

Advanced Learning Algorithms of Neural Networks

by

Hao Yu

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

December 12, 2011

Keywords: Artificial Neural Networks, Levenberg Marquardt Algorithm, Neuron-by-Neuron

Algorithm, Forward-Only Algorithm, Improved Second Order Computation

Copyright 2011 by Hao Yu

Approved by

Bogdan M Wilamowski, Chair, Professor of Electrical and Computer Engineering

Hulya Kirkici, Professor of Electrical and Computer Engineering

Vishwani D. Agrawal, Professor of Electrical and Computer Engineering

Vitaly Vodyanoy, Professor of Anatomy Physiology and Pharmacy

ii

Abstract

The concept of “learn to behave” gives very vivid description of functionalities of neural

networks. Specifically, a group of observations, each of which consists of inputs and desired

outputs, are directly applied to neural networks, and the networks parameters (called “weights”)

are adjusted iteratively according with the differences (called “error”) between desired network

outputs and actual network output. The parameter adjustment process is called “learning” or

“training”. After the errors converging to expected accuracy, the trained networks can be used to

analyze the input dataset which are in the same range of observations, for classification,

recognition and prediction.

In neural network realm, network architectures and learning algorithms are the major

research topics, and both of them are essential in designing well-behaved neural networks. In the

dissertation, we are focused on the computational efficiency of learning algorithms, especially

second order algorithms. Two algorithms are proposed to solve the memory limitation problem

and computational redundancy problem in second order computations, including the famous

Hagan and Menhaj Levenberg Marquardt algorithm and the recently developed neuron-by-

neuron algorithm.

The dissertation consists of seven chapters. The first chapter demonstrates the attractive

properties of neural network with two examples, by comparing with several other methods of

computational intelligence and human beings. The second chapter introduces background of

neural networks, including the history of neural networks, basic concepts, network architectures,

iii

learning algorithms, generalization ability and the recently developed neuron-by-neuron

algorithm. The third chapter discusses the current problems in second order algorithms. The

fourth chapter describes another way of gradient vector and quasi Hessian matrix computation

for implementing Levenberg Marquardt algorithm. With the similar computational complexity,

the improved second order computation solves the memory limitation in second order algorithms.

The fifth chapter presents the forward-only algorithm. By replacing the backpropagation process

with extra calculation in forward process, the forward-only algorithm improves the training

efficiency, especially for networks with multiple outputs. Also, the forward-only algorithm can

handle networks consisting of arbitrarily connected neurons. The sixth chapter introduces the

computer software implementation of neural networks, using C++ based on Visual C++ 6.0

platform. All the algorithms introduced in the dissertation are implemented in the software. The

seventh chapter concludes the dissertation and also introduces our recent work.

iv

Acknowledgments

First of all, I would like to sincerely appreciate my honorific supervisor, Prof. Bogdan M

Wilamowski, for his great patience and knowledgeable guidance during the past three years Ph.D

study. His professional research experience teaches me how to be creative, how to find problems

and solve them. His active attitude of life encourages me working hard towards my destination.

His kindness and great sense of humor makes me feel warm and happy. All the things I have

learnt from him are marked deeply in my memory and will benefit the rest of my life. Without

his help, I could not have finished my dissertation and Ph.D study successfully. Besides, I would

like to express my special appreciation to both Mr. Bogdan Wilamowski and his wife, Mrs.

Barbara Wilamowski, for their kindness, caring about me and letting me feel like studying at

home.

 Special thanks are also given to my committee members, Prof. Hulya Kirkici, Prof.

Vishwani D. Agrawal and Prof. Vitaly Vodyanoy, and the outside reader Prof. Weikuan Yu.

From their critical and valuable comments, I noticed the weakness in my dissertation and made

the necessary improvements according to their suggestions.

I would like to express my appreciation to my good friends who have helped me with my

studying and living in Auburn. They are Joel Hewlett, Nam Pham, Nicholas Cotton, Pradeep

Dandamudi, Steven Surgnier, Yuehai Jin, Haitao Zhao, Hua Mu, Jinho Hyun, Qing Dai, Yu

Zhang, Chao Han, Xin Jin, Jia Yao, Pengcheng Li, Fang Li and Jiao Yu. I am very lucky to be

their friend.

v

Special thanks to Charles Ellis, Prof. David Irwin and Prof. Michael Hamilton, for their

professional guidance on the projects and papers we worked together. It was my great honor to

have worked with them. I also would like to thank Prof. John Hung, Prof. Fa Foster Dai, Prof.

Hulya Kirkici, Prof. Vishwani Agrawal, Prof. Stanley Reeves, Prof. Adit Singh, Prof. Bogdan

Wilamowski and Prof. Thomas Baginski, for their excellent teaching skills and professional

knowledge in their courses.

Last but not least, I am greatly indebted to my wife, Dr. Tiantian Xie, my newborn

daughter, Amy X Yu, and my parents and my parents-in-law. They are the backbone and origin

of my happiness. Being both a father and mother while I was struggling with my dissertation was

not an easy thing for my wife. Without her support and encouragement, I could never finish my

Ph.D study successfully. I owe my every achievement to my family.

 Thanks to everyone.

vi

Table of Contents

Abstract .. ii

Acknowledgments ... iv

List of Tables .. viii

List of Figures .. x

Chapter 1 Why Neural Networks ... 1

 1.1 Introduction ... 1

 1.2 Comparison of Different Nonlinear Approximators ... 3

 1.3 Neural Networks for Image Recognition .. 9

 1.4 Conclusion ... 11

Chapter 2 Background ... 13

 2.1 History ... 13

 2.2 Basic Concepts .. 14

 2.3 Network Architectures .. 16

 2.4 Learning Algorithms ... 26

 2.5 Generalization Ability ... 39

 2.6 Neuron-by-Neuron Algorithm ... 43

Chapter 3 Problems in Second Order Algorithms ... 47

Chapter 4 Improved Second Order Computation .. 49

 4.1 Problem Description .. 49

vii

 4.2 Improved Computation ... 51

 4.3 Implementation .. 58

 4.4 Experiments ... 61

 4.5 Conclusion ... 64

Chapter 5 Forward-Only Computation .. 66

 5.1 Computational Fundamentals .. 67

 5.2 Forward-Only Computation .. 72

 5.3 Computation Comparison ... 80

 5.4 Experiments ... 83

 5.5 Conclusion ... 91

Chapter 6 C++ Implementation of Neural Network Trainer ... 93

 6.1 File Instruction .. 94

 6.2 Graphic User Interface Instruction .. 100

 6.3 Implemented Algorithms .. 104

 6.4 Strategies for Improving Training Performance ... 105

 6.5 Case Study Using NBN 2.0 ... 114

 6.6 Conclusion ... 118

Chapter 7 Conclusion ... 119

References .. 122

viii

List of Tables

Table 1-1 Comparison of approximation accuracy using different methods of computational

 intelligence .. 9

Table 1-2 Success rates of the designed counterpropagation neural network for digit image

 recognition ... 11

Table 2-1 Different architectures for solving parity-N problem .. 25

Table 2-2 Specifications of different learning algorithms ... 35

Table 2-3 Comparison among different learning algorithms for parity-3 problem 36

Table 2-4 Training/testing SSEs of different sizes of FCC networks .. 41

Table 4-1 Computation cost analysis ... 54

Table 4-2 Memory cost analysis .. 54

Table 4-3 Memory comparison for parity problems .. 62

Table 4-4 Memory comparison for MINST problem .. 62

Table 4-5 Time comparison for parity problems ... 63

Table 5-1 Analysis of computation cost in Hagan and Menhaj LM algorithm and

 forward-only computation ... 81

Table 5-2 Comparison for ASCII problem .. 82

Table 5-3 Analytical relative time of the forward-only computation of problems 82

Table 5-4 Training results of the two-spiral problem with the proposed forward-only

 implementation of LM algorithm, using MLP networks with two hidden layers;

 maximum iteration is 1,000; desired error=0.01; there are 100 trials for each

 case .. 84

ix

Table 5-5 Training results of the two-spiral problem with the proposed forward-only

 implementation of LM algorithm, using FCC networks; maximum iteration is

 1,000; desired error=0.01; there are 100 trials for each case 84

Table 5-6 Training Results of peak surface problem using FCC architectures 86

Table 5-7 Comparison for ASCII characters recognition problem .. 88

Table 5-8 Comparison for error correction problem .. 90

Table 5-9 Comparison for forward kinematics problem .. 91

Table 6-1 Parameters for training .. 94

Table 6-2 Three types of neurons in the software .. 97

Table 6-3 Available commands and related functionalities ... 103

Table 6-4 Comparison of different EBP algorithms for solving XOR problem 107

Table 6-5 Testing results of parity problems using update rules (6-3) and (6-4) 111

Table 6-6 Testing results of parity-N problems using different activation functions with

 the minimal network architecture analyzed in section 2.3 .. 113

x

List of Figures

Figure 1-1 Surface approximation problem ... 3

Figure 1-2 Block diagram of the two types of fuzzy systems .. 4

Figure 1-3 Result surfaces obtained using fuzzy inference systems .. 4

Figure 1-4 Neuro-Fuzzy System .. 5

Figure 1-5 Result surface of neuro-fuzzy systems, SSE= 27.3356 ... 6

Figure 1-6 Result surfaces obtained using support vector machine .. 6

Figure 1-7 Result surfaces obtained using interpolation methods ... 7

Figure 1-8 Neural network architecture and related testing result ... 8

Figure 1-9 Neural network architecture and related testing result ... 8

Figure 1-10 Digit images with different noise levels from 0 to 7 in left-to-right order

 (one data in 100 groups) ... 10

Figure 1-11 The designed counterpropagation neural network architecture for the digit

 image recognition problem ... 10

Figure 1-12 Retrieval results of 7
th

 level noised digit images ... 11

Figure 2-1 Neural cell in human brain and its simplified model in neural networks 15

Figure 2-2 Different types of activation functions ... 16

Figure 2-3 Training patterns simplification for parity-3 problem ... 17

Figure 2-4 Two equivalent networks for parity-3 problem .. 18

Figure 2-5 Analytical solution of parity-2 problem ... 18

Figure 2-6 Analytical solution of parity-3 problem ... 19

xi

Figure 2-7 Solving Parity-7 problem using MLP network with one hidden layer 19

Figure 2-8 Solve parity-7 problem using BMLP networks with one hidden layer 21

Figure 2-9 Solve parity-11 problem using BMLP networks with single hidden layer 21

Figure 2-10 Solve parity-11 problem using BMLP networks with two hidden layers,

 11=2=1=1 ... 22

Figure 2-11 Solve parity-11 problem using BMLP networks with two hidden layers,

 11=1=2=1 ... 23

Figure 2-12 Solve parity-7 problem using FCC networks .. 24

Figure 2-13 Solve parity-15 problem using FCC networks .. 24

Figure 2-14 Searching process of the steepest descent method with different learning

 constants: yellow trajectory (left) is for small learning constant which leads to

 slow convergence; purple trajectory (right) is for large learning constant which

 causes oscillation (divergence) ... 26

Figure 2-15 Parity-3 data and network architecture .. 35

Figure 2-16 Training results of parity-3 problem .. 36

Figure 2-17 Two-spiral problem: separation of two groups of points ... 37

Figure 2-18 Comparison between EBP algorithm and LM algorithm, for different number

 of neurons in fully connected cascade networks .. 38

Figure 2-19 Training results of the two-spiral problem with 16 neurons in fully connected

 cascade network ... 39

Figure 2-20 Function approximation problem ... 40

Figure 2-21 Approximation results of FCC networks with different number of neurons 41

Figure 2-22 Arbitrarily connected neural network indexed by NBN algorithm 44

Figure 4-1 Two ways of multiplying matrixes .. 53

Figure 4-2 Parity-2 problem: 4 patterns, 2 inputs and 1 output ... 58

Figure 4-3 Three neurons in MLP network used for training parity-2 problem; weight

 and neuron indexes are marked in the figure ... 58

xii

Figure 4-4 Pseudo code of the improved computation for quasi Hessian matrix and

 gradient vector .. 61

Figure 4-5 Some testing results for digit “2” recognition .. 63

Figure 5-1 Connection of a neuron j with the rest of the network. Nodes yj,i could

 represents network inputs or outputs of other neurons. Fm,j(yj) is the nonlinear

 relationship between the neuron output node yj and the network output om................ 68

Figure 5-2 Structure of Jacobian matrix: (1) the number of columns is equal to the number

 of weights; (2) each row is corresponding to a specified training pattern p and

 output m .. 71

Figure 5-3 Pseudo code using traditional backpropagation of delta in second order

 algorithms (code in bold will be removed in the proposed computation) 72

Figure 5-4 Interpretation of δk,j as a signal gain, where in feedforward network neuron j

 must be located before neuron k ... 73

Figure 5-5 Four neurons in fully connected neural network, with 5 inputs and 3 outputs 74

Figure 5-6 The δk,j parameters for the neural network of Fig. 5-5. Input and bias weights

 are not used in the calculation of gain parameters ... 74

Figure 5-7 The nn×nn computation table; gain matrix δ contains all the signal gains

 between neurons; weight array w presents only the connections between neurons,

 while network input weights and biasing weights are not included 76

Figure 5-8 Three different architectures with 6 neurons ... 79

Figure 5-9 Pseudo code of the forward-only computation, in second order algorithms 80

Figure 5-10 Comparison of computation cost for MLP networks with one hidden layer;

 x-axis is the number of neurons in hidden layer; y-axis is the time consumption

 radio between the forward-only computation and the forward-backward

 computation .. 83

Figure 5-11 Peak surface approximation problem .. 85

Figure 5-12 The best training result in 100 trials, using LM algorithm, 8 neurons in FCC

 network (52 weights); maximum training iteration is 1,000; SSETrain=0.0044,

 SSEVerify=0.0080 and training time=0.37 s ... 87

xiii

Figure 5-13 The best training result in 100 trials, using EBP algorithm, 8 neurons in FCC

 network (52 weights); maximum training iteration is 1,000,000;

 SSETrain=0.0764, SSEVerify=0.1271 and training time=579.98 s 87

Figure 5-14 The best training result in 100 trials, using EBP algorithm, 13 neurons in FCC

 network (117 weights); maximum training iteration is 1,000,000;

 SSETrain=0.0018, SSEVerify=0.4909 and training time=635.72 s 87

Figure 5-15 The first 90 images of ASCII characters .. 89

Figure 5-16 Using neural networks to solve an error correction problem; errors in input

 data can be corrected by well trained neural networks .. 89

Figure 5-17 Tow-link planar manipulator .. 91

Figure 6-1 Commands and related neural network topologies .. 96

Figure 6-2 Weight initialization for parity-3 problem with 2 neurons in FCC network 96

Figure 6-3 Extract the number of inputs and the number of outputs from the data file

 and topology ... 98

Figure 6-4 A sample of training result file ... 99

Figure 6-5 A sample of training verification file for parity-3 problem 99

Figure 6-6 The user interface of NBN 2.0 ... 100

Figure 6-7 Training process with and without momentum .. 106

Figure 6-8 Network architecture used for XOR problem .. 107

Figure 6-9 Training results of XOR problem .. 107

Figure 6-10 The “flat spot” problem in sigmoidal activation function 108

Figure 6-11 Test the modified slope by “worst case” training .. 109

Figure 6-12 Parameter adjustment in update rule (6-4) ... 110

Figure 6-13 Failures of gradient based optimization ... 111

Figure 6-14 Two equivalent networks ... 114

Figure 6-15 Network construction commands: 15 neurons in FCC network with 2 inputs

 and 5 outputs .. 115

xiv

Figure 6-16 Data classification .. 115

Figure 6-17 X-dimension surface of forward kinematics .. 116

Figure 6-18 Y-dimension surface of forward kinematics ... 117

Figure 6-19 X-dimension testing results .. 117

Figure 6-20 Y-dimension testing results ... 117

1

CHAPTER 1

WHY NEURAL NETWORKS

1.1 Introduction

As rapid development of computational intelligence, the tendency becomes more and more

apparent that human kind is going to be replaced by intelligent systems. Various algorithms of

computational intelligence have been well-developed based on different biological or statistic

models [1-4], and they are paid great attentions in both scientific research and industrial

applications, such as nonlinear compensations [5-7], motor control [8-12], dynamic distribution

systems [13], robotic manipulators [14-16], pattern recognition [17-19] and fault diagnosis [20-

21].

Artificial neural networks (ANNs) were extracted from the complicated interconnections

of biological neurons and inherit the learning and reasoning properties of human brains. It was

proven that neural networks could be considered as a general model being capable of building

arbitrary linear/nonlinear relationships between stimulus and response [22]. It is still unknown

about the internal computations of neural networks, so it is hard to design them directly; instead,

researchers have developed smart algorithms to train neural networks. Error back propagation

(EBP) algorithm [23], developed by David E. Rumelhart, is the first algorithm which has ability

to train multilayer perceptron (MLP) networks. Levenberg Marquardt (LM) algorithm [24-25] is

regarded as one of the most efficient algorithms for neural network learning. Recently developed

second order neuron-by-neuron (NBN) algorithm [26-27] is capable of training arbitrarily

2

connected neural (ACN) networks which could be more efficient and powerful than traditional

MLP networks. Fault tolerance and generalization ability are improved, when efficient network

architectures are applied for training [28].

Fuzzy inference systems were designed based on fuzzy logical rules [29]. All parameters

for designing fuzzy inference systems can be extracted from problems themselves, and the

training process is not required. However, the tradeoff of the very simple design process is the

accuracy of approximation. Some hybrid architectures [30], inherited from both neural networks

and fuzzy inference systems, are proposed to improve the performance of fuzzy inference

systems. Another disadvantage of fuzzy inference systems is that, as the increase of input

dimensions, the computation cost increases exponentially.

Support vector machines (SVMs) were developed from statistical learning theory [31] to

solve data classification problems. The concept of SVMs is very similar with the three-layer

MLP networks. Differently, the layer-by-layer architecture in SVMs is organized based on

Cover’s theorem and each layer performs different computation. Unlike other learn-by-examples

systems, SVMs do not face local minima problem and they can find optimized solutions by

constrained learning process. Later improvements [32] make SVMs also proper for solving

function approximation problems.

Other methods of computational intelligence, such self-organizing maps (SOMs) [33],

principal component analysis (PCA) [34], particle swarm optimization [35], ant colony

optimization [36] and genetic algorithm [37], also attracts great interests in solving special

optimization problems. These methods are often combined with training algorithms so as to

improve their performance [38-40].

In the followed two sections, we will have two examples to illustrate the potential

3

advantages of neural networks over (1) several other methods for function approximation, and

(2) human beings for image recognition.

1.2 Comparison of Different Nonlinear Approximators

In this section, different methods of computational intelligence, including fuzzy inference

systems, neuro-fuzzy systems and support vector machines, interpolation and neural networks

are compared based on a nonlinear surface approximation problem. The purpose of the problem

is that, using the given 5×5=25 points (Fig. 1-1a, uniformly distributed in [0, 4] in both x and y

directions) to approximate the 41×41=1,681 points (Fig. 1-1b) in the same input range. All the

training/testing points are obtained by equation (1-1) and visualized in Fig. 1-1. The

approximation will be evaluated by sum square error (SSE).

     922
1035.0415.0exp4  yxz (1-1)

(a) Training data, 5×5=25 points (b) Testing data, 41×41=1,681 points

Fig. 1-1 Surface approximation problem

1.2.1 Fuzzy Inference Systems

The most commonly used architectures for fuzzy system development are the Mamdani fuzzy

system [41] and TSK (Takagi, Sugeno and Kang) fuzzy system [42]. Both of them consist of

4

three blocks: fuzzification block, fuzzy rule block and defuzzification/normalization block, as

shown in Fig. 1-2 below.
F

u
z
z
if
ie

r

M
IN

 o
p

e
ra

to
rs

M
A

X
 o

p
e

ra
to

rs

D
e

fu
z
z
if
ie

r

Fuzzy

rules

F
u

z
z
if
ie

r

out

X

Y

F
u

z
z
if
ie

r

X

Y

out

weighted

sum

N
o

rm
a

liz
a

ti
o

n

F
u

z
z
if
ie

r

Rule selection cells

min operations

(a) Mamdani fuzzy system (b) TSK fuzzy system

Fig. 1-2 Block diagram of the two types of fuzzy systems

For the given surface approximation problem, with 5 triangular membership functions in

each direction, two different fuzzy inference systems can obtain the approximated surfaces as

shown in Fig. 1-3.

(a) Mamdani fuzzy system, SSE=319.7334 (b) TSK fuzzy system, SSE=35.1627

Fig. 1-3 Result surfaces obtained using fuzzy inference systems

The rawness of control surfaces (Fig. 1-3) in fuzzy controllers leads to raw control and

instabilities [43]. Therefore, for resilient control systems fuzzy controllers are not used directly

in the control loop. Instead, traditional PID controllers [44-45] are often used and fuzzy inference

5

systems are just applied to automatically adjust parameters of PID controllers [46].

1.2.2 Neuro-Fuzzy Systems

The neuro-fuzzy system, as shown in Fig. 1-4, attempts to present fuzzy inference system in

form of neural network [47]. It consists of four layers: fuzzification, multiplication, summation

and division. Notice that, in the second layer, product operations are performed among fuzzy

variables (from first layer), instead of the fuzzy rules (MIN/MAX operations) in classic fuzzy

inference systems. The multiplication process improves the performance of neuro-fuzzy system,

but it is more difficult for hardware implementation.

out

 multiplication

F
u

z
z
if
ie

r

X

F
u

z
z
if
ie

r

y

F
u

z
z
if
ie

r

z









sumfuzzification division

all weights

equal 1

all weights equal

expected values

Fig. 1-4 Neuro-Fuzzy System

 For the given problem, with the same membership functions chosen for fuzzy inference

system design in section 1.2.1, Fig. 1-5 shows the approximation result of the neuro-fuzzy

system.

6

Fig. 1-5 Result surface of neuro-fuzzy systems, SSE= 27.3356

1.2.3 Support Vector Machines (SVMs)

For the given problem, with the software LIBSVM [48], the best results (as we tried) obtained

using radial basis function kernel (exp(-γ|u-v|
2
) with γ=0.7) and polynomial kernel

((0.1u’×v+0.1)
n
 with n=7) separately are shown in Fig. 1-6. For other kernels, such as linear and

sigmoid, the SVM does not work at all.

(a) Radial basis function kernel, SSE=28.9595 (b) Polynomial kernel, SSE=176.1520

Fig. 1-6 Result surfaces obtained using support vector machine

1.2.4 Interpolation

Interpolation is considered as a commonly used method for function approximation. MATLAB

7

provides the function “interp2” for two-dimension interpolation and there are four approximation

methods used in this function: nearest (nearest neighbor interpolation), linear (bilinear

interpolation), spline (spline interpolation) and cubic (bicubic interpolation as long as the data is

uniformly distributed). Fig. 1-7 presents the approximation results using the four different ways

of interpolation.

