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Abstract 

 

 

 In multivariate quality control, a proper Phase I analysis is essential to the success of 

Phase II monitoring.  Even self-starting methods, which seek to minimize the Phase I process, 

usually recommend a single retrospective analysis at some point in the control charting process.  

This is true regardless of the underlying distribution of a process, which cannot often be assumed 

to be multivariate normal.  A literature review reveals no distribution-free Phase I multivariate 

techniques in existence, so this research seeks to fill that gap by developing a distribution-free 

method of establishing an in-control reference sample for subgrouped multivariate processes in 

Phase I.  The resulting multivariate sample, representing the in-control state of a process, can 

then be used to estimate the appropriate parameters for the Phase II multivariate quality control 

monitoring method of choice.   

 The proposed method, which assumes constant covariance within subgroups, uses data 

depth in conjunction with robust estimators to detect both isolated and sustained shifts in 

subgroup location.  Using Monte Carlo simulation, the proposed method is compared to the 

traditional Hotelling's T
2
 chart with a Phase I upper control limit.  Although Hotelling's T

2
 chart 

is preferred when data are multivariate normally distributed, the proposed method is shown to 

perform significantly better than Hotelling's T
2
 chart when a process distribution is heavy-tailed 

or skewed. 
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1 Introduction and Literature Review 

 

1.1 Background and Motivation 

 Multivariate statistical process control charts are necessary to simultaneously monitor 

two or more correlated variables representing quality characteristics of an industrial or other 

process.  A multivariate control charting application usually involves a dimension reduction 

technique of converting multivariate observations to single dimensional control chart statistics 

which are then monitored using appropriate control limits.  This approach accounts for the 

correlation structure in the data, whereas monitoring correlated variables using separate 

univariate control charts for each variable ignores the correlation among quality characteristics 

and can lead to erroneous conclusions about the state of a process.  The first multivariate quality 

control chart is attributed to Hotelling (1947), who created the T
2
 chart to monitor bombsight 

data during World War II.   

 Multivariate quality control charting has grown in both popularity and relevance since 

Hotelling's introduction.  In a review of statistical process control research issues and ideas, 

Woodall and Montgomery (1999) pointed out the notable rise in multivariate quality control 

research due to increased measurement capability and computing power.  Montgomery (2005, p. 

489) noted that larger manufacturing databases have greatly increased the use of multivariate 

quality control methods in recent years.  Bersimis, Psarakis, and Panaretos (2007) stated in a 

multivariate statistical process control overview that multivariate Shewhart-type charts are the 
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most common control charts in industry today, adding that more examination of this area is very 

important.  In particular, they pointed out the need for more research into robust design of 

Hotelling's T
2
 chart and nonparametric control charts. 

 As represented by Figure 1.1.1, the contribution of this research is the merger of three 

separately researched but highly related fields (distribution-free Phase I quality control, 

computational geometry, and robust parameter estimation) to provide a solution to the open 

problem of establishing an outlier-free reference sample for a multivariate process without the 

assumption of normality.  Great strides have been made in each of the aforementioned research  

 

 

Figure 1.1.1  The Unification of Relevant Research Areas 

 

areas in recent years, yet no one in the statistical quality control field has leveraged recent 

developments in the manner accomplished by this research.  The following chapters will detail 

the multivariate extension of an existing univariate distribution-free control chart for subgroup 
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location, including the use of appropriate data depth functions for purposes of dimension 

reduction and the implementation of an effective robust parameter estimation technique, to 

provide a solution to this problem.   

 

1.2 Differences Between Phase I and Phase II 

 A control charting application is typically divided into two distinct phases.  In Phase I, 

also known as the preliminary analysis phase, when little is known about a process being studied, 

the objective is to identify an in-control (IC) reference sample.  This involves retrospective 

analysis of a historical data set in order to eliminate any data points which do not accurately 

represent the routine operation of the process.  The resulting data are described as IC because it 

is believed that all remaining variability in the process is inherent to the process itself and not 

due to assignable causes.  Upon completion of Phase I, the IC reference sample is used to 

establish control limits for Phase II, the monitoring stage of a control charting application.  In 

Phase II, newly observed data points are successively compared to the control limits to identify 

significant departures from the IC state.  Should an observation fall outside the control limits, a 

search for an assignable cause is immediately undertaken.  If the change in process behavior can 

be linked to special causes or external factors, the process is deemed out of control (OC) and 

remedial action is taken to correct the problem.   

 Prior to conducting any analysis in a control charting scenario, it is usually assumed that 

the unedited reference sample may contain OC points and the control limits are unknown.  The 

challenging nature of a Phase I analysis under these conditions has been recognized since the 

earliest days of statistical process control.  Shewhart (1939, p. 76) said, "In the majority of 

practical instances, the most difficult job of all is to choose the sample that is to be used as the 
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basis for establishing the tolerance range.  If one chooses such a sample without respect to the 

assignable causes present, it is practically impossible to establish a tolerance range that is not 

subject to a huge error."   

 If a flawed Phase I analysis results in the erroneous inclusion of OC points in the IC 

reference sample, the control limits for Phase II monitoring will be too wide and OC situations 

will not be detected in a timely manner.  This in turn will result in the production of poor quality 

goods or services for an unnecessarily protracted period of time.  When the OC condition is 

finally detected, the substandard goods or services will have to be reworked, or scrapped and 

completely reproduced.  This can cost the goods or services facility money in terms of labor and 

other operating expenses for rework or reproduction, additional materials necessary for 

reproduction, lost future production while previous work is redone, financial penalties for failure 

to meet contractual deadlines, and loss of customers due to dissatisfaction with faulty or 

untimely goods or services received.      

 On the other hand, if a faulty Phase I analysis results in the erroneous exclusion of IC 

points from the IC reference sample, the control limits for Phase II monitoring will be too narrow 

and false alarms will repeatedly occur.  False alarms require work stoppages to search for 

assignable causes, potentially costing the goods or services facility money in terms of lower 

throughput, idle workers while OC signals are investigated, overtime for quality control 

personnel investigating OC signals, financial penalties for failure to meet contractual deadlines, 

and loss of customers due to goods or services not being received in a timely manner.  

Ultimately, whether the resulting control limits are too wide or too narrow, an incorrect Phase I 

analysis can also cause a lack of confidence by all in the quality control methodology in place, 

creating a challenging environment for managers.  
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 Phase I control charts are designed with the goal of achieving a specified overall IC false 

alarm probability (FAP), defined as the probability of one or more observations plotting outside 

the control limits in the absence of assignable causes.  Phase I usually involves iteratively 

comparing the reference sample to trial control limits (corresponding to the desired overall IC 

FAP) estimated from the sample.  At each iteration of a Phase I analysis, an OC point is 

eliminated from the reference sample if an assignable cause is identified, and trial control limits 

are updated excluding the OC point.  This iterative process continues until all points in the 

reference sample are IC.   

 Phase I analysis requires careful consideration when it involves methods which compute 

independent control chart statistics consisting of individual observations (e.g. the univariate X 

chart or the multivariate T
2
 chart) or subgrouped observations (e.g. the univariate X  chart or the 

multivariate T
2
 chart).  Provided the observations originate from random sampling, the control 

chart statistics are independent of one another.  However, because the control limits are 

estimated from the reference sample itself in Phase I, the control limits are dependent on each 

sample point included in their calculation.  Thus, successive comparisons of chart statistics to 

control limits are statistically dependent despite the control chart statistics themselves being 

independent.  These dependencies often make it difficult to correctly determine the overall IC 

FAP for a Phase I analysis.   

 Phase II, on the other hand, consists of comparing new observations (in the form of a 

chart statistic) to the control limits previously established in Phase I.  Because the control limits 

in Phase II are fixed through conditioning, successive comparisons of chart statistics to control 

limits are independent provided the chart statistics are independent of one another (e.g. the X, X , 

and T
2 

charts).  This is in contrast to moving average (MA), exponentially weighted moving 
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average (EWMA), or cumulative sum (CUSUM) charts and their multivariate counterparts, 

whose chart statistics include past observations and are therefore naturally dependent. 

 Chart performance in Phase II is often measured using moments of the run length (RL) 

distribution.  The RL is the number of observations until an OC signal is observed.  If the 

comparisons of the chart statistics to the control limits are independent, the RL is a geometric 

random variable.  The expected value of the IC RL is equal to 1/α, where α is equal to the 

probability that a single chart statistic plots outside the control limits in the absence of assignable 

causes.  The expected value of the RL is known as the average run length (ARL) and is 

commonly used to describe control chart performance in Phase II. 

 The purpose of this research is to develop a Phase I procedure for subgrouped 

multivariate data that is distribution free when a process is IC.  The procedure will be based on 

the use of data depth in conjunction with robust estimators of location and scale to reduce 

multivariate observations to univariate depth values, thus producing a center-outward ordering of 

the multivariate data.  The corresponding ranks of the univariate depth values, in the form of a 

control statistic for each subgroup, will then be analyzed using a univariate chart.  As the 

following literature review will demonstrate, this is an area in much need of additional research.   

 

1.3 Phase II Multivariate Control Charting Methods 

 Existing Phase II multivariate control charting methods will be discussed first, beginning 

with parametric charts.  This will be followed by an examination of distribution-free, 

nonparametric, and robust techniques, and will conclude with a synopsis of depth-based 

nonparametric procedures for use in Phase II.  Before undertaking this discussion, however, it is 
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important to distinguish precisely what is meant by the terms distribution free, nonparametric, 

and robust. 

 Gibbons and Chakraborti (2003, p. 3) state, "In a distribution-free inference, whether for 

testing or estimation, the methods are based on functions of the sample observations whose 

corresponding random variable has a distribution which does not depend on the specific 

distribution of the population from which the sample was drawn."  In other words, a 

"distribution-free" method uses a control chart statistic which follows the same distribution 

regardless of the underlying distribution of the process itself.  Gibbons and Chakraborti (2003, p. 

3) add, "On the other hand, strictly speaking, the term nonparametric test implies a test for a 

hypothesis which is not a statement about parameter values."  This means that "nonparametric" 

control charting methods assess whether the distribution of a process, as opposed to specific 

parameters, has departed from the IC state.  From this, it is clear that the terms distribution free 

and nonparametric are not synonymous, as a control charting method could be distribution free 

but not nonparametric and vice versa.  Last but not least, the term "robust" will be used to refer 

to methods in which the distribution of the statistics are similar regardless of the distribution of 

the process data, but the methods may not be strictly distribution free.  All characterizations of 

control charting methods as being distribution free, nonparametric, or robust refer to the IC state 

of a process only. 

 

1.3.1 Phase II Multivariate Parametric Charts 

 Hotelling's T
2
 control chart is the most familiar multivariate quality control chart in 

existence today [Montgomery (2005, p. 491)].  It is designed for detecting large shifts in the 

mean vector of a multivariate normally distributed process because it uses information only from 



 

8 

 

the current sample, and it can be applied during both Phase I and Phase II using appropriate 

control limits.  Alternatively, authors such as Chenouri and Steiner (2009), Chenouri and 

Variyath (2011), and Mohammadi, Midi, Arasan, and Al-Talib (2011) have proposed bypassing 

Phase I by using the reweighted minimum covariance determinant (RMCD) method of Willems, 

Pison, Rousseeuw, and Van Alest (2002) to glean robust estimates of location and scatter from a 

reference sample, and implementing those estimates directly in a Phase II T
2
 control chart.  In all 

cases, however, the T
2
 chart is reliant on the limiting assumption that the data follow a 

multivariate normal distribution.  This chart's lack of robustness to nonnormality is well 

documented by distribution-free and nonparametric control chart authors such as Chou, Mason, 

and Young (2001), Liu, Singh, and Teng (2004), and Fricker and Chang (2009a) who evaluated 

their proposed methods in comparison to the traditional T
2
 chart applied to nonnormal process 

data. 

 Crosier (1988) and Pignatiello and Runger (1990) proposed several multivariate 

cumulative sum (MCUSUM) charts which are more sensitive to small or gradual location shifts 

since they use past information in addition to the current sample, but these charts also rely on the 

assumption of multivariate normally distributed data.  Jackson (1991) presented a T
2
 chart using 

principal components scores, a control chart for principal components residuals, and a control 

chart for each independent principal component's scores, all based on the assumption of a 

multivariate normally distributed process.  The multivariate exponential weighted moving 

average (MEWMA) control chart developed by Lowry, Woodall, Champ, and Rigdon (1992) is, 

like the MCUSUM chart, sensitive to small or gradual shifts but likewise based on the 

assumption of multivariate normally distributed data.  It can be designed to be robust to 

nonnormality by using a small smoothing constant as noted by Stoumbos and Sullivan (2002), 
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Testik, Runger, and Borror (2003), and Testik and Borror (2004).  However, the MEWMA chart 

assumes that the IC process mean vector and covariance matrix are known, which is unlikely to 

be the case in Phase I.   

 Numerous other parametric Phase II multivariate control charting methods, many of 

which are variants of the well-known T
2
, MEWMA, and MCUSUM charts, have been proposed 

but will not be detailed here.  For comprehensive reviews of such charts, see Wierda (1994), 

Lowry and Montgomery (1995), Mason, Champ, Tracy, Wierda, and Young (1997), Woodall 

and Montgomery (1999), and Bersimis et al. (2007). 

