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Abstract 

 

 

With the increase in consumptive trends of wood products there is greater push for 

ecosystem management.  Ecosystem management is a process that aims to conserve major 

ecological services and restore natural resources while meeting the socioeconomic, political and 

cultural needs of current and future generations, and more efficient natural resource 

management.  Forests provide natural resources for consumption; however, they also support 

wildlife and provide many other ecosystem services. Therefore, it is increasingly common that 

natural resource managers are asked to balance multiple objectives on a single property.   

The main objective of this study was to show how the theoretical outcomes from growth 

and yield models and wildlife occupancy models could be combined to give land managers an 

idea of what to expect before management is executed.  A growth and yield model, the Forest 

Vegetation Simulator (FVS), is used for stand projection.  The resulting stand structures are input 

into species-specific wildlife occupancy models to estimate probability of occurrence.  A 

simplified example from the Barbour Wildlife Management Area in Alabama is used to illustrate 

this approach.  Area managers wish to convert existing mixed loblolly pine-hardwood stands into 

an open-canopy, fire maintained, longleaf pine ecosystem.  Though species specific occupancy 

models are used here for simplification, other species or objectives can be used for other 

properties.
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Three management scenarios were projected 100-years into the future: no treatment; 

immediate conversion through clearcutting, site preparation, and planting at three different 

densities; and long-term conversion through single-tree selection.  Regression models were 

developed to predict reproductive and ground cover, variables not projected by FVS which are 

important parameters for occupancy of species.  At five-year intervals, projected stand structure 

was input into occupancy models developed for four species of migratory songbirds; wood 

thrush, pine warbler, yellow-breasted chat, and prairie warbler. 

Stand structure varied through time for each of the scenarios, but there was little 

difference between reproductive cover and ground cover between scenarios.  The pine warbler 

was predicted to occupy stands under both the no management and single-tree selection 

scenarios throughout the entire projection period.  Under the even-aged management scenarios, 

the pine warbler has a probability of use between 80 and 100% throughout the projection cycle.  

The yellow-breasted chat’s probability of use varies between management scenarios.  The wood 

thrush has less than a 30% probability of use under any management scenario.  The prairie 

warbler has the highest probability of use in the even-aged scenarios over time, but will still use 

the other management scenarios between 20 to 30% of the time.   

While there seems to be little difference in the probability of use between management 

scenarios for each species, there is still predictive power for this decision support tool.  Only 

three management alternatives were simulated in this example.  There are an infinite number of 

other possible alternatives that were not reviewed here.  By integrating these two models (stand 

projection and habitat occupancy) a unique tool is available for land managers to gauge the 



iv 

 

efficacy of their management plans while also developing a timeline of predicted forest structure 

that can be compared with future inventory for use in adaptive management. 
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CHAPTER 1 

INTRODUCTION 

Essentially, all models are wrong, but some are useful. 

(George Box, 1979) 

 

 

With consumptive trends of wood products on the rise (Bowyer 2007), the need for more 

comprehensive management grows (Bowyer et al. 2007).  The Multiple-Use Sustained-Yield Act 

of 1960 required by law that national forests broaden their focus to include the production of 

other commodities such as recreation, wildlife and water.  However, some argue that the practice 

has fallen short of the ideal set up by the act (McQuillian 1990, Shepard 1990).  Shands (1988) 

argued that “multiple use has become a pejorative term that many people believe is synonymous 

with management that emphasizes timber production to the detriment of other forest resources”.  

In recent years there has been a push for more “Ecosystem Management” (Bengston 1994),  a 

process that aims to conserve major ecological services and restore natural resources while 

meeting the socioeconomic, political and cultural needs of current and future generations 

(Bengston 1994, Grumbine 1994, Brussard et al. 1998, Szaro et al. 1998).   

Natural resource management is frequently used when dealing with a particular resource 

for human use rather than managing the whole ecosystem (Kellert et al. 2000).  One of the main 

objectives in natural resource management is sustainability, which natural resource managers 

apply to balance natural resource utilization over a long time frame (Ascher 2001).  Therefore, 



2 

 

one of the many goals of natural resource management is to fulfill the demand for a resource 

without injuring the ecosystem or jeopardizing the future of the resource.     

With the greater push for ecosystem management and more efficient natural resource 

management, the forests that provide timber also need to incorporate other uses, such as wildlife 

habitats, aesthetics, recreation, soil conservation, and clean water. Therefore, it is increasingly 

common that natural resource managers are asked to balance multiple objectives on a single 

property.  Management of these multiuse areas can be exceedingly complex, but extremely 

important for all the parties involved (Keeney and Raiffa 1993).  However, bringing multiple 

fields together, with either real or perceived competition among objectives, is never easy.    

The fields of wildlife biology and forest management are often perceived to have 

mutually exclusive objectives for the use and management of forests.  Wildlife biologists tend to 

focus on the organism of interest, while forest managers tend to look at the growth and 

utilization of the trees from the forest.  The common area is in forests where both wood products 

and wildlife habitat are provided.   It may be suggested that disagreements on the best way to 

manage the forests often occur because of differences in the way management is implemented.  

Wildlife biologists tend to implement management based on a particular species of interest, 

while forest managers implement management that mostly focuses on the vegetation.  Although 

the management perspectives from each field vary, the results are not necessarily mutually 

exclusive.   

Tools exist in each discipline to model forest growth and response of wildlife to changes 

in habitat respectively.  However, they are seldom used together.  Forest growth and yield 

models use current forest inventory to predict future stand structure by using a set of tree based 

measures that include tree species, sizes, and densities.  Wildlife occupancy models provide an 
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estimate of species occurrence based on a variety of factors, including habitat characteristics like 

tree species and size, density, and available cover.  Because habitat characteristics, (structure) are 

a big predictor of a species occurrence, and growth and yield models project future structure it 

should be possible to integrate these tools to determine the effects of forest management on 

species before implementation.    

 

Objectives 

 The main objective of this study was to show how the theoretical outcomes from growth 

and yield models and wildlife occupancy models could be combined to give land managers an 

idea of what to expect before management is executed.  Essentially, the models provide a 

baseline for the biological response of forest structure and wildlife species to management over 

time, which can be interpreted to make better science-based decisions.  By doing this, an 

adaptive, situationally specific tool to assist in decision making for land management under 

multiple objectives was created.  

Barbour Wildlife Management Area is used as a case study to showcase the utility of the 

tool.  There are an infinite number of management scenarios that could be projected; however 

three were developed based on Barbour’s current objectives to restore longleaf pine (Pinus 

palustris): 

(1) No active management, excludes prescribed burning. 

(2) Immediate conversion to longleaf pine through clearcutting, site preparation 

and planting, and reintroduction of fire on a 5-year interval.  Three planting 

densities are used (741, 1112, and 1483 trees per hectare) to compare the 

different outcomes.    
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(3) Single tree selection based on the Proportional-B system (allocation of 

growing space among 3 broad diameter classes and maintaining a sustainable 

diameter structure) (Loewenstein 2005) with the reintroduction of fire at a 3 

year return interval. 

Four bird species were chosen to show how management would influence their 

probability of use: 

(1) Pine Warbler 

(2) Yellow-breasted Chat 

(3) Wood Thrush 

(4) Prairie Warbler  

These species all have different habitat requirements; therefore management and different 

management scenarios should change the species’ probability of use.   

I hypothesized that the structure created by the proportional-B method would have the 

most utility for pine warbler based upon its known habitat characteristics.  Pine warbler is 

associated with a dense canopy layer and a sparse understory or a low density shrub layer 

(Rodewald et al. 1999).  The proportional-B method should create a tall dense canopy that would 

be ideal for pine warbler.  Wood thrush, prairie warbler, and yellow-breasted chat would be more 

likely to use structures created by other scenarios based upon what is known about their habitat 

characteristics.   Both prairie warbler and yellow-breasted chat inhabits early successional 

habitats.    They would be better suited to the even-aged projections because early in 

development early successional habitat is created. Wood thrush likes mixed deciduous forests, 

especially well developed mesic uplands (Bertin 1977, Roth et al. 1996) with a dense understory.  
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Most of the implemented management focuses on restoring longleaf pine, and wood thrush is not 

associated with that habitat.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

 

Inventory and Conservation Planning Project 

 The inventory and conservation planning (ICP) project was initiated by the state of 

Alabama in order to coordinate the development of multi-species Inventory and Conservation 

Plans for selected lands managed by the Alabama Department of Conservation and Natural 

Resources (ALDCNR).  The initiation of the ICP project was based upon the comprehensive four 

volume publication Alabama Wildlife (Mirarchi et al. 2004) and the Comprehensive Wildlife 

Conservation Strategy (CWCS) (ALDCNR 2006). 

Mirarchi et al.’s (2004) publication of Alabama Wildlife illustrated the serious danger of 

wildlife in the state and outline recommendations for conservation and management.  The 

subsequent publication of the CWCS filled in precisely what Alabama needed to do to help the at 

risk wildlife populations (ALDCNR 2006).  Specifically, the CWCS outlines five major reasons 

why wildlife is threatened in Alabama, included in their list of threats is lack of adequate 

protection and knowledge to make decisions about wildlife and their habitats (ALDCNR 2006).   

The ICP project was set up to be a five year project managed by the Alabama 

Cooperative Fish and Wildlife Research Unit (ALCFWRU).  The overall goal was to provide a 

science-based plan for the conservation of species of greatest conservation need (GCN) and the 

habitats they depend on as they occur or could occur on ALDCNR managed lands.  The outcome 
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of the ICP project will lead to a management plan that will help protect GCN species and their 

habitats throughout the state.  It will also lead to decision support based tools that allow for land 

mangers to evaluate their progress over time.    

 

Alabama Physiography 

Alabama is separated into six physiographic provinces; Interior Plateau, Southwestern 

Appalachians, Ridge and Valley, Piedmont, Southeastern Plains and Southern Coastal Plain.  

These level III ecoregions are areas of general similarity in ecosystems and in the type, quality, 

and quantity of environmental resources (Figure 1). They are designed to serve as a spatial 

framework for the research, assessment, management, and monitoring of ecosystems and 

ecosystem components (Omernik 1987, Griffith et al. 2001).  In Alabama the six level III 

ecoregions are divided into 29 separate level IV ecoregions (Griffith et al. 2001). The smaller 

level IV ecoregions are identified through the analysis of the spatial patterns and the composition 

of biotic and abiotic occurrences (Omernik 1987).  Omernik (1987) developed the system of 

ecoregions on the basis of similarity in land use, land form, soils and potential vegetation.  

Therefore, similar habitats are potentially found in each region.   

Since there are 29 unique ecoregions with the potential to support an array of plants and 

animals that might not be found elsewhere, there is a diversity of habitat that drives extraordinary 

biodiversity in Alabama.  Alabama’s species diversity exceeds all eastern states for numbers of 

plant and animal species and ranks fifth in the nation after California, Texas, Arizona, and New 

Mexico for all animal species (Alabama Natural Heritage Program 2003). There are over 4,000 

species of plants, 850 species of vertebrate animals, and nearly 250 species of fresh water 

mussels in Alabama (Nature Conservancy of Alabama 2009).  In particular there are 93 native 
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reptiles, 73 native amphibians, 62 native mammals, and 420 bird species that comprise the 

official Alabama Ornithological Society (AOS) state list (Mirarchi et al. 2004). 

Alabama has the most imperiled species of any state east of the Colorado River.  Only 

Hawaii has lost more species to extinction than Alabama (Stein 2002).  One hundred thirty-four 

species found in the state have been listed as either threatened or endangered.  This list includes 

116 animals and 18 plants (USFWS 2006). Twenty-one additional species have been identified 

as candidates for future listing. The 116 listed animals include 6 birds, 7 mammals, 12 reptiles 

and amphibians, 15 fishes, and 76 mussels and snails. Several of these populations have reached 

critical levels and are the main focus of several recovery plans and protective measures.  With 

limited resources available for conservation, it is essential that state conservation plans be 

developed to protect species of greatest conservation need.   

According to the Alabama Forestry Commission 70% of the states land area is forested 

(Alabama Forestry Commission 2009).  As of the 2005 forest inventory of Alabama 

approximately a quarter of the forested lands were in plantations, most of them being Loblolly 

pine (Pinus tadea) (Hartsell and Johnson 2009).  The majority of the forested land is held by 

private landowners with less than 5% held by state and federal government agencies (Hartsell 

and Johnson 2009). Alabama owns and manages 109,668 hectares of protected land, 89% of which 

is managed by the Alabama Department of Conservation and Natural Resources (Silvano et al. 

2008).    

The majority of terrestrial GCN species occur in forested habitats and most (≈ 

95%) of Alabama’s 9.3 million hectares of forest are in private ownership (Hartsell and 

Johnson 2009). However, low timber values, increasing recreational use, and pressure for 

development are resulting in conversion of forest land to other uses often in conflict with natural 

resource conservation.  Consequently, land management and natural resource management is 



9 

 

essential to ensure the continuation of many species of conservation need in Alabama.  Through 

education and outreach, the tool presented here could then be used by land owners to minimize 

jeopardy to GCN species on private lands.  

