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Abstract

Magnetic reconnection, the process by which the magnetic energy is converted

into heat and flow energy, is believed to be a very important process in space and lab-

oratory plasmas. Among various reconnection models, the Petschek model suggests a

promising explanation for the fast time scale phenomena caused by the reconnection.

For the antiparallel (zero guide field) cases, the Petschek model contains a small diffu-

sion region and four standing slow shocks that bound the outflow region. In contrast

to the pure antiparallel case, theoretical and simulation studies show that in general

cases with a finite field, the Petschek model is modified with complicated wave struc-

tures. Such models, however, only correspond to the two-dimensional (2D) magnetic

reconnection with a long, extended X-line. Two remaining issues in the Petschek

model are still poorly understood. One is the onset mechanism for the reconnection,

and the other is the wave properties in the outflow region of general three-dimensional

(3D) reconnection. Tearing mode instabilities are thought to play a fundamental role

to trigger the reconnection. In this thesis, we extend the recently-developed gyroki-

netic electron and fully kinetic ion (GeFi) simulation model to nonuniform plasmas,

and use it to study tearing mode instabilities under a finite guide field. By remov-

ing the rapid gyro-motions of electrons in the calculation, the main advantage of the

current GeFi model is that the realistic mass ratio between electrons and ions is al-

lowed to be employed in the simulation code. Through an eigenmode analysis, the

improved GeFi model is benchmarked against the linear theory of the tearing instabil-

ity. Furthermore, our simulation results show that the ion kinetics play an important

role in the linear growth rate of the tearing mode instability as well as in the non-

linear saturation of tearing modes. For the cases with multiple tearing modes, the
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interactions between them lead to the coalescence of neighboring magnetic islands,

and form larger saturated magnetic islands, which has been suggested as a necessary

condition to trigger a fast reconnection. In order to explore the properties of low

frequency waves generated by the reconnection under a finite guide field, a 3D hy-

brid simulation is carried out for the large-scale structure of the reconnection layer.

For the case with an infinitely long X-line, quasi-steady rotational discontinuities are

formed behind a leading plasma bugle that propagates away from the reconnection

site. Field-aligned structures are also observed in the transition region between the

steady layer and the leading bulge. For the cases with a limited extent of X-line

with length < 30di, the perturbations caused by the reconnection propagate along

the magnetic field line, and the wavefront of propagation has the properties of kinetic

Alfvén wave. There are no evident discontinuities that form to bound the outflow

region. Due to the propagation of the waves, a layer of accelerated plasmas is found

beyond the extent of the X-line. The simulation indicates that the wave structures

in the reconnection are greatly modified from that in the 2D Petschek reconnection

model when the X-line has a finite length.
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Chapter 1

An Overview of Magnetic Reconnection

Magnetic reconnection is a process that changes the topology of magnetic field

lines. It is believed to take place between two plasma regions with antiparallel mag-

netic field components. During magnetic reconnection, sheared magnetic field lines

will be effectively annihilated through magnetic diffusion, and then magnetic energy

is transferred into plasma heat and kinetic energy. Magnetic reconnection provides

the free energy for phenomena such as solar flares, magnetosphere substorms, the

tokamak sawtooth collapse, and the ion heating in reversed-field pinch [Yamada et

al., 2010]. Fig.1.1 is a schematic representation of magnetic reconnection. antipar-

allel magnetic field lines break at the diffusion region and form an X-point at the

center. Two magnetic islands are generated and bounded by the separatrix. The

inflow plasmas are accelerated and flow out from the diffusion region.

In a plasma characterized by the ideal MHD Ohm’s law E +V×B = 0, where

V is the velocity, E and B are the vector electric and magnetic fields, magnetic field

lines follow the plasma motion as if they were “frozen in” the flow. This property

conserves the field line topology, and thus reconnection can never happen. Varieties

of mechanisms can lead to a violation the ideal Ohm’s law. Resistivity is the most

commonly cited dissipation that causes reconnection. Models based on resistivity

include the Sweet-Parker model [Parker, 1957; Sweet, 1958], in which the extent of

the dissipation layer in the outflow direction is much bigger than the width of the

layer, and the Petschek model [Petschek, 1964], in which the dissipation layer is highly

localized in both the inflow and outflow direction. Theoretical calculations show the

magnetic reconnection rate, a direct measure of the speed of the mixing process, of
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Figure 1.1: A schematic representation of reconnection is shown. Magnetic
field lines become reconnected in the diffusion region and form a X-point. Two
islands are generated and bounded by the separatrix. Picture is cited from
http://www.aldebaran.cz/astrofyzika/plazma/reconnection.html.

the Sweet-Parker model is too slow to explain the energy release processes that are

thought to be caused by the magnetic reconnection. The Petschek model contains

a set of four MHD discontinuities which in the compressible flow may be identified

as slow mode shocks across which the plasma is accelerated into the outgoing flow

regions. Instead of dissipating magnetic energy, the diffusion region in the Petschek

model mainly plays a role as the perturbation source of slow modes. The Petschek-

type reconnection is the first fast reconnection model, in which the reconnection

rate is fast enough to explain observed dynamic times of phenomena caused by the

reconnection.

To validate the Petschek model, two questions should be answered. One is what

is the physics in the dissipation region, i.e., the triggering mechanism of reconnection;

the other is what is the structure of outflow region referred as the reconnection layer.

The tearing mode instability is one candidate to trigger the magnetic reconnection in
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both the resistive MHD regime [Furth et al., 1963, 1973] and the collisionless kinetic

regime [Drake & Lee, 1977a, 1977b]. On the other hand, theoretical and numerical

studies [Lin and Lee, 1994a, 1994b] showed that the structure of the reconnection

layer is not as simple as predicted by Petschek but varies with different parameters.

This thesis is composed of two parts, which addresses the kinetic physics of

magnetic reconnection on two different spatial and temporal scales, from the diffusion

region to the large-scale reconnection layer. First, we are going to improve the exiting

gyrokinetic electron and fully kinetic ion simulation (GeFi) model [Lin et al., 2005a;

Wang et al., 2010], and use it to study the tearing mode instability. Second, a three-

dimensional (3D) hybrid model [Lin et al., 2005b; Lin et al., 2010] will be used to

investigate the electromagnetic waves generated by the reconnection. In the following,

we first give a brief review of the steady state reconnection models, the tearing mode

instability, and the structure of the reconnection layer, is given. In the end, the results

of this thesis are summarized.

1.1 Steady State Reconnection Models

1.1.1 Sweet-Parker Model

The Sweet-Parker model is sketched in Fig.1.2. Sweet [1957] and Parker [1958]

determined the speed vi with which field lines are carried into a steady diffusion region

of length 2L and width 2l. First of all, for a steady state, the convective inflow of the

magnetic field is balanced by the outward diffusion, so that

vi =
η

l
, (1.1)

where η is the magnetic diffusivity.

3



Figure 1.2: Sweet-Parker model of reconnection is shown with a steady diffusion
region of length 2L and width 2l. vi is the inflow speed, and vo the outflow speed.
Picture is cited from http://www.scholarpedia.org/article/reconnection.

Second, the rate 4ρLvi at which mass is entering the sheet must equal the rate

4ρlvo at which it is leaving, so that, if the density is uniform,

Lvi = lvo, (1.2)

where vo is the outflow speed. The width l may now be eliminated from Eqs.(1.1)

and (1.2) to give the inflow speed as v2i = ηvo/L. If the plasma is accelerated along

the sheet by a Lorentz j⃗ × B⃗ force, the outflow speed vo is the Alfvén speed at the

inflow, namely, vo = vAi = Bi/
√
4πρ and the reconnection rate is

vi =
vAi

Rmi
1/2

(1.3)

where the magnetic Reynolds number Rmi = LvAi/η, or in dimensionless form Mi =

R
−1/2
mi , with Mi = vi/vAi being the inflow Alfvén Mach number.

In the Sweet-Parker mechanism, we identify the sheet length L with the global

length and Rmi therefore with the global magnetic Reynolds number. Since in practice
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Rmi ≫ 1, the reconnection rate is very small: for instance, in the solar corona where

Rmi lies between 106 and 1012, the fields reconnect at between 10−3 and 10−6 of the

Alfvén speed. Note the phenomena caused by the reconnection such as solar flares

usually have the Alfvén time scale τA = 1/vA where vA is the local Alfvén speed.

Important extra effects are the compressibility, which slows down the outflow

when ρo > ρi, and a pressure gradient along the diffusion region, which can also slow

the outflow when the outflow pressure po is large enough.

1.1.2 Petschek Model

Figure 1.3: Petschek model of reconnection is shown with a small diffusion re-
gion. The outflow region is bounded by two pair slow shocks. Picture is cited from
http://www.scholarpedia.org/article/reconnection.

The configuration of the Petschek model is sketched in Fig.1.3. Two waves

(slow mode shocks) stand in the flow on either side of the outflow region, where the

direction of B reverses, marking the boundaries of the plasma outflow regions. A

small diffusion region still exists, but has much smaller length compared with that

in the Sweet-Parker model. The upstream plasma flows into the shock where the
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magnetic energy is converted into the energy of outflowing plasma jets; the outward

wave propagation velocity in the ±z direction balances the plasma inflow velocity

in a steady state. The reconnection rate should be equal to the shock propagation

velocity which is independent of the plasma resistivity and can be much larger than

the Sweet-Parker model. At the same time, the magnetic diffusion is still the dominant

mechanism of energy conversion in the diffusion region near the center z = 0 of the

reconnection site. The match of reconnection rate between the diffusion region and

the shock region leads to a very narrow diffusion length.

In the switch-off limit of the slow shock, the inflow speed can be estimated as

vzi = vphi =
|Bzi|√
4πρi

, (1.4)

where vphi is the phase speed of slow shocks, Bzi is the z component of magnetic

fields in the inflow region and is approximated as the normal field of the shocks. The

subscripts “i” and “o” stand for the inflow (upstream) and the outflow (downstream).

Note that the switch-off limit corresponds to the strongest slow shock, across which

the tangential magnetic fields change to 0. To simplify the calculation, we assume

that the plasma is incompressible, i.e., ρ = constant. The MHD mass momentum of

conservation laws give,

vzix = vxo△(x), (1.5)

d

dx
(ρv2xo△(x)) =

BziBi

4π
, (1.6)

where Bi is the magnitude of magnetic field in the inflow region. Insert Eq (1.5) into

Eq (1.6), and do a little algebra,

d

dx
(

x2

△(x)
) =

1

M2
Ai

Bzi

Bi

=
Bzi

Bi

, (1.7)
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where MAi the upstream Mach number and MAi = 1 for the switch-off limit of slow

shocks. After integrating Eq.1.7, we have

x

△(x)
=

Bzi

Bi

. (1.8)

Since the downstream velocity can be expressed as

vxo = vAi, (1.9)

we have vzi ≈ Bzi

Bi
vAi. It has indicated Bzi

Bi
∼ 0.1 by simulations. Therefore the

reconnection rate is vzi
vAi

≈ 0.1, much faster than in the Sweet-Parker model.

There has been some controversy whether the Petschek model describes the cor-

rect physics. It gives a description of reconnection that is only very weakly dependent

on the properties of the reconnection region and thus on the resistivity. Numerical

simulations [Biskamp, 1986], however, showed that with a spatially constant resistiv-

ity the Petschek-type reconnection does not occur. In order to have the Petschek-type

reconnection, the resistivity should be enhanced in the diffusion region [Lottermoser

et al., 1997]. For collisionless plasmas as in most of the space environments, the de-

termination of the anomalous η in the diffusion region is a hot topic in reconnection

research. Current driven instabilities such as the modified two-stream instability [Wu

et al., 1983] the low-hybrid drift instability [Daughton, 2003; Ricci et al., 2005] may

play a key role in the formation of anomalous resistivity.

1.2 Tearing Mode Instability

1.2.1 Resistive Tearing Mode

In the resistive (i.e., collisional) plasma, a current sheet tends to diffuse at a

slow rate with a time-scale of τd = l2/η, where 2l is the width of the current sheet
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and η = µσ−1 is the magnetic diffusivity. During the process of magnetic diffusion,

magnetic energy is converted into heat at the same slow rate by the Ohm’s law. As

pointed out in the first section, however, the magnitude of τd is often far too large to

explain the time scale of dynamical physical processes.

Furth [1963] first found that the diffusion can drive an instability with a time

scale much faster than the diffusion time, referred as the tearing mode instability.

Considering the perturbation as the one in Fig.1.4, the tension force of reconnected

field lines tends to pull new loops of field up and down away from the X-point, while

the magnetic pressure gradient tends to push plasma in from the sides towards the

X-point. The field lines at the sides are curved and so possess a restoring magnetic

tension force.

Figure 1.4: Magnetic field-lines in the vicinity of a magnetic island generated by
tearing modes is shown. A magnetic island is bounded by separatrix. Picture is cited
from http://farside.ph.utexas.edu/teaching/plasma/lectures1.
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Detailed theoretical studies showed [Furth, 1963; Wesson, 1966] that the tearing

mode occurs with a wavelength greater than the width of the sheet (kl < 1). The

smallest allowable wavelength grows in a time τ
3/5
d τ

2/5
A , whereas the longest wave-

length has the fastest growth rate γ,

γ =
1

√
τdτA

. (1.10)

The presence of a guiding field does not affect the existence of tearing modes.

At any particular location, the maximum growth of tearing modes occurs where the

wave vector k is perpendicular to the equilibrium field B0, that is,

k ·B0 = 0. (1.11)

With the addition of a uniform guiding field, this condition can be satisfied at the

center of the current sheet.

One may have noticed that the typical time scale of tearing modes τt =
√
τdτA is

in general much larger than the diffusion time τd, but much smaller than the Alfvén

time τA, or the typical fast reconnection time scale, i.e., τA << τt << τd. So the

tearing mode is still not fast enough to explain the phenomena that are thought to

be caused by the reconnection.

