

METHODS FOR IMPROVING GENERALIZATION AND CONVERGENCE IN

ARTIFICIAL NEURAL CLASSIFIERS

by

Joel David Hewlett

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 12, 2011

Keywords: Neural Networks, Training Algorithms, Learning Machines, Pattern Classification

Copyright 2011 by Joel David Hewlett

Approved by

Bogdan M. Wilamowski, Chair, Associate Professor of Electrical Engineering
Thaddeus Roppel, Associate Professor of Electrical Engineering

Robert Dean, Assistant Professor of Electrical Engineering
Vitaly Vodyanoy, Professor of Veterinary Medicine

ii

ABSTRACT

 Artificial neural networks have proven to be quite powerful for solving nonlinear

classification problems. However, the complex error surfaces encountered in such problems

often contain local minima in which gradient based algorithms may become trapped, causing

improper classification of the training data. As a result, the success of the training process

depends largely on the initial weight set, which is generated at random. Furthermore, attempting

to analytically determine a set of initial weights that will achieve convergence is not feasible

since the shape of the error surface is generally unknown.

 Another challenge which may be faced when using neural classifiers is poor

generalization once additional data points are introduced. This can be especially problematic

when dealing with training data that is poorly distributed, or in which the number of data points

in each respective class is unbalanced. In such cases, proper classification may still be achieved,

but the orientation of the separating plane and its corresponding margin of separation may be less

than optimal.

In this dissertation, a set of methods designed to improve both the generalization and

convergence rate for neural classifiers is presented. To improve generalization, a single neuron

pseudo-inversion technique is presented that guarantees optimal separation and orientation of the

separating plane with respect to the training data. This is done by iteratively reducing the size of

the training set until a minimal set is reached. The final set represents those points which lie on

the boundaries of the data classes. Finally, a quadratic program formulation of the margin of

iii

separation is defined for the reduced data set, and an optimal separating plane is obtained. A

method is then described by which the presented technique may be applied to non-linear

classification by systematically optimizing each of the neurons in the network individually.

Next, a modified training technique is discussed, which significantly improves the

success rate in gradient based searches. To do this, the proposed method monitors the state of

the gradient search in order to determine if the algorithm has become trapped in a false

minimum. Once entrapment is detected, a set of desired outputs are defined using the current

outputs of the hidden layer neurons. The desired values of the remaining misclassified patterns

are then inverted in an attempt to reconfigure the hidden layer mapping, and the hidden layer

neurons are retrained one at a time. Linear separation is then attempted on the updated mapping

using pseudo-inversion of the output neuron. The process is repeated until separation is achieved.

The second method is compared with other popular algorithms using a set of 8 nonlinear

classification benchmarks, and the proposed method is shown to produce the highest success rate

for all of the tested problems. Therefore, the proposed method does, in fact, achieve the desired,

which is to improve the rate of convergence of the gradient search by overcoming the challenge

presented by local minima. Furthermore, the resulting improvement is shown to have a relatively

low cost in terms of the number of required iterations.

iv

ACKNOWLEDGMENTS

 I would like to thank my parents, Marvin and Patricia Hewlett, for their unwavering love

and support throughout my time in graduate school. I have taken great comfort in knowing that

whenever discouragement, doubt or uncertainty may arise, I always have someone to turn to for

encouragement and sound advice. They are a true blessing, and I love them both dearly.

I would also like to thank Dr. Wilamowski for everything he has done on my behalf.

Whenever I have needed guidance or assistance his door has always been open, and any

questions I may have had, no matter how trivial, have always been treated with patience and

sincerity. The knowledge I have gained from him has been an invaluable resource, and is

certainly not limited to the subject engineering. I am truly grateful and fortunate to have had such

a wonderful adviser, for I honestly don’t believe I could have made it this far without him.

v

TABLE OF CONTENTS

Abstract ... ii

Acknowledgments ... iv

List of Figures .. viii

List of Tables ... x

List of Abbreviations ... xi

Chapter 1 Introduction ..1

Chapter 2 Artificial Neural Networks ..3

2.1 Fundamental Concepts ..4

2.1.1 Biological Neuron ...4

2.1.2 Artificial Models...6

2.2 Training ..9

2.2.2 Single Neuron Techniques ..9

2.2.3 Error Backpropagation .. 13

2.2.4 Levenberg-Marquardt ... 17

2.2.5 Neuron-by-Neuron Method ... 23

2.3 Using Parity-N Problems as A Benchmark for Performance .. 28

2.3.1 The Parity-N Problem ... 28

2.3.2 Parity-2 Example .. 29

vi

2.3.3 Comparison of Algorithm Performance... 33

Chapter 3 Single Neuron Training Using Iterative Pseudo-Inversion Techniques 37

3.1 Pseudo-Inversion Training for Nonlinear Activation Functions 37

3.1.1 Derivation ... 37

3.1.2 Improving Computational Efficiency .. 38

3.1.3 Discussion .. 39

3.2 Improved Generalization Using Active Set Pseudo-inversion 41

3.3 Maximizing the Margin of Separation ... 48

3.3.1 Formulating a Margin Maximizing Objective ... 50

3.4 Improving Generalization in Full scale Networks .. 52

Chapter 4 Training Neural Classifiers using a Search of the Hidden Space 54

4.1 Overview .. 54

4.2 Algorithm Description .. 55

4.2.1 Weighted Pseudo-Inversion Training .. 58

4.3 Detecting Entrapment.. 61

4.4 Avoiding redundant feature Selection .. 63

4.5 Graphical Representation of the Training Process ... 64

4.6 HLPI Training Example .. 67

4.7 Experimental Results .. 73

Chapter 5 Conclusion .. 78

Bibliography ... 81

Appendix A MATLAB Code for the Pseudo-Inversion Techniques ... 84

vii

Appendix B MATLAB Code for the HLPI Algorithm ... 90

viii

LIST OF FIGURES

Figure 2.1: Schematic diagram of a biological neuron. ..4

Figure 2.2: General form of the artificial neuron model. ..7

Figure 2.3: A comparison of common activation functions. ...8

Figure 2.4: Comparison of the Newton and gradient search directions. 20

Figure 2.5: Pseudo-code for the learning parameter update. ... 23

Figure 2.6: Example network for using NBN topology description. ... 25

Figure 2.7: Pseudo-code for the NBN forward calculation phase. .. 26

Figure 2.8: Pseudo-code for the NBN Jacobian calculation.. 27

Figure 2.9: Graphical representation of the parity-2 problem. .. 30

Figure 2.10: The two neuron cascade used to solve the parity-2 problem. 31

Figure 2.11: Hidden layer separating plane for the parity-2 problem. ... 32

Figure 2.12: Graphical representation of the augmented XOR data set....................................... 33

Figure 3.1: Nonlinear pseudo-inversion. .. 41

Figure 3.2: Separation of an unbalanced and poorly distributed data set. 41

Figure 3.3: Separation using pseudo-inversion with linear activation function. 44

Figure 3.4: Eight iterations using ASPI. Patterns in the active set are shown in blue. 45

Figure 3.5: An illustration of error reduction as a function of gain. .. 47

Figure 3.6: Multiple solutions for under determined systems. .. 49

Figure 4.1: Flow chart of the HLPI algorithm. ... 56

ix

Figure 4.2: Pseudo-code for the weighted pseudo-inversion technique....................................... 60

Figure 4.3: Output image for the parity-3 problem trained with EBP. .. 67

Figure 4.4: Output image for the parity-4 problem trained using the proposed method. 68

Figure 4.5: Single layer bridge architecture used to solve the parity-4 problem. 69

Figure 4.6: Training surface for the checker-3 problem. .. 74

x

LIST OF TABLES

Table 2.1: Truth table for the parity-2 problem. ... 29

Table 2.2: Truth table for the parity-2 problem. ... 32

Table 2.3: Parity-N performance of the EBP algorithm. ... 34

Table 2.4: Parity-N performance of the LM algorithm. .. 35

Table 4.1: Performance comparison for the proposed method. ... 75

Table 4.2: Algorithm parameters. .. 77

xi

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

RBFN Radial Basis Function Networks

SVM Support Vector Machines

BNN Biological Neural Network

EBP Error Back-Propagation

LM Levenberg-Marquardt

NBN Neuron-by-Neuron

LMS Least Mean Squares

ASPI Active Set Pseudo-Inversion

QP Quadratic Program

HLPI Hidden Layer Pseudo-Inversion

1

Chapter 1

INTRODUCTION

There are a number of well developed strategies for solving classification problems.

These include, but are not limited to, artificial neural networks (ANN)[1], radial basis function

networks (RBFN)[2] and support vector machines (SVM)[3] . These methods are especially

useful for solving problems which are non-linearly separable. Although the specifics of the

various methods differ, they operate on the same basic principle known as Cover’s theorem [4].

The theorem states that a classification problem which is not linearly separable in the input space

may become separable when cast into a higher dimensional space. From this it is evident that the

primary challenge when solving a non-linear classification problem is not in the separation itself,

but rather in choosing a linearly separable mapping. While RBFN and SVM methods take direct

advantage of this, ANN methods generally do not. Instead, the nonlinear mapping and separation

are combined into a single optimization problem which is most often solved using a least squares

gradient approach. Though this method has proven successful, it is not necessarily the most

efficient solution.

Each neuron in an ANN can be categorized as either a hidden unit or an output unit. Each

output unit serves as a linear classifier whose inputs are supplied by the hidden units that

together form a nonlinear mapping from the input space. In addition, for a bridged or fully

connected architecture[5], the mapped space is guaranteed to be of higher dimension than the

input space. Therefore, it follows from Cover’s theorem that the likelihood of achieving

2

separation in the output layer is much greater in this higher dimensional space than in the

original input space. Viewing the network in this way gives rise to an interesting and useful

observation: if the output layer is solely composed of linear classifiers, then the primary

challenge for nonlinear classification must lie in the training of the hidden units. This fact

suggests that training methods designed to focus more heavily on the hidden layers than on the

output layer might represent a more efficient and effective approach, which is the goal of the

work presented in this dissertation.

In Chapter 2, a general overview of ANNs is presented. This includes the biological

inspiration for the artificial neuron, as well as the computational details of the artificial models.

An overview of some common training methods is also included, with a short discussion and

comparison of the first and second order search directions. In Chapter 3, a set of pseudo-

inversion techniques for performing linear classification with a single neuron are discussed. The

strengths and weaknesses of the various methods are discussed, and an example case is used to

illustrate the performance characteristics of each. Optimal linear separation is also defined. Next,

a two phase method is presented that makes direct use of Cover’s theorem via a periodic search

of the hidden space to achieve separation at the output. The method seeks to escape entrapment

by individually retraining the hidden layer neurons using the pseudo-inversion techniques

described in Chapter 3. The performance of the proposed method is also discussed, using the

methods from Chapter 2 for comparison. Finally, a short conclusion is offered in Chapter 5.

3

Chapter 2

ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a biologically inspired computational model composed of

a collection of interconnected functional units known as neurons[1]. The behavior of a network

is characterized by the strengths of the interconnections, which are represented by multiplicative

constants known as weights. Together, the weights of a network form a multidimensional search

space known as a weight space. Networks are designed to perform specific tasks by

systematically searching the weight space for those values which produce the best fit for a

desired data set; or in the case of dynamic networks, yield equilibrium points which act as a form

of memory. This search process is commonly referred to as training and the search methods

themselves are known as training algorithms.

There are a number of different classes of networks that are most often differentiated by

either the characteristics of their neurons or the structure of their interconnections. In non-

dynamic networks, where the weights define a nonlinear mapping from the input space to the

output space, the interconnections between neurons are only made in the forward direction.

These are known as feed-forward networks. Allowing connections in the reverse direction, e.g.

feedback, may cause instability or high frequency oscillation in the network; however, damping

such systems via integration can produce stable dynamic behaviors which have proven useful for

some applications.

4

2.1 FUNDAMENTAL CONCEPTS

To better understand the details of the training techniques described later, a short

overview of some of the underlying concepts of ANNs are introduced first.

2.1.1 BIOLOGICAL NEURON

Because artificial neurons are loosely modeled on the nerve cells of living organisms [6],

a basic understanding of biological neural networks (BNN’s) may offer a useful starting point for

understanding their artificial counterpart. Many aspects of the operation of BNN’s are still not

fully understood, and remain the subject of ongoing research. Therefore, the discussion presented

here is limited only to the basic operation of the nerve cells that make up these networks rather

than the operation of the networks as a whole.

Cell Body

Dendrites

Axon

Axon
Terminals

Signal Flow

Figure 2.1: Schematic diagram of a biological neuron.

5

Biological neurons are elementary nerve cells which act as the fundamental building

blocks of BNN’s. A schematic diagram is shown in Figure 2.1. The typical neuron has three

major parts:

1. Cell Body: The cell body is surrounded by a thin membrane which is capable holding an

electrical potential, and the mechanisms which dictate the neurons responses to stimuli

are housed inside with the nucleus.

2. Dendrites: The dendrites are thin branch-like fibers protruding from the cell body that

form what is known as the dendritic tree. Electrical impulses from neighboring neurons

are received by the dendrites, which act as inputs for the neuron.

3. Axon: The axon is a long cable-like projection that carries impulses generated in the cell

body, and may extend up to hundreds or even thousands of times the diameter of the cell

body. The axon’s terminals act as the outputs of the neuron.

Each neuron receives impulses from neighboring cells via its dendrites, which build a cumulative

potential on the cell membrane. Once the magnitude of this potential reaches a specific level,

known as the threshold, the neuron fires its own impulse, which is then transmitted out through

the axon terminals to be received by other neurons.

 The strengths of a neuron’s interconnections vary, making it more sensitive to some

neurons than others. This variance on connection strength combined with the structure of the

interconnections is what determines the behavior of the network as a whole. Since the cell

structure remains unchanged of over the lifetime of the neuron, the learning process relies almost

entirely on the manipulation of these interconnections.

6

2.1.2 ARTIFICIAL MODELS

Artificial neurons are loosely modeled after their biological counterparts[6]. In reality,

the artificial neuron is little more than a multivariate function with weighted inputs. Still, despite

their relative simplicity, ANNs have proven to be quite powerful[7], and like their biological

analogs, their behavior is entirely dependent on the structure and strength of their

interconnections. Because the neurons that make up the ANN are identical in form, they are

highly modular systems, which is one of their most attractive aspects.

Although a number of different artificial models have been devised[1], most share the

same general form, which is shown in Figure 2.2. The mathematical description for models of

this form is

��� = �(� ⋅ ���), where

��� = �� + � ����.

�

���

(2.1)

The values �� are known as the neuron’s inputs, and may be supplied by input pattern values or

by the outputs of other neurons, depending on the unit’s location in the network. Each input �� is

scaled by a corresponding weight denoted by ��, and the threshold of the neuron is controlled by

the biasing weight �� . The weighted sum of all inputs is commonly referred to as the ��� value

of the neuron, and is analogous to the cumulated potential on the cell membrane of the biological

neuron. The function �(⋅) is known as the activation function, and plays the most important role

in the behavior of the system.

7

w
1

w3

Figure 2.2: General form of the artificial neuron model.

ACTIVATION FUNCTIONS

The activation function is a mathematical mapping that describes the relationship

between the weighted sum of the neuron’s inputs and its output. A number of different functions

have been proposed. A selection of these, shown in Figure 2.3, is discussed here.

The earliest of activation functions used the binary valued sign operator[8]. That is,

 ��� = sign(���). (2.2)

Activation functions of this type are referred to as “hard” activation functions due to their sharp

discontinuity. One of the major drawbacks to using functions of this type is the fact that they are

not differentiable. This lack of differentiability means that they cannot be trained using gradient

based methods.

8

Figure 2.3: A comparison of common activation functions.