  

The Forest Vegetation Simulator 

 History 

The Forest Vegetation Simulator (FVS) is a computer software modeling system developed 

by the USDA Forest Service to assist in the prediction of forest growth and yield.   FVS can also 

simulate a variety of silvicultural treatments for the dominant forest species and types found in 

the United States.  It is used by a variety of other public and private entities to report current 

stand conditions and project future stand conditions and statistics, as well as predict disease and 

fire potential (Dixon 2002, Teck et al. 1996, Keyser 2008).  

The FVS framework was adapted from the Prognosis (Stage 1973) single tree model, 

developed for forest stands within the Inland Empire region of the western United States. It was 

a set of computer programs used to make predictions about the course of stand structure and 

produce expectations under alternative management prescriptions (Stage 1973). Stage visualized 

the Prognosis model to use tree growth interactions to direct the course of forest stand 

development under different silvicultural treatments.   He wanted the model to be applicable to 

mixed stands of various age structures and sufficiently flexible so that it could be applied to new 

management techniques (Stage 1973). 

 The Prognosis model took significant of effort led by the US Forest Service with the 

cooperation of private and university entities to evolve into FVS.  Stage (1975) developed the 

original large tree growth model within Prognosis, while Hamilton and Edwards (1976) 
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developed the mortality model.  Eventually, Prognosis was released to the public in 1982 

(Wykoff et al. 1982). 

Since its development and release, Prognosis has had many additions and updates. The 

growth model has been extensively modified (Hamilton 1986,1990, Wykoff 1990, Stage and 

Wykoff 1998) to include the addition of small and large tree diameter increment models (Wykoff 

1983). Regeneration and establishment models were developed and added to the model 

(Ferguson et al. 1986), and then revised (Ferguson and Crookston 1991, Ferguson and Carlson 

1993). Crookston (1985) developed the “Event Monitor” Extension; this allowed for the 

management activities to be scheduled during the projection cycle. The “Event Monitor” was 

expanded (Crookston 1990) and eventually led to the development of a “Parallel Processing” 

Extension (Crookston and Stage 1991) which allowed for the concurrent projection of many 

stands. With the creation and incorporation of extensions, Prognosis developed into a system 

capable of modeling most aspects of natural resource management. The Prognosis model name 

was changed to FVS in the mid-1990’s to convey the idea that the Forest Service has adopted a 

national forest growth and yield modeling system. 

The FVS framework has been expanded to other regions and forests types outside of the 

original Intermountain region. A uniform model framework was developed to support many 

different forest types throughout the United States. Since the early 1980’s twenty different 

variants have been developed that follow the Prognosis-FVS framework and cover every forest 

type within the United States. Each variant corresponds to a specific geographic region of the 

nation. The Forest Service’s Forest Management Service Center (FMSC) in Fort Collins, 

Colorado (http://www.fs.fed.us/fmsc/) serves as the primary agency that maintains, develops, 

and distributes all components of FVS and its variants. 
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 FVS Utility  

Scientists and land managers use FVS as a planning tool or in conjunction with other 

programs as part of a decision-making process.  Ceder and Marzluff (2002) used an extension of 

FVS, known as the Landscape Management System, to evaluate habitat across an entire 

management area.  They used different silvicultural systems to manage the area and coupled the 

projections with habitat suitability models. 

 Some studies utilize FVS for decision support in mind to help plan management before 

implementation. This allows the user to predict the outcome of management decisions.  Marzluff 

et al. (2002) showed how timber revenues would differ among scenarios; they wanted to find a 

management alternative that would maximize revenue while maintaining suitable wildlife 

habitat.  Hummel et al. (2002) used FVS to optimally plan management on a land reserve.  Other 

studies have used FVS projections to compare observed with projected events such as oak 

decline (Vandendriesche and Haugen 2008).  Such studies allow the user to test the predictive 

capacity of FVS, and where it is shown to be robust, allows its use in planning as a tool to aid in 

the decision-making process.                 

 

FVS: the Southern Variant  

For the purpose of this project the Southern (Sn) Variant of FVS was used. FVS-Sn was 

developed with the cooperation of the Southern Research Station of the Forest Service and the 

FMSC by Donnelly and Lilly (2001) for use in the southeastern United States.  The variant is 

based on age and distance independent individual-tree model equations that specify the 

recruitment, growth, and mortality of each tree (Donnelly and Lilly 2001). Although stand-level 
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predictions are the main concern to most users of FVS-Sn, the sub-models that lead to these 

predictions were developed from tree-level considerations and fitted to individual tree data to 

give greater flexibility and consistency to operate within the FVS framework.  Unlike other 

variants FVS-Sn simulates management in five-year cycles.    

 The framework provided by all FVS variants allows equations or sub-models to operate 

together to get to a stand-level projection, which includes stem density per unit area, basal area, 

diameter distributions, and species composition. 

 

Longleaf Pine 

 Longleaf Pine was once found on more than 37 million hectares of the southern 

landscape (Van Lear et al. 2005). It was estimated to be the dominant species on at least 23 

million hectares (Frost 1993).  Longleaf pine could be found at elevations ranging from sea level 

to over 60 meters (Harper 1905, Stowe et al. 2002).  This once wide ranging species is now only 

found on a fraction of its range; about 1.3 million hectares remain today (Landers et al. 1995). 

Frequent low intensity fires set both by Native American populations and lightning 

strikes are hypothesized to have maintained the longleaf communities (Denevan 1992, Van Lear 

et al. 2005).  Being extremely fire dependent longleaf thrived under the management of the 

Native American people.  However, this forest type started to decline as European colonization 

swept over the southeast in the 15
th

 century (Denevan 1992, Van Lear et al. 2005).  Although, 

fire was still used to manage areas of land, it occurred on a much smaller scale (Van Lear et al. 

2005).  The forest structure in many places also was changed.  Longleaf systems were dominated 

by extremely tall trees, with little midstory or understory.  The suppression of fire allowed dense 
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thickets of hardwood to invade (Van Lear et al. 2005), effectively changing the vertical structure 

of the forest. 

Longleaf pine has been described as a very intolerant pioneer species (Baker 1949, Boyer 

1993, Hardin et al. 2001), but it is also known to be an irregular seed producer, and the seeds do 

not remain viable for long periods of time (Landers et al. 1995, Boyer 1998).  Good seed crops 

are only estimated to occur once every 5 to 7 years (Hardin et al. 2001).  Because seeds are large 

they are not likely to disperse over long distances, rarely dispersing more than 30 meters from 

the parent tree (Boyer 1958, 1963).  Few of the dispersed seeds become established as seedlings, 

mainly due to predation by small mammals (Boyer 1964).       

Once seeds become established and are able to germinate they enter what is known as the 

“grass stage” (Pessin 1939, Wahlenberg 1946, Haywood, 2000).  During the grass stage longleaf 

pine seedlings concentrate most of their growth on their root system. The grass stage can last 

from 1 to more than 20 years, but 3 to 6 years is typical (Hardin et al. 2001), after which they 

begin height growth, a process referred to as “bolting.”  The seedling is considered established 

once it reaches 1 meter in height (Wahlenberg 1946).  

The decline in the longleaf pine resource can be attributed to several additional factors.  

Widespread harvesting, particularly between 1900 and 1930, greatly reduced the area occupied 

by mature longleaf pine (Croker 1979).  Therefore, natural regeneration was limited by the lack 

of mature trees available to produce seed.  Biology of the tree was also poorly understood.  

Longleaf pine is an irregular seed producer (Landers et al. 1995, Boyer 1998).  Bumper crops are 

not common (Boyer 1987).    Furthermore, seedlings were depredated by feral hogs (Wahlenberg 

1946), which led to the failure of many regeneration efforts.  Finally, many sites were converted 

to other commercially valuable species, mainly loblolly pine and slash pine (Pinus elliottii var. 
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elliottii Engelm), or to other land uses such as agriculture (Wahlenberg 1946, Landers et al. 

1995). 

 Because of the historical presence and life history of longleaf pine, it has become the 

focus of many restoration projects in the southeast.    However, it is not just the tree that is 

sought after.  The longleaf pine ecosystem is considered highly diverse (Brockway et al. 2005a).    

There are 191 taxa of vascular plants that largely exist only in longleaf pine communities 

(Brockway et al. 2005a), and more than 40 species per square meter have been recorded in some 

longleaf pine communities (Brockway et al. 2005b).  Longleaf ecosystems are associated with a 

variety of bunch grasses.  These associated bunchgrasses facilitate fire that helps maintain the 

system (Brockway et al. 2005a, 2005b).      

Continually, several terrestrial vertebrate species are also tied to longleaf pine 

communities (Brockway et al. 2005a).    Two well know endangered species are largely 

associated with longleaf pine habitat; the gopher tortoise (Gopherus polyphemus) and the red-

cockaded woodpecker (Picoides borealis).  Both of these species are known to be great 

excavators (Brockway et al. 2005a, 2005b).  The gopher tortoise digs large burrows and the red-

cockaded wood pecker excavates trees cavities, which provide homes for a number of other 

associated insects, birds, snakes, amphibians, and mammals (Brockway et al. 2005a, 2005b).  

 Moreover, longleaf pine is the most critically endangered ecosystem in the United States, 

occupying less than 3% of its historical range (Ware et al. 1993, Noss et al. 1995).  Many 

longleaf pine stands have been converted to other land uses, such as agriculture or urban 

development (Brockway et al. 2005b).  This extreme habitat loss has also impacted the 191 taxa 

of vascular plants and several animals that are associated with the longleaf pine ecosystem.  
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Many of the associated animals are considered threatened or endangered because of loss of this 

critical habitat.    

 Restoration of the longleaf pine forest ecosystem would not only benefit the associated 

species, it also provides considerable economic values (Brockway et al. 2005b).  These forests 

provide more poles than either loblolly or slash pine stands (Brockway et al. 2005b).  Pine straw 

also increases the value of these stands.  When maintained in a “park like” condition stands of 

longleaf provide higher quality habitat for deer, turkey and quail (Brockway et al. 2005a, 2005b), 

which may bring in more money from hunting leases.  There are also a number of other 

unquantifiable services that a healthy longleaf ecosystem can perform including (but not limited 

to) carbon sequestration, water purification, soil stabilization, wildlife habitat, and nutrient 

cycling (Brockway et al. 2005b).      

 

Occupancy Models 

Occupancy (Ψ), which is the probability of species use, is a measure used to quantify the 

status of a population or community. The occupancy model’s outputs provide estimates of the 

probability that a species will inhabit a site.  Therefore, applying occupancy models outputs over 

time to different management treatments has the potential to serve as the basis of management 

decisions for conservation (Nichols et al. 1998, Peterson and Dunham 2003, Gu and Swihart 

2004, MacKenzie et al. 2006).  

 However, surveys for organisms are not always able to detect their presence.  Therefore, 

a detection probability (p) is included when creating an occupancy model (Mackenzie et al. 

2002).  A detection probability is defined as the probability of detecting at least one individual of 

the species during sampling of an occupied site (MacKenzie et al. 2006).   It is important to 
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recognize that non-detections do not always mean that a species is absent.  Detection is often 

both species and survey specific.  Therefore, detection may vary spatially and temporally 

depending on various factors such as sampling method, habitat, observer, underlying population 

size or density, and seasonal behaviors (Mackenzie et al. 2002, Bailey et al. 2004). 

 

Focal Species 

 To show the effects of management focal species needed to be used.  A variety of species 

were chosen that are known to key on different habitat structures.  Therefore, different 

management would have a different affects on each species.  However, the amount of data 

limited the species that could be chosen from.  Thus, four different species of birds were chosen 

to show the effects of management.  These species have been detected on the study site in 

sufficient quantities for occupancy models to be constructed.   

 

 Wood Thrush 

 Wood thrush (Hylocichla mustelina) is a large spotted thrush known for its enchanting 

song.  As a neo-tropical migrant, this bird spends its summers breeding in the interior and edges 

of mixed deciduous forests, especially well developed mesic uplands (Bertin 1977, Roth et al. 

1996).  Breeding requirements include a mature forest with an understory of deciduous shrubs 

(Mirarchi et al. 2004).  Recent findings indicate that they have higher nesting success in forests 

with higher densities of trees and shrubs and higher canopies (Hoover and Brittingham 1998, 

Newell and Kostalos 2007).  One study indicated that nest success of the wood thrush is 

dependent on nest placement; lower nests in dense understory are more vulnerable to predation 

(Newell and Kostalos 2007).  Like other neo-tropical migrants the wood thrush is experiencing 
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population declines.  Habitat fragmentation is the biggest threat to the wood thrush because it is 

typically an interior forest species (Mirarchi et al. 2004, Newell and Kostalos 2007).  In Alabama 

the wood thrush is experiencing habitat degradation and fragmentation, which is leading to more 

nest parasitism (Mirarchi et al. 2004).             

   

Pine Warbler 

Pine warbler (Dendroica pinus) is a large wood warbler that is most associated with the 

North American pine forests.  As its name implies it is mainly found in and breeds in upland pine 

or mixed pine-hardwood stands (Rodewald et al. 1999).  In most of its range it is associated with 

a dense canopy layer and a sparse understory or a low density shrub layer (Rodewald et al. 

1999).  In Alabama it is not consider a species of concern, but like other neo-tropical migrants it 

may be vulnerable to population declines because of habitat loss and fragmentation. 