 

1.3.2 Phase II Multivariate Distribution-Free, Nonparametric, and Robust Charts 

 Nonparametric, distribution-free, and robust multivariate control charting methods have 

been developed, yet they are usually designed for Phase II implementation.  Hayter and Tsui 

(1994) proposed a nonparametric multivariate control chart to detect location changes in 

nonnormally distributed processes.  This method is based on the empirical cumulative 

distribution function of a statistic formed from an IC reference sample of 500 or more 

observations, so it is strictly a Phase II method.  Qiu and Hawkins (2001) developed a 

distribution-free, rank-based CUSUM procedure for detecting a location shift, but this method 

assumes knowledge of the IC mean vector.  Chou et al. (2001) proposed a kernel smoothing 

technique for estimating the distribution of the T
2
 control statistic and the upper control limit of 

the T
2
 chart when the Phase II process data follow a multivariate exponential distribution.  Qiu 

and Hawkins (2003) also introduced a nonparametric CUSUM procedure for detecting mean 

shifts in all directions.  This method is based both on the order information among the 

measurement components as well as the order information between measurement components 
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and their IC means, but it assumes that the IC distribution of a process is known.  Sun and Tsung 

(2003) developed a distribution-free multivariate control chart based on the distance between the 

"kernel centre" of the known IC sample and the new observation, using support vector methods 

to calculate the kernel distance.  Thissen, Swierenga, de Weijer, Wehrens, Melssen, and Buydens  

(2005) used a combination of mixture modeling, which separates the data into Gaussian clusters, 

and statistical process control techniques to create a distribution-free multivariate control chart.  

This method requires an IC reference sample to estimate the moments of the Gaussian clusters 

and the fraction of observations in each cluster.  Qiu (2008) proposed a distribution-free, log-

linear modeling-based approach to estimating the IC multivariate distribution, as well as a 

distribution-free MCUSUM procedure for detecting location shifts in Phase II, but the 

availability of a set of IC data is assumed.  Fricker and Chang (2009a) used a Kolmogorov-

Smirnov test to compare the ranked kernel density estimates for a set of IC data and a set of the 

most recent data points.  This method is nonparametric but again requires the existence of a 

multivariate reference sample. 

 

1.3.3 Phase II Multivariate Rank-Based Charts 

 Nonparametric multivariate control charts have also been proposed using simplicial data 

depth, which was first introduced by Liu (1990), as a dimension reduction technique.  The idea 

behind simplicial depth-based control charts is to use the simplicial depth of a given multivariate 

point x within the data cloud formed by a multivariate reference sample  1,..., nX X  to produce 

a univariate center-outward ranking of the data points.  A precise definition of simplicial depth in 

p dimensions will be presented in Chapter 2, but the simplicial depth of a bivariate point x is the 
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proportion of triangles formed by all possible triplets of points in  1,..., nX X  containing x.  

Simplicial depth in higher dimensions follows the same logic. 

 Liu's (1995) suggested procedure is to calculate the simplicial depth of a given 

multivariate point, use the depth to create a control statistic reflecting the point's center-outward 

ranking relative to an IC reference sample, plot the control statistic on a univariate control chart, 

and finally compare the control statistic to control limits set to achieve a desired maximum IC 

FAP.  The resulting control charts, called r, Q, and S charts, are essentially , ,X X and cumulative 

sum (CUSUM) charts respectively, using simplicial depth-based ranks instead of raw univariate 

data to compute control statistics.  Liu (1995) describes these charts as completely nonparametric 

and able to simultaneously detect location and scale changes in a process.  However, Stoumbos 

and Jones (2000) showed that the 500-observation IC reference sample recommended for Liu's 

(1995) charts was not large enough to achieve a satisfactory IC FAP for many process 

distributions, thus limiting the method's potential for widespread implementation.  Liu et al. 

(2004) later introduced a simplicial data depth-based moving average (DDMA) control chart 

which is described as having better ability than the r and Q charts to detect changes in location 

while maintaining the same ability to detect changes in scale.  The DDMA chart is also said to be 

completely nonparametric but as with most nonparametric methods, if the process data follow a 

multivariate normal distribution then a normal theory method (e.g. Hotelling's T
2
 chart) is 

preferred.  Notably, all results from this study are derived using an IC reference sample of 1000, 

yet again raising the question of how one is to obtain such a large IC data set. 

 Other data depth-based nonparametric approaches to the Phase II multivariate quality 

control problem have been developed, but they all assume a pre-existing IC reference sample.  

Zarate (2004) used principal components analysis to reduce the dimensionality of a process, and 
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then employed a nonparametric control chart based on data depth to monitor some of the 

principal components instead of the original variables.  Beltran (2006) employed Liu's (1995) r 

chart using the simplicial depth ranks of the first and last set of principal components.  

Messaoud, Weihs, and Hering (2008) proposed a data depth-based, distribution-free EWMA 

control chart for multivariate observations.  This procedure consists of computing the 

Mahalanobis or simplicial depth of a point with respect to the m most recent observations from a 

process, converting each depth to a sequential rank among the m most recent observations, and 

monitoring the standardized sequential ranks using the EWMA chart.  The authors recommend 

an IC reference sample of 100 or more points to initiate this method.  For multivariate data 

following an elliptical distribution, Hamurkaroglu, Mert, and Saykan (2004) developed a 

nonparametric control chart which consists of computing the Mahalanobis depth of each point, 

ranking each depth measurement with respect to a sample from an IC process, and then using r 

and Q charts proposed by Liu (1995) to monitor the ranks.  Once more, the Phase I problem of 

identifying an IC reference sample must be solved before using any of these procedures.   

 

1.4 Self-Starting Multivariate Control Charting Methods 

 Self-starting multivariate methods, in which successive observations are used to update 

parameter estimates and check for OC conditions, have been suggested as a substitute for solving 

the Phase I problem because they can be implemented at the very beginning of a process.  These 

methods are designed to reduce reliance on large and potentially costly Phase I samples required 

by some multivariate control charting procedures.  As noted by Sullivan and Jones (2002, p. 25), 

they can be especially advantageous when production is slow, early OC production is expensive, 

or there are insufficient samples available to estimate parameters. 
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 One of the earliest attempts at a self-starting multivariate control chart is Quesenberry's 

(1997) Q-chart, in which the author proposed computing a control chart statistic based on the 

quadratic form of the deviation of the current observation vector from the estimated mean vector.  

The control chart statistic is then transformed to a N(0, 1) scalar and monitored using a 

univariate Shewhart-type control chart.  Schaffer (1998) employed the same basic methodology 

as Quesenberry (1997), but used a univariate EWMA scheme to monitor the resulting control 

chart statistic.  Both methods assume multivariate normally distributed process data.   

 Sullivan and Jones (2002) introduced a self-starting MEWMA chart, showing that it is 

more effective than the methods of Quesenberry (1997) and Schaffer (1998) and has the added 

advantage of robustness to nonnormality with an appropriate choice of smoothing constant.  

Sullivan and Jones (2002) caution that because parameter estimates are updated with each new 

observation, changes occurring near the beginning of a process can be unknowingly absorbed 

into the parameter estimates, thus masking the shift.  To guard against this, Sullivan and Jones 

(2002) recommend augmenting their self-starting chart with a single retrospective analysis at a 

suitable point in the process, with the exact timing dependent on the dimension as well as other 

factors. 

 Zamba and Hawkins (2006) developed a multivariate change-point model which claims 

to eliminate the requirement of a large Phase I sample.  Their method analyzes standardized 

differences between potential preshift and postshift observations to identify the point at which 

the mean vector changes, but is only applicable to multivariate normal processes.  Also, Zamba 

and Hawkins' (2006) chart assumes that the mean vector remains constant after a single shift 

occurs, so it is designed to detect a sustained shift of the mean only.   
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 Hawkins and Maboudou-Tchao (2007) proposed a self-starting methodology which 

transforms multivariate normal observations with unknown parameters into multivariate standard 

normal observations which are then charted using the MEWMA chart or any other method 

requiring known parameters, thus bypassing the difficult task of parameter estimation.  However, 

like most self-starting methods, this technique is susceptible to error resulting from early shifts in 

the process.  Although the authors argue their method eliminates the need for a Phase I - Phase II 

distinction, they suggest that after the initial phase of data gathering, one should "start with the 

most recent process reading and successively add and chart the earlier readings back to the start 

of the sequence" [Hawkins and Maboudou-Tchao (2007, p. 206)] in order to diagnose undetected 

shifts occurring earlier in the process. 

 These self starting methods are certainly viable alternatives under certain conditions.  

Nevertheless, they have not diminished the need for a more universally applicable distribution-

free Phase I multivariate control chart procedure.   

 

1.5 Phase I Multivariate Control Charting Methods 

 There exist a number of control chart methods developed for use in Phase I, though they 

are mostly variations of Hotelling's T
2
 control chart based on the assumption of a multivariate 

normally distributed process.  In addition, the majority of them deal with individual as opposed 

to subgrouped data.  Hotelling's T
2
 control chart can be applied to individual data in Phase I 

using control limits outlined by Tracy, Young, and Mason (1992).  However, Sullivan and 

Woodall (1996) showed that the usual practice of pooling all the individual observations to 

estimate the covariance matrix for a T
2
 chart results in poor performance in detecting step 

(sudden) and ramp (gradual) shifts in the mean vector.  They instead proposed using the vector 
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differences between successive individual observations to estimate the IC covariance matrix for 

the T
2
 statistic, and demonstrated that this method works better in detecting mean shifts but not 

outliers.   

 For processes consisting of either individual or subgrouped observations, Sullivan and 

Woodall (1998) proposed modified MCUSUM and MEWMA charts using simulated control 

limits to account for the correlation among control statistics as well as a regression-based method 

with exact (not simulated) limits for detecting sustained shifts in the mean vector.  Using 

simulation, they showed that each of their three proposed methods is better at detecting small 

shifts in the mean vector than Hotelling's T
2
 chart.  Nedumaran and Pignatiello (2000) addressed 

the issue of constructing T
2
 control chart limits for retrospective testing when the parameters of a 

subgrouped multivariate normally distributed process are unknown.  They described and 

compared a computationally intensive method of determining the exact control limit, Bonferroni 

adjustments to Alt's (1976) Phase I control limit, and Bonferroni adjustments to the standard 2  

limit, ultimately recommending Bonferroni adjustments to Alt's (1976) Phase I limit as the best 

alternative.   

 Vargas (2003) proposed T
2
 control charts for Phase I analysis of individual multivariate 

normally distributed data using robust estimators of location and dispersion instead of the usual 

sample mean vector and sample covariance matrix.  A total of five different estimators were 

considered, including the minimum volume ellipsoid (MVE) estimators of Rousseeuw and Van 

Zomeren (1990), first introduced by Rousseeuw (1984), and the minimum covariance 

determinant (MCD) technique of Rousseeuw and Van Driessen (1999), also introduced by 

Rousseeuw (1984).  The MVE method finds the ellipsoid of minimum volume that covers a 

specified minimum number of data points, and uses the geometrical center of the ellipsoid as the 
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location estimator and the matrix defining the ellipsoid itself (multiplied by a constant) as the 

covariance matrix estimator.  The MCD method finds the subset of data that has the smallest 

covariance matrix determinant while covering a specified minimum number of points.  It then 

uses the sample mean vector and the sample covariance matrix (also multiplied by a constant) of 

the points in the subset as estimators for location and dispersion.  Vargas also considered a 

trimming approach which removes a proportion of extreme values based on Mahalanobis 

distance, Sullivan and Woodall's (1996) sample mean vector and covariance matrix estimated 

from differences of successive observations, and an outlier detection algorithm proposed by 

Sullivan and Woodall (1996).  Based on simulation results, Vargas recommended using both a T
2
 

control chart based on MVE estimators for detecting multiple outliers and the T
2
 control chart 

suggested by Sullivan and Woodall (1996) to detect sustained shifts in the mean vector in Phase 

I.   

 Jensen, Birch, and Woodall (2007) further detailed the advantages of using the MVE and 

MCD methods in conjunction with T
2
 control charts for detecting outliers in individual 

multivariate normally distributed data during Phase I.  They determined that the MVE estimator 

is best for smaller sample sizes and a smaller percentage of outliers, while the MCD estimator is 

preferred for larger sample sizes or a larger percentage of outliers.  The authors also provided 

tables of simulated control limits for both estimators.   

 Other Phase I control charting efforts for multivariate normally distributed processes 

include Alfaro and Ortega's (2008) proposal to trim each variable to obtain robust estimates for 

the mean vector and covariance matrix, and then use those estimates in Hotelling's T
2
 chart with 

Tracy et al.'s (1992) Phase I UCL to provide enhanced outlier detection.  Jobe and Pokojovy 

(2009) created a computationally intensive two-step method of identifying the largest bulk of 
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similar data from a time-ordered sequence of individual multivariate normally distributed points, 

and used the estimated mean vector and covariance matrix from this bulk in the T
2
 statistic with 

empirical control limits.  The authors compared the performance of Hotelling's T
2
 chart using 

their method, the classical method of parameter estimation, and the robust methods analyzed by 

Vargas (2003) and Jensen et al. (2007), showing that their method results in improved 

performance in detecting outliers as well as location shifts in Phase I.  The authors attribute their 

success to the fact that their method considers the time order of the data, whereas other methods 

do not.  Oyeyemi and Ipinyomi (2010) robustly estimated the covariance matrix for Hotelling's 

T
2
 chart for individuals in Phase I by identifying a subset of data which meets specified 

optimality criteria, and then iteratively expanding the subset to a predetermined size.  Their 

method was shown to outperform the MVE and MCD methods in a limited number of cases, but 

only bivariate normally distributed samples of size m = 30 were considered.  Most recently, 

Yanez, Gonzalez, and Vargas (2010) proposed using biweight S estimators for location and 

scatter in a T
2
 chart for individual multivariate normally distributed data with simulated limits, 

showing that it outperforms Hotelling's T
2
 chart with MVE estimators for small samples.   

