), such kind of cache

can be:

• Battery-backed DRAM

• SLC as a write cache for MLC

• PCM as a write cache

• HDDs

Since a thorough comparative analysis of all the options is beyond the scope of this

disseration, we briefly describe a few other designs and compare them qualitatively with our

solution.

The rest of the chapter is organized as follows: Section 4.1 compares our solution with

battery-backed DRAM. In Section 4.2, we discuss SLC as a write cache. In Section 4.3,

we talk about PCM. Section 4.4 shows HDDs as a write cache. Finally, in Section 4.5, we

present a summary of several traffic mitigation techniques.

4.1 Battery-backed DRAM as a write cache

The difference between battery-backed DRAM and our solution lies only in the way

the backup power is supplied. As calculated in Chapter 8, a period of 10 seconds is long

enough for the contents in DRAM to be transferred into flash. Therefore, we do not need a

long-lasting (hours) power supply in the presence of flash, a supercapacitor backup power is

23

a perfect fit. It does not suffer many drawbacks of batteries, such as regular maintenance or

replacement, limited charge/discharge cycles, slow charge, degrade with shallow discharge,

etc. More discussions are presented in Chapter 8.

4.2 SLC as a write cache for MLC

SLC can be a write cache for MLC due to the fact that each SLC block has more

write cycles. However, SLC is expensive. To be feasible, the size of SLC must be small.

The problem with SLC is that SLC also suffers from limited write endurance although

write endurance is 10 times better than MLC. Therefore, SLC endurance should be taken

into account as a design constraint along with MLC endurance. Since SLC has 10 times

the endurance of MLC, to reach the same lifetime, SLC can be a tenth as large as MLC.

According to Soundararajan et al. [8], if SLC receives twice as many writes as MLC (where

MLC receives 50% write savings), SLC should be a fifth as large as MLC. Hence, the larger

the backing MLC SSD, the larger the SLC cache. For example, a 80GB MLC SSD, 16GB

SLC is needed. It is believed that 16GB SLC will continue to be expensive enough for a

80GB MLC SSD to afford. In contrast, in our solution, the size of primary store has little

impact on the size of cache, i.e., the size of cache alone determines the write savings no

matter how large the primary store is.

4.3 PCM as a write cache

Phase-change memory (also known as PCM, PRAM, PCRAM, etc.) is a type of non-

volatile computer memory. According to ITRS [7], it is in the status of development un-

derway and at the border of qualification/pre-production. PCM is one of a number of

new memory technologies competing in the non-volatile role with the almost universal flash

memory. PCM is a potential choice to be a write cache for SLC/MLC due to the following

characteristics [49]:

• Nonvolatile

24

• Fast read speeds: Access times comparable to DRAM.

• Fast write speeds: Significant write speed improvement over NOR and NAND and no

erase needed.

However, The write speed of PCM is far less than that of DRAM. Additionally, PCM

still suffers write endurance issue (108) although it improves a lot over SLC/MLC. It would

still be a concern for write-intensive applications. It is not yet clear that how the future of

PCM will be in terms of price and the production readiness. Only time will tell. However,

our study does not exclude the use of PCM.

4.4 HDDs as a write cache

HDDs have been proposed to be a write cache for flash to take advantage of the fact that

a SATA disk drive can deliver over 80 MB/s of sequential write bandwidth. Two observed

characteristics support the use of HDDs as a write cache. First, at block level, there are many

overwrites of a small set of popular blocks. Second, reads do not follow writes immediately,

which gives the write cache a grace period to flush the contents into flash before reads.

There are two competing imperatives: On one hand, data should stay longer in write cache

in order to catch more overwrites. On the other hand, data should be flushed into flash in

advance to avoid expensive read penalty from HDDs. Therefore, many triggers to flush must

be designed to achieve the goal of more overwrites with less read penalty, which makes it

quite complicated. In contrast, data in our solution can stay as long as the capacity of the

DRAM cache allows since there is no read penalty.

Flash-based SSDs have many advantages over HDDs in terms of:

• Acoustic levels: SSDs have no moving parts and make no sound unlike HDDs.

• Mechanical reliability: SSDs contain no moving parts thereby virtually eliminating

mechanical breakdowns.

25

• Susceptibility to environmental factors: Compared to traditional HDDs, SSDs are

typically less susceptible to physical shock. Additionally, they have wider temperature

ranges.

• Weight and size: The weight of flash memory and the circuit board material are very

light compared to HDDs.

• Power consumption: High performance flash-based SSDs generally require 1/2 to 1/3

the power of HDDs.

• Magnetic susceptibility: SSDs are not concerned about magnets or magnetic surges,

which can alter data on the HDD media.

By introducing HDDs into SSDs, the device as a whole will lose its advantages in

the above aspects. Therefore, using HDDs as write cache of SSDs may hinder their wider

applications.

Our experimental results show no less write savings using DRAM cache than using

HDD cache although the comparison may not be precise since we use different traces from

Soundararajan et al. [8].

4.5 Summary

The comparison between our research and several others is presented in Table 4.1. As

we can see from the table, log-structure has been employed in [8] [21] [47]. As mentioned in

[8], log-structure is good at writing but it incurs read-penalty.

26

T
e
ch

n
iq

u
e
→

K
im

e
t

a
l.

[2
1
]

S
u
n

e
t

a
l.

[4
7
]

Q
u
re

sh
i

e
t

a
l.

[4
8
]

S
o
u
n
d
a
ra

ra
ja

n
e
t

a
l.

[8
]

O
u
rs

M
ed

ia
to

re
d
u
ce

P
C

M
P

C
M

as
a

lo
g

D
R

A
M

D
is

k
-b

as
ed

w
ri

te
D

R
A

M
(s

u
p

er
ca

-
tr

affi
c

re
gi

on
of

fl
as

h
ca

ch
es

p
ac

it
or

)
d
at

a
re

gi
on

T
ra

ffi
c

h
an

d
le

d
M

et
ad

at
a

M
et

ad
at

a
A

ll
d
at

a
A

ll
d
at

a
A

ll
d
at

a

U
p

d
at

e
sp

ee
d

S
lo

w
(P

C
M

)
S
lo

w
(P

C
M

)
F

as
t

(D
R

A
M

)
S
lo

w
(H

D
D

)
F

as
t

(D
R

A
M

)

R
ol

e
of

fl
as

h
M

ai
n

st
or

ag
e

M
ai

n
st

or
ag

e
N

/A
M

ai
n

st
or

ag
e

D
is

k
ca

ch
e/

m
ai

n
st

or
ag

e

U
sa

ge
E

m
b

ed
d
ed

d
ev

ic
es

S
ec

on
d
ar

y
st

or
ag

e
M

ai
n

m
em

or
y

S
ec

on
d
ar

y
st

or
ag

e
S
ec

on
d
ar

y
st

or
ag

e

W
or

k
lo

ad
ch

a-
B

lo
ck

d
ev

ic
e

B
lo

ck
d
ev

ic
e

M
ai

n
m

em
or

y
B

lo
ck

d
ev

ic
e

B
lo

ck
d
ev

ic
e

ra
ct

er
is

ti
cs

?

R
ea

d
p

en
al

ty
d
u
e

Y
es

Y
es

N
o

Y
es

N
o

to
lo

g
st

ru
ct

u
re

d
w

ri
te

s?

D
at

a
lo

ss
u
p

on
N

o
N

o
Y

es
N

o
N

o
p

ow
er

fa
il
u
re

?

C
om

p
ar

at
iv

e
H

ig
h

H
ig

h
L

ow
H

ig
h

L
ow

ad
d
ed

co
st

?

M
at

u
re

d
te

ch
-

N
o

(P
C

M
)

N
o

(P
C

M
)

N
o(

P
C

M
)

Y
es

(H
D

D
)

Y
es

(D
R

A
M

)
n
ol

og
y
?

T
ab

le
4.

1:
C

om
p
ar

is
on

of
tr

affi
c

m
it

ig
at

io
n

te
ch

n
iq

u
es

27

Chapter 5

Methodology

Extensive experiments were conducted with a disk simulator. Our simulator was based

on DiskSim 4.0 and Microsoft SSD add-on, which were implemented in C. In this chapter,

we describe the methodology we used in this dissertation.

The rest of the chapter is organized as follows: Section 5.1 presents the DiskSim 4.0

simulator. In Section 5.2, we discuss system setup. In Section 5.3, we talk about workloads

we used. In Section 5.4, metrics are presented. Section 5.5 shows the modifications we did

on DiskSim 4.0. Finally, Section 5.6 presents validation of the modified DiskSim 4.0.

5.1 Simulator

We evaluated the proposed architecture using DiskSim 4.0 [50] with flash extension.

DiskSim is a widely used disk drive simulator both in academia and industry alike. DiskSim

is an event-driven simulator. It emulates a hierarchy of storage components such as buses

and controllers as well as disks. In 2008, Microsoft research implemented an SSD module

[51] on top of DiskSim. Based on that, we made some changes to the code to reflect our

architecture.

5.2 System Setup

The system environment in which we run our simulator is presented in Table 5.1.

28

Hardware Parameters Descriptions

CPU Intel (R) Core (TM) 2 Quad Q6600 2.4 GHz

L2 cache 4096KB

Memory 2GB

Storage Intel SATA X25-M 80GB SSD

Software Ubuntu 10.10 (Linux 2.6.35-22 generic)

gcc/g++ v4.4.5

bisson 2.4.1

flex 2.5.35

GNU bash 4.1.5

perl v5.10.1

python 2.6.6

gnuplot 4.4

dia 0.97.1

pdfTeX 3.1415926-1.40.10-2.2 (TeX Live 2009/Debian)

pdfcrop 1.2

latex2rtf 2.1.0

latex2rtf-gui 0.5.3

texmaker 2.0

emacs 23.1.1 (GTK+ version 2.20.0)

Table 5.1: System environment

29

Deva TIORb Reads IOPSc ARSd(KB)

OpenMail 080 51295 36373 (70%) 5.0/10.0/6.5

096 363789 119400 (32%) 98.29 7.8/7.3/7.5

097 366223 117530 (32%) 7.9/7.5/7.6

098 421270 219553 (52%) 3.6/5.6/4.6

099 424887 227744 (53%) 3.5/5.6/4.5

100 295536 152372 (51%) 3.5/5.4/4.4

UMTR 0 1439434 1439434 (100%) 5.27 15.2/-/15.2

Web3 1 1410370 1409113 (99%) 15/26/15

2 1410493 1410492 (99%) 15/8.0/15.5

3 489 487 (99%) 15/8.0/15

4 486 486 (100%) 15.1/-/15.1

5 434 434 (100%) 16.3/-/16.3

Synthetic 0 10000 6600 (66%) 40.05 6.4/6.2/6.3
workloads
a Device No
b Total I/O Requests
c I/O Per Second
d Average Request Size in KB

Table 5.2: Workload characteristics

5.3 Workloads and Traces

Many studies of storage performance analysis use traces of real file system requests to

produce more realistic results. The traces we used are from HP [52] [53] [54]: OpenMail. In

addition, we used disk traces from University of Massachusetts Trace Repository (UMTR)

[55] to test the impact of different update policies on the disk behavior of enterprise level

applications like web servers, database servers, and web search. We also generate synthetic

workloads that represent typical access distributions and approximate real disk usage. The

characteristics of workloads used in this paper are shown in Table 5.2. We selected the first

device (which can represent the workload characteristics in class) within each trace to report

simulation results.

30

OpenMail [52]: It was a one-hour trace from five servers running HP’s OpenMail, col-

lected during the servers’ busy periods. The trace was collected in 1999.

UMTR [55]: There are two kinds of traces: OLTP application I/O and search engine

I/O. The former includes two I/O traces (Financial1.spc and Financial2.spc) from OLTP

applications running at two large financial institutions. The later includes three traces

(Websearch1.spc, Websearch2.spc, and Websearch3.spc) from a popular search engine. These

traces are made available courtesy of Ken Bates from HP, Bruce McNutt from IBM and the

Storage Performance Council.