 

Yellow-breasted Chat 

Yellow-breasted Chat (Icteria virens) is considered the largest wood-warbler.  Over its 

range it is found in low dense vegetation, like power-line corridors, fence rows, and forest edges 

(Eckerle and Thompson 2001).  It is considered a generalist with regard to habitat.  When 

selecting nesting sites; its only preference seems to be toward edges and openings (Eckerle and 

Thompson 2001). In Alabama it is not consider a species of concern, but like other neo-tropical 

migrants it may be vulnerable to population declines because of habitat loss and fragmentation. 

     

Prairie Warbler 
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 Prairie Warbler (Dendroica discolor) is a small warbler that inhabits early successional 

habitats.  These birds are typically found in is southern pine forests that lack a closed canopy, 

dunes along the coast, abandoned fields, and pastures with shrubby growth (Nolan et al. 1999).  

Contrary to what its name implies, these birds are not found on prairies.  The Prairie Warbler 

experienced a population increase as deciduous forest was cleared in the United States during 

colonial times (Nolan et al. 1999).  However, the breeding bird survey has show population 

decline in recent times (Audubon Watch List).  In Alabama it is on the birds watch list because 

of population declines and having a limited distribution (Mirarchi et al. 2004).     
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Figure 1: The level III ecoregions of Alabama based upon Griffith et al. 2001 with the 

inventoried land groups by the ICP project.
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CHAPTER 3 

 

RESEARCH METHODS 

 

Study Site 

 This project was conducted on Barbour County Wildlife Management Area (31.99°N 

85.46°W), (Barbour WMA, Figure 2) located on 8,000 hectares of Barbour and Bullock counties 

in southeast Alabama.  Barbour WMA is located in the Southeastern Plains (Griffith et al. 2001).  

The natural vegetation of this region is characterized by longleaf pine with smaller areas of 

hardwoods.  It includes areas of oak-pine and other mixed forests (Griffith et al. 2001).  The 

physiography of the ecoregion is characterized by dissected irregular plains and gently rolling 

low hills with east-west bands of sand and clay formations (Griffith et al. 2001).  Rock 

formations or cuestas have formed, with gentle south-facing slopes and steep north-facing 

slopes; this area of the Southeastern Plains there tends to exhibit higher relief than the rest of the 

ecoregion, mixed in with the rolling hills and irregular plains (Griffith et al. 2001).  Landcover is 

generally mostly forested with some agricultural uses mixed into the overall matrix (Griffith et 

al. 2001).  

The site is in Bailey’s (1995) Humid Temperate Domain, Subtropical Division, 

Southeastern Mixed Forest Province; such sites are characterized by hot humid summers and 

mild winters.  Rainfall is well distributed throughout the year, but can sharply increase in 

between spring and summer because of thunderstorms (Bailey 1995).  Average rainfall is around 

122cm per year (Ware et al. 1993).  Soils are principally ultisols (Ware et al. 1993), with 
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inceptisols on floodplains of the major streams (Bailey 1995). Vertisols, clayey soils that form 

wide, deep cracks when dry, can also be found on locally formed limestone (Bailey 1995).   

Before settlement by Europeans the vegetation of this area was characterized by old 

longleaf pine stands that were maintained mainly by fire (Ware et al. 1993).  However, now 

more than half of the vegetation is composed of yellow pine species like loblolly pine and 

shortleaf pine (Bailey 1995, Ware et al. 1993).  Fire no longer maintains the system; while 

patches of hardwoods would have existed, these areas are now denser (Ware et al 1993).  

The inventory performed showed that most stands are mixed pine-oak and oak-pine 

stands; the main pine component is loblolly pine, while the oaks encompass a collection of 

species including water oak (Quercus nigra), white oak (Quercus alba), post oak (Quercus 

stellata), black oak (Quercus velutina), and Northern red oak (Quercus rubra).  These stands are 

mixed with a variety of hickories and other hardwoods, as well as a variety of woody shrubs and 

vines in the understory.  There are also several stands of loblolly pine plantations with 

understories composed mainly of blackberry (Rhus spp.).  On Barbour WMA there are also 

stands, smaller in area, which are considered bottomland hardwoods.  These are composed of 

oaks, red maple (Acer rubrum), elms, and hickories.  Openings are maintained to attract wildlife 

species during hunting seasons.   

There are several different fauna in the region.  Generally, White-tailed deer, cottontail 

rabbits, foxes and raccoons are commonly found.  Also, fox squirrels, gray squirrels and nine-

banded armadillos can be regularly encountered (Bailey 1995, Ware et al. 1993).  White-tailed 

deer, squirrels, and rabbits are hunted on this property.  The eastern wild turkey and mourning 

dove are commonly hunted, while a variety of neo-tropical migrants inhabit this area during 

migration (Bailey 1995, Ware et al. 1993).  During point counts over 65 different bird species 
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were encountered.  Among the most common were the Northern cardinal (Cardinalis cardinalis, 

323 encounters) and the Northern parula (Parula americana, 235 encounters).   There are several 

common forest snake, lizard, and salamander species that inhabit this area (Bailey 1995).  During 

the forest inventory we encountered several Eastern box turtles (Terrapene carolina carolina) 

and a few Eastern king snakes (Lampropeltis getula getula).     

  

Study Design 

Points were placed using a stratified random sampling method.  Existing landcover 

information was used to stratify the area into 12 distinct landcover types based upon the Alabama 

Gap Analysis Project landcover maps (Kleiner et al. 2007).  A 250 meter grid was placed over the 

landcover map in ArcGis (version 9.1 ESRI, Inc.).  Points were then randomly chosen to cover 

approximately 10% of the points from the grid in each of the 12 landcover types.  In total 100 

points were chosen to survey from the 1071 points that were placed with the grid across the 

property.  All survey points were at least 250m apart in order to minimize double counting for fauna 

surveys.  Handheld GPS units were used to navigate to each predefined point. Because multiple 

surveys were performed at each point a pin flag was positioned at the GPS location in order to 

keep a consistent center point.       

 

Field Methods  

A forest inventory was designed to quantify vegetative structure, focusing on 

characteristics that are most important for wildlife habitat suitability (Van Horne and Weins 

1991).  Fixed area circular plots, 0.20 hectares (25m radius) were established during July and 

August 2008. Starting at plot center, a grid of 49 points spread 6.25m apart, was established 
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along the cardinal directions (Figure 3).  At each point on the grid the presence or absence of 

cover was recorded for the canopy, mid-story, reproductive/shrub, and herbaceous/ground cover 

layers using a “moose horn” densitometer.  In order to sample the layers below the scope of the 

“moose horn” densitometer, because it generally points up, it was flipped over to point down.  

The canopy layer was defined as the dominant tree cover above the point on the grid.  The mid-

story layer was defined as trees that were 2/3 the height of the dominant canopy, but not 

extending into the dominant canopy.  The reproductive/shrub layer was defined as vegetation not 

exceeding 3.5 meters in height.  The herbaceous/ground layer was defined as any herbaceous 

ground cover.   

Within the plot the presence of snags and their DBH was recorded.  The heights of three 

trees among the dominant canopy were recorded to establish canopy height.  Two of these three 

trees were aged at breast height using an increment borer.  To obtain total age five-years was 

added to the measured age.  However, sweetgum (Liquidambar styraciflua) and yellow poplar 

(Liriodendron tulipifera) were never cored because they are diffuse porous trees, which make 

counting tree rings difficult.  Duff layer was recorded at the center of the grid and at 25m in each 

cardinal direction.      

A variable radius plot using a 10-factor angle gauge was established using the center of 

the grid to determine the basal area of the stand.  These trees were tallied by species and DBH.   

Age and height were measured to predict site index based upon Site Index Curves for 

Forest Tree Species in the Eastern U.S (Carmean et al. 1989).  Curves used included loblolly 

pine, water oak, and white oak.  Site index is a relative measure of forest site quality based on the 

height of the dominant trees at a specific age.  However, measurements were inconsistent when 

compared to Carmean et al. (1989).  Technicians were new to determining which trees to core, 
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therefore, the tree age measurements were not of sufficient quality to be used.   Therefore, soil 

series information at the plot level was pulled from the Soil Survey Geographic (SSURGO) 

database in ArcGis (version 9.1 ESRI, Inc.).  The SSURGO database gives site index at the base 

age of 50 (SI50) for common tree species.  However, this data is often unreliable because it is 

taken from soil surveys that are often preformed in agricultural fields.   At each plot SI50 was 

recorded for a common tree species, if longleaf pine was available it was recorded for longleaf 

pine.  Longleaf was chosen as the site index tree when available because of Barbour WMA’s 

desire to restore longleaf to the property.  Where longleaf pine was unavailable loblolly pine was 

used as the site index tree.        

Point count surveys for birds were conducted at each plot center during the breeding season 

(May-July) no later than four hours after sunrise.   Each survey consisted of three, four minute counts 

during which each bird that was seen or heard was tallied along with the estimated direction and 

distance (0-25m, 25-50m, greater than 50m) (Hamel et al. 1996). At the beginning of each survey, 

the temperature was recorded (°C) along with the date and time. 

 

Stand Projections 

The Southern variant of FVS was used for stand projection. Three different management 

scenarios were produced for each stand; (a) No Management, (b) even-aged, and (c) single-tree 

selection using the Proportional-B Method. Even-aged simulations were repeated at three 

different planting densities (741, 1112, and 1483 trees per hectare).  All projections with FVS 

started in 2008 and were for run 100 years at five-year intervals.  For the purposes of this project 

the hardwood sprouting module (SPROUTING) was turned off in the FVS program and all 

regeneration was simulated manually.  The hardwood sprouting module tends to overestimate the 

amount of reproduction when simulating management.    
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For the No Management simulations no management treatments were simulated in FVS.  

The stands were projected for 100 years with neither anthropogenic nor natural disturbance. 

In the three even-aged simulations run for each stand, the current existing trees were 

clearcut in 2008 and replanted in 2009 with 741, 1112, and 1483 trees per hectare, respectively, 

assuming 90% survival.  Alternating summer and winter burns were simulated every 5 years 

starting in 2013.  Winter burn parameters were: wind speed of 8mph, dry, 21C, 70% of the area 

burned, Fire and Fuels extension (FFE) mortality off, and season 2 (before green up, winter).  

Summer burn parameters were:  wind speed of 8mph, dry, 21C, 70% of the area burned, FFE 

mortality off, and season 3(before fall, summer).  The FFE mortality is turned off because it over 

estimates the mortality of trees in the stand.  In running a number of simulations it was found 

that if the FFE mortality is turned on during a simulated burn all the trees are killed, no matter 

the species.  However, fire is an important factor for both tree mortality and understory cover, 

and should have a greater influence on understory development. 

  Each stand was grown for a 60-year period, during which time a thin from below was 

applied when BA exceeded 18.3m
2
ha

-1
 or when growth was being impeded, on average 2 times 

during the rotation for 741 and1112 trees per hectare, and 3 times for 1483 trees per hectare.  A 

final harvest took place in 2068.  In 2069, the stand was replanted at the same initial planting 

density.  The same management parameters were applied throughout the second rotation until the 

end of the projection in 2108.     

For the single-tree selection simulation using the Proportional-B Method, each stand was 

prescribed a unique treatment based on the initial stand structure in 2008.  In the Pro-B method 

three broad size classes are used to proportionally distribute basal area.  A total amount of 

residual basal area is set (i.e. 13.8 m
2
ha

-1
).  Then, an approximate proportion of 3:2:1 is used to 
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distribute basal area among the size classes, with the largest size class having the most basal 

area.  For this project size classes were always set to 5 to 20cm DBH, 20 to 35 cm DBH, and 

greater than or equal to 35cm DBH
1
.  If the stand was missing either the 20 to 35cm or greater 

than or equal to 35cm size class, the initial stand structure was deemed inappropriate to apply 

Pro-B.    In this case, the stand was converted to an uneven-aged structure as per Loewenstein 

(2005) before Pro-B was implemented.  The conversion process took between 15 and 40 years 

depending on the initial stand structure.  The largest diameter tree (LDT) was set to equal the 

largest tree existing in the stand.  Typically LDT is set to the largest DBH a nearby mill could 

handle.  However, that restriction was not taken into account.  Also, Barbour WMA’s 

management plans include long term restoration of longleaf pine into old growth stands.  

Therefore, the LDT was allowed to continually change based on the growth of the trees present.  

Residual basal area (RBA) was set to 13.8m
2
ha

-1
, and Q=1.3 (for 5cm classes).   

If the current structure fit the parameters for an uneven-aged stand Pro-B was 

implemented immediately.  The LDT was set to equal the largest tree existing in the stand.  

Residual basal area (RBA) was set to 13.8 m
2
ha

-1
, and Q=1.3.  Harvest of trees was applied using 

Table 1 to cut each size class to the appropriate BA for each cutting cycle.  Subsequent harvests 

were applied when the stand accrued 3.6 m
2
ha

-1
 to 6.9 m

2
ha

-1
 of BA or roughly 10 or 15 year 

cutting cycles.  Because FVS-sn projects growth at 5-year intervals, cutting cycles for the Pro-B 

method were simplified to fall on an existing cycle boundary; in practice, cutting cycles tend to 

fall between 7 to 15 years.   