 Distribution-free and nonparametric Phase I methods, on the other hand, have received 

little attention in multivariate quality control literature.  The only chart found is Dai, Zhou, and 

Wang's (2006a) unpublished halfspace (Tukey) data depth-based nonparametric MCUSUM 

chart.   

 

1.6 Developing a Distribution-Free Phase I Procedure -- A Univariate Example 

 Although unanswered in the multivariate domain, the challenge of developing a 

distribution-free Phase I procedure has been addressed for the univariate case.  The details of the 
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univariate Phase I solution are relevant to the multivariate Phase I problem because this research 

will ultimately rely on a univariate chart to monitor control statistics resulting from dimension 

reduction of a multivariate reference sample using data depth.  The unique considerations 

involved in developing a distribution-free Phase I procedure are best illustrated by an example. 

 

Example 1.6.1 

 Consider a reference sample consisting of m = 25 independent subgroups, each 

containing n = 5 observations from an unknown distribution.  The widely used Shewhart X chart 

with 3  limits can be created using the procedure outlined in Montgomery (2005), under the 

assumption that the distribution of subgroup averages is approximately normal due to the central 

limit theorem.  Since the IC parameters o and o  are unknown, the lower control limit (LCL), 

center line (CL), and upper control limit (UCL) are estimated using 

 
ˆ

ˆ 3 o
oLCL

n


   (1.6.1) 

 ˆ
oCL   (1.6.2) 

 
ˆ

ˆ 3 ,o
oUCL

n


   (1.6.3) 

where ˆ
o and ˆ

o  are unbiased estimators for o and .o   Montgomery (2005, pp. 196-198) 

discusses several choices for ˆ
o and ˆ .o  

 Using Equations (1.6.1), (1.6.2), and (1.6.3), the initial Phase I control chart for this 

example is illustrated in the top panel of Figure 1.6.1.  Suppose that investigation of the potential 

OC point represented by subgroup average number 11 reveals an assignable cause, so the point is  

deemed OC.  The revised control limits in the bottom panel of Figure 1.6.1 are more narrow due 
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to the exclusion of subgroup 11, and all remaining subgroup averages now fall within the 

updated control limits.  The IC reference sample has been established, and the most recent 

control limits can be used for Phase II monitoring. 

 

 

 
 

Figure 1.6.1  Initial (Top Panel) and Revised (Bottom Panel) Control Charts 

 

 Determination of the overall IC FAP for the control chart in Example 1.6.1 would be 

straightforward under conditions of normality of subgroup averages and known parameters.  The 

overall IC FAP or P(at least one false alarm among all m = 25 comparisons) would be calculated 
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as follows:  (1 - (1 - 0.0027)
25

) = 0.0654.  The overall IC FAP, while considerably higher than 

the individual FAP of 0.0027, could easily be lowered by using limits wider than 3 .     

 If, on the other hand, the underlying distribution of the subgroup averages is not normal, 

the true overall IC FAP may be much larger.  Suppose for example that the actual individual 

FAP is 0.01.  Then the overall IC FAP equals (1 - (1 - 0.01)
25

) = 0.2222.  With only a slight 

increase in the individual IC FAP, the overall IC FAP increased dramatically.  This could result 

in a large number of IC subgroups being erroneously excluded during Phase I. 

 Furthermore, when the parameters are unknown as in Example 1.6.1, successive 

comparisons of subgroup averages to control limits are dependent.  Therefore, the overall IC 

FAP may not be determined using 1 minus the product of the complements of the m = 25 

individual FAPs.  Instead, control limits designed to achieve a specified overall IC FAP must be 

determined using the joint density function or the simulated empirical distribution of the 

subgroup averages. 

 Champ and Jones (2004) dealt with the case of a normally distributed process and 

unknown parameters by using the (joint) multivariate t distribution of the m control statistics to 

define control limits to achieve a desired overall IC FAP.  For processes in which normality 

cannot be established and parameters are unknown, Jones-Farmer, Jordan, and Champ (2009) 

proposed a rank-based Phase I location chart which is essentially a Shewhart chart of 

standardized subgroup mean ranks.  This method uses approximate multivariate normal theory 

control limits (for large subgroup sizes n) and simulated control limits (for smaller subgroup 

sizes n) to achieve a specified overall IC FAP.   

 The issues of data nonnormality and dependence among control statistics are problematic 

for any parametric Phase II control charting method used in Phase I, including multivariate 
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procedures.  These are precisely the problems this research seeks to address by developing a 

distribution-free method of establishing an IC reference sample for a multivariate process 

consisting of subgrouped data. 

 

1.7 Special Considerations in Multivariate Quality Control 

 There are two drawbacks to multivariate quality control that must be kept in mind in any 

research effort.  The first is computational complexity.  Multivariate control charting methods 

are inherently more computationally intensive than univariate methods.  Despite advances in 

quality control software, complex methods can quickly become unmanageable as the dimension 

of the data increases.  The development of methods that only work for two or three variables, or 

that are too complex to be used by practitioners, must be guarded against.   

 The second downside to multivariate quality control is the issue of interpretation.  

Multivariate control chart techniques do not directly identify which variable(s) caused an OC 

signal.  As previously discussed, it is insufficient to simply separate and individually chart each 

variable belonging to an OC multivariate process, because correlated variables may behave 

differently alone than when in combination with each other.  As a result, many useful approaches 

to interpreting OC signals in a multivariate setting have been proposed, and a summary of such 

works is provided by Bersimis et al. (2007) in an overview of multivariate statistical process 

control charts.  While this problem will not be specifically addressed by this research, it should 

be considered when developing a new procedure.   
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1.8 Organization of Dissertation 

 The remainder of this document is dedicated to the detailed development and application 

of a data depth-based, distribution-free Phase I multivariate control charting method for detecting 

location changes in subgrouped data.  In Chapter 2, data depth is explored as a distribution-free 

method of reducing multi-dimensional data to univariate ranks, and the advantages and 

disadvantages of several depth functions considered for implementation are discussed.  Chapter 3 

addresses the actual design of the data depth-based, distribution-free Phase I control chart for 

subgrouped multivariate data.  In Chapter 4, the simulation-based performance assessment plan 

for the proposed method is discussed, and detailed algorithms for measuring performance under 

various location shifts in normal, heavy-tailed, and skewed distributions are provided.  Chapter 5 

contains the results of extensive simulation runs comparing the proposed data depth-based, 

distribution-free Phase I multivariate method to Hotelling's T
2
 chart with Phase I UCL.  Chapter 

6 is dedicated to a comprehensive application of the proposed data depth-based, distribution-free 

Phase I multivariate method to a simulated historical data set containing several location shifts.  

This dissertation concludes in Chapter 7 with a synopsis of research conducted, 

recommendations for Phase I analysis when dealing with subgrouped multivariate data under 

conditions of normality and nonnormality, recommendations for subsequent Phase II monitoring, 

and discussion of areas in need of further investigation.    
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2 Measuring Centrality of Multivariate Data Using Data Depth 

 

2.1 Fundamentals of Data Depth 

 A data depth measures how deep (or central) a point px R  is with respect to a certain 

probability distribution F or a given data cloud  1,...,n nX X X  in .pR   A data depth is 

computed by applying one of many known data depth functions to a multivariate data point, thus 

reducing it from a p-vector to a univariate depth value.  Assuming unimodality of the data, a 

large depth value indicates centrality and a low depth value suggests outlyingness of a given 

point.  Depth values are usually normalized to have a range of [0, 1].  The point of maximal 

depth is considered the center of the data and is referred to as the multivariate median.  A data 

depth function may be visualized in p-dimensional space as a series of nested contours around 

the multivariate median, where each contour represents the set of p-dimensional points with 

equal depth values.  Some depth functions force contours of a particular geometric form (e.g. 

elliptical), whereas others allow contours to follow the actual geometric shape of the data.   

 Data depth facilitates the extension of order statistics to higher dimensions, because depth 

values can be ranked from largest to smallest to produce a center-outward ordering of the data.  

The ordered depth values can then be used to detect outliers, which are known in multivariate 

quality control literature as OC points.  Data depth allows multivariate data from any distribution 

to be characterized by the relative position of the data points rather than parameters estimated 
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from the actual data values.  This rank-based perspective makes data depth potentially very 

useful as a distribution-free method of multivariate analysis.    

 The concept of data depth dates as far back as Tukey (1975), but until recently its 

usefulness for statistical quality control has been limited by the tradeoff between statistical 

properties, robustness to nonnormality, and computational complexity.   After a comprehensive 

review of numerous existing depth functions, this research will implement robust Mahalanobis 

depth and Mahalanobis spatial depth because they are computationally feasible in any 

dimension, sufficiently robust to outliers under the assumptions of this research, and satisfy the 

four desirable properties of data depth functions discussed by Zuo and Serfling (2000).   

 

2.2 Desirable Properties of Data Depth Functions 

 For a depth function  ;D Fx  to serve most effectively as an analytical tool, the 

following four properties are required [Liu (1990), Zuo and Serfling (2000)].  Denote the class of 

probability distributions on pR  by F. 

 Property 1:  Affine invariance.  The depth of a point px R  should not depend on the 

underlying coordinate system or, in particular, on the scales of the underlying 

measurements.  This ensures that a point classified as an outlier or nonoutlier in one 

coordinate system is similarly classified in another coordinate system resulting from an 

affine transformation.  Formally stated,    ; ;D F D F AX b XAx b x  holds for any 

random vector X in ,pR  any p x p nonsingular matrix A, and any p-vector b. 

 Property 2:  Maximality at center.  For a distribution having a uniquely defined "center" 

(e.g., the point of symmetry with respect to some notion of symmetry), the depth function 

should attain maximum value at this center.  This supports an accurate center-outward 
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ordering of the data points.  Formally stated,    ; sup ;pD F D F



x

x
R

  holds for any 

FF  having center ,  where F  is the class of distributions on the Borel sets of .pR  

 Property 3:  Monotonicity relative to deepest point.  As a point px R  moves away from 

the "deepest point" (the point at which the depth function attains maximum value; in 

particular, for a symmetric distribution, the center) along any fixed ray through the 

center, the depth at x should decrease monotonically.  This also supports an accurate 

center-outward ordering of the data points.  Formally stated, for any FF  having 

deepest point ,      ; ;D F D F  x x   holds for  0,1 .   

 Property 4:  Vanishing at infinity.  The depth of a point x should approach zero as x  

approaches infinity, where x  is the Euclidean norm of x.  This ensures the data depth 

function is both bounded and nonnegative.  Formally stated,  ; 0D F x  as ,x  

for each .FF  

According to Zuo and Serfling (2000), depth functions which satisfy these four properties are 

particularly well suited for nonparametric multivariate inference, so these properties will serve as 

a useful basis for describing the data depth functions selected for implementation in this 

research.   

 A depth function may be viewed as a location estimator, and as such may be 

characterized by its finite-sample replacement breakdown point (RBP).  First defined by Donoho 

and Huber (1983), the RBP is the minimum fraction of a sample which must be replaced by 

outliers in order to completely ruin an estimate, so a low RBP indicates nonrobustness and a high 

RBP signifies robustness to outliers.  When used to describe a depth function, the RBP is usually 

stated in reference to the multivariate median estimated by a depth function.  The RBP of the 
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multivariate median is important because if the center of the data (as determined by the 

multivariate median) is significantly affected by outliers, the subsequent center-outward ordering 

will likewise be affected and outliers may be masked.   

 Whether a depth function has a high or low RBP is often determined by the robustness of 

any location or scatter estimators used in its construction.  The robustness of such location or 

scatter measures is also described using the RBP.  Precise definitions of RBPs for both location 

and scatter estimators are adapted from Donoho and Huber (1983) and Lopuhaa and Rousseeuw 

(1991).  Let  1,...,n nX X X  be a random sample of size n in .pR   The RBP of a location 

estimator T at ,nX  or the smallest fraction k/n of outliers which can take the resulting estimate 

beyond any bound, is defined as 

      
,

,; min : sup ,
n k

n n n k
kRBP T T T

n

 
    

 X

X X X  (2.2.1) 

where 
,n kX  is a contaminated sample found by replacing k points of nX  with arbitrary values.  

The RBP of a scatter estimator C at nX
 
or the smallest fraction k/n of outliers which can drive 

the largest eigenvalue of the resulting estimate to infinity or the smallest eigenvalue of the 

resulting estimate to zero, is defined as 

       
,

,; min : sup , ,
n k

n n n k
kRBP C M C C

n

 
   

 X

X X X  (2.2.2) 

where 
,n kX  is defined as before,           1 1

1 1, max , ,p pM    
 

  A B A B A B  and 

   1 p  A A  are the ordered eigenvalues of the matrix A.   