The geospace environment magnetic (GEM) reconnection challenge was to aim

to discover the physics of fast reconnection [Birn et al., 2001]. They found that

nonlinear evolution of a large magnetic island in a current sheet can lead to a fast

reconnection with the rate of the order τ−1
A . The Hall terms in the generalized or

kinetic Ohm’s law were believed to be important. For high β plasmas it was clarified

that the whistler wave plays a key role in the fast reconnection physics [Pritchett,

2001; Birn et al., 2001]. At lower β plasmas in the presence of a guide field, it was
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shown that the kinetic Alfvén wave drives the fast reconnection [Ricci, 2008; Rogers,

2001].

However, the GEM reconnection challenge avoided the issue on the triggering

of the fast reconnection, or more precisely on how a magnetic island forms initially

with the size comparable to the system’s spatial scale. One may argue that the role

of tearing modes may present a mechanism that form a large magnetic island. Un-

fortunately, the tearing mode often saturates at a small level, and the width of the

magnetic island is not large enough to trigger the fast reconnection [Rutherford, 1973;

Daughton and Karimabadi, 2005]. However, it is also found that a chain of magnetic

islands created by multiple tearing modes can lead to an instability, namely the coa-

lescence [Finn and Kaw, 1977; Pritchett, 1992]. During the coalescence, neighboring

islands attract each other due to the parallel currents inside islands and then form

larger magnetic islands [Karimabadi et al., 2005a; Pritchett, 2005].

1.2.2 Collisionless Tearing Modes

Plasmas in the cosmic and tokamak environments are generally collisionless. So

the resistive MHD approach to the tearing mode may be invalid. Drake and Lee

[1977a] applied a kinetic theory to the tearing mode instability for a current sheet

with a strong guide magnetic field (perpendicular to the antiparallel components of

the field). They found a perturbed current produced by the induced electric field

around the central layer can drive the tearing mode instability, and thereby cause the

magnetic reconnection.

To estimate the growth rate of the collisionless tearing mode, the simple slab

current configuration as in Fig.1.5 was studied. First, consider a perturbation with

the wave number kx, and the growth rate γ. The perturbed magnetic field can be
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Figure 1.5: A simple slab current sheet is shown with antiparallel magnetic compo-
nents Bx and a strong guide field By. Picture is cited from Drake and Lee [1977a].

expressed with the vector potential Ay as

Bz = ikxAy, (1.12)

Bx =
∂Ay

∂z
. (1.13)

Then the induced electric field can be written as

Ey = −γAy. (1.14)

It has a component parallel to the local magnetic field E|| = Eycos(θ), where sin(θ) =

B0x/B0 = k||/kx(see Fig.1.6). The parallel electric field will generate a large parallel

current at z = 0 where

k ·B0 = 0. (1.15)
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Figure 1.6: Directions of k and B near the center of the current sheet is shown.
Picture is cited from Drake and Lee [1977a].

Note that the induced current is restricted inside a narrow region of |z| < ∆.

After integrating the z component of the Ampere’s equation, we have

[Bx]
∆
−∆ =

4π

c
∆jy, (1.16)

which can be rewritten as

[
∂Ay

∂z
]∆−∆ = −4π

c
∆jy. (1.17)

So ∂Ay

∂z
is not continuous across the induced current layer. Outside of the current

layer, E|| = 0, and the ideal MHD equations was used. A simple expression is given

as

∆
′
=

1

Ay

[
∂Ay

∂x
]∆−∆. (1.18)

Then combining the above two equations, one has

∆
′
Ay = −4π

c
∆jy. (1.19)
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The induced current is

ȷy = −n0e
2Ay

me
. (1.20)

According to the cherenkov resonances condition, the growth rate should be

γ = k|| · vthe =
kxvthe∆

ls
(1.21)

where ls is the magnetic field shear length, and vthe is the electron thermal velocity.

A little algebra gives the growth rate as

γ =
∆

′
kxvthe
lsd2e

, (1.22)

where d−1
e = c/ωpe is the electron skin depth.

1.3 The Structure of Reconnection Layer

1.3.1 Summary of MHD Waves and Discontinuities

Startting from the ideal MHD equations, one can easily deduce the dispersion

relationship of the linear MHD waves, which are summarized below [Landau and

Lifshitz., 1960].

(a) Fast mode:

CF = 1
2

√
[(C2

s + C2
A) +

√
(C2

s + C2
A)− 4C2

sC
2
I ];

(b) Intermediate mode (Alfvén wave):

CI = CAcos(θ);

(c) Slow mode:

CS = 1
2

√
[(C2

s + C2
A)−

√
(C2

s + C2
A)− 4C2

sC
2
I ];

where C denotes the wave phase speed, and the subscript F denotes the fast mode, I

the intermediate mode, and S the slow mode. Cs =
√

ΓP
ρ

is the sound speed and Γ is

the specific heat ratio. CA = B√
4πρ

is the Alfvén speed and θ is the wave propagation
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angle with respect to the background magnetic field. Fig.1.7 shows the dispersion-

relation of MHD waves. Phase velocity is the propagation speed of a single-mode

wave while group velocity is the envelope speed of the waves, i.e., the propagation

speed of a group of single-mode waves. From Fig.1.7, one can tell that the fast mode

is isotropic, propagating around all angles with respect to the background magnetic

field, while the propagations of the intermediate mode and the slow mode concentrate

in the direction parallel to the background magnetic field.

Figure 1.7: Phase velocity and group velocity of MHD waves. Picture is cited from
http://solar.physics.montana.edu/magara/Research/Topics/MHDwaves.

An MHD discontinuity can be considered as a thin transition region between

two uniform stationary plasma regions across which the magnetic field, plasma den-

sity, pressure and flow velocity may have a significant jump. The jump conditions

are obtained from the conservation laws of the MHD formulations referred to as the

Rankine-Hugoniot (RH) jump conditions. It is well known that four types of MHD

discontinuities exist: contact discontinuity, tangential discontinuity, rotational dis-

continuity and MHD shocks. The jump conditions of different discontinuities are

summarized below [Hans and Poedts, 2004].
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(1) Contact discontinuity:

vn = 0, Bn ̸= 0, [Bt] = 0, [vt] = 0, [ρ] = 0, [P ] = 0.

A contact discontinuity separates two regions with different plasma densities but

the pressure, magnetic field, and plasma velocity are continuous. The component of

magnetic field normal to the discontinuity front, Bn, is not equal to zero. The contact

discontinuity is a non-propagating structure.

(2) Tangential discontinuity:

vn = 0, Bn = 0, [Bt] ̸= 0, [vt] ̸= 0, [ρ] ̸= 0, [P + B2

8π
] = 0.

A tangential discontinuity links two regions with different tangential magnetic

fields. The component of magnetic fields normal to the discontinuity front Bn is

equal to zero. No flow normal to the discontinuity is allowed. Across the tangential

discontinuity the total pressure is balanced , while the plasma densities and tangential

plasma flow velocities on the two sides of the discontinuity are different.

(3) Rotational discontinuity:

vn = Bn√
4πρ

, [vt] =
[Bt]√
4πρ

, [ρ] = 0, [P ] = 0.

A rotational discontinuity links two regions with different tangential magnetic

field and a finite normal magnetic field component, and the normal flow is allowed.

The rotational discontinuity is associated with the propagating nonlinear Alfvén mode

structure through which the normal component of the plasma flow velocity relative

to the discontinuity is constant and equal to the normal Alfvén speed, which is vAn =

Bn√
4πρ

. Across a rotational discontinuity, the plasma density, the pressure, the normal

magnetic field and the normal plasma flow velocity remain unchanged.

MHD shocks can be further divided into three types: fast shocks, intermediate

shocks, and slow shocks. They are formed by the steepening of MHD fast waves,

intermediate waves, and slow waves, respectively. The jump conditions of MHD

shocks can be described as the following [Priest and Forbes, 2006] :
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(1) For a fast shock vn1 > CF1 and CI2 < Vn2 < CF2, the tangential magnetic

field does not change direction, and [ρ] > 0, [P ] > 0, [Bt] > 0, [vn] < 0. Across the

fast shock, the plasma density, the pressure, the magnitude of the tangential magnetic

field increase. The normal component of plasma flow velocity decreases.

(2) For an intermediate shock vn1 > CI1 and vn2 < CI2, the tangential magnetic

field changes the direction by 1800, and [ρ] > 0, [P ] > 0, [Bt] ̸= 0, [vn] < 0. Across

an intermediate shock, the plasm density and the pressure increase. The normal

component of the plasma flow velocity decreases. The magnitude of the tangential

magnetic fields is changed.

(3) For a slow shock with Cs < vn1 < CI1 and vn2 < Cs2, the tangential magnetic

field does not change the direction, and [ρ] > 0, [P ] > 0, [Bt] < 0, [vn] < 0. Across a

slow shock, the plasma density and pressure increase. The normal component of the

plasma flow velocity and the magnitude of the tangential magnetic field decrease.

MHD theory, however, does not give the internal structure of discontinuities.

With the particle kinetic effects in a collisionless plasma, the discontinuities discussed

above have a finite width on the order of several ion radii [Swift and Lee, 1983; Richter

and Sholer, 1989, 1991]. Moreover, MHD theory fails to explain the dissipation mech-

anism across MHD shocks in collisionless plasmas. Numerous numerical experiments

have confirmed that the dissipation of MHD shocks in collisionless plasmas arise from

the self consistent wave-particle interactions inside of shocks [Sato, 1979; Ugai, 1984;

Lee and Lee, 1991].

1.3.2 Previous Research on the Structure of Reconnection Layer

Based on the ideal MHD formulation, the structure of the reconnection layer

was studied by solving the one-dimensional (1D) Riemann problem [Heyn et al.,

1988; Biernat et al., 1989; Lin and Lee, 1994a]. In this initial value problem, a

nonzero normal component of the magnetic field is superposed on a 1D current sheet,
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By = 0 By ̸= 0

Symmetric SS + SS
′

RD + SS + SS
′
+RD

′

Asymmetric RD + SE + CD + SS
′

RD + SE + CD + SS
′
+RD

′

Table 1.1: Structure of reconnection layer under various conditions [Lin and Lee,
1994a]. SS: slow shock, SE: slow expansion wave, RD: rotational discontinuity, CD:
contact discontinuity, IS: intermediate shock, TIDS: time-dependent intermediate
shock.

which breaks the equilibrium of the current sheet. The initial sheet then evolves to

a layer with several MHD discontinuities, shocks. The temporal development of this

layer is viewed as an approximation of the reconnection layer at increasing distances

from the X-line. These studies indicate that five discontinuities and expansion waves

may develop in a reconnection layer, including rotational discontinuities, intermediate

shocks, slow shocks, slow expansion waves, and a contact discontinuity. The rotational

discontinuities and intermediate shocks change the direction of the magnetic field,

the slow shocks and slow expansion waves change the magnitude of magnetic field

and plasma density, and the central contact discontinuity matches different plasma

densities on the two sides. In addition, two fast expansion waves are also present

in the solution of the Riemann problem, but they quickly propagate away from the

reconnection layer. The results of the Riemann problem are summarized in Table.1.1.

The MHD simulations have been carried out for the resistive structure of recon-

nection layers. Using a 1D resistive MHD code, Lin et al. [1992], Lin and Lee [1994a],

Ugai and Shimizu [1995] have simulated the Reimann problem for the evolution of

an initial current system. It is found that the rotational discontinuities are replaced

by time-dependent intermediate shocks. To deal with the multi-dimensional recon-

nection configuration, two-dimensional (2D) MHD simulations have been carried out

to study the steady-state reconnection. The MHD discontinuities predicted from the

1D simulations are found to develop in the 2D reconnection layer [Shi et al., 1990;

Sholer, 1989; Yan, 1992]. Slow shocks in the Petschek-type symmetric reconnection
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layer and intermediate shocks in the reconnection layer with asymmetric magnetic

field and plasma density have been obtained in the cases with By = 0. In the cases

with By ̸= 0, rotational discontinuities are replaced by time-dependent intermediate

shocks that have been found.

MHD models and simulations, however, do not account for the particle kinetic

effects in collisionless plasmas. In an effort to include the ion kinetic effects, both 1D

hybrid simulations and 2D hybrid simulations, in which ions are treated as discrete

particles and electrons are treated as a massless fluid, of the reconnection layers

have been performed. 1D hybrid simulations [Lin and Lee, 1995] indicate that the

contact discontinuity disappears because of the mixing of ions along the field lines;

the slow shock and slow expansion waves are modified. The kinetic structure of the

reconnection layer have also been investigated by 2D large-scale hybrid simulations

[Lin and Swift, 1996; Lottermoser et al., 1998; Kruassvarban and Omidi, 1995]. These

hybrid simulations have shown that the structures of MHD discontinuities and shocks

are modified in collisionless plasmas..

Note that previous simulations of the reconnection layer are limited to the 1D

or 2D geometry. In these cases, the normal direction to the fronts of low-frequency

electromagnetic waves are mainly along the direction of the normal magnetic field,

which is almost perpendicular to the current sheet. In the real space plasmas, however,

magnetic reconnection is frequently observed to have a 3D structure, for which the

length of the X-line has a short or finite extent. To further understand the physics

of the reconnection, we will address the 3D effects of the reconnection layer in this

thesis.

1.4 Numerical Models of Magnetic Reconnection

Numerical simulations have proven to be a powerful tool to understand the

physics of magnetic reconnection. Simulation codes can be rougthly divided into
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four categories: (1) MHD codes, (2) fully-kinetic particle codes, (3) hybrid codes that

treat ions as particles and electrons as a massless fluid, and (4) gyrokinetic codes that

treat charged particles as gyrokinetic particles.