Synthetic workloads [50]: The synthetic workloads were generated using DiskSim 4.0

workload generator. The generator can be configured to generate a wide range of synthetic

workloads. In addition, probability-distribution parameters can be set to uniform, normal,

exponential, Poisson, or twovalue.

5.4 Performance Metrics

Response time and throughput are generally two important metrics in measuring I/O

performance. Response time starts from a request being issued until the request is served.

Throughput measures the ability of a system in a form of the number of I/Os per second. The

difference between Response time and Throughput is whether we measure one task (Response

Time) or many tasks (Throughput). According to Hsu and Smith [1], throughput is hard to

be quantified for trace-driven simulation in that the workloads are constant. However, they

maintain that throughput can be estimated by taking the reciprocal of the average service

time, which tends to be optimistic estimate of the maximum throughput. Additionally, we

examine the miss ratio of the read cache and the write cache. The miss ratio is the fraction

of I/Os that need to access physical devices (HDDs). Finally, flash endurance is measured

using the write traffic (Bytes) to the flash. To compare different policies (early update policy

and lazy update policy), we introduce Relative Traffic γ, which is defined as:

31

γ =
β

α
(5.1)

where

- β is the write traffic to flash.

- α is the write traffic to device.

The ideal flash lifetime, which does not take write amplification into consideration (write

amplification will be discussed later), can be expressed as:

η =
δε

λ
(5.2)

where

- η is the flash lifetime in days.

- δ is the maximum of the flash write cycles (10K-100K) depending on the type of flash.

- ε is the capacity of the device.

- λ is the write traffic per day.

As we can see from 5.2, flash lifetime is related to rated write cycles δ and the capacity

of the device ε. Since we will use the same kinds of flash and same size of flash to compare

early update policy to lazy update policy, we would like to eliminate these two factors from

the equation. In order to do so, we introduce relative lifetime ϕ:

ϕ =
η1

η2
=

δε
λ1
δε
λ2

=
λ2µ

λ1µ
=
β2

β1
=

β2
α
β1
α

=
γ2

γ1
(5.3)

where

- η1 is the flash lifetime for early update policy.

32

- η2 is the flash lifetime for lazy update policy.

- µ is the time in days the flash is used.

- λ1 is the write traffic to flash per day for early update policy.

- λ2 is the write traffic to flash per day for lazy update policy.

- β1 is the write traffic to flash for early update policy.

- β2 is the write traffic to flash for lazy update policy.

- α is the total traffic to the device.

- γ1 is relative traffic for early update policy.

- γ2 is relative traffic for lazy update policy.

From 5.3, we see that relative lifetime ϕ can be expressed using relative traffic γ. The

advantage of using relative traffic to compare relative lifetime is that the rated write cycles

δ and the capacity of the device ε are taken out of the equation.

The flash lifetime in practice is smaller than the ideal flash lifetime due to a factor,

called write amplification. Write amplification is referred to as the phenomenon that n bytes

of write traffic from a file system will be translated into nm (m > 1) bytes of write traffic

to flash. There are several factors [56] that contribute to write amplification. First, write

amplification is caused by wear leveling, where cold/hot data swapping consumes extra write

cycles. Second, garbage collection contributes to write amplification. In garbage collection,

in order to reclaim invalid pages, the valid pages within the reclaiming blocks need to be

relocated, which consumes extra write cycles. Write amplification varies for different FTL.

Usually, simpler FTLs own larger write amplification while more complex FTLs have smaller

write amplification. Many efforts have been made to minimize write amplification to extend

flash lifetime. According to Soundararajan et al. [8], flash lifetime can be an order of

33

magnitude worse than the optimum even for advanced FTLs, such as Intel X25-M MLC

SSD.

Due to the write amplification, it is not straightforward to map between reduced write

traffic and increased lifetime. However, decreasing the write traffic in half will at least double

its lifetime because of reduced write amplification [8].

5.5 DiskSim 4.0 modifications

In doing our research, we made some modifications on DiskSim4.0. First, we added two

trace formats: SRT 1.6 and SPC. In addition, we added a trace filter to control what types

of requests will be fed into our simulator. Second, we added secondary flash cache on top of

the primary disk cache. Last, we fixed bugs with regard to the incompatibility issue of Type

3 Smart Controller for Microsoft SSD add-on.

5.5.1 Trace formats: SRT1.6 and SPC

DiskSim 4.0 supports many trace formats including SRT 1.4, but it does not support

HP SRT1.6 and SPC. Many traces, like HP OpenMail and Cello, use SRT1.6. SPC is a trace

format designed by the Storage Performance Council. University of Massachusetts Trace

uses SPC format.

Our implementation of SRT 1.6 is based on HP WinTraceto SRT. The source code for

SRT 1.6 is in disksim srt.c. Our implementation of SPC complies with SPC specification

1.01. The source code for SPC is in disksim spc.c. Both are included in disksim4.0-ms-ssd-

t2-c3 version. We are planning to make it publicly available.

In addition to adding the above two trace formats, a trace filter is added. With the

filter, you can select:

• Device number

• Read only

34

• Write only

• Set dev=0

• Set maxmum bcount

The filter can be configured via Global parameter in .parv:

disksim global Global {

Init Seed = 42,

Real Seed = 42,

uncomment the following line if you just want requests for dev=80

Device to Trace = 80,

uncomment the following line if you only trace reads

Trace Read Only = 1,

uncomment the following line if you only trace writes.

Trace Write Only = 1,

uncomment the following line if you want to set dev=0

Map Devices to devno-0 = 1,

uncomment the following line if you only want bcount <= 512

Max Bcount = 512

Stat definition file = statdefs

}

35

5.5.2 Secondary flash cache

DiskSim 4.0 does not support a secondary flash cache that our research needs to have.

The original system architecture of DiskSim 4.0 is shown in Figure A.1. Therefore, we

implemented a secondary flash cache layer on DiskSim 4.0 as shown in Figure 5.1. Since we

concentrate on the traffic savings, we only implemented a simplified model of a flash device

that has a constant access time, which can be adjusted by parameter configurations.

5.5.3 Smart controller and MS SSD add-on

Microsoft research implemented an SSD module on top of DiskSim 4.0. Unlike the disk

implementation, the SSD implementation does not have a read or write cache. One way to

have a read or write cache is to use Smart Controller (type:3) (see Figure 5.1). However,

the SSD add-on is not compatible with Smart Controller. The problem is rooted in the

slightly different ways that dumb controller and smart controller handle data transfer. We

fixed the bugs and added the support of Smart Controller to the SSD add-on. Our version

disksim4.0-ms-ssd-t2-c3 contains the update.

5.6 Validation

DiskSim 4.0 comes with a set of validation tests (runvalid), which are used to test the

simulator. Runvalid uses a series of validation data to validate the simulator. The validation

data were from a logic analyzer attached to the SCSI bus. Validation was achieved by

comparing measured and simulated response time distributions. Our modified version of

DiskSim 4.0 produces the same values as DiskSim 4.0 for all the validation tests as shown in

Table 5.3.

36

Device Driver

Controller
(cache)

Disk
[flash cache]

(cache)

System Bus

I/O Bus

SSD

Figure 5.1: System architecture of modified DiskSim 4.0

37

Tests DiskSim 4.0 Modified DiskSim 4.0

QUANTUM QM39100TD-SW rmsa= 0.377952 rms = 0.377952
SEAGATE ST32171W rms = 0.347570 rms = 0.347570
SEAGATE ST34501N rms = 0.317972 rms = 0.317972
SEAGATE ST39102LW rms = 0.106906 rms = 0.106906
IBM DNES-309170W rms = 0.135884 rms = 0.135884
QUANTUM TORNADO rms = 0.267721 rms = 0.267721
HP C2247 validate rms = 0.089931 rms = 0.089931
HP C3323 validate rms = 0.305653 rms = 0.305653
HP C2490 validate rms = 0.253762 rms = 0.253762

Open synthetic workload 10.937386msb 10.937386ms
Closed synthetic workload 87.819135ms 87.819135ms
Mixed synthetic workload 22.086628ms 22.086628ms
RAID 5 at device driver 22.861326ms 22.861326ms
Disk arrays at device driver 34.272035ms 34.272035ms
Memory cache at controller 24.651367ms 24.651367ms
Cache device/controller 28.939379ms 28.939379ms
Simpledisk 13.711596ms 13.711596ms
3 different disks 10.937386ms 10.937386ms
Separate controllers 10.937386ms 10.937386ms
HP srt trace input 48.786646ms 48.786646ms
ASCII input 13.766948ms 13.766948ms
Syssim system integration 8.894719ms 8.894719ms
a Root Mean Square error of differences
b Average Response Time in millisecond

Table 5.3: Validation of modified DiskSim 4.0

38

Chapter 6

Traffic Savings for Flash as a Victim Disk Cache

In this chapter, we focus research on flash used as a victim disk cache, whose architecture

was shown in 3.1. There are two levels of disk caches: primary DRAM disk cache and

secondary flash disk cache. We concentrated on the relationship between the two levels of

disk caches: when is the right time to update the flash disk cache? Compared with the early

update policy, our study shows that using flash as a victim cache (which corresponds to lazy

update policy) can save a lot of lifetime. At the same time, the performance in terms of

response time and miss ratio is improving as well.

The rest of the chapter is organized as follows: Section 6.1 introduces the concept of

early update and lazy update policy. In Section 6.2, we discuss lazy update policy for reads.

In Section 6.3, we talk about lazy update policy for writes. In Section 6.4, the benefits

of lazy update policy are presented. Section 6.5 shows the simulation parameters. Section

6.6 talks about performance metrics used in this chapter. Finally, Section 6.7 presents the

experimental results.

6.1 Early Update vs. Lazy Update

Early update means the flash is updated as soon as the DRAM cache is updated. Lazy

update is referred to as the policy that the flash is updated only when the data is evicted

from DRAM cache. In other words, flash acts as a victim device of the DRAM cache.

Traditionally, early update policy is employed. For examples, Bisson et al. [18] and Kgil et

al. [24] [25] [26] use early update policy. The flow chart of early update policy is shown in

Figure 6.1 and Figure 6.2.

39

Read Requests

In DRAM?

Return

Yes In Flash?

No

Read from Disks

No

Update Flash

Update DRAM

Return

Yes

Increment Write

Counter

Figure 6.1: Early update for reads

40

Write requests

In DRAM?

merge

Yes

In Flash?

Update Flash

Invalid Flash Data

Entry
Yes

No

Update DRAM

No

Increment Write

Counter

Return

Figure 6.2: Early update for writes

41

6.2 Lazy Update Policy for Reads

When a read request arrives, DRAM cache is first checked as shown in Figure 6.3. If

found in DRAM cache, then the request can be served through DRAM cache. If not, then

check with flash. If it has an entry in it, the request can be satisfied by flash. The data will

also be copied into DRAM cache. If the data is not in flash either, then the data is fetched

from HDDs and it is cached in DRAM cache. But flash is not updated until the data is

evicted.

6.3 Lazy Update Policy for Writes

When a write request arrives, DRAM cache is first checked as shown in Figure 6.4. If

found in DRAM cache, the request will be merged. If not, allocate an entry in DRAM cache.

If there is no space, the least used clean data will be evicted. The evicted data will be copied

into flash. If all data in DRAM cache are dirty, the write request has to wait for the dirty

data to be retired into HDDs.

6.4 The Benefits of Lazy Update Policy

Lazy update policy benefits from the fact that block devices receive many overwrites of

a small set of popular blocks. One cause for overwrites is that many file systems enforce a 30-

second rule [54], which flushes buffered writes to disks every 30 seconds for the sake of data

integrity. Soundararajan et al. [8] have found that, on average, 54% of the total overwrites

occur within the first 30 seconds, which confirms the role that 30-second rule plays. Some

file systems, such as ext2, flush metadata more frequently (e.g., every 5 seconds) [57]. With

lazy update policy, overwrites can be coalesced, thereby reducing the write traffic to flash

significantly.

42

Read Requests

Data in DRAM?

Return

Yes

Data in Flash?