To overcome the training difficulties faced when using hard activation function, a

number of differentiable functions were introduced. The simplest of these is the linear activation

function. Technically speaking, for the general model given by (2.1), the linear activation

function is not an activation function at all. Instead, the output value is equal only to the gain

multiplied by the net value, with the activation function �(⋅) removed entirely. Therefore, for the

linear model,

 ��� = � ⋅ ���. (2.3)

Although the linear model is continuously differentiable, it is not a suitable choice for

solving problems binary desired outputs. Simply saturating the linear function at ±1 will not

work either since the resulting function would not be differentiable in the saturated region. To

solve this problem, a sigmoidal function is used, which saturates asymptotically, allowing it to

maintain its differentiability. The most common of these functions is the tangent hyperbolic,

9

 ��� = tanh(� ⋅ ���). (2.4)

 Another commonly used function is the Gaussian. The Gaussian activation function is

most useful for non-linear classification and surface fitting problems. The general form of this

function is

 ��� = ��(�⋅���)�
 (2.5)

 Gaussian functions are also the basis for an entire class of ANNs known as radial basis function

networks, however the form of the RBF neuron model differs from that of (2.1) in the way that

the net value is defined.

2.2 TRAINING

In the field of ANN’s, the process of determining the proper set of weights for achieving

a desired mapping is known as training. This task is commonly formulated as an optimization

problem involving the minimization of the output error over the network’s weights. That is,

 �∗ = min
�

�(�).
(2.6)

where � is a vector containing the weights if the network, � is the total error of the network as a

function of �, and �∗ is the weight vector that minimizes the value of �(�). As a result, a

number of optimization methods have been adapted for this purpose. In this section, some of the

more notable methods are presented.

2.2.2 SINGLE NEURON TECHNIQUES

Some of the simplest and earliest training methods were developed for optimizing the

weights of single neurons. However, despite their simplicity, many of these methods played an

10

influential role in the development the generalized algorithms that came later. The methods

presented in this section form the foundation for many of the techniques discussed in later

chapters.

DELTA LEARNING RULE

The delta learning rule is a steepest descent method used to train individual neurons for

linearly separable classification problems[9]. As a steepest descent method, the delta learning

rule operates using the gradient of the output error with respect to the weights. Here, the output

error is defined as the one half the square of the difference between the desired output and the

observed output for a given pattern. That is,

 �� = (�� − ��)�, (2.7)

where �� is the desired output for input pattern �, and �� is the observed output. The values of the

observed outputs are calculated using

 �� = �(�� ⋅ �), (2.8)

where �(⋅) is the neuron’s activation function, �� is ��� input vector, and � is the weight vector.

To determine the gradient of the error, the partial derivatives of �� with respect to the weights

must be found. Therefore, substituting (2.8) into (2.7), the partial derivatives of the error are

determined by

���

���
= − (�� − ��)��

���, (2.9)

where ��
� is the slope of the activation function for pattern �, �� is the ��� element of the weight

vector, and �� is the corresponding input. Together, the partial derivatives computed using (2.9)

form the gradient,

11

 ∇�� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

���

���

���

���

⋮
���

���⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (2.10)

where � is the total number of weights. Finally, using (2.10), a steepest descent update rule is

defined,

 ∆� = − �∇� (2.11)

The scalar � is known as the learning constant, and is used to control the step size.

PSEUDO-INVERSION FOR LINEAR ACTIVATION FUNCTIONS

Pseudo-inversion training is a regression technique used to solve for the weights of a

single neuron[10]. Suppose a single neuron is to be used to classify a set of � training patterns

with dimension �, and let ��� be the ��� input of the ��� pattern, where � = 1, … , � and � =

1 … � . The squared errors for the individual training patterns can then be written as

���� = [�� − �(����� + ����� + ⋯ + �� ���)]�

���� = [�� − �(����� + ����� + ⋯ + �� ���)]�

⋮
���� = [�� − �(����� + ����� + ⋯ + �� ���)]�,

 (2.12)

where �� are the weights associated with each of the neuron’s � inputs. Defining the total error

as the sum of the squared errors for all patterns yields

 �� = � ����

�

���

. (2.13)

Using (2.13), the training process can be described as the following optimization problem:

12

 min
�

� ����

�

���

. (2.14)

 There is, however, an alternative formulation of the problem which allows for a simpler

and more direct solution. The method makes use of the property that at the minimum of the error

function, the components of the gradient must all be equal to 0. This leads to the following set of

� equations and � unknowns:

�(��)

���
= − 2 �[�� − ��]����� = 0

�

���

�(��)

���
= −2 � [�� − � �]����� = 0

�

���

⋮

�(��)

���
= −2 � [�� − � �]����� = 0,

�

���

 (2.15)

where �� and �� are the respective values of the desired and actual outputs for input pattern �, and

�′ is the derivative of the activation function. Assuming the activation function is linear and has a

gain of 1 helps to simplify things by making the �′ terms in (2.15) equal to 1, and thereby

allowing them to be ignored. Now, (2.15) can be rearranged to yield a set of linear equations in

matrix form.

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
� ������

�

���

� ������

�

���

⋯ � ������

�

���

� ������

�

���

� ������

�

���

⋯ � � �����

�

���

⋮ ⋮ ⋱ ⋮

� ��� ���

�

���

� ��� ���

�

���

⋯ � � �� ���

�

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∙�

��

��

⋮
��

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
� �����

�

���

� �����

�

���

⋮

� �����

�

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.16)

13

Defining X as the � × � matrix of input patterns, w as the � × 1 vector of weights, and d as the

� × 1 vector of desired outputs, (2.16) can be solved for w and expressed in more concise matrix

form as

 � = (���)�����. (2.17)

2.2.3 ERROR BACKPROPAGATION

Error backpropagation (EBP) is a supervised learning method which is a multi-neuron

generalization of the delta learning rule described in section 2.2.2 [11]. The method is primarily

intended for feed-forward networks, and is one of the most widely used training algorithms. The

method calculates the gradient of the error surface by using the chain rule for differentiation to

exploit the structure of feed-forward networks. The resulting gradient is then used in a simple

steepest descent update rule.

Since the algorithm utilizes the gradient of the error, it is only applicable for networks

whose neurons have differentiable activation functions. Therefore, it cannot be used for networks

with hard activation functions. Still, it can be used to design such networks by using sigmoid

functions during training and then replacing them with the sign operator once training is

complete.

DERIVATION

Before moving on to the derivation, some useful assumptions can be made. First, assume

the network architecture is such that the hidden units are in layers with no cross layer

connections, and the inputs of the neurons in a given layer are connected to the outputs of all

neurons in the previous layer, with the exception of the input layer, whose inputs are the

individual elements of the training patterns. Also assume that there is only one training pattern in

14

the data set, and that all neurons have sigmoid activation functions. This will greatly simplify

the notation moving forward.

The following notation will be used:

��� = ��� input to ��� neuron,

��� = weight for ���,

���� = net value �x�w�� for neuron �,

�� = output for unit �,

�� = desired output for unit �.

��
� = activation slope for unit �.

In order to determine the direction of steepest descent, the gradients of the errors for each of the

output units is required. Since the process is the same for each output, only one output is

assumed for the purpose this derivation. Therefore, the goal is to determine the values of the

partial derivatives of the total error with respect to the each of the weights. To begin, note that

because ���� is a function of ��� regardless of the location of unit � in the network, then by the

chain rule,

��

����
=

��

�����
∙

�����

����
=

��

�����
��� (2.18)

Since the differential term on the right side is the same for all input weights of unit �, it can be

denoted as �� for short.

 Now, consider the case in which unit � is in the output layer. In this case, the total error is

defined as

 � =
1

2
��� − ��������

�

 (2.19)

Thus,

15

�� =

�

�����
�,

= − ��� − �����
�.

 (2.20)

Substituting this into (2.18) yields

��

����
= ����� = − ������ − �����

�. (2.21)

 Next, the case in which neuron � is in the hidden layer must be considered. From here, the

derivation follows a similar line of reasoning as before, only this time the two following

observations should be made:

1. Since the direction of signal flow is from the input layer to the output, for hidden unit �,

all units whose inputs are directly connected to the output of � can be referred to as being

downstream. Using this terminology, for each neuron � downstream from �, ���� is a

function of ����.

2. For all units � ≠ � in the same layer as �, the contribution to the total error is independent

of ��� .

As before, the goal is to determine
��

�� ��
, only this time � is a hidden unit rather than an output

unit. Notice that the hidden input weight ��� only effects the value of ����, and ���� only

influences the value of ��. Furthermore, �� effects the values of ���� for all � downstream of �,

all of which influence the total error �. So, once again applying the chain rule,

��

����
= �

��

�����
⋅

�����

���
⋅

���

�����
⋅

�����

����
,

�∈����������

= �
��

�����
⋅

�����

���
⋅

���

�����
⋅ ���

�∈����������

.

 (2.22)

16

Again, as was the case for the output layer, all the terms in (2.22) except ��� are the same

for all input weights of unit �, and can be combined to form the single term ��. Also note that the

term
��

�����
= ��,

�����

���
= ��� and

���

�����
= ��

�. Therefore, by substitution,

�� = �
��

�����
⋅

�����

���
⋅

���

�����
,

�∈����������

= � �������
�

�∈����������

,

= ��
� ⋅ � � �����

�∈����������

� .

 (2.23)

Now, using the above notation and definitions, the backpropagation algorithm can be stated

formally.

BACKPROPAGATION ALGORITHM

Let � be a learning constant which controls the step size, and let ��, �� and �� be the

number of inputs, hidden units and output units respectively. Also let the training data be

denoted by the input vectors ��� and the desired output vectors ��, for � = 1,2, … , � , where � is

the number of training patterns in the data set. The training process is implemented by the

following steps.

1. Apply the training pattern ��� to the input of the network and compute the

corresponding output vector ��.

2. For each unit � in the output layer, calculate

�� = − (�� − � �)��
�.

3. For each hidden neuron ℎ, compute the values of

�� = ��
� ⋅ � � �����

�∈����������

� .

17

4. For each ��� , compute the corresponding partial derivative of the error using

 Δ��� = �����. (2.24)

5. Update the weights using the gradient descent rule

 ���
�� � = ���

� + �Δ��� (2.25)

6. Repeat steps 1-5 until all input patterns have been applied.

7. Repeat steps 1-7 until the total error becomes sufficiently low.

The method presented above uses an incremental update, meaning that the patterns are applied

one at a time and the weights are updated for each pattern. There is an alternative method by

which the weights are simultaneously updated for all patterns at the same time. This is known as

a cumulative update. The derivation of the latter is not presented here, however, the

backpropagation process is very similar, and the derivation follows the same basic logic as that

of the incremental version.

2.2.4 LEVENBERG-MARQUARDT

The Levenberg-Marquardt (LM) algorithm is a second order algorithm whose update rule

is a combination of both the Newton method and the method of steepest descent[12][13]. As with

the backpropagation algorithm, the forward calculations are made first, after which the resulting

outputs are used to define the error. The error is then propagated back through the network to

determine the partial derivatives of the error with respect to the system’s weights. The resulting

partial derivatives are used to form the Jacobian matrix, which is in turn used to approximate the

Hessian as well as calculate the gradient of the total error. An adjustable learning parameter � is

then used to control the contributions of the gradient and Newton directions to the direction of

18

the final step. A short summery and comparison of these two search directions is presented in the

next section.

NEWTON AND GRADIENT SEARCH DIRECTIONS

The most obvious of all search directions is the gradient direction −∇��, also known as

the direction of steepest descent. As the name implies, −∇�� represents the direction in which the

objective function �(�) decreases most rapidly, thereby making it a natural choice. Although it is

sometimes referred to as the gradient direction, the steepest descent direction actually points in

the opposite direction of the true gradient, which corresponds to the direction of greatest

increase. The true gradient is, by definition, the vector of all first partial derivatives of the

objective function or, more formally,

 ∇�(�) ≜

⎣
⎢
⎢
⎢
⎡

��

���

⋮
��

���⎦
⎥
⎥
⎥
⎤

 , where x = (��, ��, … , � �) (2.26)

In optimization, where the goal is to find the point at which a given function yields the lowest

possible value, knowing the direction in which that function changes most rapidly is of obvious

value, making the gradient a particularly useful tool.

Another commonly used search direction is the Newton direction[14]. Though it is more

difficult to compute than the gradient, it provides significantly more information about the local

behavior of the objective, which in turn yields a much higher rate of convergence. This is

achieved through the use of a second-order model � �(��) of the objective function, derived

from its Taylor series approximation,

 �(�� + ��) ≅ �� + ��
�∇�� +

1

2
��

�∇�����
� ≜ � �(��). (2.27)

19

From this, the Newton direction is defined as the vector �� which minimizes the quadratic model

� �(��). Assuming for now that ∇��� is positive definite, it is possible to solve for �� by setting

(2.27) equal to zero. Doing so yields the following explicit formula for the Newton direction:

 �� = − (∇���)��∇��. (2.28)

Whereas the steepest decent direction revolves around the computation of the gradient,

the Newton direction relies primarily on the calculation of the Hessian ∇��� , which is a matrix

containing all second partial derivatives of the objective function. That is,

 ∇��� (�) ≜

⎣
⎢
⎢
⎢
⎢
⎢
⎡

���

���
�

���

������
⋯

���

������

���

������

���

���
� ⋯

���

������

⋮ ⋮ ⋱ ⋮
���

��� ���

���

��� ���
⋯

���

���
� ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 , where � = (��, ��, … , � �) (2.29)

As alluded to earlier, the computation of the Hessian can be a rather expensive operation, which

is one of the Newton method's major drawbacks. Still, the benefits of this approach are generally

considered to outweigh the costs.

In addition, a number of strategies have been devised which serve to reduce the

computational requirement by replacing the true Hessian matrix with a close approximation that

does not need to be fully reevaluated at each iteration. Search directions which operate in this

way are commonly referred to as quasi-Newton methods. Some of the more common

implementations include the Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm[15],

and the closely related Davidon, Fletcher and Powell (DFP) algorithm[16].

20

Contours
of f(x)

Contours
of f(x)

Contours
of mk

Contours
of mk

x*x*

σN

xk

))((xxff
NewtonNewton

GradientGradient

Figure 2.4: Comparison of the Newton and gradient search directions.

Another attractive attribute of many quasi-Newton methods is that they can be

reformulated to operate on the inverse of the approximated Hessian instead of on the

approximation itself, which alleviates the burden of performing costly matrix inversions when

solving (2.28). This ability can prove especially advantageous on problems with high

dimensionality.

A comparison of the two steps is shown in Figure 2.4. The lines shown in grey represent

the contours of the objective function �(�), while those in orange are the contours of the second

order model � �. The points x� and x∗ represent the location of the current iterate and the

minimum of the objective respectively. The vector s� corresponds to the Newton step, and −∇��

represents the gradient.

21

It is clear from Figure 2.4 that the additional information provided by the second order

Newton approximation yields greater improvement in the objective. However, it is also evident

that neither of the two search directions is optimal. Instead, the optimal direction appears to lie

somewhere between the two. This would suggest that some combination of the two may produce

the best result, which is exactly what the LM algorithm seeks to do by actively varying the

learning parameter mentioned in the previous section.

ALGORITHM DESCRIPTION

 The primary difference between the backward computations in LM and those of EBP is

the necessity for determining the elements of the Jacobian rather than the total error gradient.

Because the LM step is formulated as a least squares problem, the Jacobian is needed, which

contains the first partial derivatives of the errors associated with the individual patterns rather

than the total error used in EBP. Aside from this, the approach uses the chain rule of

differentiation in the same manner as EBP. The resulting Jacobian matrix is of the form

 � =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

����

���

����

���
⋯

����

���

����

���

����

���
⋯

����

���

⋮ ⋮ ⋮
����

���

����

���
…

����

���

⋮ ⋮ ⋮
����

���

����

���
⋯

����

���

����

���

����

���
⋯

����

���

⋮ ⋮ ⋮
����

���

����

���
⋯

����

��� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (2.30)

22

where ��� is the error at the ��� output for the ��� input pattern, � is the number of training

patterns, and � is the number of outputs.