In the MHD codes, MHD equations are solved numerically with finite difference

or finite elements. Since MHD simulations do not contain the individual particle

dynamics, they only describe the large-scale dynamics of plasmas. However, the

MHD model may still give a correct description of physics on the large-scale bulk

dynamics of collisionless plasmas. There are two reasons for that. First, in the

presence of a magnetic field particles undergo gyro-motions around the local magnetic

field, and thus the motions across field lines are prevented. Second, along the magnetic

field direction numerous short-scale wave-particle interactions tend to impede the

motion of charged particles. MHD simulations of the magnetic reconnection are

mainly focused on the global structure of reconnection. It usually has a much larger

spatial scale than di or ρi, and much larger time scale than 1/ωpi or 1/Ωi, where di is

the ion inertial length, ρi is the ion gyroradius, ωpi is the ion plasma frequency, and

Ωi is the ion gyrofrequency. To incorporate the local dynamics due to the separation

between the electron and ion masses, the so-called Hall MHD codes and two fluid

MHD codes have been developed. Nevertheless, kinetic effects are again missing in

these models.

Full-particle simulations, in which electrons as well as ions are treated as fully

kinetic particles, have been utilized for decades to investigate the kinetic behavior

of reconnection [Terasawa, 1981; Leboeuf et al., 1982; Hoshino, 1987; Ding and Lee,

1990; Mandt et al., 1994; Cai and Lee, 1997; Hesse andWinske, 1998; Shay and Drake,

1998; Shay et al., 2001, 2007; Pritchett, 2001; Pritchet and Coroniti, 2004; Swisdak

et al., 2005; Daughton et al., 2006; Karimabadi et al., 2007]. In these codes, the

particle-in-cell (PIC) technique is often used in which the simulated “macroparticles”

represent many plasma particles. Nevertheless due to large-scale separations both in
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time (from electron plasma oscillation to reconnection time) and in space (from the

Debye length to the system size), various approximations or compromises have to

be used. Most of full-particle simulations have employed unrealistically low ion-to-

electron mass ratio mi/me, and also limited the domain to a few or ten’s of ρi, and

the simulation time much less than the global Alfvén time scale.

Hybrid simulation is another kinetic approach often used in reconnection studies,

in which ions are treated as particles, but electrons are treated as a massless resistive

fluid. In general, hybrid codes do not resolve the small spatial and time scales asso-

ciated with the electron mass, and have been used to simulate large-scale structures

of reconnection associated with the ion dynamics [Lin and Swift, 1996; Nakamura

and Scholer, 2000; Petschek, 1964; Lin and Lee, 1994a; Lin and Wang, 2006]. Note

that the triggering mechanism of collisionless reconnection, due to the electron kinetic

effects, is not included in hybrid models.

An alternative particle model, called gyrokinetic model, has been broadly used in

the fusion research. For the low frequency physics in strong magnetized plasmas such

as a tokamak plasma, the gyromotion can be averaged out. The nonlinear gyrokinetic

Vlasov-Maxwell equations have been derived by Fireman and Chen [1982] and first

applied in gyrokinetic simulations by Lee [1983]. Since the fast gyromotion of charged

particles have been removed, larger spatial and time steps are allowed in gyrokinetic

simulations than in traditional particle simulations. In the presence of a guide field,

particles are strongly magnetized during the magnetic reconnection. Therefore the

gyrokinetic treatment can also be applied to the reconnection research. Tearing mode

instabilities have been simulated using the gyrokinetic model. Wan et al. [2007]

treated ions as gyrokinetic particles and electrons as drift kinetic particles, while

both ions and electrons are gyrokinetic particles in Ricci et al.’s work [2004]. But the

gyrokinetic and drift kinetic treatment of ions are not suitable to the reconnection

physics since the whistler and lower-hybrid regime is beyond the model capability.
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Recently an innovative fully nonlinear new particle simulation model has been de-

veloped, in which the electron dynamics is handled by the gyrokinetic (GK) equations

and the ions are treated as fully kinetic (FK) particles. In the gyrokinetic electron

and fully kinetic ion (GeFi) simulation, the rapid electron cyclotron motion is re-

moved, while finite electron Larmor radii, wave-particle interactions, and off-diagonal

components of the electron pressure tensor are retained, as well as the fully kinetic

ion physics. This treatment results in a larger time step and allows the realistic mass

ratio mi/me in the simulation of magnetic reconnection. The computation efficiency

can be significantly improved as compared with that of the full-particle codes. The

model is particularly suitable for plasma dynamics with wave frequencies Ω < elec-

tron gyrofrequency ωe, and for problems in which the wave modes range from Alfvén

waves to lower-hybrid/whistler waves. The GeFi scheme has been benchmarked in

the uniform plasma [Lin et al., 2005] and important new results have been obtained

for current sheet instabilities in the presence of a finite guide field [Wang et al., 2008;

Yoon et al., 2008]. The original GeFi model, however, does not include the effects

of nonuniformity of the background magnetic field and plasmas. In this thesis, we

are going to improve the existing GeFi codes for a current sheet, and study the

collisionless tearing mode instability with the realistic mass ratio me/mi = 1/1836.

1.5 Motivations and Objectives of the Thesis

As described above, full particle simulations includes the kinetic electron dy-

namics but cannot properly handle the realistic mass ratio and the large spatial and

temporal scales associated with the reconnection layers, while hybrid simulations

cannot model the triggering physics of reconnection in a self-consistent manner. Our

approach:

• We utilize the GeFi simulation model, in which the electron dynamics is handled

by the gyrokinetic equations and the ions are treated as fully kinetic particles.
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• In the GeFi model, the rapid electron cyclotron motion is removed, while finite

electron Larmor radii, wave-particle interactions, and off-diagonal components

of the electron pressure tensor (necessary for the reconnection physics) are re-

tained.

• This treatment results in a larger time step and allows us to treat the realistic

mass ratio mi/me.

• The model is particularly suitable for plasma dynamics with wave frequencies

< Ωe, and wave numbers k∥ << k⊥.

Analytical theories on collisionless reconnection are very limited to cases with

either a zero guide field or a very large guide field, and neglect many kinetic effect.

On the other hand, because of its low frequency properties, the exiting fully particle

simulations on tearing modes often employ mi/me < 100.

Our approach:

• Although the GeFi model is promising to handle the electron and ion scales

with the realistic mass ratio in one code essential for the reconnection research,

it needs to be improved to include the effects of the background inhomogeneity

because the wavelength of the tearing mode is comparable to the current sheet

width. We will modify the GeFi model.

• We derive the eigenmode equations of the tearing modes based on the drift

kinetic approximation. By solving them, we benchmark the GeFi model in the

nonuniform plasmas.

• Using the GeFi model, various kinetic effects on the linear growth of tearing

modes are investigated.

• Nonlinear evolutions of both a single tearing mode and multiple tearing modes

are studied by the GeFi simulations.
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While the full development of the GeFi model for the nonlinear fast reconnection

is still underway, we also address in this thesis the 3D physics of large-scale kinetic

structure of reconnection with the hybrid model. In the Petschek model, the recon-

nection layer is bounded by shocks and discontinuities. Previous simulations show

the ion kinetic effect plays an important role on the structure of reconnection layer.

But these simulations are limited to 1D or 2D configurations. The large-amplitude

wave/discontinuity structures in the general cases with a finite X-line length have not

been studied.

Our approach:

• We extend the previous hybrid simulations to 3D and investigate the 3D physics

of the reconnection layer.

• Using the 3D hybrid code, the finite length X-line effects on the generation of

low frequency electromagnetic waves are studied.
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Chapter 2

Improved GeFi Model

Magnetic reconnection involves a wide range of spatial and temporal scales, and

is usually triggered by micro instabilities. The reconnection changes the topology

of magnetic fields on a global scale. Aiming at incorporating multi scale physics of

reconnection in one code, the gyrokinetic electron and fully kinetic ion (GeFi) particle

simulation scheme has been developed [Lin et al., 2005; Wang et al., 2008]. While

the original scheme has been benchmarked for uniform plasmas, further improvement

of GeFi is still required for the simulation of magnetic reconnection, in which the

interested wavelengths are usually comparable to the scale length of the current sheet

nonuniformity. In this chapter, a description of the improved GeFi model is given

first. Then I will discuss the algorithm of the GeFi numerical scheme. Finally, the

improved model will be validated for uniform plasmas.

2.1 Formulations of the GeFi Model

2.1.1 Kinetic Equations of Particles

In the GeFi model, ions are treated as fully kinetic particles, and electrons are

modeled by gyrokinetic particles. The Vlasov equation is still valid for ions, while for

electrons we transform the phase space variables to guiding-center variables. Different

from the original GeFi scheme in Lin et al. [2005], both ions and electrons are

advanced by the scalar and vector potential ϕ and A.

1.Ions
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In the limit of collisionless plasmas, the time evolution of ion distribution function

is totally determined by the Vlasov equation:

∂fi
∂t

+
dxi

dt
· ∂fi
∂xi

+
dpi

dt
· ∂fi
∂pi

= 0, (2.1)

where pi is the ion canonical momentum. For a singe ion, its motion follows

dxi

dt
= vi = (pi − qA/c)/mi, (2.2)

dpi

dt
= −q · ∇(ϕ− xi ·A/c). (2.3)

2. Electrons

The particle phase space variables (x, v, t) can be related to the guiding-center

phase space variables (R, µ, ϵ, α, t) through the following guiding-center transforma-

tion

R = x+ Ω−1v× e∥ (2.4)

µ =
mv⊥

2

2B
(2.5)

ϵ =
1

2
mv2 + qϕ =

1

2m
|p− e

c
A|2 + qϕ, (2.6)

where Ω is the particle gyrofrequency, µ is the magnetic moment, ϵ represents the

Hamiltonian particle energy in the electromagnetic field, α is the gyro-angle. e∥ and

e⊥, respectively, are the parallel and perpendicular units vectors relative to the equi-

librium magnetic field. The relationship between R and x is illustrated in Figure.2.1,

where ρ=v⊥/Ω=v×e∥/Ω indicates the gyroradius, v⊥=v⊥(e1 sinα+e2 cosα). The

units vectors e1 and e2 together with e∥ form an orthogonal system, in which e∥ =

e1×e2. The set of guiding-center variables (R, µ, ϵ, α, t) is equivalent to (R, µ,v∥, α,
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Figure 2.1: Coordinates transformation from particle phase space to guiding-center
phase space.

t) , so the Vlasov equation can be expressed as

∂F

∂t
+

dR

dt
· ∂F
∂R

+
dµ

dt
· ∂F
∂µ

+
dv∥

dt
· ∂F
∂v∥

+
dα

dt
· ∂F
∂α

= 0. (2.7)

In the case that the magnetic field varies slowly in time, the magnetic moment

µ is an adiabatic invariant, thus it can be treated as a constant in the guiding-center

phase space. To get the electron guiding-center distribution function Fge, one could

average Fge around the gyro-motion [Lee, 1983; Frieman and Chen, 1982]. Noting

Fge is independent of the gyro-angle α, the Vlasov equation of guiding-centers can be

simplified as

∂Fge

∂t
+

dRe

dt
· ∂Fge

∂Re

+
dve∥

dt
· ∂Fge

∂ve∥
= 0. (2.8)

We can rewrite the above equation with the electron generalized momentum pe∥ as

∂Fge

∂t
+

dRe

dt
· ∂Fge

∂Re

+
dpe∥

dt
· ∂Fge

∂pe∥
= 0. (2.9)
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To determine a single electron motion, one should take the gyro-averaging of the

Lorenz force, and get

dRe

dt
= ve∥b

∗ +
c

qeB0

b0 × [qe < ∇ϕ∗ > +µ∇B0] (2.10)

dpe∥

dt
= −b∗ · [qe < ∇ϕ∗ > +µ∇B0]. (2.11)

where b∗ = b0 + (ve∥/Ωe)b0 × (b0 · ∇)b0, ϕ
∗ = δϕ − ve · δA/c, where b0 is the

local background magnetic direction, δϕ and δA are the perturbed scalar and vector

potentials, respectively [Frieman and Chen, 1982; Lin et al., 2005]. The operator

< .. > represents the gyro-averaging, which is carried out numerically on a discretized

gyro-orbit in real space.

2.1.2 Maxwell Equations of GeFi Model

Once the distribution function is given, physical quantities such as the charged

particle density and current density are known by integrating the distribution function

in the v space. Then combining with Maxwell’s equations, the plasma behavior is

self-consistently determined.

Integrating the ion distribution function fi over the velocity moments, the num-

ber density ni and current density ji are

ni =
∫
fid

3pi, (2.12)

ji = qi

∫
vifid

3pi = (qi/mi)
∫

pifid
3pi − q2i niA/mic. (2.13)

To proceed with the electron distribution, let us introduce the gyrokinetic order-

ing for electrons

ω

Ωe

∼ ρe
L

∼ k∥ρe ∼
δB

B
∼ O(ϵ), (2.14)
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k⊥ρe ∼ 1, (2.15)

where ω is the mode frequency of interest, L is the macroscopic system length, and

k∥ is the component of the wave vector in the parallel direction with respect to the

equilibrium magnetic field B0 [Rutherford and Frieman, 1968; Taylor and Hastie,

1968]. The total magnetic field B consists of the equilibrium magnetic field B0 and

the perturbed magnetic field δB, B = B0+δB. ϵ is a small parameter. The interested

perpendicular wavelength ranges from the scale of electron Larmor radius to the global

scale length. In our GeFi model, the parallel direction is defined as b0 = B0/B0.

The electron gyro-averaging charge density and current in the guiding-center

phase space are

< ne >=
∫

Fed
3v, (2.16)

< je∥ >=
∫

pe∥Fedp, (2.17)

To deduce Poisson’s equation of the GeFi model, we start from the general form

∇2
⊥δϕ = −4π(qini + qene), (2.18)

where we have assumed ∇2
⊥ >> ∇2

∥. Note ne is the electron density rather than the

guiding-center density, which can be calculated from the guiding-center distribution

by

ne =
qe
me

∫
d3v(∂F̄ge/∂w)[δϕ− < δϕ > +

1

c
< v⊥ · δA >]+ < Ne >, (2.19)

where w = v2/2 [Lin et al., 2005]. By taking |ρe∇⊥| < 1, Poisson’s equation becomes

∇⊥ · [(1 +
ω̄2
pe

Ω̄2
e

)∇⊥δϕ] +
4πqen̄e

B̄
δB∥ = δRρ + δHρ, (2.20)
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where δRρ and δHρ are expressed as

δRρ = −4π[qiδni + qe < δNe >] (2.21)

δHρ = 4πqe[
4πn̄e

B̄2c
j · δA−∇(

n̄e

B̄2
) · (δA× B̄)], (2.22)

and B̄ is the background magnetic field average over the spatial nd temporal scales of

wave perturbations. Compared with equation (6) in Lin et al. [2005], the appearance

of δHρ is due to the usually higher order terms associated with the inhomogeneities

in the background magnetic field and density.