One of Barbour WMA management objectives is to restore the Longleaf pine ecosystem 

(open pine woodland); however it is not currently present on the property.  Loblolly pine can 

                                                 
1
 These are approximated from English units. Size classes equal 2-6in, 8-12in and greater than 14in for the 

equivalent English units. 
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also form an open pine woodland.  Therefore, if loblolly pine was present it was kept as a main 

component of the stand to surrogate for longleaf until it can be established.    

All cuts were made by using the “thin throughout a diameter range” option.  The “thin 

throughout a diameter range” option allows for the user to define diameter classes and cut those 

classes to a defined amount of BA.  As seen in Table 1, defining diameter classes and cutting 

those classes to defined amounts of BA is the easiest way to apply Pro-B in FVS.   

All reproduction was simulated manually to adequate levels for structure to be 

maintained, meaning enough regeneration was simulated to maintain levels of BA needed in the 

smallest diameter class.  Composition of the simulated regeneration was decided by the dominate 

species within the initial stand structure, and were attempted to be kept proportional to the 

dominate canopy.   

 Using the “Compute Stand Variables with SpMcDBH” function canopy cover was 

calculated for every cycle in the simulation.  Midstory cover was calculated with “Compute 

Stand Variables in Editor”.   A code that defined our definition of midstory cover was written 

(pers. comm. With C. Keyser
2
) and calculated for each cycle.  All other structural characteristics 

needed for calculation of probability of use (BA, TPA, and Canopy height) through the 

occupancy models were pulled from the main FVS output and compiled into an Excel worksheet.   

Of the 100 points sampled on Barbour WMA only 84 were considered to be forested 

stands and were used for simulation.  Of the 100 points sampled 16 were considered to be 

openings.  These were not projected because it is presumed that most of them will perpetually 

remain as openings or food plots.  However, a higher amount of canopy cover than would be 

                                                 
2
 
 
Chad Keyser, Forester, USFS Forest Management Service Center - FVS Staff, October 4-13, 

2010.  
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expected was present in some openings.  Plots were placed randomly.   Depending upon how big 

the opening was and where in the opening the plot was located, it could be located closer to a 

forested edge.   

Only 69 of the forested stands were used for the even-aged simulations; the 15 

bottomland stands were excluded because it is assumed that they would not be converted to 

longleaf.  The Pro-B method was applied to 82 stands; Pro-B was applied to 23 immediately, 38 

stands went through conversion from an even-aged structure, 21 stands had to grow before Pro-B 

was implemented, and 2 never developed the proper structure to implement Pro-B during the 

simulations. 

 

Vegetative Cover Projections 

FVS does not provide an estimate for the reproductive or ground cover layers; both of 

which are known to influence occupancy by certain wildlife species.  Linear regression models 

(R ver. 2.12.0) were created to project the amount of reproductive cover and ground cover at 

each time step.  Multi-model inference was used to estimate model coefficients.  Multi-model 

inference is a statistical technique based upon the concept of multiple working hypotheses where 

alternative plausible models are assessed and ranked based on relative likelihoods according to 

Akaike’s information criterion (AIC) given the data presented (Anderson et al. 2000, Burnham 

and Anderson 2002).  Although AIC does not use a significance level, it ranks the models based 

on fit to the data and the principle of parsimony (Anderson et al. 2000).  The weight given for 

each model can be interpreted as the approximate probability that that model is the best model in 

the set of models considered (Anderson et al. 2000).   Using multi-model inference allows the 

model parameters to be averaged overall the models in the a priori set, weighted by their 
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performance, rather than picking the best model in the set (Anderson et al. 2000).  According to 

Anderson et al. (2000) the averaged model parameters often have better predictive ability and 

reduced bias than the best model.    

A global model was created to include all potentially influential variables for each layer 

of cover (pers. comm. E. Loewenstein
3
). The global model parameters for reproductive cover 

consisted of the variables canopy cover, midstory cover, basal area (m
2
 ha

-1
), and trees per 

hectare.  The global model parameters for ground cover consisted of canopy cover, midstory 

cover, reproductive cover, percent basal area hardwood, basal area (m
2
 ha

-1
), and trees per 

hectare.  The model parameters from all the a priori models were averaged to perform the multi-

model inference.  Relative importance of each variable was calculated, and only variables with 

an importance value of greater than 0.5 were included in the finished model.  Variance inflation 

factors and comparisons of r
2
 values were used to test for collinearity after the models were 

created.  

 

Occupancy Models        

 Occupancy models were created by the Alabama Corporative Fish and Wildlife Research 

Unit using vegetation structure variables combined with bird point count data.  Rather than using 

an averaged model, as was developed to predict cover variables, top or best model was used 

(Table 2).  The best model was used because averaged models were not available at the time of 

the study.  The best model is the most applicable or has the highest likelihood of being correct 

from the list of generated models.   

                                                 
3
 Dr. Edward F. Loewenstein, Associate Professor of Silviculture, Auburn University School of Forestry and 

Wildlife Science, October 22, 2010 
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Probability of use was calculated at each time step interval using stand projections from 

FVS, cover models, and the occupancy models for each focal species.  The Yellow-breasted Chat 

model included a landscape component, edge density, which could not be simulated in FVS.  

Edge is defined as a border of one area to another, like forest to field or forest to road.  The 

amount of edge is given as a continuous variable with a value between -1 and 1.   One represents 

forest interior with no edge (0%), while -1 represents a completely open field with no edge (0%).  

Zero represents the maximum amount of edge present (100%).  So, positive numbers less than 

one are forested with edge and negative numbers greater than -1 are open with edge.  Edge was 

held constant at three levels (0, 0.5, and 1) to represent various forested situations with edge that 

would be present throughout Barbour WMA.   
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Figure 2: Map of Barbour Wildlife Management Area.   
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Figure 3: Grid layout used for measuring cover at each of the four layers.  At each point on the 

grid the presence or absence of cover was recorded for the canopy, mid-story, 

reproductive/shrub, and herbaceous/ground cover layers using a “moose horn” densitometer.  In 

order to sample the layers below the scope of the “moose horn” densitometer, because it 

generally points up, it was flipped over to point down.  The radius is 25m and the distance 

between points is 6.25m.   
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Table 1. Amount of basal area (m
2
ha

-1
) remaining in each size class based on the largest diameter 

tree, residual basal area of 13.8m
2
ha

-1
, and Q of 1.3.  This table was used to determine how much 

basal area should remain in each size class for the Proportional-B Method cuts being made in the 

single-tree selection projections.   

    

Size Class 

 LDT   5-20 cm  20-35cm  35+ cm 

            (cm)   (m
2
ha

-1
)                       (m

2
ha

-1
)                     (m

2
ha

-1
)        

 50.8    1.73     4.74     7.31 

 55.9    1.56     4.22     7.98 

 61.0    1.41     3.85     8.50  

 66.0    1.31     3.58     8.87  

 71.1    1.24     3.36     9.19   

 76.2    1.16     3.19     9.41  

 81.3    1.11     3.06     9.61 

 86.4    1.06     2.94     9.76 

 91.4    1.04     2.84     9.88   

 96.5    1.01     2.79     9.98 

           101.6    0.99     2.72     10.1 



 

 

 

3
4 

Table 2. The best (most likely) occupancy model for each focal species on Barbour Wildlife Management Area in the East Gulf 

Coastal Plain of Alabama.  Psi (Ψ) represents the probability of use, where P (p) represents the detection probability for each species.  

While AICc,  -2*ln(Lik), and Delta are presented for informative purposes, they should not be used for inter-specific comparisons.  

 

 

   Model    AICc    -2*ln(Lik)  Delta       Model        Model   K 

                Likelihood   Probability 

Pine Warbler         Ψ Canopy height + Canopy Cover +   132.274   114.709     0  1 .762  8 

            Midstory Cover+ Reproductive Cover  

                   +Ground Cover  pdate  

 

Wood Thrush        Ψ Reproductive Cover pwind  229.418    221.001     0  1 .101  4 

 

Yellow-breasted    ΨEdge Density + Canopy Cover +  323.318    305.753     0  1 .390  8 

        Chat        Reproductive Cover  + Midstory 

            Cover + Ground Cover  p wind 

 

Prairie Warbler     ΨCanopy Cover + Reproductive Cover  186.334    175.702     0  1 .114  5 

        Pwind 
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CHAPTER 4 

 

RESULTS 
 

 

Stand Demographics 

Of the 100 stands inventoried on Barbour WMA, 84 stands were forested, and 16 stands 

were classified as openings.  The average canopy cover for the openings was 12.1% (±14.5), 

average midstory cover 15.1% (± 15.7), average reproductive cover 25.9% (± 22.8), and average 

ground cover 63.9% (± 27.6).  The average canopy cover in forested stands was 59.2% (± 22.3), 

average midstory cover 58.9% (± 23.9), average reproductive cover 49.8% (± 22.0) and average 

ground cover 58.4% (± 21.8). 

In forested stands, an average of 15.4 (± 6.1) snags were tallied per hectare.  The average 

DBH for all snags measured in forested areas was 21.2cm ± 12.5cm (n=258).  Species of snags 

measured in forested stands included Ulmus spp., Fagus granifolia, Betula spp., Quercus spp., 

Prunus spp., Cornus spp., Pinus spp., Acer rubrum, Salix spp., Liquidambar styraciflua, and 

Liriodendron tulipifera.  Pine snags (Pinus spp.) had an average DBH 22.6cm ± 11.0cm (n=145) 

in the forested stands, and oak snags (Quercus spp.) had an average DBH 27.1cm ± 18.4cm 

(n=20).  All hardwood snags (includes oaks) had an average DBH of 19.6cm ± 14.0cm (n=113). 

Openings had an average of 6.8 (± 17.9) snags per hectare.  The average DBH was 11.7cm 

(n=22, ± 8.6cm).  The species of snags measured in the opening included Quercus 
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 spp., Prunus spp., Cornus spp., Pyrus spp., Pinus spp., Liriodendron tulipifera and Liquidambar 

styraciflua. 

A variety of tree species were measured for canopy height, including Ulmus spp., Nyssa 

sylvatica, Quercus spp., Pinus spp., Acer rubrum, Carya spp., Liquidambar styraciflua, and 

Liriodendron tulipifera.  The average height of the tallest trees measured was 21.8m ± 7.9m 

(n=250).  For species specific information see Table 3.     

The SI50 had a range of values from of longleaf pine was 21 to 24m.  The range SI50 of 

loblolly pine was 26 to 32m. 

In forested plots an average of 3.1cm ± 1.2cm of duff was measured.  In open stands the 

average of duff was 0.4cm ± 0.5cm.  The average amount of basal area in forested stands was 

16.8m
2
ha

-1
 ± 8.2m

2
 ha

-1
.  In openings the average amount of basal area was 2.5m

2
 ha

-1
 ± 4.0m

2
 

ha
-1

. 

Of the 84 stands classified as forested 22 were loblolly pine plantations. The plantations 

ranged in age from 13 to 40 years.  The SI50 for loblolly for all plantations ranged from 26 to 

32m; although SI25 is normally used for plantations the SSURGO database only provides SI50.    

Canopy cover, midstory cover, reproductive cover, and ground cover do not follow a discernable 

pattern with plantation age (Table 4).  Average DBH increased with the age of the plantation 

(Table 4).  There were on average 12.0 snags (± 11.0) per hectare for all plantations, however the 

number varied by plantation age.   

Of the 84 stands 15 were classified as bottomland hardwoods (bottomlands).  The 

bottomlands averaged 65.3% (± 23.2) canopy cover, had an average midstory cover of 72.4% (± 

12.9), an average reproductive cover of 52.3% (± 19.1), and an average ground cover of 58.4% 

(± 16.5).  There were on average 12.0 snags (± 14.0) per hectare.  The tallest trees in these stands 
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averaged 21.4m ± 7.1m (n=45).  The average amount of duff was 1.6cm ± 1.0cm.  The average 

basal area was 21.2 m
2
 ha

-1
 ± 8.2 m

2
 ha

-1
.  The SI50 for longleaf ranged from 23 to 24m while the 

SI50 for loblolly ranged from 27 to 32m.    

The other 47 stands were mixed hardwood-pine and pine-hardwood stands.  The only 

pine measured was loblolly pine.  The mixed stands averaged 57.8% (± 21.3) canopy cover, had 

an average midstory cover of 61.3% (± 22.9), an average reproductive cover of 54.5% (± 22.2), 

and an average ground cover of 58.7% (± 22.8).  There were on average 18.5 snags (± 29.0) per 

hectare.  The tallest trees in these stands averaged 22.9m ± 8.4m (n=129).  The average amount 

of duff was 2.1cm (± 1.1cm).  The average basal area was 15.3 m
2
 ha

-1
 ± 7.2 m

2
 ha

-1
. The SI50 for 

longleaf ranged from 21 to 24m while the SI50 for loblolly ranged from 26 to 32m.  

Vegetative Cover Projections 

 The linear regression model generated and used for reproductive cover was: 

 Reproductive Cover = 36.7 + 0.397Midstory Cover – 0.412 Basal Area  

Table 5 has a complete list of models with AIC and weight.  The averaged model parameters 

from all the a priori models can be found in Table 6.  Relative importance values for each 

parameter can be seen in Table 7.    

For the reproductive cover model the variance inflation factors were 1.997 for canopy 

cover, 1.247 for midstory cover, 2.260 for basal area, and 1.355 for trees per hectare.  