 To illustrate the idea of an RBP, consider a sample of size n in 1R  and two common 

location estimators:  the sample mean and the sample median.  The sample mean has an RBP of 
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only 1/n because a single outlier could move the sample mean to infinity, so it is considered a 

nonrobust location estimator.  In contrast, the sample median has the highest possible RBP of 1/2 

because 1/2 of the sample would have to be contaminated with outliers in order to effect a 

corresponding shift in the sample median.  Consequently, the sample median is the preferred 

location estimator in 1R  from a robustness standpoint.   

 In addition to having a high RBP, any location or scatter estimator used in conjunction 

with a data depth function should also be affine equivariant.  From Lopuhaa and Rousseeuw 

(1991), a location estimator T is affine equivariant if    T T  AX b A X b  for any p-vector 

b and any p x p nonsingular matrix A, and a positive definite scatter estimator C is said to be 

affine equivariant if     TC C AX b A X A  for any p-vector b and any p x p nonsingular 

matrix A.  Akin to the concept of affine invariance for data depth functions, affine equivariance 

means that an estimator does not depend on the location, scale, or orientation of the data.  

According to Lopuhaa and Rousseeuw (1991), finding affine equivariant estimators with high 

RBPs is a challenging problem.  However, these properties are of paramount importance to any 

multivariate quality control application, so only estimators possessing these properties will be 

considered in this research. 

 

2.3 Robust Mahalanobis Depth 

 The Mahalanobis depth (MHD) of a point x in pR  with respect to a distribution F in pR  

is defined as 

       
1

2; 1 ,
F

MHD F d F


  
  

x x,  (2.3.1) 
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where  F  and  F  are location and covariance measures defined on F and 

     2 1, 'd   M x y x y M x y  is the Mahalanobis distance [Mahalanobis (1936)] between two 

points x and y in pR  with respect to a positive definite p x p matrix M.  When the distribution F 

is unknown and a random sample  1,...,n nX X X  is used to estimate  F  and   ,F  the 

sample version of the depth function is annotated as  ; ,nMHD Fx  where Fn denotes the 

empirical distribution function of the sample.  MATLAB code for computing Mahalanobis 

depth, based on a modification of S. Mazumder's (personal communication, July 7, 2010) 

algorithm, is provided in Appendix A. 

 The Mahalanobis depth function satisfies the four desirable properties listed by Zuo and 

Serfling (2000) and is relatively easy to compute, but assumes the underlying distribution F is 

elliptical and therefore produces elliptical contours of equal depth.  In addition, as noted by Zuo 

and Serfling (2000), the RBP of the median determined by the Mahalanobis depth function is 

completely dependent on the choice of location and covariance measures  F  and  .F   If 

the classical location and covariance estimators 
nX  and nS  are used, the Mahalanobis depth 

function is nonrobust.  The presence of even a single outlier can contaminate the estimators 
nX  

and ,nS  possibly masking the presence of outliers.  In order to preclude this, Mahalanobis depth 

should be used in conjunction with robust estimators. 

 Mahalanobis depth will be referred to as robust Mahalanobis depth (RMD) when used 

with robust location and scatter estimators.  There are numerous robust estimation methods from 

which to choose.  Dang and Serfling (2010) noted that the computationally complex MCD 

method proposed by Rousseeuw (1984) or the more efficient Fast-MCD method of  Rousseeuw 

and Van Driessen (1999) could be used to produce affine equivariant, robust location and 
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covariance estimates.  As discussed in Chapter 1, the MCD method finds the subset of data that 

has the smallest covariance matrix determinant while covering a user-specified number of points.  

It then uses the sample mean vector and the sample covariance matrix of the points in the subset 

as estimators for location and dispersion.  According to Jensen et al. (2007), MCD estimators 

have a maximum RBP of  1 / 2 / ,n p n     which is approximately 1/2 for reasonable values 

of n and p, when the number of points used is equal to the integer value of  1 / 2.n p    The 

Fast-MCD program is available in many statistical software packages such as R, S-PLUS, and 

SAS.  In addition, a library of MATLAB codes for robust analysis including the Fast-MCD 

program may be obtained from the LIBRA website at 

http://wis.kuleuven.be/stat/robust/Libra.html. 

 Another alternative for finding robust estimators of location and scatter is the blocked 

adaptive computationally efficient outlier nominators (BACON) method of Billor, Hadi, and 

Velleman (2000).  The BACON method is very computationally efficient, even for extremely 

large data sets.  It begins with a small outlier-free subset of the data, and then allows this subset 

to grow rapidly until a stopping criteria is reached.  Two versions of this iterative forward 

selection method are available:  Version 2 which is nearly affine equivariant and has RBPs 

exceeding 40% for various combinations of dimension and sample size, and Version 1 which is 

completely affine equivariant with RBP of approximately 20%.  The Type I error probability () 

for the BACON method can be set to any number between 0 and 1, but  = 0.05 is suggested for 

most applications.  MATLAB code for the BACON method is available from the authors.   

 After several rounds of experimentation, it was decided to use the BACON method (with 

 = 0.10) to estimate the process mean vector and 
1

1
,

m

i

im 

 S S  the scatter estimator for 
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Hotelling's T
2
 chart when data are divided into m subgroups, to estimate the process covariance 

matrix.  The BACON method was chosen as the location estimator because of its excellent 

balance between computational efficiency and robustness.  Although S  is generally not 

considered a robust estimator, it was chosen as the scatter estimator because it is highly robust to 

location shifts (the focus of this research) when process data possess a common within-subgroup 

covariance structure.  Details are provided in Chapter 5.  

 

Example 2.3.1 

 To illustrate an application of the robust Mahalanobis depth function, consider the 

bivariate random sample  5 1 5,..., X XX  from an unknown distribution, where each 

 1 2 , 1,...,5,i X X i X  illustrated in Figure 2.3.1.  The first step in computing RMD for this 

sample is to estimate the mean vector using the BACON method (with  = 0.10) and the 

 

 

Figure 2.3.1  Bivariate Random Sample 
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covariance matrix using Hotelling's T
2
 scatter estimator for subgrouped data.  Because this 

example involves individual as opposed to subgrouped observations, Hotelling's T
2
 scatter 

estimator for subgrouped data reduces to the classical nonrobust sample covariance matrix.  

Under these conditions, the robust BACON scatter estimator may be a better choice, but 

Hotelling's T
2
 scatter estimator is used to maintain consistency with the methodology employed 

throughout the remainder of this research.  Estimates of location and scatter are determined to be: 

 

 

2

1

2

8.14 35.84

17.18 20.45

20.45 75.48

0.09 0.02
.

0.02 0.02

BACON

HT

HT





 
  
 

 
  

 

X

S

S

 

Note that the BACON method excluded  4 16.22 38.77X  from the estimated mean vector 

due to its outlyingness relative to the other points.   

 Using the RMD function,      
1

1; 1 ,n robust robust robustRMD F


     x x X S x X
 
and the 

location and scatter estimates, the robust Mahalanobis depth for  1 11.15 49.63X  is computed 

as follows:  

     

         

   

 

1
1

1 5 1 2 1

1

1

1

; 1

0.09 0.02
1 11.15 49.63 8.14 35.84 11.15 49.63 8.14 35.84

0.02 0.02

0.09 0.02
1 3.01   13.79 3.01   13.79

0.02 0.02

1 2.56

0.28.

BACON HT BACONRMD F










     

        
  

      
  

 



X X X S X X

 



 

32 

 

RMD computations for the four remaining observations in the sample proceed in the same 

manner.   

 The final results, along with corresponding rankings, are provided in Table 2.3.1.  As 

expected, 2X  attains the highest depth value since it is closest to the center of the data set (as 

defined by the BACON mean vector), and 4X  receives the lowest depth value since it is most 

outlying. 

 

i Xi RMD(Xi;F5) rank 

1 11.15 49.63 0.28 4 

2 7.91 36.46 0.98 1 

3 5.42 28.06 0.55 2 

4 16.22 38.77 0.18 5 

5 8.09 29.21 0.54 3 

 

Table 2.3.1  Data Ranked According to RMD 

 

2.4 Mahalanobis Spatial Depth 

 Mahalanobis spatial depth (MSD) [Dang and Serfling (2010)] is an attractive alternative 

to robust Mahalanobis depth because it is only slightly more difficult to compute yet is not 

restricted to elliptical distributions.  This means that the contours of equal depth determined by 

the depth function conform to the geometric structure and shape of the data, as opposed to being 

constrained to an elliptical form.  Mahalanobis spatial depth is based on the concept of spatial 

depth (SPD), defined by Vardi and Zhang (2000) for a point x in pR  with respect to a 

distribution F in pR  as         

      
if

; 1 , where

if .

SPD F E




    
 

0

0 0

x
x

xx S x X S x

x

 (2.4.1) 
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Intuitively, the spatial depth of a multivariate point x is equal to one minus the average of the 

unit vectors from x to all observations in the sample.  Spatial depth is graphically illustrated in 

Figure 2.4.1. 

 

 

Figure 2.4.1  Illustration of Spatial Depth 

 

 The spatial depth function is quickly computable in any dimension, and its multivariate 

median has a very favorable RBP of 1/2 [Vardi and Zhang (2000)].  It also satisfies the 

properties of maximality at center (with some exceptions; see Zuo and Serfling (2000) for 

details), monotonicity relative to deepest point, and vanishing at infinity.  However, it is not 

completely affine invariant.  According to Serfling (2002), the spatial depth function is invariant 

with respect to shift, orthogonal, and homogeneous scale transformations of the data, but not 

heterogeneous scale transformations.  This is sufficient if all variables share the same unit of 

measure, but this is not always the case in a multivariate quality control application so a 

modification of the spatial depth function is needed. 
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 Serfling (2010) showed that a fully affine invariant modification of the spatial depth 

function may be accomplished by standardizing the sample data using any weak covariance 

functional, which is defined as follows [Serfling (2010, p. 9)]:  

"A symmetric positive definite p x p matrix-valued functional  FC  is called a 

weak covariance functional if, for Y = AX + b with any nonsingular  p x p matrix 

A and any vector b,    1  ',Y XF k FC AC A  with  1 1 , , Xk k F A b  a positive 

scalar function of A, b, and FX.  The sample version for a data set 

 1,...,n nX X X  in pR  may be expressed, with n n Y X= A b  and 

 1 1 , , ,nk k A b X  as    1 .n n n nk C AC AY X " 

Application of a weak covariance functional transformation leads to Serfling's (2010) formula 

for computation of Mahalanobis spatial depth (MSD) for a point x in pR  with respect to a 

distribution F in :pR       

       1/2
; 1 .MSD F E F


  Xx S C x X  (2.4.2) 

 The sample version for a point x with respect to a random sample  1,...,n nX X X  in

pR  is 

       1/2
; 1 .n n nMSD F E F


  x S C x X  (2.4.3) 

There are a number of options available for determining the sample weak covariance functional 

 n nC X  but again 
1

1
,

m

i

im 

 S S  the scatter estimator for Hotelling's T
2
 chart when data are 

divided into m subgroups, will be used in this research because of its robustness to location shifts 

under the assumption of constant within-subgroup covariance.  MATLAB code for computing 
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Mahalanobis spatial depth, based on a modification of S. Mazumder's (personal communication, 

July 7, 2010) algorithm, is provided in Appendix B. 

 Example 2.3.1 will be revisited to illustrate an application of the Mahalanobis spatial 

depth function.  Computing MSD begins by multiplying the data set by the negative square root 

of the weak covariance functional  5 5 2HTC SX  as follows: 

  
1/2

1/2* 1/2

5 5 5 5 2

11.15 49.63 0.43 5.74

7.91 36.46 0.24 4.23
17.18 20.45

.5.42 28.06 0.01 3.29
20.45 75.48

16.22 38.77 2.50 4.06

8.09 29.21 0.69 3.29

HT


 

   
   
    
        
    
   
      

C SX X X X
 

Next, the spatial depth formula is applied to each observation in the transformed sample, 

beginning with  *

1 0.43 5.74 .X   The first step in this process is to determine the unit vectors 

from *

1X to every point in the sample:   

 

 
 

 
 

 
 

 
 

* *

1 1

* *

1 1

* *

1 2

* *

1 2

* *

1 3

* *

1 3

* *

1 4

* *

1 4

* *

1 5

* *

1 5

0.00 0.00 by definition

0.20 1.51
0.13 0.99

1.52

0.44 2.44
0.18 0.98

2.48

2.07 1.68
0.78 0.63

2.66

0.26 2.45
0.11 0.99 .

2.46







 




 




  




  



X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

 

Then, the average of the unit vectors from the point *

1X to every point in the sample is computed: 

         
 

0.00 0.00 0.13 0.99 0.18 0.98 0.78 0.63 0.11 0.99
0.12 0.72 .

5

     
   
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Finally, the Euclidean norm of the resulting vector is subtracted from one in order to arrive at the 

Mahalanobis spatial depth value of the point *

1 :X  

     
2 2*

1 5MSD ; 1 0.12 0.72 0.27.F     X  

Computations for the four remaining observations in the sample proceed in the same fashion.  