To solve Poisson’s equation, δB∥ must be known. In the low frequency limit

ω << Ωe, the electron force keeps balanced in the perpendicular direction. Using this

approximation, δB∥ can be obtained from the equation below

−neqe∇⊥δϕ = δSB +∇⊥[
1

4π
(1 + β∗

e )B̄δB∥] + δH∗
B +∇δPϕ, (2.23)

where

δSB = ∇· < δPeg > +δ[ji ×B/c] (2.24)

δH∗
B =

1

4π
∇[(∇β∗

e ) · (δA× B̄)− β∗4πj

c
· δA]− δHB (2.25)

δHB =
1

4π
{δ[(B · ∇)B]−∇δB2/2} (2.26)

∇δPϕ = ∇[∇ · ( P0c

BΩ̄e

∇⊥δϕ)] (2.27)

β∗
e = β̄e/2 (2.28)

δΨ =
(1 + β∗

e )B̄

4π
δB∥ +

mc2

4πqe
∇⊥(β

∗
e∇ϕ). (2.29)

Compared with equation (20) in Lin et al. [2005], the newly added term δH∗
B is

again due to the usually higher order contribution from the inhomogeneities in the

background magnetic field and density.
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In the GeFi model, A0 is determined by the initial condition, and the perturba-

tion δA is solved at each simulation step. We decompose δA into three components

δA = A∥b̄ + A2e2 + Azez, where e2 = b̄ × ez and b̄ = B̄/B̄. Then they obey the

following equations

(∇2 −
ω2
pe

c2
−

ω2
pi

c2
+ b̄ · ∇2b̄)A∥ + (b̄ · ∇2e2)A2 =

−4π

c
(δji∥+ < δje∥ >), (2.30)

(∇2 + e2 · ∇2e2)A2 + (e2 · ∇2b̄)A∥ = −4π

c
δj2, (2.31)

∇2Az = −4π

c
δjz, (2.32)

where

δj2 =
c

4π
(∇× δB∥b̄) · e2 (2.33)

δjz =
c

4π
(∇× δB∥b̄) · ez. (2.34)

Compared with the original model [Lin et al., 2005], terms such as b̄·∇2b̄A∥ are added

in the improved model to include the inhomogeneities of the background magnetic

field direction.

Different from the original scheme [Lin et al., 2005], the above improved model

includes the effects of nonuniformity in the background magnetic field direction b and

density ne. To appreciate the effects of the terms associated with the variation of the

background magnetic field direction, in the following we compare the first and the

fourth term in the Eq.2.30, ∇2A∥ and b̄ · ∇2b̄A∥. Considering a the Harris current

sheet with a sheet normal in the z direction and the antiparallel field component in

the x direction, the magnetic field profile with a spatial coordinate normalized to the
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current sheet half-width can be expressed as

Bx = Bx0 tanh
2(z) (2.35)

By = By0 (2.36)

Bz = 0. (2.37)

In most cases, we can estimate the scale length of A∥ as the half current width, and

therefore the the first term can be estimated as ∇2A∥ ≈ A∥. The profile of b̄ · ∇2b̄ is

shown in Fig.2.2. The peak values b̄ · ∇2b̄ for the cases with Bx0
By0

= 1 and Bx0

By0
= 0.5

are located in the center of the current sheet and have values around 1.0 and 0.22

repectively. It is seen that By0 ∼ Bx0, the background nonuniformity cannot be

neglected.

Figure 2.2: b̄ · ∇2b̄ for Bx0
By0

= 1 (black) and Bx0

By0
= 0.5 (red). The horizontal line is

the normalized z-axis.
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2.2 Simulation Algorithms

In the GeFi simulation program, full particle method and δf method have been

used. Full particle method is a standard approach for most particle in cell codes,

while δf method is a newly developed tech to reduce the computational variations

[Lee, 1987; Parker and Lee, 1993; Chen and Parker, 2003].

2.2.1 The δf Method

The δf method is developed to get rid of the background noise caused by the

finite number of particles. Since only the perturbed distribution function is evolved

in the δf scheme, thermal fluctuations associated with the background particles are

removed. To illustrate the idea of the δf method, we first linearize the ion and

electron Vlasov equations. For ions, it is

dδfi
dt

+
qi
mi

(−∇δϕ+ vi × (∇× δA))
∂fi0
∂t

= 0, (2.38)

and for electrons, it is

dδFge

dt
+ [ve0∥δb

∗ + δve∥b
∗
0 +

cb0

qeB0

× (qe < ∇δϕ∗ >)] · ∂Fge0

∂R

+[δb∗ · (µ∇B0) + b∗
0 · (qe < ∇δϕ∗ >)] · ∂Fge0

∂pe∥
= 0, (2.39)

where δb∗ = (δve∥/Ωe0)b0×(b0·∇)b0−(ve0∥δΩe/Ω
2
e0)b0×(b0·∇)b0, δve∥ = −qeδA∥/(mec).

The distribution function fe and Fge, the potentials A and ϕ have been divided into

the equilibrium part with subscript 0 and the perturbed part with the notation δ,

f = f0 + δf (2.40)

ϕ = ϕ0 + δϕ (2.41)
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A = A0 + δA. (2.42)

The linearized Vlasov equation above can be simply written in a more general form

as

dδf

dt
= −df0

dt
. (2.43)

Now define the weight carried by each particle as

w =
δf

f
. (2.44)

Since df
dt

= 0, we have

dw

dt
=

dδf
dt

f
. (2.45)

Using f = f0 + δf , one can get

1

f
=

1

f0
(1− df

f
) =

1

f0
(1− w). (2.46)

Note that in the above approximation, only the first order is kept. It is easy to show

that

dw

dt
= −(1− w)

1

f0

df0
dt

. (2.47)

Since f0 is usually given in an analytical form, the time evolution of particle weights

can be calculated by Eq.2.47.

2.2.2 Advance Particles

To advance particles in the code, we need to numerically integrate the ordinary

difference equations with the following form

dZ

dt
= G[Z, t], (2.48)
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where Z represents the motion quantities, such as R(t), p∥(t) and w(t) of particles

in the simulation. There are many methods available for the integration of an ODE,

both explicit and implicit. Explicit schemes are straight forward, but should satisfy

the Courant condition ωmaxδt < 1 in order to assure the numerical stability, where

ωmax refers to the highest frequency in the simulation [Hockney and Eastwood, 1981].

Implicit schemes are generally stable, but require large computation time to solve

linear algebra equations.

In the improved GeFi model, two implicit methods have been employed, the

predictor-corrector method and the fourth order Runge-Kutta method [Burden and

Faires, 2005]. In the predictor-corrector method, we need to know not only the value

Z at time n but also the value Z at time n-1, then Z at time n+1 can be calculated

in two steps:

Predictor : Z(n+1) = Z(n−1) + 2G(n)[Z(n)]δt

Corrector : Z(n+1) = Z(n) +
1

2
[G(n+1)[Z(n+1)] +G(n)[Z(n)]]δt. (2.49)

The fourth-order Runge-Kutta method needs the value Z at time n and involves four

steps as

Zn+1 = Zn +
1

6
δt(k1 + 2k2 + 2k3 + k4) (2.50)

k1 = G(tn, Zn) (2.51)

k2 = G(tn +
1

2
δt, Zn +

1

2
δtk1) (2.52)

k3 = G(tn +
1

2
δt, Zn +

1

2
δtk2) (2.53)

k4 = G(tn + δt, Zn + δtk3). (2.54)

Note the predictor-corrector method has the second order accuracy while the Runge-

Kutta method above is of the forth order.
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2.2.3 Operators < .. > and .̄.

Two operators < .. > and .̄. have been seen in the gyrokinetic equations (Eq.2.20,

Eq.2.23, Eqs.2.30-32). < .. > means the average around the particle gyro-motion,

while .̄. stands for the background field averaged over the spatial and temporal scales

of perturbations. In this section, I am going to introduce how to realize these operators

numerically.

We use the so-called four points gyro-averaging scheme to realize < .. > numeri-

cally [Lee, 1983; Lee, 1987]. The basic idea is to find four points uniformly distributed

on the gyro-circle of a guiding-center and then take average of field values at these

four points. To find the positions of these four points, one can follow the steps as

indicated by Fig.2.3. We let e1 = b× ez where b is the local magnetic field direction

and ez is the units vector along the z direction. (If e1 = 0, one can just try ex or ey

instead.) The first point r1 is located along the direction e1 at a distance ρe from the

guiding-center. Since the magnetic moment µ is conserved in the gyrokinetic model,

the gyroradius can be easily calculated as

ρe =

√
2µme

B
/qe. (2.55)

In the opposite direction of e1, another point r2 can be located. Now make e3 = b×e1.

Repeating the above procedure, one can find all four points. Then the gyro-averaging

field quantities are calculated as

< f >=
1

4
(f(r1) + f(r2) + f(r3) + f(r4). (2.56)

To realize .̄., we should store the data of fields before the current time step.

However, how many previous steps should be kept and how to average them is still a

35



Figure 2.3: The four points gyro-averaging scheme is shown where b is the local
magnetic direction and r1 is a point on the gyro-circle.

ongoing issue. For the linear simulation or the cases with δB << B, we can simply

treat .̄. as the initial value of it.

2.2.4 Field Solver

As is seen, Maxwell’s equations in the GeFi model are complicated partial dif-

ference equations (PDE) and mutually dependent on each other. To solve them,

iterations are done simultaneously at each time step to obtain δϕ, δB∥, and δA.

At each iteration, one has to solve the nonlinear Poison’s equation with the

following form

∇2f(x, y, z)− g(x, y, z)f(x, y, z) = C(x, y, z) (2.57)

Two methods have been employed to handle the above task. The first one is finite

differences, which is straight forward, but requires much computational time solving
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the linear algebra equations, especially for 2D and 3D cases. The second one is related

to our particular boundary conditions. In our simulations, periodic boundaries are

adopted in the x and y directions, while conductor boundaries are used in the z

direction. If g(x, y, z) is only a function of z, i.e., g(x, y, z) = g(z), we are allowed to

take the fourier transform on the x and y variables and have

∇2f(kx, ky, z)− g(z)f(kx, ky, z) = C(kx, ky, z). (2.58)

Such 1D PDE is solved quickly by finite differences. If g(x, y, z) is not as simple as

above, we divide g(x, y, z) into two parts like g(x, y, z) = g0(z)+g1(x, y, z). Note g0(z)

is determined by the initial condition that is independent on the y and z coordinates,

whereas g1(x, y, z) is treated as a perturbation. Rewrite Eq.2.57 as

∇2f(x, y, z)− g0(z)f(x, y, z) = C(x, y, z) + g1(x, y, z)f(x, y, z) (2.59)

Eq.(2.59) is solved by iteration with the same method of Eq.(2.58). Since usually

g1 << g0, it converges very fast.

2.3 Benchmark for Uniform Plasmas

In this section, we are going to benchmark the modified GeFi scheme for a one

dimensional uniform system [Lin et al., 2011]. The wave vector k is assumed to be

along x. The background magnetic field is in the x-z plane and is allowed to point in

various directions relative to k. The top plot of Fig.2.4 presents a comparison between

the dispersion relations of δBz for the fast magnetosonic/whistler branch obtained

from the particle-in-cell GeFi simulation, shown as open dots, and the corresponding

analytical linear dispersion relation based on the fully kinetic mode, shown as solid

lines. Cases with βe = βi = 0.04, mi/me = 1836, and k∥/k⊥ = 0.2, 0.06, and 0

are plotted. The linear fluctuations in the simulation are due to random noises, as
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in usual particle simulations. In the case with k∥ = 0, the electromagnetic mode

approaches the quasi electrostatic lower hybrid mode, and the frequency ω/Ωi =

ωLH/Ωi =
√
ΩiΩe/Ωi =

√
mi/me = 42.8, where ωLH is the lower-hybrid frequency

and Ωi is the ion gyrofrequency of the background plasma.

Figure 2.4: The top plot : a comparison between the dispersion relations of δBz

for the fast magnetosonic/whistler branch obtained from the GeFi simulation (open
dots), and the corresponding analytical linear dispersion relation based on the fully
kinetic mode (solid lines). The bottom plot : a comparison between the dispersion
relations of δBy for the shear Alfvén/kinetic Alfvén mode branch obtained from the
GeFi simulation and the analytical theory.

The bottom plot of Fig.2.4 shows a comparison between the dispersion relations

of δBy for the shear Alfvén/kinetic Alfvén mode branch obtained from the GeFi

simulation and the analytical theory for k∥/k⊥ = 0.06. The analytical solution of the

MHD shear Alfvén mode, ω/Ωi = k∥vA/Ωi = (k∥/k)
√
2/βi(kρi) = 0.42, is also shown

as the dashed line.
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It is seen that GeFi simulation results are in excellent agreement with the theo-

retical analysis for k∥ << k⊥. The benchmark has been performed for cases with βe

and βi ranging from O(10−2) to O(1).

2.4 Summary

In summary, our GeFi particle simulation model, in which the electrons are

treated as gyrokinetic particles and ions are treated as fully kinetic particles, has

been improved and modified to allow the the existence of modes with wavelengths

on the same scale of the background nonuniformity. With fast electron gyro-motion

and Langmuir oscillations removed from the dynamics, the GeFi model could be a

powerful candidate to solve physics with realistic mass ratio mi/me is a global system.