 Once the Jacobian matrix has been constructed, the only pieces missing are the gradient

and the Hessian matrix, which contains the second partial derivates of the error with respect to

the weights. In the case of the latter, it is possible to avoid the cost of computing these values

directly by using a convenient approximation in place of the actual Hessian matrix. The

convenience arises from the fact that the approximation can be computed using only the Jacobian

matrix, which is already available. That is,

 � ≅ ��� . (2.31)

Replacing the Hessian with (2.31) results in a quasi-Newton formulation of the LM algorithm.

Similarly, the gradient vector can also be calculated using the Jacobian. This is

accomplished using the following formula:

 � = ���. (2.32)

where � is a vector containing the error for each pattern at each output, and has length equal to

the product of the number of patterns and the number of outputs.

 In general, the LM step is computed in the following manner:

 Δ� = − (� + ��)���. (2.33)

Therefore, substituting (2.31) and (2.32) into (2.33), the following formula is obtained for the

weight update rule:

 ��� � = �� − (��
��� + ��)����

��� (2.34)

where � is the identity matrix of dimension � + � .

23

The learning parameter � in (2.34) is used to control the contributions of the Newton and

gradient search directions to the overall step. For smaller values of �, the algorithm behaves

more like a first order gradient descent method, whereas larger values cause the algorithm to

behave more like the second order Newton method. During each iteration, the parameter is

varied and the value which produces the greatest reduction in the objective is used in the final

step. The pseudo-code in Figure 2.5 details the process used to select new values of �.

Figure 2.5: Pseudo-code for the learning parameter update.

2.2.5 NEURON-BY-NEURON METHOD

The neuron-by-neuron (NBN) method is a method for calculating the partial derivatives of the

error with respect to the weights in arbitrarily connected feed-forward neural networks[17]. This

is in contrast to the traditional backpropagation method which is only applicable for the standard

multilayer perceptron architectures with no cross-layer connections. The ability to handle

arbitrarily connected networks offers a significant advantage since the introduction of cross-layer

connections can greatly reduce the number of neurons required to achieve specific nonlinear

mappings and classifications, as well as diminishing the likelihood of over-fitting.

E0 = totalerror(�);
� = �*10;
E1 = totalerror(�);
for i = 1:5
 if E1 <= E0
 � = �*10;
 else
 � = �/10;
 end
 E0 = E1;
 E1= totalerror(�);
end

24

TOPOLOGY REPRESENTATION

The NBN method makes use of a netlist style notation for describing the network

topology. The order of the listing is used to determine the order in which the reverse calculations

are to be made. A simple example will be used to explain the syntax and format of the listing.

Take, for example, the network shown in Figure 2.6. Notice that each node in the

network is individually numbered. There are 3 input nodes (1,2,3), 2 hidden nodes (4,5) and 2

output nodes (6,7). Also note that the lowest numbers are given to the input nodes, while the

higher numbers are reserved for the output nodes. The hidden nodes are labeled with the

interstitial numbers. The convention is that for any neuron in the network, the numbers

associated with the nodes connected at its input are lower than those of its output. For this

particular network, the topology would be described by the following listing:

N 4 model1 1 2 3

N 5 model2 1 2 3

N 6 model3 1 2 3 4

N 7 model4 1 2 3 5

Each line beginning with “N” describes the connections of a single neuron. The first

number represents the output node of the neuron described by that line. Next, the neuron model

is supplied. Each model has an activation function and gain value associated with it which

describe how the neuron output is be computed. The remaining numbers represent the nodes

connected to the neuron’s input. The neurons should be arranged so that the output nodes are in

ascending order when moving down the list.

25

Figure 2.6: Example network for using NBN topology description.

FORWARD COMPUTATION

 Before the partial derivatives of the error can be calculated, the values at all nodes must

be known. Thus, the first phase of the NBN method involves making the forward computations

for each input pattern, and determining the corresponding values at all nodes in the hidden and

output layers. These values are then stored in matrix from, allowing them to be easily retrieved

during the backpropagation phase. The basic process for the forward calculation phase is

presented in pseudo code form in Figure 2.7.

for each pattern (p=1:P)
 for each neuron (n=1:N)
 net=0;
 for each input i
 net=net+w(i)*node(p,ndx(i,n));
 end
 node(p,n)=act(net);
 der(p,n)=1-node(p,n)^2;
 end

for each output (o=N-O:N)
 err(p,o)=dout(p,o)-node(p,o);
end

end

26

Figure 2.7: Pseudo-code for the NBN forward calculation phase.

The variables and constants in Figure 2.7 are defined as follows:

 P is the number of input patterns

 N is the number of neurons

 O is the number of output nodes

 node(p,n) is a � × � 2-dimensional array containing the node values for all patterns at all

nodes.

 w(i) is the weight associated with neuron input i

 ndx(i,n) is an integer array which stores the indices of the input nodes for each neuron.

 der(p,n) is a � × � 2-dimensional array containing the derivatives of the activation

function of all neurons for all patterns. These values will be needed for the Jacobian and

gradient calculations.

 dout(p,o) is a � × � 2-dimensional array containing the desired outputs for all input

patterns at each node in the output layer.

 err(p,o) is a � × � 2-dimensional array containing the error associated with each pattern

at each node in the output layer.

The forward calculation routine returns three arguments for each input pattern: the

resulting error (err) at each output, the derivatives of the activation functions (der) for all

neurons, and the output value (node) of each node in the network. Therefore, once the forward

calculation routine is complete, all information needed for calculating the error gradient and

Jacobian matrix is available.

27

JACOBIAN COMPUTATION

Since the error gradient can be calculated from the Jacobian using (2.32), the NBN

routine for calculating it directly has been omitted, and instead, only the Jacobian routine is

included in the present discussion. When used with first order methods this method of

calculating the gradient does require more memory; nevertheless, for second order methods in

which the Jacobian must be computed anyway, using (2.32) is actually more efficient because it

removes the additional computation time required to calculate the gradient directly. The Pseudo-

code for the Jacobian calculation is presented in Figure 2.8.

Figure 2.8: Pseudo-code for the NBN Jacobian calculation.

for each pattern (p=1:P)
 for each output (o=N-O:N)
 errnode(p,o,n)=err(p,o);
 for each neuron (n=N:-1:1)
 delta(p,o,n)=der(p,n)*errnode(p,o,n);
 for each input i
 errnode(p,o,ndx(i,n))=
errnode(p,o,ndx(i,n))+delta(p,o,n)*w(i);
 end
 end

end
end
for each pattern (p=1:P)
 for each output (o=N-O:N)
 for each input i
 J(n,i)=delta(n)*node(p,ndx(I,n));
 end
 end
end

28

The variables and constants in Figure 2.8 are defined in the same way as in Figure 2.7, with three

additions:

 errnode(p,o,n) is a � × � × � − 1 array containing the sum of the error at the output of

each neuron over all patterns.

 delta(p,o,n) is a � × � × � − 1 array containing the sum of the error at the inputs of each

neuron over all patterns.

 J(n,i) is the � ∙ � × � Jacobian matrix, where M is the number of weights in the network.

2.3 USING PARITY-N PROBLEMS AS A BENCHMARK FOR PERFORMANCE

In this section, the classic parity-N problems are introduced and used as a performance

metric for the comparison of the EBP and LM training. The algorithms are used to solve a set of

six problems using cascade architectures of varying size. For each test, performance is measured

based on the overall success rate and the average number of iterations required for convergence.

2.3.1 THE PARITY-N PROBLEM

The parity-N problems are N-dimensional binary classification problems, which are

commonly used as performance benchmarks for neural classifiers[18][19]. The problems are

notoriously difficult to solve due to their high degree of nonlinearity, and the difficulty is known

to increase significantly with respect to dimensionality.

In the general parity-N case, the training patterns are comprised of all N-bit binary

numbers from 0 to 2� − 1 . The desired output for each pattern is assigned based on the number

of input bits that have values equal to +1. The rules for this assignment are as follows:

 If the number of input bits equal to +1 is even, a desired output of -1 is assigned.

 If the number is odd, a desired output of +1 is specified instead.

29

In addition to the inherent difficulty, another attractive aspect of the parity-N problems is

the existence of analytical solutions [20]. The benefit of the analytical solutions is that the

minimum number of neurons required for a given architecture can be determined prior to testing,

which provides a trustworthy baseline for comparison. Without this information, it would be

impossible to determine if tests which produce a 0% convergence rate were the result of the

failure of the algorithm or simply the nonexistence of a solution for the chosen network.

Furthermore, the difficulty of the problem for a particular architecture is inversely related to the

size of the network. Therefore, knowing the minimum number of neurons for a given network

structure offers a worst case scenario for testing.

2.3.2 PARITY-2 EXAMPLE

Take, for example, the parity-2 problem. Since � = 2, the training data is defined as the

set of 2-bit binary values from 0 to 3, and the 4 corresponding output values are chosen

according to the rules defined in the previous section. The resulting truth table is shown in Table

2.1. One may also notice that for the 2-dimensional case, the parity problem is equivalent to the

familiar XOR operator used in digital logic.

Table 2.1: Truth table for the parity-2 problem.

�� �� �
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

For classification problems, the weights of a neuron can be viewed as defining a plane of

separation for the input patterns. For a single neuron, this means that proper classification of a

given data set depends on the linear separability of the data. For data which is not linearly

30

separable, additional neurons are required. In the case of the parity-2 problem, the separability

can be determined visually by plotting the data on a 2-dimensional plane using the symbols ×

and o to represent desired outputs of +1 and −1 respectively, as shown in Figure 2.9.

1x

2x

Figure 2.9: Graphical representation of the parity-2 problem.

It is evident from Figure 2.9 that no single plane of separation will produce the desired

classification. This confirms that the data set in Table 2.1 is in fact not linearly separable. To

separate the data, the input patterns must first be mapped into a higher dimensional space

through the addition of a hidden layer. To do this, the two neuron cascade architecture shown in

Figure 2.10 is chosen.

31

Figure 2.10: The two neuron cascade used to solve the parity-2 problem.

The next step is to determine a set of weight values for the hidden layer neuron that

produce a separable mapping at the output layer. To do this, the separating plane shown in Figure

2.11 is chosen. From this, the value of �� can be computed using the slope intercept form

equation

 �� = − ���� +
��

��
. (2.35)

From Figure 2.11, it is apparent by inspection that the slope of this line is equal to -1. Therefore,

form (2.35), �� must be equal to one. It is also clear from (2.35) that the plane passes through the

points (-1,0) and (0,-1). Since the net values for the neuron are equal to 0 for all points which lie

on the separating plane, plugging these values into the net equation and setting it equal to zero

results in a set of two equations with two unknowns. That is,

1 − 1�� + 0�� = 0, and
1 + 0�� − 1�� = 0.

 (2.36)

Solving the system in (2.36) for �� and �� yields the following weight vector for the hidden

neuron:

32

 w = �
1
1
1

�. (2.37)

Figure 2.11: Hidden layer separating plane for the parity-2 problem.

Now, the output of the hidden neuron is calculated for each of the patterns in Table 2.2,

and a new truth table is defined with respect to the output layer. The augmented data set is shown

in 0.

Table 2.2: Truth table for the parity-2 problem.

�� �� �� �
-1 -1 -1 -1
-1 1 1 1
1 -1 1 1
1 1 1 -1

The data in Table 2.2 can be visualized in a similar manner as before, only this time three

dimensions are required due to the addition of the hidden layer output values. This is illustrated

in Figure 2.12.

33

Figure 2.12: Graphical representation of the augmented XOR data set.

It should be apparent from Figure 2.12 that, using the augmented data set provided in Table 2.2,

the input patterns can now be linearly separated by the remaining neuron in the output layer.

2.3.3 COMPARISON OF ALGORITHM PERFORMANCE

In this section, the performance of the previously discussed EBP and LM algorithms is

compared using the set of parity problems from � = 2 to � = 7. Each problem was attempted

using fully connected cascade architectures with sizes ranging from 2 to 6 neurons for parity 2

and 3, and 3 to 6 neurons for parity 4 through 7, resulting in a total of 26 test cases per algorithm.

The performance for each test case was measured based on the overall success rate and average

number iterations required for convergence after 100 attempts. The EBP and LM algorithms

were allowed respective maximums of 100,000 and 10,000 iterations per training attempt, with

the success rate defined as the number of attempts that reached an average total error of 0.001

per pattern within the allotted number of iterations.

34

The test results for the EBP algorithm are shown in Table 2.3. Training was done using

the following parameters.

 Learning Constant (�): 0.7

 Activation Function: Tangent-Hyperbolic (Bipolar)

 Neuron gain: 0.1

It is evident from the table that difficulty presented by the parity problems is directly

proportional to the problem dimensionality, and inversely proportional to the size of the network.

Despite the increased success rate when using larger networks, in general, optimal architecture

achieve better overall performance since they are less susceptible to over fitting. This behavior

may not be evident when solving parity problems, however some applications, such as function

approximation, this can become a significant issue. Therefore, the network size must be taken

into account when assessing algorithm performance.

Table 2.3: Parity-N performance of the EBP algorithm.

 Problem

 Parity-2 Parity-3 Parity-4 Parity-5 Parity-6 Parity-7

N
eu

ro
ns

2 100%
12,175

100%
6,060

N/A N/A N/A N/A

3 100%
6,428

100%
3,139

40%
46,882

49%
35,424

0%
 -

0%
 -

4 100%
4,485

100%
2,009

89%
40,240

100%
25,148

13%
62,223

22%
55,309

5 100%
2,886

100%
1,706

95%
34,665

100%
19,402

33%
55,773

50%
51,361

6 100%
2,638

100%
1,530

99%
28,344

100%
13,130

100%
36,215

64%
45,151

35

Table 2.4: Parity-N performance of the LM algorithm.

 Problem

 Parity-2 Parity-3 Parity-4 Parity-5 Parity-6 Parity-7

N
eu

ro
ns

2 100%
 9

 98%
 9

N/A N/A N/A N/A

3 100%
 9

 99%
 9

 36%
 20

 51%
 22

 0%
 -

 0%
 -

4 100%
 8

 99%
 8

 81%
 20

 85%
 19

 29%
 34

 42%
 35

5 100%
 8

 98%
 8

 95%
 19

 93%
 19

 65%
 32

 71%
 34

6 100%
 8

100%
 8

 98%
 18

 99%
 18

 84%
 34

 76%
 33

The test results for the LM algorithm are shown in Table 2.4. For training, the following

set of parameters was used:

 Initial Learning Parameter (��): 0.1

 Activation Function: Tangent-Hyperbolic (Bipolar)

 Neuron Gain: 0.1

Comparing the results in Table 2.4 with those in Table 2.3, the superiority of the LM

algorithm with respect to the speed of convergence is clear. This is not surprising since the

second-order model used by the LM algorithm offers a more accurate description of the error

surface. It is also clear, however, that the LM algorithm does not fare as well in terms of the

success rate. The reason for this is that the LM algorithm’s speed comes at a price. Because it

converges so quickly, the neuron’s are susceptible to being driven in to early saturation, before

reaching the desired solution. Once saturation is reached, the derivatives of the activation

function for the misclassified patterns become very small, despite having a relatively high error.

Because the misclassified patterns make up a minority of the total set of input patterns, their

36

contribution to the step is not significant enough to overcome the influence of the correctly

classified patterns. Therefore, the algorithm becomes trapped.

The EBP algorithm, on the other hand, benefits to some degree from its relatively slow

rate of convergence since the algorithm is not as easily driven into saturation, which allows the

misclassified patterns to have greater influence on the direction of the search.