 The final results, along with corresponding rankings, are listed in Table 2.4.1.  Rankings 

for 1X
 
and 4X  were assigned as indicated because    * *

1 5 4 5MSD ; MSD ;F FX X
 
when 

 *

1 5MSD ; FX  and  *

4 5MSD ; FX  are expanded to four significant digits.  Depth values and 

rankings using the MSD function are somewhat different than those obtained using the RMD 

function.  This is because RMD assumes the data are elliptically symmetric, whereas MSD 

makes no distributional assumptions about the data. 

 

i Xi MSD(Xi
*
;F5) rank 

1 11.15 49.63 0.27 4 

2 7.91 36.46 0.68 1 

3 5.42 28.06 0.35 3 

4 16.22 38.77 0.27 5 

5 8.09 29.21 0.53 2 

 

Table 2.4.1  Data Ranked According to MSD 

 

2.5 Simplicial Depth 

 As discussed in Chapter 1, simplicial data depth played a prominent role in early depth-

based nonparametric multivariate control charting efforts, so a justification for its exclusion from 

this research is necessary.  Introduced by Liu (1990), the simplicial depth (SD) of a point x in 

pR  with respect to a distribution F in pR  is defined as the probability that x belongs to a 

random simplex in ,pR  formally stated as 
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    1 1; ,..., ,F pSD F P S 
    x x X X  (2.5.1) 

where 1 1,..., pX X  are independent observations from F and 
1 1,..., pS 

  X X  denotes the p-

dimensional simplex with vertices 1 1,..., ,pX X  or the set of all points in pR  that are convex 

combinations of 1 1,..., .pX X  

 For a random sample  1,...,n nX X X  from F in ,pR  the sample simplicial depth 

function is derived from this definition to be 

    1 1

1 1

1

1

; ,..., ,
1 p

p

n i i

i i n

n
SD F I S

p 





  

 
      

x x X X  (2.5.2) 

where I is the indicator function.   ; nSD Fx  computes the fraction of the random sample 

simplices containing the point x.  In order to check whether a point x in pR  is inside a simplex 

1 1,..., ,pS 
  X X  the following system of p + 1 equations with p + 1 unknowns must be solved: 

 
1 1 2 2 1 1... p pa a a     x x x x  (2.5.3) 

 
1 2 1... 1.pa a a      (2.5.4) 

Equation (2.5.3) translates into p equations which check to see if the p-dimensional point x can 

be expressed as a linear combination of the p + 1 vertices forming a given simplex 

1 1,..., .pS 
  X X   Equation (2.5.4) represents a constraint that the coefficients 

1 2 1, ,..., pa a a 
 sum 

to one.  According to Liu (1990), if the simplex is nondegenerate, this system of equations has a 

unique solution.  Furthermore, the point x is inside the simplex if and only if the coefficients 

1 2 1, ,..., pa a a 
 are all positive.  For a given point x, this process must be repeated for each of the 
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1

n

p

 
 

 
 possible p-dimensional simplices 

1 1,..., pS 
  X X  formed by the sample 

 1,..., .n n X XX  

 In order to illustrate the simplicial depth function, a simple graphical example is 

provided.  Consider a sample of size n = 5 from a continuous bivariate distribution F, and 

suppose the simplicial depth of a point   is desired.  There are a total of 
 

5 5!
10

3 3! 5 3 !

 
  

 
 

possible triangles that can be formed from the sample, three of which contain the point   as 

illustrated in Figure 2.5.1:   1 2 4 1 3 4 1 4 5, , .X X X X X X X X X   Therefore, the simplicial depth of the 

point   is  5

3
; 0.30.

10
SD F      

 

 

Figure 2.5.1  Illustration of Simplicial Depth 

 

 Liu (1990) showed that the simplicial depth function satisfies the affine invariance, 

vanishing at infinity, maximality at center, and monotonicity properties for continuous 
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distributions.  However, as demonstrated by Zuo and Serfling (2000), the maximality and 

monotonicity properties fail for some discrete distributions, which could be problematic when 

dealing with a finite sample.  As noted by Li and Liu (2004), the exact simplicial depth may be 

computed in any dimension by solving a system of linear equations, but more efficient 

algorithms are needed due to the increased computational complexity in higher dimensions.  

Rousseeuw and Ruts (1996) provided such an algorithm for the bivariate case, but for 

dimensions greater than two this remains an open problem.  Since computational feasibility in 

higher dimensions is an important goal of this research, simplicial depth will not be implemented 

in the multivariate quality control charting method proposed in the following chapter.    
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3 The Multivariate Mean-Rank (MMR) Control Chart 

 

3.1 Introduction 

 A multivariate quality control Phase I analysis begins with a p-dimensional reference 

sample, often from an unknown distribution, which may contain one or more OC points.  

Application of a data depth function to the multivariate reference sample reduces the dimension 

of the reference sample from p to one.  Then a univariate control charting method, with control 

limits adjusted to account for the dependence among successive comparisons of control chart 

statistics to control limits, may be applied to the resulting depth values in order to identify and 

remove the OC points, thus producing an IC reference sample which will serve as a basis for 

Phase II monitoring.   

 Differences between Phase I and Phase II were explained in detail in Chapter 1, but will 

be briefly reiterated here as these differences directly impact the manner in which control limits 

are determined in a Phase I analysis.  In Phase II, the monitoring stage of a control charting 

application, each new observation is compared (through a control chart statistic) to fixed control 

limits.  With data depth-based methods such as those described by Liu (1995), control limits are 

often fixed by using an IC reference sample to approximate the univariate distribution of the 

control chart statistic.  Knowledge of this distribution is used to set control limits designed to 

achieve a certain maximum IC FAP. 
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 In Phase I, the retrospective analysis stage of a control charting application, a fixed 

number of m existing observations (or subgroups) from a reference sample are successively 

compared through control chart statistics to trial control limits which are constantly revised as 

OC points are identified and removed from the reference sample.  This renders successive 

comparisons of control chart statistics to control limits dependent, so control limits must be 

determined by manipulation of the joint distribution of the control chart statistic, simulation of 

the empirical joint distribution of the control chart statistic, or other techniques which account 

for these dependencies.   

 Methods such as these will be necessary to design control limits for the data depth-based 

variation of the X  chart used in this research.  The X  chart for subgrouped data was selected as 

the model for implementation because it is particularly well suited for use in a Phase I analysis.  

The X  chart analyzes only the information from the most recent observation or subgroup.  This 

makes it very effective at detecting single outliers or large shifts in a process which commonly 

occur in Phase I.  According to Montgomery (2005, p. 385), Shewhart-type charts (such as X  

charts) "are extremely useful in Phase I implementation of statistical process control, where the 

process is likely to be OC and experiencing assignable causes that result in large shifts in the 

monitored parameters."   

 On the contrary, other methods such as cumulative sum (CUSUM), exponentially 

weighted moving average (EWMA), and moving average (MA) charts use more information 

from a sample and are therefore typically preferred for Phase II monitoring.  A CUSUM chart is 

used to plot the cumulative sum of deviations of sample values from a specified target value 

[Montgomery (2005, p. 388)].  An EWMA control chart statistic is a weighted average of all 

previous sample means, with the weights declining geometrically [Montgomery (2005, p. 406)].  
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The control chart statistic of an MA chart is a simple unweighted average of a specified number 

of the most recent observations [Montgomery (2005, p. 417)].  Because they accumulate 

information over time, CUSUM, EWMA, and MA charts detect small shifts in a process more 

effectively than X and X  charts, but are slower to respond to large shifts and have less ability to 

detect single outliers.  Furthermore, these charts are based on an implicit assumption that the 

most recent observations are the most important.  This assumption may not be reasonable in 

Phase I when the sample size is fixed and new observations are not being added.  Consistent with 

this perspective, Montgomery (2005, p. 386) characterizes CUSUM and EWMA control charts 

as "excellent alternatives to the Shewhart control chart for Phase II process monitoring 

situations."   

 

3.2 Design of the MMR Chart 

 The chart implemented in this research is the multivariate analog of Jones-Farmer et al.'s 

(2009) Phase I mean-rank chart, which was designed as a distribution-free method of identifying 

an IC reference sample for a univariate process with subgrouped data.  The mean-rank chart is 

similar in construct to the X  chart for univariate subgrouped data, but it uses the standardized 

average subgroup rank rather than the average of raw subgroup data values as a control statistic.  

The use of ranks rather than actual data values renders the method distribution free, since the 

distribution of ranks is the same regardless of the underlying distribution of a univariate process.  

The mean-rank chart's IC and OC performance was shown to be comparable to the traditional X  

chart when a univariate process is normally distributed, and better than the X  chart in many 

scenarios when a univariate process follows a heavy-tailed or skewed distribution. 
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 It will be shown that the mean-rank chart of Jones-Farmer et al. (2009) performs 

similarly well when adapted for use with ranked data depth values corresponding to a 

multivariate process.  The mean-rank chart modified for use with data depth values from a 

multivariate process will be hereafter referred to as the multivariate mean-rank (MMR) chart.  

Like the mean-rank chart, the MMR chart will monitor standardized average subgroup ranks 

which follow the same distribution regardless of the underlying distribution of a multivariate 

process, so it too will be distribution free when a process is IC.   

 In general, any continuous process consisting of two or more correlated variables, usually 

but not always representing quality characteristics, in which data are subgrouped by design or 

can be rationally subgrouped, could potentially benefit from the MMR chart proposed by this 

research.  Since most existing multivariate Phase I methods rely on the assumption of a 

multivariate normally distributed process, the MMR chart will be particularly useful when the 

process under study is clearly nonnormal or lacks sufficient history to verify an assumption of 

normality.  In addition, because the MMR chart is computationally inexpensive, it will be 

especially useful for processes consisting of a large number of variables.  Example applications 

of the MMR chart include, but are not limited to industrial (e.g. chemical, power, mining, steel, 

petroleum, pharmaceutical, electronics, textile, polymer, and automotive), healthcare (e.g. 

clinical trials and patient satisfaction), military (e.g. weapons development, combat operations, 

and soldier performance), and service organizations (e.g. finance, marketing, and customer 

support).   

 An example military application of the MMR chart, and the one which inspired this 

author's interest in quality control, is charting the progress of combat operations in Iraq.  This 

problem rose to the forefront of the military operations research community in early 2007, when 
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the President of the United States ordered the deployment of approximately 40,000 additional 

American troops (known as "The Surge") to reverse a trend of escalating violence in Iraq.  

Because the troop increase was politically polarizing and therefore closely scrutinized by the 

United States Congress, it was imperative that an accurate method of assessing its effectiveness 

be emplaced.  Military analysts thus faced a two-fold problem -- determining a historical data set 

reflecting "normal" violence levels in Iraq and implementing an appropriate method of 

prospectively monitoring future violence levels during "The Surge." 

 In hindsight, the difficult problem of determining a historical data set would have been a 

prime opportunity for application of the MMR chart.  First of all, the overall level of violence in 

Iraq was measured by several correlated variables related to the performance of the US-led 

coalition and Iraqi security forces, the terrorist actions of various insurgent groups in Iraq, and 

the safety of the Iraqi civilian populace.  In addition, early data on violence levels was extremely 

volatile and highly skewed due to Iraq's troubled history as well as immature and often 

inaccurate reporting procedures.  Furthermore, data were collected daily but aggregated into 

weekly subgroups to account for differences in the pace of combat operations on different days 

of the week.  In this situation, the MMR chart would have been a useful tool to establish an IC 

reference sample against which future weekly violence levels during "The Surge" could have 

been compared using a Phase II multivariate control chart. 

 An all-inclusive list of potential applications for the MMR chart is not possible, but it is 

the opinion of this author that it has the potential to serve as a valuable analytical tool for a wide 

range of organizations in diverse settings.  Its ease of execution and flexibility in solving the 

distribution-free Phase I multivariate quality control charting problem for subgrouped data fills 
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in many of the existing gaps in current literature, thus providing a useful methodology for 

researchers and practitioners alike. 

 

3.2.1 The MMR Control Chart Statistic 

 Consider a reference sample consisting of m subgroups of size n from a p-dimensional 

multivariate process in which all variables are continuous.  Let the random vector Xij represent 

the 1 x p row vector containing the jth observation from the ith subgroup.  Treating the 

observations from the m mutually independent samples of size n as a single sample of size

xN n m  as described by Jones-Farmer et al. (2009) and attributed to Kruskal and Wallis 

(1952), a data depth function is applied to each Xij, resulting in a corresponding depth value 

 ; ,ij ND FX  where NF  denotes the empirical distribution function of the pooled reference 

sample.  Next, integer ranks Rij = 1, 2,..., N are assigned to each  ;ij ND FX  in the pooled 

sample of size N, beginning with the largest  ;ij ND FX  and continuing in descending order.  In 

other words, Rij denotes the rank of  ;ij ND FX  when compared to all other depth values in the 

pooled sample of size N, with the largest  ;ij ND FX  receiving rank 1 and the smallest receiving 

rank N.  When the process is IC, the mean of the random variable Rij is  
1

2
ij

N
E R


  and the 

variance is  
  1 1

12
ij

N N
Var R

 


 
[Jones-Farmer et al. (2009, p. 306)].   