Comparisons of r
2
 values between each of these variables can be seen in Table 8. 

The linear regression model generated and used for ground cover was: 

Ground Cover = 69.3 + 0.171 Reproductive Cover – 0.292 Midstory Cover – 0.00861 

Trees per Hectare  
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Table 9 has a complete list of models with AIC and weight.  The averaged model parameters 

from all the a priori models can be found in Table 10.  Relative importance values for each 

parameter can be seen in Table 11. 

 For the ground cover model the variance inflation factors were 3.139 for canopy cover, 

2.675 for midstory cover, 1.402 for reproductive cover, 1.529 for percent basal area hardwood, 

3.336 for basal area, and 1.438 for trees per hectare.  Comparisons of r
2
 values between each of 

these variables can be seen in Table 12.  

  

Stand Structure 

Diameter distributions were similar for all stands within each scenario.  In the no 

management simulation diameters are essentially normally distributed throughout time, however, 

there are occasional spikes in the smaller size classes.  Over the projection cycle the average 

stand diameter increases as the range of diameters increase, but the number of trees in each 

diameter class decreases, flattening the normal curve over time as can be seen in the truncated 

example presented in Figure 4; a full series of diameter distributions for a typical stand projected 

under the no management scenario can be found in Appendix A.  In the Pro-B simulations a 

reverse j-shaped or negative exponential curve was typically achieved after 40-years and 

maintained throughout the remainder of the simulation.  A truncated example is presented in 

Figure 5; a full series of diameter distributions for a typical stand projected under the Pro-B 

scenario can be found in Appendix B.  The same result was obtained for stands converted from 

an even-aged structure.  A truncated example presented in Figure 6; a full series of diameter 

distributions for a typical stand converted from an even-aged structure and then projected under 

the Pro-B scenario can be found in Appendix C.  All three of the even-aged scenarios maintain 
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normally distributed diameters throughout the projection as can be seen in the truncated example 

presented in Figure 7; a full series of diameter distributions for a typical stand projected under 

the even-aged scenario can be found in Appendix D.  However, the diameter growth rate 

decreases with increased planting density.  

Basal area increases to a stable point between 2043 and 2058 at around 46.8m
2
ha

-1
 in the 

no management projections (Figure 8).  In the Pro-B projections basal area is cut to 13.8m
2
ha

-1
 at 

the lowest point and allowed to grow to 17.3 m
2
ha

-1
 (Figure 8 and 9).  When conversion takes 

place before Pro-B is implemented there is more variation seen during that period (Figure 9), 

approximately 20 years, after which the stand structure is basically stable.   

When even-aged management is implemented stands follow the pattern seen in Figure 8, 

an sharp increase followed by a decline after thinning, then sharp increase followed by a decline 

after thinning, then a steady increase to the final cut in the rotation, regardless of planting 

density.  However, with the change in the planting density, the thinning schedule is modified 

because thinning operations were triggered at a BA threshold of 18.3m
2
ha

-1
 or when growth was 

being impeded.  In the 741 trees per hectare simulation reached that threshold at 30-years and 

40-years after initial planting; while in the 1112 trees per hectare simulation they were applied 

25-years and 40-years. Finally, in the 1483 trees per hectare simulation thinning was applied at 

25, 35, and 50-years after planting.   

Canopy cover follows trends similar to basal area development for all scenarios (Figure 

10).  Midstory cover has an initial decrease from 40% to 20% in the no management projection, 

then a short period of increase from 2013 to 2048, after which it declines to about 6% at the end 

of the projection (Figure 11).  The even-aged projection has no midstory cover after the initial 

clearcut.  In the Pro-B projection the amount of midstory cover varies throughout (Figure 11).  It 
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steadily increases from 2038 to 2073, and then generally decreases as it oscillates between 30 to 

40% for the remainder of the projection.   

Reproductive cover does not change much between the projection scenarios for the first 

50 years of the projection (Figure 12 and 13), staying within 10 to 20 percentage points of each 

other.  After year 50 there is 20 to 25% more reproductive cover in the Pro-B scenario than the 

no management scenario.  Differences in the amount of reproductive cover are a function of the 

amounts of cover present at the start of the projection (Figure 12 and 13).  Ground cover exhibits 

similar trends among the scenarios (Figure 14); the amount of ground cover did not differ by 

more than 15 to 20 percentage points among scenarios.  Ground cover always tended to increase 

throughout the projection, but only slightly.   

 

Probability of Use 

 The pine warbler is predicted to use stands under both the no management and Pro-B 

scenarios 100% of the time for 100% of the projection cycles.  Under the even-aged management 

scenarios, pine warbler probability of use was between 80 and 100% throughout the projection 

cycle (Figure 16).  The yellow-breasted chat’s probability of use varies with management 

scenario and the amount of edge.  With 0% edge in forested stands, the yellow-breasted chat is 

more likely to use even-aged stands over time (Figure 17).  When there is the 50% edge present, 

yellow-breasted chat is still more likely to use the even-aged projection (Figure 18).  When there 

is the 100% edge present yellow-breasted chat is even more likely to use the even-aged 

projection (Figures 19).  The wood thrush has less than a 30% probability of use under any 

management scenario (Figure 20).  The prairie warbler has the highest probability of use in the 
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even-aged scenarios over time, but will still use the other management scenarios between 20 to 

30% of the time (Figure 21).
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Table 3: Average height and age of trees measured on Barbour WMA.  

Species  Average Height (m)  Range of Height (m)  Average Age (years)  Range of Ages (years) 

Pinus tadea   20.9 (n=89)                     8.5 to 47.2         32.8 (n=71)            12 to 86 

Quercus nigra   23.6 (n=53)          9.7 to 40.0         51.8 (n=36)            15 to 95 

Quercus alba   20.4 (n=11)        13.4 to 27.1         60.0  (n=9)            22 to 107 

Quercus stellata  19.7  (n=7)        15.2 to 24.4         58.0  (n=7)            35 to 86 

Quercus rubra   15.8  (n=5)          5.5 to 23.8         63.0  (n=2)            59 to 67 

Carya spp.   21.8 (n=20)        12.5 to 40.2         52.1 (n=14)            23 to 97 

Lirodendron tulipifera 25.1 (n=19)        11.6 to 50.3   N/A     N/A 

Liquidambar styraciflua 19.5 (n=30)          3.0 to 35.1   N/A     N/A 
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Table 4: Average DBH, basal area, canopy cover (CC), midstory cover (MC), reproductive cover (RC), ground cover (RC), number of 

snags per hectare (Snags) and range of SI50 by loblolly pine plantation age.   

 

Plantation        N  DBH      Basal Area         CC       MC                RC            GC           Snags           Range of SI50  

Age (years)  (cm)         (m
2
 ha

-1
)            (%)                 (%)               (%)               (%)           (per Hectare)               (m) 

≤ 15             4       16.5±1.7       5.3±3.6         46.0±34.8      55.5±14.7      41.0±24.1     60.0±11.2         7.5±11.9                   27 

15 to 20           2       17.5±3.5       9.8±5.9     73.0± 9.9       64.0± 5.7      41.0± 4.2      20.0±11.3        10.0±14.1                  27     

20 to 25           5       24.2±4.1       7.8±4.3          68.0±13.0      32.8±26.3     28.8±23.9     54.4±28.4        19.0±11.9             27 to 32 

25 to 30           6       33.5±1.6       4.3±1.5          40.7±12.4      23.7± 9.1      41.3±14.6     80.3± 8.7         14.2±11.1             26 to 32 

≥ 30              5       34.4±5.6       5.6±4.3          69.2±27.0      54.4±35.6     38.4±21.2     44.8±25.1          6.0±8.2               26 to 29 
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Table 5: Complete model list for the Reproductive Cover regression model.    

 

Model  Intercept BA
1
           CC

2
    MC

3
          TPH

4
   k AIC

5
  AICc

6
             Delta

7
  Weight 

            (m
2
ha

-1
)            (%)           (%)    

    7      36.44        -1.5810                        0.4084                         4 748.5   749.0    0.000      0.312 

    9       38.06              -0.20390        0.4040               4  749.7  750.2   1.197    0.172 

   14     37.13        -1.9000                        0.3988      0.003021   5 749.7  750.5  1.469    0.150 

   12    38.38        -1.1910        -0.09280        0.4234    5 750.1  750.9  1.816    0.126 

    4      30.60                                  0.3257       3 751.2  751.5  2.476    0.091 

   15                   38.24                           -0.21310         0.3988      0.001009     5 751.6  752.4    3.358      0.058 

   16    38.97        -1.5190       -0.08843   0.4234      0.002953   6  751.3  752.4  3.376    0.058 

   11     30.69       0.3306     -0.000556   4 753.2  753.7  4.651    0.031  

    1    49.79          2 760.5  760.6            11.590    0.001 

    5    48.17           0.002396   3 761.9  762.2            13.180    0.000     

    2    52.79        -0.4431        3 762.1  762.4            13.370    0.000     

    3    51.30      -0.02563                 3 762.4  762.7            13.680    0.000   

    8    53.24        -0.9596          0.00451   4 762.6  763.1            14.080    0.000 

   10    51.31      -0.06004       0.00301   4 763.6  764.1              15.110    0.000   

    6    51.79        -0.6127         0.03623       4 764.1  764.6            15.520    0.000  

   13    52.21        -1.1350     0.03731       0.00452    5 764.6  765.3            16.280    0.000 

 
1
 Basal Area (m

2
ha

-1
) 

2
 Canopy Cover (%) 

3
 Midstory Cover (%) 

4
 Trees per Hectare 

5
AIC ranks the models to provide the best model using the available information.   

6
AICc is the adjusted weight for small sample size.   

7
Delta is the change in AIC from the best model.   
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Table 6: Averaged model parameters for Reproductive Cover Regression Model.  

 

Parameter   Coefficient   Variance  Standard Error 

Intercept      36.7   2.67        7.14 

Basal Area (m
2
ha

-1
)  -0.412   1.09        0.0945 

Canopy Cover (%)  -0.0642  1.88        0.106 

Midstory Cover (%)   0.397   1.31        0.106 

Trees per Hectare 0.00067  2.44        0.00404 
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Table 7: Relative variable importance for the Reproductive Cover Regression Model.  

 

Variable                            Importance
1 

 Basal Area (m
2
ha

-1
)         0.65 

 Canopy Cover (%)         0.41 

 Midstory Cover (%)         1.00 

 Trees per Hectare         0.30  

 
1
 An importance value of greater than 0.5 was used to determine which variables should be 

included in the model.  
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Table 8: Comparison of r
2
 values between variables modeled in the reproductive cover model. 

 

   CC
1
(%) MC

2
(%)  BA

3
 (m

2
ha

-1
)   TPH

4
  

CC
1
(%)  1.000  0.412      0.687  0.342   

MC
2
(%)  0.412  1.000      0.382  0.279 

BA
3
 (m

2
ha

-1
)   0.687  0.382      1.000  0.502 

TPH
4
   0.342  0.279      0.502  1.000

 
 

 
1
 Canopy Cover 

2
 Midstory Cover  

3
 Basal Area 

4
 Trees per Hectare 
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Table 9: Complete model list for the Ground Cover regression model.  

 

Model           Intercept      BA1         CC2                   MC3              %BAHW4       RC5         TPH6                          k            AIC7           AICc8             Delta9       Weight 

     (m2ha-1)         (%)                    (%)                                       (%) 

41             69.26                                          -0.2863                          0.21890    -0.008462            5       892.5       893.1       0.000     0.243 

51             67.71       0.75860                      -0.3404                          0.23540    -0.009844            6       893.5       894.4       1.240     0.130 

55             67.54                       0.08177      -0.3367                          0.22880    -0.009031            6       893.8       894.7       1.584     0.110 

57             68.88                                          -0.3146        3.694         0.20770    -0.008286            6       894.1       895.0       1.866     0.095 

19             74.59                                          -0.1938                                           -0.008593            4       895.4       895.9       2.733     0.062 

62             67.40       0.73890                      -0.3654        3.437         0.22470    -0.009644            7       895.1       896.3       3.207     0.049 

63             67.09                       0.08418      -0.3679        3.876         0.21750    -0.008864            7       895.4       896.6       3.457     0.043  

60             67.38       0.61430   0.02979      -0.3485                          0.23590    -0.009788            7       895.4       896.6       3.501     0.042 

40             73.56                                          -0.2464        5.893                          -0.008302            5       896.4       897.1       3.949     0.034 

29             73.90       0.45940                      -0.2223                                           -0.009436            5       897.1       897.7       4.584     0.025 

35             73.64                       0.05305      -0.2238                                           -0.008966            5       897.2       897.8       4.674     0.023 

64             66.98       0.56120   0.03650      -0.3763        3.578         0.22480    -0.009568            8       897.0       898.6       5.491     0.016 

50             72.89       0.44910                      -0.2739        5.846                          -0.009128            6       898.1       899.0       5.860     0.013 

54             72.45                       0.05908      -0.2816        6.093                          -0.008708            6       898.1       899.0       5.869     0.013 

18             68.25                                          -0.3713                          0.22450                                4       898.6       899.0       5.901     0.013 

7               66.17                                                                                                 -0.011270            3       899.2       899.5       6.355     0.010 

45             73.65      0.34620    0.02325      -0.2284                                           -0.009392            6       899.0       899.9       6.818     0.008 

39             67.74                                          -0.4092        5.277         0.20850                                5       899.9       900.5       7.360     0.006 

16             69.67                                          -0.0820                                           -0.010050            4       900.3       900.7       7.577     0.005 

22             63.17                                                                                0.07005    -0.011630            4       900.6       901.1        7.926    0.005 

28             68.75     -0.22070                       -0.3515                         0.21940                                 5       900.5       901.2        8.021    0.004 

12             68.17     -0.47580                                                                              -0.009985            4       900.7       901.2        8.023    0.004 

34             67.98                       0.01242      -0.3798                          0.22610                                5       900.6       901.2        8.103    0.004 

59             72.49      0.27860    0.03498      -0.2843        5.982                          -0.009055            7       900.0       901.2        8.104    0.004 

21             67.62                                                             -2.563                          -0.011080            4       901.0       901.4        8.269    0.004 

4               73.71                                          -0.2777                                                                       3       901.4       901.7        8.538    0.003 

38             66.50                      -0.09745                                            0.08942    -0.010290            5       901.3       902.0        8.839    0.003 
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Table 9: Complete model list for the Ground Cover regression model.   