(a) Nearest interpolation, SSE=197.7494 (b) Linear interpolation, SSE=28.6683

(c) Spline interpolation, SSE=11.0874 (d) Cubic interpolation, SSE=3.2791

Fig. 1-7 Result surfaces obtained using interpolation methods

1.2.5 Neural Networks

For the given problem in Fig. 1-1, Figs. 1-8 and 1-9 show the result surfaces using different

number of neurons with fully connected cascade (FCC) networks. All the hidden neurons use

8

unipolar sigmoidal activation functions and the output neuron is linear. The software NBN 2.0

[49-51] was used in the experiment and the neuron-by-neuron (NBN) algorithm [52-53] in the

software was selected for training.

+1

x

y Output

(a) Four neurons in FCC network (b) Result surface with SSE=2.3628

Fig. 1-8 Neural network architecture and related testing result

+1

x

y

Output

(a) Five neurons in FCC network (b) Result surface with SSE=0.4648

Fig. 1-9 Neural network architecture and related testing result

 Table 1-1 concludes the experimental results of different nonlinear approximators. One

may notice that, from the point of approximating accuracy, neural networks can be the best

choice for the problem.

9

Table 1-1 Comparison of approximation accuracy using different methods of computational

intelligence

Methods of Computational Intelligence Sum Square Errors

Fuzzy inference system – Mamdani 319.7334

Fuzzy inference system – TSK 35.1627

Neuron – fuzzy system 27.3356

Support vector machine – RBF kernel 28.9595

Support vector machine – polynomial kernel 176.1520

Interpolation – nearest 197.7494

Interpolation – linear 28.6683

Interpolation – spline 11.0874

Interpolation – cubic 3.2791

Neural network – 4 neurons in FCC network 2.3628

Neural network – 5 neurons in FCC network 0.4648

1.3 Neural Networks for Image Recognition

It is common knowledge that computers are much superior to human beings in numerical

computation; however, it is still believed that human beings are superior to computers in areas of

image processing. In this part, an example is used to show the expertise of special designed

neural networks for recognizing noised images which cannot be handled by normal people.

The experiment was carried out in the following scheme. As shown in Fig. 1-10, for each

column, there are 10 digit images, from “0” to “9”, each of which consists of 8×7=56 pixels with

normalized Jet degree between -1 and 1 (-1 for blue and 1 for red). The first column is the

original image data without noise; for the noised data from the 2
nd

 column to the 8
th

 column, the

strength of noise is increased according with equation (1-2):

 iPNPi 0 (1-2)

Where: P0 is the original image data (the 1
st
 column); NPi is the image data with i-th level noise;

i is the noise level; δ is the randomly generated noise between [-0.5, 0.5].

 The purpose of this problem is to design the neural networks based on the image data in

the 1
st
 column and then test the generalization ability of the designed neural networks using the

10

noised image data, from the 2
nd

 column to the 8
th

 column. For each noise level, the testing will be

repeated for 100 times with randomly generated noise, in order to statistically obtain the

recognition success rate.

Fig. 1-10 Digit images with different noise levels from 0 to 7 in left-to-right order (one data in

100 groups)

Using the enhanced counterpropagation neural network [54] as shown in Fig. 1-11, the

testing results are presented in Table 1-2 below. One may notice that the recognition error

appears when patterns with level three noises are applied.

unipolar
neurons

Hamming
 layer

Im
a

g
e

in
p

u
ts

Im
a

g
e

o
u

tp
u

ts

summing
 circuits

W
T

A
 W

in
n

er
 T

a
k
es

 A
ll

pattern

retrieval layer

linear

layer







... ...

...

...

Fig. 1-11 The designed counterpropagation neural network architecture for the digit image

recognition problem

11

Table 1-2 Success rates of the designed counterpropagation neural network for digit image

recognition

 Data

Digit

Noise

level 1

Noise

level 2

Noise

level 3

Noise

level 4

Noise

level 5

Noise

level 6

Noise

level 7

Digit 0 100% 100% 100% 100% 100% 96% 97%

Digit 1 100% 100% 100% 100% 100% 100% 94%

Digit 2 100% 100% 100% 95% 91% 77% 82%

Digit 3 100% 100% 99% 92% 88% 84% 65%

Digit 4 100% 100% 100% 100% 100% 98% 96%

Digit 5 100% 100% 100% 100% 100% 95% 93%

Digit 6 100% 100% 100% 100% 92% 91% 88%

Digit 7 100% 100% 100% 100% 100% 98% 88%

Digit 8 100% 100% 99% 98% 83% 76% 67%

Digit 9 100% 100% 100% 100% 94% 91% 72%

Comparing human beings and computers in recognition of those noisy characters, Fig. 1-

12 presents the retrieval results of 7
th

 level noised digit images. Obviously it is totally a gamble

for human beings to retrieve most of those images, but the designed counterpropagation neural

networks can do the job correctly.

Fig. 1-12 Retrieval results of 7

th
 level noised digit images

1.4 conclusion

The two examples above show the potentially good performance of neural networks in function

approximation and pattern recognition problems. Because of the attractive and powerful

nonlinear mapping ability, we are very interested in the research of neural networks, including

both network architectures and learning algorithms. Besides, for better understanding of neural

networks, we have also extended our research scope to several other methods of computational

intelligence, such as fuzzy inference systems and radial basis function neural networks. Our

recent publications (at the end of the dissertation), as listed at the end of the dissertation,

12

somehow prove our achievement in these realms.

In the dissertation, we will discuss how to design efficient and powerful algorithms for

neural network learning. Especially, we will focus on the second order algorithms considering

their high training efficiency and powerful search ability over first order algorithms. Our recently

developed improved second order computation and the forward-only algorithm will be

introduced as the recommended solutions to memory limitation problem and the computation

redundancy problem, respectively, in second order algorithms.

13

CHAPTER 2

BACKGROUND

2.1 History

The history of the neural networks can be traced back to 1942, when Warren McCulloch and

Walter Pitts proposed McCulloch-Pitts model, named Threshold Logic Unit (TLU) [55].

Originally, TLU was designed to perform simple logic operations, such as “&” and “|”. In 1949,

Donald Hebb mentioned the concept “synaptic modification” in his book “The organization of

behavior” [56]. This concept was considered as a milestone during the development of neural

networks. It is very similar with the analytical neuron models used today. In 1956, Albert Uttley

reported that he successfully solved simple binary pattern classification problems using neural

networks [57]. In 1958, Frank Rosenblatt introduced the important concept “Perceptron”; in the

following four years, Frank Rosenblatt designed several learning algorithms for the perceptron

model, in order to do binary pattern classification [58]. As another milestone, in 1960, Bernard

Widrow and his student Ted Hoff proposed “ADALINE” model which consisted of linear

neurons. Least mean squares method was designed to adjust the parameters of ADALINE model.

Two years later (1962), as the expansion of ADALINE, Widrow and Hoff introduced

“MADALINE” model which had two-layer architecture: multiple ADALINE units arranged in

parallel as input layer and a single processor as output layer [59]. Based on ADALINE and

MADALINE models, neural networks attracted lots of researchers and went through very fast

development. Until 1969, Marvin Minsky and Seymour Papert proved the very limited power of

14

neural networks in their book “Perceptron” [60]. They showed that the single layer perceptron

model was only capable of classifying the patterns which were linearly separable; for linearly

inseparable patterns, such as the very simple XOR problem, the single layer perceptron model

would be helpless. The theory proposed by Minsky and Papert stopped the development of

neural networks for almost 10 years, until 1986, the invention of error backpropagation

algorithm, proposed by David E. Rumelhart [61]. The error backpropagation algorithm dispersed

the dark clouds on the field of neural networks and could be regarded as one of the most

significant breakthroughs in neural network training. By using the sigmoidal shape activation

function, such as tangent hyperbolic function, and incorporating with the gradient descent

concept in numerical methods, the error backpropagation algorithm enhanced the power of

neural networks significantly. Neural networks can not only be used for classifying binary linear

patterns, but also be applied to approximate any nonlinear relationships. In the following 10

years, various learning algorithms [62-68] and network models [69-70] came out like the

bamboo shoot after spring rain. Currently, error backpropagation (EBP) algorithms and

multiplayer perceptron (MLP) networks are still the most popular learning algorithm and

network architecture in practical applications.

2.2 Basic Concepts

As the basic unit of human brain, neural cells play the roles of signal transmission and storage. A

neural cell mainly consists of cell body with lots of synapses around as shown in Fig. 2-1a.

Extracting from the human brain model, a single neuron is made up of the linear/nonlinear

activation function f(x) (like cell body) and weighted connections (like synapses), as shown in

Fig. 2-1b.

15

)(xf
y

x1

x3

x2

x6

x5

x4

+1

net

x7

w
0

w
1w

2

w
3

w4

w5

w 6

w
7

(a) Neural cell [71] (b) Neural model

Fig. 2-1 Neural cell in human brain and its simplified model in neural networks

Taking the neuron in Fig. 2-1b as an example, the two fundamental operations in a single

neuron can be described as:

 Calculate the net value as sum of weighted input signals

0

7

1

wwxnet
i

ii 


 (2-1)

 Calculate the output y

 netfy  (2-2)

The activation function f(x) in equation (2-2) can be either linear function (equation 2-3)

or sigmoidal shape function (equation 2-4), as shown in Fig. 2-2.

xgainy  (2-3)

 
 

1
2exp1

2
tanh 




xgain
xgainy

 (2-4)

16

  xgainxfy 

1gain

   xgainxfy  tan

(a) Linear function (b) Sigmoidal function

Fig. 2-2 Different types of activation functions

It is quite straightforward that linear neurons (Fig. 2-2a), such as ADALINE model, have

very limited power and can only handle patterns which are linear separable. On the other hand,

sigmoidal shape functions (Fig. 2-2b), such as tangent hyperbolic function (equation 2-4), can be

applied for nonlinear situations. It can be also noticed that, for sigmoidal shape functions, when

the gain value becomes larger, the function behaves more like a step function.

For more than one neuron interconnected together, the two basic computations in

equations (2-1) and (2-2) for each neuron remain the same as for a single neuron. The only

difference is that the inputs of a neuron could be either network inputs or the outputs of neurons

from the previous layers.

2.3 Network Architectures

Neural networks consist of neurons and their interconnections. Technically, the interconnections

among neurons can be arbitrary. In the dissertation, we only discuss the feedforward neural

networks where signals are propagated from input layer to output layer without feedback.

In this section, different types of neural network architectures are studied and compared

17

from the point of network efficiency, based on parity problems. The N-bit parity function can be

interpreted as a mapping (defined by 2
N
 binary vectors) that indicates whether the sum of the N

elements of every binary vector is odd or even. Parity-N problem is also considered to be one of

the most difficult problems in neural network training [72-74].

2.3.1 Simplified Patterns for Parity Problems

One may notice that, in parity problems, input patterns which have the same sum of each input

are going to have the same output. Therefore, considering all the weights on network inputs as

“1”, the number of training patterns of parity-N problem can be reduced from 2
N
 to N+1.

 Fig. 2-3 shows both the original 8 training patterns and the simplified 4 training patterns

in parity-3 problem. The two types of training patterns are identical.

Input Sum of Inputs Output

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 2 0

1 0 0 1 1

1 0 1 2 0

1 1 0 2 0

1 1 1 3 1

Input Output

0 0

1 1

2 0

3 1
 (a) Original patterns (b) Simplified patterns

Fig. 2-3 Training patterns simplification for parity-3 problem

Based on this pattern simplification strategy, for parity-3 problem, instead of the network

architecture in Fig. 2-4a, a linear neuron (with slope equal to 1) can be used as the network input

(see Fig. 2-4b). The linear neuron works as a summator and it does not have bias input. All

weights connected to the linear neuron, including input weights and output weights, are fixed as

“1”.

18

+1
+1

Input1

Input2

Input3

weights=1

Input1

Input2

Input3

+1 +1

weights=1

Linear

(a) Original parity-3 inputs (b) Simplified linear neuron inputs

Fig. 2-4 Two equivalent networks for parity-3 problem

2.3.2 MLP Networks with One Hidden Layer

Multilayer perceptron (MLP) networks are the most popular networks because they are regularly

formed and easy for programming. In MLP networks, neurons are organized layer by layer and

there are no connections across layers.

Both parity-2 (XOR) and parity-3 problems can be visually illustrated in two and three

dimensions respectively, as shown in Figs. 2-5 and 2-6. For parity-2 problem, each hidden

neuron in Fig. 2-5b works as a separating line as shown in Fig. 2-5a and the output unit decides

the values of separation area. Similarly, for parity-3 problem, each hidden unit in Fig. 2-6b

represents a separating plane in Fig. 2-6a and the values of separation area are determined by the

output unit.

1

2

1

-1

-0.5

+1
+1

Input1

Input2

weights=(-0.5,-1.5)

1

2

weights=1

(a) Graphical interpretation of separation (b) Designed neural network

Fig. 2-5 Analytical solution of parity-2 problem

19

1

2
3

1

2

3

weights=1

Input1
Input2
Input3

+1

+1

1

-1

1

-0.5

weights=(-0.5,-1.5,-2.5)

(a) Graphical interpretation of separation (b) Designed neural network

Fig. 2-6 Analytical solution of parity-3 problem

Using MLP networks with one hidden layer to solve the parity-7 problem, there could be

at least 7 neurons in the hidden layer to separate the 8 training patterns (using the pattern

simplification strategy described in Figs. 2-3 and 2-4), as shown in Fig. 2-7a.

In Fig. 2-7a, 8 patterns {0, 1, 2, 3, 4, 5, 6, 7} are separated by 7 neurons (bold line). The

thresholds of the hidden neurons are {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5}. Then summing the outputs

of hidden neurons weighted by {1, -1, 1, -1, 1, -1, 1}, the net inputs at the output neurons could

be only {0, 1}, which can be separated by the neuron with threshold 0.5. Therefore, parity-7

problem can be solved by the architecture shown in Fig. 2-7b.

0

1

2

3

4

5

6

7

0.5

1.5

2.5

3.5

5.5

4.5

6.5

0

1

0.5

+1

-1

+1

-1

+1

-1

+1

8

1

2

3

4

5

6

7
+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-0.5,-1.5,-2.5,-3.5,-4.5,-5.5,-6.5)

-1

-1

-1

+1

-0.5

1

1

1

1

1

2

6

7

5

4 8

3

(a) Analysis (b) Architecture

Fig. 2-7 Solving Parity-7 problem using MLP network with one hidden layer

20

Generally, if there are n neurons in MLP networks with single hidden layer, the largest

possible parity-N problem that can be solved is

1 nN (2-5)

Where: n is the number of neurons and N is the number of dimensions of the parity problem.

2.3.3 BMLP Networks

In MLP networks, if connections across layers are permitted, then networks have bridged

multilayer perceptron (BMLP) topologies. BMLP networks are more powerful than traditional

MLP networks if the number of neurons is the same.

2.3.3.1 BMLP Networks with One Hidden Layer

Considering BMLP networks with only one hidden layer, all network inputs are connected to

both of the hidden neurons and the output neuron or neurons.

For parity-7 problem, the 8 simplified training patterns can be separated by 3 neurons to

four sub patterns {0, 1}, {2, 3}, {4, 5} and {6, 7}. The threshold of the hidden neurons should be

{1.5, 3.5, 5.5}. In order to transfer all sub patterns to the unique pattern {0, 1} for separation,

patterns {2, 3}, {4, 5} and {6, 7} should be reduce by 2, 4 and 6 separately, which determines

the weight values on connections between hidden neurons and output neurons. After pattern

transformation, the unique pattern {0, 1} can be separated by the output neuron with threshold

0.5. The design process is shown in Fig. 2-8a and the corresponding solution architecture is

shown in Fig. 2-8b.

21

0

1

2

3

4

5

6

7

0

1
1

2

3

4

1.5






5.5

3.5

0.5

-2

-4

-6

+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-1.5, -3.5, -5.5)

1

2

4

3

+1

-0.5

-2

-4

-6

(a) Analysis (b) Architecture

Fig. 2-8 Solve parity-7 problem using BMLP networks with one hidden layer

For parity-11 problem, similar analysis and related BMLP networks with single hidden

layer solution architecture are presented in Fig. 2-9.

0

1

2

3

4

5

6

7

8

9

10

11

1



6



2

3

4

5






1.5

7.5

5.5

9.5

3.5

0.5
0

1

-4

-6

-8

-1
0

-2

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-1.5, -3.5, -5.5, -7.5, -9.5)

1

2

3

4

5

6

+1
-0.5

-2

-4

-10

-6

-8

(a) Analysis (b) Architecture

Fig. 2-9 Solve parity-11 problem using BMLP networks with single hidden layer

Generally, for n neurons in BMLP networks with one hidden layer, the largest parity-N

problem that can be possibly solved is:

12  nN (2-6)

2.3.3.2 BMLP Networks with Multiple Hidden Layer

22

If BMLP networks have more than one hidden layers, then the further reduction of the number of

neurons are possible, for solving the same problem.

For parity-11 problem, using 4 neurons, in both 11=2=1=1 and 11=1=2=1 architectures,

can find solutions. Considering the 11=2=1=1 network, the 12 simplified training patterns would

be separated by two neurons at first, into {0, 1, 2, 3}, {4, 5, 6, 7} and {8, 9, 10 11}; the

thresholds of the two neurons are 3.5 and 7.5 separately. Then, sub patterns {4, 5, 6, 7} and {8, 9,

10, 11} are transformed to {0, 1, 2, 3} by subtracting -4 and -8 separately, which determines the

weight values on connections between the first hidden layer and followed layers. In the second

hidden layer, one neuron is introduced to separate {0, 1, 2, 3} into {0, 1} and {2, 3}, with

threshold 1.5. After that, sub pattern {2, 3} is transferred to {0, 1} by setting weight value as -2

on the connection between the second layer and the output layer. At last, output neuron with

threshold 0.5 separates the pattern {0, 1}. The whole procedure is presented in Fig. 2-10 below.

0

1

2

3

4

5

6

7

8

9

10

11

1

0

1
3

2

4






0

1

2

3
3.5

7.5

1.5
0.5

-2

-4
-4

-8 -8

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-3.5, -7.5, -1.5)

1

2

3

4

-0.5

+1

-8 -8

-4
-4

-2

(a) Analysis (b) Architecture

Fig. 2-10 Solve parity-11 problem using BMLP networks with two hidden layers, 11=2=1=1

Fig. 2-11 shows the 11=1=2=1 BMLP network with two hidden layers, for solving parity-

11 problem.

23

0

1

2

3

4

5

6

7

8

9

10

11

1

0

1

3

2

4





0

1

2

3

4

5 
5.5

1.5

3.5

0.5

-6

-6

-6

-2

-4

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

weights=1

weights=(-5.5, -1.5, -3.5)

1

2

3

4

+1
-0.5

-4

-2

weights=-6

(a) Analysis (b) Architecture

Fig. 2-11 Solve parity-11 problem using BMLP networks with two hidden layers, 11=1=2=1

Generally, considering the BMLP network with two hidden layers, the largest parity-N

problem can be possibly solved is:

   1112  nmN (2-7)

Where: m and n are the numbers of neurons in the two hidden layers, respectively.

For further derivation, one may notice that if there are k hidden layers and ni is the

number of neurons in the i-th hidden layer, where i is ranged from 1 to k, then

       111112 21  ki nnnnN  (2-8)

2.3.4 FCC Networks

Fully connected cascade (FCC) networks can solve problems using the smallest possible number

of neurons. In the FCC networks, all possible routines are weighted, and each neuron contributes

to a layer.

For parity-7 problem, the simplified 8 training patterns are divided by one neuron at first,

as {0, 1, 2, 3} and {4, 5, 6, 7}; the threshold of the neuron is 3.5. Then the sub pattern {4, 5, 6, 7}

is transferred to {0, 1, 2, 3} by weights equal to -4, connected to the followed neurons. Again, by

24

using another neuron, the patterns in the second hidden layer {0, 1, 2, 3} can be separated as {0,

1} and {2, 3}; the threshold of the neuron is 1.5. In order to transfer the sub pattern {2, 3} to {1,

2}, 2 should be subtracted from sub pattern {2, 3}, which determines that the weight between the

second layer and the output layer is -2. At last, output neurons with threshold 0.5 is used to

separate the pattern {0, 1}, see Fig. 2-12.

0

1

2

3

4

5

6

7

1

3
2



0

1

2

3 

0

1

3.5

1.5
0.5

-2

-4

-4

+1

Input1

Input2

Input3

Input5

Input4

Input7

Input6

weights=1

weights=(-3.5, -1.5, -0.5)

1

2

3
-2

-4

-4

(a) Analysis (b) Architecture

Fig. 2-12 Solve parity-7 problem using FCC networks

Fig. 2-13 shows the solution of parity-15 problem using FCC networks.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

3

2




0

1

2

3

4

5

6

7

0

1

2

3

0

1
4

7.5

3.5

1.5
0.5

-8

-8

-8

-4

-4

-2

+1

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Input10

Input11

Input12

Input13

Input14

Input15

weights=1

weights=(-7.5, -3.5, -1.5, -0.5)

1

2

3

4

-8 -8
-8

-4
-4

-2

(a) Analysis (b) Architecture

Fig. 2-13 Solve parity-15 problem using FCC networks

Considering the FCC networks as special BMLP networks with only one neuron in each

hidden layer, for n neurons in FCC networks, the largest N for parity-N problem can be derived

from equation (2-8) as:

25

      1111111112

1





   

n

N (2-9)

or

12  nN (2-10)

2.3.5 Comparison of Different Topologies

Table 2-1 concludes the analysis of network efficiency above and the largest parity-N problem

that can be solved with a given network structure. For example, with 5 neurons: the MLP

network with only one hidden layer can solve parity-4 problem (4-4-1 network); BMLP network

with a single hidden layer can solve parity-11 problem (11=4=1 network); BMLP network with

two hidden layers can solve parity-15 problem (15=3=1=1 network or 15=1=3=1 network) or

parity-17 problem (17=2=2=1 network); FCC network can solve parity-31 problem at most

(31=1=1=1=1=1 network).

Table 2-1 Different architectures for solving parity-N problem

Network Architectures Parameters Parity-N Problem

MLP with single

hidden layer

n neurons 1n

BMLP with single

hidden layer

n neurons 12 n

BMLP with multiple

hidden layer

k hidden layers, each

with ni neurons
      111112 121   kk nnnn 

FCC n neurons 12 n

Based on the comparison results shown in Table 2-1, one may draw the conclusion that,

with more connections across layers, the networks become more powerful. The FCC architecture

is the most powerful and can solve problems with much less number of neurons.

26

2.4 Learning Algorithms

Many methods have already been developed for neural networks training [62-68]. In this

dissertation, we will focus on the gradient descent based optimization methods.