 In the event of a tie, the midrank method is used as a correction without affecting the 

mean and variance of the random variable Rij [Jones-Farmer et al. (2009, p. 306)].  According to 

the midrank method, each tied depth value receives the average of the ranks they would receive 
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if the ties were broken [Lehman (2006, p. 18)].  For example, suppose the four depth values 

{0.93, 0.67, 0.67, 0.22} are to be ranked in descending order.  It is clear that the largest depth 

value (0.93) should be assigned rank 1 and the smallest depth value (0.22) rank 4, but the 

assignment of ranks 2 and 3 to the equivalent depth values (0.67, 0.67) is ambiguous.  In order to 

preserve the equality of these two depth values in terms of their ranks, they will both be assigned 

the average of the middle two ranks.  In this example, the duplicate depth values will both be 

assigned rank = (2+3)/2 = 2.5.  Thus, the set of ranks corresponding to the four depth values is 

{1, 2.5, 2.5, 4}. 

  Now consider the average of the ranks in each subgroup i, denoted by  

 
1

.

n

ij

j

i

R

R
n





 (3.2.1) 

If a process is IC, the ranks should be distributed evenly throughout the m subgroups, resulting in 

approximately equal iR  for each subgroup.  For an IC process, the mean and variance of iR  are, 

respectively [Bakir (1989, pp. 764-765)]: 

  
1

2
i

N
E R


  (3.2.2) 

  
  1

.
12

i

N n N
Var R

n

 
  (3.2.3) 

Invoking the central limit theorem, the random variable representing the standardized subgroup 

mean rank, 

 
 

 
,

i i

i

i

R E R
Z

Var R


  (3.2.4)  
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follows an approximate standard normal distribution when n is sufficiently large [Jones-Farmer 

et al. (2009, p. 306)], although small subgroup sizes (e.g. n = 4, 5, or 6) are more likely in most 

quality control applications [Montgomery (2005, p. 196)].  To create the MMR control chart for 

use in Phase I, the control statistic Zi in Equation (3.2.4) is plotted for each of the m subgroups.   

 

3.2.2 Empirical Control Limits for the MMR Chart 

 As opposed to both lower and upper control limits required for the univariate mean-rank 

chart of Jones-Farmer et al. (2009), the MMR chart has only an upper control limit.  This is 

because with the MMR chart, observations are ranked based on data depth values rather than raw 

data values.  An extremely negative control chart statistic Zi occurs when a subgroup consists of 

observations having extremely high depth values and correspondingly low ranks.  This indicates 

near-perfect centrality with respect to the p-dimensional data cloud, and is therefore no cause for 

concern.  Conversely, an extremely positive control chart statistic Zi is realized when a subgroup 

of observations is located far away from the center of the p-dimensional data cloud, resulting in 

extremely low depth values and correspondingly high ranks.  Such a subgroup indicates a 

potential OC condition which requires further investigation.   

 For each m, n combination of interest, Monte Carlo simulation of the empirical joint 

distribution of the standardized subgroup mean rank was used to determine the MMR chart upper 

control limits in Table 3.2.1.  Recall that the joint distribution is required because successive  

comparisons of control chart statistics to control limits are dependent in Phase I.  Limits are 

tabled for a maximum overall IC FAP of 0.10, where the FAP is the probability that the Phase I 

chart with m subgroups of size n signals at least once when the process is IC.  Due to the discrete 

nature of the mean-rank distribution as well as simulation noise, simulated FAP values do not  
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Table 3.2.1  Empirical Control Limits for the MMR Chart 

 

precisely match the desired FAP values.  Conservative limits were chosen in order to ensure the 

simulated FAP came as close as possible to the desired FAP without exceeding it.  A more 

comprehensive table of limits for various combinations of m, n, and FAP is provided in 

Appendix C, and MATLAB code for simulating additional limits is provided in Appendix D. 

 The general construct of the simulation algorithm is as follows: 

1) Establish a trial UCL to attain the desired overall IC FAP for a given (m, n) 

combination.  

2) Simulate N = m x n random numbers from a Uniform(0, 1) distribution.  Assign each 

number a rank from largest (rank = 1) to smallest (rank = N).  Divide the resulting 

ranks into m subgroups of size n. 

3) Compute the average rank iR  for each subgroup.  Determine the corresponding 

standardized subgroup mean rank Zi. 

4) Compare each of the m standardized subgroup mean ranks, Zi, i = 1,...,m, to the trial 

UCL.  Increment a counter by one if any Zi exceeds the UCL. 

5) Repeat steps 2 - 4 a total of 100,000 times. 

6) Determine the empirical FAP = (final counter value)/100,000. 

UCL Simulated FAP

20 5 2.476 0.0941

50 5 2.702 0.0983

100 5 2.854 0.0982

150 5 2.932 0.0983

200 5 2.985 0.0981

Desired FAP = 0.10
m n
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7) If the empirical FAP exceeds the desired FAP, increase the UCL.  If the empirical 

FAP is lower than the desired FAP, decrease the LCL. 

8) Reset the counter to zero. 

9) Repeat steps 2 - 8 until the desired overall IC FAP is achieved. 

10) Record m, n, the desired FAP, the empirical FAP, and the UCL. 

 

3.2.3 Analytical Control Limits for the MMR Chart 

 Prior to simulating empirical limits for the MMR chart, analytical control limits were 

attempted using the joint distribution of the standardized mean ranks.  As reported by Jones-

Farmer et al. (2009), the central limit theorem suggests that the individual standardized mean 

ranks follow a standard normal distribution for sufficiently large subgroup size n.  From Bakir 

(1989), the joint distribution of the standardized mean ranks is asymptotically multivariate 

normal with correlation matrix 

12 1

21 2

x

1 2

1

1
,

1

m

m

m m

m m

R

 

 

 

 
 
 
 
 
 

 where 
 

1

1
ij

m






 when 

subgroup sizes are equal.  Using a zero mean vector and the correlation structure given by Rm x m, 

asymptotic control limits for the MMR chart were numerically determined through a 

modification of Genz' (2011) MATLAB algorithm for evaluating the multivariate normal 

distribution.  Control limits were computed to achieve a maximum IC FAP of 0.10. 

 Next, the IC performance of the multivariate normal theory control limits was evaluated 

by simulating 10,000 applications of the MMR chart using robust Mahalanobis depth to IC 

bivariate normally distributed data with zero mean vector and identity covariance matrix, without 
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loss of generality.  Multivariate normal theory control limits and corresponding empirical IC 

FAPs for m = 20, 50(50)200 subgroups of size n = 5(5)20 are recorded in Table 3.2.2. 

 

 
 

Table 3.2.2  Simulated IC FAPs Using Normal Theory Limits 

 

 Multivariate normal theory control limits produced empirical IC FAPs which are close to 

the desired IC FAP of 0.10 for large n but unacceptably low for small n.  This is because small 

subgroup sizes n are insufficient to ensure the individual standardized mean ranks Zi follow a 

standard normal distribution in accordance with the central limit theorem, thus preventing the 

joint distribution of the standardized mean ranks from achieving asymptotic multivariate 

normality.  This can be seen graphically in Figure 3.2.1 depicting Q-Q plots of simulated 

MVN UCL Simulated FAP

20 5 2.565 0.0752

20 10 2.565 0.0822

20 15 2.565 0.0881

20 20 2.565 0.0873

50 5 2.865 0.0485

50 10 2.865 0.0766

50 15 2.865 0.0889

50 20 2.865 0.0861

100 5 3.077 0.0296

100 10 3.077 0.0692

100 15 3.077 0.0831

100 20 3.077 0.0837

150 5 3.195 0.0199

150 10 3.195 0.0602

150 15 3.195 0.0744

150 20 3.195 0.0789

200 5 3.277 0.0131

200 10 3.277 0.0567

200 15 3.277 0.0725

200 20 3.277 0.0751

Desired FAP = 0.10
m n
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standardized mean ranks for m = 50 and n = 5(5)20.  The individual Q-Q plots show a clear 

departure from normality when m = 50 and n = 5 (top left), and increasing normality as n is 

raised to 20 (bottom right).   

 

  

  
 

Figure 3.2.1  Q-Q Plots of Zi for m = 50, n = 5(5)20 

 

 Table 3.2.2 also illustrates that MMR chart performance using multivariate normal theory 

control limits worsens with increasing m.  This is easily understood if a Phase I analysis is 

viewed as the partitioning of a desired overall IC FAP among m simultaneous individual 

comparisons of control chart statistics to an UCL.  A larger m means that a smaller portion of the 

overall IC FAP is allocated to each of the m individual comparisons.  This can be visualized as 
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the UCL being pushed progressively farther into the upper tail of the standard normal 

distribution of each individual control chart statistic.  As this happens, the effects of any 

departures of the distribution of the individual control chart statistic from standard normality will 

be exacerbated.  This in turn will lead to undesired empirical FAPs for the MMR chart using 

multivariate normal theory control limits.   

 Multivariate normal theory control limits could be used to provide conservative limits for 

a very small number of subgroups or very large subgroup sizes, but empirical control limits are 

much more consistent in maintaining the desired IC FAP for the range of m and n considered in 

this research.  An alternative to the "one size fits all" multivariate normal theory control limits 

for the MMR chart is to enumerate the distribution of the standardized mean rank for each 

combination of number of subgroups m and subgroup size n, and use this information to derive 

the corresponding joint distribution of the standardized mean ranks.  However, this method is 

clearly impractical for the number of subgroups considered in this research, again supporting the 

use of empirically determined control limits for the MMR chart.   

 

3.3 Example Application of the MMR Chart 

 In order to fully understand the workings of an MMR chart, a simple example is 

provided.  Consider the first subgroup of a bivariate process consisting of m = 50 subgroups of 

size n = 5 from an unknown distribution F.  Let the random vector Xij represent the 1 x 2 row 

vector containing the jth observation from the ith subgroup, where i = 1 and j = 1 - 5.  The data, 

along with corresponding robust Mahalanobis depth values and ranks, are listed in Table 3.3.1.   
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i j Xij RMD(Xij;F250) Rij 

1 1 5.1880 2.4570 0.3311 197 
1 2 0.7332 4.7681 0.2904 218 

1 3 3.3695 4.3434 0.4533 127 

1 4 4.5465 4.7078 0.3258 201 

1 5 3.0102 3.8656 0.5677 61 

 

Table 3.3.1  MMR Chart Data for the First Subgroup of a Bivariate Process  

 

 Note that Rij reflects rankings with respect to the pooled reference sample of size N = 

250.  The average of the ranks in the first subgroup is 
 

1

197 218 127 201 61
160.80.

5
R

   
     

Using Equations (3.2.2) and (3.2.3),  
1 250 1

125.50
2 2

i

N
E R

 
    and 

 
     

 

1 250 5 250 1
1024.92.

12 12 5
i
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n

   
     Using Equation (3.2.4), the 

standardized mean rank for the first subgroup is 
 

 
1

1

160.80 125.50
1.103.

1024.92

i

i

R E R
Z

Var R

 
     

Given a desired IC FAP of 0.10, the MMR chart UCL for m = 50, n = 5 is found from  

Table 3.2.1 to be 2.702.  Since Z1 is less than 2.702, it is concluded that the first subgroup is IC.  

In order to complete the MMR chart, this process is repeated for subgroups i = 2 - 50.  Any Zi 

exceeding the UCL will have its corresponding subgroup Xi. removed from the sample if no 

assignable cause is found, thus establishing the IC reference sample for use in Phase II. 

 Using the control limits in Table 3.2.1, the next step is to compare the performance of the 

MMR chart using both robust Mahalanobis depth and Mahalanobis spatial depth to the best 

multivariate parametric Phase I alternative.  All control charts will be tested on normal, heavy-

tailed, and skewed multivariate data, with both isolated and sustained shifts of the mean.  Details 

concerning the testing and evaluation process are provided in Chapter 4.    
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4 MMR Chart Performance Assessment Methodology 

 

4.1 Introduction 

 To assess the effectiveness of the MMR chart as a distribution-free method of 

establishing an IC reference sample, its performance will be compared to an equivalent Phase I 

parametric multivariate method.  If there were any other multivariate nonparametric or 

distribution-free Phase I methods in existence, they would also yield useful comparisons.  

However, the MMR chart appears to be the first in this class of control charts. 

 Because the MMR chart is a Shewhart-type chart, it must naturally be compared to 

another Shewhart-type chart for subgrouped multivariate data.  From the literature review in 

Chapter 1, there is no clear consensus on the preferred Phase I parametric method.  Because the 

original Hotelling's T
2
 chart is the most common baseline performance measure for subsequently 

developed Phase I parametric multivariate methods, it will likewise be used as a basis of 

comparison for the distribution-free MMR chart.   

 

4.2 Establishing Baseline Performance Using Hotelling's T
2
 Chart 

 Constructing Hotelling's T
2
 chart for a reference sample consisting of m subgroups of size 

n from a p-dimensional multivariate process requires first calculating unbiased estimates of the 

mean vector and covariance matrix.  From Montgomery (2005, p. 495) the classical estimators  

 



 

55 

 

are  

 
1

1 m

i

im 

 X X  (4.2.1) 

 

and 

 
1

1
,

m

i

im 

 S S  (4.2.2) 

where X  represents the average of the m subgroup mean vectors and S  represents the average 

of the m subgroup covariance matrices.  Using these estimated parameters, the control statistic is 

computed as 

    12 .i iiT n


  X X S X X  (4.2.3) 

The control statistic for each subgroup is compared to the Phase I UCL given by Alt's (1976) 

formula: 

    
  

 
2 , , 1

1 1
, , , where , , .