 

Model           Intercept      BA1         CC2                   MC3              %BAHW4       RC5         TPH6                          k            AIC7           AICc8             Delta9       Weight 

     (m2ha-1)         (%)                    (%)                                       (%) 

17             72.43                                           -0.3409        7.487                                                      4       901.9       902.3      9.200     0.002 

42             64.46                                                              -4.833         0.10380    -0.011450            5       901.9       902.5      9.363     0.002 

32             65.10      -0.54160                                                             0.07832    -0.010220            5       902.0       902.6      9.495     0.002 

49             68.24      -0.22050                      -0.3894         5.276         0.20340                                6       901.8       902.7      9.527     0.002 

53             67.35                        0.01751      -0.4216        5.337         0.21050                                6       901.8       902.7      9.594     0.002 

37             70.13                       -0.07601                         -1.266                          -0.010040           5        902.2      902.9       9.736     0.002 

26             69.66       0.03224   -0.08506                                                             -0.010090           5        902.3      902.9       9.793     0.002 

44             68.08      -0.49620    0.05912     -0.3674                           0.22050                               6        902.3      903.2     10.090     0.002  

31             68.84      -0.41140                                          -1.655                          -0.010040           5        902.6      903.3     10.140     0.002 

9               74.50      -0.46240                      -0.2406                                                                       4        903.0      903.4     10.290     0.001 

13             74.00                       -0.01546     -0.2679                                                                       4        903.4      903.8     10.690     0.001 

56             67.00                       -0.08440                         -3.565         0.11180    -0.010340           6        902.9      903.8     10.700     0.001 

27             73.19      -0.43740                      -0.3050         7.378                                                     5        903.5      904.2     11.040     0.001 

48             66.48       0.07137                      -0.1042                           0.08967    -0.010380           6        903.3      904.2     11.100     0.001 

52             65.68      -0.41040                                          -3.925         0.10380    -0.010410           6        903.5      904.4     11.280     0.001 

33             72.54                       -0.00566     -0.3371         7.460                                                     5        903.9      904.5     11.410     0.001 

58             67.44      -0.53950    0.06844     -0.4095         5.513         0.20400                               7        903.5      904.7     11.580     0.001 

47             70.13       0.06381   -0.08183                         -1.308                          -0.010130           6        904.2      905.1     12.000     0.001 

23             73.93      -0.70530    0.05188     -0.2541                                                                       5        904.9      905.5     12.370     0.001 

61             66.97       0.17120   -0.10010                         -3.708         0.11330    -0.010560           7        904.9      906.1     12.980     0.000 

43             72.44      -0.74330    0.06550     -0.3240         7.611                                                     6        905.3      906.2     13.070     0.000 

2               68.30      -1.53800                                                                                                         3        907.1      907.4     14.260     0.000 

3               69.19                       -0.19130                                                                                        3        908.3      908.5     15.380     0.000 

11             66.09      -1.60300                                                             0.05638                               4        908.8      909.2     16.170     0.000 
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Table 9: Complete model list for the Ground Cover regression model.   

 

Model           Intercept      BA1         CC2                   MC3              %BAHW4       RC5         TPH6                          k            AIC7           AICc8             Delta9       Weight 

     (m2ha-1)         (%)                    (%)                                       (%) 

8               69.48      -1.14500   -0.06723                                                                                        4        908.9      909.3     16.170     0.000 

10             68.66      -1.50600                                          -0.898                                                     4        909.1      909.5     16.400     0.000 

15             66.86                       -0.20450                                            0.06555                               4        909.8      910.2     17.080     0.000 

14             69.68                       -0.18470                         -1.367                                                     4        910.2      910.6     17.490     0.000 

25             67.17      -1.14200   -0.08073                                             0.06490                               5      910.4       911.1     17.930    0.000 

30             66.46      -1.53400                                          -2.454          0.07202                               5      910.6       911.2     18.120    0.000 

24             69.70      -1.13200   -0.06568                         -0.614                                                      5      910.9       911.5     18.380    0.000 

1               59.30                                                                                                                               2      911.7       911.8     18.700    0.000 

36             67.30                       -0.19350                         -3.117          0.08498                               5       911.5       912.2    19.020    0.000 

5               62.40                                                              -5.092                                                      3       912.8       913.1    19.930     0.000 

46             67.48      -1.09300   -0.07796                        -2.269           0.07908                              6        912.3       913.2    20.040     0.000 

6               58.82                                                                                   0.01046                              3        913.7       913.9    20.810    0.000 

20             60.60                                                             -6.366            0.05618                              4        914.5       914.9    20.810    0.000 

 
1
 Basal Area (m

2
ha

-1
) 

2
 Canopy Cover (%) 

3
 Midstory Cover (%) 

4
 Percent Basal Area of Hardwoods (%) 

5 
Reproductive Cover (%) 

6 
Trees per Hectare 

7
AIC ranks the models to provide the best model using the available information. 

8
AICc is the adjusted weight for small sample size. 

9
 Delta is the change in AIC from the best model.  

  



 

51 

 

 

Table 10: Averaged model parameters for Ground Cover Regression Model.  

 

Parameter   Coefficient   Variance  Standard Error 

Intercept     69.3000   9.75       5.550 

Basal Area (m
2
ha

-1
)         0.1820   1.02       0.428        

Canopy Cover (%)          0.0157   2.14       0.0467           

Midstory Cover (%)       -0.2920   2.63       0.120           

Percent BA of HW          1.1800   2.21       2.850           

Reproductive Cover(%)  0.1710   2.76       0.127           

Trees per Hectare           -0.00861   1.75       0.00345
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Table 11: Relative variable importance for the Ground Cover Regression Model.  

 

Variable                            Importance
1 

Basal Area (m
2
ha

-1
)         0.31 

Canopy Cover (%)                    0.29 

Midstory Cover (%)         0.95 

Percent BA of HW         0.29 

Reproductive Cover (%)        0.78 

Trees per Hectare         0.95  

 
1
 An importance value of greater than 0.5 was used to determine which variables should be 

included in the model. 
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Table 12: Comparison of r
2
 values between variables modeled in the ground cover model. 

 

      CC
1
    MC

2
  RC

3
   BA

4
   %BH

5
   TPH

6 

CC
1
           1.000  0.645            0.233            0.795  0.310  0.402 

MC
2
           0.645             1.000              0.490               0.598             0.558             0.367 

RC
3
           0.233             0.490            1.000            0.182  0.404  0.164  

BA
4
           0.795              0.598            0.182            1.000  0.315             0.535 

%BH
5
           0.310             0.558            0.404            0.315             1.000               0.129 

TPH
6 

            0.402             0.367            0.164            0.535  0.129  1.000 

 
1
Canop Cover (%) 

2
Midstory Cover (%) 

3
Reproductive Cover (%) 

4
Basal Area (m

2
ha

-1
) 

5
Percent Basal Area Hardwood (%) 

6
Trees per Hectare 

 



 

54 

 

 

     
 

 

Figure 4: Diameter structure of a typical stand under the no management scenario at 20-year 

intervals during the 100-year projection.   
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Figure 5. Diameter structure of a typical stand under the Proportional-B scenario at 20-year 

intervals during the 100-year projection.   
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Figure 6: Diameter structure of a typical stand converted from an uneven-aged structure then 

utilizing the Proportional-B method at 20-year intervals during the 100-year projection.    
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Figure 7:  Diameter structure of a typical stand under the even-aged management scenario at 20-

year intervals during the 100-year projection.     
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Figure 8: Basal Area in typical stands under each of the three management scenarios as affected 

by harvest operations.
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Figure 9: Basal Area in a stand that was converted from an even-aged structure before 

implementing proportional-B compared to a stand on which proportional-B was immediately 

implemented.  Note the conversion period from 2008 to 2033. 
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Figure 10: Canopy cover of a typical stand under each of the three management scenarios over 

the projection cycle.  
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Figure 11: Midstory cover of a typical stand under each of the three management scenarios over 

the projection cycle. 
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Figure 12: Reproductive cover found of a typical stand under each of the three management 

scenarios over the projection cycle.



 

63 

 

 

 

 

 

 
 

Figure 13: Reproductive cover of a typical stand under each of the three management scenarios 

over the projection cycle. 
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Figure 14: Ground cover of a typical stand under each of the three management scenarios over 

the projection cycle. 
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Figure 15: Ground cover of a typical stand under each of the three management scenarios over 

the projection cycle.
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Figure 16: Probability of use by the pine warbler over the 100 year projection cycle under each 

of the three management scenarios.  
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Figure 17: Probability of use by the yellow-breasted chat over the 100 year projection cycle 

under each of the three management scenarios.  Edge density was held constant at 1 to simulate a 

forested stand with 0% edge. 
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Figure 18: Probability of use by the yellow-breasted chat over the 100 year projection cycle 

under each of the three management scenarios.  Edge density was held constant at 0.5 to simulate 

a forested stand with 50% edge.
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Figure 19: Probability of use by the yellow-breasted chat over the 100 year projection cycle 

under each of the three management scenarios.  Edge density was held constant at 0 to simulate a 

forested stand with 100% edge.
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Figure 20: Probability of use by the wood thrush over the 100 year projection cycle under each 

of the three management scenarios.  
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Figure 21: Probability of use by the prairie warbler chat over the 100 year projection cycle under 

each of the three management scenarios.  
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CHAPTER 5 

 

DISCUSSION 

 

 

   

The management scenarios used for this decision support tool were based upon current 

management objectives, or ideas for how management could potentially be implemented on 

Barbour WMA.  Since, Barbour WMA is managed by the ALDCNR the stated objective is to 

promote statewide stewardship and enjoyment of the natural resources of Alabama and to ensure 

that future generations will be able to enjoy these resources.  Specifically, Barbour WMA is 

using that over arching objective to restore the longleaf pine ecosystem.  Longleaf pine is a 

valuable natural resource that without restoration will not be available for future generations.  By 

utilizing two different management scenarios that incorporated longleaf pine restoration, we are 

able to show managers on Barbour WMA plausible alternatives.     

Projecting a no management scenario allowed us to ascertain a baseline for what would 

happen on the property if no management were implemented.  No management is always an 

option.  However, even when management is planned, it is useful to know what successional 

direction nature would move the system in the absence of management or natural disturbance.  

The baseline that the no management projection provides allows for comparison to the other 

simulated management alternatives.     

Nevertheless, the model has inherent flaws and assumptions that need to be recognized 

when projecting scenarios.  Forest stands are dynamic (Oliver 1980, Franklin et al. 2002, Nyland 

2002) and might have other changes that the model is unable to detect.  Microhabitat conditions
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in a stand are constantly changing.  Microhabitat features like down dead wood and snags can 

change rapidly over time.  While the model is able to estimate average decay rates for snags and 

other dead wood, local weather conditions may increase or decrease those rates.   

The process of stand development is complex and allows for disturbances that kill trees 

and establish new cohorts of trees.   No natural events or disasters were simulated.  Many natural 

disasters or events would have to be simulated on a landscape scale, because these events rarely 

affect just one stand.  However, it is important to note that a hurricane or tornado would have an 

impact of the structure of the stand over time.  A large wind throw event is capable of taking 

down large trees.  Also, lightning strikes could start a catastrophic fire that is capable of 

changing the dynamics of the stand or the entire landscape. 

Continually, the no management scenario shows that there is no reproduction being 

added to the stand over time.  If this mirrored reality a stand of trees would eventually no longer 

exist.  However, in reality a stand would produce reproduction.  Generally, there would be a lot 

more small trees than large trees.  Instead of a normal distribution a reverse j-shape curve would 

be created, but unlike in the Pro-B scenario the Q value would be extremely large.   

   Longleaf pine restoration is a major focus for the property as well as for government 

owned properties throughout the southeast coastal plain (Dohner 2009).  Longleaf pine has 

traditionally been managed with even-aged silvicultural systems (Boyer 1979), which can use 

either natural or artificial regeneration.  In the projections for even-aged management artificial 

regeneration was used for longleaf pine because no longleaf was present on the site at the time of 

inventory. The even-aged approach to management can offer a variety of advantages. For 

example, in even-aged management, because the stand is relatively homogeneous, intermediate 

cuttings can be applied uniformly across the entire stand.   
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In the even-aged management scenarios a uniform structure and distribution was 

established and maintained through time.  Even-aged stands are expected to have a normal 

distribution (bell-shaped curve) through time.  With three starting planting densities (741, 1112, 

and 1483 trees per hectare) used, all three had a normal distribution over time.   