2.4.1 Introduction

Steepest descent algorithm, also known as error backpropagation algorithm [61], is the most

popular algorithm for neural network training; however, it is also known as an inefficient

algorithm because of its slow convergence.

There are two main reasons for the slow convergence: the first reason is that its step sizes

should be adequate to the gradients as shown in Fig. 2-14. Logically, small step size should be

taken where the gradient is steep, so as not to rattle out of the required minima (because of

oscillation). So if the step size is a constant, it needs to be chosen small. Then, in the place where

the gradient is gentle, the training process would be very slow. The second reason is that the

curvature of the error surface may not be the same in all directions, such as the Rosenbrock

function, so the classic “error valley” problem [75] may exist and may result in the slow

convergence.

Fig. 2-14 Searching process of the steepest descent method with different learning constants:

yellow trajectory (left) is for small learning constant which leads to slow convergence; purple

trajectory (right) is for large learning constant which causes oscillation (divergence)

http://en.wikipedia.org/wiki/Rosenbrock_function
http://en.wikipedia.org/wiki/Rosenbrock_function

27

The slow convergence of the steepest descent method can be greatly improved by Gauss-

Newton algorithm [75]. Using second order derivatives of error function to “naturally” evaluate

the curvature of error surface, The Gauss-Newton algorithm can find proper step sizes for each

direction and converge very fast. Especially, if the error function has a quadratic surface, it can

converge directly in the first iteration. But this improvement only happens when the quadratic

approximation of error function is reasonable. Otherwise, Gauss-Newton algorithm would be

mostly divergent.

Levenberg Marquardt algorithm [24-25][76] blends the steepest descent method and

Gauss-Newton algorithm. Fortunately, it inherits the speed advantage of the Gauss-Newton

algorithm and the stability of the steepest descent method. It’s more robust than the Gauss-

Newton algorithm, because in many cases it can converge well even if the error surface is much

more complex than quadratic situation. Although Levenberg Marquardt algorithm tends to be a

bit slower than Gauss-Newton algorithm (in convergent situation), it converges much faster than

the steepest descent method.

The basic idea of Levenberg Marquardt algorithm is that it performs a combined training

process: around the area with complex curvature, Levenberg Marquardt algorithm switches to

steepest descent algorithm, until the local curvature is proper to make a quadratic approximation;

then it approximately becomes Gauss-Newton algorithm which can speed up the convergence

significantly.

In the following sections, the four basic gradient descent methods will be introduced,

including (1) steepest descent method; (2) Newton method; (3) Gaussian-Newton algorithm and

(4) Levenberg Marquardt algorithm.

Sum square error (SSE) E is defined to evaluate the training process, as the object

28

function. For all training patterns and network outputs, it is calculated by

  
 



P

1p

M

1m

mpe,E 2
,

2

1
wx (2-11)

Where: x and w are the input vector and weight vector respectively; p is the index of training

patterns, from 1 to P, where P is the number of training patterns; m is the index of outputs, from

1 to M, where M is the number of outputs; ep,m is the training error at output m when applying

pattern p and it is defined as

mpmpmp ode ,,,  (2-12)

Where: d is the desired output vector and o is the actual output vector.

2.4.2 Steepest Descent Algorithm

Steepest descent algorithm is a first order algorithm. It uses the first order derivative of total

error function to find the minima in error space. Normally, gradient g is defined as the first order

derivative of total error function (2-11)

 
T

Nw

E

w

E

w

EE

























 

21

,

w

wx
g (2-13)

Where: N is the number of weights.

With the definition of gradient g in (2-13), the update rule of steepest descent algorithm

could be written as:

kk1k gww  (2-14)

Where: α is the learning constant (step size) and k is the index of training iterations.

The training process of steepest descent algorithm is asymptotic convergence so it never

reaches the minima. Around the solution, all the elements of gradient vector g would be very

29

small and there would be very tiny weight changing.

2.4.3 Newton Method

Newton method assumes that all the gradient components g={g1, g2…gN} are function of weights

and all weights are linearly independent:

 
 

 

















NNN

N

N

wwwFg

wwwFg

wwwFg









21

2122

2111

,

,

,

 (2-15)

Where: {F1, F2…FN} are nonlinear relationships between weights and related gradient

components.

Unfold each gi (i=1, 2…N) in equations (2-15) by Taylor series and take the first order

approximation:
































































N
N

NNN
NN

N
N

N
N

w
w

g
w

w

g
w

w

g
gg

w
w

g
w

w

g
w

w

g
gg

w
w

g
w

w

g
w

w

g
gg









2
2

1
1

0,

2
2

2

2
1

1

2
0,22

1
2

2

1
1

1

1
0,11

 (2-16)

By combining the definition of gradient vector g in (2-13), it could be determined that

jij

j

j

i

ww

E

w

w

E

w

g






























 2

 (2-17)

Where: i and j are the indices of weights, from 1 to N.

By inserting equation (2-17) to (2-16):

30

































































N

NNN
NN

N
N

N
N

w
w

E
w

ww

E
w

ww

E
gg

w
ww

E
w

w

E
w

ww

E
gg

w
ww

E
w

ww

E
w

w

E
gg

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,22

1

2

2
21

2

12
1

2

0,11









 (2-18)

Comparing with the steepest descent method, the second order derivatives of the total

error function need to be calculated for each component of gradient vector.

In order to get the minima of total error function E, each element of the gradient vector

should be zero. Therefore, left sides of the equations (2-18) are all zero, then

































































N

NNN
N

N
N

N
N

w
w

E
w

ww

E
w

ww

E
g

w
ww

E
w

w

E
w

ww

E
g

w
ww

E
w

ww

E
w

w

E
g

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,2

1

2

2
21

2

12
1

2

0,1

0

0

0









 (2-19)

By combining equation (2-13) with (2-19)
















































































N

NNN
N

N

N
N

N
N

w
w

E
w

ww

E
w

ww

E
g

w

E

w
ww

E
w

w

E
w

ww

E
g

w

E

w
ww

E
w

ww

E
w

w

E
g

w

E

2

2

2
2

2

1
1

2

0,

2

2

22
2

2

1
12

2

0,2
2

1

2

2
21

2

12
1

2

0,1
1









 (2-20)

There are N equations for N parameters so that all ∆wi can be calculated. With the

solutions, the weight space can be updated iteratively.

Equations (2-20) can be also written in matrix form

31
































































































































































N

NNN

N

N

N

N w

w

w

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E

w

E

w

E

w

E

g

g

g














2

1

2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

2

1

2

1

 (2-21)

Where: the square matrix is Hessian matrix H (N×N):



































































2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

NNN

N

N

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E









H
 (2-22)

By Combining equations (2-13) and (2-22) with equation (2-21)

wHg  (2-23)

So

gHw
1 (2-24)

Therefore, update rule for Newton method is

kkkk gHww
1

1


  (2-25)

As the second order derivatives of total error function, Hessian matrix H gives the proper

evaluation on the change of gradient vector. By comparing equations (2-14) and (2-25), one may

notice that well-matched step sizes are given by the inverted Hessian matrix.

2.4.4 Gaussian-Newton Algorithm

32

If Newton method is applied for weight updating, in order to get Hessian matrix H, the second

order derivatives of total error function have to be calculated and it could be very complicated. In

order to simplify the calculating process, Jacobian matrix J is introduced as



























































































































N

MPMPMP

N

PPP

N

PPP

N

MMM

N

N

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

,

2

,

1

,

2,

2

2,

1

2,

1,

2

1,

1

1,

,1

2

,1

1

,1

2,1

2

2,1

1

2,1

1,1

2

1,1

1

1,1



















J

 (2-26)

By integrating equations (2-11) and (2-13), elements of gradient vector can be calculated

as




 

 











































P

p

M

m

mp
i

mp

i

P

1p

M

1m

mp

i
i e

w

e

w

e

w

E
g

1 1

,

,

2
,

2

1

 (2-27)

Combining equations (2-26) and (2-27), the relationship between Jacobian matrix J and

gradient vector g would be

eJg
T (2-28)

Where: error vector e has the form

33





































MP

P

P

M

e

e

e

e

e

e

,

2,

1,

,1

2,1

1,1







e

 (2-29)

Inserting equation (2-11) into (2-22), the element at i-th row and j-th column of Hessian

matrix can be calculated as

ji

P

p

M

m j

mp

i

mp

ji

P

1p

M

1m

mp

ji
ji S

w

e

w

e

ww

e

ww

E
h ,

1 1

,,

2
,

2

2

,

2

1




 

 
































 (2-30)

Where: Si,j is equal to


 






P

p

M

m

mp
ji

mp
ji e

ww

e
S

1 1

,

,
2

, (2-31)

As the basic assumption of Newton’s method is that Si,j is closed to zero and the

relationship between Hessian matrix H and Jacobian matrix J can be rewritten as

JJH
T (2-32)

By combining equations (2-25), (2-28) and (2-32), the update rule of Gaussian-Newton

algorithm is presented as

  k

T

kk

T

kkk eJJJww
1

1



  (2-33)

Obviously, the advantage of Gaussian-Newton algorithm over the standard Newton

34

method (equation 2-25) is that the former one doesn’t require the calculation of second order

derivatives of the total error function, by introducing Jacobian matrix J instead. However,

Gaussian-Newton algorithm still faces the same convergent problem like Newton algorithm for

complex error space optimization. Mathematically, the problem can be interpreted as: matrix J
T
J

may be not invertible.

2.4.5 Levenberg Marquardt Algorithm

In order to make sure that the approximated Hessian matrix J
T
J is invertible, Levenberg

Marquardt algorithm introduces another approximation to Hessian matrix

IJJH  T
 (2-34)

Where: μ is always positive, called combination coefficient and I is the identity matrix.

From equation (2-34), one may notice that the elements on the main diagonal of the

approximated Hessian matrix will be larger than zero. Therefore, with this approximation

(equation 2-34), it can be sure that matrix H is always invertible.

By combining equations (2-33) and (2-34), the update rule of Levenberg Marquardt

algorithm can be presented as:

  k

T

kk

T

kkk eJIJJww
1

1



   (2-35)

As the combination of steepest descent algorithm and Gaussian-Newton algorithm,

Levenberg Marquardt algorithm switches between the two algorithms during the training process.

When combination coefficient µ is very small (nearly zero), equation (2-35) is approaching to

equation (2-33) and Gaussian-Newton algorithm is used. When combination coefficient µ is very

large, equation (2-35) approximates to equation (2-14) and the steepest descent method is used.

35

If the combination coefficient µ in equation (2-35) is very big, it can be interpreted as

learning coefficient in the steepest descent method (2-14):




1
 (2-36)

2.4.6 Comparison of Different Algorithms

Table 2-2 summarizes the update rules and their properties of the four algorithms above.

Table 2-2 Specifications of different learning algorithms

Learning Algorithms Update Rules Convergent

Rate

Computation

Complexity

EBP algorithm
kk1k gww  Stable, slow Gradient

Newton algorithm
kkkk gHww

1
1


  Unstable, fast Gradient and Hessian

Gaussian-Newton

algorithm
  k

T

kk

T

kkk eJJJww
1

1



 
Unstable, fast Jacobian

Levenberg Marquardt

algorithm
  k

T

kk

T

kkk eJIJJww
1

1



   Stable, fast Jacobian

In order to compare the behavior of different learning algorithms, let us use the parity-3

problem as an example. The training patterns of pariry-3 problem are shown in Fig. 2-15a.

 Inputs Outputs

 -1 -1 -1 -1

 -1 -1 1 1

 -1 1 -1 1

 -1 1 1 -1

 1 -1 -1 1

 1 -1 1 -1

 1 1 -1 -1

 1 1 1 1

+1

Input 1

Input 2

Input 3

Output

+1

(a) Training patterns (b) MLP network 3-2-1

Fig. 2-15 Parity-3 data and network architecture

36

Three neurons in 3-2-1 MLP network, as shown in Fig. 2-15b, are used for training and

the required training error is 0.01. Convergent rates are tested by repeating each case for 100

trials with randomly generated initial weights.

(a) EBP algorithm (α=1) (b) EBP algorithm (α=100)

(c) Gaussian-Newton algorithm (d) Levenberg Marquardt algorithm

Fig. 2-16 Training results of parity-3 problem

Table 2-3 Comparison among different learning algorithms for parity-3 problem
Algorithms Convergence Rate Average Iteration Average Time (ms)

EBP algorithm (α=1) 100% 1646.52 320.6

EBP algorithm (α=100) 79% 171.48 36.5

Gauss-Newton algorithm 3% 4.33 1.2

LM algorithm 100% 6.18 1.6

The training results are shown in Fig. 2-16 and the comparison is presented in Table 2-3.

It can be concluded that:

 For EBP algorithm, the larger the training constant α is, the faster and less stable the

training process will be (Figs. 2-16a and 2-16b);

 Gaussian-Newton algorithm computes very fast, but it seldom converges (Fig. 2-16c);

37

 Levenberg Marquardt algorithm is much faster than EBP algorithm and more stable

than Gaussian-Newton algorithm (Fig. 2-16d).

For more complex parity-N problems, Gaussian-Newton algorithm cannot converge at

all, and EBP algorithm also becomes more time-consuming and harder to find solutions; while

Levenberg Marquardt algorithm can still perform successful training.

 Another example is the two-spiral classification problem [77] which is often considered

as a very complex benchmark to evaluate the efficiency of learning algorithms and network

architectures. As shown in Fig. 2-17, the two-spiral problem is purposed to separate two groups

of twisted points (red circles and blue stars).

Fig. 2-17 Two-spiral problem: separation of two groups of points

Fig. 2-18 presents the training results the two-spiral problem, using EBP and LM

algorithms. In both cases, fully connected cascade (FCC) networks were used; the desired sum

squared error was 0.01; the maximum number of iteration was 1,000,000 for EBP algorithm and

1,000 for LM algorithm. The LM algorithm was implemented by NBN algorithm [78-79], so as

to be able to handle FCC networks. EBP algorithm not only requires much more time than LM

algorithm (Fig. 2-18a), but also is not able to solve the problem unless excessive number of

38

neurons is used. EBP algorithm requires at least 12 neurons and the second order algorithm can

solve it in much smaller networks, such as 7 neurons (Fig .2-18b).

(a) Average training time

(b) Success rate

Fig. 2-18 Comparison between EBP algorithm and LM algorithm, for different number of

neurons in fully connected cascade networks

Fig. 2-19 shows the training results of the two-spiral problem, using 16 neurons in fully

connected cascade network, for both EBP algorithm and LM algorithm. One may notice that,

with the same topology, LM algorithm is able to find better solutions than those found using

EBP algorithm.

39

(a) EBP algorithm (b) LM algorithm

Fig. 2-19 Training results of the two-spiral problem with 16 neurons in fully connected cascade

network

By conclusion, Levenberg Marquardt algorithm is the most efficient gradient based

algorithm and it is recommended for neural network learning; however, it needs much more

challenging computation than first order gradient methods.

2.5 Generalization Ability

Neural networks can work as universal approximator [22], but it happens only after successful

training/learning process. The generalization is defined to evaluate the ability of trained neural

networks to successfully handle new patterns which are not used for training. In order to obtain

neural networks with good generalization ability, the over-fitting problems [28] should be

avoided during the training process.

2.5.1 The Over-fitting Problem

The over-fitting problem is critical for designing neural networks with good generalization

ability. When over-fitting happens, the trained neural networks can fit the training patterns very

preciously, but they response poorly for new patterns which are not used for training.

40

Let us have an example to illustrate the existence of the over-fitting problems in neural

network training. The purpose of the example is to approximate the function below

      922
1051.0905.0exp2,  yxyxf (2-37)

 As shown in the Fig. 2-20, the training patterns consist of 6×6=36 points (Fig. 2-20a)

uniformly distributed in sampling range x ϵ [0, 10] and y ϵ [0, 10]. After training, another

101×101=10,201 points (Fig. 2-20b, also uniformly distributed) in the same sampling range are

applied to test the trained neural networks.

(a) Training patterns, 6×6=36 points (b) Testing patterns, 101×101=10,201 points

Fig. 2-20 Function approximation problem

Using the most powerful neural network architecture (as analyzed in section 2.3.5), fully

connected cascade (FCC) networks, the testing results of trained networks consisting of different

number of neurons are shown in Fig. 2-21.

(a) 2 neurons (b) 3 neurons (c) 4 neurons

41

(d) 5 neurons (e) 6 neurons (f) 7 neurons

(g) 8 neurons (h) 9 neurons

Fig. 2-21 Approximation results of FCC networks with different number of neurons

Table 2-4 presents the training and testing sum square errors (SSEs) of FCC networks

with different number of neurons.

Table 2-4 Training/testing SSEs of different sizes of FCC networks

Number of Neurons Training SSEs Testing SSEs

2 2.43055 678.7768

3 1.17843 346.0761

4 0.13682 49.6832

5 0.00591 1.7712

6 0.00022 0.2809

7 0.00008 7.3590

8 0.00003 249.3378

9 0.00000008 142.3883

From the results presented in Fig. 2-21 and Table 2-4, one may notice that, as the

network size increases, the training errors keep decreasing stably; however, the testing errors

decrease at first (when the number of neurons is less than 6) and they turned to become

42

increasing and unpredictable when more neurons are added. When the FCC networks consist of

5 and 6 neurons, very good approximation results are obtained.

2.5.2 Analytical Solutions

Based on the experiment above, one may notice that the basic reason of the over-fitting problem

in neural network design can be ascribed as the mismatch between the size of training patterns

and the size of networks. Normally, using improperly large size networks to train very simple

patterns may result in over-fitting. From another way of speaking, in order to reduce the

probability of occurrence of the over-fitting in neural network design, there are two very

straightforward methods:

 Increase the size of training patterns

 Decrease the size of neural networks

For the first method, it is always good to get as many training patterns as possible;

however, this strategy is only proper in practical applications when extra measurement can be

performed.

For the second method, it could be notice that in order to preserve the generalization

abilities of neural networks, the size of the networks should be as small as possible. From this

point of view, EBP algorithm is not a good choice for design compact neural networks because

of its slow convergence and poor search ability. In order to overcome the two main

disadvantages of EBP algorithms, networks with much larger than optimal size are often applied

for training.

Levenberg Marquardt (LM) algorithm is very efficient for neural network training and

has much powerful search ability. With these properties, LM algorithm is proper to design

43

compact neural networks in practical applications. However, the most famous implementation of

LM algorithm, Hagan and Menhaj LM algorithm [80], is only for MLP networks which perform

much less efficiently than networks with connections across layers, such as BMLP networks and

FCC networks.

The recently developed neuron-by-neuron (NBN) algorithm [27] solves the network

limitation in Hagan and Menhaj LM algorithm, and can handle arbitrarily connected neural

networks using second order update rule. Therefore, the combination of NBN algorithm and

BMLP/FCC networks is recommended in literature [28] for designing compact neural networks,

so as to reduce the probability of occurrence of the over-fitting problem.

2.6 Neuron-by-Neuron Algorithm

The neuron-by-neuron (NBN) algorithm [27] was proposed to solve the network architecture

limitation in Hagan and Menhaj LM algorithm, so that second order algorithms can be applied to

train very efficient network architectures with connections across layers [74].

The NBN algorithm adopts the index technology used in SPICE problem, and it consists

of two steps, forward computation and backward computation, to gather the information required

for Jacobian matrix computation in equation (2-26), using

 
niiimp

n

i

i

i

i

mp

n

mp

n

mpmp

n

mp

nmp ys
w

net

net

o

o

o

w

o

w

od

w

e
j ,.,.

,,,,,

., 


























 (2-38)

Where: jp,m,n is the element of Jacobian matrix in (2-26) related with pattern p, output m and

weight n. Equation (2-38) is derived from (2-12) and (2-26), using the chain rule of

differentiation. Vector δ is defined to measure the error backpropagation process [81] and vector

yi consists of the inputs of neuron i which may be either the network inputs or the outputs of

44

other neurons. si is the slope (derivative of activation function) of the given neuron i. i is the

index of neurons.

 In the forward computation, neurons are organized according to the direction of signal

propagation; while in backward computation, the analysis will follow the error backpropagation

procedure like in first order algorithms. In order to illustrate the computation process of NBN

algorithm, let us consider the network architecture with arbitrary connections as shown in Fig. 2-

22.

1

2

3

5x1

x2

+1 +1

1

2 4

5

6

73

4

+1 +1

Fig. 2-22 Arbitrarily connected neural network indexed by NBN algorithm

 For the network in Fig. 2-22, using the NBN algorithm, the network topology can be

described as

N1 3 1 2

N2 4 1 2

N3 5 3 4

N4 6 1 2 4 5

N5 7 3 5 6

 Notice that each line represents the connections to a given neuron. The first part, from N1

to N5, is the neuron index. Followed, the first digit of each line is the node index of the neuron.

The rest of the digits of each line represent the nodes connected to the specified neuron. With

these rules, one may notice that, for each neuron, the input nodes must have smaller indices than

the index of itself.

 In the forward computation, the neurons connected to the network inputs are first

45

processed so that their outputs can be used as inputs to the subsequent neurons. The following

neurons are then processed as all their input values become available. In other words, the

selected computing sequence has to follow the concept of feedforward signal propagation. If a

signal reaches the inputs of several neurons at the same time, then these neurons can be

processed in any sequence. In the example in Fig. 2-22, there are two possible ways in which

neurons can be processed in forward direction: N1N2N3N4N5 or N2N1N3N4N5. The two procedures

have different computing processes, but lead to exactly the same results. When the forward

computation is done, both of the vector y and the derivative vector s in equation (2-38) are

obtained.

 The sequence of the backward computation is opposite to the forward computation

sequence. The process starts with the last neuron and continues toward to the inputs. In the case

of the network in Fig. 2-22, there are two possible backpropagation paths: N5N4N3N2N1 and

N5N4N3N1N2. Again, different paths will lead to the same results. In this example, let us use the

N5N4N3N2N1 sequence to illustrate how to calculate the vector δ in the backward computation.

Notice that, the vector δ represents signal propagating from a network output to the inputs of all

other neurons, so the size of the vector δ is equal to the number of neurons. For the output

neuron N5, it is initialed as δ5=1. For the neuron N4, δ5 is propagated by the slope of neuron N5

and then propagated by the weight w4,5 connected between neurons N4 and N5, so as to obtain

δ4=δ5s5w4,5. For the neuron N3, both of the parameters δ4 and δ5 will be propagated in two

separated paths to the output of neuron N3 and then summed together, as δ3= δ4s4w3,4+δ5s5w3,5.

Following the same rule, it can be obtained that δ2=δ3s3w2,3+δ4s4w2,4 and δ1=δ3s3w1,3+δ5s5w1,5.

After the backward computation, all the elements of vector δ in equation (2-38) are calculated.

 With the forward and backward computation, all the neuron outputs y and slope s, and

46

vector δ are calculated. Then using equation (2-38), all the elements of Jacobian matrix can be

obtained.