No

Yes

Read from Disk

No

Update DRAM

Evicted from

DRAM?
Update Flash

Increment Flash

Write Counter

Return

No

Yes

Figure 6.3: Lazy update for reads

43

Write requests

In DRAM?

Merge

Yes

Return

In Flash?

No

Update DRAM

No

Invalid Flash Data

Entry

Yes

Evicted from

DRAM?

No

Update Flash
Yes

Increment Write

Counter

Figure 6.4: Lazy update for writes

44

Parameter Value

Form 3.5”
Capacity 9100MB
Seek time/track 7.5/0.8ms
Cache/Buffer 1024KB
Data transfer rate 19MB/S int

40MB/S ext
Bytes/Sector 512

Table 6.1: Disk parameters
(QUANTUM QM39100TD-SW)

6.5 Simulation Parameters

In our simulation, we choose QUANTUM QM39100TD-SW SCSI hard disk drive, which

was one of 10 disk drives that have been validated for DiskSim 4.0. Its basic parameters

are shown in Table 6.1. We have tried other brands of hard disk drives, which have little

impact on our findings since we concentrated our research on lifetime of flash and disk

cache. Therefore, in this dissertation, we use QUANTUM QM39100TD-SW to report our

experimental results.

The parameter file (victim.parv) we used in running DiskSim is listed below in the two-

column text. In addition, we changed the following parameters via command line parameter

interface:

• DRAM cache size

• Flash cache size

• Devno

45

disksim global Global {
Init Seed = 42,
Real Seed = 42,
Device to Trace = 1,
Map Devices to devno-0 = 1,
With Flash Cache = 1,
Flash Update Policy = 1,
Flash Cache Size = 1,
Flash Page Size = 8,
Flash Cost Per Page = 0.0,
Stat definition file = statdefs
}

disksim stats Stats {
iodriver stats = disksim iodriver stats {
Print driver size stats = 1,
Print driver locality stats = 0,
Print driver blocking stats = 0,
Print driver interference stats = 0,
Print driver queue stats = 1,
Print driver crit stats = 0,
Print driver idle stats = 1,
Print driver intarr stats = 1,
Print driver streak stats = 1,
Print driver stamp stats = 1,
Print driver per-device stats = 1 },
bus stats = disksim bus stats {
Print bus idle stats = 1,
Print bus arbwait stats = 1 },
ctlr stats = disksim ctlr stats {
Print controller cache stats = 1,
Print controller size stats = 1,
Print controller locality stats = 1,
Print controller blocking stats = 1,
Print controller interference stats = 1,
Print controller queue stats = 1,
Print controller crit stats = 1,
Print controller idle stats = 1,
Print controller intarr stats = 1,
Print controller streak stats = 1,
Print controller stamp stats = 1,
Print controller per-device stats = 1 },
device stats = disksim device stats {
Print device queue stats = 0,
Print device crit stats = 0,

Print device idle stats = 0,
Print device intarr stats = 0,
Print device size stats = 0,
Print device seek stats = 1,
Print device latency stats = 1,
Print device xfer stats = 1,
Print device acctime stats = 1,
Print device interfere stats = 0,
Print device buffer stats = 1 },
process flow stats = disksim pf stats {
Print per-process stats = 1,
Print per-CPU stats = 1,
Print all interrupt stats = 1,
Print sleep stats = 1
}
} # end of stats block

disksim iodriver DRIVER0 {
type = 1,
Constant access time = 0.0,
Scheduler = disksim ioqueue {
Scheduling policy = 3,
Cylinder mapping strategy = 1,
Write initiation delay = 0.0,
Read initiation delay = 0.0,
Sequential stream scheme = 0,
Maximum concat size = 128,
Overlapping request scheme = 0,
Sequential stream diff maximum = 0,
Scheduling timeout scheme = 0,
Timeout time/weight = 6,
Timeout scheduling = 4,
Scheduling priority scheme = 0,
Priority scheduling = 4
}, # end of Scheduler
Use queueing in subsystem = 1
} # end of DRV0 spec

disksim bus BUS0 {
type = 1,
Arbitration type = 1,
Arbitration time = 0.0,
Read block transfer time = 0.0,
Write block transfer time = 0.0,
Print stats = 0

46

} # end of BUS0 spec

disksim bus BUS1 {
type = 1,
Arbitration type = 1,
Arbitration time = 0.0,
Read block transfer time = 0.0512,
Write block transfer time = 0.0512,
Print stats = 1
} # end of BUS1 spec

disksim ctlr CTLR0 {
type = 1,
Scale for delays = 0.0,
Bulk sector transfer time = 0.0,
Maximum queue length = 0,
Print stats = 1
} # end of CTLR0 spec

source atlas III.diskspecs
component instantiation
instantiate [statfoo] as Stats
instantiate [bus0] as BUS0
instantiate [bus1] as BUS1
instantiate [disk0 .. disk2] as
QUANTUM QM39100TD-SW
instantiate [driver0] as DRIVER0
instantiate [ctlr0] as CTLR0

system topology
topology disksim iodriver driver0 [
disksim bus bus0 [
disksim ctlr ctlr0 [
disksim bus bus1 [
disksim disk disk0 [],
disksim disk disk1 [],
disksim disk disk2 []
]
]
]
]

disksim logorg org0 {
Addressing mode = Parts,
Distribution scheme = Asis,
Redundancy scheme = Noredun,

devices = [disk0],
Stripe unit = 2056008,
Synch writes for safety = 0,
Number of copies = 2,
Copy choice on read = 6,
RMW vs. reconstruct = 0.5,
Parity stripe unit = 64,
Parity rotation type = 1,
Time stamp interval = 0.000000,
Time stamp start time = 60000.000000,
Time stamp stop time =
10000000000.000000,
Time stamp file name = stamps
} # end of logorg org0 spec

disksim pf Proc {
Number of processors = 1,
Process-Flow Time Scale = 1.0
} # end of process flow spec

disksim synthio Synthio {
Number of I/O requests to generate =
20000,
Maximum time of trace generated =
10000.0,
System call/return with each request = 0,
Think time from call to request = 0.0,
Think time from request to return = 0.0,
Generators = [
disksim synthgen { # generator 0
Storage capacity per device = 17938986,
devices = [disk0],
Blocking factor = 8,
Probability of sequential access = 0.7,
Probability of local access = 0.7,
Probability of read access = 0.5,
Probability of time-critical request = 0.2,
Probability of time-limited request = 0.3,
Time-limited think times = [normal, 30.0,
100.0],
General inter-arrival times = [exponential,
0.0, 25.0],
Sequential inter-arrival times = [normal,
0.0, 0.0],
Local inter-arrival times = [exponential,
0.0, 0.0],

47

Local distances = [normal, 0.0, 40000.0],
Sizes = [exponential, 0.0, 8.0]
}

] # end of generator list
} # end of synthetic workload spec

6.6 Performance Metrics

As discussed in Chapter 5, we use relative traffic, miss ratio, and response time as

performance metrics.

6.7 Experimental Results

We ran OpenMail, Synthetic, and Websearch3 workload traces against early update

policy and lazy update policy, during which relative traffic, miss ratio, and average response

time were observed. We especially watched the impact of DRAM size and flash size on

relative traffic savings. The simulation results are shown in Figure 6.5 through Figure 6.28.

Several observations can be made from these figures.

6.7.1 Write Traffic Savings

OpenMail (Figure 6.5 and Figure 6.6): relative traffic with lazy update policy is 50% of

that with early update policy when DRAM size reaches 25MB (0.33 for lazy update policy

vs. 0.68 for early update policy).

Synthetic workload (Figure 6.7 and Figure 6.8): relative traffic with lazy update policy

is 50% of that with early update policy when DRAM size reaches 60MB (roughly 0.5 for

lazy update policy vs. 1 for early update policy).

Websearch3 (Figure 6.9 and Figure 6.10): relative traffic does not see improvement with

Websearch3 because Websearch3 is a read-only workload. For read-only workloads, there is

no overwrite that can be coalesced using lazy update policy.

48

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 5 10 15 20 25 30 35

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Flash cache size=31MB

Early
Lazy

Figure 6.5: Relative traffic for OpenMail

49

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 5 10 15 20 25 30 35

R
e
la

ti
v
e
 t

ra
ffi

c

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.6: Relative traffic for OpenMail

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Flash cache size=62MB

Early
Lazy

Figure 6.7: Relative traffic for Synthetic workload

51

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 10 20 30 40 50 60 70

R
e
la

ti
v
e
 t

ra
ffi

c

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.8: Relative traffic for Synthetic workload

52

 0.99

 0.995

 1

 1.005

 1.01

 0 10 20 30 40 50 60 70 80 90

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Flash cache size=74MB

Early
Lazy

Figure 6.9: Relative traffic for Websearch3

53

 0.99

 0.995

 1

 1.005

 1.01

 0 20 40 60 80 100 120 140 160

R
e
la

ti
v
e
 t

ra
ffi

c

Flash cache size(MB)

DRAM cache size=14MB

Early
Lazy

Figure 6.10: Relative traffic for Websearch3

54

6.7.2 DRAM Size Need Not to be Very Large to be Effective

DRAM size ranges from 15MB to 60MB depending on the workloads, which is shown

in Figure 6.5 and Figure 6.7.

6.7.3 Flash size has little effect on Write Traffic Savings

As can be seen from Figure 6.6 and Figure 6.8, flash size has little impact on write

traffic savings when compared to varying DRAM size.

We see that the write traffic savings depend mainly on DRAM size rather than flash

size. This is a great characteristic since a moderate size of DRAM cache (< 60MB) can

extend the flash lifetime significantly no matter how large the flash is.

6.7.4 Miss Ratio Is improved Slightly

From Figure 6.11, Figure 6.12, Figure 6.13 and Figure 6.14, we notice that miss ratio

with lazy update policy is slightly better than that with early update policy. However, miss

ratio with lazy update policy for Websearch3 does not see any improvement, as shown in

Figure 6.15 and Figure 6.16.

6.7.5 Response Time Is Improved Slightly

From Figure 6.17, Figure 6.18, Figure 6.19 and Figure 6.20, we observe that response

time with lazy update policy is slightly better than that with early update. Like miss ratio,

response time does not show improvement with Websearch3 workload shown in Figure 6.21

and 6.22.

6.7.6 Summary

The lazy update policy improvement over early update policy for OpenMail, Web-

search3, and synthetic workloads is presented in Figure 6.23, Figure 6.24, Figure 6.25, Figure

6.26, Figure 6.27, and Figure 6.28 respectively.