The linearized GeFi scheme is benchmarked for uniform plasmas, and the sim-

ulation results using the δf method show that the model can accurately resolve the

physics ranging from Alfvén waves to lower-hybrid/whister waves, for k∥ << k⊥ and

ω << Ωe.
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Chapter 3

Simulations of Tearing Mode Instabilities under a Finite Guide Field

In this chapter, we use the improved GeFi model to simulate the tearing mode

instability. The initial conditions are described in the first section. The asymptotic

approximation of the Drake-Lee theory [1977a] and the eigenmode theory are pre-

sented next. Simulation results for a current sheet in a simple slab geometry are

shown in the third section. The current sheet configuration that we use here has been

studied by various people, and can be used to benchmark the GeFi model for the re-

connection physics. In the last two sections, linear and nonlinear simulation results of

tearing mode instabilities for symmetric the Harris current sheets with various guide

fields are presented and discussed, repectively.

3.1 Simulation Model

the Harris current sheet is an equilibrium solution of the Maxwell-Vlasov system,

which has been extensively used in the magnetic reconnection research [Harris, 1962].

The equilibrium magnetic field consists of two components, the uniform guide field

By0 and the tanh profile of antiparallel component Bx,

B = x̂Bx0 tanh(z/L) + ŷBy0, (3.1)

where L is the half-width of the Harris current sheet. The particle density is described

by

n = nHsech
2(z/L) + nb0, (3.2)
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Figure 3.1: The magnetic field (left, and the red solid line on the right) and particle
density (black solid line on the right) of the Harris current sheet with a tanh and sech
profile along Z direction, respectively. The magnetic field consists of two components,
Bx0 and By0. Particle density is indicated by the black line, where the dotted line
means the background particle density.

where nb0 is the background density and nH is the peak density in the current sheet.

The peak density is obtained from the total pressure balance

nH(Ti + Te) =
1

8π
B2

x0, (3.3)

Here we have assumed that the temperatures for ions and electrons are constant

everywhere. The equilibrium velocity distributions for the background ions and elec-

trons are Maxwellian. The equilibrium velocity distributions for ions and electrons

of the Harris current sheet in the GeFi model are given by [Lin et al., 2005; Wang et

al., 2008;]

fHi =
nh0

(2πTi/mi)3/2
e−mi[v

2
x+(vy−vdi)

2+v2z ]/2Ti · e−vdiqiAy(z)/Ti (3.4)

fHe =
nHsech

2(z/L)

(2πTe/me)3/2
exp(−B2

xmev
2
de

B22Te

)exp(1− mevde
TeΩe

dBx

dz
µ)
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·exp{− 1

2Te

[2µB +me(v∥ −
vdeBG

B
)2]}. (3.5)

We focus on the instabilities in the x-z plane, where the tearing instability is included,

while the current driven instabilities such as the kink instability, the lower hybrid

instability are excluded. The normalization follows: the magnetic field is in the units

of B0 =
√
B2

x0 +B2
y0, the spatial length is in the units of ρe, the time step is in

the units of Ω−1
e , particle density is in the units of n0, where n0 is calculated from

β0 = n0Te/(B
2
0/8π) and β0 is an input parameter.

To benchmark our GeFi model, we also do the calculations for a different current

sheet geometry that has been used in the previous tearing mode studies [Drake and

Lee, 1977; Katanuma and Kamimura, 1980; Wang et al., 2005;]. In this current sheet,

the current profile along a strong guide field By0 is given

Jy0(z) = −eneu0(z) = C1enee
− z2

L2 . (3.6)

In addition to the guide field By0, the current Jy0 generates an antiparallel field

Bx0(z) =
1

2
eneC1µ0L

√
πErf(

z

L
), (3.7)

where the Erf(z) is the error a function. In the following, I refer to this model as

“the Drake-Lee current sheet”. Different from the Harris current sheet, the Drake-Lee

current sheet is not an equilibrium configuration, and ions are initialized without the

drift motion. This current sheet is particularly suitable for the laboratory plasmas,

in which there is usually a strong guide field.
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3.2 Eigenmode Analysis

The energy exchange between tearing modes and charged particles takes place

effectively in the region where the condition of the Cherenkov resonance is satisfied:

ω = k∥vthe. (3.8)

Since the tearing mode is a low frequency phenomenon, the condition Eq.(3.8) is

mainly satisfied in the region where k∥ ≈ 0. If the gyroradius of charged particle

is much smaller than the current sheet width, the drift kinetic approximation is

valid. My benchmark of the tearing instability against the analytical theory will be

conducted for this simplified situation [Hoshino, 1988; Wan et al., 2005].

The linearized drift kinetic equation is given as

∂δfj
∂t

+ v∥
Bx0

B0

∂δfj
∂x

+ v∥
∂δfj
∂y

= [−v∥
δBz

B0

1

n(z)

dn(z)

dz
−

dv∥
dt

2(vy − Vdj)

v2thj
]f0j, (3.9)

where j stands for species of particles and uj means the drift speed of fluid j [Hoshino,

1988; Wan et al., 2005]. Note that in the above equation the electrostatic term has

been neglected, since its effect has proven to be small for the tearing mode. We can

rewrite δBz and
dv∥
dt

in terms of δAy:

δBz =
∂δAy

∂x
, (3.10)

dv∥
dt

=
qj
mj

∂δAy

∂t
, (3.11)

Writing δAy=δAy(z)e
i(kxx−ωt) and using

∂

∂x
= ikx,

∂

∂y
= 0,

∂

∂t
= −iω. (3.12)
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Eq.(3.9) becomes

δfj =
1

ω − v∥Bx0kx
B0

× (
v∥kx

B0nj(z)

dnj(z)

dz
+

ω

mj

(vy − Vdj)

v2thj
)fojδAy. (3.13)

δAy is induced by the perturbed current δJz through Ampere’s law,

∇δAy = −µ0δJz = −µ0

∑
j=i,e

qj

∫
dvyvyδfj (3.14)

Combining the above two equations, we have a second order ordinary differential

equation

[
d

dz
α(z)

d

dz
− k2

xα(z)−
∑
j=i,e

Vj(z)]δAy = 0, (3.15)

where

α(z) = 1 +
∑
j=1,e

ω2
PjV

2
dj

c2Ω2
j

, (3.16)

Vj(z) = −2
ω2
Pj

c2
(ξ2[1 + ξz(ξ

′
)] + ξ

Vdj

vthj
(1 +

kxBx0Vdj

ωB0

)), (3.17)

ξ =
ωB0

kxBx0vthj
, (3.18)

ξ
′
= ξ(1− kxBx0Vdj

ωB0

), (3.19)

and Z(ξ
′
) is the plasma dispersion a function. Eq.(3.15) is solved for eigenfunctions

by following the usual shooting method, with the boundary condition δAy = 0 at the

z-boundaries on both ends. A factor of 2 difference is noticed between the expression

V5j in Hoshino’s equation(20) and the corresponding expression Eq.(3.15) for Vj in our

eigenmode analysis. Following the same procedure, Wan et al. [2005] has conducted

the eigenmode analysis for the Drake-Lee current sheet. One should keep in mind

that the drift kinetic approach is valid only when k⊥ρi << 1.
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3.3 Benchmark for a Simple Current sheet

Figure 3.2: Contour of Ay and eigenfunction of δAy with Lz = 10.0ρi, Lx = 10.0ρi,
L = 0.5ρi, By0/Bx0 = 10, Ti = Te, and C1 = −0.14vthe.

Fig.3.2 shows the contour plot of Ay and the corresponding eigenfunction of δAy

obtained from the nonlinear simulation with Lz = 10.0ρi, Lx = 10.0ρi, L = 0.5ρi,

By0/Bx0 = 10, Ti = Te, and C1 = −0.14vthe. A magnetic island is generated at the

center with an almost symmetric structure, representing a signature of the tearing

mode. δAy has a double-peak near the center, which is consistent with the tearing

mode unstable condition △′
> 0. Recall the definition of △′

△′
= (

∂δAy(∆)

∂z
− ∂δAy(−∆)

∂z
)/δAy(0) (3.20)

where ∆ is the width of the singular layer.

The linear growth rate as a function of Bx0/By0 is shown in Fig.3.3 with the

same parameter above except for a varying Bx0/By0. “Fixed ions” means ions are

only advanced by the initial fields, meaning the motion of ions is kept unperturbed.
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Figure 3.3: Relationship between the linear growth rate and Bx0/By0 with Lz =
10.0ρi, Lx = 10.0ρi, L = 0.5ρi, Ti = Te, and C1 = −0.14vthe
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Again the linear growth rate agrees the eigenmode theory well. Two other conclusions

can be reached immediately: the growth rate is increasing with Bx0/By0, and the ions

contribute little to the growing of tearing modes. According to the linear theory, the

linear growth rate is given by

γ =
∆

′
kxvthe
lsd2e

, (3.21)

where ls is the magnetic field shear length, vthe is the electron thermal velocity. Since

ls = By0

∂Bx0/∂z
∝ By0/Bx0, we have γ ∝ Bx0/By0. Since the current is carried totally

by electrons for the Drake-Lee current, ions contribute little to the perturbed current

based on δJy =
∑

j=i,e(nj0δvjy + vj0yδnj0), where the ratio of the first term between

ions and electrons is ni0δviy/ne0δvey = me/mi, and the second term of ions is 0.

3.4 Linear Simulation of the Tearing Mode in the Harris current Sheet

the Harris current sheet is the first equilibrium model of one-dimensional current

sheet, which has been widely used in the investigation of reconnection. Note that

since the Drake-Lee current sheet is not in equilibrium, it can only be applied to

cases with By0/Bx0 >> 1. In this section, I show the linear simulation results of

tearing modes in the Harris current sheet.

In order to benchmark the GeFi simulation scheme against the existing eigen-

mode analysis, GeFi simulations with ϕ = 0, k⊥ρi ≈ 0, ky = 0 and δB∥ = 0 are

carried out. These parameters are consistent with the assumptions of eigenmode

analysis, where ions and electrons are both treated as drift kinetic particles requiring

k⊥ρi << 1. Since the electrostatic, compressible modes are neglected, we have ϕ = 0,

δB∥ = 0. Fig.3.4 shows the linear growth rate as a function of kxL (top) and L/ρs

(bottom) with Bx0/By0 = 0.075, Ti/Te = 0.01, L/ρs = 0.75 (top), and kxL = 0.41

(bottom), where ρs is defined as ρs =
√
mi/meρe which is the ion gyroradius when

Ti/Te = 1. Again the simulation results agree with the eigenmode analysis well. In
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the top figure, we can see the growth rate is maximized around kxL = 0.4 and tends

to be 0 for kxL > 1, both of which represent the characteristics of tearing modes.

The bottom figure depicts that the growth rate is decreasing with the current width

with a relationship γ ∼ L−2.4.

Figure 3.4: The linear growth rate as a function of kxL (top) and L/ρs (bottom) with
Bx0/By0 = 0.075, Ti/Te = 0.01, L/ρs = 0.75 (top), and kxL = 0.41 (bottom).

The contours of the magnetic field perturbations Bx, By, Bz from the eigenmode

theory and the GeFi simulation are shown in the left Fig.3.5 with Bx0/By0 = 0.075,

Ti/Te = 0.01, L/ρs = 0.75, kxL = 0.5, while the corresponding eigenfunctions are

shown on the right. Little difference exists between the simulations and the eigenmode

analysis. The Bx, By perturbations are symmetric, while Bz shifts in the opposite

directions on each side of the current sheet.

As discussed in the chapter2, the nonuniform terms associated with the magnetic

field direction b and the electron density ne have been added into the improved GeFi
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Figure 3.5: The contours of perturbations magnetic field and the corresponding eigen-
functions with Bx0/By0 = 0.075, Ti/Te = 0.01, L/ρs = 0.75 kxL = 0.5.
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Figure 3.6: The effect of inhomogeneity with cases Bx0/By0 = 0.05 (left column)
and Bx0/By0 = 1 (right column), for Ti/Te = 0.01 and L = 0.5ρs. The top row :
eigenfunctions δAy (solid lines from GeFi simulation, dashed lines from eigenmode
calculation; the middle row : the contour of δAy from simulations; the bottom row :
the contour of δAy with δH∗

B turned off.

model. As is seen in Fig.2.2, such an effect becomes more profound as By0 gets

smaller. The top row of Fig.3.6 shows the absolute values of eigenfunctions of δAy

obtained from simulations with Bx0/By0 = 0.05 and Bx0/By0 = 1, for Ti/Te = 0.01

and L = 0.5ρs. The solid line in each plot shows the simulation results based on the
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improved GeFi scheme, while the dashed line corresponding to the run in which δH∗
B

is turned off. The corresponding contours of the eigenfunctions of δAy obtained from

the GeFi simulation are shown in the middle row of Fig.3.6, while the runs with δH∗
B

turned off are plotted in the bottom row. Clearly, while the difference between the

results with and without the δH∗
B is negligible for Bx0/By0 = 0.05, the corresponding

eigenmode structures of δAy are, however, significantly different in the case with

Bx0/By0 = 1.0. With δH∗
B terms included, the tearing mode shows finer structure in

the current sheet. The growth rates of tearing modes for cases Bx0/By0 = 1.0 with

and without the δH∗
B term are, respectively, 0.098 and 0.128. Further simulation

indicates that the δH∗
B term in general cannot be ignored for linear tearing modes

when By0 ∼ or < Bx0.