 In the NBN computation above, neurons are analyzed one-by-one, following the

specified sequence which is decided by the network architectures. This property makes the NBN

algorithm capable of handling networks consisting of arbitrarily connected neurons.

47

CHAPTER 3

PROBLEMS IN SECOND ORDER ALGORITHMS

The very efficient second order Levenberg Marquardt (LM) algorithm [24-25] was adopted for

neural network training by Hagan and Menhaj [80], and later was implemented in MATLAB

Neural Network tool box [82]. The LM algorithm uses significantly more parameters describing

the error surface than just gradient elements as in the EBP algorithm. As a consequence the LM

algorithm is not only fast but also it can train neural networks for which the EBP algorithm has

difficulty to converge [28]. Many researchers now are using the Hagan and Menhaj LM

algorithm for neural network training, but this implementation has several disadvantages:

(1) The Hagan and Menhaj LM algorithm requires the inversion of quasi Hessian matrix of

size nw×nw in every iteration, where nw is the number of weights. Because of the necessity

of matrix inversion in every iteration the speed advantage of LM algorithm over the EBP

algorithm is less evident as the network size increases.

(2) The Hagan and Menhaj LM algorithm was developed only for multilayer perceptron

(MLP) neural networks. Therefore, much more powerful and efficient networks, such as fully

connected cascade (FCC) or bridged multilayer perceptron (BMLP) architectures cannot be

trained.

(3) The Hagan and Menhaj LM algorithm cannot be used for the problems with many

training patterns because the Jacobian matrix become prohibitively too large.

(4) The implementation of the Hagan and Menhaj LM algorithm calculated elements of

48

Jacobian matrix using basically the same routines as in the EBP algorithm. The different is

that the error backpropagation process (for Jacobian matrix computation) must be carried on

not only for every pattern but also for every output separately. So for network with multiple

outputs, the backpropagation process has to be repeated for each output.

The problem (1) inherits property of the original Levenberg marquardt algorithm and it is

still unsolved so that the LM algorithm can be used only for small and medium size neural

networks. Considering that LM algorithm often solves problems with very efficient networks, so

that the problem (1) is somehow compensated by this powerful search ability.

The problem (2) was solved by the recently developed neuron-by-neuron (NBN)

algorithm, as discussed in chapter 2.6, but this algorithm requires very complex computation.

The NBN algorithm also inherits the problems (3) and (4) in Hagan and Menhaj LM algorithm.

The problem (3) is called memory limitation, which makes the second order algorithms

not proper for problems with large-sized patterns. This is a fatal issue for second order

algorithms, since in practical problems, the size of training patterns is very large and it is

encouraged to be as large as possible.

The problem (4) is also called computational redundant, which makes second order

algorithms relatively complicated and inefficient for training networks with multiple outputs.

Also, it is easier to handle the networks with arbitrarily connected neurons, when there is no need

for backward computation process in problem (4).

 In the followed two chapters, we will introduce the two methods, improved second order

computation and the forward-only algorithm, as the potential solutions to memory limitation in

the problem (3) and computational redundant in the problem (4), respectively.

49

CHAPTER 4

IMPROVED SECOND ORDER COMPUTATION

The improved second order computation presented in this chapter is aimed to optimize the neural

networks learning process using Levenberg Marquardt (LM) algorithm. Quasi Hessian matrix

and gradient vector are computed directly, without Jacobian matrix multiplication and storage.

The memory limitation problem for LM training is solved. Considering the symmetry of quasi

Hessian matrix, only elements in its upper/lower triangular array need to be calculated. Therefore,

training speed is improved significantly, not only because of the smaller array stored in memory,

but also the reduced operations in quasi Hessian matrix calculation. The improved memory and

time efficiencies are especially true for large-sized patterns training.

In this chapter, firstly, computational fundamentals of LM algorithm are introduced to

address the memory problem. Secondly, the improved computations for both quasi Hessian

matrix and gradient vector are described in details. Thirdly, a simple problem is applied to

illustrate the implementation of the improved computation. Finally, several experimental results

are presented as the memory and training time comparison between the traditional computation

and the improved computation.

4.1 Problem Description

Derived from steepest descent method and Newton algorithm, the update rule of Levenberg

Marquardt algorithm is [76]

50

  eJIJJw
TT 1

  (4-1)

Where: w is weight vector, I is identity matrix, μ is combination coefficient, (P×M)×N Jacobian

matrix J and (P×M)×1 error vector e are defined as

























































































































N

PMPMPM

N

PPP

N

PPP

N

MMM

N

N

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e



















21

2

2

2

1

2

1

2

1

1

1

1

2

1

1

1

12

2

12

1

12

11

2

11

1

11

J





































PM

P

P

M

e

e

e

e

e

e







2

1

1

12

11

e

 (4-2)

Where: P is the number of training patterns, M is the number of outputs and N is the number of

weights. Elements in error vector e are calculated by

pmpmpm ode  (4-3)

Where: dpm and opm are the desired output and actual output respectively, at network output m

when training pattern p.

Traditionally, Jacobian matrix J is calculated and stored at first; then Jacobian matrix

multiplications are performed for weight updating using (4-1). For small and median size

patterns training, this method may work smoothly. However, for large-sized patterns, there is a

memory limitation for Jacobian matrix J storage.

For example, the pattern recognition problem in MNIST handwritten digit database [83] consists

of 60,000 training patterns, 784 inputs and 10 outputs. Using only the simplest possible neural

51

network with 10 neurons (one neuron per each output), the memory cost for the entire Jacobian

matrix storage is nearly 35 gigabytes. This huge memory requirement cannot be satisfied by any

32-bit Windows compliers, where there is a 3 gigabytes limitation for single array storage. At

this point, with traditional computation, one may conclude that Levenberg Marquardt algorithm

cannot be used for problems with large number of patterns.

4.2 Improved Computation

In the following derivation, sum squared error (SSE) is used to evaluate the training process.

  
 



P

p

M

m

pmeE

1 1

2

2

1
w (4-4)

Where: epm is the error at output m obtained by training pattern p, defined by (4-3).

The N×N Hessian matrix H is



































































2

2

2

2

1

2

2

2

2
2

2

12

2

1

2

21

2

2
1

2

NNN

N

N

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E









H
 (4-5)

Where: N is the number of weights.

Combining (4-4) and (4-5), elements of Hessian matrix H can be obtained as


 
































P

p

M

m

pm
ji

pm

j

pm

i

pm

ji

e
ww

e

w

e

w

e

ww

E

1 1

22

 (4-6)

Where: i and j are weight indexes.

For LM algorithm, equation (4-6) is approximated as [76]

52

ij

P

p

M

m j

pm

i

pm

ji

q
w

e

w

e

ww

E





























 1 1

2

 (4-7)

Where: qij is the element of quasi Hessian matrix in row i and column j.

Combining (4-2) and (4-7), quasi Hessian matrix Q can be calculated as an

approximation of Hessian matrix

JJQH
T (4-8)

N×1 gradient vector g is

T

Nw

E

w

E

w

E




















 

21

g (4-9)

Inserting (4-4) into (4-9), elements of gradient can be calculated as


 

























P

p

M

m

pm
i

pm

i
i e

w

e

w

E
g

1 1

 (4-10)

From (4-2) and (4-10), the relationship between gradient vector g and Jacobian matrix J

is

eJg
T (4-11)

Combining (4-8), (4-11) and (4-1), the update rule of Levenberg Marquardt algorithm can

be rewritten

  gIQw
1

  (4-12)

One may notice that the sizes of quasi Hessian matrix Q and gradient vector g are

proportional to number of weights in networks, but they are not associated with the number of

training patterns and outputs.

53

Equations (4-1) and (4-12) are producing identical results for weight updating. The major

difference is that in (4-12), quasi Hessian matrix Q and gradient vector g are calculated directly

without necessity to calculate and to store Jacobian matrix J as it is done in (4-1).

4.2.1 Review of Matrix Algebra

There are two ways to multiply rows and columns of two matrixes. If the row of first matrix is

multiplied by the column of the second matrix, then we obtain a scalar, as shown in Fig. 4-1a.

When the column of the first matrix is multiplied by the row of the second matrix then the result

is a partial matrix q (Fig. 4-1b) [84]. The number of scalars is N×N, while number of partial

matrices q, which later have to be summed is P×M.

 
P×M

P×MT
J J Q

N

N

(a) Row-column multiplication results in a scalar

 

N

N

N

N T
J J

q

(b) Column-row multiplication results in a partial matrix q

Fig. 4-1 Two ways of multiplying matrixes

When J
T
 is multiplied by J using routine shown in Fig. 4-1b, at first, partial matrices q

(size: N×N) need to be calculated P×M times, then all of P×M matrices q must be summed

54

together. The routine of Fig. 4-1b seems complicated therefore almost all matrix multiplication

processes use the routine of Fig. 4-1a, where only one element of resulted matrix is calculated

and stored at each time.

Even the routine of Fig. 4-1b seems to be more complicated and it is used very seldom,

after detailed analysis, one may conclude that the number of numerical multiplications and

additions is exactly the same as that in Fig. 4-1a, but they are performed in different order. The

computation cost analysis is presented in Table 4-1.

Table 4-1 Computation cost analysis

J
T
J Computation Addition Multiplication

Original LM (P × M) × N × N (P × M) × N × N

Improved LM N × N × (P × M) N × N × (P × M)

In a specific case of neural network training, only one row (N elements) of Jacobian

matrix J (or one column of J
T
) is calculated, when each pattern is applied. Therefore, if routine

from Fig. 4-1b is used then the process of creation of quasi Hessian matrix can start sooner

without necessity of computing and storing the entire Jacobian matrix for all patterns and all

outputs.

Table 4-2 Memory cost analysis

Multiplication Methods Elements for storage

Row-column (Fig. 4-1a) (P × M) × N + N × N + N

Column-row (Fig. 4-1b) N × N + N

Difference (P × M) × N

P is the number of training patterns, M is the number of outputs and N is the number of weights.

The analytical results in Table 4-2 show that the column-row multiplication (Fig. 4-1b)

can save a lot of memory.

55

4.2.2 Improved Quasi Hessian Matrix Computation

Let us introduce quasi Hessian sub matrix qpm (size: N×N)







































































































































2

21

2

2

212

121

2

1

N

pmpm

N

pmpm

N

pm

N

pmpmpmpmpm

N

pmpmpmpmpm

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e









pmq
 (4-13)

Using (4-7) and (4-13), the N×N quasi Hessian matrix Q can be calculated as the sum of

sub matrices qpm


 



P

p

M

m

pm

1 1

qQ
 (4-14)

By introducing 1×N vector jpm























N

pmpmpm

w

e

w

e

w

e


21
pmj

 (4-15)

sub matrices qpm in (4-13) can be also written in the vector form (Fig. 4-1b)

pm
T
pmpm jjq  (4-16)

One may notice that for the computation of sub matrices qpm, only N elements of vector

jpm need to be calculated and stored. All the sub matrixes can be calculated for each pattern p and

output m separately, and summed together, so as to obtain quasi Hessian matrix Q.

Considering the independence among all patterns and outputs, there is no need to store all

the quasi Hessian sub matrices qpm. Each sub matrix can be summed to a temporary matrix after

its computation. Therefore, during the direct computation of quasi Hessian matrix Q using (4-14),

56

only memory for N elements is required, instead of that for the whole Jacobian matrix with

(P×M)×N elements (Table 4-2).

From equation (4-13), one may notice that all the sub matrixes qpm are symmetrical. With

this property, only upper (or lower) triangular elements of those sub matrixes need to be

calculated. Therefore, during the improved quasi Hessian matrix Q computation, multiplication

operations in (4-16) and sum operations in (4-14) can be both reduced by half approximately.

4.2.3 Improved Gradient Vector Computation

Gradient sub vector ηpm (size: N×1) is

pm

N

pm

pm

pm

pm

N

pm

pm

pm

pm

pm

pm e

w

e

w

e

w

e

e
w

e

e
w

e

e
w

e




















































































2

1

2

1

η (4-17)

Combining (4-10) and (4-17), gradient vector g can be calculated as the sum of gradient

sub vector ηpm


 



P M

m

pm

1 1p

ηg (4-18)

Using the same vector jpm defined in (4-15), gradient sub vector can be calculated using

pm

T

pmpm ejη  (4-19)

Similarly, gradient sub vector ηpm can be calculated for each pattern and output separately,

and summed to a temporary vector. Since the same vector jpm is calculated during quasi Hessian

matrix computation above, there is only an extra scalar epm need to be stored.

57

With the improved computation, both quasi Hessian matrix Q and gradient vector g can be

computed directly, without Jacobian matrix storage and multiplication. During the process, only

a temporary vector jpm with N elements needs to be stored; in other words, the memory cost for

Jacobian matrix storage is reduced by (P×M) times. In the MINST problem mentioned in section

4.1, the memory cost for the storage of Jacobian elements could be reduced from more than 35

gigabytes to nearly 30.7 kilobytes.

4.2.4 Simplified ∂epm/∂wi computation

The key point of the improved computation above for quasi Hessian matrix Q and gradient

vector g is to calculate vector jpm defined in (4-15) for each pattern and output. This vector is

equivalent of one row of Jacobian matrix J.

The elements of vector jpm can be calculated by

 
i

pn

pn

pm

i

pmpm

i w

net

net

o

w

do

w

e

















 pm

 (4-20)

Where: d is the desired output and o is the actual output; netpn is the sum of weighted inputs at

neuron n described as






I

i

ipipn wxnet

1

 (4-21)

Where: xpi and wi are the inputs and related weights respectively at neuron n; I is the number of

inputs at neuron n.

Inserting (4-20) and (4-21) into (4-15), vector jpm can be calculated by

  









 ipp

p

pm

pm xx
net

o
,11,1

1

j  









 ipnpn

pn

pm
xx

net

o
,1, (4-22)

58

Where: xpn,i is the i-th input of neuron n, when training pattern p.

Using the neuron by neuron computation [27], elements xpn,i in (4-22) can be calculated in the

forward computation, while ∂opm/∂netpn are obtained in the backward computation. Again, since

only one vector jpm needs to be stored for each pattern and output in the improved computation,

the memory cost for all those temporary parameters can be reduced by (P×M) times. All matrix

operations are simplified to vector operations.

4.3 Implementation

In order to better illustrate the direct computation process for both quasi Hessian matrix Q and

gradient vector g, let us analyze parity-2 problem as a simple example.

Parity-2 problem is also known as XOR problem. It has 4 training patterns, 2 inputs and 1

output. See Fig. 4-2.

Fig. 4-2 Parity-2 problem: 4 patterns, 2 inputs and 1 output

The structure, 3 neurons in MLP topology (see Fig. 4-3), is used.

Fig. 4-3 Three neurons in MLP network used for training parity-2 problem; weight and neuron

indexes are marked in the figure

59

As shown in Fig. 4-3 above, all weight values are initialed as the vector

w={w1,w2,w3,w4,w5,w6,w7,w8,w9}. All elements in both quasi Hessian matrix Q and gradient

vector g are set to “0”.

For the first pattern (-1, -1), the forward computation is:

a) net11=1×w1+(-1) ×w2+(-1) ×w3

b) o11=f(net11)

c) net12=1×w4+(-1) ×w5+(-1) ×w6

d) o12=f(net12)

e) net13=1×w7+o11×w8+o12×w9

f) o13=f(net13)

g) e11=1-o13

Then the backward computation is performed to calculate ∂e11/∂net11, ∂e11/∂net12 and

∂e11/∂net13 in following steps:

h) With results of steps (f) and (g), it can be calculated

    

13

13

13

13

13

11
3

1

net

netf

net

netf

net

e
s














 (4-23)

i) With results of step (b) to step (g), using the chain-rule in differential, one can

obtain

   

13

13
9

12

12

12

11
2

net

netf
w

net

netf

net

e
s














 (4-24)

   

13

13
8

11

11

11

11
1

net

netf
w

net

netf

net

e
s














 (4-25)

In this example, using (4-22), the vector j11 is calculated as

60

   111111
12

11

11

11
11 















net

e

net

e
j  









1211

13

11 1 oo
net

e
 (4-26)

With (4-16) and (4-19), sub matrix q11 and sub vector η11 can be calculated separately



































2
12

2
3

1211
2
3

12311131
2
1

12311131
2
1

2
1

12311131
2
1

2
1

2
1

11

0000

000

00

0

os

oos

ossosss

ossossss

ossosssss













q
 (4-27)

  1112311311111 eosossss  η (4-28)

One may notice that only upper triangular elements of sub matrix q11 are calculated, since

all sub matrixes are symmetrical. This can save nearly half of computation.

The last step is to add sub matrix q11 and sub vector η11 to quasi Hessian matrix Q and

gradient vector g.

The analysis above is only for training the first pattern. For other patterns, the

computation process is almost the same. During the whole process, there is no Jacobian matrix

computation; only the derivatives and outputs of activation functions are required to be

computed. All the temporary parameters are stored in vectors which have no relationship with

the number of patterns and outputs.

Generally, for the problem with P patterns and M outputs, the improved computation can

be organized as the pseudo code shown in Fig. 4-4.

61

% Initialization

Q=0;

g =0

% Improved computation

for p=1:P % Number of patterns

 % Forward computation

 …

 for m=1:M % Number of outputs

 % Backward computation

 …

 calculate vector jpm; % Eq. (4-22)

 calculate sub matrix qpm; % Eq. (4-16)

 calculate sub vector ηpm; % Eq. (4-19)

 Q=Q+qpm; % Eq. (4-14)

 g=g+ηpm; % Eq. (4-18)

 end;

end;

Fig. 4-4 Pseudo code of the improved computation for quasi Hessian matrix and gradient vector

The same quasi Hessian matrices and gradient vectors are obtained in both traditional

computation (equations 4-8 and 4-11) and the proposed computation (equations 4-14 and 4-18).

Therefore, the proposed computation does not affect the success rate.

4.4 Experiments

Several experiments are designed to test the memory and time efficiencies of the improved

computation, comparing with traditional computation. They are divided into two parts: (1)

Memory comparison and (2) Time comparison.

4.4.1 Memory Comparison

Three problems, each of which has huge number of patterns, are selected to test the memory cost

of both the traditional computation and the improved computation. LM algorithm is used for

62

training and the test results are shown Tables 4-3 and 4-4. In order to make more precise

comparison, memory cost for program code and input files were not used in the comparison.

Table 4-3 Memory comparison for parity problems

Parity-N Problems N=14 N=16

Patterns 16,384 65,536

Structures* 15 neurons 17 neurons

Jacobian matrix sizes 5,406,720 27,852,800

Weight vector sizes 330 425

Average iteration 99.2 166.4

Success Rate 13% 9%

Algorithms Actual memory cost

Traditional LM 79.21Mb 385.22Mb

Improved LM 3.41Mb 4.30Mb

*All neurons are in fully connected cascade networks

Table 4-4 Memory comparison for MINST problem

Problem MINST

Patterns 60,000

Structures 784=1 single layer network*

Jacobian matrix sizes 47,100,000

Weight vector sizes 785

Algorithms Actual memory cost

Traditional LM 385.68Mb

Improved LM 15.67Mb

*In order to perform efficient matrix inversion during training, only one of ten digits is classified

each time.

From the test results in Tables 4-3 and 4-4, it is clear that memory cost for training is

significantly reduced in the improved computation.

In the MNIST problem [82], there are 60,000 training patterns, each of which is a digit

(from 0 to 9) image made up of grayed 28 by 28 pixels. And also, there are another 10,000

patterns used to test the training results. With the trained network, our testing error rate for all the

digits is 7.68%. In this result, for compressed, stretched and moved digits, the trained neural

63

network can classify them correctly (see Fig. 4-5a); for seriously rotated or distorted images, it is

hard to recognize them (see Fig. 4-5b).

(a) Recognized patterns

(b) Unrecognized patterns

Fig. 4-5 Some testing results for digit “2” recognition

4.4.2 Time Comparison

Parity-N problems are presented to test the training time for both traditional computation and the

improved computation using LM algorithm. The structures used for testing are all fully

connected cascade networks. For each problem, the initial weights and training parameters are

the same.

Table 4-5 Time comparison for parity problems

Parity-N Problems N=9 N=11 N=13 N=15

Patterns 512 2,048 8,192 32,768

Neurons 10 12 14 16

Weights 145 210 287 376

Average Iterations 38.51 59.02 68.08 126.08

Success Rate 58% 37% 24% 12%

Algorithms Averaged training time (s)

Traditional LM 0.78 68.01 1508.46 43,417.06

Improved LM 0.33 22.09 173.79 2,797.93

64

From Table 4-5, one may notice that the improved computation can not only handle

much larger problems, but also computes much faster than traditional one, especially for large-

sized patterns training. The larger the pattern size is, the more time efficient the improved

computation will be.

Obviously, the simplified quasi Hessian matrix computation is the one reason for the

improved computing speed (nearly two times faster for small problems). Significant computation

reductions obtained for larger problems are most likely due to the simpler way of addressing

elements in vectors, in comparison to addressing elements in huge matrices.

With the presented experimental results, one may notice that the improved computation is

much more efficient than traditional computation for training with Levenberg Marquardt

algorithm, not only on memory requirements, but also training time.

4.5 Conclusion

In this chapter, the improved computation is introduced to increase the training efficiency of

Levenberg Marquardt algorithm. The proposed method does not require to store and to multiply

large Jacobian matrix. As a consequence, memory requirement for quasi Hessian matrix and

gradient vector computation is decreased by (P×M) times, where P is the number of patterns and

M is the number of outputs. Additional benefit of memory reduction is also a significant

reduction in computation time. Based on the proposed computation, calculating process of quasi

Hessian matrix is further simplified using its symmetrical property. Therefore, the training speed

of the improved algorithm becomes much faster than traditional computation.

In the proposed computation process, quasi Hessian matrix can be calculated on fly when

training patterns are applied. Moreover, the proposed method has special advantage for

65

applications which require dynamically changing the number of training patterns. There is no

need to repeat the entire multiplication of J
T
J, but only add to or subtract from quasi Hessian

matrix. The quasi Hessian matrix can be modified as patterns are applied or removed.

Second order algorithms have lots of advantages, but they require at each iteration

solution of large set of linear equations with number of unknowns equal to number of weights.

Since in the case of first order algorithms, computing time is only proportional to the problem

size, first order algorithms (in theory) could be more useful for large neural networks. However,

as discussed in the previous chapters, first order algorithm (EBP algorithm) is not able to solve

some problems unless excessive number of neurons is used. But with excessive number of

neurons, networks lose their generalization ability and as a result, the trained networks will not

respond well for new patterns, which are not used for training.

One may conclude that both first order algorithms and second order algorithms have their

disadvantages and the problem of training extremely large networks with second order

algorithms is still unsolved. The method presented in this chapter at least solved the problem of

training neural networks using second order algorithm with basically unlimited number of

training patterns.