55

 0.44

 0.445

 0.45

 0.455

 0.46

 0.465

 0.47

 0.475

 0.48

 0 5 10 15 20 25 30 35

M
is

s
ra

ti
o

DRAM cache size(MB)

Flash cache size=31MB

Early
Lazy

Figure 6.11: Miss Ratio for OpenMail

56

 0.456

 0.458

 0.46

 0.462

 0.464

 0.466

 0.468

 0.47

 0.472

 0.474

 5 10 15 20 25 30 35

M
is

s
ra

ti
o

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.12: Miss Ratio for OpenMail

57

 0.974

 0.976

 0.978

 0.98

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0 20 40 60 80 100 120 140

M
is

s
ra

ti
o

DRAM cache size(MB)

Flash cache size=62MB

Early
Lazy

Figure 6.13: Miss Ratio for Synthetic workload

58

 0.981

 0.982

 0.983

 0.984

 0.985

 0.986

 0.987

 0.988

 0.989

 0.99

 0.991

 0 10 20 30 40 50 60 70

M
is

s
ra

ti
o

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.14: Miss Ratio for Synthetic workload

59

 0.99

 0.995

 1

 1.005

 1.01

 0 10 20 30 40 50 60 70 80 90

M
is

s
ra

ti
o

DRAM cache size(MB)

Flash cache size=74MB

Early
Lazy

Figure 6.15: Miss Ratio for Websearch3

60

 0.99

 0.995

 1

 1.005

 1.01

 0 20 40 60 80 100 120 140 160

M
is

s
ra

ti
o

Flash cache size(MB)

DRAM cache size=14MB

Early
Lazy

Figure 6.16: Miss Ratio for Websearch3

61

 1603.6

 1603.8

 1604

 1604.2

 1604.4

 1604.6

 1604.8

 1605

 1605.2

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Flash cache size=31MB

Early
Lazy

Figure 6.17: Response Time for OpenMail

62

 1604.45

 1604.5

 1604.55

 1604.6

 1604.65

 1604.7

 1604.75

 1604.8

 1604.85

 1604.9

 1604.95

 5 10 15 20 25 30 35

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.18: Response Time for OpenMail

63

 43.45

 43.5

 43.55

 43.6

 43.65

 43.7

 43.75

 43.8

 43.85

 0 20 40 60 80 100 120 140

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Flash cache size=62MB

Early
Lazy

Figure 6.19: Response Time for Synthetic workload

64

 43.55

 43.6

 43.65

 43.7

 43.75

 43.8

 43.85

 43.9

 0 10 20 30 40 50 60 70

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

Flash cache size(MB)

DRAM cache size=6MB

Early
Lazy

Figure 6.20: Response Time for Synthetic workload

65

 50.2

 50.4

 50.6

 50.8

 51

 51.2

 51.4

 0 10 20 30 40 50 60 70 80 90

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Flash cache size=74MB

Early
Lazy

Figure 6.21: Response Time for Websearch3

66

 50.2

 50.4

 50.6

 50.8

 51

 51.2

 51.4

 0 20 40 60 80 100 120 140 160

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

Flash cache size(MB)

DRAM cache size=14MB

Early
Lazy

Figure 6.22: Response Time for Websearch3

67

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Flash cache size=31MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.23: Improvement of lazy update policy over early update policy for OpenMail

68

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 o

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

ty
 (

%
)

Flash cache size(MB)

DRAM cache size=6MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.24: Improvement of lazy update policy over early update policy for OpenMail

69

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Flash cache size=74MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.25: Improvement of lazy update policy over early update policy for
UMTR(websearch3)

70

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 o

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

ty
 (

%
)

Flash cache size(MB)

DRAM cache size=14MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.26: Improvement of lazy update policy over early update policy for
UMTR(websearch3)

71

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

Im
p
ro

v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d

a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Flash cache size=62MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.27: Improvement of lazy update policy over early update policy for synthetic work-
load

72

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

Im
p
ro

v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 o

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

ty
 (

%
)

Flash cache size(MB)

DRAM cache size=6MB

Relative Traffic
Miss Ratio

Response Time

Figure 6.28: Improvement of lazy update policy over early update policy for synthetic work-
load

73

Although we see no big difference in terms of miss ratio and average response time with

lazy update policy, the write traffic is significantly reduced (between 5-97% depending upon

write content of traffic).

74

Chapter 7

Traffic Savings for Flash as a Major Storage Medium

In this chapter, we focus our research on flash used as a primary store instead of a victim

disk cache, whose architecture was shown in Figure 3.2. Unlike a disk cache, read requests

would not entail write traffic to flash. Moreover, as a major storage medium, we assume

the flash size is much larger than a disk cache. We still concentrated on the impact that

update policies have on the lifetime of flash. Compared with the early update policy, our

study shows that using flash as a victim device (which corresponds to lazy update policy)

can save a lot of lifetime. At the same time, the performance in terms of response time is

improving as well, which is consistent with the findings in Chapter 6.

The rest of the chapter is organized as follows: Section 7.1 introduces early update for

reads. In Section 7.2, we discuss early update policy for writes. In Section 7.3, we talk about

lazy update policy for reads. In Section 7.4, we present lazy update for writes. Section 7.5

shows the simulation parameters. Section 7.6 talks about performance metrics used in this

chapter. Finally, Section 7.7 presents the experimental results.

7.1 Early Update for reads

The flowchart of early update for reads is shown in Figure 7.1. When a read request

arrives, DRAM cache is first checked. If found, then the request is satisfied. Otherwise, data

is read from flash. Meanwhile, DRAM cache is updated upon receiving data from flash.

75

Read Requests

In DRAM?

Return

Yes Read from Flash

Update DRAM

Return

No

Figure 7.1: Early update for reads

7.2 Early Update for writes

The flowchart of early update for write is shown in Figure 7.2. When a write request

comes, search in DRAM cache first. If found, merge the data. Otherwise, DRAM cache is

updated. Next, update flash with Write Counter incremented.

7.3 Lazy Update for reads

The flowchart of lazy update for reads is shown in Figure 7.3. When a read request

arrives, search in DRAM cache. If found, return the data. If not, read the data from flash.

Next, update DRAM cache with the new data. If a dirty data entry is evicted from DRAM

cache, update flash with the Write Counter incremented.

76

Write Requests

In DRAM?

Merge

Update Flash

Increment Write

Counter

Return

Yes

Update DRAMNo

Figure 7.2: Early update for writes

77

Read Request

In DRAM

Return

Yes Read from Flash

No

Update DRAM

Evicted from

DRAM?

Return

No

Dirty? No

Yes

Update Flash

Yes

Increment Write

Counter

Figure 7.3: Lazy update for reads

78

Write requests

In DRAM?

Merge

Yes

Update DRAM

Evicted from

DRAM?

return

No

Dirty?

Yes

Update Flash

Increment Write

counter

Yes

No

No

Figure 7.4: Lazy update for writes

7.4 Lazy Update writes

The flowchart of lazy update for writes is shown in Figure 7.4. When a write request

arrives, search in DRAM cache. If found, merge the data. Otherwise, DRAM cache is

updated. If dirty data is evicted from DRAM cache, update the flash with the Write Counter

incremented.

79

7.5 Simulation Parameters

The part of the parameter file(ssd-victim.parv) we used in running DiskSim is listed

below.

ssdmodel ssd SSD {
vp - this is a percentage of total pages in the ssd
Reserve pages percentage = 15,

vp - min percentage of free blocks needed. if the free
blocks drop below this, cleaning kicks in
Minimum free blocks percentage = 5,

vp - a simple read-modify-erase-write policy = 1 (no longer supported)
vp - osr write policy = 2
Write policy = 2,

vp - random = 1 (not supp), greedy = 2, wear-aware = 3
Cleaning policy = 2,

vp - number of planes in each flash package (element)
Planes per package = 8,

vp - number of flash blocks in each plane
Blocks per plane = 2048,

vp - how the blocks within an element are mapped on a plane
simple concatenation = 1, plane-pair stripping = 2 (not tested),
full stripping = 3
Plane block mapping = 3,

vp - copy-back enabled (1) or not (0)
Copy back = 1,

how many parallel units are there?
entire elem = 1, two dies = 2, four plane-pairs = 4
Number of parallel units = 1,

vp - we use diff allocation logic: chip/plane
each gang = 0, each elem = 1, each plane = 2
Allocation pool logic = 1,

elements are grouped into a gang
Elements per gang = 1,

shared bus (1) or shared control (2) gang
Gang share = 1,

80

when do we want to do the cleaning?
Cleaning in background = 0,

Command overhead = 0.00,
Bus transaction latency = 0.0,

Assuming PCI-E, with 8 lanes with 8b/10b encoding.
This gives 2.0 Gbps per lane and with 8 lanes we get about
2.0 GBps. So, bulk sector transfer time is about 0.238 us.
Use the ”Read block transfer time” and ”Write block transfer time”
from disksim bus above.
Bulk sector transfer time = 0,

Flash chip elements = 8,

Page size = 8,

Pages per block = 64,

vp - changing the no of blocks from 16184 to 16384
Blocks per element = 16384,

Element stride pages = 1,

Never disconnect = 1,
Print stats = 1,
Max queue length = 20,
Scheduler = disksim ioqueue {

Scheduling policy = 1,
Cylinder mapping strategy = 0,
Write initiation delay = 0,
Read initiation delay = 0.0,
Sequential stream scheme = 0,
Maximum concat size = 0,
Overlapping request scheme = 0,
Sequential stream diff maximum = 0,
Scheduling timeout scheme = 0,
Timeout time/weight = 0,
Timeout scheduling = 0,
Scheduling priority scheme = 0,
Priority scheduling = 1

},
Timing model = 1,

vp changing the Chip xfer latency from per sector to per byte
Chip xfer latency = 0.000025,

Page read latency = 0.025,
Page write latency = 0.200,

81

Block erase latency = 1.5
} # end of SSD spec

In addition, we change the following parameters via command line parameter interface:

• DRAM cache size

• Devno

7.6 Performance Metrics

As in Chapter 6, we use relative traffic and response time as performance metrics.

However, we will not use miss ratio in this chapter since flash is not used as disk cache.

7.7 Experimental Results

We ran OpenMail, Synthetic, and Websearch3 workload traces against early update

policy and lazy update policy, during which relative traffic and average response time were

observed. We especially watched the impact of DRAM size on relative traffic savings. The

simulation results are shown in Figure 7.5 through Figure 7.13. Several observations can be

made from these figures.

7.7.1 Write Traffic Savings

OpenMail (Figure 7.5): relative traffic with lazy update policy is roughly 33% of that

with early update policy when DRAM size reaches 10MB (0.33 for lazy update policy vs. 1

for early update policy).

Synthetic workload (Figure 7.6): relative traffic with lazy update policy is roughly 40%

of that with early update policy when DRAM size reaches 10MB (roughly 0.4 for lazy update

policy vs. 1 for early update policy).

82

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Early
Lazy

Figure 7.5: Relative traffic for OpenMail

83

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Early
Lazy

Figure 7.6: Relative traffic for Synthetic workloads

84

Websearch3 (Figure 7.7): relative traffic does not see improvement with Websearch3

because Websearch3 is a read-only workload. For read-only workloads, there is no overwrite

that can be coalesced using lazy update policy.

7.7.2 DRAM Size Needs not to be Large to Be Effective

DRAM size larger than 10MB is effective to reduce write traffic significantly, which is

shown in Figure 7.5 and Figure 7.6.

7.7.3 Response Time

OpenMail (Figure 7.8): Response time with lazy update policy is roughly 5.6% of that

with early update policy (roughly 0.2 ms for lazy update policy, roughly 3.6 ms for early

update policy).

Synthetic workload (Figure 7.9): Response time with lazy update policy is roughly

63.6% of that with early update policy (roughly 0.14 ms for lazy update policy, roughly 0.22

ms for early update policy).

Websearch3 (Figure 7.10): the response time for Websearch3 does not see improvement.

7.7.4 Summary

The lazy update policy improvement over early update policy for OpenMail, Web-

search3, and synthetic workloads has been presented in Figure 7.11, Figure 7.12, and Figure

7.13 respectively.

Although we see no difference for read-only workloads, lazy update policy reduces write

traffic significantly with read/write workloads. Performance in terms of average response

time also sees marked improvement.

85

 0.99

 0.995

 1

 1.005

 1.01

 0 5 10 15 20 25 30 35

R
e
la

ti
v
e
 t

ra
ffi

c

DRAM cache size(MB)

Early
Lazy

Figure 7.7: Relative traffic for Websearch3

86

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Early
Lazy

Figure 7.8: Response time for OpenMail

87

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Early
Lazy

Figure 7.9: Response time for Synthetic workloads

88

 0.1365

 0.137

 0.1375

 0.138

 0.1385

 0.139

 0.1395

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 r

e
sp

o
n
se

 t
im

e
(m

s)

DRAM cache size(MB)

Early
Lazy

Figure 7.10: Response time for Websearch3

89

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Relative Traffic
Response Time

Figure 7.11: Improvement of lazy update policy over early update policy for OpenMail

90

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Im
p

ro
v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d
a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Relative Traffic
Response Time

Figure 7.12: Improvement of lazy update policy over early update policy for
UMTR(websearch3)

91

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

Im
p
ro

v
e
m

e
n
t

o
f

La
zy

 U
p

d
a
te

 P
o
lic

y
 O

v
e
r

E
a
rl

y
 U

p
d

a
te

 P
o
lic

y
(%

)

DRAM cache size(MB)

Relative Traffic
Response Time

Figure 7.13: Improvement of lazy update policy over early update policy for synthetic work-
load

92

Chapter 8

Fault Tolerance Issue

As mentioned in Chapter 3, there is a fault tolerance issue with DRAM cache since

DRAM is volatile memory, which will lose data when the power is off. There is battery-

backed DRAM. However, batteries have many issues, such as lifetime issue, maintenance

issue, recharge-time issue. In this disseration, we propose to use supercapacitors as backup

power for the controller and DRAM as shown in Figure 8.1 (flash as major store) and Figure

8.2 (flash as disk cache).