37

Chapter 3

SINGLE NEURON TRAINING USING ITERATIVE PSEUDO-INVERSION

TECHNIQUES

3.1 PSEUDO-INVERSION TRAINING FOR NONLINEAR ACTIVATION FUNCTIONS

The pseudo-inversion method described in section 2.2.2 was a regression technique used

for neurons with linear activation functions. Here, an iterative method is presented that is capable

of training neurons with nonlinear activation functions[10]. Two forms of the update rule are

discussed. Although the two forms are mathematically equivalent, they differ computationally in

terms of software implementation. The advantages and disadvantages of each formulation are

discussed following the derivation.

3.1.1 DERIVATION

Let ��, �� and �� be the neuron error, desired output and observed output for pattern

respectively, where � = 1, … , � is the pattern index, and let �� and �� be the weight and input

values associated with the ��� input of the neuron. Next, define the error for pattern � as

 �� = �� − ��(���), (3.1)

where ��� = ���� + ���� + ⋯ + � � �� , and � is the dimension of the input. The derivative of

this error with respect to the ��� weight can then be described as

38

���

���
=

���

����

����

���
= − ��

����, (3.2)

where ��
� is the slope of the neuron’s activation function as a function of the ��� value. Next, let

the error in (3.1) be replaced by the first order Taylor approximation

 �� = ��� +
���

���
∆�� +

���

���
∆�� + ⋯ +

���

���
∆�� . (3.3)

Now, (3.2) and (3.3) can be combined to form the following overdetermined linear system of

equations in matrix form:

⎣
⎢
⎢
⎡
��

���� ��
���� ⋯ ��

����

��
���� ��

���� ⋯ ��
����

⋮ ⋮ ⋮
��

���� ��
���� ⋯ ��

���� ⎦
⎥
⎥
⎤

�

∆��

∆��

⋮
∆��

� = �

�� − ��

�� − ��

⋮
�� − ��

�. (3.4)

Solving (3.4) for ∆w yields the least mean squares (LMS) formulation of the step,

 ∆w = [(FX)�FX]��(FX)�E, (3.5)

where X is the � × � matrix of input patterns, and

F =

⎣
⎢
⎢
⎢
⎡
��

� 0 0 ⋯ 0

0 ��
� 0 ⋯ 0

0 0 ��
� ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ��

�⎦
⎥
⎥
⎥
⎤

.

 Note that the term [(FX)�FX]��(FX)� in (3.5) is longhand for the pseudo-inverse of FX, for

which the method gets its name.

3.1.2 IMPROVING COMPUTATIONAL EFFICIENCY

The computational requirements of the method derived in section 3.1.1 using a simple

reformulation. Instead of multiplying the patterns in � by the corresponding values of ��
� on the

39

left side of (3.4), the values are divided through both sides of the equation, which produces the

following algebraically equivalent formulation:

 �

��� ��� ⋯ ���

��� ��� ⋯ � ��

⋮ ⋮ ⋮
��� ��� ⋯ � ��

� �

∆��

∆��

⋮
∆��

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�� − ��

��
�

�� − � �

��
�

⋮
�� − � �

��
� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (3.6)

Now, solving for ∆w yields the reformulated update rule

 ∆� = (���)�������= � ���, (3.7)

Where

� = (���)���� and ��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�� − � �

��
�

�� − � �

��
�

⋮
�� − � �

��
� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

.

The reason for reformulating the update rule in this way is that the value of X does not

change from one iteration to the next since the values of the input patterns are constants. This

means that Y. the pseudo-inverse of X, need only be computed once. Since matrix inversion is a

computationally intensive operation, the formulation in (3.7) is much more efficient than (3.5),

which requires inversion to be performed at each iteration due to the changes in F.

3.1.3 DISCUSSION

Although (3.5) and (3.7) appear algebraically equivalent, in practice, they differ in terms

of performance. The disparity is a result of the fact that the underlying system of equations is

overdetermined. Therefore, while they appear algebraically equivalent, they are in fact not. This

40

is due to the nature of the pseudo-inverse. In order for equivalence to be maintained, the

following identity must hold:

(FX)�� = X��F��.

Although the relation is valid whenever F and X are nonsingular square matrices, it does not hold

in the case of pseudo-inversion. Therefore, the formulations given in (3.5) and (3.7) are not truly

equivalent mathematically. Despite this fact, both methods do yield convergence; however, the

rate of convergence for the method outlined in section 3.1.2 is significantly slower. This is

evidenced by the comparison of the training error in Figure 3.1.

(a)

(b)

50 100 150 200 250 300
10-4

10-3

10-2

10-1

100

iteration

1 2 3 4 5 6 7 8

10-4

10-3

10-2

10-1

100

iteration

41

Figure 3.1: Ten nonlinear pseudo-inversion runs using (a) the iterative inversion method; and (b)
the single inversion method.

Figure 3.2: Separation of an unbalanced and poorly distributed data set using pseudo-inversion.

3.2 IMPROVED GENERALIZATION USING ACTIVE SET PSEUDO-INVERSION

When solving classification problems, the optimal orientation of the separating plane

does not depend solely on the correct classification of the training data. It must also exhibit

strong generalization. That is, it should also be capable of classifying additional data points with

as high a degree of accuracy as possible given the information contained in the training set.

While the pseudo-inversion techniques outlined in section 3.1 are capable of reaching

very low error levels in a relatively low number of iterations, closer inspection may reveal

significantly less than optimal separating plane orientations when applied to training sets with

unbalanced or poorly distributed data. Take, for instance, the data set shown in Figure 3.2. The

separating plane represented by the dashed line was generated using the pseudo-inversion

method described in Section 3.1.2 . Despite a total error of just 10���, it is clear from the figure

that the placement of the separating plane is quite poor. This is due to the imbalance and poor

42

distribution of the training data. The larger number of data points on the left has resulted in a

shift of the separating plane in that direction, and the poor distribution has had an undesirable

influence on the plane’s orientation.

Although it is true that the placement of the plane would improve if the training process

were allowed to continue, the rate of the improvement would be quite slow due to the fact that

the neuron is in saturation. The reason for this is that, in saturation, the derivatives of the

activation function become quite small. Since the magnitude of the step is proportional to that of

the derivatives, smaller derivatives mean smaller steps. To make matters worse, as the position

of the separating plane improves, the total error continues to drop, causing the step size to do the

same. Therefore, the rate of progress is inversely proportional to the number of iterations.

To overcome this issue, a modified pseudo-inversion training technique is presented that

not only produces optimal or near optimal placement of the separating plane, but also achieves a

higher rate of convergence. The method revolves around the use of a variably sized training set

referred to as the active set.

The first major difference in the active set pseudo-inversion technique (ASPI) is that it

uses the neuron’s net values rather than the output values to determine the placement of the

separating plane. To do this, a trick is employed which does not require any modification to the

original update rule. All that is required is the replacement of the nonlinear activation function by

a linear model with unity gain, which is equivalent to operating on the net value of the original

model. Therefore, mathematically speaking, the update rule is of the same form as,

 ∆� = �(���)�����, (3.8)

where

43

� =

⎣
⎢
⎢
⎡��
′ 0 ⋯ 0

0 ��
′ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ ��

′⎦
⎥
⎥
⎤

, � = �

��� ��� ⋯ � ��

��� ��� ⋯ � ��

⋮ ⋮ ⋮
��� ��� ⋯ � ��

� , ∆� = �

∆��

∆��

⋮
∆��

� , and � = �

�� − � �

�� − � �

⋮
�� − � �

�.

The only differences being that the effect of the derivative values ��
� are ignored since the linear

model has unity gain, and the output values of the original model are replaced with the linear

model such that,

 �� = ���� = ��. (3.9)

Therefore, ignoring � and substituting (3.9) into (3.8), the linear pseudo-inversion rule from

section 2.2.2 is obtained. That is,

� = � + (���)����(� − ��),

= � + (���)����� − �,

= (���)�����.

 (3.10)

From this result, the relationship between the linear and nonlinear methods can be clearly seen.

Using the linear model offers two advantages. First, it restricts the magnitude of the

weights, and second it removes the possibility of saturation. However, while this effectively

removes the two primary restrictions faced by the nonlinear model, it also introduces a restriction

of its own. Because the value of the output is no longer limited to the interval between plus and

minus one, only those patterns which lie on or near the ±1 contours of the plane defined by the

net value are assigned the proper classification. The remaining patterns may contribute relatively

large error values regardless of their position with respect to the separating plane, which

adversely affects the placement of the separating plane in much the same way as the nonlinear

model. This behavior is illustrated in Figure 3.3 using the data set from the previous example.

44

Figure 3.3: Separation using pseudo-inversion with linear activation function.

Fortunately, the undesirable behavior introduced by the linear model can be overcome by

selectively reducing the number of training patterns at each iteration. The result is a variably

sized subset referred to as the active set. During each subsequent iteration, only those patterns

indexed by the active set � are used for training. The remaining patterns are simply ignored. To

do this, an active input matrix is defined such that

 �� = �

���� ���� ⋯ ����

���� ���� ⋯ ����

⋮ ⋮ ⋮
��� � ��� � ⋯ ��� �

� (3.11)

for all �� ∈ � from � = 1, … , � , where � is the number of indices contained in �.

The method used to determine which patterns should be included in the active set is quite

simple. During each iteration, the active set is updated using the indices of all input patterns

whose net values lie on the interval between ±1 . That is, they must lie within the region bounded

by the ±1 contours of the activation function. As it turns out, due to the LMS formulation of the

45

update rule, reduction of the size of the active set from one iteration to the next is guaranteed

until a minimal set is reached, for which there exists a feasible separating plane such that all data

points in the remaining set are collinear and run parallel to the plane. Thus, using the reduced

dataset, an exact solution to the linear system in (3.10) can be found.

Figure 3.4: Eight iterations using ASPI. Patterns in the active set are shown in blue.

Six iterations of this process are shown in Figure 3.4, using the data set from the previous

examples. The active set used at each iteration is represented by the blue data points. The

remaining data points, shown in red, are ignored. The ±1 contours used for determining the each

subsequent set are represent by the gray dashed lines, and the current separating plane is shown

46

in black. At the sixth iteration, the two remaining blue points represent the minimal active set. It

is important to note that for the minimal set, all active patterns lie on the ±1 contours, which

signifies that an exact solution to (3.10) has been found, and the training process is complete.

Once the proper separating plane has been determined, the resulting weight vector can

then be scaled to produce as low a total error as may be desired. The reason for this is that the

orientation of the separating plane for a neuron with a tangent hyperbolic activation function is

entirely determined by the equation for its net value, which is obtained from the active set

solution to (3.10). The only remaining parameter for the activation function is the gain, which

controls the slope of the activation function in the linear region. For the tangent hyperbolic

function, as the value of the gain is increased, the shape of the activation function approaches

that of the sign operator. This means that once the separating plane is set, increasing the gain of

the activation function effectively reduces the total error. This behavior is illustrated Figure 3.5.

From the figure, it is clear that as the gain increases, the data points represented by the orange x

and o converge toward their desired binary output values, thereby reducing the associated errors.

Therefore, any arbitrary desired value for the maximum error per pattern can be set by simply

scaling the weights.

47

)(netkf

net

k

error

Figure 3.5: An illustration of error reduction as a function of gain.

The reason for this is straight forward. First, since the patterns in the active set are known

to be those closest to the separating plane, they must also produce the largest error values. It

follows, then, that by setting the errors for the active patterns equal to ���� , it is guaranteed that

the errors for remaining patterns will be less strictly less than ���� . Therefore, a scalar value � is

desired such that that

 ���� = �� − tanh(� ⋅ � ⋅ ����), ∀� ∈ �. (3.12)

Conveniently, due to the fact that the separating plane resulting from (3.10) is equidistant from

all patterns in �, satisfying the above equation for any pattern in a � is equivalent to satisfying it

for all patterns in �. In addition, it is also known from (3.10) that the net value values for the

active patterns are equal to their desired outputs. Therefore, (3.12) can be simplified by choosing

any pattern � such that �� = ���� = 1. This results in the equivalent relation

 ���� = 1 − tanh(� ⋅ �) (3.13)

Finally, solving (3.13) for �, the following equation for the weight scale factor is obtained:

48

� =
tanh��(1 − ����)

�
. (3.14)

In summary, not only is the active set method exceptionally fast, but it also offers three

distinct advantages over the previous methods:

1. The placement of the separating plane is guaranteed to be equidistant from the nearest

patterns in ether class.

2. By reducing the number of patterns used to compute the step during each subsequent

iteration, the computational complexity is also reduced.

3. The maximum pattern error can be directly specified by the user.

3.3 MAXIMIZING THE MARGIN OF SEPARATION

 While the active set method presented in the previous section offers a number of

significant improvements, it still does not guarantee optimal separation in every sense. This is

due to what is known as the margin of separation, which refers to the distance between the

separating plane and the contour lines passing through the data points that comprise the optimal

active set. For optimal separation, the orientation of the separating plane should achieve the

largest possible margin of separation for which (3.10) remains satisfied. For a classification with

an �-dimensional input space, the active set solution will, in fact, produce the maximum margin

of separation, so long as the number of active patterns in either class is greater than or equal to

�. However, if the number of active patterns in both classes is less than �, the maximum margin

is no longer guaranteed. This is because for the latter case, there is more than one unique solution

to (3.10). To state this formally, if �� and �� are the active set patterns whose desired outputs

are plus and minus 1 respectively, then

49

1. If the number of patterns in either �� or �� is greater than or equal to �, then there is

only one unique solution to (3.10).

2. If the number of patterns in both �� and �� is less than �, then more than one unique

solution exist.

To illustrate this, a two dimensional example is shown in Figure 3.6. The active set in

Figure 3.6a, represented in blue, is an example of case one. As expected, the solution shown here

is the only possible solution for which all points in � lie on the ±1 contour lines. For the second

case, represented by the example in Figure 3.6b, two possible solutions are shown. The latter

case also illustrates the difference in the separating margin from one solution to the next. Clearly,

solution number 2 has the largest margin of separation, and is the more preferable solution.

Figure 3.6: (a) If the number of patterns in either A_+ or A_- is greater than or equal to N, then
only one unique solution can be found; (b) When the number of patterns in both A_+ and A_- is

less than N, more than one unique solution exist.

50

In this section, a technique is presented that, when used in conjunction with the active set

method, guarantees a maximal margin of separation. Therefore, using the proposed method, a

truly optimal separation is obtained.

3.3.1 FORMULATING A MARGIN MAXIMIZING OBJECTIVE

The goal of the proposed method is to determine a separating plane which achieves a

maximum margin of separation for the data points in the active set. To do this, a functional

relationship between the separating margin and the weights must be found, beginning with the

general description of the separating plane,

 � ⋅ � + � = 0, (3.15)

where � is the weight vector, � is the input vector, and � is the biasing weight. Furthermore, in

order that the patterns in �� lie on the ±1 contours, a set of equality constraints must also be

defined,

 � ⋅ �� + � = �� , (3.16)

where �� is the active pattern matrix and �� is the corresponding vector of desired outputs.

Thus, for two vectors �� ∈ ��� and �� ∈ ��� on opposite sides of the separating plane,

� ⋅ (�� − ��) = 2, and

(�� − ��) = 2�.
(3.17)

Using (3.17), the margin can be defined as the projection of (�� − � �) onto the vector normal to

the separating plane, which is equivalent to the normalized weight vector �� = �/‖�‖.

Therefore,

 � = proj�� (�� − ��) =
2

‖�‖
. (3.18)

51

It follows. Then, that maximizing the margin described by (3.18) is equivalent to minimizing the

following equality constrained quadratic:

 min
�,�

1

2
‖�‖�, subject to � ⋅ �� + � = �� . (3.19)

The formulation in (3.19) represents an equality constrained quadratic program (QP).