66

CHAPTER 5

FORWARD-ONLY ALGORITHM

Following the neuron-by-neuron (NBN) computation procedure [27], the forward-only algorithm

[78] is introduced in this chapter also allows for training arbitrarily connected neural networks;

therefore, more powerful network architectures with connections across layers, such as bridged

multilayer perceptron (BMLP) networks and fully connected cascade (FCC) networks, can be

efficiently trained. A further advantage of the proposed forward-only algorithm is that the

learning process requires only forward computation without the necessity of the backward

computations. Information needed for gradient vector (for first order algorithms) and Jacobian or

Hessian matrix (for second order algorithms) is obtained during forward computation. This way

the forward-only method, in many cases, may also lead to the reduction of the computation time,

especially for networks with multiple outputs.

 In this chapter, we firstly introduce the traditional gradient vector and Jacobian matrix

computation to address the computational redundancy problem for networks with multiple

outputs. Then, the forward-only algorithm is proposed to solve the problem by removing

backward computation process. Thirdly, both analytical and experimental comparisons are

performed between the proposed forward-only algorithm and Hagan and Menhaj Levenberg

Marquardt algorithm. Experimental results also show the ability of the forward-only algorithm to

train networks consisting of arbitrarily connected neurons.

67

5.1 Computational Fundamentals

Before the derivation, let us introduce some commonly used indices in this chapter:

 p is the index of patterns, from 1 to np, where np is the number of patterns;

 m is the index of outputs, from 1 to no, where no is the number of outputs;

 j and k are the indices of neurons, from 1 to nn, where nn is the number of neurons;

 i is the index of neuron inputs, from 1 to ni, where ni is the number of inputs and it

may vary for different neurons.

Other indices will be explained in related places.

Sum square error (SSE) E is defined to evaluate the training process. For all patterns and

outputs, it is calculated by


 



np

1p

no

1m

mpeE 2
,

2

1
 (5-1)

Where: ep,m is the error at output m defined as

mpmpmp doe ,,,  (5-2)

Where: dp,m and op,m are desired output and actual output, respectively, at network output m for

training pattern p.

In all training algorithms, the same computations are being repeated for one pattern at a

time. Therefore, in order to simplify notations, the index p for patterns will be skipped in the

following derivations, unless it is essential.

5.1.1 Review of Basic Concepts in Neural Network Training

Let us consider neuron j with ni inputs, as shown in Fig. 5-1. If neuron j is in the first layer, all its

inputs would be connected to the inputs of the network; otherwise, its inputs can be connected to

68

outputs of other neurons or to networks’ inputs if connections across layers are allowed.

)(jj netf)(, jjm yF mo2,jy

1,jw

jy
2,jw

ijw,

nijw ,

0,jw

1

1,jy

1, nijwijy ,

1, nijy

nijy ,




Fig. 5-1 Connection of a neuron j with the rest of the network. Nodes yj,i could represents

network inputs or outputs of other neurons. Fm,j(yj) is the nonlinear relationship between the

neuron output node yj and the network output om

Node y is an important and flexible concept. It can be yj,i, meaning the i-th input of

neuron j. It also can be used as yj to define the output of neuron j. In this chapter, if node y has

one index then it is used as a neuron output node, but if it has two indices (neuron and input), it

is a neuron input node.

Output node of neuron j is calculated using

 jjj netfy  (5-3)

Where: fj is the activation function of neuron j and net value netj is the sum of weighted input

nodes of neuron j

j,0

ni

i

ijijj wywnet 
1

,, (5-4)

Where: yj,i is the i-th input node of neuron j, weighted by wj,i, and wj,0 is the bias weight.

Using (5-4) one may notice that derivative of netj is:

ij
ij

j
y

w

net
,

,





 (5-5)

69

and slope sj of activation function fj is:

 
j

jj

j

j

j
net

netf

net

y
s









 (5-6)

Between the output node yj of a hidden neuron j and network output om there is a complex

nonlinear relationship (Fig. 5-1):

  jjmm yFo , (5-7)

Where: om is the m-th output of the network.

The complexity of this nonlinear function Fm,j(yj) depends on how many other neurons

are between neuron j and network output m. If neuron j is at network output m, then om=yj and

F’m,j(yj)=1, where F’m,j is the derivative of nonlinear relationship between neuron j and output m.

5.1.2 Gradient Vector and Jacobian Matrix Computation

For every pattern, in EBP algorithm only one backpropagation process is needed, while in

second order algorithms the backpropagation process has to be repeated for every output

separately in order to obtain consecutive rows of the Jacobian matrix (Fig. 5-2). Another

difference in second order algorithms is that the concept of back propagating of δ parameter [81]

has to be modified. In EBP algorithm, output errors are parts of δ parameter

 




no

m

mjmjj eFs

1

'
, (5-8)

In second order algorithms, the δ parameters are calculated for each neuron j and each

output m separately. Also, in the backpropagation process [80] the error is replaced by a unit

value

'
,, jmjjm Fs (5-9)

70

Knowing δm,j, elements of Jacobian matrix are calculated as

'
,,,,

,

,

jmjijjmij
ij

mp
Fsyy

w

e





 (5-10)

In EBP algorithm, elements of gradient vector are computed as

jij
ij

ij y
w

E
g ,

,
, 




 (5-11)

Where: δj is obtained with error back-propagation process. In second order algorithms, gradient

can be obtained from partial results of Jacobian calculations

 m

no

m

jmijij eyg 




1

,,,  (5-12)

Where: m indicates a network output and δm,j is given by (5-9).

The update rule of EBP algorithm is

 nnn gww 1 (5-13)

Where: n is the index of iterations, w is weight vector, α is learning constant, g is gradient vector.

Derived from Newton algorithm and steepest descent method, the update rule of

Levenberg Marquardt (LM) algorithm is [80]

  nn
T
nnn gIJJww

1

1



   (5-14)

Where: μ is the combination coefficient, I is the identity matrix and J is Jacobian matrix shown

in Fig. 5-2.

71































































































































































































































2,

,

1,

,

2,1

,

1,1

,

2,

2,

1,

2,

2,1

2,

1,1

2,

2,

1,

1,

1,

2,1

1,

1,1

1,

2,

,

1,

,

2,1

,

1,1

,

2,

1,

1,

1,

2,1

1,

1,1

1,

2,

,1

1,

,1

2,1

,1

1,1

,1

2,

2,1

1,

2,1

2,1

2,1

1,1

2,1

2,

1,1

1,

1,1

2,1

1,1

1,1

1,1

j

nonp

j

nonpnonpnonp

j

np

j

npnpnp

j

np

j

npnpnp

j

mp

j

mpmpmp

j

p

j

ppp

j

no

j

nonono

jj

jj

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

J

neuron 1 neuron j

nom

2m

1m

1m





2m

1m

nom






1p

pp

npp

nom




 

Fig. 5-2 Structure of Jacobian matrix: (1) the number of columns is equal to the number of

weights; (2) each row is corresponding to a specified training pattern p and output m

From Fig. 5-2, one may notice that, for every pattern p, there are no rows of Jacobian

matrix where no is the number of network outputs. The number of columns is equal to number of

weights in the networks and the number of rows is equal to np×no.

Traditional backpropagation computation, for delta matrix (np×no×nn) computation in

second order algorithms, can be organized as shown in Fig. 5-3.

72

for all patterns

% Forward computation

 for all neurons (nn)

 for all weights of the neuron (nx)

 calculate net; % Eq. (5-4)

 end;

 calculate neuron output; % Eq. (5-7)

 calculate neuron slope; % Eq. (5-6)

 end;

 for all outputs (no)

 calculate error; % Eq. (5-2)

%Backward computation

 initial delta as slope;

 for all neurons starting from output neurons (nn)

 for the weights connected to other neurons (ny)

 multiply delta through weights

 sum the backpropagated delta at proper nodes

 end;

 multiply delta by slope (for hidden neurons);

 end;

 end;

end;

Fig. 5-3 Pseudo code using traditional backpropagation of delta in second order algorithms (code

in bold will be removed in the proposed computation)

5.2 Forward-Only Computation

The proposed forward-only method is designed to improve the efficiency of Jacobian matrix

computation, by removing the backpropagation process.

5.2.1 Derivation

The concept of δm,j was defined in equation (5-9). One may notice that δm,j can be interpreted also

as a signal gain between net input of neuron j and the network output m. Let us extend this

concept to gain coefficients between all neurons in the network (Fig. 5-4 and Fig. 5-6). The

notation of δk,j is extension of equation (5-9) and can be interpreted as signal gain between

neurons j and k and it is given by

73

   
jjk

j

j

j

jjk

j

jjk
jk sF

net

y

y

yF

net

yF
'
,

,,
, 













 (5-15)

Where: k and j are indices of neurons; Fk,j(yj) is the nonlinear relationship between the output

node of neuron k and the output node of neuron j. Naturally in feedforward networks, k≥j. If k=j,

then δk,k=sk, where sk is the slope of activation function (5-6). Fig 5-4 illustrates this extended

concept of δk,j parameter as a signal gain.

netj sj

yj
netk sk yk

jm,

jjkjk sF'
,, 

km,

jkF ,'

n
e

tw
o

rk
 i
n

p
u

ts

o1

om

n
e

tw
o

rk
 o

u
tp

u
ts

Fig. 5-4 Interpretation of δk,j as a signal gain, where in feedforward network neuron j must be

located before neuron k

The matrix δ has a triangular shape and its elements can be calculated in the forward only

process. Later, elements of gradient vector and elements of Jacobian can be obtained using

equations (5-10) and (5-12) respectively, where only the last rows of matrix δ associated with

network outputs are used. The key issue of the proposed algorithm is the method of calculating

of δk,j parameters in the forward calculation process and it will be described in the next section.

5.2.2 Calculation of δ Matrix for Fully Connected Cascade Architectures

Let us start our analysis with fully connected neural networks (Fig. 5-5). Any other architecture

could be considered as a simplification of fully connected neural networks by eliminating

74

connections (setting weights to zero). If the feedforward principle is enforced (no feedback),

fully connected neural networks must have cascade architectures.

in
p

u
ts

 4

 1

 2

 3

2,1w

3,2w

4,3w

3,1w 4,1w

4,2w

+1

Fig. 5-5 Four neurons in fully connected neural network, with 5 inputs and 3 outputs

2,1w

3,2w

4,3w

3,1w 4,1w

4,2w1,2

2,3

1,4

1,3

2,41,4

s1

s2

s3

s4

Fig. 5-6 The δk,j parameters for the neural network of Fig. 5-5. Input and bias weights are not

used in the calculation of gain parameters

Slops of neuron activation functions sj can be also written in form of δ parameter as δj,j=sj.

By inspecting Fig. 5-6, δ parameters can be written as:

For the first neuron there is only one δ parameter

11,1 s (5-16)

For the second neuron there are two δ parameters

75

12,121,2

22,2

sws

s








 (5-17)

For the third neuron there are three δ parameters

12,123,2313,131,3

23,232,3

33,3

swswssws

sws

s













 (5-18)

One may notice that all δ parameters for third neuron can be also expressed as a function

of δ parameters calculated for previous neurons. Equations (5-18) can be rewritten as

1,23,23,31,13,13,31,3

2,23,23,32,3

33,3







ww

w

s







 (5-19)

For the fourth neuron there are four δ parameters

1,34,34,41,24,24,41,14,14,41,4

2,34,34,42,24,24,42,4

3,34,34,43,4

44,4









www

ww

w

s









 (5-20)

The last parameter δ4,1 can be also expressed in a compacted form by summing all terms

connected to other neurons (from 1 to 3)






3

1

1,4,4,41,4

i

iiw  (5-21)

The universal formula to calculate δk,j parameters using already calculated data for

previous neurons is








1

,,,,

k

ji

jikikkjk w  (5-22)

76

Where: in feedforward network neuron j must be located before neuron k, so k≥j; δk,k =sk is the

slop of activation function of neuron k; wj,k is weight between neuron j and neuron k; and δk,j is a

signal gain through weight wj,k and through other part of network connected to wj,k.

In order to organize the process, the nn×nn computation table is used for calculating

signal gains between neurons, where nn is the number of neurons (Fig. 5-7). Natural indices

(from 1 to nn) are given for each neuron according to the direction of signals propagation. For

signal gains computation, only connections between neurons need to be concerned, while the

weights connected to network inputs and biasing weights of all neurons will be used only at the

end of the process. For a given pattern, a sample of the nn×nn computation table is shown in Fig.

5-7. One may notice that the indices of rows and columns are the same as the indices of neurons.

In the followed derivation, let us use k and j, used as neurons indices, to specify the rows and

columns in the computation table. In feed forward network, k≥j and matrix δ has triangular shape.

1

2

2

1 j

j

k

k

nn

nn

  
 
























































    

1,1

Neuron

Index

2,2

jj,

kk ,

nnnn,

1,2

1,j 2,j

1,k 2,k jk,

1,nn 2,nn jnn, knn,

2,1w jw ,1 kw ,1 nnw ,1

jw ,2 nnw ,2kw ,2

kjw , nnjw ,

nnkw ,

Fig. 5-7 The nn×nn computation table; gain matrix δ contains all the signal gains between

neurons; weight array w presents only the connections between neurons, while network input

weights and biasing weights are not included

The computation table consists of three parts: weights between neurons in upper triangle,

vector of slopes of activation functions in main diagonal and signal gain matrix δ in lower

77

triangle. Only main diagonal and lower triangular elements are computed for each pattern.

Initially, elements on main diagonal δk,k=sk are known as slopes of activation functions and

values of signal gains δk,j are being computed subsequently using equation (5-22).

The computation is being processed neuron by neuron starting with the neuron closest to

network inputs. At first the row number one is calculated and then elements of subsequent rows.

Calculation on row below is done using elements from above rows using (5-22). After

completion of forward computation process, all elements of δ matrix in the form of the lower

triangle are obtained.

In the next step elements of gradient vector and Jacobian matrix are calculated using

equation (5-10) and (5-12). In the case of neural networks with one output only the last row of δ

matrix is needed for gradient vector and Jacobian matrix computation. If networks have more

outputs no then last no rows of δ matrix are used. For example, if the network shown in Fig. 5-5

has 3 outputs the following elements of δ matrix are used























44,43,42,41,4

4,333,32,31,3

4,23,222,21,2

0

00

s

s

s







 (5-23)

and then for each pattern, the three rows of Jacobian matrix, corresponding to three outputs, are

calculated in one step using (5-10) without additional propagation of

       
       
       






























4321

0

00

44334224114

433223113

4322112

neuron

s

neuronneuronneuron

s

s

,,,

,,

,

yyyy

yyyy

yyyy







 (5-24)

Where: neurons’ input vectors y1 through y4 have 6, 7, 8 and 9 elements respectively (Fig. 5-5),

corresponding to number of weights connected. Therefore, each row of Jacobian matrix has

78

6+7+8+9=30 elements. If the network has 3 outputs, then from 6 elements of δ matrix and 3

slops, 90 elements of Jacobian matrix are calculated. One may notice that the size of newly

introduced δ matrix is relatively small and it is negligible in comparison to other matrixes used

in calculation.

The proposed method gives all the information needed to calculate both gradient vector

(5-12) and Jacobian matrix (5-10), without backpropagation process; instead, δ parameters are

obtained in relatively simple forward computation (see equation (5-22)).

5.2.3 Training Arbitrarily Connected Neural Networks

The forward-only computation above was derived for fully connected neural networks. If

network is not fully connected, then some elements of the computation table are zero. Fig. 5-8

shows computation tables for different neural network topologies with 6 neurons each. Please

notice zero elements are for not connected neurons (in the same layers). This can further simplify

the computation process for popular MLP topologies (Fig. 5-8b).

5

4

1

2

3

6

Index 5 641 32

1

2

3

4

5

6

2s

1s

3s

4s

5s

6s

1,2

1,3 2,3

1,4 2,4 3,4

2,5 3,51,5 4,5

1,6 2,6 3,6 4,6 5,6

4,1w2,1w 6,1w3,1w 5,1w

4,2w 5,2w 6,2w3,2w

6,3w4,3w 5,3w

6,5w

5,4w 6,4w

(a) Fully connected cascade network

79

Index 5 641 32

1

2

3

4

5

6

2s

1s

3s

4s

5s

6s

2,5 3,51,5 4,5

1,6 2,6 3,6 4,6

6,1w5,1w

5,2w 6,2w

6,3w5,3w

5,4w 6,4w

 1

 2

 3

 6

 4

 5
0 0 0

0 0

0

0

0

0

0

0

0

0 0

(b) Multilayer perceptron network

Index 5 641 32

1

2

3

4

5

6

2s

1s

3s

4s

5s

6s

1,3

2,4

2,5 3,51,5 4,5

1,6 3,6

6,1w3,1w

4,2w 5,2w

6,3w5,3w

5,4w

0

0 0

0

0

0

0 0

0 0

0

0

0 0

0

 1

 2

 3

 4

 5

 6

(c) Arbitrarily connected neural network

Fig. 5-8 Three different architectures with 6 neurons

Most of used neural networks have many zero elements in the computation table (Fig. 5-

8). In order to reduce the storage requirements (do not store weights with zero values) and to

reduce computation process (do not perform operations on zero elements), a part of the NBN

algorithm [27] in chapter 5 was adopted for forward computation.

In order to further simplify the computation process, the equation (5-22) is completed in

two steps








1

,,,

k

ji

jikijk wx  (5-25)

and

80

jkkjkkkjk xsx ,,,,   (5-26)

The complete algorithm with forward-only computation is shown in Fig. 5-9. By adding

two additional steps using equations (5-25) and (5-26) (highlighted in bold in Fig. 5-9), all

computation can be completed in the forward only computing process.

for all patterns (np)
% Forward computation
 for all neurons (nn)
 for all weights of the neuron (nx)
 calculate net; % Eq. (5-4)
 end;
 calculate neuron output; % Eq. (5-3)
 calculate neuron slope; % Eq. (5-6)
 set current slope as delta;
 for weights connected to previous neurons (ny)
 for previous neurons (nz)

 multiply delta through weights then sum; % Eq. (5-24)
 end;
 multiply the sum by the slope; % Eq. (5-25)

 end;
 related Jacobian elements computation; % Eq. (5-12)
 end;
 for all outputs (no)
 calculate error; % Eq. (5-2)
 end;

end;

Fig. 5-9 Pseudo code of the forward-only computation, in second order algorithms

5.3 Computation Comparison

The proposed forward-only computation removes the backpropagation part, but it includes an

additional calculation in the forward computation (the bold part in Fig. 5-9). Let us compare the

computation cost of forward part and backward part for each method, in LM algorithm. Naturally

such comparison can be done only for traditional MLP architectures, which can be handled by

both algorithms.

As is shown in Fig. 5-3 and Fig. 5-9, computation cost of traditional computation and the

forward-only computation depends on the neural network topology. In order to do the analytical

comparison, for each neuron, let us consider:

81

 nx as the average number of weights

nn

nw
nx  (5-27)

 ny as the average number of weights between neurons

nn

nonh
ny


 (5-28)

 nz as the average number of previous neurons

nn

nh
nz  (5-29)

Where: nw is the number of weights; nn is the number of neurons; no is the number of outputs;

nh is the number of hidden neurons. The estimation of ny depends on network structures.

Equation (5-28) gives the ny value for MLP networks with one hidden layer. The comparison

below is for training one pattern.

From the analytical results in Table 5-1, one may notice that, for the backward part, time

cost in backpropagation computation is tightly associated with the number of outputs; while in

the forward-only computation, the number of outputs is almost irrelevant.

Table 5-1 Analysis of computation cost in Hagan and Menhaj LM algorithm and forward-only

computation
 Hagan and Menhaj Computation

Forward Part Backward Part

+/- nn×nx + 3nn + no no×nn×ny

×/÷ nn×nx + 4nn no×nn×ny + no×(nn – no)

exp* nn 0

 Forward-only computation

Forward Backward

+/- nn×nx + 3nn + no + nn×ny×nz 0

×/÷ nn×nx + 4nn + nn×ny + nn×ny×nz 0

exp nn 0

 Subtraction forward-only from traditional

+/- nn×ny×(no – 1)

×/÷ nn×ny×(no – 1) + no×(nn – no) – nn×ny×nz

exp 0

*Exponential operation.

82

Table 5-2 shows the computation cost for the neural network which will be used for the

ASCII problem in section 5.4, using the equations of Table 5-1.

In typical PC computer with arithmetic coprocessor, based on the experimental results, if

the time cost for “+/-” operation is set as unit “1”, then “×/÷” and “exp” operations will cost

nearly 2 and 65 respectively.

Table 5-2 Comparison for ASCII problem
 Hagan and Menhaj computation Forward-only computation

Forward Backward Forward Backward

+/- 4,088 175,616 7,224 0

×/÷ 4,144 178,752 8,848 0

exp 7,280 0 7,280 0

Total 552,776 32,200

Relative time 100% 5.83%

*Network structure: 112 neurons in 8-56-56 MLP network

For the computation speed testing in the next section, the analytical relative times are

presented in Table 5-3.

Table 5-3 Analytical relative time of the forward-only computation of problems

Problems nn no nx ny nz Relative time

ASCII conversion 112 56 33 28 0.50 5.83%

Error correction 42 12 18.1 8.57 2.28 36.96%

Forward kinematics 10 3 5.9 2.10 0.70 88.16%

For MLP network with one hidden layer topologies, using the estimation rules in Table 5-

1, computation cost of both the forward-only method and traditional forward-backward method

is compared in Fig. 5-10. All networks have 20 inputs.

Based on the analytical results, it could be seen that, in LM algorithm, for single output

networks, the forward-only computation is similar with the traditional computation; while for

networks with multiple outputs, the forward-only computation is supposed to be more efficient.

83

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

The number of hidden neurons

R
a
ti
o
 o

f
ti
m

e
 c

o
n
s
u
m

p
ti
o
n

Number of output=1 to 10

Fig. 5-10 Comparison of computation cost for MLP networks with one hidden layer; x-axis is the

number of neurons in hidden layer; y-axis is the time consumption radio between the forward-

only computation and the forward-backward computation

5.4 Experiments

The experiments were organized in three parts: (1) ability of handling various network

topologies; (2) training neural networks with generalization abilities; (3) computational

efficiency.

5.4.1 Ability of Handling Various Network Topologies

The ability of training arbitrarily connected networks of the proposed forward-only computation

is illustrated by the two-spiral problem.

The two-spiral problem is considered as a good evaluation of training algorithms [77].

Depending on neural network architecture, different numbers of neurons are required for

successful training. For example, using standard MLP networks with one hidden layer, 34

neurons are required for the two-spiral problem [85]. Using the proposed computation in LM

algorithm, two types of topologies, MLP networks with two hidden layers and fully connected

84

cascade (FCC) networks, are tested for training the two-spiral patterns, and the results are

presented in the Tables below. In MLP networks with two hidden layers, the number of neurons

is assumed to be equal in both hidden layers.