1
p mn m pT

p m n
UCL C m n p F C m n p

mn m p
   

 
 

  
 (4.2.4) 

In Equation (4.2.4) above, 
, , 1p mn m pF   

 represents the (1 - )th percentile of the F distribution 

with p and (mn - m - p + 1) degrees of freedom, and  is the desired IC FAP for each individual 

subgroup.  In order to achieve a desired overall IC FAP for all m subgroups in a reference data 

set,  must be set as follows: 

  
1/

1 1 ,
m

overall     (4.2.5) 
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where overall is the desired overall IC FAP.  For example, for a reference sample consisting of m 

= 50 subgroups and a desired overall IC FAP of 0.05,  
1/50

1 1 0.05 0.001025      would be 

used in Equation (4.2.4) to determine the Phase I UCL. 

 Alt's (1976) formula given in Equation (4.2.4) was derived using the IC distribution of 

the T
2
 statistic given in Equation (4.2.3) under the assumption of multivariate normally 

distributed data.  Therefore, it is not appropriate for use when the distribution of the data is 

nonnormal because it will not result in the desired IC FAP.  Having a common baseline level of 

performance is essential to a valid comparison of OC performance among all charts considered, 

so control limits for Hotelling's T
2
 chart must be empirically adjusted when the data under study 

are nonnormally distributed.  This will be accomplished using an algorithm similar to the one for 

determining MMR empirical control limits detailed in Chapter 3.  Hotelling's T
2
 empirical 

control limits used in this research are provided in Appendix E, and the MATLAB code used to 

determine them is provided in Appendix F.   

 

4.3 Simulating Symmetric and Skewed Process Distributions 

 The MMR and Hotelling's T
2
 charts will be tested on IC as well as mean-shifted data 

from normal, heavy-tailed, and skewed distributions with dimensions p = 2, 5, and 10.  Due to 

affine equivariance of the mean vector and covariance matrix, multivariate normal data will be 

generated without loss of generality from the standard multivariate normal distribution, Np(0, I), 

where 0 is a p-dimensional mean vector of all zeros and I is a p x p identity matrix.  Heavy-tailed 

data will be represented by the multivariate t distribution, also using Ip x p as the covariance 

matrix.  Variations of the multivariate t distribution will include both 10 and 3 degrees of 

freedom corresponding to increasingly fatter tails.  Finally, skewed data will come from a 
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multivariate lognormal distribution, standardized to have zero mean vector and identity 

covariance matrix.  The data will be simulated using MATLAB code from the MathWorks 

Statistics Toolbox at http://www.mathworks.com/help/toolbox/stats/.  A summary of all planned 

experiments is illustrated in Table 4.3.1.  

 

 
 

Table 4.3.1  Summary of Planned Experiments 

 

 

 

4.4 Evaluating In-Control Performance 

 The MMR and Hotelling's T
2
 charts will first be evaluated based on their ability to 

maintain a desired IC FAP for subgrouped data from multivariate normal, multivariate t, and 

multivariate lognormal distributions.  It is expected that only the MMR chart, because it is 

distribution-free, will be able to maintain the desired IC FAP across all combinations of sample 

and subgroup sizes.  Furthermore, IC performance of the MMR chart should be invariant to the 

choice of depth function used.   

 The algorithm for these simulations, which will be performed in MATLAB, is as follows: 

1) Simulate m subgroups of size n from a p-dimensional normal, t, or lognormal 

distribution. 

 no shift 2 5 10 2 2 5 10 2 5

 isolated shift 2 5 10 2 2 5 10 2 5

 5/15/30% sustained shifts 2 10 2 10 2 5

 no shift 2 5 10 2 2 5 10 2

 isolated shift 2 5 10 2 2 5 10 2

 5/15/30% sustained shifts 2 10 2 10 2

 no shift 2 2 2 5 2 5

 isolated shift 2 2 2 5 2 5

 5/15/30% sustained shifts 2 2 5

Number/Size of Subgroups:  m  = 20, 50(50)200; n  = 5

Process Distribution (in p  = 2, 5, or 10 Dimensions):

normal t (10) t (3) lognormal

Hotelling's T
2
 Chart

MMR-RMD Chart

MMR-MSD Chart

Control Chart Shift Type
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2) Establish the UCL for the MMR or Hotelling's T
2
 chart.   

3) Compute control chart statistics for each subgroup and compare to the UCL.  If at 

least one control chart statistic exceeds the UCL, increment a counter by one. 

4) Repeat steps 1 - 3 a total of 10,000 times. 

5) Estimate the overall IC FAP = (final counter value)/10,000. 

This process will be repeated for all desired combinations of m, n, p, process distribution, and 

control chart.  MATLAB algorithms for simulating IC performance for the MMR and Hotelling's 

T
2
 charts are provided in Appendix G and Appendix H, respectively. 

 

4.5 Evaluating Out-of-Control Performance 

 Next, the MMR and Hotelling's T charts will be evaluated in terms of their ability to 

detect isolated and sustained shifts of the mean.  An isolated shift of the mean is defined as a 

location shift occurring in a single subgroup of size n.  Because the probability of detection is 

independent of the location of a shift within a data set, isolated shifts will take place in the first 

subgroup of each simulated data set without loss of generality.  A sustained shift of the mean is 

defined as a location shift occurring in a certain percentage of the pooled sample of size N.  

Sustained shift percentages tested will include 5%, 15%, and 30%, and will take place at the end 

of each data set.  Sustained shifts could be induced anywhere in the data set without loss of 

generality, but being at the end is most logical since it is unlikely that a process would go from 

an OC state back to an IC state without outside intervention. 

 The magnitude of the various shifts imposed will vary depending on the scenario being 

evaluated.  This is because both the dimension of the data and the type of shift have a direct 

impact on the probability of a shift being detected.  In general, all shifts are easier to detect in 
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lower dimensions than in higher dimensions, and sustained shifts are easier to detect than 

isolated shifts.  The magnitude of a shift will be measured by the noncentrality parameter  

 
1 ,      (4.5.1) 

where the process mean vector shifts from o  to o    and   is the process covariance matrix.  

Because the direction of a shift does not affect control chart performance with elliptically 

symmetric distributions, shifts will be fixed in the direction of  1 1,0,...,0e  without loss of 

generality [Stoumbos and Sullivan (2002), p. 265].  Shift directions for skewed distributions will 

be discussed in Section 4.6. 

 OC performance for a control chart will be quantified in terms of the empirical alarm 

probability (EAP), where EAP is defined as the estimated probability of a chart signaling at least 

once in an OC situation.  Ideally, a control chart's EAP should be 100% for all scenarios 

involving induced location shifts.  It is hoped that the MMR chart's performance will match that 

of Hotelling's T
2
 chart for normally distributed data and surpass the T

2
 chart's performance for 

nonnormally distributed data.   

 The algorithm for simulating OC performance is slightly different than the IC case, and is 

detailed as follows: 

1) Simulate m subgroups of size n from a p-dimensional normal, t, or lognormal 

distribution. 

2) Add isolated or sustained location shifts to the desired subgroups. 

3) Establish the UCL for the MMR or Hotelling's T
2
 chart.  

4) Compute control chart statistics for each subgroup and compare to the UCL.  If at 

least one control chart statistic exceeds the UCL, increment a counter by one. 

5) Repeat steps 1 - 4 a total of 10,000 times. 
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6) Estimate the EAP = (final counter value)/10,000. 

This process will be repeated for all combinations of m, n, p, process distribution, shift type, and 

control chart.  MATLAB algorithms for simulating OC performance for the MMR and 

Hotelling's T
2
 charts are also provided in Appendix G and Appendix H, respectively. 

 

4.6 Evaluating Out-of-Control Performance with Skewed Data 

 Control chart performance with skewed distributions will be assessed using multivariate 

lognormally distributed data, simulated using the transformational relationship between the 

multivariate normal and the multivariate lognormal distributions.  A p-dimensional multivariate 

lognormal random vector X can be represented as  1 2, ,..., ,pYY Ye e eX  where Y is multivariate 

normal  N ,p Y Y  [Law and Kelton (2000), p. 382].  Applying this transformation using a 

multivariate normal random vector Y with mean vector  1 2, ,...,Y p     and covariance 

matrix Y  
with 

ij the (i,j)th entry, the resulting multivariate lognormal random vector X has 

the following properties [Law and Kelton (2000), p. 382]:  

    /2i ii

iE X e
 

  (4.6.1) 

      2
1i ii ii

iV X e e
  

   (4.6.2) 

     2
, 1 .

ii jj
i j

ij

i jCov X X e e

 
 



 
   

    (4.6.3) 

 Simulating multivariate lognormal observations is therefore simply a matter of generating 

 1 2, ,..., pY Y YY ~  N ,p Y Y   and then evaluating  1 2, ,..., .pYY Ye e eX   Without loss of 
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generality, this research will use Y ~  ,pN 0 I  to create multivariate lognormal data X having the 

following properties: 

   1/2 1.6487iE X e   (4.6.4) 

    1 4.6708iV X e e    (4.6.5) 

  , 0.i jCov X X   (4.6.6) 

In order to maintain consistency with other simulated distributions used in this research, the 

multivariate lognormal data X will be standardized using   1/2 ,i i X X

 X X    where X  is a 1 

x p mean vector with all entries equal to 1.6487 and X  is a p x p covariance matrix with 

diagonal entries equal to 4.6708 and zeros everywhere else, resulting in X ~ lognormal (0, I).  

 Once the multivariate lognormal data are simulated, isolated and sustained shifts will be 

induced to evaluate OC performance.  As noted by Stoumbos and Sullivan (2002, p. 265), while 

the direction of a shift has no effect on control chart performance with elliptically symmetric 

distributions, it can substantially affect a control chart's detection power with skewed 

distributions.  One method of handling this is to focus on the shift direction having the most 

dramatic effect on control chart performance, but this is a difficult task because there are an 

infinite number of shift directions from which to choose in a multivariate setting [Stoumbos and 

Sullivan (2000), p. 267].  Even if the most impactful shift direction could be determined, its odds 

of occurring in practice are unknown.  As pointed out by J. Sullivan (personal communication, 

February 2, 2011), there is no guidance found in the literature regarding the likelihood of certain 

shift directions occurring, so a better approach is to assume that all shift directions are equally 

probable.  Under this assumption, as done by Stoumbos and Sullivan (2000), the effects of shift 

directions randomly generated over a uniform distribution will be averaged.  
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 The shift directions will be generated using an algorithm  proposed by Johnson (1987, p. 

127), who stated that a p-dimensional shift can be created by first generating p independent 

standard normal random variates 
1 2, ,..., .pZ Z Z   Next, the shift vector   which follows a uniform 

distribution on the p-sphere is computed using 

 
 2 2

1

, 1,2,..., .
...

i
i

p

Z
i p

Z Z
  

 
 (4.6.7) 

A different   will be generated for each of the 10,000 iterations of the simulation, and the results 

will be averaged at the conclusion of the simulation.  In two dimensions, this method of creating 

shift vectors is analogous to randomly generating a series of unit vectors which emanate from the 

origin and terminate along the boundary of the unit sphere. 

 As with elliptically symmetric distributions, the magnitude of the various shifts imposed 

will be measured by the noncentrality parameter given in Equation (4.5.1), where the 

multivariate lognormal process mean vector shifts from o  to o    and   is the asymptotic 

covariance matrix of the multivariate lognormal process.  With   as defined by Equation (4.6.7) 

and   equal to the identity matrix,  always equals one.  In order to induce shifts corresponding 

to 1,   the shift vector   resulting from Equation (4.6.7) must be multiplied by the desired  

thus shortening or lengthening the unit vector to achieve the desired . 

 For example, suppose it is desired to induce a shift of size = 3 into a bivariate 

lognormal process with identity covariance matrix.  Using Equation (4.6.7), a possible shift 

vector is  -0.7468, 0.6651 .   If this shift vector is applied directly to the process without any 

scaling, the magnitude of the resulting shift is 
1 1.       However, using 

 3 -2.2404,1.9953  produces the desired result of 
13 3 3.       This methodology 
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will be employed for all simulations involving OC conditions in multivariate lognormally 

distributed data.  Once all simulations have been completed and results analyzed, 

recommendations will be provided on how best to proceed in a Phase I multivariate quality 

control scenario when a process distribution is normal, heavy-tailed, or skewed.   
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5 MMR Chart Performance Comparisons 

 

5.1 Introduction 

 MMR chart performance comparisons to Hotelling's T
2
 (HT2) chart were focused 

primarily on m = 20, 50(50)200 subgroups of size n = 5.  The number of subgroups was chosen 

to be relatively small because a Phase I analysis often occurs early in the life of a process when 

very little historical data is available.  A subgroup size of five was chosen because Jones-Farmer 

et al. (2009) showed that this is the minimum subgroup size necessary for reliable univariate 

mean-rank chart performance, and further testing using the MMR chart confirmed this to be true 

in the multivariate case as well.  Limited experimentation was conducted using subgroup sizes n 

= 5(5)20 in order to demonstrate the enhancing effect of larger subgroup sizes on MMR chart 

performance.  In all simulations, the desired IC FAP was set to 0.10, but the results can be 

generalized to other common IC FAPs such as 0.05. 