 The Lagrangian of the equality constrained QP in (3.19) is defined as

 �(�, �) =
1

2
‖�‖� − � ������(� ⋅ ��) + �� − 1�,

�

���

 (3.20)

where � is the number of patterns and �� are the Lagrange multipliers. Solving for the saddle

points of the Lagrangian and substituting the result back into (3.20) yields the equivalent Wolfe

dual formulation of the QP,

 min
�

1

2
� � �������������� − � ��

�

���

�

���

�

���

, subject to �� ≥ 0. (3.21)

For the Lagrangian formulation of a constrained QP, the objective is defined as the

gradient of the original objective minus the gradients of the constraints. Therefore, solutions are

characterized by points for which the combined direction of the gradients of the active

constraints points in the opposite direction of the gradient of the objective[14]. From a

geometrical standpoint, this makes sense. If the gradients are in opposition, no direction exists by

which the original objective function can be reduced while still satisfying the active set

constraints. However, simply minimizing the difference in the gradients is not sufficient since

their magnitudes may differ. To alleviate this problem, the Lagrange multipliers are used to scale

the constraint gradients so that their combined magnitudes will be equal to that of the objective.

52

Normally, for inequality constrained problems, the influence of the inactive constraints is

ignored by setting the corresponding multipliers to 0. If the Lagrange multiplier for any of the

active constraints is found to be negative, then it is no longer a blocking constraint, and it is

removed from the working set of constraints. This process is repeated until a solution is found

for which all of the multipliers are greater than or equal to zero. However, for the set of points

found using the active set method in the previous section, all of the data points yield strict

equality constraints. This means that the all the resulting constraints will be active, and their

corresponding Lagrange multipliers will be positive and non-zero. Therefore, the dual constraints

on �_� in (3.21) may be ignored, resulting in an unconstrained minimization over �.

Quadratic programs of this form are encountered in a wide range of applications, and a

number of efficient methods have developed for solving them.

3.4 IMPROVING GENERALIZATION IN FULL SCALE NETWORKS

Although the presented pseudo-inversion techniques are only directly applicable for

training individual neurons, they can be used to optimize the weights found by nonlinear gradient

methods using a simple retraining process. The resulting set of weights yield optimal

generalization for the given set of selected features.

The first step in the process is to train the network using any standard gradient based

search method. Once convergence is achieved, the gradient search process is terminated as usual.

The outputs of all neurons are then recorded using the final weights of the gradient search, and a

set of desired outputs is defined for each neuron by taking the signs of the measured values.

Next, the neurons are ordered such that the position of each neuron in the order is greater

than that of all neurons connected to its input. In other words, for a given neuron, all neurons

downstream have higher value in the order. This ensures that when it comes time to retrain each

53

neuron, the outputs of all neurons connected to it will be available to use as input patterns during

training. After the ordering is determined, each individual neuron is retrained using the margin

maximizing technique described in the previous section. In this way, the separating margin for

each neuron is maximized, resulting in optimal generalization for the network as a whole. Since

the ability to guarantee optimal separation is one of the most commonly cited factors when

discussing the motivation for using SVM methods over ANN methods, this represents a

significant step for neural classification.

54

Chapter 4

TRAINING NEURAL CLASSIFIERS USING A SEARCH OF THE HIDDEN

SPACE

Generally speaking, neural networks are trained using the current output values to

compute or approximate the first and second partial derivatives of the network error using

backpropagation of the error through the network. This information is then used to determine a

step direction which effectively reduces the total error of the network. Once an adequate step is

found, all of the neurons are updated simultaneously. While this method has proven successful,

the error functions it introduces can be rather complicated, making the training process slower

and more susceptible to entrapment[21]. A faster and more efficient approach would be to train

each neuron independently using the techniques described in the previous chapter; however this

is not usually possible since the desired outputs are typically known only for those neurons that

reside in the output layer. In this chapter, an approach is presented which seeks to determine

these hidden outputs using a systematic realignment of the feature space. The result is a more

robust algorithm which is not only able to escape entrapment in false minima, but also makes

direct use of the information they provide in order to proceed.

4.1 OVERVIEW

If the desired outputs are known for all of the nodes in a given network, each neuron may

be trained independently. This method of training is attractive for two reasons: one, because the

training of an individual neuron requires relatively little computational effort, making

convergence quite rapid, and two, because the error surface does not contain any false minima,

55

which eliminates the possibility of entrapment. Unfortunately, as previously stated, the desired

outputs for the hidden layer neurons are not generally available a priori, and in most cases, the

number of possible combinations makes a sequential search impractical. For some perspective, a

problem with � input patterns and � hidden neurons would result in 2�� possible combinations

of hidden layer outputs. Thus, even a relatively small problem such as parity-7, which has 128

input patterns and 3 hidden neurons (using a bridged architecture) would have nearly 4 × 10���

possible choices! While some combinations could be ruled out immediately, the number of

remaining choices would still be prohibitively large. The only way to proceed would be to

somehow narrow the scope of the search. To do this, the proposed method uses entrapment in

local minima, one of the weaknesses of gradient based approaches, to its advantage.

Entrapment occurs when an algorithm converges towards a solution which is not optimal.

Unable to reduce the error any further, the process must be terminated. When this occurs,

training is reinitiated using a randomly generated set of new weights, and the old weights are

discarded. However, while the discarded weights may not produce the desired classification for

all patterns, the number of misclassified patterns may be quite small. Therefore the

corresponding hidden layer outputs might offer a useful starting point for a search of the feature

space. If this information could be used to determine the desired outputs of the hidden layer

neurons, then each neuron in the network could be trained independently, which is the goal of the

proposed method.

4.2 ALGORITHM DESCRIPTION

The proposed method, referred to as the hidden layer pseudo-inversion algorithm (HLPI),

begins by using a second order learning algorithm to train the network in the usual manner.

Where it differs is primarily in the way it handles entrapment. If the algorithm fails to converge,

56

the second order process is halted, and the second phase of training begins. In the second phase,

the values of the current hidden layer outputs are used as a starting point for determining the

correct set of hidden layer outputs. To do this, the hidden neurons are systematically retrained in

an attempt to reclassify the remaining misclassified patterns using pseudo-inversion. This

process is performed using the following steps.

Figure 4.1: Flow chart of the HLPI algorithm.

Step 1: Train the network using the gradient method until the process converges. If all patterns

are classified correctly, terminate training and return the final weights. If not, proceed to

step 2.

57

Step 2: Find the hidden unit � for which the net values of the misclassified patterns are closest to

0. Define a set of desired outputs by taking the sign of the current outputs and then

multiplying the outputs for any misclassified pattern by -1. That is, let the set of desired

outputs ��� be defined as

��� = {sign(��
�)}∪ �−���� ���

���,

where � � is the set of current outputs for hidden neuron �, � contains the indices of all

correctly classified patterns, and � contains the indices of all misclassified patterns.

Step 3: Perform weighted pseudo-inversion (described in the next section). Incrementally scale

the derivatives for the misclassified patterns and repeat until one or more of the

misclassified patterns is reassigned.

Step 4: Let � be the indices of all correctly classified patterns whose outputs are unchanged and

all misclassified patterns whose outputs were reassigned, and let � contain the indices of

all remaining patterns. Find the neuron whose net values for the patterns denoted by � are

closest to 0, and define a new set of desired outputs

��� = {sign(��
�)}∪ {−���� (��

�)}.

Step 5: Repeat steps 2 and 3 until the number of indices in � reaches 0, or until all hidden units

have been retrained.

Step 6: Perform pseudo-inversion for the output layer neurons using the updated outputs of the

hidden units. If all patterns are classified correctly, terminate training and return the final

weights. If not, repeat steps 1 through 6.

A flowchart of this process is depicted in Figure 4.1.

The pseudo-inversion technique used in step 3 is a weighted variation of the non-linear

method presented in Section 3.1.2 . The details of this method are presented in the next section.

58

4.2.1 WEIGHTED PSEUDO-INVERSION TRAINING

In Chapter 3 a series of pseudo-inversion techniques were presented for optimizing the

weights of a single neuron with a non-linear activation function. A variation of this technique is

presented here, and is used during the realignment phase of the proposed learning algorithm.

The goal of the realignment process is to systematically adjust the feature detectors in the

hidden space in order to achieve better separation in the output layer. This is accomplished by

retraining the hidden layer neurons one at a time in an attempt to invert the signs of the current

node values for all misclassified patterns, while preserving the signs of the remaining patterns.

Thus, a desired output vector is defined using the current node values for all correctly classified

patterns and the inverted values for all misclassified patterns. Unfortunately, there is no

guarantee that the newly specified classification will be linearly separable. Therefore, in the

event that linear separation is not achievable, a modified objective must be used. The primary

goal in such cases remains the inversion of the node values of the misclassified patterns.

However, the node values of the correctly classified patterns should not be ignored either since

they play an important role in separation at the output. Therefore, simply performing pseudo-

inversion is not sufficient since there is no guarantee that the misclassified patterns will be

reassigned; and placing emphasis on the misclassified patterns by ignoring the remaining

patterns is also not advisable since it may have an adverse effect on separability at the output

layer. Clearly, a compromise must be made. An approach is needed that seeks to invert as many

of the misclassified output values as possible while at the same time preserving as many of the

correctly classified values as possible. To do this, an incremental weighting scheme is introduced

that gradually increases the emphasis on the misclassified patterns until one or more of the

corresponding node values is inverted. In this way, a subset of the misclassified patterns can be

59

inverted while maintaining the influence of the correctly classified patterns on the feature

realignment process. The resulting update rule is given by

 ∆� = �� (���)�����, (4.1)

where

�� =

⎣
⎢
⎢
⎢
⎡� ���

′ 0 ⋯ 0

0 � ���
′ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ � ���

′⎦
⎥
⎥
⎥
⎤

, � = �

��� ��� ⋯ � ��

��� ��� ⋯ � ��

⋮ ⋮ ⋮
��� ��� ⋯ � ��

� , ∆� = �

∆��

∆��

⋮
∆��

�,

 and � = �

�� − � �

�� − � �

⋮
�� − � �

�.

The values � � are the weight values used to scale the derivatives of the activation function for

each pattern. The weight values are determined according to which patterns are to be inverted.

For correctly classified patterns, the value of � � is set to 1. For all misclassified patterns, � � is

set equal to the current value of the incrementing scale. Pseudo-code for the complete process is

shown in Figure 4.2.

60

Figure 4.2: Pseudo-code for the weighted pseudo-inversion technique.

The variables and constants in Figure 4.2 are defined as follows:

 scale stores the incremental weight values used to scale the derivatives of the activation

function for all misclassified patterns.

 reclassified is a binary value that represents the state of the reclassification process. If

any of the misclassified patterns has been reclassified, the value is true, otherwise the

value is false.

 w is a vector containing the weights on the neuron’s inputs.

 F’ is a � × � diagonal matrix containing the scaled activation function derivatives for all

patterns.

scale = 1;
reclassified = false;
while reclassified == false;
 for ite = 1to nite
 w = w + (F’*X)/E;

out = tanh(k*X*w);
E = dout – out;
der = k*(1-out^2);

 for p = 1 to P
 F’(p,p) = der(p);
 if p ∈ ndx
 F’(p,p) = F’(p,p)*scale;
 if E(p) < margin
 reclassified = true;

end
 end

end
 end
 scale = scale + step;
end

61

 X is a matrix whose rows contain the input patterns to the neuron.

 E is a � × 1 vector containing the errors associated with each of the input patterns.

 out is a � × 1 vector containing the output values for each of the input patterns.

 dout is a � × 1 vector containing the desired output value for each input pattern.

 k is the gain of the neuron.

 nite is the number of pseudo-inversion updates performed between increments of the

derivative scaling factor.

 der is a � × 1 vector containing the derivative of the activation function for each of the

input patterns.

 margin is a constant value which determines how close the outputs for the misclassified

patterns must be to the desired values before they are considered reclassified.

 step is a constant that determines size of the increments in the derivative scaling factor.

 P is the number of input patterns

4.3 DETECTING ENTRAPMENT

The purpose of the proposed method is to improve the success rate of training by

realigning the hidden layer neurons whenever the gradient search fails to converge. In order to do

this effectively, a method is needed for determining when the algorithm becomes trapped. The

proposed method tests for three conditions to determine the current state of the training process.

The first test checks for changes in the pattern separation at the output of the network

over a preset interval. If, at the end of the specified number of iterations (�), the separation of the

training data is unchanged, it is likely that the algorithm has become stuck. A binary valued flag

62

(�����
�) is used to track the current status of the classification at each iterate (k). Therefore, the

test for this condition is defined by

 �����
� = �

1 if� �������
�� ⋅ �������

���
� = �,

�

���

0, otherwise.

� (4.2)

As an example, suppose a value of 20 was chosen for �. This would mean that at the end of each

iteration, the resulting output values would be compared with those generated 20 iterations

before. If the values were found to be the same, then the ����� flag would be set equal to one.

The separation test alone is not sufficient for detecting entrapment. One reason for this is

that once a correct separation has been reached, it may still require a number of iterations to

reduce the total error to the desired level, during which time the separation test may return true.

To avoid the possibility of false detection, a second condition is tested by comparing the current

separation to that of the desired outputs. This is done by defining a second condition flag

(�����
�), which is defined as

 �����
� = �

0 if� �������
�� ⋅ �� = �,

�

���

1, otherwise.

� (4.3)

 The final condition check for the percent decrease in the total error from one iteration to

the next. This is important in the early stages of training when the convergence may be slow due

to the low output values produced by the initial weights. In order to avoid false detection during

this stage, the percent improvement in the total error is monitored. If the percent difference is

less than the desired value (�), the third flag (�����
�) is set. That is,

 �����
� = �

1 if
����� − ���

�����
< �,

0 otherwise,

� (4.4)

63

where ��� is the total error for the ��� iterate, and � is the size of the interval used in the

comparison. For instance, if a value of � = 5 was selected, the ����� condition would be

determined by the percent difference in total error between the current iterate and the one

generated five iterations before it.

Used together, these three conditions offer a reliable method for detecting entrapment in

local minima. If all three flags came back true during the same iteration, the gradient search is

terminated and the realignment process begins.

4.4 AVOIDING REDUNDANT FEATURE SELECTION

There are a number of conditions which may lead to false convergence, the majority of

which can be difficult or even impossible to detect. There is, however, one such condition that

can be detected quite easily. The condition is known as redundant feature selection, and occurs

when two or more hidden units attempt to perform the same classification task[22]. Obviously,

this is a problem when training networks with optimized architectures. For certain classes of

problems, such as analog-to-digital conversion, this issue can be especially significant. A simple

method for detecting and avoiding redundancy is presented in this section.

There are two means by which redundant hidden neurons can be detected. One is to

compare the weights. The drawback to using this method is that different weights do not

guarantee a different behavior. Weight vectors may differ a great deal in magnitude, and even

orientation, and still produce a very similar separation of the test patterns. In order to make the

test reliable, the neurons must be allowed to reach saturation, and their weights must be

normalized. Allowing the neurons to reach saturation removes the possibility for early detection,

and limits the network’s flexibility once any similar neurons have been realigned. This lack of

flexibility tends to draw the network back to the previous state.

64

The second method of detecting redundant hidden neurons is to compare the sign of the

neurons’ outputs. This offers a more reliable test and does not require the neurons to be in

saturation. Although the dimensions of the neurons’ output vectors are generally greater than that

of the weight vector, there is no need to normalize the output vectors since the dot product of two

identical outputs will be equal to the sum of either vector’s elements. In addition, the

computational requirements can be further reduced by only performing the test periodically,

rather than after each iterate.

4.5 GRAPHICAL REPRESENTATION OF THE TRAINING PROCESS

During the development of the proposed training algorithm, it became apparent that to

verify the method was operating correctly, a significant amount of data would have to be

analyzed after each training attempt. To complicate matters further, in order to determine the

state of the training process, much of the data generated in a given iteration needed to be

compared with that from previous iterations. This process was time consuming and made

debugging quite difficult. To solve this problem, a visual representation was devised that allows

large amounts data to be combined into a single graph, and offers a concise and easy to read

summary of the training process.