Figure 3.7: The growth rate as a function of Ti/Te for three cases L = ρs, 1.5ρs, 3.0ρs
with Bx0/By0 = 0.05, kxL = 0.5.
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The above benchmark work has been limited to the extremely small tempera-

ture ratio between ions and electrons Ti/Te = 0.01 in order to satisfy the drift kinetic

ion approximation requirement k⊥ρi << 1. Since k⊥ ∼ L−1 (L ∼ ρS for our appli-

cations) and ρi = ρs
√
Ti/Te, the parameters k⊥ρi are evaluated as ∼ 0.1 and ∼ 1,

respectively, for cases with Ti/Te = 0.01 and for cases with the more realistic tem-

perature ratio Ti/Te = 1.0. It is expected that as the ratio Ti/Te increases, the drift

kinetic ion approximation is not valid any more, and therefore the agreement between

the eigenmode theory and the GeFi simulation cannot hold. The growth rate as a

function of Ti/Te is plotted in Fig.3.7, where three cases with L = ρs, 1.5ρs, 3.0ρs

for Bx0/By0 = 0.05 and kxL = 0.5 are presented. The difference between the eigen-

mode theory and the GeFi simulation becomes obvious after the value Ti/Te ex-

ceeds 0.5, 1.2, 3.0, corresponding to k⊥ρi ∼ 0.7, 0.73, 0.67, repectively, for cases with

L = ρs, 1.5ρs, 3.0ρs. Our simulation results here are qualitatively consistent with the

previous study by Ricci et al. [2005], in which it is pointed out both the finite electron

Larmor radius effect and the ion Larmor radius effect are potentially significant in

the calculation of the growth rate of tearing modes.

To explore the tearing mode properties, the realistic temperature ratio Ti/Te ∼ 1

should be adopted in the simulations. Fig.3.8 displays the linear growth rate as a

function of kxL with Ti/Te = 1.0, L = 0.5ρs for three different guide fields Bx0/By0 =

5.0, 3.0, 1.0. The linear growth rate is rapidly reduced as the guide field deceases and

kxL corresponding to the peak growth rate shifts to the short wavelength a bit. It

seems not to make sense that the linear growth rate is bigger for larger guide fields.

Nevertheless, we find such difference comes from the way of our normalization. Based

on the Drake-Lee kinetic theory, Karimabadi et al. [2005] deduced an asymptotic

formulation of the growth rate of tearing modes in the Harris current sheet as

γ/Ωi = 2
√
2
mi

me

(1 +
Ti

Te

)
1− k2

xL
2

√
π

Bx0

By0

(
ρe
L
)3. (3.22)
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In the above equation the magnetic field is normalized to the antiparallel magnetic

field Bx0, different from our normalization to the asymptotic total magnetic field B0.

Transforming it to our units, we have

γ/Ωi = 2
√
2
mi

me

(1 +
Ti

Te

)
1− k2

xL
2

√
π

(
Bx0

By0

+
By0

Bx0

)(
ρe
L
)3. (3.23)

γ ∝ (Bx0

By0
+ By0

Bx0
), which is increasing with By0

Bx0
when By0

Bx0
> 1.

Figure 3.8: The growth rate as a function of kxL for three different guiding fields
Bx0/By0 = 5.0, 3.0, 1.0 with Ti/Te = 1.0, L = 0.5ρs.
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The ion kinetic effect in the tearing mode is examined in Fig.3.9 with Ti/Te = 1.0,

Bx0/By0 = 5.0, kxL = 0.41 for different current widthes. △ represents cases of “with

ions“, while ♢ represents cases of “without ions“ that has the same meaning of

“fixed ions“ we discussed above, and the line stands for the ratio of growth rate

between them. Two conclusions can be reached immediately. One is that the growth

rate decreases rapidly as the current sheet gets wider. The other is that ions play a

significant role in the tearing mode, raising the growth rate almost by 50%. Daughton

et al. [2005] has demonstrated ions can directly resonant with tearing modes and

contribute to around 30% influence in the growth rate of tearing modes for thin

current sheets. The compressibility of ions can also contribute to the tearing mode.

Our simulations show that this term vdiδni contributes to 10% of the total perturbed

current δj. Finite ion Larmor radius effect is another potentially important factor

for cases with k⊥ρi ∼ 1. One may have noticed that in the previous section our

simulations have shown that the ion effect is negligible in the Drake-Lee current

sheet. Such inconsistency is due to that in the Drake-Lee current sheet the current

is totally carried by electrons, while in the Harris current sheet the ratio between the

ion current and the electron current is determined by ji/je = Ti/Te.

Because of the low frequency property of tearing modes, the electrostatic effect

was not considered in the kinetic theory by Drake and Lee [1977a]. Nevertheless,

Hoshino [1988] pointed out that the electrostatic field influences the induced current,

and modifies the linear growth rate. His analysis shows that in the presence of a guide

field, the electrostatic field generated by the compressibility of electrons will increase

the growth rate, but the ion effect is ignored due to its large Larmor radius. However,

previous studies and our simulations have shown that the finite ion Larmor radius

effect and the compressibility of ions are potentially important in the calculation of

the growth rate, so it is necessary to investigate the electrostatic effect using the GeFi

simulation. Fig.3.10 displays the growth rate as a function of Ti/Te with L = 0.5ρs,
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Figure 3.9: The growth rate as a function of L with Ti/Te = 1.0, Bx0/By0 = 5.0,
kxL = 0.41. △ : cases with ions; ♢ : cases without ions; solid lines: the growth rate
ratio between cases with ions and cases without ions.

Bx0/By0 = 3.0, kxL = 0.41. △ represents cases of “with electrostatic effect“, ♢

represents cases of “without electrostatic effect“, and the line stands for the growth

rate ratio between them. We see that the growth rate is increasing with Ti/Te and

the influence of electrostatic effect depends on the value of Ti/Te. Electrostatic effect

reduces the growth rate when Ti/Te < 4, but raises the growth rate when Ti/Te >

4. The ion Larmor radius becomes larger as Ti/Te increases, and then Hoshino’s

assumption is satisfied.

In Fig.3.11, the contours of typical perturbation structures are plotted with L =

0.5ρs, Bx0/By0 = 3.0, kxL = 0.41, Ti/Te = 2.0, where Bx, By, Bz, ni,, ne, ϕ, A∥,

Uix, Uiy, Uiz, Uex, Uey, Uez, and je∥ are repectively three components of the magnetic

fields, the ion density, the electron density, the electrostatic potential, the parallel

component of the vector potential, three components of the ion fluid velocity, three

components of the electron fluid velocity, and the parallel component of the electron
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Figure 3.10: The growth rate as a function of Ti/Te with L = 0.5ρs, Bx0/By0 = 3.0,
kxL = 0.41. △ : with electrostatic effect; ♢ : without electrostatic effect; the solid
line : the growth rate ratio between them.

current. An important quantity in the study of the tearing instability is the singular

layer width△, which is defined as the region where electrons can free stream along the

direction of the perturbed electric field and Landau resonate with the wave. From the

contour of Uey, we can see that the singular layer△ extends to the current sheet width

L with the scale of ρi, and therefore the Drake and Lee kinetic theory assumption

△ << L is clearly violated for our parameters. Considering the current parameters

βe = 0.01 and βi = 0.02, we have de/ρe = 1/
√
βe = 10, and di/ρi = 1/

√
βe = 7.

Since the characteristic thickness of the current sheet is comparable to de and ρi, two

factors can contribute to broaden the singular layer: one is the finite electron skin

depth effect, and the other is the finite ion Larmor radius effect.

The linear stage of collisionless tearing modes contains important information of

the out-of-plane perturbation By. In the limit of a weak guide field, the perturbation

has a quadrupole structure, which has been identified as a key signature of the Hall
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Figure 3.11: The contours of typical perturbation structure with L = 0.5ρs,
Bx0/By0 = 3.0, kxL = 0.41, Ti/Te = 2.0.
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effect in fully nonlinear fast reconnection [Sonnerup, 1974; Terasawa, 1983; Karam-

abadi et al., 2004;]. Simulations by Daughton et al. [2005] show that the addition of a

guide field complicates the out-of-plane perturbation and compresses the spatial width

from the ion inertial scale down to the electron kinetic scale. Our simulation shows

that the perturbation of By in Fig.3.11 is not of a quadrupole structure but is located

in the center of the current sheet with a certain asymmetry. Since di >> ρi ∼ L for

our parameters, the Hall effect is excluded form the formation of the perturbation of

By. Examinations on the contours of Uix and Uex indicate that the ion and electron

motions follow different spatial scales and thus cause the perturbation of By. Since

electrons are strongly magnetized, the electron motion is mainly guided along the

magnetic field. Due to the different directions of magnetic field below and above the

center of current sheet, Uex, the projection of the electron fluid velocity on the x axis,

shows a quadrupole structure and has a peak value around the O-type neutral point.

Since the ion Larmor radius is comparable to the current sheet width, ions are able

to move across the field lines and be accelerated directly by magnetic tension forces.

The structure of Uix is symmetric with respect to the X-type neutral point with a

π/2 phase difference compared with Uex. The separation between Uex and Uix forms

an in-plane current, and consequently generates the out-of-plane perturbation By.

Nonlinear simulations by Ricci et al. [2005] show the asymmetry of Uex results in the

compression of electron flowing along the parallel direction, and leads to a density

asymmetry across the dissipation region. Our conclusions here are consistent with

the discussion by Drake and Shay [edited by Birn and Priest, 2007].

The comparison among the growth rate of tearing modes as a function of Bx0/By0

obtained from the GeFi simulation (open circles), the eigenmode calculation (solid

line) and the Drake and Lee analytical asymptotic matching [1977a] Eq.3.23 (dashed

line) is plotted in Fig.3.12. Results based on the asymptotic matching Eq.3.23 devi-

ate significantly from the eigenmode calculation and the GeFi simulation, although
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the general trend of γ versus By0 is consistent with them. This deviation can be

understood, since in the cases shown in Fig.3.12 the thickness of current sheet L is

comparable to de at the sheet center and thus the conditions assumed in the asymp-

totic matching analysis break down. In addition, the ion effects are ignored in the

matching theory.

Figure 3.12: The comparison among tearing mode growth rate as a function of
Bx0/By0 obtained from GeFi simulation (open circles), the eigenmode calculation
(solid line) and Drake and Lee analytical asymptotic matching Eq.3.23 (dashed line).

3.5 Nonlinear Simulation of Tearing Modes in the Harris current Sheet

In this section, we perform nonlinear simulations to study the saturation of tear-

ing modes. It has been suggested that when the magnetic island reaches the spatial

order of the singular layer width, the electron orbits are altered. This results in the

saturation of tearing modes. Two cases, one without ions and the other with ions, are

shown first. In these two cases, only parallel component of the vector potential (i.e.,

A⊥ is dropped due to weak magnetic compression) is kept in the simulation model,
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which is consistent with the previous theoretical analysis. In the end, the coalescence

of multiple tearing modes is studied.

Fig.3.13 shows the time evolution of the magnitude of eigenfunction A∥ (left)

and the contour plot of Ay at time t = 20.0 (right). The parameters here are L =

0.5ρs, Bx0/By0 = 10.0, Ti/Te = 1.0, and kxL = 0.41. This implies that only the

corresponding fastest growing mode is kept in the system. The tearing mode is in

the linear growing stage before t = 9Ω−1
i with the growth rate γ = 0.83, which is

almost the same as γ = 0.812 obtained from the linear simulation. After t = 9Ω−1
i ,

the tearing mode saturates and oscillates with a frequency ω = 2π/8 = 0.785Ωi. Wan

et al. [2005] deduced a relationship between the growth rate γ and the oscillation

frequency ω as ω/γ = 1.22. Clearly our result ω/γ = 0.94 is different from their

prediction, for their analysis still relies on de << L. At t = 20Ω−1
i , the width of the

saturation island is w = 0.44ρs, smaller than 2L = 1.0. Considering β = 0.005, we

have de/ρe = 14.14 and de/ρi = 0.33, so the saturation width of the magnetic island

is on the order of de. Based on the Drake and Lee theory, the singular layer thickness

in the Harris current sheet can be approximated as [Karamabadi et al., 2005]

∆ =
1√
π

1− (kxL)
2

kxL

ρ2e
L

B0

Bx0

(1 + Ti/Te). (3.24)

For our parameters, the above equation gives ∆ = 1.1ρe, which is much smaller

than the saturation island width w obtained from the simulation. Clearly the finite

electron skin length effect that is neglected in the Drake and Lee theory can broaden

the singular layer and yield a larger saturation amplitude.

The results of simulation with the same parameters above but including the ion

motion are depicted in Fig.3.14. It shows the time evolutions of the magnitude of

eigenfunctions ne (top left), ni (top right), A∥ (bottom left), and the contour plot

of Ay at time t = 20Ω−1
i (bottom right). Two main differences can be observed
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Figure 3.13: The time evolution of the magnitude of eigenfunction A∥ (left) and
the contour plot of Ay at time t = 20Ω−1

i (right) with L = 0.5ρs, Bx0/By0 = 10.0,
Ti/Te = 1.0, and kxL = 0.41.

by comparing with the case without ions: one is the faster oscillation frequency

ω = 1.1Ωi; the other is the wider saturation island w = 1.05ρi ≈ 2L. By including the

ion influence that was neglected in the work of Drake and Lee, it has been suggested

that much larger saturation amplitudes comparable to the ion gyroradius could be

obtained [Galeev, 1988; Kuznetstova and Zelenyi, 1990]. The strong correlations

between the time evolution of δA∥ and ni in Fig.3.14 proves that ions play a significant

role in the saturation mechanism.

The nonlinear evolution of multiple tearing modes is shown in Fig.3.15. Four

unstable modes are kept in the domain, with the wave number kxL = 0.11 (mode1),

kxL = 0.22 (mode2), kxL = 0.33 (mode3), and kxL = 0.44 (mode4) respectively. Note

that the wavelength of mode1 is the same as the system length in the x direction.