Supercapacitor backup power has been used by Seagate [58] in their SSDs and Sun

Oracle [59] in their storage systems. Although the use of supercapacitors as a backup power

source is not new, we have not found it being used to solve the flash lifetime issue.

The rest of the chapter is organized as follows: Section 8.1 introduces supercapacitors.

In Section 8.2, we discuss the reasons for using supercapacitors instead of batteries. Finally,

Section 8.3 presents how to calculate the needed capacitance.

8.1 What are Supercapacitors?

A supercapacitor (also known as ultracapacitor) is an electrochemical capacitor that

offers very high capacitance in a small package. The amount of energy a capacitor can hold

is measured in microfarads or µF. (1µF = 10−6 Farad). While small capacitors are rated in

nano-farads (nF=10−9F) and pico-farads (1pF = 10−12F), supercapacitors come in farads.

93

Device

Interface

Controller DRAM

Flash

Array

Flash Module

Supercapacitor

Figure 8.1: Flash as major store with a supercapacitor backup power

Device

Interface

Controller DRAM

Flash

Array

Disks

Supercapacitor

Figure 8.2: Flash as disk cache with a supercapacitor backup power

94

8.2 Why Supercapacitors not Batteries?

Unlike the electrochemical battery, there is very little wear and tear induced by cycling

and age does not affect the supercapacitor much. In normal use, a supercapacitor deterio-

rates to about 80 percent after 10 years, which is long enough for most applications whereas

a battery needs many replacements during the lifetime of a product. Additionally, super-

capacitors do not need a full charge detection circuit like rechargeable batteries. They take

as much energy as needed. When full, they stop accepting charge. There is no danger of

overcharge.

The supercapacitor offers high power density although the energy density is far below

that of the battery, as depicted in Figure 8.3. Today, supercapacitors can store 5%-10% as

much energy as a modern lithium-ion battery of the same size. What supercapacitors lack

in range, they make up in the ability to rapidly charge and discharge. They can be charged

in seconds rather than in minutes or hours. Supercapacitors are already used extensively.

Millions of them provide backup power for the memory used in microcomputers and cell

phones. As mentioned above, supercapacitors have been used in enterprise SSDs.

8.3 How to calculate the Capacitance of Supercapacitors?

The value of a supercapacitor can be estimated [56] by equating the energy needed

during the hold-up period to the energy decrease in the supercapacitor, starting at Vwv and

ending at Vmin.

The energy (Ex) needed during the hold-up period (t):

Ex = I
Vwv + Vmin

2
t (8.1)

The energy decrease (Ey) as voltage drops from Vwv to Vmin:

Ey =
CV 2

wv

2
− CV 2

min

2
(8.2)

95

Figure 8.3: Supercapacitor and rechargeable batteries

Since Ex = Ey, the minimum capacitance value that guarantees hold-up to Vmin is:

C = I
Vwv + Vmin
V 2
mv − V 2

min

t (8.3)

When the main power is off for any reason, the supercapacitor backup power needs to

provide the temporary power long enough for the controller to transfer the dirty data into

flash.

Suppose we use 64MB of DRAM cache, which is large enough to have an effective write

traffic savings. We use Intel X-25M SSD drives [60] to estimate the transfer time. The drive

needs 5V (+/-5%) power and the active power is 150mW (current is 0.15/5=0.03A). The

sustained sequential write speed is 70MB for 80 GB SSD drives. Therefore, in less than one

second, 64MB will be moved into flash. We use 2 seconds to calculate the minimum capac-

itance value. Applying (8.3), we get C=0.12F. According to Maxwell [61], supercapacitor

prices will be approaching $0.01 per farad in production volumes of millions. Apart from

96

supercapacitors, a power control circuit should be added. However, the total cost would not

be high.

97

Chapter 9

Conclusions and Future Work

In this dissertation, we have concentrated our research on extending the flash lifetime.

We have investigated a new way to extend the lifetime of flash with DRAM cache. For

data integrity, we propose to use a supercapacitor for backup power instead of batteries so

that DRAM cache can be used without loss of data integrity. This chapter concludes the

dissertation by summarizing the contributions and describing future directions.

The reminder of the chapter is organized as follows: Section 9.1 highlights the main con-

tributions of the dissertation. In Section 9.2, we concentrate on some future directions, which

are extensions of our past and current research on cache. Finally, Section 9.3 summarizes

the results and their implications.

9.1 Main Contributions

This dissertation introduced the following main contributions that aim to extend the

lifetime of flash:

• Extend the lifetime of flash in a new way: DRAM cache has been used to

improve performance in terms of response time. Due to its volatile nature, researchers

are reluctant to use it to save write traffic. Soundararajan et al. [8] put it this way,

”RAM can make for a fast and effective write cache, however the overriding problem

with RAM is that it is not persistent (absent some power-continuity arrangements).”

The potential of DRAM cache being a write traffic saver has been overlooked. We

conducted extensive simulation based on real workloads and synthetic workloads on

how effective a DRAM cache can be a write traffic saver and how large the DRAM

98

cache should be to be effective. Our results show that with a medium-sized DRAM

cache, the lifetime of the backing flash can be doubled. Therefore, DRAM cache is a

effective write traffic saver.

• Solve the data integrity: To be effective and fast is not enough to justify that DRAM

cache is a correct candidate unless the data can be guaranteed safe out of power outage.

An Achilles’ heel is that the data will be lost in case of power failure. A common way

to solve this issue is to have a battery backup power. However, batteries have limited

charge/discharge cycles and need regular maintenance or replacement, which limits

their use in many environments. Instead, we proposed to use a supercapacitor backup

power. Supercapacitors are perfect at supplying short period of power in this scenario.

Supercapacitors are not new. However, using it to solve the lifetime of flash, to our

best knowledge, has not been done.

• Enhance DiskSim simulator: DiskSim 4.0 is a well-regarded disk simulator. How-

ever, it lacks support of two levels of disk cache (DRAM primary disk cache and

secondary flash disk cache). Microsoft SSD add-on does not support a read/write

cache. Besides, it does not work well with Type 3 Smart Controller, which supports

read/write cache at controller level. Moreover, trace formats (SRT 1.6 and SPC) are

not included. We added those missing components to DiskSim and successfully passed

all validation tests.

9.2 Future Work

Our work in this dissertation is at device level. However, we realize that the concept

of supercapacitor backup power can be applied to computer main memory to enhance data

integrity of computer systems as well.

A conventional practice to alleviate data loss due to unexpected power failure is to

enforce a 30-second flush rule, as Unix operating systems do. The negative side of the rule is

99

that disk fragmentation is increased, which will decrease its performance. Some important

computer systems are even equipped with Uninterruptible Power Supply (UPS) to protect

its data.

With a supercapacitor backup power, backing flash, and controller, the content of main

memory can be backed up into flash on power loss. The data can be recovered on power

resumption. In this context, 30-second flush rule is no longer needed, which would reduce

disk fragmentation and improve data integrity as well as performance.

9.3 Conclusions

We have demonstrated through simulation that a medium-sized DRAM cache can save

up to 50% write traffic to flash, which is translated into at least doubling the lifetime of

flash. Meanwhile, performance in terms of response time and miss ratio sees improvement as

well. Furthermore, our findings can be applied to computer main memory to enhance data

integrity of computer systems.

100

Bibliography

[1] W. Hsu and A. J. Smith, “The performance impact of I/O optimizations and disk
improvements,” IBM J. Res. Dev., vol. 48, no. 2, pp. 255–289, 2004.

[2] SolarisTM ZFSTM enables hybrid storage pools–Shatters economic and perfor-
mance barriers. [Online]. Available: http://download.intel.com/design/flash/nand/
SolarisZFS SolutionBrief.pdf

[3] “Understanding the flash translation layer (FTL) specification,” Intel Corporation,
Tech. Rep., 1998.

[4] Y. Kim, A. Gupta, and B. Urgaonkar, “MixedStore: An enterprise-scale storage system
combining Solid-state and Hard Disk Drives ,” The Pennsylvania State University, Tech.
Rep., 2008.

[5] “NAND evolution and its effects on Solid State Drive (SSD) useable life,” Western
Digital, White paper WP-001-01R, 2009.

[6] J. Hutchby and M. Garner. Assessment of the potential & maturity of selected
emerging research memory technologies. Workshop & ERD/ERM Working Group
Meeting (April 6-7, 2010). [Online]. Available: http://www.itrs.net/Links/2010ITRS/
2010Update/ToPost/ERD ERM 2010FINALReportMemoryAssessment ITRS.pdf

[7] (2010) Process integration, devices & structures. The International Technology
Roadmap for Semiconductors. [Online]. Available: http://www.itrs.net/Links/
2010ITRS/Home2010.htm

[8] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber, “Extending SSD
lifetimes with disk-based write caches,” in Proceedings of the 8th USENIX conference
on File and storage technologies, ser. FAST’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 8–8. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1855511.1855519

[9] S.-y. Park, D. Jung, J.-u. Kang, J.-s. Kim, and J. Lee, “CFLRU: a replacement
algorithm for flash memory,” in Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded systems, ser. CASES
’06. New York, NY, USA: ACM, 2006, pp. 234–241. [Online]. Available:
http://doi.acm.org/10.1145/1176760.1176789

101

http://download.intel.com/design/flash/nand/SolarisZFS_SolutionBrief.pdf
http://download.intel.com/design/flash/nand/SolarisZFS_SolutionBrief.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/ERD_ERM_2010FINALReportMemoryAssessment_ITRS.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/ERD_ERM_2010FINALReportMemoryAssessment_ITRS.pdf
http://www.itrs.net/Links/2010ITRS/Home2010.htm
http://www.itrs.net/Links/2010ITRS/Home2010.htm
http://portal.acm.org/citation.cfm?id=1855511.1855519
http://portal.acm.org/citation.cfm?id=1855511.1855519
http://doi.acm.org/10.1145/1176760.1176789

[10] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, “FAB: flash-aware buffer man-
agement policy for portable media players,” Consumer Electronics, IEEE Transactions
on, vol. 52, no. 2, pp. 485 – 493, May 2006.

[11] H. Kim and S. Ahn, “BPLRU: a buffer management scheme for improving random writes
in flash storage,” in Proceedings of the 6th USENIX Conference on File and Storage
Technologies, ser. FAST’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 16:1–
16:14. [Online]. Available: http://portal.acm.org/citation.cfm?id=1364813.1364829

[12] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer employing
demand-based selective caching of page-level address mappings,” in ASPLOS ’09: Pro-
ceeding of the 14th international conference on Architectural support for programming
languages and operating systems. New York, NY, USA: ACM, 2009, pp. 229–240.

[13] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,”
Proceedings of the IEEE, vol. 91, no. 4, pp. 489–502, April 2003.

[14] Flash memory. [Online]. Available: http://en.wikipedia.org/wiki/Flash memory

[15] K. Takeuchi, S. Satoh, T. Tanaka, K. Imamiya, and K. Sakui, “A negative Vth cell
architecture for highly scalable, excellently noise-immune, and highly reliable NAND
flash memories,” Solid-State Circuits, IEEE Journal of, vol. 34, no. 5, pp. 675 –684,
May 1999.

[16] J.-W. Hsieh, T.-W. Kuo, P.-L. Wu, and Y.-C. Huang, “Energy-efficient and
performance-enhanced disks using flash-memory cache,” in Proceedings of the
2007 international symposium on Low power electronics and design, ser. ISLPED
’07. New York, NY, USA: ACM, 2007, pp. 334–339. [Online]. Available:
http://doi.acm.org/10.1145/1283780.1283851

[17] T. Bisson, S. A. Brandt, and D. D. E. Long, “A hybrid disk-aware spin-down algorithm
with I/O subsystem support.” in IPCCC’07, 2007, pp. 236–245.