To do this, the outputs of each neuron are represented as bitmap images. Each pixel

represents the output of a single neuron at a specific iteration. Therefore, the image generated for

each neuron has dimensions equal to the number of patterns by the number of iterations. The

color of each pixel signifies the sign of the output, with negative values drawn in blue and

positive values in red. The intensities of the pixels are proportional to their respective values.

Lighter pixels correspond to smaller values, and darker pixels are used to represent larger ones.

Once the output images have been generated for all neurons in the network, they are stacked

65

vertically to form a combined image. The resulting composite contains nearly all of the

information needed to evaluate the performance of the algorithm. A list of the available

information is given below.

 Classification: The position of each pattern with respect to the separating plane can be

determined by the sign of its corresponding output, which is denoted by the color of its

representative pixel. Therefore, since each column of pixels represents one iteration, the

classification of the input patterns at any given iteration can be determined by the colors

of the pixels in that column.

 Movement of the separating plane: Since the pixels in each row represent the output

values of a single pattern from one iteration to the next, if two consecutive pixels share a

common row but are of different colors, then the position of the separating plane has

changed.

 Entrapment: If the colors and intensities of the pixels in each row become static, then the

position of the separating plane must also be static. Therefore, if the desired classification

has not yet been satisfied, the algorithm is most likely trapped in a false minimum.

 Redundant feature detection: If the columns of two or more hidden layer neurons have

matching pixel colors, they are performing the same task.

 Pattern saturation: If the intensity of the pixels in a given row becomes high, the output

for the corresponding pattern has reached saturation. In general, as the number of

saturated patterns becomes larger, the mobility of the separating plane is reduced.

Not only does the generated plot provide the information listed above, it also allows the data for

all iterations to be evaluated simultaneously. This greatly simplifies the debugging and

verification process.

66

An example image of the training of a two neuron cascade for parity-3 using EBP is

shown in Figure 4.3. Looking at the total error alone, there is little if any noticeable change over

the first 30 iterations. However, the output images tell a much different story. First, the low

intensity of the pixels means that the patterns have not yet reached saturation. Therefore, there is

still a great deal of mobility for the separating plane. This is confirmed by the changes in the

pixel color, which signify changes in the orientation of the separating plane. Furthermore, the

first 5 columns of the bitmap for the output neuron show that the algorithm is experiencing some

oscillation. This would suggest that the selected learning constant may be too large, and could

cause instability. It is also evident that despite the low change in error, by the 30th iteration the

hidden neuron has achieved a linearly separable mapping, after which an additional 6 iterations

are required for separation of the augmented set of inputs. After 36 iterations the patterns have

been correctly classified, and the remaining error is slowly reduced as the outputs are driven

further into saturation. This can be seen by the gradual increase in the intensity of the remaining

pixels.

Clearly, representing the training process in this way provides a great deal of additional

insight. Furthermore, all of these observations can be determined directly from Figure 4.3, with

no additional analysis required, making it an efficient and powerful tool for debugging and

verification.

67

Figure 4.3: Output image for the parity-3 problem trained with EBP.

4.6 HLPI TRAINING EXAMPLE

In this section, a step-by-step description of the training process is presented, and the

results are verified using the graphical representation described in section 4.5. For the purpose of

this demonstration, the parity-4 problem is selected. The reason for this choice is that, despite

being relatively difficult, the problem has only 16 training patterns and requires just 2 neurons in

the hidden layer. Thus, the problem’s manageable size makes it well suited for a detailed

analysis. The output image for this problem, shown in Figure 4.4, is used as a reference for the

remainder of this discussion. In addition to the node values and total error, the training summary

in Figure 4.4also specifies which training patterns remain misclassified following each iteration.

The output pixels of the misclassified patterns are outlined in green and crossed out.

68

Figure 4.4: Output image for the parity-4 problem trained using the proposed method.

69

OVERVIEW

The training process is carried out in two phases. The first phase involves a gradient

search using the LM algorithm, and comprises the first 58 iterations shown in Figure 4.4. After

the 58th iteration, all 3 condition flags have been set, signifying that the algorithm has become

trapped in a false minimum. At this time the second phase begins, during which a search of the

hidden space is performed using pseudo-inversion of the hidden layer neurons. At the end of the

pseudo-inversion process, linear separation is achieved resulting in the successful classification

of the training patterns. The training process is then terminated, and the final weights are

returned.

For this example, the parameters used in determining the state of the condition flags are

chosen to be � = 50, � = 5 and � = 10��. For the network topology, a 3-neuron single layer

bridged architecture, shown in Figure 4.5, is used. The activation functions for all three neurons

are tangent hyperbolic, and have gains of � = 0.1.

Figure 4.5: Single layer bridge architecture used to solve the parity-4 problem.

70

PHASE 1: GRADIENT SEARCH

The gradient search is initialized using a set of randomly selected starting weights with

values between ±1 . The small magnitude of the initial weights helps ensure that the initial

outputs are not in saturation, which allows more flexibility for the separating planes during the

early stages of the training process. This is clearly seen when looking at the first 10 iterations of

the output images in Figure 4.4. The low intensities of the pixels confirm that the outputs have

not yet reached saturation, and the resulting flexibility is evidenced by the frequent changes in

the coloration of the pixels from one iteration to the next. It is also clear that as the number of

patterns in saturation increases, indicated by darkly shaded pixels, the changes in pixel color

becomes less frequent, which indicates less movement in the separating plane.

As the first phase of training progresses, the condition flags are repeatedly updated in

order to detect entrapment. The ����� flag is only cleared once separability is reached in the

hidden space, so it is always set equal to 1 when training begins. The ����� and ����� flags, on

the other hand, are always cleared when training starts. Since � = 5, at least 5 iterations must be

completed before the error condition can be tested. Therefore, at the beginning of training, the

����� flag is cleared, and remains cleared for at least the first 5 iterations. Looking at the error

plot at the top of Figure 4.4, the total error reaches a fixed value of around 0.25 after 13

iterations. Five iterations later, the error condition test yields

����� − �� �

�����
=

0.2524738 − 0.2524733

0.2524738
= 1.98 × 10�� < 10 ��,

and the ����� flag is set. Checking the value of the error condition for the 18th iteration in Figure

4.4 confirms that the flag has been updated as expected.

 With the error and separation flags set, the only remaining condition is the classification

condition. As with the error condition, the classification test cannot be performed until the

71

number of total iterations reaches the necessary value. In the latter case, this is determined by the

� parameter, which is equal to 50 for this example. Therefore, the ����� flag remains cleared for

at least the first 50 iterations of the gradient search phase. Returning to the training summary in

Figure 4.4, it is apparent that, by the 8th iteration, the classification of the data has become fixed.

Since � = 50, it is expected that if the classification remains unchanged for 50 iterations, the test

for the classification condition should come back positive, and the ����� flag should then be set.

Checking the state of ����� at the 58th iteration in Figure 4.4 confirms that the flag has been

updated correctly.

PHASE 2: HIDDEN LAYER PSEUDO-INVERSION

 At the 58th iteration, all three condition flags are set, which means that the gradient search

has failed to converge. Thus, the first phase of training is terminated and the second phase

begins. During the second phase of training, the hidden layer neurons are retrained using pseudo-

inversion in an attempt to invert the output values for the misclassified patterns.

In order to maximize the probability of correctly reclassifying the misclassified patterns,

the hidden neuron with the lowest net values for the designated patterns is chosen to be retrained

first. The reason for this choice is that the lower net values mean that the misclassified patterns

are closer to the separating plane. Therefore, reassigning these patterns will require less

movement in the separating plane, which reduces the likelihood of unintentionally reclassifying

any of the correctly classified patterns in the process.

For the example in Figure 4.4, it is clear that the only pattern which remains misclassified

is pattern 15. Looking at the output pixels of the hidden layer neurons for the 15th pattern, it is

apparent from the comparison of the pixel intensities that the output of the first hidden neuron is

lower than that of the second. Since both neurons use the same activation function, the lower

72

output value also corresponds to lower net value. Therefore, hidden neuron 1 is chosen to be

retrained first.

In order to retrain the selected neuron, a set of desired outputs must be defined. To do

this, the sign of the current outputs are used, but with the output values of the misclassified

patterns inverted. For the present example, this results in

��� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.89832
− 0.41765
−0.98549
−0.89387
−0.98369
−0.88135
−0.99776
−0.98294
+0.99775
+0.99971
+0.98361
+0.99785
+0.98542
+0.99809
+0.89783
+0.98606⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⟹ sign(���) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1
− 1
−1
−1
−1
−1
−1
−1
+1
+1
+1
+1
+1
+1
+1
+1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⟹ � =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1
+1
−1
−1
−1
−1
−1
−1
+1
+1
+1
+1
+1
+1
+1
+1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

.

Using the designated set of desired outputs, the first hidden neuron is retrained according

to the weighted pseudo-inversion technique described in section 4.2.1 . An initial weighting

value of one is used. Since the desired set of outputs is linearly separable, the misclassified

pattern is reclassified after the first pseudo-inversion attempt, without incrementing the scaling

factor. Furthermore, no unintentional reclassification of the remaining patterns has occurred, so

there is no need to retrain the second hidden neuron. This marks the end of the hidden layer

search. The resulting output can be seen in the last column of the output image for the first

hidden neuron in Figure 4.4. Notice that all output assignments remain unchanged except for the

inversion of the 15th pattern, which was the desired result.

73

Once pseudo inversion of the hidden layer neurons is complete, their weights are frozen

and linear separation of the updated mapping is attempted using pseudo-inversion of the output

neuron. Here, the margin maximizing active set method described in section 3.3 is adopted. The

resulting classification, represented in Figure 4.4 by the last column of pixels in the bitmap of the

output neuron, matches that of the desired classification. Therefore, training is complete, with a

final mean squared error of 10��.

4.7 EXPERIMENTAL RESULTS

For verification, the proposed method was tested against the EBP and LM algorithms

described in 0. The EBP algorithm was chosen because it remains the most widely used method

for training feed-forward neural networks. The LM algorithm was chosen for its speed. All three

algorithms were applied to a range of test problems, and performance was measured according to

success rate and average number of iterations per successful run. Each algorithm was assigned a

maximum number of iterations per run, and a maximum acceptable error was chosen for each

problem. Success rate was calculated as the number of runs that reached the maximum allowable

error within the allotted number of iterations.

The classification problems used for testing were chosen for their high degrees of

nonlinearity. The chosen problems are listed below, with a brief description of each.

 Parity-N: The parity problems, described in section 2.3, were chosen for their high

degree of nonlinearity and their reputation as benchmarks for nonlinear classification.

Five cases were selected, ranging from parity-3 to parity-7.

 N mod 2: The N mod 2 problem is a single input single output problem that produces a

binary mapping of the digits from – � to � that determines if the input is even or odd.

74

The problem can also be viewed as a parity-N problem with the individual inputs

replaced by their sum.

 Checker-N: The checker-N problem consists of an 10� × 10� grid whose desired

outputs form an alternating pattern like that of the colored squares on a chess board.

Mathematically speaking, the desired outputs are assigned as

�(�, �) = 2[⌊�⌋ + ⌊�⌋ (mod 2)]− 1,

where �, � ∈ {0, 0.1, 0.2, … , �} are the “rank” and “file” respectively, mod is the

modulo operator, and ⌊⋅⌋ is the floor operator. Thus, for an integer �, the resulting

“board” is comprised of �� 1 × 1 “squares”, each containing 100 points. The difficulty

of the problem increases with �, as does the size of the data set, which grows at a rate

of 100(2� + 1). A 3-dimensional example of the training surface for the checker-3

problem is shown in Figure 4.6.

1x

2x

out

Figure 4.6: Training surface for the checker-3 problem.

75

Table 4.1: Performance comparison for the proposed method.

 Algorithm Hidden
Neurons EBP LM HLPI

P
ro

bl
em

Parity-3
Success: 100%
Ave. ite: 6,060

Success: 98%
Ave. ite: 9

Success: 100%
Ave. ite: 10

1

Parity-4
Success: 81%
Ave.ite: 77,988

Success: 7%
Ave. ite: 27

Success: 100%
Ave. ite: 114

2

Parity-5
Success: 83%
Ave. ite: 103,999

Success: 4%
Ave. ite: 34.25

Success: 98%
Ave. ite: 150

2

Parity-6
Success: 1%
Ave. ite: 190,634

FAILED TO
CONVERGE

Success: 98%
Ave. ite: 276

3

Parity-7
FAILED TO
CONVERGE

FAILED TO
CONVERGE

Success: 96%
Ave. ite: 291

3

15 mod 2
FAILED TO
CONVERGE

FAILED TO
CONVERGE

Success: 95%
Ave. ite: 2,553

7

Checker - 3
FAILED TO
CONVERGE

Success: 11%
Ave. ite: 111

Success: 100%
Ave. ite: 596

4

Checker - 4
FAILED TO
CONVERGE

Success: 4%
Ave. ite: 1,472

Success: 75%
Ave. ite: 3,770

6

The training results for all 8 of the test cases are shown in Table 4.1. Single layer bridged

architectures were used for all problems, and the number of hidden neurons used in each case is

listed in the right hand column of Table 4.1. Numbers in bold font represent the best performers

for each problem. The training parameters used by each algorithm are presented in Table 4.2.

The training results in Table 4.1 show that the HLPI method offers the highest rate of

convergence for all of the tested problems, with a rate of 95% or better in all but one of the cases,

and is the only one of the three algorithms to converge successfully for on all 8 problems. It is

also evident that the average number of iterations required for the HLPI method is around 2 to 3

orders of magnitude lower than that of the EBP algorithm, and shows comparable performance

to with the LM algorithm in that regard. Moreover, the comparison with the LM algorithm is

somewhat misleading since only the successful training attempts are considered in the

calculation of the average. Therefore, the significant portion of attempts in which the number of

76

iterations required by the LM algorithm exceeded the allowable value must also be taken into

account when making a direct comparison. Furthermore, since the first phase of the HLPI

method is equivalent to the LM method, the average number of iterations for those cases in

which the LM algorithm was able to converge successfully should be identical for HLPI.

Most importantly, the test results indicate that the proposed method does, in fact, achieve

the objective for which it was originally designed: to improve the rate of convergence of the

gradient search by overcoming the challenge presented by local minim. Clearly, judging by the

success rates in Table 4.1, this goal has been achieved. Furthermore, the resulting improvement

has come at a relatively low cost in terms of the number of required iterations.

77

HLPI LM EBP

T
able 4.2: A

lgorithm
 param

eters.

�

�

�

�
�

G
ain

M
ax error

M
ax Ite.

�
�

G
ain

M
ax error

M
ax ite.

�

G
ain

M
ax error

M
ax ite.

1
0

�
�

10

50

0.01

0.1

0.001

500

0.01

0.1

0.001

500

0.7

0.1

0.001

150,000

P
arity-3

P
roblem

1
0

�
�

10

50

0.01

0.1

0.001

500

0.01

0.1

0.001

500

0.7

0.1

0.001

150,000

P
arity-4

1
0

�
�

10

50

0.01

0.1

0.001

500

0.01

0.1

0.001

500

0.7

0.1

0.001

150,000

P
arity-5

1
0

�
�

10

50

0.01

0.1

0.001

500

0.01

0.1

0.001

500

0.7

0.1

0.001

250,000

P
arity-6

1
0

�
�

10

50

0.01

0.1

0.001

500

0.01

0.1

0.001

500

0.7

0.1

0.001

250,000

P
arity-7

1
0

�
�

20

30

0.01

0.1

0.001

5000

0.01

0.1

0.001

5000

0.7

0.1

0.001

250,000

15 m
od 2

1
0

�
�

20

100

0.01

0.25

0.001

1000

0.01

0.025

0.001

1000

0.7

0.025

0.001

250,000

C
hecker-3

1
0

�
�

20

100

0.01

0.25

0.001

5000

0.01

0.025

0.001

5000

0.7

0.025

0.001

250,000

C
hecker-4

78

Chapter 5

CONCLUSION

In Chapter 3, three pseudo-inversion techniques were presented for use in training

individual neurons. The first technique used an algebraic manipulation of a least squares

formulation of the weight update rule to improve the computational efficiency of the training

process. This was done by eliminating the need for matrix inversion at all but the first iteration,

which significantly reduced the necessary computation time, especially for problems with large

data sets. However, despite the method’s efficiency, it was shown that the modified version was

not truly equivalent to the original least squares method from which it was derived, which caused

a reduction in the rate of convergence.