However, the diameter structure differed among the planting densities.   Higher initial 

planting densities decrease the DBH of largest diameter tree in the stand.  Higher densities result 

in more immediate competition among seedlings.  The site may become overstocked quicker 

(Nyland 2002), meaning the trees effectively occupy all the growing space, so that growth has 

slowed.  This may be a consideration when deciding which starting planting density to 

implement.  However, intermediate thinning treatments help to reduce some of these problems. 

Planting fewer trees per hectare drives the initial costs down.   However, the seedlings 

may face more competition from herbaceous or shrub cover early in development causing slower 

juvenile growth.  Instead of the available growing space being used for tree growth, herbaceous 

species, or weeds, are growing up into that available growing space.  This can lead to delayed 

canopy closure, reduced tree production, and increased mortality in the planted seedlings.   

Nevertheless, there is a benefit to the early stages of even-aged stands.  They effectively 

create ephemeral early successional habitat for several bird species.  Birds like the prairie 

warbler and yellow-breasted chat are often associated with early successional habitat and open 

areas.  Early successional habitat, like early stages of plantations, has dense areas of vegetation 

cover.  They are often highly diverse, which allows for several different food sources in these 

areas.            

The uneven-aged scenarios were unable to focus on longleaf pine, because there were not 

any present on the property at the time of the inventory in 2008.  Loblolly pine was present in 
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many of the mixed stands in sufficient quantities to act as a surrogate for longleaf pine.  

Although, loblolly pine is unlike longleaf pine in several ways, loblolly is not as long lived and is 

less fire resistant as a seedling, they both can be the dominate species in an open pine savanna.  

Using the mature loblolly pine as a surrogate for longleaf gives managers time to under plant 

longleaf pine.  Longleaf pine seedlings will be able to with stand the fire needed to create an 

open pine savanna, and will eventually replace loblolly as the dominate tree in the stands.  Open 

pine savannas are known to be the preferred habitat of bird species like pine warbler.  This 

intermediate treatment was designed to give the managers at Barbour WMA a way to create an 

open pine habitat while also restoring longleaf pine.   

Continually, uneven-aged systems maintain a continuous mature canopy across the 

property, which often appeals to landowners with multiple management goals (Palik et al. 2003, 

Van Lear et al. 2005).  In uneven-aged systems a portion of any given cohort is typically 

maintained on the site at all times, and this provides the stakeholder with a variety of benefits 

including aesthetics, steady timber revenues, natural plant communities, and wildlife habitat.   

Specifically, single-tree selection imitates the smallest scale of disturbance, such as 

lightning or disease, which typically kills only one or two mature trees (Guldin 2006).  Trees of 

all size-classes are individually selected for removal roughly uniform based on their condition 

and location in order to create the desired stand structure and to encourage the growth of the 

remaining trees (Johnson et al. 2002).  The Proportional-B method is a type of single-tree 

selection that uses three broad size classes to proportionally distribute basal area. The 

Proportional-B method is sufficient for a variety of species and has been tested in a variety of 

settings (pers. comm. E. Loewenstein
4
).  

                                                 
4
 Dr. Edward F. Loewenstein, Associate Professor of Silviculture, Auburn University School of Forestry and 

Wildlife Science, December 10, 2010 
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However, some scientists would say that longleaf pine is not fit for single tree selection 

because regeneration of these shade intolerant species may be difficult to achieve in with 

insufficient sunlight (Wahlenberg 1946, Croker 1969, Croker and Boyer 1975).  Wahlenberg 

(1946) stated that it would be impractical to use the selection system in longleaf pine forests 

because the selection system is designed to produce all-aged stands, and that longleaf pine could 

not reproduce itself under such conditions.  However, Wahlenberg may have been unaware that a 

sustainable selection system may best be maintained with the episodic regeneration of a small 

number of regularly spaced age classes (Loewenstein et al. 2000, Loewenstein 2005).   

Group selection is often recommended and applied as an uneven-aged management 

system for intolerant species (Guldin 2006).  Group selection is another way of applying uneven-

aged silviculture by removing groups of trees to create larger gaps in the canopy.   Residual 

mature trees can hinder longleaf pine seedling growth and eventual recruitment, causing the 

surviving seedlings to cluster in canopy gaps (Brockway and Outcalt 1998, McGuire et al. 2001).   

However, a single-tree or group selection method more closely mimics frequent natural 

mortality (Outcalt 2008) and allows for varying the scale of disturbance similar to natural stand 

dynamics (Palik and Pederson 1996). Mimicking natural disturbance helps to build or maintain 

the complex old-growth structure (Schwarz 1907, Platt et al. 1988, Noel et al. 1998, Varner et al. 

2003).  Palik et al. (2002) describe the use of natural disturbance as a guide for uneven-aged 

silviculture. Under this model, varying methods can be used to copy various natural disturbances, 

from single-tree selection, which mimics lightning mortality, to group selection which is more 

similar to larger-scale disturbances.  

With the greater demand for ecosystem management and the broadened focus of forest 

management to include the production of other commodities such as recreation, wildlife and 
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water, the Pro-B method lends itself to achieving these requirements.  By managing stands using 

the uneven-aged management managers are more closely mimicking natural disturbances.     

One of the main objectives of natural resource management is sustainability.   To have 

sustainability natural resource managers need to balance natural resource utilization over a long 

time frame (Ascher 2001).  Therefore, one of the many goals of natural resource management is 

to fulfill the demand for a resource without injuring the ecosystem or jeopardizing the future of 

the resource. The Proportional-B method allows for by creating a stable stand structure.  

However, it requires maintenance and may not be the right fit for all species needs. 

 

Focal Species Responses 

 

 Reproductive cover is an important characteristic for the wood thrush; Mirarchi et al. 

(2004) state that having an understory of deciduous shrubs is important for this species breeding.  

The development of the stand with no management, or under natural conditions, follows known 

stages of stand development (Nyland 2002).  Over time as the amount of canopy cover increases, 

less light is able to infiltrate into the other layers of cover.  The amount of reproductive cover 

decreases (Figure 10 and 12), like in the stem exclusion phase of stand development (Oliver 

1980, Franklin et al. 2002, Nyland 2002).  Therefore, the no management scenario suppresses the 

amount of reproductive cover available to wood thrush.  In general, without management, the 

shrub layer declines; thus, the wood thrush tends to not use the structure.   

However, if the stand is uneven-aged most structural developmental processes actually 

operate throughout development and not at a single stage (Franklin et al. 2002).  Nyland (2002) 

describes four stages of stand development.  The first is stand initiation where the stand 

accumulates living vegetation.  Second is the stem exclusion phase where trees compete for 
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space and many stems die.  Third is the transition phase where gaps in the canopy allow for the 

permanent creation of an understory.  Lastly, the stand goes into a steady-state phase where the 

amount of biomass fluctuates but remains fairly stable over a long period. 

The Pro-B method distributes basal area proportionally between the overstory, midstory, 

and understory (Loewenstein 2005).  The development of the stand under a Pro-B management 

regime keeps the stand in the transition phase, which allows for the development of an 

understory.  Reproductive cover, which is important to wood thrush, is able to form and be 

maintained over time (Figure 12).  Even-aged management directly follows the known stages of 

stand development into the stem exclusion phase or part of the transition phase (Nyland 2002).  

Reproductive cover is created when the stand is initiated in 2009 but not but decreases 

throughout the entire rotation length that ends in 2068 (Figure 12).   

The reproductive cover models show the projected change in cover over time (Figure 12 

and 13).  However, they do not always reflect reality.  The no management prediction shows 

reproductive cover continuously declining over the projection (Figure 12 and 13).  However, in 

uneven-aged stand most structural developmental processes actually operate throughout 

development and not at a single stage (Franklin et al. 2002).         

The probability of use of the wood thrush declines in all management alternatives, when 

no management is implemented the largest decline is seen (Figure 20).  The only parameter that 

the wood thrush is responding to in its best occupancy model is reproductive cover (See Table 

2).  If an averaged model was used, it is possible that the wood thrush might have a response to 

other structural characteristics.      

 Prairie warbler tends to inhabit areas which lack a closed canopy or pastures with 

shrubby growth (Nolan et al. 1999).  While, none of the management scenarios maintain prairie 
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warbler’s ideal habitat, there are periods in the even-aged scenario where its ideal habitat, early 

successional habitat, is created.  When the initial clearcut is performed an area lacking a closed 

canopy with shrubby growth is created (Figure 10).  Stand initiation phase creates ideal habitat 

for prairie warbler (Nyland 2002).  Early successional habitats, like those created in the early 

stages of a clearcut, have higher stem densities that produce more cover for species that in 

habitat them.  Prairie warbler nests are often built within tree clumps of these early successional 

areas (Nolan et al. 1999) giving the nest protection.      

The general increase in probability of use for each management scenario by prairie 

warbler is due to its negative response amount of reproductive cover, showing that higher 

amounts of reproductive cover are not beneficial.  However, Nolan et al. (1999) note that the 

prairie warbler is typically found in southern pine forests where a shrub layer is present.  

However, the prairie warbler is also responding negatively to the amount of canopy cover; when 

the amount of canopy cover decreases the probability of use increases.   

Landscape scale components are not included in most of the occupancy models.  They 

way in which FVS was used do not have the capability to predict landscape scale characteristics.  

The prairie warbler is closely tied to early successional patches within in the forest matrix (Nolan 

et al. 1999).  The matrix of landscape patches is important to the prairie warbler.  The forest 

inventory that was conducted was not able to pick up on the matrix of the overall landscape on 

Barbour WMA.  Hopefully incorporating other modeling techniques that include other variables 

this relationship can be further explained and included.      

Yellow-breasted chat is considered a generalist, with a preference for edges (Eckerle and 

Thompson 2001). It is often found in low dense vegetation, like power-line corridors, fence 

rows, and forest edges (Eckerle and Thompson 2001).  The way in which the stand is developing 
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does not have an impact on the yellow-breasted chat, therefore management regime means little 

to this species.  However, because of this bird’s preference to edges, it has some association with 

early successional habitats, like the prairie warbler.  Early successional habitats, like those 

created in the early stages of a clearcut, have higher stem densities that produce more cover for 

species that in habitat them.  A wide variety of management regimes can be utilized if they are 

close to edges.        

The yellow-breasted chat’s probability of use varies with the amount of forested edge 

represented in the model.  The occupancy model for yellow-breasted chat is negatively correlated 

to edge, therefore, the more edge available the more yellow-breasted chat is likely to use that 

stand.  When edge is equal to 0, there is no difference between uses of the scenarios.  When there 

is no forested edge present (edge=1) it has preference for the even-aged scenario, especially in its 

early development.  Early stages of plantations are similar to edges or opening, which might 

explain its preference to the even-aged scenario.  

In most of its range pine warbler is associated with a dense canopy layer and a sparse 

understory or a low density shrub layer (Rodewald et al. 1999).  While species composition was 

not taken into account in the occupancy model, pine warbler is mostly associated with the North 

American pine forests.  There is anecdotal evidence that it prefers tall dense canopies of pines 

(Rodewald et al. 1999).  Both the no management and Pro-B scenarios provide pine warbler with 

a tall dense canopy layer.  The Pro-B scenario provides constant canopy cover throughout the 

projection cycle (Figure 10).  The development of the stand under a Pro-B management regime 

keeps the stand in the transition phase, which allows for the development of an understory, 

which is not ideal for the pine warbler. But as seen in Figure 16 both the no management and 

Pro-B scenarios are used 100% of the time.    
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The pine warbler’s probability of use is 100% for the entire projection cycle for no 

management and Pro-B scenarios, and 80 to 100% for even-aged scenarios.  The occupancy 

model created for pine warbler is responding to a multitude of parameters.  It responds positively 

to canopy height and canopy cover, but negatively to midstory cover, reproductive cover, and 

ground cover (See Table 2).  However, the negative response to these variables is not very 

strong, and is easily countered by the positive response to canopy height and cover.  In many of 

the simulations canopy height and cover remain high over time, while midstory and reproductive 

cover decline.  In the even-aged scenarios the probability of use for pine warbler decreases to 

80% because structurally there is not a tall dense canopy present.  The stand is in a phase of early 

successional habitat.  

It is also necessary to look at the temporal effects management has on these species.  

Land managers often do not consider the temporal effects of the management they are 

implementing; short term goals may be achieved without any consideration for the long term 

challenges.  Over the long term the management scenarios generally keep probability of use 

stable for the pine warbler, the wood thrush, and the prairie warbler.  The pine warbler’s 

probability of use does not experience changes over time with no management and Pro-B, and 

only slight decreases are seen in even-aged management.  For the wood thrush and the prairie 

warbler little difference in the probability of use is seen from the beginning to the end of the 

projection in any scenario. 

However, the temporal component is much more important for the yellow-breasted chat, 

especially in the even-aged scenario.  Over time there are huge jumps in the probability of use 

(Figure 17) when looking at the even-aged scenario.  Managers could look at the first ten years 

of the projection cycle where it has a more than 80% chance of using the stand in the absence of 



 

 82 

 

edge.  However, in the next ten to twenty years the probability of use drops almost 20%.  While 

it is still more than 50% likely to use the stand, it could change how management is applied into 

the future.    