Results for MLP architectures shown in the Table 5-4 are identical no matter if the Hagan

and Menhaj LM algorithm or the proposed LM algorithm is used (assuming the same initial

weights). In other words, the proposed algorithm has the same success rate and the same number

of iterations as those obtained by Hagan and Menhaj LM algorithm. The difference is that the

proposed algorithm can handle also other than MLP architectures and in many cases (especially

with multiple outputs) computation time is shorter.

Table 5-4 Training results of the two-spiral problem with the proposed forward-only

implementation of LM algorithm, using MLP networks with two hidden layers; maximum

iteration is 1,000; desired error=0.01; there are 100 trials for each case
Hidden

neurons

Success

rate

Average

number of

iterations

Average

time (s)

12 Failing / /

14 13% 474.7 5.17

16 33% 530.6 8.05

18 50% 531.0 12.19

20 63% 567.9 19.14

22 65% 549.1 26.09

24 71% 514.4 34.85

26 81% 544.3 52.74

Table 5-5 Training results of the two-spiral problem with the proposed forward-only

implementation of LM algorithm, using FCC networks; maximum iteration is 1,000; desired

error=0.01; there are 100 trials for each case
Hidden Neurons Success Rate Average Number of Iterations Average Time (s)

7 13% 287.7 0.88

8 24% 261.4 0.98

9 40% 243.9 1.57

10 69% 231.8 1.62

11 80% 175.1 1.70

12 89% 159.7 2.09

13 92% 137.3 2.40

14 96% 127.7 2.89

15 99% 112.0 3.82

85

From the testing results presented in Table 5-5, one may notice that the fully connected

cascade (FCC) networks are much more efficient than other networks to solve the two-spiral

problem, with as little number of neurons as 8. The proposed LM algorithm is also more efficient

than the well-known cascade correlation algorithm, which requires 12-19 hidden neurons in FCC

architectures to converge [86].

5.4.2 Train Neural Networks with Generalization Abilities

To compare generalization abilities, FCC networks, being proved to be the most efficient in

section 2.3, are applied for training. These architectures can be trained by both EBP algorithm

and the forward-only implementation of LM algorithm. The slow convergence of EBP algorithm

is not the issue in this experiment. Generalization abilities of networks trained with both

algorithms are compared. The Hagan and Menhaj LM algorithm was not used for comparison

here because it cannot handle FCC networks.

(a) Testing surface with 37×37=1,369 points (b) Training surface with 10×10=100 points

Fig. 5-11 Peak surface approximation problem

Let us consider the peak surface [85] as the required surface (Fig. 5-11a) and let us use

equally spaced 10×10=100 patterns (Fig. 5-11b) to train neural networks. The quality of trained

networks is evaluated using errors computed for equally spaced 37×37=1,369 patterns. In order

86

to make a valid comparison between training and verification errors, the sum squared error (SSE),

as defined in (5-1), is divided by 100 and 1,369 respectively.

Table 5-6 Training Results of peak surface problem using FCC architectures
Neurons

Success Rate Average Iteration Average Time (s)

EBP LM EBP LM EBP LM

8 0% 5% Failing 222.5 Failing 0.33

9 0% 25% Failing 214.6 Failing 0.58

10 0% 61% Failing 183.5 Failing 0.70

11 0% 76% Failing 177.2 Failing 0.93

12 0% 90% Failing 149.5 Failing 1.08

13 35% 96% 573,226 142.5 624.88 1.35

14 42% 99% 544,734 134.5 651.66 1.76

15 56% 100% 627,224 119.3 891.90 1.85

For EBP algorithm, learning constant is 0.0005 and momentum is 0.5; maximum iteration is

1,000,000 for EBP algorithm and 1,000 for LM algorithm; desired error=0.5; there are 100 trials

for each case. The proposed version of LM algorithm is used in this experiment

The training results are shown in Table 5-6. One may notice that it was possible to find

the acceptable solution (Fig. 5-12) with 8 neurons (52 weights). Unfortunately, with EBP

algorithm, it was not possible to find acceptable solutions in 100 trials within 1,000,000

iterations each. Fig. 5-13 shows the best result out of the 100 trials with EBP algorithm. When

the network size was significantly increased from 8 to 13 neurons (117 weights), EBP algorithm

was able to reach the similar training error as with LM algorithm, but the network lost its

generalization ability to respond correctly for new patterns (between training points). Please

notice that with enlarged number of neurons (13 neurons), EBP algorithm was able to train

network to small error SSETrain=0.0018, but as one can see from Fig. 5-14, the result is

unacceptable with verification error SSEVerify=0.4909.

87

Fig. 5-12 The best training result in 100 trials, using LM algorithm, 8 neurons in FCC network

(52 weights); maximum training iteration is 1,000; SSETrain=0.0044, SSEVerify=0.0080 and

training time=0.37 s

Fig. 5-13 The best training result in 100 trials, using EBP algorithm, 8 neurons in FCC network

(52 weights); maximum training iteration is 1,000,000; SSETrain=0.0764, SSEVerify=0.1271 and

training time=579.98 s

Fig. 5-14 The best training result in 100 trials, using EBP algorithm, 13 neurons in FCC network

(117 weights); maximum training iteration is 1,000,000; SSETrain=0.0018, SSEVerify=0.4909 and

training time=635.72 s

88

From the presented examples, one may notice that often in simple (close to optimal)

networks, EBP algorithm can’t converge to required training error (Fig. 5-13). When the size of

networks increases, EBP algorithm can reach the required training error, but trained networks

lose their generalization ability and can’t process new patterns well (Fig. 5-14). On the other

hand, the proposed implementation of LM algorithm in this chapter, works not only significantly

faster but it can find good solutions with close to optimal networks (Fig. 5-12).

5.4.3 Computational Speed

Several problems are presented to test the computation speed of both the Hagan and Menhaj LM

algorithm, and the proposed LM algorithm. The testing of time costs is divided into forward part

and backward part separately. In order to compare with the analytical results in section 5.3, the

MLP networks with one hidden layer are used for training.

5.4.3.1 ASCII Codes to Images Conversion

This problem is to associate 256 ASCII codes with 256 character images, each of which is made

up of 7×8 pixels (Fig. 5-15). So there are 8-bit inputs (inputs of parity-8 problem), 256 patterns

and 56 outputs. In order to solve the problem, the structure, 112 neurons in 8-56-56 MLP

network, is used to train those patterns using LM algorithm. The computation time is presented

in Table 5-7. The analytical result is 5.83% as shown in Table 5-3.

Table 5-7 Comparison for ASCII characters recognition problem
Computation

methods

Time cost (ms/iteration) Relative

time Forward Backward

Traditional 8.24 1,028.74 100.0%

Forward-only 61.13 0.00 5.9%

89

Fig. 5-15 The first 90 images of ASCII characters

Testing results in Table 5-7 show that, for this multiple outputs problem, the forward-

only computation is much more efficient than traditional computation, in LM training.

5.4.3.2 Error Correction

Error correction is an extension of parity-N problems [74] for multiple parity bits. In Fig. 5-16,

the left side is the input data, made up of signal bits and their parity bits, while the right side is

the related corrected signal bits and parity bits as outputs. The number of inputs is equal to the

number of outputs.

Fig. 5-16 Using neural networks to solve an error correction problem; errors in input data can be

corrected by well trained neural networks

The error correction problem in the experiment has 8-bit signal and 4-bit parity bits as

inputs, 12 outputs and 3,328 patterns (256 correct patterns and 3,072 patterns with errors), using

90

42 neurons in 12-30-12 MLP network (762 weights). Error patterns with one incorrect bit must

be corrected. Both traditional computation and the forward-only computation were performed

with the LM algorithm. The testing results are presented in Table 5-8. The analytical result is

36.96% as shown in Table 5-3.

Table 5-8 Comparison for error correction problem
Problems Computation Methods Time Cost (ms/iteration) Relative Time

Forward Backward

8-bit signal Traditional 40.59 468.14 100.0%

Forward-only 175.72 0.00 34.5%

Compared with the traditional forward-backward computation in LM algorithm, again,

the forward-only computation has a considerably improved efficiency. With the trained neural

network, all the patterns with one bit error are corrected successfully.

5.4.3.3 Forward Kinematics

Neural networks are successfully used to solve many practical problems in the industry, such as

control problems, compensation nonlinearities in objects and sensors, issues of identification of

parameters which cannot be directly measured, and sensorless control [87-89].

Forward kinematics is an example of these types of practical applications [43][90-92].

The purpose is to calculate the position and orientation of robot’s end effector as a function of its

joint angles. Fig. 5-17 shows the two-link planar manipulator.

As shown in Fig. 5-17, the end effector coordinates of the manipulator is calculated by:

   coscos 21 LLx (5-30)

   sinsin 21 LLy (5-31)

91

Where: (x, y) is the coordinate of the end effector which is determined by angles α and β; L1 and

L2 are the arm lengths. In order to avoid scanning “blind area”, let us assume L1=L2=1.

End Effector

α

β

L1

L2

Fig. 5-17 Tow-link planar manipulator

In this experiment, 224 patterns are applied for training the MLP network 3-7-3 (59

weights), using LM algorithm. The comparison of computation cost between the forward-only

computation and traditional computation is shown in Table 5-9. In 100 trials with different

starting points, the experiment got 22.2% success rate and the average iteration cost for converge

was 123.4. The analytical result is 88.16% as shown in Table 5-3.

Table 5-9 Comparison for forward kinematics problem
Computation methods Time cost (ms/iteration) Relative time

Forward Backward

Traditional 0.307 0.771 100.0%

Forward-only 0.727 0.00 67.4%

The presented experimental results match the analysis in section 5.3 well: for networks

with multiple outputs, the forward-only computation is more efficient than the traditional

backpropagation computation.

5.5 Conclusion

92

One of the major features of the proposed forward-only algorithm is that it can be easily adapted

to train arbitrarily connected neural networks and not just MLP topologies. This is very

important because neural networks with connections across layers are much more powerful than

commonly used MLP architectures. For example, if the number of neurons in the network is

limited to 8 then popular MLP topology with one hidden layer is capable to solve only parity-7

problem. If the same 8 neurons are connected in fully connected cascade then with this network

parity-255 problem can be solved [93].

It was shown (Figs. 5-13 and 5-14) that in order to secure training convergence with first

order algorithms the excessive number of neurons much be used, and this results with a failure of

neural network generalization abilities. This was the major reason for frustration in industrial

practice when neural networks were trained to small errors but they would respond very poorly

for patterns not used for training. The presented forward-only computation for second order

algorithms can be applied to train arbitrarily connected neural networks, so it is capable to train

neural networks with reduced number of neurons and as consequence a good generalization

abilities were secured (Fig. 5-12).

The proposed forward-only computation gives identical number of training iterations and

success rates, as the Hagan and Menhaj implementation of the LM algorithm does, since the

same Jacobian matrix are obtained from both methods. By removing backpropagation process,

the proposed method is much simpler than traditional forward and backward procedure to

calculate elements of Jacobian matrix. The whole computation can be described by a regular

table (Fig. 5-7) and a general formula (equation 5-22). Additionally, for networks with multiple

outputs, the proposed method is less computationally intensive and faster than traditional

forward and backward computations [27][80].

93

CHAPTER 6

C++ IMPLEMENTATION OF NEURAL NETWORK TRAINER

Currently, there are some excellent tools for neural networks training, such as the MATLAB

Neural Network Toolbox (MNNT) and Stuttgart Neural Network Simulator (SNNS). The MNNT

can do both EBP and LM training, but only for standard MLP networks which are not as efficient

as other networks with connections across layers. Furthermore, it’s also well-known that

MATLAB is very inefficient in executing “for” loop, which may slow down the training process.

SNNS can handle FCN networks well, but the training methods it contains are all developed

based on EBP algorithm, such as QuickPROP algorithm [94] and Resilient EBP [68], which

makes the training still somewhat slow.

In this chapter, the neural network trainer, named NBN 2.0 [44-46], is introduced as a

powerful training tool. It contains EBP algorithm with momentum [93], LM algorithm [80],

NBN algorithm [26] and a newly developed second order algorithm. Based on neuron-by-neuron

computation [27] and forward-only computation [78-79], all those algorithms can handle

arbitrarily connected neuron (ACN) networks. Comparing with the former MATLAB version

[96], the revised one is supposed to perform more efficient and stable training.

The NBN 2.0 is developed based on Visual Studio 6.0 using C++ language. Its main

graphic user interface (GUI) is shown in Fig. 8-6. In the following part of this chapter, detailed

instructions about the software are presented. Then several examples are applied to illustrate the

functionalities of NBN 2.0.

94

6.1 File Instruction

The software is made up of 6 types of files, including executing files, parameter file (unique),

topology files, training pattern files, training result files and training verification files.

6.1.1 Executing Files

Executing files contain three files: files “FauxS-TOON.ssk” and “skinppwtl.dll” for the GUI

design; file “NBN 2.0 exe” is used for running the software. Also, other files, such as user

instruction, correction log and accessory tools (Matlab code “PlotFor2D.m” for 2-D plotting), are

included.

6.1.2 Parameter File

This file is named “Parameters.dat” and it is necessary for running the software. It contains

initial data of important parameters shown in Table 6-1.

Table 6-1 Parameters for training
Parameters Descriptions

algorithm Index of algorithms in the combo box

alpha Learning constant for EBP

scale Parameter for LM/NBN

mu Parameter for LM/NBN

max mu Parameter for LM/NBN (fixed)

min mu Parameter for LM/NBN (fixed)

max error Maximum error

ITE_FOR_EBP Maximum iteration for EBP

ITE_FOR_LM Maximum iteration for LM/NBN

ITE_FOR_PO Maximum iteration for the new Alg.

momentum Momentum for EBP

po alpha Parameter for the improved NBN

po beta Parameter for the improved NBN

po gama Parameter for the improved NBN

training times Training times for automatic running

95

There are two ways to set those parameters: (1) Edit the parameter file manually,

according to the descriptions of parameters in Table 6-1; (2) All those parameters can be edited

in the user interface, and they will be saved in the parameter file automatically once training is

executed, as the initial values for next time of running the software.

6.1.3 Topology Files

Topology files are named “*.in”, and they are mainly used to construct the neural network

topologies for training. Topology files consist of four parts: (1) topology design; (2) weight

initialization (optional); (3) neuron type instruction and (4) training data specification.

(1) Topology design: the topology design is aimed to create neural structures. The general

format of the command is “n [b] [type] [a1 a2 … an]”, which means inputs/neurons

indexed with a1, a2…an are connected to neuron b with a specified neural type (bipolar,

unipolar or linear). Fig. 6-1 presents the commands and the related neural network

topologies. Notice: the neuron type mbip stands for bipolar neurons; mu is for unipolar

neurons and mlin is for linear neurons. They types are defined in neuron type instructions.

(a) 7-7-7 MLP network

96

(b) 7=3=1 BMLP network

(c) 7=1=1=1=1 FCC network

Fig. 6-1 Commands and related neural network topologies

(2) Weight initialization: the weight initialization part is used to specify initial weights for

training and this part is optional. If there is no weight initialization in the topology file,

the software will generate all the initial weights randomly (from -1 to 1) before training.

The general command is “w [wbias] [w1 w2 … wn]”, corresponding to the topology design.

Fig. 6-2 shows the example of weight initialization for parity-3 problem with 2 neurons

in FCC network.

Fig. 6-2 Weight initialization for parity-3 problem with 2 neurons in FCC network

97

(3) Neuron type: in the neuron type instruction part, three different types of neurons are

defined. They are bipolar (“mbip”), unipolar (mu) and linear (“mlin”). Bipolar neurons

have both positive and negative outputs, while unipolar neurons only have positive

outputs. The outputs of both bipolar and unipolar neurons are no more than 1. If the

desired outputs are larger than 1, linear neurons are considered to be the output neurons.

The general command is “.model [mbip/mu/mlin] fun=[bip/uni/lin], gain=[value],

der=[value]”. Table 6-2 presents the three types of neurons used in the software.

Table 6-2 Three types of neurons in the software

Neuron Types/Commands Activation Functions

bipolar
netder

e
netf

netgainb 





1
1

2
)(.model mbip fun=bip, gain=0.5, der=0.001

unipolar
netder

e
netf

netgainu 



1

1
)(.model mu fun=uni, gain=0.5, der=0.001

linear netgainnetfl )(.model mlin fun=lin, gain=1, der=0.005

From Table 6-2, it can be seen that “gain” and “der” are parameters of activation

functions. Parameter “der” is introduced to adjust the slope of activation function (for unipolar

and bipolar), which is a trick we used in the software to avoid training process entering the

saturation region where slope is approching to zero.

(4) Training data: the training data specification part is used to set the name of training

pattern file, in order to get correct training data. The general command is “datafile=[file

name]”. The file name needs to be specified by users.

With at least three part settings (weight initialization is optional), the topology file can be

correctly defined.

98

6.1.4 Training Pattern Files

The training pattern files include input patterns and related desired outputs. In a training pattern

file, the number of rows is equal to the number of patterns, while the number of columns is equal

to the sum of the number of inputs and the number of outputs. However, only with the data in

training pattern file, one can’t tell the number of inputs and the number of outputs, so the neural

topology file should be considered together in order to decide those two parameters (Fig. 6-3).

The training pattern files are specified in the topology files as mentioned above, and they should

be in the same folder as related topology files.

Fig. 6-3 Extract the number of inputs and the number of outputs from the data file and topology

As described in Fig. 6-3, the number of inputs is obtained from the first command line of

topology design and it is equal to the index of the first neuron minus 1. After that, the number of

outputs is calculated by the number of columns in training pattern files minus the number of

inputs.

6.1.5 Training Result Files

Training result files are used to store the training information and results. Once the “save data”

function is enabled in the software (by users), important information for current training, such as

training algorithm, training pattern file, topology, parameters, initial weights, result weights and

99

training results, will be saved after the training is finished. The name of the training result file is

generated automatically depending on the starting time and the format is “date_time_result.txt”.

Fig. 6-4 shows a sample of training result file.

Fig. 6-4 A sample of training result file

6.1.6 Training Verification Files

Training verification files are generated by the software when the verification function is

performed (by users). The result weights from the current training will be verified, by computing

the actual outputs of related patterns. The name of training verification file is also created by the

system time when the verification starts and it is “date_time_verification.txt”. Fig. 6-5 gives a

sample of training verification file for parity-3 problem.

Fig. 6-5 A sample of training verification file for parity-3 problem

100

6.2 Graphic User Interface Instruction

As shown in Fig. 6-6, the user interface consists of 6 areas: (1) Plotting area; (2) Training

information area; (3) Plot modes setting area; (4) Execute modes setting area; (5) Control area;

(6) Parameter setting area; (7) Verification area; (8) Command consoler area.

Fig. 6-6 The user interface of NBN 2.0

6.2.1 Plotting Area

This area is marked as ① in Fig. 6-6 and it is used to depict the sum squared error (SSE) during

training. The log scaled vertical axis presents SSE values from 0.0001 to 10000, while the

horizontal axis, which is linearly scaled automatically with the coefficient at the bottom of

plotting area (“×[value]” in Fig. 6-6), shows the number of iterations cost for training. Current

training process or previous training process can be recorded in the same plotting, depending on

the users’ settings.

101

6.2.2 Training Information Area

This area is marked as ② in Fig. 6-6 and instantaneous training data are presented in this area,

including sum square error (SSE) and cost iterations for current training, average iteration and

time spent in solving the same problems, and the success rate for multiple trials.

6.2.3 Plot Modes Setting Area

This area is marked as ③ in Fig. 6-6. Three plot modes are available in this software, multi

curves, one curve and delayed curve. In multi curves mode, all the training curves will be plotted

together and updated instantaneously. In one curve mode, only current training is plotted, while

other curves will be erased. The delayed curve mode is only used in automatic training for

multiple trials: during the training process, there is no plotting; while all the curves will be

shown together after the whole training process is finished. The delayed curve mode is designed

for training process which needs huge iterations and costs time for plotting.

6.2.4 Execute Modes Setting Area

This area is marked as ④ in Fig. 6-6 and used to control training mode, either training one time

or automatic training for several trials, either saving the training results or not.

If it is set to run automatically, the train will not stop unless it reaches the required

training times or the “Stop to Train” button is clicked. The default value of automatically training

trials is 100 and it can be changed through command consoler (area ⑧) or parameter settings

(area ⑥).

If it is set to save training data, all the important information, such as algorithm type,

topology, training parameters, initial weights, result weights and training results (SSE and cost

102

iteration) will be saved in training result files (discussed in section 6.1.5).

6.2.5 Control Area

This area is marked as ⑤ in Fig. 6-6. The combo box is used to select training algorithms. There

are 6 choices: (1) “EBP”; (2) “LM”; (3) “NBN”; (4) “EBP, forward-only”; (5) “NBN, forward-

only”; (6) “NBN, improved”. All algorithms will be introduced in section 6.3.

Button “Load Data File” is used to choose a topology file for training; button “Set

Parameters” is used to set training parameters for the selected training algorithm; button “Start

To Train/Stop To Train” helps control the training process; button “Clear Plotting” is used to

erase the current plotting in the plotting area.

6.2.6 Parameter Setting Area

This area is marked as ⑥ in Fig. 6-6 and is used to set training related parameters, such as

training times, maximum error and maximum iteration. The training times specifies the number

of trials if automatic training is enabled. The maximum error is used to judge whether the

training process reaches convergence. The maximum iteration limits the number of iterations for

each training case: training process stops if it reaches the value of maximum iteration. All the

settings will be saved in the parameter file once training is executed, and they will be loaded as

the initial values for the next time using the software.

6.2.7 Verification Area

This area is marked as ⑦ in Fig. 6-6 and it is used for training results verification, by calculating

the actual outputs for each pattern with the result weights. The verifying patterns can be training

103

patterns, testing patterns or user created patterns for 2-D situation. The verification results will be

stored in training verification files (discussed in section 6.1.6) automatically and shown as popup

windows.

The verification results can be easily uploaded by Matlab, MS Excel, Origin, or other

software for analysis and plotting. For 2-D input patterns, the verification data can be plotted in

Matlab by the accessory tool included in the software, named as “PlotFor2D.m”.

6.2.8 Command Consoler Area

The list box is used to show the important information or hints for users’ operations. It is also a

command consoler. Most of the operations can be achieved by related commands. Table 6-3

presents the available commands and their functions.