Next, an active set method was presented that successfully reduced both the computation

time and the rate of convergence. The method used a linear approximation of the activation

function to iteratively reduce the size of the training set until a minimal set of training patterns

was reached. Once the optimal set of patterns was found, the tangent hyperbolic activation

function was restored, and the total error was directly set by scaling the final weight vector. The

method was also shown to be more robust, and was better able to handle problems in which the

training data was poorly distributed or unbalanced.

Despite the decided improvement represent by the active set method, it was shown that

the method did not to guarantee an optimal solution in terms of the margin of separation. To

solve this problem, a third technique was developed that uses the solution from the active set

method to obtain an equality constrained QP formulation of the separating margin. The solution

of the resulting QP guarantees maximum separation.

79

At the end of Chapter 3, a method for using single neuron pseudo-inversion techniques to

improve the generalization of full scale networks is discussed. This is done by first finding a

solution using a gradient search. Once the separation is found, the signs of the current outputs for

all hidden neurons are used to define their desired outputs. Each neuron is then retrained starting

with the units nearest the input layer and moving towards the output. Using the margin

maximizing QP method, the resulting weight set will achieve optimal separation for the feature

set determined during the initial training process.

In Chapter 4, a modified training technique, known as hidden layer pseudo-inversion,

was proposed that significantly improves the success rate in gradient based searches. The method

is similar to the generalization technique in Chapter 3, in that it has two training phases

consisting of a gradient search followed by a hidden layer pseudo-inversion phase. However,

unlike the generalization technique, the proposed method does not require convergence before

beginning the second training phase. Instead the method monitors the state of the algorithm in

order to determine if the algorithm has become trapped in a false minimum. Once entrapment is

detected, the current hidden layer outputs are used to define a set of desired outputs. The desired

values of the remaining misclassified patterns are inverted in an attempt to reconfigure the

hidden layer mapping. The hidden layer neurons are then retrained one at a time. Once a new

mapping is found, linear separation is attempted using pseudo-inversion of the output neuron.

The process is repeated until separation is achieved.

The HLPI method was compared with the popular EBP and LM algorithms using a set of

8 nonlinear classification benchmarks. The proposed method was shown to offer the highest

success rate for all of the tested problems. It was also shown to require significantly fewer

iterations than the EBP algorithm, and performed comparably with the LM algorithm. However,

80

the latter comparison was somewhat misleading due to the fact that only the successful training

attempts were considered in this calculation. Therefore the significant portion of attempts in

which the required number of iterations exceeded the number allowable was not considered.

Furthermore, since the first phase of the HLPI method is equivalent to the LM method, the

average number of iterations for those cases in which the LM algorithm is able to converge

successfully should be identical.

81

BIBLIOGRAPHY

[1] J. M. Zurada, Artificial Neural Systems, 1st ed. Boston, MA: PWS Publishing Company,

1995.

[2] A. J. Eide, T. Lindblad, and G. Paillet, "The Radial-Basis-Function Type of Neural Network

and Its Implementations in Hardware," in Industrial Electronics Handbook, 2nd ed.: CRC

Press, 2011, vol. 5, ch. 12, pp. 1-12.

[3] K.P. Bennet and C. Campbell, "Support vector machines: hype or hallelujah?," ACM

SIGKDD Explorations Newsletter, vol. 2, no. 2, pp. 1-13, Desember 2000.

[4] Thomas M. Cover, "Geometrical and Statistical Properties of Systems of Linear Inequalities

with Applications in Pattern Recognition," IEEE Transactions on Electronic Computers,

vol. EC-14, no. 3, pp. 326-334, June 1965.

[5] B. M. Wilamowski, "Neural network architectures and learning algorithms, ," IEEE

Industrial , vol. 3, no. 5, pp. 56-63, 2009.

[6] R. Durbin, "On the correspondence between network models and the nervous system," in

The computing neuron, R. Durbin, C. Miall, and G Mitchison, Eds. Boston, MA, USA:

Adison-Wesley, 1989, ch. 1, pp. 1-10.

[7] H. T. Siegelmann and E. D. Sontag, "On The Computational Power Of Neural Nets,"

JOURNAL OF COMPUTER AND SYSTEM SCIENCES, vol. 50, no. 1, pp. 132-150, 1995.

[8] F. Rosenblatt, "The perceptron: A probabilistic model for information storage and

organization in the brain," Psychological Review, vol. 65, no. 6, pp. 386-408, November

82

1958.

[9] D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing - Vol. 1:

Foundations.: MIT Press, 1987.

[10] T. J. Anderson and B. M. Wilamowski, "A Modified Regression Algorithm for Fast One

Layer Neural Network Training," in World Congress of Neural Networks, Washington DC,

USA, 1995, pp. 687-690.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-

propagating errors," in Neurocomputing: foundations of research , J. A. Anderson and E.

Rosenfeld, Eds. Cambridge, MA: MIT Press, 1988, pp. 696-699.

[12] K. Levenberg, "A method for the solution of certain non-linear problems in leas squares,"

Quarterly of Applied Mathematics, no. 2, pp. 164-168, 1944.

[13] D. W. Marquardt, "An algorithm for least squares estimation of non-linear parameters,"

SIAM Journal, no. 11, pp. 431-441, 1963.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., T. V. Mikosch, S. I. Resnick,

and S. M. Robinson, Eds. New York, NY: Springer, 2006.

[15] C. G. Broyden, "The convergence of a class of double-rank minimization algorithms,"

Journal of the Institute of Mathematics and Its Applications, vol. 6, pp. 76-90, 1970.

[16] W. C. Davidon, "Variable metric method for minimization," SIAM Journal on Optimization,

vol. 1, pp. 1-17, 1991.

[17] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dunda, "Computing Gradient Vector

and Jacobian Matrix in Arbitrarily Connected Neural Networks," IEEE Trans. on Industrial

Electronics, vol. 55, no. 10, pp. 3784-3790, October 2008.

83

[18] B.M. Wilamowski, H Yu, and K T. Chung, "Parity-N Problems as a Vehicle to Compare

Efficiency of Neural Network Architectures," in Industrial Electronics Handbook, vol. 5 –

Intelligent Systems, 2nd ed.: CRC Press, 2011, vol. 5, ch. 10, pp. 1-8.

[19] M. E. Hohil, D. Liu, and S. H. Smith, "Solving the N-bit parity problem using neural

networks," Neural Networks, vol. 12, no. 9, pp. 1321-1323, November 1999.

[20] B.M. Wilamowski and D. Hunter, "Solving Parity-n Problems with Feedforward Neural

Networks," in Proc. of the IJCNN'03 International Joint Conference on Neural Networks,

Portland, 2003, pp. 2546-2551.

[21] M. Gori and A. Tesi, "On the Problem of Local Minima in Backpropagation," IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 76-86,

January 1992.

[22] T. D. Gedeon, "Indicators of hidden neuron functionality: the weight matrix versus neuron

behaviour," in ANNES '95 Proceedings of the 2nd New Zealand Two-Stream International

Conference on Artificial Neural Networks and Expert Systems, Washington DC, 1995, p. 26.

84

Appendix A

MATLAB CODE FOR THE PSEUDO-INVERSION TECHNIQUES

A.1 NLPI.m

function NLPI;
clear all; format compact;
clc; figure(1); clf;
warning('off');
global data input output;
clc; figure(1); clf;
input=[1 1; 1 -1; 1.5 1; 4 1];
output=[1; 1; -1; -1];
data.X = [1 1;1 -1];
data.Y = [1.5 1;4 1];
data.axs = [0 5 -2 2];

gain=0.1;
act_n=2;
ite_num=1000;
[m,n]=size(input)
X=cat(2,input,ones(m,1));
X
Y=X'*X\X';
for ii=1:1
 w=generate_weights(n+1);
 for iteration=1:ite_num
 [del,err(iteration),outs]=compute_del(input,output,w,act_n,gain);
 delta_w=Y*del;
 w=w+delta_w';
 w=1.2*w;
 if err(iteration)<1e-4 break; end;
 end
 figure(1);
 semilogy(err); hold on;
 drawnow;
 axis tight
 disp(['Total Error: ',num2str(err(end))]);
 disp(['Final Weights: ',num2str(w)]);
 xlabel('iteration')
 ylabel('total error')
end;
%%
function [weight] = generate_weights(n);
weight=zeros(1,n);
for i = 1:n % number of weights
 ra = 2*rand(1)-1; % generate random weights between -1 and 1
 while(ra == 0)

85

 ra = 2*rand(1)-1;
 end;
 weight(i) = ra;
end;
%%compute delta using error backpropagation%%%%%%%%%%
function [del,err,outs]=compute_del(input,output,w,act_n,gain)
[m,n]=size(input);
err=0;
for p=1:m
 temp=input(p,:);
 net=w(n+1);
 for i=1:n
 net=temp(i)*w(i)+net;
 end
 [out,der]=actFuncDer(net,act_n,gain);
 outs(p)=out;
 del(p,1)=(output(p)-out)/(der+0.0001);
 err=err+(out-output(p))^2;
end
%%
function [out,der]=actFuncDer(net,act_n,gain)
switch act_n
 case 0, out = gain*net; der = gain;
% linear neuron
 case 1, out = 1/(1+exp(-gain*net)); der = gain*(1-out)*out;
% unipolar neuron
 case 2, out = 2/(1+exp(-gain*net))-1; der = gain*(1-out*out)/2;
% bipolar neuron
 case 3, out = gain*net/(1+gain*abs(net));der = gain/(gain*abs(net)+1)^2;
% unipolar elliot neuron
 case 4, out = 2*gain*net/(1+gain*abs(net))-1; der =
2*gain/(gain*abs(net)+1)^2; % bipolar elliot neuron
end;

A.2 ASPINV.m

function [w,err] = aspinv(inp,dout,gain,err_max);
[np,ni]=size(inp);
X=cat(2,inp,ones(np,1));
A = [1:length(dout)];
Xndx = find(dout==1);
w = 2*rand(ni+1,1)-1;
for ite=1:100
 Xa = X(A,:);
 w = Xa'*Xa\Xa'*dout(A);
 out = X*w;
 B = find((abs(out))<=1);
 if (length(B)>=2)
 cls0 = length(find(Xndx==B(1)));
 for i=2:length(B)
 cls = length(find(Xndx==B(i)));
 if cls0~=cls
 A = B;
 break

86

 end
 end
 end
 E = dout(A) - out(A);
 if (E'*E<1e-4)&(sign(out)==dout),
 break;
 end;
end
scale = atanh(1-err_max)/gain;
w = w*scale;
E = dout - tanh(gain*X*w);
err = E'*E/np;
return

A.3 PINVQP.m

function [w,err] = pinvqp(inp,dout,gain,err_max);
[np,ni]=size(inp);
X=cat(2,inp,ones(np,1));
A = [1:length(dout)];
Xndx = find(dout==1);
w = 2*rand(ni+1,1)-1;
for ite=1:100
 Xa = X(A,:);
 w = Xa'*Xa\Xa'*dout(A);
 out = X*w;
 E = dout(A) - out(A);
 if (E'*E<1e-4)&(sign(out)==dout),
 break;
 end;
 B = find((abs(out))<=1);
 if (length(B)>=2)
 cls0 = length(find(Xndx==B(1)));
 for i=2:length(B)
 cls = length(find(Xndx==B(i)));
 if cls0~=cls
 A = B;
 break
 end
 end
 end
end
y = dout(A);
out = inp(A,:);
% V ------------------ Formulate Wolfe Dual --------------------- V %
nump = length(y);
G = (out*out').*(y*y');
c = -ones(nump,1);
Ai = eye(nump);
Ae = y';
Bi = zeros(nump,1);
Be = 0;

% ----------------------- Solve Wolfe Dual ------------------------ %

87

x = rand(nump,1);
[x] = QPsolve(G,c,Ai,Ae,Bi,Be,x);
wo = (y'.*x')*out
S = find(abs(x)>=1e-10);
nums = length(S);
s1 = 0;
for i = 1:nums
 s2 = 0;
 for j = 1:nums
 s2 = s2 + x(S(j))*y(S(j))*out(S(j),:)*out(S(i),:)';
 end
 s1 = s1 + y(S(i)) - s2;
end
b = 1/length(S)*s1;

w = [wo,b]';

scale = atanh(1-err_max)/gain;
w = w*scale;
E = dout - tanh(gain*X*w);
err = E'*E/np;
return

A.4 QPSOLVE.m

function [x] = QPsolve(G,c,Ai,Ae,Bi,Be,x)

% Initialize working set
W = find(Ai*x-Bi<=0); % Find active
constraints for initial x

a = Ai(W,:);
a = [a;Ae];
b = Bi(W,:);
b = [b;Be];
% -------------------- Apply Algorithm -------------------- %
while(1)

numc = length(b); % Number of
constraints in working set
% Solve for step direction (p):
g = G*x+c; % Gradient of the
Objective
h = a*x-b; % Vector of
constraint values

O = zeros(numc,numc); % Zero matrix for
the KKT matrix
KKT = [G a'; % KKT Matrix
 a O];

gb = [g;
 h];

88

if cond(KKT)>1e5 % Solve KKT
problem
 sol = (KKT+diag(.001*ones(1,length(KKT(1,:)))))\gb;
 1
else
 sol = KKT\gb;
 2
end
p = -sol(1:length(x)); % Step direction
if length(W)>0
 lam = sol(length(x)+1:end-1); % Lagrange
Multipliers
else
 lam = 0;
end
% Test step direction:
if sum(abs(p))<=1e-10,

 ndx = find(lam<0);
 x = x + p;
 if isempty(ndx)
 break;
 else
 ndx = find(lam==min(lam(ndx)));
 W(ndx) = [];
 a = Ai(W,:);
 a = [a;Ae];
 b = Bi(W,:);
 b = [b;Be];
 end
else
 an = Ai;
 an(W,:) = [];
 bn = Bi;
 bn(W,:) = [];
 ndx = 1:length(Bi);
 ndx(W)=[];

 apgz = find(an*p>=0);
 an(apgz,:)=[];
 bn(apgz,:)=[];
 ndx(apgz)=[];
 blk = (bn-an*x)./(an*p);

 alpha = min([1,min(blk)]);
 x = x + alpha*p
 if alpha<1
 ndx = ndx(find(blk==min(blk)));
 W = sort([ndx,W]);
 a = Ai(W,:);
 a = [a;Ae];
 b = Bi(W,:);
 b = [b;Be];
 else
 W = W;

89

 end
end
end
% --- %

90

Appendix B

MATLAB CODE FOR THE HLPI ALGORITHM

B.1 NRA.m

function [ww, nodes, TERR, ite, dbug] = NRA(Nparam,Aparam,Tparam)
global CANCEL
global RESTART
unpackparam(Nparam);
unpackparam(Aparam);
unpackparam(Tparam);
dbug = [];

if length(ww) ~= length(topo),
 ww = (2*rand(size(topo))-1);
 ww = ww_init(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act);
 nw=length(topo);
end;

if Tparam.op == 1
 disp(' ');
 disp('Initial Weights');
 dispf(0,ww', 8,4,'ww');
 disp(' ');
 disp('Training started...');