It is also important to look at what was included in the occupancy models that were used 

in this process.  Only the best model was used to compare occupancy among management 

scenarios.  However, in the model building process other covariates were considered, but were 

not in the best model.  These other covariates that may influence occupancy were not included.  

For example, wood thrush is known to use hardwood stands that are adjacent to water.  There 

was no covariate included in the model that was used which would show how those covariates 

would change occupancy.  It is unlikely that wood thrush would use a pine dominated stand, like 

the ones created in both the even-aged and Pro-B scenarios.  Continually, tree species 

composition, adjacency to water, and other parameters may change the probability of use for 

these species.  With better models better predictions of probability of use can be made.      

 I hypothesized that pine warbler would use the structure created by the Pro-B projection 

over the other structures created.  Pro-B maintains a tall covered canopy over the entire 

projection period.   However, its probability of use is equal in all scenarios.  Each scenario is 

able to provide the pine warbler with a tall canopy, with sufficient amounts of cover, while 

limiting midstory, reproductive, and ground cover.  I hypothesized that wood thrush, prairie 

warbler, and yellow-breasted chat would use scenarios other then Pro-B proportionally more 

often.  Yellow-breasted chat and prairie warbler are tied to early successional habitat, which is 

created fleetingly in these scenarios.  Wood thrush needs understory and more hardwood 

oriented stands, which were not our focus. Yellow-breasted chat and prairie warble are more like 

to use the even-aged scenario, while wood thrush is more likely to use the Pro-B scenario.  Even-
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aged management provides yellow-breasted chat and prairie warbler with low dense vegetation 

or shrub/scrub areas that they are often associated.  However, this becomes less important for 

yellow-breasted chat as there is more edge.  Wood thrush is more likely to use the Pro-B scenario 

because it is able to provide the most reproductive cover. 

Each focal species has behaviors and microhabitat selection criteria of which little are 

known.  For example, pine warbler is known to forage in the bark of the middle and upper forest 

strata (Rodewald et al. 1999), however little else has been studied about this behavior.  There are 

unknown effects to the probability of use that cannot be accounted for when modeling.  

Microhabitat selection could influence site occupancy at the stand level and may warrant further 

investigation.   

Many birds use specific stand characteristics, like snag species availability, when 

choosing nest sites.  They may not use ideal habitat if these certain structures are not present.  

The red-cockaded woodpecker is an ideal example.  This bird lives in mainly pine forests with 

large diameter pine trees with little or no understory.  However, it requires there to be live trees 

with red-heart rot to excavate cavities, without the presence of this microhabitat feature they 

cannot persist (Jackson 1994).  There may be other similar variables equally necessary for other 

species that are not captured with a standard stand inventory. 

 

Advantages of Integrating a Growth and Yield Simulation with Probability of Use 

 

 FVS is a growth and yield model, which uses calibrated growth equations to project tree 

growth into the future.  Therefore, mathematical assumptions are held constant for all forest 

growth simulations, allowing management alternatives to be compared without bias.   

The most important advantage of combining stand projections in a growth and yield 

model, like FVS, with wildlife life occupancy models is the ability to develop and analyze many 
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alternatives quickly. Stand level simulations can be made to assess and communicate the likely 

effects of proposed management regimes on animal population dynamics. The rapid analysis is 

important in the planning processes to determine the most efficient outputs such as volume, tree 

sizes and stands structures.  Information can be presented in terms specific to the background and 

interests of the stakeholders and decision makers.  Several alternative silvicultural pathways can 

be developed and compared to assess their potential effects.  A hypothesis-testing framework can 

be used before they are applied to a stand or across the landscape.  Immediate and long term 

effects of management can be seen and compared by the stakeholders and decision makers, 

which allows them to make a more informed decision.  

The structural information produced by FVS is valuable for several other uses, not just 

wildlife habitat planning.  Carbon sequestration is on the forefront of the scientific community 

because of the debate over global climate change.  FVS has the capability to predict the amount 

of carbon sequestered by a forest stand.  The management of the stand and the resulting structure 

of from that management impacts carbon storage potential.  Another use, although not new, of 

the resulting structure provided by FVS is for timber planning.  However, timber planning can be 

incorporated with habitat planning to offset the costs.  Timber harvesting has the potential to 

improve habitat quality, but the addition of revenue.         

 

Challenges of Integrating a Growth and Yield Simulation with Probability of Use 

 

There are several limitations with using any growth and yield model approach.  FVS is 

not able to produce predictions about reproductive or ground cover.  However, any growth and 

yield model may have similar problems.  In this case, regression models were created from 

inventory data.  The parameters included in the models (i.e. canopy cover, midstory cover, basal 
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area, trees per acre) were selected because they have influence on the amount of light that 

reaches the forest floor.   

The parameters selected change how much light is present or absent within the forest 

stand.  Ellsworth and Reich (1993) found that light attenuation occurs in the upper and middle 

portions of the canopy; furthermore, light may affect how vegetative structure forms throughout 

all canopy layers. However, development of cover layers may relate more to site productivity 

than to light availability (Liira et al. 2007).  Liira et al. (2007) found a correlation between 

canopy closure and productivity, and an increase in abundance of shrubs with higher 

productivity.  In the Pacific Northwest understory relationships have been studied at length.  

Studies have focused on developing relationships between overstory and understory structure 

and composition in a variety of forest types (Halpern and Spies 1995, VanPelt and Franklin 

2000).   

Also, fire should be more of a driving factor for understory change.  Because the FFE in 

FVS tends to over predict mortality of trees in the stand it was turned off.  Fire would contribute 

to tree mortality in a stand, as well as the composition and density of the understory components.  

However, fire was not included as a factor that contributes to understory cover.              

Collinearity between the variables is also a major problem with the models created for 

reproductive and ground cover.  Unfortunately, these were not tested for before analysis and 

were not removed from the models.  However, it is important to discuss.  In the reproductive 

cover model the variance inflation factor for basal area was greater than 2.  There is a 

multicollinear relationship in the model.  By looking at Table 8 you can see that basal area has a 

strong linear relationship with canopy cover.  In the ground cover model the variance inflation 

factors for canopy cover, midstory cover, and basal area are all greater than 2.  Looking at the r
2
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values in Table 12 you can see that each of these variables has a strong relationship to the other.  

Because these relationships exist within these models they are not the best models to use in an 

analysis, and should be updated in the future.   

Continually, the way final models that were built for reproductive and ground cover may 

not have been the best method to use.  In the final models average coefficients were used, and 

only ones with a relative importance of 0.5 or greater were included.  Instead of using average 

coefficients, average predictions could be used including all parameters not just the ones that are 

important.  This could provide a better prediction for reproductive and ground cover models.            

Spatial arrangement and size of habitat patches are important for some species.  The 

integration of FVS and occupancy models does not take into account adjacency of stands on the 

property.  Patch size was not included in any of the occupancy models used because it is a 

landscape scale metric that FVS can not measure.  However it may be an issue for other species.  

Birds can occupy larger areas within a matrix of suitable and unsuitable habitat because they are 

capable of flight but other taxa may have size and spatial requirements that cannot be accounted 

for in FVS.  The yellow-breasted chat had a landscape scale parameter within its model that was 

easily modeled.  However, edge should also be considered within the matrix of the spatial 

landscape, and how it could change probability of use over time.  However, at the stand scale the 

model is providing sound predictions for what is being looked at.                  
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

 

 

 

Project Summary 

 

The management scenarios used for this decision support tool were based upon current 

management objectives, or current plans for how management will be implemented in the future 

on Barbour WMA.  Projecting a no management scenario gave a baseline for comparisons with 

all of the other management alternatives.  Nevertheless, the model has inherent flaws and 

assumptions that need to be recognized when projecting scenarios. 

 Longleaf pine restoration is a major focus for the property.  However, there was no 

longleaf inventoried on the property.  We projected an even-aged structure with three starting 

planting densities (741, 1112, and 1483 trees per hectare).  There was little difference between 

the structures of the different planting densities.  However, cost of planting and other treatments 

may come into play when deciding which density to plant.     

 Loblolly pine was present in many of the stands in sufficient quantities to act as a 

temporary surrogate for the absent longleaf pine.  This intermediate treatment gives the managers 

at Barbour WMA a way to create desired habitat while restoring longleaf in other areas.  The 

Pro-B method lends itself to achieving this while they include the production of other 

commodities such as recreation, wildlife and water.  

Probability of use varies between scenario and species, which gives this tool predictive 

power.  Although only three management alternatives were simulated in this example, there are 



 

 88 

 

many other possible scenarios that could be applied to these stands.  Integrating these two 

models (stand projection and habitat occupancy) creates a unique tool that is available for land 

managers to gauge the efficacy of their management plans while also developing a timeline of 

predicted forest structure that can be compared with future inventory for use in adaptive 

management.  

 

Management Implications 

 Land managers often do not consider the temporal effects of the management they are 

implementing; short term goals may be achieved without any consideration for the long term 

challenges.  This decision support tool will allow for long term planning, not only for wildlife 

but also for any other resource that is effected by vegetation structure including (but not limited 

to): timber, carbon sequestration, recreation, water quality, and water yield.  Optimistically, it 

will change the way management is preformed over the long term, and allow for careful planning 

for future natural resource use.     

 

Future Research 

 

 Other management scenarios should be tested in the future to see if there is variation if 

different management is implemented.  Also, other species could be included to show how they 

would respond to management scenarios.  Although, FVS does not take into account landscape 

level parameters, outputs from the model could be used to feed into a decision support network 

that includes stand size and adjacency constraints.  The models (occupancy, cover, and FVS) 

should be validated based on future inventories and revised as necessary.  Continually, better 

models need to be created to predict reproductive and ground cover.  The models used in this 

exercise have a lot of collinearity among the variables, and were not cross validated.    
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 These models should be integrated into an adaptive management context as well. Models 

are only representations of what may exist in the future.   With increasing time the likely 

accuracy of the model declines.  Projections should be revised to be based on the most current 

data.   These growth models are only considered valid for one to two steps into the future, 

therefore they will need to be constantly updated.  The occupancy models presented here do not 

provide species abundance, only measures of probable use of the created habitat.  Abundance of 

species should be quantified if possible to determine if there are sufficient quantities of species to 

persist on the landscape.  
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APPENDIX A 

100-YEAR PROJECTIONS FROM FVS OF DIAMETER DISTRIBUTIONS OF A TYPICAL 

STAND UNDER NO MANAGEMENT. 
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Appendix A: No management diamanter distribution over the 100-year projection cycle at 5-year 

intervals. 

 

 

 

 

 

 

 

 

 



 

101 

 

Appendix A: No management diamanter distribution over the 100-year projection cycle at 5-year 

intervals. 
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Appendix A: No management diamanter distribution over the 100-year projection cycle at 5-year 

intervals. 
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Appendix A: No management diamanter distribution over the 100-year projection cycle at 5-year 

intervals. 
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APPENDIX B 

100-YEAR PROJECTIONS FROM FVS OF DIAMETER DISTRIBUTIONS OF A TYPICAL  

STAND UNDER PROPORTION-B MANAGEMT.  
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Appendix B : Pro-B distribution over the 100-year projection cycle at 5-year intervals. 
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Appendix B: Pro-B distribution over the 100-year projection cycle at 5-year intervals. 
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Appendix B: Pro-B distribution over the 100-year projection cycle at 5-year intervals. 
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Appendix B: Pro-B distribution over the 100-year projection cycle at 5-year intervals. 
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APPENDIX C 

100-YEAR PROJECTIONS FROM FVS OF DIAMETER DISTRIBUTIONS OF A TYPICAL  

 

STAND CONVERTED BEFORE PRO-B WAS APPLIED.  

  



 

110 

 

 

Appendix C : Diameter distribution of a stand converted from an even-aged structure before Pro-

B was implemented over the 100-year projection cycle at 5-year intervals. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 

 

Appendix C: Diameter distribution of a stand converted from an even-aged structure before Pro-

B was implemented over the 100-year projection cycle at 5-year intervals. 
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Appendix C : Diameter distribution of a stand converted from an even-aged structure before Pro-

B was implemented over the 100-year projection cycle at 5-year intervals. 
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Appendix C: Diameter distribution of a stand converted from an even-aged structure before Pro-

B was implemented over the 100-year projection cycle at 5-year intervals. 
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APPENDIX D 

100-YEAR PROJECTIONS FROM FVS OF DIAMETER DISTRIBUTIONS OF A TYPICAL  

 

STAND UNDER EVEN-AGED MANAGEMENT.  
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Appendix D: Diameter distribution of an even-aged stand planted at 741trees per hectare over the 

100-year projection cycle at 5-year intervals. 
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Appendix D: Diameter distribution of an even-aged stand planted at 741 trees per hectare over 

the 100-year projection cycle at 5-year intervals. 
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Appendix D: Diameter distribution of an even-aged stand planted at 741 trees per hectare over 

the 100-year projection cycle at 5-year intervals. 
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Appendix D: Diameter distribution of an even-aged stand planted at 741 trees per hectare over 

the 100-year projection cycle at 5-year intervals. 

 