Table 6-3 Available commands and related functionalities
Commands Functions

help list all the available commands and instructions

clr clear the content of the list box

cc clear all the curves in plotting area

sus suspend training and save current status

res resume training with the status at suspending point

tra start/stop training

sav data saving control

aut automatic training control

pm= select plotting mode, e.g. pm=2 (one curve mode)

load load input file

para set training parameters for selected algorithm, e.g. para

info show current training setting

iw show current iw value (used for debug)

topo show current topology

alpha? / alpha= get/set learning constant, e.g. alpha=1

mom? / mom= get/set momentum, e.g. mom=0.001

tt? / tt= get/set training times for automatic training, e.g. tt?

me? / me= get/set maximum error, e.g. me=0.01

mi? / mi= get/set maximum iteration, e.g. mi=100

th? / th= get/set parameter for the “NBN, improved” algorithm

104

6.3 Implemented algorithms

As introduced above, there are 6 available algorithms in the software for training. The following

part is going to introduce the characteristics and limitations for each algorithm.

EBP: This is EBP algorithm with traditional forward-backward computation. For EBP

algorithm, the forward-back computation may work a little bit faster than forward-only

computation. Now it is only used for standard MLP networks. EBP algorithm can be used for

huge patterns training because of its simplification, and the tradeoff is the slow convergence.

LM: This is LM algorithm with traditional forward-backward computation. For LM (and

NBN) algorithm, the improved forward-only computation [78] (discussed in chapter 5) performs

faster training than forward-backward computation for networks with multiple outputs. Now it is

also only used for standard MLP networks. LM (and NBN) algorithm converges much faster

than EBP algorithm for small and media sized patterns training. For huge patterns (huge

Jacobian matrix, we have solved this problem) and huge networks (huge Hessian matrix), it may

work slower than EBP algorithm.

NBN: This is NBN algorithm with forward-backward computation. NBN algorithm is

developed based on LM algorithm, but it can handle arbitrarily connected neuron (ACN)

networks, also, the convergence is improved.

EBP, forward-only: This is EBP algorithm with forward-only computation [78]. It can

work on arbitrarily connected neuron networks.

NBN, forward-only: This is NBN algorithm with forward-only computation [78]. It can

handle arbitrarily connected neuron networks and, as mentioned above, it works faster than

“NBN” algorithm, especially for networks with multiple outputs.

105

NBN, improved: This is a newly developed second order algorithm, implemented with

forward-only computation, so it can handle arbitrarily connected neuron networks. In this

algorithm, Hessian matrix is inverted only one time per iteration, so this algorithm is supposed to

compute faster than LM (and NBN) algorithm which may have several times Hessian matrix

inversion per iteration. The train ability (convergence) is also improved in this algorithm.

Furthermore, a local minima detector is implemented in this algorithm. When the detector

diagnoses that the training is trapped in local minima, all the weights will be regenerated

randomly for further training. The detailed description of this algorithm will be introduced in

section 6.4.3.

 For all second order algorithms, the improved second order computation [79] discussed

in chapter 4 is applied in the implementation.

6.4 Strategies for Improving Training Performance

Besides the neuron-by-neuron algorithm [27], forward-only algorithm [78] and the improved

second order computation [79], there are several other strategies and algorithms implemented in

the software in order to improve the computation efficiency and convergent ability: (1) In first

order algorithms, momentum [95] is incorporated to stabilize the training process, so that big

learning constants can be applied to speed up to convergence; (2) In first order algorithms, the

slope of activation function is modified [97] to enhance the convergent ability; (3) In second

order algorithms, Levenberg Marquardt update rule is modified routing to reduce the matrix

inversion operations, so as to accelerate the training process; (4) Sigmoidal activation function is

modified to enhance computation, so as to improve the convergence.

106

6.4.1 Momentum in First Order Gradient Search

It was shown in section 2.4 that, for EBP algorithm, applying big learning constants may speed

up the convergence, or lead to oscillation (Fig. 2-14). The momentum concept proposed in [95]

was used to stabilize the training process, so that big learning constants can be applied to

accelerate the training process without oscillation.

 As discussed in section 2.4, the original update rule of EBP algorithm is

kk gw  (6-1)

Where: k is the index of iteration and α is the learning constant.

 By incorporating the momentum, the update rule can be modified to

   11  kkk wgw (6-2)

Where: η is the momentum ranged between [0, 1].

 Fig. 6-7 interprets how the momentum stabilizes the training process. As shown in Fig. 6-

7a, the training process oscillates because the direction of current weight updating Δwk is

completely far from minima (center point). By adding momentum η, the current weight updating

Δwk is recalculated as the combination of part of the previous information Δwk-1 and part of the

current gradient gk, as shown in Fig. 6-7b. One may notice that the Δwk in Fig. 6-7b is more

likely to stably approaching to the center point than the Δwk in Fig. 6-7a.

1 kw

kw

kg

1 kw

  kg 1

1 kw

kw

(a) Oscillation (b) Stabilization

Fig. 6-7 Training process with and without momentum

107

 Let us use the XOR problem as an example to illustrate the advantage of the modified

update rule (6-2) by comparing with update rule (6-1). Fig. 6-8 is the neural network used in the

experiment. It consists of 2 inputs, 2 neurons in FCC network and 1 output.

Input One

Input Two

+1

Output

Fig. 6-8 Network architecture used for XOR problem

(a) Update rule (8-1), α=0.1 (b) Update rule (8-1), α=10

(c) Update rule (8-2), α=0.1 and η=0.5 (d) Update rule (8-2), α=10 and η=0.5

Fig. 6-9 Training results of XOR problem

Table 6-4 Comparison of different EBP algorithms for solving XOR problem

XOR problem α=0.1 α=10 α=0.1 α=10

η=0.5 η=0.5

success rate 100% 18% 100% 100%

average iteration 17845.44 179.00 18415.84 187.76

average time (ms) 3413.26 46.83 4687.79 49.27

108

For each test case, the training process is repeated for 100 trials with randomly generated

initial weights in range [-1, 1]. Fig. 6-9a and Fig. 6-9b present the training results using update

rule (6-1). It can be seen that, the bigger the learning constant is, the less iteration it costs for

convergence. However, too bigger learning constants also cause the divergence and lower the

rate of successful training. Fig. 6-9c and Fig. 6-9d show the training results using update rule (6-

2). One may notice that, when using the same learning constant, the update rule (6-2) with

momentum converges a little bit slower than the update rule (6-1), but it definitely stabilizes the

training process with big learning constants (α=10 in the example).

6.4.2 Modified Slope

The famous “flap spot” problem is that if the slope of the neuron is very small, while the error is

huge, then the training will be pushed into the saturate region and get stuck. In order to avoid

being trapped in saturate region, an equivalent slope is introduced instead of the derivative of

activation function (see Fig. 6-10), and it is calculated by the followed algorithm [97]:

Fig. 6-10 The “flat spot” problem in sigmoidal activation function

109

 Compute derivative of activation function;

 Compute the slope of line AD SAD;

 If derivate > SAD improved slope = derivative;

 Else improved slope = SAD;

In order to test the modification, the “worst case” training is performed. The “worst case”

training is to use a successful training result as the initial status to train the same patterns with all

outputs reversed. For parity-3 problem, the training result of “worst case” is showed in Fig. 6-11.

(a) A successful training result of parity-3 problem

(b) “Worst case” training result without slope modification

(c) “Worst case” training with slope modification

Fig. 6-11 Test the modified slope by “worst case” training

110

From the results showed in Fig. 6-11, it is clear that the modified slope works well for

“worst case” training, which means the convergent ability of first order algorithms is enhanced.

6.4.3 Modified Second Order Update Rule

The update rule of Levenberg Marquardt algorithm is

  k

T

k

T

kk eJIJJw
1

  (6-3)

During the training process using Levenberg Marquardt update rule, parameter μ may be

adjusted (multiplied or divided by a constant) for several times in each iteration. From (6-3), it

can be known that matrix (J
T
J+μI) needs to be inverted for each adjustment of parameter μ. In

order to avoid the multiple time matrix inversion in single iteration, the update rule can be

modified as

    k

T

kk

T

kk

T

kk eJIJJeJw
1

μ


  tanhtanh1 (6-4)

 In the update rule (6-4), there are three parameters, learning constant α, combination

coefficient μ and conjugate coefficient β. For each iteration, learning constant α is fixed as a

small constant; while μ and β are adjusted only once according to the algorithm in Fig. 6-12.

If SSEk < SSEk-1

Then β = β×P and μ = μ/P;
Else

 β = β/P and μ = μ×P;

Fig. 6-12 Parameter adjustment in update rule (6-4)

 Several parity problems are applied to test the performance of the modified update rule

(6-4), by comparing with (6-3). In the experiment, each testing case is repeated for 100 trials

with randomly generated initial conditions between -1 and 1. The desired training error is 0.01

111

and the maximum iteration is 500. The gain parameter in activation function is set as 0.5. All

neurons are connected in FCC networks and NBN computation is applied for training.

Table 6-5 Testing results of parity problems using update rules (6-3) and (6-4)

Pairty-N Neurons Ave. # of Iterations Ave. # of Training Time (ms) Success Rates

(6-3) (6-4) (6-3) (6-4) (6-3) (6-4)

5 3 21.1176 24.9403 63.7843 14.3881 51% 67%

7 4 21.1667 39.6176 103.3333 90.9118 22% 36%

9 5 32.1250 41.3333 527.5000 459.3667 8% 30%

11 6 51.3333 56.1250 8052.0000 4548.7500 3% 16%

 As the testing results presented in Table 6-5, it can be noticed that, even though it takes

more iterations for the update rule (6-4) than (6-3), the computation time in (6-4) is reduced

because there is only one time matrix inversion per iteration. Moreover, a little bit improved

success rate is obtained for each testing case, which means the update rule (6-4) gets more

powerful search ability than (6-3).

6.4.4 Modified Activation Function

The convergent ability of gradient descent methods is limited by local minima and “flat region”.

For one dimension case, the local minima and flat region are visualized in Fig. 6-13.

Local Minima

Global Minima

Global Minima

Flat Region

(a) Local minima (b) Flat Region

Fig. 6-13 Failures of gradient based optimization

112

From the standpoint of computation, when the training process is trapped in local minima

or flat region, elements of gradient are approaching to zero and weight updating gets stuck. In

real neural network training cases, the local minima problem can be overcome by properly

increasing the number of network size.

Considering the sigmoidal shape of activation function, there is no absolutely flat region

on the error surface. Normally, the training stuck in the “flat region” means the elements of

gradient vector are approximated to zero by compilers because of the limitation of computer

precision. For 32-bit CPU, the “double” type variable can only have 15-16 bits precision at the

right side of the point. Therefore, when the elements of gradient are not exact 0, but smaller than

the precision limit, they will be approximated as 0 by compiler. This is a hardware limitation on

software computation and cannot be avoided. However, the computation can be furthered by

programming strategies, such as enlarging the output range of activation functions.

The common used sigmoidal activation function for neural network training is:

 
 

1
exp1

2





x
xf


 (6-5)

 Equation (6-5) presents the behaviors of bipolar neurons and it is ranged from [-1, 1]. In

order to enlarge the output range, a factor can be applied and (6-6) is rewritten as

 
 















 1

exp1

2

x
xf (6-6)

Where: the parameter α is larger than “1”. So the output of the enlarged bipolar neuron will be [-

α, α].

 Several parity-N problems are applied to test the performance of modified activation

function (6-6), by comparing with the commonly used (6-5). In the experiments, all neurons are

in fully connected cascade (FCC) networks and NBN algorithm is used for training. The desired

113

training accuracy is 0.01 and the maximum iteration is 1000. For each case, the testing is

repeated for 100 trials with randomly generated initial weights between [-1, 1].

Table 6-6 Testing results of parity-N problems using different activation functions with the

minimal network architecture analyzed in section 2.3

Parity-N Neurons Parameters Iteration Times (ms) Success Rate

2 2 α=20, β=0.1 13.10 (8.83) 17.60 (6.94) 100% (100%)

3 2 α=20, β=0.1 12.22(8.08) 14.94 (7.13) 100% (99%)

4 3 α=20, β=0.1 54.24 (22.65) 76.55 (38.69) 100% (45%)

5 3 α=20, β=0.1 50.32 (21.29) 75.84 (91.91) 100% (37%)

6 3 α=25, β=0.25 502.39 (/) 998.60 (/) 98% (0%)

7 3 α=25, β=0.25 117.06 (/) 459.87 (/) 98% (0%)

8 4 α=25, β=0.25 292.79 (/) 1869.47 (/) 93% (0%)

9 4 α=25, β=0.3 383.48 (/) 4367.27 (/) 77% (0%)

10 4 α=25, β=0.3 1260.12 (/) 30180.31 (/) 21% (0%)

 Table 6-6 presents the testing results. Testing results for activation function (6-5) are in

the parenthesis. One may notice that, with the modified activation function (6-6), the training

success rates are significantly improved and the tradeoff is extra training time. Notice that, in

chapter 2, the analytical results show that using FCC networks, parity-7 problem can be solved

with 3 neurons. Networks with activation function (6-5) cannot solve the parity-7 problem at all;

while with the modified activation function (6-6), the training success rate can reach 98% for

parity-7 problem with 3 neurons in FCC network.

It is worth to mention that the trained network using the modified activation function (6-6)

can be scaled back as a trained network using the activation function (6-5). As shown in Fig. 6-

14, the two networks are equivalent: network in Fig. 6-14a is trained using the modified

activation function (6-6); while network in Fig. 6-14b consists of the neurons with activation

function (6-7).

114

Input 1

Input 2

Input 3

+1

Output
Input 4

Input 5

w1 w2

w3

Input 1

Input 2

Input 3

+1

Output
Input 4

Input 5

αw1 αw2

αw3
α

Keep unchanged

(a) Neurons with activation functions in (6-6) (b) Neurons with activation functions in (6-7)

Fig. 6-14 Two equivalent networks

6.5 Case Studies Using NBN 2.0

In industrial application, dataset is often obtained by sampling and testing process. In order to get

the responses of inputs which are not sampled for testing, an approximated function has to be

build to represent the relationship between stimulus and response, based on the known sampled

testing results. Neural networks can always be considered as a candidate of approximator and the

software NBN 2.0 is recommended for neural network design.

In this section, two examples are presented to test the abilities of NBN 2.0, from the

standpoints of data classification and function approximation. Two-dimensional examples are

considered so that the verification results can be visualized.

6.5.1 Data Classification

Neural networks could be considered as a supervised data classification method. In this example,

we got 21×21=441 two-dimensional dataset uniformly sampled from x ϵ [-1, 1] and y ϵ [-1, 1].

As shown in Fig. 6-16a, there are 5 groups, A, B, C, D and E, in the sampling range. The purpose

is to build a classification system which can classify the non-sample inputs into correct groups.

 The first step is to define the expression of each group. Considering the network with

outputs, without losing generalization, let us define output of group A as “0 0 0 0 1”, group B as

115

“0 0 0 1 0”, group C as “0 0 1 0 0”, group D as “0 1 0 0 0” and group E as “1 0 0 0 0”. For other

cases, the output is defined as “0 0 0 0 0”.

 15 neurons in FCC network are used to build the system and NBN algorithm is applied

for system parameter adjustment. Fig. 6-15 shows the network construction commands in

topology file.

Fig. 6-15 Network construction commands: 15 neurons in FCC network with 2 inputs and 5

outputs

After successful training (training sum square error < 0.01), 50×50=2,500 patterns in the

same range as sample patterns are applied to test the trained networks. Testing patterns are

generalized by click the button “Generalization” as introduced in section 6.2.7. Fig. 6-16b shows

the visualized testing results and it can be noticed that the five groups are classified correctly.

(a) Location of the five groups (b) Generalization result with 50×50=2,500 points

Fig. 6-16 Data classification

116

6.5.2 Function Approximation

In the experiment, the purpose is to simulate the behaviors of forward kinematics described in

Fig. 5-17. The location (x, y) of the end effector is given by the two equations (5-30) and (5-31).

In order to avoid scanning “blind area”, let us assume the arm lengths L1=L2=1. The sample

range of angles α and β are: α ϵ [0, 6] and β ϵ [0, 6]. For each dimension, 13×13=169 points are

uniformly sampled as training dataset; after training, 61×61=3,721 points in the same range as

sampling are uniformly generated as testing dataset. All the training/testing points are visualized

in Fig. 6-17 and Fig. 6-18 for X and Y dimension, respectively. The approximation results are

evaluated using the averaged sum square error E defined as:





P

p

pe
P

E
1

21
 (6-7)

Where: ep is the difference between desired output (from equations 6-30 or 6-31) and actual

output (from designed neural networks) for a given pattern p. P is the number of training/testing

patterns.

(a) Training patterns, 13×13=169 points (b) Testing patterns, 61×61=3,721 points

Fig. 6-17 X-dimension surface of forward kinematics

117

(a) Training patterns, 13×13=169 points (b) Testing patterns, 61×61=3,721 points

Fig. 6-18 Y-dimension surface of forward kinematics

 For x-dimension approximation, using NBN algorithm, FCC network with 8 neurons can

reach the training accuracy ETrain=5.7279e-005. The related test result is shown in Fig. 6-19. For

y-dimension approximation, using NBN algorithm, FCC network with 6 neurons can obtain the

training accuracy ETrain=5.7281e-005. The related test result is shown in Fig. 6-20.

(a) Testing surface, SSETest=5.3567e-005 (b) Error surface

Fig. 6-19 X-dimension testing results

(a) Testing surface, SSETest=5.1324e-005 (b) Error surface

Fig. 6-20 Y-dimension testing results

118

6.6 Conclusion

In this chapter, the software NBN 2.0 is introduced for neural network training. This software

contains both first order and second order training algorithms, which are implemented by

traditional forward-backward computation and a newly developed forward-only computation

respectively. It can handle not only MLP networks, but also more powerful networks with

connections across layers, such as BMLP networks and FCC networks.

 Detailed instructions about the files and GUI operations of NBN 2.0 are presented. Also,

several strategies used for improving the training performance are considered in the software.

The momentum proposed in is incorporated in the first order algorithms in order to stabilize the

training process with big learning constant, so as to speed up the convergence. The modified

slope of activation function enhances the convergent ability of first order algorithms and the

improvement is proven by “Worst cast” test. The other two strategies, modified second order

update rule in section 6.4.3 and modified activation 6.4.4, are used to accelerate the computation

and enhance the convergence, respectively. The latter two strategies are our recently unpublished

work.

 The software NBN 2.0 can be used for data analysis, such as data classification, pattern

recognition and function approximation, as shown by the three examples in section 6.5. The

NBN 2.0 is available at: http://www.eng.auburn.edu/users/wilambm/nnt/. And also, all the data

of the examples presented in this chapter are included in the software package.

http://www.eng.auburn.edu/users/wilambm/nnt/

119

CHAPTER 7

CONCLUSION

The dissertation started with two interesting experiments to show potentially good behaviors of

neural networks for pattern recognition and function approximation. Then, the efficiency of

different neural network architectures were evaluated and compared based on parity problems.

Analytically, we proved that neural networks with connections across layers, such as bridged

multilayer perceptron (BMLP) networks and fully connected cascade (FCC) networks, are much

more powerful and efficient than the popular multilayer perceptron (MLP) networks. Then, both

first and second order gradient descent based learning algorithms were studied and derived from

scratch. The comparison between first order algorithms, such as error backpropagation (EBP)

algorithm [81], and second order algorithms, such as Gaussian-Newton method and Levenberg

Marquardt (LM) algorithm [80], drew the conclusion that Levenberg Marquardt algorithm was

indeed one of the most efficient and stable algorithms for neural network learning. Experimental

results demonstrated the existence of over-fitting problem in neural network training which is

mainly due to improperly choosing the size of neural networks. It was proposed that by utilizing

efficient neural network architectures and second order learning algorithms, very compact neural

networks could be designed for solving problems [28], so as to reduce the probability of

occurrence of the over-fitting problem. The recently developed second order neuron-by-neuron

(NBN) algorithm [27] is recommended for neural network training because it was designed to

training efficient neural network architectures, such as BMLP networks and FCC networks.

120

The purpose of the dissertation was addressed by analyzing the disadvantages and

computation inefficiencies in second order algorithms, including both the famous Hagan and

Menhaj Levenberg Marquardt algorithm [80] and the powerful NBN algorithm [27]. There are

three main disadvantages in Hagan and Menhaj Levenberg Marquardt algorithm and they are: (1)

network limitation; (2) inefficient repetition in backpropagation computation; (3) memory

limitation. The original NBN algorithm was highlighted because it solved the first problem.

Being inherited from the NBN algorithm, the proposed forward-only computation [78] can

handle not only traditional MLP networks, but also very efficient network architectures with

connections across layers (solved problem one). By replacing the backpropagation process with

extra computation in forward process of Jacobian matrix computation, the forward-only

computation is more efficient than forward-backward (adopted by both Hagan and Menhaj LM

algorithm and NBN algorithm) computation to handle networks with multiple outputs. The

forward-only computation is designed based on a regular table (Fig. 5-7) and a general formula

(5-22). The complex neural network training process with second order update rule is

significantly simplified to a puzzle game: to obtain the unknown elements in a table based on the

given rule (formula 5-22), which is very easy to be solved by computer programming. Another

improvement in second order computation was proposed to solve the memory limitation

(problem three) successfully [79]. Jacobian matrix storage was avoided and quasi Hessian matrix

could be calculated directly. Experimental results showed that the training speed was also

improved significantly because of the memory reduction. The improved second order

computation made it possible to design neural networks using second order algorithms to handle

problems with basically unlimited number of patterns. All the algorithms are implemented in the

software NBN 2.0, developed based on Visual C++ 6.0. The NBN 2.0 is designed for neural

121

network training and can be also used to test the generalization ability of the trained neural

networks.

So far, very efficient second order algorithms can be applied to train the powerful

networks with connections across layers. Therefore, compact (close to optimal) neural networks

can be obtained in practical applications to enhance the generalization ability. However, there are

still several unsolved problems. For example, we know that compact neural networks should be

applied to solve problems; however, we do not know how compact they should be? Trial-by-trial

is often used as the possible way to find compact neural architecture but it is very time-

consuming for complex problems. Some pruning/growing algorithms are introduced to find the

optimized size of neural networks [11-12]. Recently, we have moved our research to a special

type of neural networks: radial basis function (RBF) networks [99-100]. Comparing with

traditional feedforward neural networks, RBF networks has the advantages of easy design, stable

and good generalization ability, good tolerance to input noise and online learning ability. RBF

networks are strongly recommended as an efficient and reliable way of designing dynamic

systems [98]. Our recently developed error correction (ErrCor) algorithm [101] and improved

second order computation [102] provide an efficient and robust way for design compact RBF

networks.

122

REFERENCES

[1] P. J. Werbos, "Back-propagation: Past and Future," Proceeding of International Conference

on Neural Networks, San Diego, CA, 1, 343-354, 1988.

[2] J. Moody and C. J. Darken, "Fast Learning in Networks of Locally-Tuned Processing Units,"

Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.

[3] R. Hecht-Nielsen, "Counterpropagation Networks," Appl. Opt. 26(23):4979-4984, 1987.

[4] A. G. Ivakhnenko and J. A. Mueller, "Self-Organizing of Nets of Active Neurons," System

Analysis Modeling Simulation, vol. 20, pp. 93-106, 1995.