 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act,Nparam);
 TER=E'*E/np; TERR(1)=TER;

 if strcmp(alg,'NRA_NBN.m')

addpath('C:\Users\Joel\Documents\MATLAB\my_libs\NNT\alg_files\NRA_files\');
 I=eye(nw); x=ww; x_new = x; jite=0; RESTART=2;
 mu1 = 0.01;
 flag = 0;
 count = 0;
 % Inititialize debugging output
 dbug = Nparam; dbug.wwi = ww; dbug.ww = []; dbug.rlnite = [];
dbug.rlntyp = []; dbug.nodes = []; dbug.der = []; dbug.ndxo = {}; dbug.ord =
[];
 % Entrapment test parameters
 nlast = 100;
 outlast = zeros(np,nlast);

91

 ncount = 50;
 errite = 50;
 derr = 1e-4;
 % Weight reset parameters
 sim_mes = 0.95; % similarity between neuron outputs. range: [0,1]
 test_freq = 10; % Number of iterations between tests
 nite_init = 100;
 ite_last = 0;

 for ite=2:ite_max,
 if CANCEL == 1; break; end;
 run Jstandard
 x = x_new;
 gra = J'*E; %gradient
 JJ=J'*J;
 jw=0;
 while (1),
 x_new=x-((JJ+mu1*I)\gra)';
 ww=x_new';
 if (ite==1), TERR(ite)=terr; break; end;
 %calculate new performance
 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act,Nparam);
 TER=E'*E/np; % evaluate the objective function
 TERR(ite)=TER;
 if TER<=TERR(ite-1)
 if mu1>mu_min, mu1=mu1/LM_scal; end;
 break;
 end;
 if mu1<mu_max, mu1=mu1*LM_scal; end;
 jw=jw+1;
 if jw>5, break; end;
 end; % while (1),
 % Reset weights for redundant hidden neurons
 if (~rem(ite,test_freq))&&((ite-
ite_last)>(nite_init+2))&&(sum(sign(nodes(:,end))~=dout)<np/20)
 nds = nodes(:,ni+1:end-no);
 ndslen = repmat(1./sqrt(sum(nds.^2)),np,1);
 nds = nds.*ndslen;
 cmp = triu(nds'*nds,1);
 [n1,n2] = find(abs(cmp)>=sim_mes);
 pairs = [n1,n2];
 [h1,h2] = find(abs(cmp)<sim_mes);
 hndx = unique([h1,h2]);
 if ~isempty(pairs)

 while ~isempty(pairs)
 hndx = unique(hndx);
 rsndx = pairs(1,1);
 pct = 0.6*rand+0.2;
 if length(hndx>1)
 h1 = ceil(rand*(length(hndx)));
 mv1 = ww(iw(hndx(h1)):iw(hndx(h1)+1)-1);
 hndx(h1) = [];
 h2 = ceil(rand*(length(hndx)));

92

 mv2= ww(iw(hndx(h2)):iw(hndx(h2)+1)-1);
 hndx(end+1) = h1;
 else
 [mv1,mv2] =
find(abs(cmp)==max(max(abs(cmp))));
 mv1 = ww(iw(mv1(1)):iw(mv1(1)+1)-1);
 mv2 = ww(iw(mv2(1)):iw(mv2(1)+1)-1);
 end
 if rand>0.6;
 ww(iw(rsndx):iw(rsndx+1)-1) = pct*mv1+(1-
pct)*mv2;
 else
 ww(iw(rsndx):iw(rsndx+1)-1) = (1-
2*rand(size(mv1)));
 end
 pairs(find(pairs==rsndx),:)=[];
 hndx(end+1) = rsndx;
 end
 end
 mu1 = 0.01;
 end

 if
((count>=ncount)&&isempty(find(sign(outlast(:,1))~=sign(nodes(:,end)))))||((i
te>errite+2)&&((TERR(ite-errite)-
TERR(ite))<derr*TERR(ite))&&TERR(ite)<=TERR(ite-
errite))&&(sum(sign(nodes(:,end))~=dout)<np/20)
 ite_last = ite;
 ndx = find(dout~=sign(nodes(:,end)));
 if ~isempty(ndx),
 [ww,dbug.ndxo{end+1},dbug.ord(end+1,:)] =
realign(nodes,gain,ni,no,nn,ww,iw,topo,act,Nparam,ndx,flag);

 nds = nodes(:,ni+1:end-no);
 ndslen = repmat(1./sqrt(sum(nds.^2)),np,1);
 nds = nds.*ndslen;
 cmp = triu(nds'*nds,1);
 [n1,n2] = find(abs(cmp)>=sim_mes);
 pairs = [n1,n2];
 [h1,h2] = find(abs(cmp)<sim_mes);
 hndx = unique([h1,h2]);
 if ~isempty(pairs)

 while ~isempty(pairs)
 hndx = unique(hndx);
 rsndx = pairs(1,1);
 pct = 0.6*rand+0.2;
 if length(hndx>1)
 h1 = ceil(rand*(length(hndx)));
 mv1 = ww(iw(hndx(h1)):iw(hndx(h1)+1)-1);
 hndx(h1) = [];
 h2 = ceil(rand*(length(hndx)));
 mv2= ww(iw(hndx(h2)):iw(hndx(h2)+1)-1);
 hndx(end+1) = h1;

93

 else
 [mv1,mv2] =
find(abs(cmp)==max(max(abs(cmp))));
 mv1 = ww(iw(mv1(1)):iw(mv1(1)+1)-1);
 mv2 = ww(iw(mv2(1)):iw(mv2(1)+1)-1);
 end
 if rand>0.9;
 ww(iw(rsndx):iw(rsndx+1)-1) = pct*mv1+(1-
pct)*mv2;
 else
 ww(iw(rsndx):iw(rsndx+1)-1) = (1-
2*rand(size(mv1)));
 end
 pairs(find(pairs==rsndx),:)=[];
 hndx(end+1) = rsndx;
 end
 end

 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act,Nparam);
 inpo = nodes(:,topo(iw(end-1)+1:iw(end)-1));
 if act(end)==4,
 funo = Nparam.fun{end};
 dero = Nparam.der{end};
 else
 funo = 0;
 dero = 0;
 end
 [wwo,outn,rln] =
pseudo_inv(inpo,dout,gain(end),act(end),funo,dero,[],10);
 ww(iw(end-1):iw(end)-1) = wwo/sqrt(sum(wwo.^2));
 dbug.rlntyp(end+1) = 1;

 mu1 = 0.01;
 x_new = ww';
 dbug.rlnite(end+1) = ite;
 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act,Nparam);
 if (E'*E/np>=TER),
 ww(iw(end-1):iw(end)-1) = 1-2*rand(1,iw(end)-iw(end-
1));
 dbug.rlntyp(end) = 0;
 end
 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act,Nparam);
 TERR(ite) = E'*E/np;
 end;

 if count>=ncount, count = 0; end;
 end;
 if nlast>1,
 outlast = [outlast(:,2:nlast),nodes(:,end)];
 else
 outlast = nodes(:,end);
 end
 count = count + 1;

94

 if rem(ite,pscale)==0; dispf(0,TER,18,12,'total error ',ite);
end;
 if TER<er_max, RESTART=1; break; end;
 if RESTART==0, return; end;
 end;
 else
 ndir = which('NNT');
 buildalg(alg);
 [tok,ndir]=strtok(fliplr(ndir),'\');
 ndir = fliplr(ndir);
 eval(['run ',ndir,sprintf('alg_files\\%s.m',strtok(alg,['.',' ']))])
 end

elseif Tparam.op == 0
 disp(' ');
 disp('Network Weights');
 dispf(0,ww', 8,4,'ww');
 disp(' ');
 disp('Simulating...');
 ite = 1;
 [nodes,nets,ooo,der,E] =
cal_forward(gain,np,ni,no,nn,inp,dout,ww,iw,topo,act);
 TER=E'*E/np; TERR(1)=TER;
 CANCEL = 1;
end;

return;

B.2 PSEUDO_INV.m

function [ww,out,rln] = pseudo_inv(inp,dout,gain,act,fun,der,ndx,nite)
% PSEUDO_INV Perform pseudo-inversion in a single neuron. %
% PSEUDO_INV(INP,DOUT,GAIN,ACT,FUN,DER,NDX,NITE) performs pseudo %
% inversion on a single neuron based until realignement of one or more of %
% a specific set of patterns are properly classified. If realignement %
% does not occur, the derivative for the specified patterns are scaled %
% incrementally, and the process is repeated. Once one or more of the %
% desired patterns is successfully clasified, the process is terminated %
% and the resulting weights are returned. %
% %
% INP - [NPxNI] - Matrix of neuron input patterns. %
% DOUT - [NPx1] - Vector containing the desired outputs for the neuron. %
% GAIN - [1xNN] - Gains of the neuron. %
% ACT - [scalar] - The activation function of the neuron. %
% FUN - [string] - Used for custom activation functions. %
% DER - [string] - Used for custom activation functions. %
% NDX - [1xNM] - Vector of indices for misclassified outputs. %
% NITE - [scalar] - Number of pseudo inversion iterations. %

% Author(s): J. D. Hewlett, 2/16/11, revised %
% $Revision: 1.3 $ $Date: 07-Mar-2011 11:26:52 $ %

95

% ---
%

nrln = 1; % Number of patterns which must be reclassified for termination.
d_scal = 1; % Initial value for derivative scaling.
rln_cnst = .6; % Minimum difference of actual and desired output for
realignment.
d_step = 0.25; % Increment size for derivative scaleing.
[np,ni]=size(inp);
inp=[ones(np,1),inp]; % Augmenting input bias.
inp0=inp;
inpi=pinv(inp); % Find pseudo inverse of input matrix.
ww=(inpi*dout)'; % Find initial weights using regression
% Calculate outputs:
net=inp0*ww';
switch act
 case 1,
 out = tanh(gain*net);
 fp = gain*(1-out.*out)+0.001;
 case 2,
 out = 1/(1+exp(-gain*net));
 fp = gain*(1-out).*out+0.001;
 case 3,
 out = gain*net;
 fp = gain;
 case 4,
 out = eval([fun,';']);
 fp = eval([der,';']);
end;
fp(ndx) = fp(ndx)*d_scal; % scale derivatives
E=dout-out;
e = E'*E/np; % Determine total error.
while length(find(abs(E(ndx))<rln_cnst))<nrln % Repeat until realignment
occurs.
 % Perform iterative pseudo inversion:
 for ite=1:nite
 inp=diag(fp)*inp0;
 inpi=pinv(inp);
 dw=inpi*E; % Calculate step.
 ww=ww+dw'; % Update weights.
 % Calculate outputs:
 net=inp0*ww';
 switch act
 case 1,
 out = tanh(gain*net);
 fp = gain*(1-out.*out)+0.001;
 case 2,
 out = 1/(1+exp(-gain*net));
 fp = gain*(1-out).*out+0.001;
 case 3,
 out = gain*net;
 fp = gain;
 case 4,
 out = eval([fun,';']);
 fp = eval([der,';']);
 end;
 fp(ndx) = fp(ndx)*d_scal; % Scale derivatives.

96

 E=dout-out;
 e = E'*E/np; % Calculate total error.
 er(ite)=e;

 end;
if isempty(ndx), rln = []; return; end; % If realignment index is empty, end
process.
d_scal=d_scal+d_step; % Increment derivative scalar.
end
rln = find(abs(E(ndx))<rln_cnst); % Determine indices of realigned patterns.

B.3 Realign.m

function [ww,ndxo,ord] =
realign(nodes,gain,ni,no,nn,ww,iw,topo,act,Nparam,ndx,flag)
% REALIGN Realign hidden layer neuron. %
% REALIGN(NODES,GAIN,NI,NO,NN,WW,IW,TOPO,ACT,NPARAM,NDX,FLAG) realigns %
% hidden layer neuron classification based on which input patterns are %
% misclassified with respect to the desired output for the network. %
% %
% First, the hidden neurons are Ranked based on the average output for %
% the misclassified patterns. Lower averages imply that the misclassified %
% %
% patterns are nearer to the separating plane, meaning they are more %
% likely to be reclassifiable. Pseudo inversion is then performed, and %
% the derivatives for the misclassified patterns are incrementaly scaled %
% until reclassifcation occurs for one or more patterns. %
% %
% Once reclassification is achieved for a neuron, a new index of patterns %
% is formed containing those patterns which were not reclassified as well %
% as any patterns which may have been incidentally reclassified in the %
% process. Then, the remaining neurons are reranked and the process is %
% repaeted until either the index is empty or all hidden units have been %
% have been realigned. %
% %
% NODES - [NPxNI+NN] - Matrix of network inputs and neuron outputs for %
% the current iteration. %
% GAIN - [1xNN] - Vector containing the gains of all neurons. %
% NI - [scalar] - Number of inputs to the network. %
% NO - [scalar] - Number of outputs from the network. %
% NN - [scalar] - Number of neurons in the network. %
% WW - [1xNW] - Vector containing the weights of the network. %
% IW - [1xNN+1] - Index of biasing weights within WW. %
% TOPO - [1xNW] - Vector defining the network topology. %
% ACT - [1xNN] - Vector designating the activation function for %
% each neuron. %
% Nparam - [struct] - Structure of additional network parameters. %
% NDX - [1xNM] - Vector of indices for misclassified outputs. %
% FLAG - [scalar] - Indicates if the realignment process is %
% oscillating. %

% Author(s): J. D. Hewlett, 2/16/11, revised %

97

% $Revision: 1.3 $ $Date: 07-Mar-2011 10:39:44 $ %
% --- %

disp('Beginning realignment...');
disp(sprintf('Patterns misclassfied: %s', num2str(length(ndx))));
ndxo = ndx;
nite = 10; % Number of pseudo inversion iterations per attempt
nh = nn-no; % Number of hidden neurons
nds = nodes(ndx,ni+1:ni+nh); % Get the outputs of all hidden neurons.
[nds,ord] = sortrows((sum(abs(nds),1)/length(nds(:,1)))'); % Rank hidden
neurons.
if flag,
 ord = flipud(ord); % If oscillation occurs, reverse rank order.
end
% For each hidden neuron:
for ii = 1:nh,
 don = sign(nodes(:,ni+ord(ii))); % Desired output for current neuron.
 don(ndx) = -don(ndx); % Change sign for misclassified patterns.
 inpn = nodes(:,topo(iw(ord(ii))+1:iw(ord(ii)+1)-1)); % Get inputs for
current neuron.
 % Check for custom activation functions.
 if act(ord(ii))==4,
 fun = Nparam.fun{ord(ii)};
 der = Nparam.der{ord(ii)};
 else
 fun = 0;
 der = 0;
 end

 [wwn,outn,rln] = pseudo_inv(inpn,don,gain(ord(ii)),...
 act(ord(ii)),fun,der,ndx,nite); % Perform pseudo inversion for
current neuron.
 nodes(:,ni+ord(ii)) = outn; % Update neuron output values.
 ww(iw(ord(ii)):iw(ord(ii)+1)-1) = wwn; % Update neruon weights.
 ndx = find(don~=sign(outn)); % Generate new realignment index.
 disp(sprintf('Hidden Neuron #%s - Patterns realigned: %s',...
 num2str(ord(ii)),num2str(length(rln))));
 % If more than one neuron is remaining, update rank.
 if ii<nh-1
 nds = nodes(ndx,ni+ord(ii+1:end));
 [nds,ord1] = sortrows((sum(abs(nds),1)/length(nds(:,1)))');
 ord2 = ord(ii+1:end);
 ord(ii+1:end) = ord2(ord1);
 end
 % If realignment index is empty, terminate the process.
 if isempty(ndx),
 if ii<nh,
 ord(ii+1:nh) = 0; % For debugging purposes.
 end
 break;
 end;
 ndxo = [ndxo;0;ndx]; % For debugging purposes.
 if rand>0.9, break; end;
end
return