Since mode4 corresponds to the wavelength with roughly the largest growth rate, four

magnetic islands are formed at the initial stage. After t = 8.72Ω−1
i , the islands start
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Figure 3.14: The time evolutions of the magnitude of eigenfunction ne (top left), ni

(top right), A∥ (bottom left), and the contour plot of Ay at time t = 20Ω−1
i (bottom

right) including ions.
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to coalesce due to the attraction between currents, and two wider islands become

dominated at t = 13.08Ω−1
i . Two much smaller plasmoids become evident at t =

15.26Ω−1
i . The formation of such secondary island may be due to the thin current

near the x-point [Daughton et al., 2005; Karamababidi et al., 2005]. The coalescence

of two big islands continues to compress the smaller plasmoid and triggers a forced

reconnection. At t = 17.44Ω−1
i , a very narrow reconnection layer can be seen between

two large islands. At t = 19.62Ω−1
i , the system relaxes back to the state that two

islands are dominated.

Fig.3.16 shows the time evolution of the magnitude of eigenfunction A∥ for the

four modes. Initially only the magnitude of mode4 corresponding to the fastest grow-

ing tearing mode is increasing. Around t = 9Ω−1
i , the coalescence of the islands

transfer the energy from mode4 to mode2. At t = 14Ω−1
i , all modes except for mode2

start to increase rapidly. This is due to the generation of small islands near the X-lines

as shown in Fig.3.16 at t = 15.26Ω−1
i . The magnitude of all modes are deceasing dra-

matically after t = 17Ω−1
i , because the energy is released by the forced reconnection

as discussed above.

3.6 Summary

In this chapter, the GeFi simulation model with the realistic electron/ion mass

ratio is employed to study tearing mode instabilities under a finite guide field. The

results are summarized below:

1. The GeFi simulation model is benchmarked with tearing mode instabilities

in a simple current sheet. Our results agree with the eigenmode analysis and the

previous studies.

2. With the drift kinetic approximation, the eigenmode theory for the Harris cur-

rent sheet is deduced. For cases with Ti << Te when the drift kinetic approximation

is valid, the GeFi simulation results agree with the eigenmode analysis.
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Figure 3.15: Contours of vector potential Ay at different times for the case with four
unstable modes.
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Figure 3.16: The time evolution of the magnitude A∥ for the four modes.
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3. The inhomogeneity terms affect the structure of tearing modes, and cannot

be neglected when By0 ∼ Bx0.

4. For the temperature ratio Ti/Te ∼ 1, the simulation studies reveal the re-

lationship between the growth rate of tearing modes and kxL, Bx0/By0, Ti/Te, and

L/ρs.

5. The electrostatic effect is negligible on the calculation of the growth rate of

tearing modes.

6. In the general cases in which the ion gyroradius is comparable to the current

sheet width, the ion effects are found to play a significant role on the calculation of

the growth rate of tearing modes. In such cases, the Drake and Lee theory [1977a]

and the eignemode analysis based on the drift kinetic assumption are not invalid.

7. The nonlinear GeFi simulation shows that the ion effect can broaden the

width of saturated magnetic islands from the electron dynamic spatial scale to the

ion gyroradius.

8. The case with multiple tearing modes shows that the coalescence of magnetic

islands can form a larger saturation island than the case of a single tearing mode.

During the process of coalescence, small magnetic islands are formed around the X

point. The small-scale magnetic reconnection can occur when the small magnetic

islands are compressed by the large magnetic islands. This process results in fast

energy release.
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Chapter 4

Generation of Low Frequency Electromagnetic Waves by Magnetic Reconnection

under a Finite Guide Field

In the collisionless plasma, magnetic reconnection is usually triggered by mi-

cro instabilities. The change of topology of the magnetic field lines and and the

perturbations in the diffusion region will lead to the generation of low frequency elec-

tromagnetic waves. Previous 2D simulations of steady-state reconnection have found

these waves to be present in the form of MHD discontinuities, as also observed in the

magnetosphere as well as the interplanetary space [Sonnerup et al., 1981; Phan et al.,

2006]. In this Chapter, we investigate the 3D structure of the reconnection layer. The

parameters chosen will be suitable for the Earth’s magnetosphere. It is found that

kinetic Alfvén waves are present in the 3D reconnection. First the simulation model

is introduced. Then a brief review of the kinetic Alfvén wave is given. Our results

show the kinetic effects play an important role in the 3D reconnection geometry. The

simulation results will be presented in the third section.

4.1 3D Hybrid Simulation Model

In the hybrid code, ions are treated as discrete particles and electrons are treated

as a massless fluid. The code was developed by Swift[1995], which has been used in

a general curvilinear coordinate system to model the Earth’s magnetosphere. In this

study we use a Cartesian coordinate system to model the generation of low frequency

electromagnetic waves.
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In the hybrid code, quasi charge neutrality is assumed. The equation for the ion

motion is given by

mi

qi

dvi

dt
= E+ vi ×B− µ(Vi −Ve) (4.1)

where vi is the ion particle velocity, E is the electric field in units of ion acceleration,

B is the magnetic field in units of the ion gyrofrequency, µ is the collision frequency

which is used to model the resistivity at the X-line, and vi and Ve are the bulk of

flow velocities of ions and electrons, repectively. The electron momentum equation is

written in the form

E = −Ve ×B− µ(Ve −Vi) +∇Pe, (4.2)

where Pe is the electron pressure. The electron flow speed is evaluated from Ampere’s

law,

Ve = Vi −
∇×B

αN
, (4.3)

where α = 4πe2/mic
2, e is the electron charge, mi is the ion mass, and N is the

particle number density. The magnetic field is advanced in time using Faraday’s law

∂B

∂t
= −∇× E, (4.4)

where the electric field is calculated from Eq.4.2.

In the simulation the ion particle velocity is updated at half time steps with a

second-order accuracy. The magnetic field and the particle positions are advanced at

the integer time step. The time step is chosen to satisfy the Courant condition with

respect to the whistler mode. In the simulation, the magnetic field is advanced 10

time steps for every time step the ion velocities are advanced.

Here, the magnetosphere plasmas are considered, in particular for the symmetric

reconnection as usually occurring in the magnetostail. The simulation domain is a

cube with x being normal to the current sheet and z being the antiparallel magnetic
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field direction. Different with the previous chapters, we choose the z direction as the

antiparallel direction, which is generally used in the magnetospause research. The

initial profile of the z component magnetic field is given by

Bz(x) = Bz0(x) tanh(x/δ) (4.5)

where Bz0 is the z-component magnetic field in the lobes and δ is the half-width of

initial current sheet. The profile of the y-component magnetic field, i.e., the guide

field in the lobes, is assumed to be

By = By0. (4.6)

The initial x-component magnetic field is Bx = 0. The profile of ion thermal pressure

is determined from the total pressure balance across the current sheet. A constant,

isotropic temperature with Ti = Te is assumed, where Ti is the ion temperature and

Te the electron temperature. The ion number density is thus given by

N(x) = N0(1 +
1

β0

[1−B2
z0/B

2
0tanh

2(x/δ)−B2
y0/B

2
0 ]) (4.7)

where B0 = (B2
z0 +B2

y0)
1
2 is the total magnetic field in each lobe.

We study the evolution of a spontaneous reconnection [Scholer, 1989]. The dy-

namics are not driven. A constant resistivity in time is imposed in the system to

trigger the reconnection. The resistivity is modeled through a collisional term in the

ion equation of motion and the electron momentum equation. The collision frequency

is assumed to be

ν = ν0exp(−(x2 + z2)/λ2
0)exp(−y2/η20) (4.8)

where ν0 ∼ 0.1 − 2Ωi and Ωi is the ion gyrofrequency in the lobes. We define η0 as

the half-length of X-line.
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In our simulation, the time is in units of Ω−1
i . For the results shown in this thesis

the magnetic field is expressed in units of B0, the ion number density in units of N0,

and the temperature in units of the lobe temperature T0, where the subscript “0“

represents the quantities in the lobes. The velocity is normalized to the lobe Alfvén

speed VA0, and the spatial coordinate is normalized to di the lobe ion inertial length.

The conductor boundary is used in the x direction, , while the periodic bound-

aries are used in both the z and the y directions. To limit the boundary effect, the

simulation stops when the waves propagate near the boundaries. The domain size

X × Y × Z is 128di × 128di × 256di with the grid size ∆x = 0.5di, ∆y = 2.0di, and

∆z = 1.0di. Almost 100 particles per cell are placed in the lobe region.

4.2 Properties of Kinetic Alfvén Waves

The Alfvén wave is one of the most important wave modes in magnetized plas-

mas. It exists due to the balance between the magnetic field tension and ion inertia.

These waves were first theoretically predicted by H.Alfvén and are now called shear

Alfvén waves because the perturbations of the magnetic field are perpendicular to the

ambient field and wave vector. When the perpendicular wavelengths are comparable

to the ion gyroradius ρi, the properties of shear Alfvén waves need to be modified.

In a plasma with intermediate beta values (me/mi < βe << 1)), the modified waves

are usually refereed as kinetic Alfvén waves.

Starting from the two fluid-MHD equations, one can deduce the dispersion rela-

tionship of kinetic Alfvén waves as [Stix, 1992]

ω2 = k2
∥V

2
A(1 + (1 +

Ti

Te

)k2
⊥ρ

2
i ). (4.9)

Obviously the kinetic Alfvén wave is dispersive, while the shear Alfvén wave is non-

dispersive.
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Another important difference between the shear Alfvén wave and the kinetic

Alfvén wave is that the kinetic Alfvén wave is compressible and generates an electric

field parallel to the ambient magnetic field by

E∥ = − Te

ene

∇∥ne. (4.10)

It is suggested that such electric field plays an important role in the energy transport

processes and particle heating/acceleration of space plasmas.

4.3 Simulation Results

Two typical cases with By0 = 0.5Bz0 are presented in this section. One possesses

an infinitely long X-line, and the other possesses with a finite X-line. The cases with

an infinite X-line corresponds to ky ∼ 0. Since the propagation of waves is almost

limited in the x-z plane, results similar to the 2D simulations are expected although

some differences are found to exist. For the case with a finite X-line, the spatial effects

along the y direction are found to lead to ky ̸= 0, which results in the propagation of

waves very different from those in 2D simulations.

4.3.1 Case with an Infinite X-line: 2η0 = ∞

Fig.4.1 shows the contour plots of the magnetic field Bx, By, Bz, the ion fluid

velocity Vx, Vy, Vz, the temperature T , the particle number density N , and the

configuration of magnetic field lines in the x-z plane located at y = 0 when t = 150Ω−1
i .

A plasma bulge and a trailing quasi-steady reconnection layer are formed in the

outflow region of magnetic reconnection, as shown in the magnetic field and plasma

plots in Fig.4.1. The magnetic field decreases and the plasma temperature increases

from the lobe to the center of the reconnection layer. Since ky ∼ 0, the field and
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plasma properties in the x-z planes of other y positions resemble the results shown

here.

Figure 4.1: The contour plots of Bx, By, Bz, Vx, Vy, Vz, T , N , and configuration of
magnetic field lines. The solid line corresponds to the position at z = 40di, along
which there appears a quasi-steady structure. The solid line at z = 40di indicates the
boundary of the leading bugle. The solid line z = 40di shows the transit boundary
between the plasma bugle and the steady state layer.
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Figure 4.2: The spatial profiles of Bx, By, Bz, N , Vx, Vy, Vz, T∥, T⊥, J∥, and B at
z = 40di and hodograms of the tangential magnetic field (Bz-By).
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Fig.4.2 depicts the spatial profiles of the magnetic field Bx, By, Bz, density

N , the ion flow velocity Vx, Vy, Vz, the parallel temperature T∥, the perpendicular

temperature T⊥, the parallel current density J∥, and the magnitude of magnetic field

B at z = 40di, and the hodograms of the tangential magnetic field (Bz-By). Note

that z = 40di is located in the steady reconnection layer as indicated in Fig.4.1.

We can see that two discontinuities bound the steady reconnection layer with the

wave front at x = ±8.5di and the width of ∼ 2.3di. Across the discontinuities, the

plasma is accelerated so that Vz is changed from ∼ 0 in the upstream to ∼ 0.75VA0

in the downstream corresponding to the change of the Alfvén speed ∼ 0.7VA0. The

hodogram shows that the tangential field rotates by an angle of around ∼ π/2 through

each discontinuity. These pair of discontinuities are roughly rotational discontinuities.

Notice that the magnetic field strength slightly decreases and the ion density increases

across the rotational discontinuity. The changes in the magnetic field and ion density

at the rotational discontinuity are due to the increase of the parallel temperature

T∥ > T⊥ because of the streaming ions along the magnetic field lines. The slow shock,

however, is too weak to be identified in the simulation because of T∥ > T⊥. All results

shown here are consistent with the previous 2D simulations.

To study the 3D effect, we examine the variations along the y direction. The

variation of a certain quantity f is calculated as f(x, y, z) − f̄(x, z), where f̄(x, z)

is the average along the y direction at fixed positions (x,z). The top two figures in

Fig.4.3 present the contour plots of variations of Bx and N along the y direction in

the x-z plane at y = 0, and the bottom two figures present the contour plots of the

corresponding variations in the y-z plane at x = 4di as indicated by the solid line in

the top figures. At time t = 150Ω−1
i , one can see that the variations are significant

in the transition region between the leading bulge and the quasi-steady structure. In

the y-z plane at x = 4di the structure of the variation of Bx stretches out along the

initial local magnetic direction b. Since the x direction is perpendicular to the initial
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magnetic field, the variation of Bx represents the shear waves, while the variation of

N represents the compressible waves.

Figure 4.3: Top figures: the contours of variations of Bx and N along the y direction
in the x-z plane at y = 0; bottom figures: the contours of variations of Bx and N
along the y direction in the y-z plane at x = 4di. The solid line along z = 52di in the
top left figure indicates the boundary of the leading bugle. The solid lines in the top
figures indicate the y-z plane at x = 4di; the solid lines in the bottom figures show
the local initial magnetic field direction.

Fig.4.4 shows the contours of variations along the y direction of Bx, By, Bz, N ,

Vx, Vy, Vz, Ex, Ey, Ey, J∥, E∥ in the y-z plane at x = 3di when t = 150Ω−1
i . In these
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structures, the shear components Bx and Vx, Ey, and the parallel current density

J∥ are well correlated. In Fig.4.3, one may have noticed that the spatial scale of the

variation of Bx is ∼ 3di or ∼ 10ρi, considering to βi = 0.1. Since kxρi ∼ 2π
10ρi

ρi ≈ 0.62,

certain kinetic effect are expected, which is justified by the strong correlation between

the parallel electric field E∥ and Bx.