[18] T. Bisson and S. A. Brandt, “Reducing Hybrid Disk write latency with flash-backed
I/O requests,” in Proceedings of the 2007 15th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 402–409. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1474555.1475519

[19] ——, “Flushing policies for NVCache enabled hard disks,” in Proceedings of the
24th IEEE Conference on Mass Storage Systems and Technologies. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 299–304. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1306871.1306922

[20] R. Panabaker. (2006, May) Hybrid hard disk and Ready-Drive technology: Improving
performance and power for Windows Vista mobile PCs. [Online]. Available:
http://www.microsoft.com/whdc/winhec/pres06.mspx

102

http://portal.acm.org/citation.cfm?id=1364813.1364829
http://en.wikipedia.org/wiki/Flash_memory
http://doi.acm.org/10.1145/1283780.1283851
http://portal.acm.org/citation.cfm?id=1474555.1475519
http://portal.acm.org/citation.cfm?id=1306871.1306922
http://www.microsoft.com/whdc/winhec/pres06.mspx

[21] J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng, “A PRAM and NAND
flash hybrid architecture for high-performance embedded storage subsystems,” in
Proceedings of the 8th ACM international conference on Embedded software, ser.
EMSOFT ’08. New York, NY, USA: ACM, 2008, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/1450058.1450064

[22] Y. Joo, Y. Cho, K. Lee, and N. Chang, “Improving application launch times with
hybrid disks,” in CODES+ISSS ’09: Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. New York, NY, USA:
ACM, 2009, pp. 373–382.

[23] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud, “Intel R© Turbo
Memory: Nonvolatile disk caches in the storage hierarchy of mainstream computer
systems,” Trans. Storage, vol. 4, no. 2, pp. 1–24, 2008.

[24] T. Kgil and T. Mudge, “Flashcache: a NAND flash memory file cache for low power web
servers,” in Proceedings of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems, ser. CASES ’06. New York, NY, USA: ACM,
2006, pp. 103–112. [Online]. Available: http://doi.acm.org/10.1145/1176760.1176774

[25] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND flash based disk caches,” in
Proceedings of the 35th Annual International Symposium on Computer Architecture,
ser. ISCA ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 327–338.
[Online]. Available: http://dx.doi.org/10.1109/ISCA.2008.32

[26] D. Roberts, T. Kgil, and T. Mudge, “Integrating NAND flash devices onto
servers,” Commun. ACM, vol. 52, pp. 98–103, April 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498791

[27] Solid-state drive. [Online]. Available: http://en.wikipedia.org/wiki/Solid-state drive

[28] Wear leveling. [Online]. Available: http://en.wikipedia.org/wiki/Wear levelling

[29] Journalling flash file system version 2. [Online]. Available: http://en.wikipedia.org/
wiki/JFFS2

[30] Yaffs (yet another flash file system). [Online]. Available: http://en.wikipedia.org/wiki/
YAFFS

[31] ZFS. [Online]. Available: http://en.wikipedia.org/wiki/Zfs

[32] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: a flash translation layer employing
demand-based selective caching of page-level address mappings,” in Proceeding of the
14th international conference on Architectural support for programming languages and
operating systems, ser. ASPLOS ’09. New York, NY, USA: ACM, 2009, pp. 229–240.
[Online]. Available: http://doi.acm.org/10.1145/1508244.1508271

103

http://doi.acm.org/10.1145/1450058.1450064
http://doi.acm.org/10.1145/1176760.1176774
http://dx.doi.org/10.1109/ISCA.2008.32
http://doi.acm.org/10.1145/1498765.1498791
http://en.wikipedia.org/wiki/Solid-state_drive
http://en.wikipedia.org/wiki/Wear_levelling
http://en.wikipedia.org/wiki/JFFS2
http://en.wikipedia.org/wiki/JFFS2
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/Zfs
http://doi.acm.org/10.1145/1508244.1508271

[33] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo, “Improving flash wear-leveling by
proactively moving static data,” IEEE Trans. Comput., vol. 59, pp. 53–65, January
2010. [Online]. Available: http://dx.doi.org/10.1109/TC.2009.134

[34] ——, “Endurance enhancement of flash-memory storage systems: an efficient static
wear leveling design,” in Proceedings of the 44th annual Design Automation Conference,
ser. DAC ’07. New York, NY, USA: ACM, 2007, pp. 212–217. [Online]. Available:
http://doi.acm.org/10.1145/1278480.1278533

[35] L.-P. Chang, “On efficient wear leveling for large-scale flash-memory storage
systems,” in Proceedings of the 2007 ACM symposium on Applied computing, ser.
SAC ’07. New York, NY, USA: ACM, 2007, pp. 1126–1130. [Online]. Available:
http://doi.acm.org/10.1145/1244002.1244248

[36] A. Ban, “Wear leveling of static areas in flash memory,” U.S. Patent 6 732 221, 2004.

[37] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file system,” in
Proceedings of the USENIX 1995 Technical Conference Proceedings, ser. TCON’95.
Berkeley, CA, USA: USENIX Association, 1995, pp. 13–13. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1267411.1267424

[38] H.-j. Kim and S.-g. Lee, “A new flash memory management for flash storage system,”
in 23rd International Computer Software and Applications Conference, ser. COMPSAC
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 284–. [Online].
Available: http://portal.acm.org/citation.cfm?id=645981.674620

[39] K. M. J. Lofgren, R. D. Norman, G. B. Thelin, and A. Gupta, “Wear leveling
techniques for flash EEPROM systems,” U.S. Patent 6 850 443, February, 2005.
[Online]. Available: http://www.freepatentsonline.com/6850443.html

[40] E. Jou and J. H. Jeppesen, III, “Flash memory wear leveling system providing
immediate direct access to microprocessor,” U.S. Patent 5 568 423, 1996. [Online].
Available: http://www.freepatentsonline.com/5568423.html

[41] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee, “A group-based wear-leveling
algorithm for large-capacity flash memory storage systems,” in Proceedings of the
2007 international conference on Compilers, architecture, and synthesis for embedded
systems, ser. CASES ’07. New York, NY, USA: ACM, 2007, pp. 160–164. [Online].
Available: http://doi.acm.org/10.1145/1289881.1289911

[42] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song, “A
log buffer-based flash translation layer using fully-associative sector translation,”
ACM Trans. Embed. Comput. Syst., vol. 6, July 2007. [Online]. Available:
http://doi.acm.org/10.1145/1275986.1275990

[43] J.-U. Kang, H. Jo, J.-S. Kim, and J. Lee, “A superblock-based flash translation
layer for NAND flash memory,” in Proceedings of the 6th ACM & IEEE International
conference on Embedded software, ser. EMSOFT ’06. New York, NY, USA: ACM,
2006, pp. 161–170. [Online]. Available: http://doi.acm.org/10.1145/1176887.1176911

104

http://dx.doi.org/10.1109/TC.2009.134
http://doi.acm.org/10.1145/1278480.1278533
http://doi.acm.org/10.1145/1244002.1244248
http://portal.acm.org/citation.cfm?id=1267411.1267424
http://portal.acm.org/citation.cfm?id=645981.674620
http://www.freepatentsonline.com/6850443.html
http://www.freepatentsonline.com/5568423.html
http://doi.acm.org/10.1145/1289881.1289911
http://doi.acm.org/10.1145/1275986.1275990
http://doi.acm.org/10.1145/1176887.1176911

[44] L.-P. Chang and T.-W. Kuo, “An adaptive striping architecture for flash memory
storage systems of embedded systems,” in Proceedings of the Eighth IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’02), ser. RTAS ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 187–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=827265.828513

[45] Y.-S. Chu, J.-W. Hsieh, Y.-H. Chang, and T.-W. Kuo, “A set-based mapping strategy
for flash-memory reliability enhancement,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’09. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2009, pp. 405–410. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1874620.1874717

[46] Y.-L. Tsai, J.-W. Hsieh, and T.-W. Kuo, “Configurable NAND flash translation
layer,” in Proceedings of the IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing -Vol 1 (SUTC’06) - Volume 01. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 118–127. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1136649.1137086

[47] G. Sun, Y. Joo, Y. Chen, D. Niu, Y. Xie, Y. Chen, and H. Li, “A hybrid solid-state stor-
age architecture for the performance, energy consumption, and lifetime improvement,”
in High Performance Computer Architecture (HPCA), 2010 IEEE 16th International
Symposium on, 9-14 2010, pp. 1 –12.

[48] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” in Proceedings
of the 36th annual international symposium on Computer architecture, ser.
ISCA ’09. New York, NY, USA: ACM, 2009, pp. 24–33. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555760

[49] “The basics of phase change memory (PCM) technology,” Numonyx White Paper.
[Online]. Available: www.numonyx.com/Documents/WhitePapers/PCM Basics WP.
pdf

[50] J. S. Bucy, J. Schindler, S. Schlosser, G. R. Ganger, and Contributors, The DiskSim
simulation environment version 4.0 reference manual, Carnegie Mellon University, Pitts-
burgh, PA, 2008.

[51] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy,
“Design tradeoffs for SSD performance,” in USENIX 2008 Annual Technical Conference
on Annual Technical Conference. Berkeley, CA, USA: USENIX Association, 2008, pp.
57–70. [Online]. Available: http://portal.acm.org/citation.cfm?id=1404014.1404019

[52] HP open source software. [Online]. Available: http://tesla.hpl.hp.com/opensource/

[53] Block I/O traces from SNIA. [Online]. Available: http://iotta.snia.org/traces/list/
BlockIO

105

http://portal.acm.org/citation.cfm?id=827265.828513
http://portal.acm.org/citation.cfm?id=1874620.1874717
http://portal.acm.org/citation.cfm?id=1136649.1137086
http://doi.acm.org/10.1145/1555754.1555760
www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://portal.acm.org/citation.cfm?id=1404014.1404019
http://tesla.hpl.hp.com/opensource/
http://iotta.snia.org/traces/list/BlockIO
http://iotta.snia.org/traces/list/BlockIO

[54] C. Ruemmler and J. Wilkes, “Unix disk access patterns.” in USENIX Winter’93, 1993,
pp. 405–420.

[55] University of Massachusetts trace. [Online]. Available: http://traces.cs.umass.edu/
index.php/Storage/Storage

[56] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write amplification
analysis in flash-based solid state drives,” in Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, ser. SYSTOR ’09. New York, NY, USA: ACM,
2009, pp. 10:1–10:9. [Online]. Available: http://doi.acm.org/10.1145/1534530.1534544

[57] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Analysis and
evolution of journaling file systems,” in Proceedings of the annual conference on
USENIX Annual Technical Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 8–8. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1247360.1247368

[58] Pulsar. Seagate. [Online]. Available: http://www.seagate.com/staticfiles/support/disc/
manuals/ssd/100596473a.pdf

[59] Sun Storage F5100 flash array. Sun Oracle. [Online]. Available: http://www.oracle.
com/us/products/servers-storage/storage/disk-storage/043970.pdf

[60] Intel R© X18-M/X25-M SATA Solid State Drive-34 nm product line. Intel Corpora-
tion. [Online]. Available: http://download.intel.com/design/flash/nand/mainstream/
322296.pdf

[61] A. Schneuwly, G. Sartorelli, J. Auer, and B. Maher. Ultracapacitor applications
in the power electronic world. Maxwell Technologies. [Online]. Available: http:
//www.maxwell.com/ultracapacitors/white-papers/power electronic applications.pdf

106

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://doi.acm.org/10.1145/1534530.1534544
http://portal.acm.org/citation.cfm?id=1247360.1247368
http://portal.acm.org/citation.cfm?id=1247360.1247368
http://www.seagate.com/staticfiles/support/disc/manuals/ssd/100596473a.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/ssd/100596473a.pdf
http://www.oracle.com/us/products/servers-storage/storage/disk-storage/043970.pdf
http://www.oracle.com/us/products/servers-storage/storage/disk-storage/043970.pdf
http://download.intel.com/design/flash/nand/mainstream/322296.pdf
http://download.intel.com/design/flash/nand/mainstream/322296.pdf
http://www.maxwell.com/ultracapacitors/white-papers/power_electronic_applications.pdf
http://www.maxwell.com/ultracapacitors/white-papers/power_electronic_applications.pdf

Appendices

107

Appendix A
DiskSim 4.0 Flowcharts, Modifications,

and Post Processing Scripts

A.1 Overview

DiskSim 4.0 is a well regarded tool to simulate the storage system. We used DiskSim
4.0 along with Microsoft SSD add-on in our storage research, during which we made modi-
fications on DiskSim 4.0. We added two trace formats (SRT 1.6 and SPC) to DiskSim and
fixed bugs related to smart controller (type:3) for Microsoft SSD add-on. Moreover, we wrote
Bash scripts to automatically plot figures using gnuplot.