[5] Y. L. Chow, L. L. Frank and etc., "Disturbance and Friction Compensations in Hard Disk

Drives Using Neural Networks," IEEE Trans. on Industrial Electronics, vol. 57, no. 2, pp.

784-792, Feb. 2010.

[6] M. A. M. Radzi and N. A. Rahim, "Neural Network and Bandless Hysteresis Approach to

Control Switched Capacitor Active Power Filter for Reduction of Harmonics," IEEE Trans.

on Industrial Electronics, vol. 56, no. 5, pp. 1477-1484, May 2009.

[7] M. Cirrincione, M. Pucci, G. Vitale and A. Miraoui, "Current Harmonic Compensation by a

Single-Phase Shunt Active Power Filter Controlled by Adaptive Neural Filtering," IEEE

Trans. on Industrial Electronics, vol. 56, no. 8, pp. 3128-3143, Aug. 2009.

[8] Q. N. Le and J. W. Jeon, "Neural-Network-Based Low-Speed-Damping Controller for

Stepper Motor With an FPGA," IEEE Trans. on Industrial Electronics, vol. 57, no. 9, pp.

3167-3180, Sep. 2010.

[9] C. Xia, C. Guo and T. Shi, "A Neural-Network Identifier and Fuzzy-Controller-Based

Algorithm for Dynamic Decoupling Control of Permanent-Magnet Spherical Motor," IEEE

Trans. on Industrial Electronics, vol. 57, no. 8, pp. 2868-2878, Aug. 2010.

[10] F. F. M. E. Sousy, "Hybrid H

∞
-Based Wavelet-Neural-Network Tracking Control for

Permanent-Magnet Synchronous Motor Servo Drives," IEEE Trans. on Industrial

Electronics, vol. 57, no. 9, pp. 3157-3166, Sep. 2010.

[11] Z. Li, "Robust Control of PM Spherical Stepper Motor Based on Neural Networks,"

IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp. 2945-2954, Aug. 2009.

123

[12] S. M. Gadoue, D. Giaouris and J. W. Finch, "Sensorless Control of Induction Motor

Drives at Very Low and Zero Speeds Using Neural Network Flux Observers," IEEE Trans.

on Industrial Electronics, vol. 56, no. 8, pp. 3029-3039, Aug. 2009.

[13] V. Machado, A. D. D. Neto and J. D. D. Melo, "A Neural Network Multiagent

Architecture Applied to Industrial Networks for Dynamic Allocation of Control Strategies

Using Standard Function Blocks," IEEE Trans. on Industrial Electronics, vol. 57, no. 5, pp.

1823-1834, May 2010.

[14] H. P. Huang, J. L. Yan and T. H. Cheng, "Development and Fuzzy Control of a Pipe

Inspection Robot," IEEE Trans. on Industrial Electronics, vol. 57, no. 3, pp. 1088-1095,

March 2010.

[15] H. Chaoui, P. Sicard and W. Gueaieb, "ANN-Based Adaptive Control of Robotic

Manipulators With Friction and Joint Elasticity," IEEE Trans. on Industrial Electronics, vol.

56, no. 8, pp. 3174-3187, Aug. 2009.

[16] L. Y. Wang, T. Y. Chai and L. F. Zhai, "Neural-Network-Based Terminal Sliding-Mode

Control of Robotic Manipulators Including Actuator Dynamics," IEEE Trans. on Industrial

Electronics, vol. 56, no. 9, pp. 3296-3304, Sep. 2009.

[17] F. Moreno, J. Alarcón, R. Salvador and T. Riesgo, "Reconfigurable Hardware

Architecture of a Shape Recognition System Based on Specialized Tiny Neural Networks

With Online Training," IEEE Trans. on Industrial Electronics, vol. 56, no. 8, pp. 3253-3263,

Aug. 2009.

[18] Y. J. Lee and J. Yoon, "Nonlinear Image Upsampling Method Based on Radial Basis

Function Interpolation," IEEE Trans. on Image Processing, vol. 19, issue 10, pp. 2682-2692,

2010.

[19] S. Ferrari, F. Bellocchio, V. Piuri and N. A. Borghese, "A Hierarchical RBF Online

Learning Algorithm for Real-Time 3-D Scanner," IEEE Trans. on Neural Networks, vol. 21,

issue 2, pp. 275-285, 2010.

[20] K. Meng, Z. Y. Dong, D. H. Wang and K. P. Wong, "A Self-Adaptive RBF Neural

Network Classifier for Transformer Fault Analysis," IEEE Trans. on Power Systems, vol. 25,

issue 3, pp. 1350-1360, Feb. 2010.

[21] S. Huang and K. K. Tan, "Fault Detection and Diagnosis Based on Modeling and

Estimation Methods," IEEE Trans. on Neural Networks, vol. 20, issue 5, pp. 872-881, Apr.

2009.

[22] K. Hornik, M. Stinchcombe and H. White, "Multilayer Feedforward Networks Are

Universal Approximators," Neural Networks, vol. 2, issue 5, pp. 359-366, 1989.

[23] Werbos P. J., "Back-propagation: Past and Future," Proceeding of International

124

Conference on Neural Networks, San Diego, CA, 1, 343-354, 1988.

[24] K. Levenberg, "A method for the solution of certain problems in least squares," Quarterly

of Applied Machematics, 5, pp. 164-168, 1944.

[25] D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," SIAM

J. Appl. Math., vol. 11, no. 2, pp. 431-441, Jun. 1963.

[26] B. M. Wilamowski, H. Yu and N. Cotton, "Neuron by Neuron Algorithm," Industrial

Electronics Handbook, vol. 5 – INTELLIGENT SYSTEMS, 2
nd

 Edition, 2010, chapter 13,

pp. 13-1 to 13-24, CRC Press.

[27] B. M. Wilamowski, N. J. Cotton, O. Kaynak, G. Dundar, "Computing Gradient Vector

and Jacobian Matrix in Arbitrarily Connected Neural Networks," IEEE Trans. on Industrial

Electronics, vol. 55, no. 10, pp. 3784-3790, Oct. 2008.

[28] B. M. Wilamowski, "Neural Network Architectures and Learning Algorithms: How Not

to Be Frustrated with Neural Networks," IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56-63,

2009.

[29] T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Application to

Modeling and Control," IEEE Transactions on System, Man, Cybernetics, Vol. 15, No. 1, pp.

116-132, 1985.

[30] T. T. Xie, H. Yu and B. M. Wilamowski, "Neuro-fuzzy System," Industrial Electronics

Handbook, vol. 5 – INTELLIGENT SYSTEMS, 2
nd

 Edition, 2010, chapter 20, pp. 20-1 to

20-9, CRC Press.

[31] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag: New York, 1995.

[32] C. Saunders, A. Gammerman and V. Vovk, "Ridge Regression Learning Algorithm in

Dual Variables," Proceedings of the 15
th

 International Conference on Machine Learning,

ICML-98, Madison-Wisconsin, 1998.

[33] T. Kohonen, "Self-Organized Formation of Topologically Correct Feature Maps,"

Biological Cybernetics, vol. 43, pp. 59- 69, 1982.

[34] I. T. Jolliffe, Principal Component Analysis. Series in Statistics. Springer; 2
nd

 edition,

Oct. 1, 2002.

[35] Q. K. Pan, M. F. Tasgetiren and Y. C. Liang, "A Discrete Particle Swarm Optimization

Algorithm for the No-Wait Flowshop Scheduling Problem," Computer & Operations

Research, vol. 35, issue 9, pp. 2807-2839, Sep. 2008.

[36] M. Dorigo, V. Maniezzo and A. Colorni, "Ant System: Optimization by a Colony of

Cooperating Agents," IEEE Transactions on Systems, Man, and Cybernetics-Part B, vol. 26,

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(wilamowski%20%20b.%20m.%3cIN%3eau)&valnm=Wilamowski%2C+B.M.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20cotton%20%20n.%20j.%3cIN%3eau)&valnm=+Cotton%2C+N.J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20kaynak%20%20o.%3cIN%3eau)&valnm=+Kaynak%2C+O.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20dundar%20%20g.%3cIN%3eau)&valnm=+Dundar%2C+G.&reqloc%20=others&history=yes

125

issue 1, pp. 29-41, Feb. 1996.

[37] D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning.

Addison Wesley, Reading, MA, 1989.

[38] S. Wu and T. W. S. Chow, "Induction Machine Fault Detection Using SOM-Based RBF

Neural Networks," IEEE Trans. on Industrial Electronics, vol. 51, no. 1, pp. 183-194, Feb.

2004.

[39] C. K. Goh, E. J. Teoh and K. C. Tan, "Hybrid Multiobjective Evolutionary Design for

Artificial Neural Networks," IEEE Trans. on Neural Networks, vol. 19, no. 9, pp. 1531-1548,

Sept 2008.

[40] Y. Song, Z. Q. Chen and Z. Z. Yuan, "New Chaotic PSO-Based Neural Network

Predictive Control for Nonlinear Process," IEEE Trans. on Neural Networks, vol. 18, no. 2,

pp. 595-601, Feb 2007.

[41] T. T. Xie, H. Yu and B. M. Wilamowski, "Replacing Fuzzy Systems with Neural

Networks," in Proc. 3nd IEEE Human System Interaction Conf. HSI 2010, Rzeszow, Poland,

May 13-15, 2010, pp. 189-193.

[42] M. Sugeno and G. T. Kang, "Structure Identification of Fuzzy Model," Fuzzy Sets and

Systems, Vol. 28, No. 1, pp. 15-33, 1988.

[43] A. Malinowski and H. Yu, "Comparison of Embedded System Design for Industrial

Applications," IEEE Trans. on Industrial Informactics, vol. 7, issue 2, pp. 244-254, May

2011.

[44] R. J. Wai, J. D. Lee and K. L. Chuang, "Real-Time PID Control Strategy for Maglev

Transportation System via Particle Swarm Optimization," IEEE Trans. on Industrial

Electronics, vol. 58, no. 2, pp. 629-646, Jan. 2011.

[45] M. A. S. K. Khan and M. A. Rahman, "Implementation of a Wavelet-Based MRPID

Controller for Benchmark Thermal System," IEEE Trans. on Industrial Electronics, vol. 57,

no. 12, pp. 4160-4169, Nov. 2010.

[46] Y. Z. Li and K. M. Lee, "Thermohydraulic Dynamics and Fuzzy Coordination Control of

A Microchannel Cooling Network for Space Electronics," IEEE Trans. on Industrial

Electronics, vol. 58, no. 2, pp. 700-708, Feb. 2011.

[47] R. Masuoka, N. Watanabe, A. Kawamura, Y. Owada and K. Asakawa, "Neuraofuzzy

system-Fuzzy inference using a structured neural network," Proceedings of the International

Conference on FuzzyLogic&Neural Networks, Hzuka, Japan, pp.173-177, July20-24,1990.

[48] LIBSVM link: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

126

[49] H. Yu and B. M. Wilamowski, "Efficient and Reliable Training of Neural Networks,"

IEEE Human System Interaction Conference, HSI 2009, Catania. Italy, May 21-23, 2009, pp.

109-115.

[50] H. Yu and B. M. Wilamowski, "C++ Implementation of Neural Networks Trainer," 13th

IEEE Intelligent Engineering Systems Conference, INES 2009, Barbados, April 16-18, 2009,

pp. 237-242.

[51] N. Pham, H. Yu and B. M. Wilamowski, "Neural Network Trainer through Computer

Networks," 24
th

 IEEE International Conference on Advanced Information Networking and

Applications, AINA2010, Perth, Australia, April 20-23, 2010, pp. 1203-1209.

[52] H. Yu and B. M. Wilamowski, "Fast and efficient and training of neural networks," in

Proc. 3nd IEEE Human System Interaction Conf. HSI 2010, Rzeszow, Poland, May 13-15,

2010, pp. 175-181.

[53] H. Yu and B. M. Wilamowski, "Neural Network Training with Second Order

Algorithms," monograph by Springer on Human-Computer Systems Interaction. Background

and Applications, 31
st
 October, 2010. (Accepted)

[54] B. M. Wilamowski, "Human factor and computational intelligence limitations in resilient

control systems" ISRCS-10, 3-rd International Symposium on Resilient Control Systems,

Idaho Falls, Idaho, August 10-12, 2010, pp. 5-11.

[55] W. S. McCulloch and W. Pitts, "A Logical Calculus of the Idea Immanent in Nerveous

Activity," Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[56] D. O. Hebb, The Organization of Behavior. John Wiley & Sons, New York, 1949.

[57] A. M. Uttley, "A Theory of the Mechanism of Learning Based on the Computation of

Conditional Probabilities," Proceedings of the First International Conference on

Cybernetics, Namur, Gauthier-Villars, Paris, France, 1956.

[58] F. Rosenblatt, "The perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain," Psychological Review, vol. 65, pp. 386-408, 1959.

[59] B. Widrow and M. E. Hoff, Jr., "Adaptive Switching Circuits," IRE WESCON

Convention Record, pp. 96-104, 1960.

[60] M. Minsky and S. Papert, Perceptrons. Oxford, England: M. I. T. Press, 1969.

[61] D. E. Rumelhart, G. E. Hinton and R. J. Wiliams, "Learning representations by back-

propagating errors," Nature, vol. 323, pp. 533-536, 1986 MA.

[62] S. I. Gallant, "Perceptron-based learning algorithms," IEEE Trans. on Neural Networks,

vol. 1, no. 2, pp. 179-191, Feb 1990.

127

[63] K. S. Narendra, S. Mukhopadhyay, "Associative learning in random environments using

neural networks ," IEEE Trans. on Neural Networks, vol. 2, no. 1, pp. 20-31, Jan 1991.

[64] R. C. Frye, E.A. Rietman, C.C. Wong, "Back-propagation learning and nonidealities in

analog neural network hardware," IEEE Trans. on Neural Networks, vol. 2, no. 1, pp. 110-

117, Jan 1991.

[65] J. N. Hwang, J.J. Choi, S. Oh, R.J. Marks, "Query-based learning applied to partially

trained multilayer perceptrons," IEEE Trans. on Neural Networks, vol. 2, no. 1, pp. 131-136,

Jan 1991.

[66] P. A. Shoemaker, "A note on least-squares learning procedures and classification by

neural network models," IEEE Trans. on Neural Networks, vol. 2, no. 1, pp. 158-160, Jan

1991.

[67] R. Batruni, "A multilayer neural network with piecewise-linear structure and back-

propagation learning," IEEE Trans. on Neural Networks, vol. 2, no. 3, pp. 395-403, March

1991.

[68] M. Riedmiller, H. Braun, "A direct adaptive method for faster backpropagation learning:

The RPROP algorithm," Proc. International Conference on Neural Networks, San Francisco,

CA, 1993, pp. 586-591.

[69] R. B. Allen, J. Alspector, "Learning of stable states in stochastic asymmetric networks,"

IEEE Trans. on Neural Networks, vol. 1, no. 2, pp. 233-238, Feb 1990.

[70] T. M. Martinetz, H. J. Ritter and K. J. Schulten, "Three-dimensional neural net for

learning visuomotor coordination of a robot arm," IEEE Trans. on Neural Networks, vol. 1,

no. 1, pp. 131-136, Jan 1990.

[71] Image link: http://koaboi.wordpress.com/category/uncategorized/

[72] M. E. Hohil, D. Liu, and S. H. Smith, "Solving the N-bit parity problem using neural

networks," Neural Networks, vol. 12, pp1321-1323, 1999.

[73] B. M. Wilamowski, D. Hunter, A. Malinowski, "Solving parity-N problems with

feedforward neural networks," Proc. 2003 IEEE IJCNN, 2546-2551, IEEE Press, 2003.

[74] B. M. Wilamowski, H. Yu and K. T. Chung, "Parity-N problems as a vehicle to compare

efficiency of neural network architectures," Industrial Electronics Handbook, vol. 5 –

INTELLIGENT SYSTEMS, 2
nd

 Edition, 2010, chapter 10, pp. 10-1 to 10-8, CRC Press.

[75] M. R. Osborne, "Fisher’s method of scoring," Internat. Statist. Rev., 86 (1992), pp. 271-

286.

http://koaboi.wordpress.com/category/uncategorized/

128

[76] H. Yu and B. M. Wilamowski, "Levenberg Marquardt Training," Industrial Electronics

Handbook, vol. 5 – INTELLIGENT SYSTEMS, 2
nd

 Edition, 2010, chapter 12, pp. 12-1 to

12-16, CRC Press.

[77] J. X. Peng, Kang Li, G.W. Irwin, "A New Jacobian Matrix for Optimal Learning of

Single-Layer Neural Networks," IEEE Trans. on Neural Networks, vol. 19, no. 1, pp. 119-

129, Jan 2008.

[78] B. M. Wilamowski and H. Yu, "Neural Network Learning without Backpropagation,"

IEEE Trans. on Neural Networks, vol. 21, no.11, Nov. 2010.

[79] B. M. Wilamowski and H. Yu, "Improved Computation for Levenberg Marquardt

Training," IEEE Trans. on Neural Networks, vol. 21, no. 6, pp. 930-937, June 2010.

[80] M. T. Hagan, M. B. Menhaj, "Training feedforward networks with the Marquardt

algorithm," IEEE Trans. on Neural Networks, vol. 5, no. 6, pp. 989-993, Nov. 1994.

[81] H. N. Robert, "Theory of the Back Propagation Neural Network," Proc. 1989 IEEE

IJCNN, 1593-1605, IEEE Press, New York, 1989.

[82] H. B. Demuth, M. Beale, "Neural Network Toolbox: for use with MATLAB," Mathworks

Natick, MA, USA, 2000.

[83] L. J. Cao, S. S. Keerthi, Chong-Jin Ong, J. Q. Zhang, U. Periyathamby, Xiu Ju Fu, H. P.

Lee, "Parallel sequential minimal optimization for the training of support vector machines,"

IEEE Trans. on Neural Networks, vol. 17, no. 4, pp. 1039- 1049, April 2006.

[84] D. C. Lay, Linear Algebra and its Applications. Addison-Wesley Publishing Company,

3
rd

 version, pp. 124, July, 2005.

[85] S. Wan, L.E. Banta, "Parameter Incremental Learning Algorithm for Neural Networks,"

IEEE Trans. on Neural Networks, vol. 17, no. 6, pp. 1424-1438, June 2006.

[86] S. E. Fahlman, C. Lebiere, "The cascade-correction learning architecture," in D. S.

Touretzky (ed.), Advances in Neural Information Processing Systems 2, Morgan Kaufmann,

1990.

[87] B. K. Bose, "Neural Network Applications in Power Electronics and Motor Drives – An

Introduction and Perspective," IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 14-

33, Feb. 2007.

[88] J. A. Farrell, M. M. Polycarpou, "Adaptive Approximation Based Control: Unifying

Neural, Fuzzy and Traditional Adaptive Approximation Approaches [Book review]," IEEE

Trans. on Neural Networks, vol. 19, no. 4, pp. 731-732, April 2008.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hagan%20%20m.%20t.%3cIN%3eau)&valnm=Hagan%2C+M.T.&reqloc%20=others&history=yes

129

[89] W. Qiao, R. G. Harley, G. K. Venayagamoorthy, "Fault-Tolerant Indirect Adaptive

Neurocontrol for a Static Synchronous Series Compensator in a Power Network With

Missing Sensor Measurements," IEEE Trans. on Neural Networks, vol. 19, no. 7, pp. 1179-

1195, July 2008.

[90] J. Y. Goulermas, A. H. Findlow, C. J. Nester, P. Liatsis, X.-J. Zeng, L. P. J. Kenney, P.

Tresadern, S. B. Thies, D. Howard, "An Instance-Based Algorithm With Auxiliary Similarity

Information for the Estimation of Gait Kinematics From Wearable Sensors," IEEE Trans. on

Neural Networks, vol. 19, no. 9, pp. 1574-1582, Sept 2008.

[91] N. J. Cotton, and Bogdan M. Wilamowski, "Compensation of Nonlinearities Using

Neural Networks Implemented on Inexpensive Microcontrollers" IEEE Trans. on Industrial

Electronics, vol. 58, No 3, pp. 733-740, March 2011.

[92] N. J. Cotton and Bogdan M. Wilamowski “Compensation of Sensors Nonlinearity with

Neural Networks”, 24th IEEE International Conference on Advanced Information

Networking and Applications 2010, pp. 1210-1217, April 2010.

[93] B. M. Wilamowski, “Challenges in Applications of Computational Intelligence in

Industrials Electronics,” (keynote) ISIE’ 10 IEEE International Symposium on Industrial

Electronics, Bari, Italy, July 5-7, 2010, pp. 15-22.

[94] F. H. C. Tivive and A. Bouzerdoum, "Efficient training algorithms for a class of shunting

inhibitory convolutional neural networks," IEEE Trans. on Neural Networks, vol. 16, no. 3,

pp. 541-556, March 2005.

[95] V. V. Phansalkar, P. S. Sastry, "Analysis of the back-propagation algorithm with

momentum," IEEE Trans. on Neural Networks, vol. 5, no. 3, pp. 505-506, March 1994.

[96] B. M. Wilamowski, N. Cotton, J. Hewlett, O. Kaynak, "Neural network trainer with

second order learning algorithms," Proc. International Conference on Intelligent Engineering

Systems, June 29 2007-July 1 2007, pp. 127-132.

[97] B. M. Wilamowski, "Modified EBP algorithm with instant training of the hidden layer,"

Proc. in 23rd International Conference on Industrial Electronics, Control, and

Instrumentation, vol. 3, pp.1098-1101, 1997.

[98] H. Yu, T. T. Xie, Stanislaw Paszczynski and B. M. Wilamowski, "Advantages of Radial

Basis Function Networks for Dynamic System Design," IEEE Trans. on Industrial

Electronics (Accepted)

[99] H. Yu, T. T. Xie, M. Hamilton and B. M. Wilamowski, "Comparison of Different Neural

Network Architectures for Digit Image Recognition," in Proc. 3nd IEEE Human System

Interaction Conf. HSI 2011, Yokohama, Japan, pp. 98-103, May 19-21, 2011.

130

[100] T. T. Xie, H. Yu and B. M. Wilamowski, "Comparison of Traditional Neural Networks

and Radial Basis Function Networks," in Proc. 20th IEEE International Symposium on

Industrial Electronics, ISIE2011, Gdansk, Poland, 27-30 June 2011 (Accepted)

[101] H. Yu, T. T. Xie and B. M. Wilamowski, "Error Correction – A Robust Learning

Algorithm for Designing Compact Radial Basis Function Networks," IEEE Trans. on Neural

Networks (Major Revision)

[102] T. T. Xie, H. Yu, B. M. Wilamowski and J. Hewllet, "Fast and Efficient Second Order

Method for Training Radial Basis Function Networks," IEEE Trans. on Neural Networks

(Major Revision)