Figure 4.4: The contours of variations along the y direction of Bx, By, Bz, N , Vx, Vy,
Vz, Ex, Ey, Ey, J∥, E∥ in the y-z plane at x = 3di when t = 150Ω−1

i .
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4.3.2 Case with a Finite X-line: 2η0 = 8di

In reality, the length of X-line cannot be infinite. Shay et al. [2010] have shown

that 3D structures develop in a spontaneous reconnection, corresponding to spatially

isolated sites of reconnection with scale lengths around 10di. In the following, we

show a case in which the length of the X-line is set as 2η0 = 8di to study the finite

length X-line effect.

The top two figures in Fig.4.5 show the configurations of magnetic field lines

near the current sheet at t = 50Ω−1
i (left) and t = 80Ω−1

i (right). At t = 50Ω−1
i ,

some magnetic field lines have been reconnected. Since the length of the X-line is

finite, the process of reconnection is limited in a finite region. At t = 80Ω−1
i , the

reconnected field lines are dragged towards ±z directions by the accelerated plasmas

and are twisted at the same time. It is due to that the large-amplitude perturbations

generated by the reconnection and their consequent propagations change the local

topology of magnetic field lines. The contour plots of Bx (left) and Vx (right) in

the x-z plane at y = 25di of t = 80Ω−1
i are presented in the bottom two plots.

We can see that the shear perturbations of Bx and Vx are evident in the plane far

from the reconnection region, and they are well correlated. The perturbation regions

are associated with the reconnected field lines, while the field lines outside of the

perturbations stay unreconnected. It indicates that the perturbations caused by the

reconnection propagate into the sites far from the diffusion region along the magnetic

field lines. We also notice that the perturbations in the x-z plane of y = 25di are

just located at one side of the current sheet. Crossing the current sheet along the red

line indicated in the top left plot, we observe that the field lines are connected on the

side of current sheet and unconnected on the other side. Such asymmetry is simply

due to the field line geometry geometry of this “component reconnection”, i.e., the

reconnection with a finite guide field.
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Figure 4.5: The configuration of magnetic field lines near the current sheet at t =
50Ω−1

i (the top left) and t = 50Ω−1
i (the top right), and the contour plots of Bx (the

bottom left) and Vx (the bottom right) in the xz plane of y = 25di at t = 50Ωi.
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To investigate the properties of propagating waves, we now examine the propaga-

tion speed of the wave front. Fig.4.6 shows the relationship between the time t and the

distance L from the center of the diffusion region (0,0,0) to the position of the wave

front. Obviously t and L are linearly correlated with a linear fit of L = 0.89t− 11.99.

Therefore the propagation speed is 0.89VA0 that is close to the lobe Alfvén speed VA0.

Note that the propagation is mainly located outside the edge of the current sheet,

where the Alfvén speed is slight smaller than the lobe Alfvén speed.

Figure 4.6: The relationship between time t and the distance L from the center of
the diffusion region (0,0,0) to the position of wave front.

In Fig.4.7, the contour plots of Bx and N in the x-z plane of y = 16di at t =

80Ωi are presented. The contours of Bx exhibit clear structure of perturbations,

while the density perturbations are also observed at the same position. Since the

perturbations propagate from the diffusion region that has the characteristic scale

length ∼ ρi, it makes sense that the spacial scale length of the perturbation Bx is

∼ 3di, corresponding to kxρi ≈ 0.62. We expect the waves to have certain kinetic

effects.
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Figure 4.7: The contour plots of Bx and density N in the x-z plane of y = 16di at
t = 80Ωi. The red dot stands for the position (4, 16, -20).

Fig.4.8 shows the time evolutions of Bx, By, Bz, N , Vx, Vy, Vz, Ex, Ey, Ez, E∥,

B, Ex×b, B∥, and the hodogram of Bx −Bx×b at the position (x, y, z) = (4, 16,−20),

as indicated by the red dot in Fig.4.7. Among them, B∥ is calculated by B · b,

where b is the initial magnetic field direction, and the subscript x × b stands for

the direction perpendicular to x and b. We see that the transverse components Bx,

Vx, and Ey, Ez are well correlated. The ratio Ex×b/Bx is ∼ 0.8VA0 close to the lobe

Alfvén speed. During the whole time, the magnitude of the magnetic field B stays

almost constant, as well as the parallel component of the magnetic field B∥. The

wave appears an Alfvén mode. Moreover, the spatial scale length of perturbations

along the x direction is comparable to ρi, and E∥ is correlated with the perturbation

of the local density that develops after the arrival of these perturbations. The slight

increase of density is also due to the ion kinetic effect. Recall that due to the ion

kinetic effect, the Alfvén wave becomes compressible and generates an electric field

parallel to the local magnetic field. Since b points into the paper in the hodogram of

Bx−Bx×b, the waves rotate along the counterclockwise direction and have a lefthand

polarization.
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Figure 4.8: The time evolution of Bx, By, Bz, N , Vx, Vy, Vz, Ex, Ey, Ez, E∥, B, Ex×b,
B∥, and the hodogram of Bx − Bx×b at the position (4, 16, -20) as indicated by the
red dot in Fig.4.7.
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The contour plots of Vz at x = 0 (left) and x = 2di (right) are shown in Fig.4.9.

In the center of the current sheet, the plasma is accelerated by the tension fore

caused the reconnected field lines, and the accelerated plasma is mainly towards ±z

directions. Outside the current sheet, the Alfvén wave propagates along the field lines,

and the plasma is accelerated through the wave during its propagation. Therefore

the accelerated plasma is mainly along the field lines as shown in Fig.4.8.

Figure 4.9: The contour plots of Vz at x = 0 (left) and x = 2di (right) at t = 80Ω−1
i .

Fig.4.10 shows the contour plots of Bx, By, Bz, Vx, Vy, Vz, N , T∥ and T⊥ in the

x-z plane of y = 0. Note the x-z plane of y = 0di is in the center of X-line. We

can see that the resulting structures here are very different from the 3D run with an

infinitely long X-line. No clear leading bulge exists during the reconnection, although

an accelerated plasma layer is formed near the center of current sheet where the

parallel heating is observed. Moreover, we do not find the discontinuity fronts on the

edges of the reconnection layer, as in 2D simulations and 3D simulations for cases

with an infinite X-line. In 3D simulation with the limited X-line, the component Bx

is a shear perturbation to the local magnetic field. In such case with ky ̸= 0, such
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3D perturbations propagate with a group velocity along the field lines. Therefore, no

steady discontinuities or shocks are formed.

Figure 4.10: The contour plots of Bx, By, Bz, Vx, Vy, Vz, N , T∥ and T⊥ in the x-z
plane of y = 0 when t = 150Ω−1

i .

Fig.4.11 shows the contour plots of Bx, By, Bz, Vx, Vy, Vz, N , T∥ and T⊥ in the x-z

plane of y = 20di. The propagations of perturbations generated by the reconnection
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accelerate the local plasma and form a structure similar to that in the x-z plane

of y = 0di, although no reconnection actually occurs in this x-z plane. Across the

current sheet, the layers are asymmetric due to the reason discussed already. Again,

the parallel heating occurs in the layers. The enhancement of density is found in the

layers because of the acceleration of the plasma.

Cases with various lengths of X-line are also simulated. It is found that the

critical X-line length for the existence of steady-discontinuities is ∼ 30di.

4.4 Summary

We have used the 3D hybrid simulation model to study the generation of low

frequency waves by the reconnection under a finite guide field. The simulation results

are summarized below.

For the case with an infinite X-line:

1. 3D simulation results are similar to those of 2D cases. Two quasi-steady rota-

tional discontinuities are formed behind a plasma bulge. The plasmas are accelerated

across the rotational discontinuities.

2. The contour plots show that there are perturbation structures in the transition

region between the leading bulge and the steady discontinuities. The transverse

perturbations lead to the presence of short-wavelength field-aligned structures, in

which E∥ ̸= 0 due to the ion kinetic effects.

For the cases with a finite X-line:

3. It is found that the perturbations caused by the reconnection propagate along

the local magnetic field lines.

4. The wavefront of perturbations propagates with the local Alfvén speed. The

shear components dominate the wavefront of perturbation which are seen as locations

far from the reconnection region, and the ratio between the corresponding transverse

electric field and magnetic field components is almost equal to the local Alfvén speed.
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Figure 4.11: The contour plots of Bx, By, Bz, Vx, Vy, Vz, N , T∥ and T⊥ in the x-z
plane of y = 20di when t = 150Ω−1

i
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These waves are identified as kinetic Alfvén waves, in which the wave number kxρi ∼ 1.

Our simulation indicates that the finite X-line length leads to a structure of the

reconnection layer that is very different from the cases with an infinite X-line, in

which steady discontinuity fronts are dominant.

5. Parallel electric field E∥ is generated in the kinetic Alfvén waves, and the

structure of E∥ has a strong correlation with the structures of the shear components.

6. The critical length of X-line that leads to the Petschek-type steady shocks

or discontinuities is found to be ∼ 30di. Our study indicates that a finite extent of

X-line alters the wave structure of the reconnection layer.

The generation of kinetic Alfvén waves in the general cases of reconnection may

provide an important mechanism for the particle heating and acceleration as these

waves propagate along field lines to the ionosphere.
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Chapter 5

Summary

Magnetic field reconnection provides an efficient mechanism for the transfer of

magnetic energy to plasma heat and kinetic energy. The kinetic physics of the fast

reconnection in collisionless plasmas, however, is still poorly understood due to the

complex plasma dynamics that is largely caused by the disparate spatial and tem-

poral scales between the electron and ions. The 2D Petschek reconnection model is

the first fast reconnection model, which provides a mechanism of reconnection that

is fast enough to explain the phenomena caused by the reconnection. In order to

fully understand the validity of the Petschek model, two basic questions should be

answered. One is how the fast reconnection is triggered by micro instabilities, and

the other is how the reconnection layer will be modified or altered in the general 3D

geometries in reality.

To tackle the problem due to the vast difference between the electron and ion

scales and investigate the physics of reconnection from the micro to macro scales, we

use the newly developed GeFi particle scheme to simulate the reconnection in a 2D

current sheet with a finite guide field and a realistic mass ratio. In this thesis, the

GeFi model of Lin et al. [2005] has been improved for the nonuniform current sheets.

Tearing mode instabilities are believed to play a fundamental role to trigger

the fast reconnection. As a first step to apply the GeFi model to the reconnection

research, we have developed a linear eigenmode theory of the tearing instability to

benchmark the improved GeFi scheme. The GeFi results have also been compared

with the asymptotic matching theory of Drake and Lee [1977a]. Furthermore, the

kinetic effects that are missing in previous theoretical studies of the tearing mode
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have been examined through the GeFi simulations. After the code benchmark, we

have then carried out linear and nonlinear GeFi simulations of the tearing instability

in magnetic reconnection.

While the application of the GeFi model to magnetic reconnection has produced

interesting initial results, the complete investigation of 3D nonlinear magnetic re-

connection using the GeFi model is still beyond the capability of the current GeFi

scheme. To explore the properties of low-frequency waves generated by magnetic re-

connection, a hybrid code has been used to simulate the 3D structure of reconnection

layer under a finite guide field.

The main results of this thesis are summarized:

The improved GeFi model:

1. Our GeFi particle simulation model, in which the electrons are treated as

gyrokinetic particles and ions are treated as fully kinetic particles, has been improved

and modified to allow the the existence of modes with wavelengths on the same scale

of the background nonuniformity.

2. The linearized GeFi scheme is benchmarked for uniform plasmas, and the

simulation results using the δf method show that the model can accurately resolve

the physics ranging from Alfvén waves to lower-hybrid/whister waves, for k∥ << k⊥

and ω << Ωe.

The tearing mode instability under a finite guide field:

1. The GeFi simulation model is benchmarked with tearing mode instabilities

in a simple current sheet and the Harris current sheet. Our results agree with the

eigenmode analysis and the previous studies under simplified conditions of these the-

oretical models. The inhomogeneity terms affect the structure of tearing modes, and

cannot be neglected when By ∼ Bx.

2. In the general cases in which the ion gyroradius is comparable to the current

sheet width, the ion kinetic effects are found to play a significant role on the growth
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rate of tearing modes. In such cases, the Drake and Lee theory [1977a] and the

eignemode analysis based on the drift kinetic assumption are invalid.

3. The nonlinear GeFi simulation shows that the ion effect can broaden the

width of saturated magnetic islands from the electron dynamic spatial scale to the

ion gyroradius. The case with multiple tearing modes shows that the coalescence of

magnetic islands can form a larger saturation island than the case of a single tearing

mode.

The generation of low frequency waves by reconnection under a finite guide field:

1. For the case with a infinitely long X-line, 3D simulation results are similar to

those of 2D cases. In addition to the steady rotational discontinuities in the outflow

region, wave perturbations are also found between between the leading plasma bulge

and the steady discontinuities. The transverse perturbations lead to the presence

of short-wavelength field-aligned structures, in which E∥ ̸= 0 due to the ion kinetic

effects.

2. For the case with a finite extent of X-line, it is found that the perturbations

caused by the reconnection propagate along the local magnetic field lines. The wave-

front of perturbations propagates with the local Alfvén speed. The shear components

dominate the wavefront of perturbation which are seen at locations far from the re-

connection region. These waves are identified as kinetic Alfvén waves, in which the

wave number k⊥ρi ∼ 1. Parallel electric field E∥ is generated in the kinetic Alfvén

waves. Our simulation indicates that the finite X-line length leads to a structure of

the reconnection layer that is very different from the cases with an infinite X-line as

as in the Petschek model, in which steady discontinuity fronts are dominant.
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