I/O Block Traces (e.g., OpenMail, Cello) that can be downloaded from SNIA (http://
www.snia.org) and HP Labs (http://tesla.hpl.hp.com/opensource) use SRT 1.6 while DiskSim
4.0 only supports SRT 1.4. SPC is another important trace format that DiskSim 4.0 does
not support. We have a set of workloads in SPC format that can be downloaded from
http://traces.cs.umass.edu/index.php/Storage/Storage. We implemented the two trace for-
mats in DiskSim 4.0. In addition, we added five parameters to DiskSim to filter traces, e.g.,
tracing read only I/O requests.

Microsoft SSD add-on does not include a write or read cache in the implementation,
which is a problem for those who need the write or read cache. One way to solve this problem
is to use Smart Controller (type:3). However, the SSD implementation is not compatible
with type 3 smart controller. We have an update to solve this issue.

In order to make these modifications, we read thoroughly through the DiskSim 4.0
source code and stepped through the source code. Based on these, we drew flowcharts of
reads, writes both for HDD and SSD, which will help us understand how DiskSim 4.0 works
internally. With these flowcharts, it is much easier to comprehend DiskSim 4.0 source code.
We would like to share these flowcharts to help those who are reading DiskSim source code.
So far, we have not found such kinds of published materials.

Last but not least, the task of running DiskSim 4.0 and collecting data can be tiresome
since most likely we need to change a series of parameters to see the impact, which will
produce many files, from which we extract the wanted outcomes to produce figures. With
our Bash scripts, we obtain the figures by running a single Bash shell program.

A.2 System Diagram

DiskSim is a widely used disk drive simulator both in academia and industry alike. The
system diagram of DiskSim 4.0 is shown in Figure A.1. DiskSim is an event-driven simulator.
It emulates a hierarchy of storage components such as device drivers, buses, and controllers
as well as disks. With Microsoft SSD extension, it can also simulate flash-based Solid State
Drives. Furthermore, it is designed to be easily integrated into a full system simulator, like
SimOS.

108

Device Driver

Controller
(cache)

Disk
(cache)

System Bus

I/O Bus

SSD

Figure A.1: System architecture of DiskSim 4.0

109

A.3 DiskSim 4.0 flowcharts

A.3.1 Main loop

DiskSim is written mainly in C with a small portion of perl and python code. The
main loop of DiskSim in disksim main.c is shown in Figure A.2. After initialization, it runs
simulation (void disksim run simulation ()) until all I/O requests are processed or it runs out
of time. The function disksim run simulation() is shown in Figure A.3. It gets the next event
and processes the event according to event types: IO event, PF, Timeout, and Checkout.
The detailed io internal event is shown in Figure A.4. It handles events based on the event
types: driver event, bus event, controller event, and device event.

A.3.2 Message routing

As mentioned earlier, DiskSim is a event-driven simulator. Events are put into queues to
be handled. There are two kinds of queues: internal Queue and extra Queue shown in Figure
A.5. Extra Q is a pool of queues, which is in charge of memory allocation. A queue can
be gotten via getfromextraq() and it must be returned via addtoextraq() upon completion.
Internal Q, on the other hand, is a list of active messages (allocated from Extra Q) passing
among the device driver, bus, controller, and devices. An event is added to the Internal Q
via addtointq() and removed via getfromintq(). For example, an I/O request is put into the
Internal Q by the workload generator. Then, it is processed along the path: device driver,
system bus, controller, I/O bus, and devices.

A.3.3 HDD reads with dumb controller (type:1)

The flowchart for HDD reads is shown in Figure A.6. The flowchart is based on the
trace to the run of DiskSim with parameter file atlas III.parv. Different parameter set-
tings may have slightly different flowcharts. In this category, the dumb controller passes
all messages without processing them upward or downward. A cycle is started while the
device driver gets an IAA message. Next, IAA is passed down to the controller. Then,
it reaches the device (disk). The disk issues IIA(disconnect) to disconnect the I/O bus,
which is completed upon receiving IIC(disconnect). When the data is ready, the disk issues
IIA(reconnect) to reconnect the I/O bus, which is finished upon receiving IIC(reconnect).
Then, data is transfered via DDTC, which is done upon receiving DDTC. Finally, the disk
issues IIA(completion) to complete the cycle. The device driver gets the IIA(completion)
and returns an IIC(completion).

A.3.4 HDD writes with dumb controller (type:1)

The flowchart for HDD writes is shown in Figure A.7. The flowchart is based on the trace
to the run of DiskSim with parameter file atlas III.parv. Like reads, the dumb controller
passes all messages without processing them upward or downward. A cycle is started while
the device driver gets an IAA message. Next, IAA is passed down to the controller. Then,
it reaches the device (disk). The disk issues IIA(reconnect) to reconnect the I/O bus, which
is completed upon receiving IIC(reconnect). Then, it issues DDTC to start data transfer,

110

main

init

stop?

Cleanup and print statiscs

N

Y

End

Run Simulation

Figure A.2: The main loop of DiskSim 4.0

111

Get next event

Null?

IO_event?

PF?

Timeout?

Checkpoint?

Return

N

Io_internal_event

pf_internal_event

timeout

Checkpoint

Y

Y

Y

Y

Y

Run Simulation

Figure A.3: Run simulation

112

Driver event?

Bus event?

Controller event?

Device event?

Driver event

Bus event

Controller event

Device event

Return

Y

Y

Y

Y

io_internal_event

Figure A.4: io-internal-event

113

Internal Q

getfromintq()

Driver event

Bus event

Controller event

Device event

Extra Q

getfromextraq()

addtoextraq()

addtointq()

addtointq()

addtointq()

addtointq()

Figure A.5: Message routing

114

Driver Controller

IAA

Disk

IAA

Sys BUS I/O BUS

IIA(disc)

IIC(disc)

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE

IIA(disc)

IIC(disc)

IIA(rec)

IIC(rec)

Figure A.6: Flowchart for HDD reads (controller type:1)

115

which is done upon receiving DDTC. Finally, the disk sends IIA(completion) to complete
the cycle. The device driver gets the IIA(completion) and returns an IIC(completion).

A.3.5 HDD reads with smart controller (type:3)

The flowchart for HDD reads is shown in Figure A.8. The flowchart is based on the
trace to the run of DiskSim with parameter file atlas III3.parv, which sets up smart controller
(type:3). In this category, the smart controller processes all messages upward or downward.
A cycle is started while the device driver gets an IAA message. Next, IAA is passed down
to the controller. Then, it reaches the device (disk). The disk issues IIA(disconnect) to dis-
connect the I/O bus, which is completed upon receiving IIC(disconnect). Unlike dumb con-
troller, smart controller processes IIA and returns IIC. When the data is ready, the disk issues
IIA(reconnect) to reconnect the I/O bus, which is finished upon receiving IIC(reconnect).
Then, data is transfered via DDTC, which is done upon receiving DDTC. The disk issues
IIA(completion) to complete the cycle. Data is transmitted between the device driver and
the controller via CDTCH. Finally, the controller issues an IIA(completion) to wrap up the
cycle. The device driver gets the IIA(completion) and returns an IIC(completion).

A.3.6 HDD writes with smart controller (type:3)

The flowchart for HDD writes is shown in Figure A.9. The flowchart is based on the
trace to the run of DiskSim with parameter file atlas III3.parv, which sets up smart con-
troller (type:3). Like reads, the smart controller processes all messages upward or downward.
A cycle is started while the device driver gets an IAA message. Next, IAA is passed down
to the controller. CDTCH/CDTCH starts data transfer between the device driver and the
controller. Then, IAA reaches the device (disk). Next, the disk issues IIA(reconnect) to
reconnect the I/O bus, which is completed upon receiving IIC(reconnect). Unlike dumb con-
troller, smart controller processes IIA and returns IIC. Then, data is transfered via DDTC,
which is done upon receiving DDTC. Next, the disk issues IIA(completion) to complete the
cycle, which is done upon receiving IIC(completion). DBS and DBSD are internal events in
the disk. Finally, the controller issues an IIA(completion) to wrap up the cycle. The device
driver gets the IIA(completion) and returns an IIC(completion).

A.3.7 SSD reads with dumb controller (type:1)

The flowchart for SSD reads is shown in Figure A.10. The flowchart is based on the
trace to the run of DiskSim with parameter file ssd-postmark.parv. In this category, the
dumb controller passes all messages without processing them upward or downward. A cycle
is started while the device driver gets an IAA message. Next, IAA is passed down to the
controller. Then, it reaches the device (SSD). When the data is ready, the SSD issues
IIA(reconnect) to reconnect the I/O bus, which is finished upon receiving IIC(reconnect).
Then, data is transfered via DDTC, which is done upon receiving DDTC. Finally, the SSD
issues IIA(completion) to complete the cycle. The device driver gets the IIA(completion)
and returns an IIC(completion).

116

Driver Controller

IAA

Disk

IAA

Sys BUS I/O BUS

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE
DBS: DEVICE_BUFFER_SEEKDONE
DBSD: DEVICE_BUFFER_SECTOR_DONE

IIA(rec)

IIC(rec)

DBS

DBSD

Figure A.7: Flowchart for HDD writes (controller type:1)

117

Driver Controller

IAA

Disk

IAA

Sys BUS I/O BUS

IIA(disc)

IIC(disc)

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)CDTCH

CDTCH

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE
CDTCH: CONTROLLER_DATA_TRANSFER_COMPLETE(host)
CDTCD: DEVICE_DATA_TRANSFER_COMPLETE(device)

CDTCD

CDTCD

Figure A.8: Flowchart for HDD reads (controller type:3)

118

Driver Controller

IAA

Disk

IAA

Sys BUS I/O BUS

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)

CDTCH

CDTCH

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE
CDTCH: CONTROLLER_DATA_TRANSFER_COMPLETE(host)
CDTCD: DEVICE_DATA_TRANSFER_COMPLETE(device)
DBS: DISK_BUFFER_SEEKDONE
DBSD: DISK_BUFFER_SECTOR_DONE

CDTCD

CDTCD

DBS

DBSD

Figure A.9: Flowchart for HDD writes (controller type:3)

119

Driver Controller

IAA

SSD

IAA

Sys BUS I/O BUS

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE

IIA(rec)

IIC(rec)

DOC

DAC

DOC: DEVICE_OVERHEAD_COMPLETE
DAC: DEVICE_ACCESS_COMPLETE

Figure A.10: Flowchart for SSD reads (controller type:1)

120

A.3.8 SSD writes with dumb controller (type:1)

The flowchart for SSD writes is shown in Figure A.11. The flowchart is based on the
trace to the run of DiskSim with parameter file ssd-postmark.parv. Like reads, the dumb con-
troller passes all messages without processing them upward or downward. A cycle is started
while the device driver gets an IAA message. Next, IAA is passed down to the controller.
Then, it reaches the device (SSD). After DOC, which is an internal event, the SSD issues
IIA(reconnect) to reconnect the I/O bus, which is completed upon receiving IIC(reconnect).
Then, it issues DDTC to start data transfer, which is done upon receiving DDTC. Next,
DAC is done internally in SSD. Finally, the SSD sends IIA(completion) to complete the
cycle. The device driver gets the IIA(completion) and returns an IIC(completion).

A.3.9 SSD reads with smart controller (type:3)

The flowchart for SSD reads is shown in Figure A.12. The flowchart is based on the
trace to the run of DiskSim with parameter file ssd-postmark3.parv, which sets up smart
controller (type:3). In this category, the smart controller processes all messages upward or
downward. A cycle is started while the device driver gets an IAA message. Next, IAA is
passed down to the controller. Then, it reaches the device (SSD). After two internal events
(DOC and DAC), the SSD issues DDTC to start data transfer, which is done upon receiving
DDTC. The SSD issues IIA(completion) to complete the cycle. Then, Data is transmitted
between the device driver and the controller via CDTCH. Finally, the controller issues an
IIA(completion) to wrap up the cycle. The device driver gets the IIA(completion) and
returns an IIC(completion).

A.3.10 SSD writes with smart controller (type:3)

The flowchart for SSD writes is shown in Figure A.13. The flowchart is based on the
trace to the run of DiskSim with parameter file ssd-postmark3.parv, which sets up smart
controller (type:3). Like reads, the smart controller processes all messages upward or down-
ward. A cycle is started while the device driver gets an IAA message. IAA is passed down
to the controller. Next, data is transmitted between the device driver and the controller
via CDTCH. Then, IAA reaches the device (SSD). Next, the SSD issues IIA(reconnect) to
reconnect the I/O bus, which is completed upon receiving IIC(reconnect). Unlike dumb con-
troller, smart controller processes IIA and returns IIC. Then, data is transfered via DDTC,
which is done upon receiving DDTC. The SSD issues IIA(completion) to complete the cycle,
which is done upon receiving IIC(completion). DOC and and DAC are internal events in
the SSD. Finally, the controller issues an IIA(completion) to wrap up the cycle. The device
driver gets the IIA(completion) and returns an IIC(completion).

A.4 Post Processing Scripts

We wrote Bash scripts regarding the run of modified DiskSim 4.0. The scripts have the
following features:

1. Run DiskSim 4.0 with different parameters

121

Driver Controller

IAA

SSD

IAA

Sys BUS I/O BUS

IIA(rec)

IIC(rec)

DDTC

DDTC

IIA(comp)

IIC(comp)

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE

IIA(rec)

IIC(rec)

DOC

DAC

DOC: DEVICE_OVERHEAD_COMPLETE
DAC: DEVICE_ACCESS_COMPLETE

Figure A.11: Flowchart for SSD writes (controller type:1)

122

Driver Controller

IAA

SSD

IAA

Sys BUS I/O BUS

DDTC

DDTC

IIA(comp)

IIC(comp)CDTCH

CDTCH

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE
CDTCH: CONTROLLER_DATA_TRANSFER_COMPLETE(host)
CDTCD: DEVICE_DATA_TRANSFER_COMPLETE(device)
DOC: DEVICE_OVERHEAD_COMPLETE
DAC: DEVICE_ACCESS_COMPLETE

CDTCD

CDTCD

DOC

DAC

Figure A.12: Flowchart for SSD reads (controller type:3)

123

Driver Controller

IAA

SSD

IAA

Sys BUS I/O BUS

DDTC

DDTC

IIA(comp)

IIC(comp)

CDTCH

CDTCH

IIA(comp)

IIC(comp)

IAA: IO_ACCESS_ARRIVE
IIA: IO_ITERRUPT_ARRIVE
IIC: IO_INTERRUPT_COMPLETE
DDTC: DEVICE_DATA_TRANSFER_COMPLETE
CDTCH: CONTROLLER_DATA_TRANSFER_COMPLETE(host)
CDTCD: DEVICE_DATA_TRANSFER_COMPLETE(device)
DOC: DEVICE_OVERHEAD_COMPLETE
DAC: DEVICE_ACCESS_COMPLETE

CDTCD

CDTCD

DOC

DAC

IIA(rec)

IIC(rec)

Figure A.13: Flowchart for SSD writes (controller type:3)

124

2. Produce multiple output files

3. Extract corresponding outcomes into files

4. Plot figures based on the above outcomes

The scripts consist of:

• fig hplajw.sh –main shell

• hplajw.sh –sub shell

• process.sh –outfile processing shell

• miss ratio.p –gnuplot script for plotting Miss Ratio figure

• res time.p –gnuplot script for plotting Response Time figure

To work with these scripts, copy all these script files into DiskSim 4.0/valid. Run:

sh fig hplajw.sh

Figures for miss ratio and response time will be plotted like Figure A.14 and Figure
A.15 respectively.

A.4.1 fig hplajw.sh source code

#!/bin/bash
#—————————————————————————————
C.J. Wang
This script call DiskSim to produce data and plot the figures via gnuplot
This script assumes that it is under DiskSim4.0/valid.
#—————————————————————————————-
variables that need to change based on the traces
#

FileBase=hplajw
SubShell=hplajw.sh
#—————————————————————————————-
echo Producing “$FileBase.txt (it takes up to 30 seconds)”
echo
sh ./$SubShell > ./$FileBase.txt
echo $FileBase.txt is done
echo

125

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0 500 1000 1500 2000 2500

M
is

s
ra

ti
o

Cash size(KB)

Miss ratio

Miss Ratio

Figure A.14: Miss Ratio for Hplajw workload

126

 46.6

 46.8

 47

 47.2

 47.4

 47.6

 47.8

 48

 0 500 1000 1500 2000 2500

R
e
sp

o
n
se

 T
im

e
(m

s)

Cash size(KB)

Response Time

Response Time

Figure A.15: Response Time for Hplajw workload

127

#gnuplot
echo “Producing figures (ftrfc, fmiss, frestime)”...
echo

Param=“call ’./miss ratio.p’ $FileBase”
gnuplot -e “$Param”
Param=“call ’./res time.p’ $FileBase”
gnuplot -e “$Param”

echo figures are done.
echo

A.4.2 hplajw.sh source code

#!/bin/bash
#—————————————————————————
C.J. Wang
#—————————————————————————
variables that need to change based on traces
#

BASE OUTFILE=hplajw
PARFILE=hplajw.parv;
TRACEFILE=ajw.1week.srt
TRACEFORMAT=hpl;
CacheSizeRange=’10 100 1000 2000 3000 4000 5000’
#—————————————————————————

export OUTFILE
export PARFILE
export TRACEFILE
export TRACEFORMAT
export com 1
export par 1
export val 1
export com 2
export par 2
export val 2
export CacheSize

printf “#Cache Size(KB), MissRatio, Response Time(ms)\n”

128

for CacheSize in $CacheSizeRange
do

com 1=“disk*”
par 1=“Number of buffer segments”
val 1=$CacheSize
com 2=“disk*”
par 2=“Maximum number of write segments”
val 2=$val 1
OUTFILE=$BASE OUTFILE-$CacheSize.outv;
sh ./process.sh

done

A.4.3 process.sh source code

#!/bin/bash
#———————————————————————————-
C.J. Wang
This script extracts Miss Ratio and Response Time from $OUTFILE
and print into stdout
#———————————————————————————-
PREFIX=../src
if ! [-f $OUTFILE]; then

$PREFIX/disksim ${PARFILE} ${OUTFILE} ${TRACEFORMAT}\
${TRACEFILE-0} ${SYNTH-0}\
“${com 1}” “${par 1}” ${val 1}\
“${com 2}” “${par 2}” ${val 2}

fi

MissRatio=‘grep “Buffer miss ratio” ${OUTFILE} \
—head -1 — cut -d: -f2 — cut -f2‘

ResTime=‘grep “Overall I/O System Response time average” ${OUTFILE} \
— cut -d: -f2‘

CacheSizeInKB=‘echo “scale=1; $CacheSize / 2.0” — bc‘
printf “$CacheSizeInKB\t\t\t$MissRatio\t\t\t$ResTime\n”

129

A.4.4 miss ratio.p source code

#———————————————————————————-
C.J. Wang
gnuplot script file for plotting data in file
gnuplot 4.4 patch level 0
#———————————————————————————-

set autoscale # scale axes automatically
unset log # remove any log-scaling
unset label # remove any previous labels
set xtic auto # set xtics automatically
set ytic auto # set ytics automatically
set title “Miss ratio”
set xlabel “Cash size(KB)”
set ylabel “Miss ratio”
set key right center

set macros
FileBase=“‘echo $0‘”
FileTxt = sprintf(“%s.txt”, FileBase)
OutFile= sprintf(“%s-miss-ratio.pdf”, FileBase)

plot FileTxt using 1:2 title ’Miss Ratio’ with linespoints

#output to .pdf
set size 1, 1
set terminal pdf enhanced color dashed lw 4 size 6, 6
set output OutFile
replot

A.4.5 res time.p source code

#———————————————————————————-
C.J. Wang # Gnuplot script file for plotting data in file
gnuplot 4.4 patch level 0
#———————————————————————————-
set autoscale # scale axes automatically
unset log # remove any log-scaling
unset label # remove any previous labels
set xtic auto # set xtics automatically

130

set ytic auto # set ytics automatically
set title “Response Time”
set xlabel “Cash size(KB)”
set ylabel “Response Time(ms)”
set key right center

set macros
FileBase=“‘echo $0‘”
FileTxt = sprintf(“%s.txt”, FileBase)
OutFile= sprintf(“%s-res-time.pdf”, FileBase)

plot FileTxt using 1:3 title ’Response Time’ with linespoints

#output to .pdf
set size 1.0, 1.0
set terminal pdf enhanced color dashed lw 4 size 6, 6
set output OutFile
replot

131

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Flash Memory
	Flash Trends
	Limitations of Existing Solutions

	Scope of the Research
	Contributions
	Dissertation Organization

	Literature Review
	Flash Basics
	Flash Disk Cache
	System Memory Model
	Solid State Drives and Reliability
	Reducing Write Traffic

	System Architecture
	Comparison of Traffic Mitigation Techniques
	Battery-backed DRAM as a write cache
	SLC as a write cache for MLC
	PCM as a write cache
	HDDs as a write cache
	Summary

	Methodology
	Simulator
	System Setup
	Workloads and Traces
	Performance Metrics
	DiskSim 4.0 modifications
	Trace formats: SRT1.6 and SPC
	Secondary flash cache
	Smart controller and MS SSD add-on

	Validation

	Traffic Savings for Flash as a Victim Disk Cache
	Early Update vs. Lazy Update
	Lazy Update Policy for Reads
	Lazy Update Policy for Writes
	The Benefits of Lazy Update Policy
	Simulation Parameters
	Performance Metrics
	Experimental Results
	Write Traffic Savings
	DRAM Size Need Not to be Very Large to be Effective
	Flash size has little effect on Write Traffic Savings
	Miss Ratio Is improved Slightly
	Response Time Is Improved Slightly
	Summary

	Traffic Savings for Flash as a Major Storage Medium
	Early Update for reads
	Early Update for writes
	Lazy Update for reads
	Lazy Update writes
	Simulation Parameters
	Performance Metrics
	Experimental Results
	Write Traffic Savings
	DRAM Size Needs not to be Large to Be Effective
	Response Time
	Summary

	Fault Tolerance Issue
	What are Supercapacitors?
	Why Supercapacitors not Batteries?
	How to calculate the Capacitance of Supercapacitors?

	Conclusions and Future Work
	Main Contributions
	Future Work
	Conclusions

	Bibliography
	Appendices
	DiskSim 4.0 Flowcharts, Modifications, and Post Processing Scripts
	Overview
	System Diagram
	DiskSim 4.0 flowcharts
	Main loop
	Message routing
	HDD reads with dumb controller (type:1)
	HDD writes with dumb controller (type:1)
	HDD reads with smart controller (type:3)
	HDD writes with smart controller (type:3)
	SSD reads with dumb controller (type:1)
	SSD writes with dumb controller (type:1)
	SSD reads with smart controller (type:3)
	SSD writes with smart controller (type:3)

	Post Processing Scripts
	fig_hplajw.sh source code
	hplajw.sh source code
	process.sh source code
	miss_ratio.p source code
	res_time.p source code