 

5.2 MMR Chart Performance with Symmetric Distributions 

 Symmetric distributions tested include the multivariate normal, t(10), and t(3) 

distributions.  When evaluating IC performance of Hotelling's T
2
 chart, Alt's (1976) Phase I UCL 

was used for all process distributions.  For OC assessments, Alt's (1976) Phase I UCL was used 

for the multivariate normal case only, and empirically adjusted UCLs were used for the t(10) and 

t(3) cases.  RMD was the primary depth function used in the MMR chart because it is well-suited 
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for elliptically symmetric distributions and one of the simplest depth functions to compute, but 

MSD was implemented in a few cases for comparison purposes.  Simulation results show that 

when data are normally or nearly normally distributed, a normal-theory method such as 

Hotelling's T
2
 chart is preferred.  However, when data are heavy-tailed as with the t(3) 

distribution, the distribution-free MMR chart is usually a superior alternative. 

 

5.2.1 In-Control Performance with Symmetric Distributions 

 The fundamental advantage of a distribution-free control chart is its ability to maintain a 

desired IC FAP for any process distribution.  Accordingly, the MMR chart using both RMD and 

MSD was first compared to Hotelling's T
2
 chart using IC bivariate normal, t(10), and t(3) 

processes with a desired IC FAP of 0.10.  For these comparisons, Hotelling's T
2
 chart was 

constructed using only Alt's (1976) Phase I UCL given by Equation (4.2.4), adjusted for the 

number of subgroups using Equation (4.2.5), in order to demonstrate the effects of applying a 

normal-theory method to both normally and nonnormally distributed data.   

 As indicated in Figure 5.2.1, Hotelling's T
2
 chart maintains the desired IC FAP for the 

bivariate normal process, but becomes progressively worse as the distribution deviates from 

normality and the number of subgroups is increased.  For a bivariate t(3) process, the IC FAP for 

Hotelling's T
2
 chart using Alt's (1976) Phase I UCL ranges from approximately 30% when m = 

20 to over 90% when m = 200.  This is why, for OC assessments with nonnormally distributed 

data, the UCL for Hotelling's T
2
 chart  must be empirically tailored to achieve the desired IC 

FAP of 0.10 for each (m, n) combination and process distribution studied.  Although this is 

impracticable outside of a simulation environment because it requires knowing the exact process 

distribution, it is necessary in order to ensure a common basis of comparison for all charts 
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included in OC performance comparisons.  The MMR chart, on the other hand, consistently 

maintains the desired IC FAP for all process distributions and any number of subgroups.  This 

holds true regardless of the data depth measure used, so no adjustments to the MMR chart UCLs 

given in Table 3.2.1 are necessary.   
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Figure 5.2.1  Empirical IC FAPs for Symmetric Bivariate Distributions 
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 Figure 5.2.2 shows the effects of dimensionality on control chart performance using a t(3) 

process.  Again, the MMR chart consistently maintains the desired IC FAP for any number of 

subgroups m and any dimension p.  Hotelling's T
2
 chart becomes distinctly worse in higher 

dimensions, reaching empirical IC FAPs near 100% for all but the smallest number of subgroups 

considered when p = 10.  These results show that the MMR chart is distribution free in any 

dimension when applied to elliptically symmetric data using RMD, MSD, or presumably any 

other depth function with similar statistical properties.  A complete table of IC performance data 

for symmetric distributions is provided in Appendix I. 
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Figure 5.2.2  Empirical IC FAPs for t(3) Processes in Higher Dimensions 

  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
m

p
ir

ic
a

l 
F

A
P

(m,n)

Bivariate t(3) Process

HT2

RMD

MSD

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
m

p
ir

ic
a

l 
F

A
P

(m,n)

t(3) Process, p = 5

HT2

RMD

MSD

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
m

p
ir

ic
a

l 
F

A
P

(m,n)

t(3) Process, p = 10

HT2

RMD

MSD



 

70 

 

5.2.2 Isolated Shifts of the Mean with Symmetric Distributions 

 MMR-RMD and Hotelling's T
2
 chart performance for isolated shifts in two dimensions 

for (m, n) combinations (20, 5), (100, 5), and (200, 5) are shown in Figure 5.2.3.  Hotelling's T
2
 

chart using Alt's (1976) Phase I limits is superior in the case of bivariate normally distributed 

data, as expected.  For slightly nonnormal data following a bivariate t(10) distribution, 

Hotelling's T
2
 chart with empirically adjusted UCL maintains a smaller but still notable 

advantage over the MMR-RMD chart.  For heavy-tailed process data following a bivariate t(3) 

distribution depicted in the bottom panel of Figure 5.2.3, however, the MMR-RMD chart is both 

significantly better and much more consistent than Hotelling's T
2
 chart in terms of EAP.  The two 

control charts are roughly equivalent when m = 20, but the performance of Hotelling's T
2
 chart 

declines dramatically as m is increased to 200, whereas MMR chart performance is far less 

affected when the number of subgroups is increased.  For example, in the case of bivariate t(3) 

data with an isolated shift of magnitude  = 6, EAPs for m = 20, 100, and 200 are approximately 

100% using the MMR-RMD chart as compared to 100%, 92%, and 46%, respectively, for 

Hotelling's T
2
 chart with empirical UCL. 
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Figure 5.2.3  Control Chart Performance on Symmetric Bivariate Data with an IS 
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 MMR chart performance for isolated shifts is relatively invariant to the choice of depth 

function.  Figure 5.2.4 shows the application of an MMR chart using both RMD and MSD to a 

bivariate t(3) process with (m, n) combinations (20, 5) and (200, 5).  The MMR-RMD chart has a 

slight advantage over the MMR-MSD chart for m = 20 subgroups, but the two charts are nearly 

identical in terms of EAP when m = 200.  Repeating this analysis using other symmetric 

distributions yielded similar results in both two and five dimensions.   

 

 

Figure 5.2.4  MMR-RMD/MSD Chart Performance on t(3) Data with an IS 
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Figure 5.2.5  Control Chart Performance on t(3) Data with an IS in Higher Dimensions 
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contamination level, MMR-RMD chart performance matches Hotelling's T
2
 chart performance 

for m = 20 and surpasses it by an increasing margin as m is increased from 50 to 200.  Similar 

trends are observed for a 15% level of contamination, but m   50 subgroups are necessary for 

MMR-RMD chart performance to exceed that of Hotelling's T
2
 chart.  When the level of 

contamination is raised to 30%, m ≥ 150 subgroups are necessary for the MMR-RMD chart to 

consistently outperform Hotelling's T
2
 chart.    

 For each sustained shift scenario considered, MMR-RMD chart performance is 

remarkably consistent when at least 50 subgroups are present.  For example, in the 15% 

sustained shift scenario depicted in the middle panel of Figure 5.2.6, the lines representing 

MMR-RMD chart performance for m = 50, 100, and 200 subgroups are nearly coincident.  On 

the other hand, Hotelling's T
2
 chart performance declines rapidly as the number of subgroups is 

increased.  However, the fact that the overall detection power of the MMR chart declines as the 

level of contamination is raised from 5% to 30% is counterintuitive, as one would expect the 

opposite to hold true.  This is shown in Section 5.5 to be an unavoidable consequence of a rank-

based control charting method. 
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Figure 5.2.6  Control Chart Performance on Increasingly Contaminated Bivariate t(3) Data 
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 For the MMR chart, RMD is a more effective depth measure than MSD in the presence 

of a sustained mean shift in a bivariate t(3) process.  MMR-MSD chart detection power lags only 

slightly behind MMR-RMD chart performance under a 5% contamination level, but falls farther 

behind when the contamination is increased to 15% and becomes unacceptably low at the 30% 

contamination level.  This effect is illustrated in Figure 5.2.7.  Based on these results, RMD is 

clearly the preferred depth measure for the MMR chart when data are elliptically symmetric. 

 

 

Figure 5.2.7  MMR-RMD/MSD Chart Performance on Bivariate t(3) Data with a 30% SS 
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Figure 5.2.8  Control Chart Performance on t(3) Data with a 15% SS in p = 10 
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Table 5.2.1  Recommended Phase I Control Chart Usage for Heavy-Tailed Data 
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Hotelling's T
2
 chart was constructed using Alt's (1976) Phase I UCL given by Equation (4.2.4), 

adjusted for the number of subgroups using Equation (4.2.5), in order to demonstrate the 

negative consequences of applying a normal-theory method to skewed data.  The results of the 

IC performance analysis are illustrated in Figure 5.3.1. 

 

 

 

 

Figure 5.3.1  Empirical IC FAPs for Lognormal Processes in p = 2 and p = 5 
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100% in five dimensions.  In contrast, the MMR charts using RMD and MSD with the UCLs 

from Table 3.2.1 consistently maintain the desired IC FAP of 0.10 for all (m, n) combinations 

considered, solidifying its characterization as a distribution-free method.  A complete table of IC 

performance data for skewed data is provided in Appendix S. 

 

5.3.2 Isolated Shifts of the Mean with Skewed Data 

 The performance of MMR-MSD and Hotelling's T
2
 charts under isolated shifts of the 

mean in bivariate lognormally distributed data is displayed in Figure 5.3.2.  Even with UCLs 

empirically adjusted to achieve an IC FAP of 0.10, Hotelling's T
2
 chart performance deteriorates 

rapidly for m > 20.  The MMR chart not only outperforms Hotelling's T
2
 chart by a wide margin, 

but its performance is extremely consistent for all m.   

 

 

Figure 5.3.2  Control Chart Performance on Bivariate Lognormal Data with an IS 
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higher probability than the MMR-RMD chart, and offers equivalent performance in the case of 

larger shifts. 

 

 

Figure 5.3.3  MMR-MSD/RMD Chart Performance on Bivariate LGN Data with an IS 
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 chart.  
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Hotelling's T
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Figure 5.3.4  Control Chart Performance on LGN Data with an IS in p = 5 

 

 Complete tables of results for all simulations performed using the multivariate lognormal 

distribution with isolated shifts of the mean are provided in Appendices T and U. 
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Figure 5.3.5  Control Chart Performance on Increasingly Contaminated LGN Data in p = 2 
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 Further testing revealed that the MMR-MSD chart is robust to sustained shifts of the 

mean in skewed bivariate data with contamination levels up to approximately 20%.  MMR-MSD 

chart performance for m = 100, n = 5 and contamination levels 5(5)30% is illustrated in Figure 

5.3.6. 

 

 

Figure 5.3.6  MMR-MSD Chart Performance on Increasingly Contaminated LGN Data 
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determined by the MSD function and the RMD function, respectively.  Ideally, the IC points 

should be labeled with the highest ranks from 1 (most central) to 14, and the OC points should be 

labeled with the lowest ranks from 15 to 20 (most outlying).   

 

 
 

Figure 5.3.7  MSD and RMD Rankings for Bivariate LGN Data with a 30% SS 
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 Further analysis was performed by simulating m = 200 subgroups of size n = 5 of 

bivariate lognormal data with both 5% and 30% randomly directed, sustained mean shifts with  

= 4.  For each scenario, a scatterplot was constructed of ranks determined by the MSD function 

versus ranks determined by the RMD function.  A straight line was drawn to represent the path 

the plotted ranks would follow if both depth functions generated equivalent rankings for each 

observation.  Results are provided in Figure 5.3.8. 

 

  

 

Figure 5.3.8  Scatterplots of MSD vs. RMD Ranks for Shifted Bivariate LGN Data 
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line in the right panel of Figure 5.3.8.  In other words, at the 30% contamination level, the MSD 

function usually classifies OC points as more central than they truly are.  Because of this, many 

of the IC points correspondingly receive lower rankings (incorrectly suggesting outlyingness) 

from the MSD function than from the RMD function.  The rankings determined by the MSD and 

RMD functions are similar only for the most extreme OC points (rankings near 1000).  Although 

simulation results vary with other randomly generated shift directions, the general conclusion 

remains the same -- a more robust depth function is needed for skewed data with contamination 

levels exceeding 15%. 

 Since the MMR chart using RMD did not break down at the 30% contamination level 

with symmetric distributions, it was decided to rerun the skewed distribution scenarios depicted 

in Figure 5.3.5 using RMD instead of MSD as the depth function.  The results are displayed in  

Figure 5.3.9. 

  



 

88 

 

 

 

 

 

Figure 5.3.9  MMR-MSD/RMD Chart Performance on Increasingly Shifted LGN Data 
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 For a 5% sustained shift of the mean, the MMR-RMD chart is less effective than the 

MMR-MSD chart in detecting shifts of magnitude  = 0.5 - 1 and marginally better in detecting 

shifts of magnitude  = 1.5 - 2.  The same is true for a 15% level of contamination, but the 

differences in chart performance are slightly magnified.  When 30% of the data are shifted, 

however, the MMR-RMD chart is clearly the better alternative because it does not break down in 

the presence of severe contamination levels.  The MMR-RMD chart's performance as compared 

to Hotelling's T
2
 chart with a 30% sustained shift of the mean is illustrated in Figure 5.3.10.  The 

MMR-RMD chart clearly outperforms Hotelling's T
2
 chart for m ≥ 100, but more importantly 

offers reasonable distribution-free performance for all m even in the presence of severe 

contamination levels.   

 

 

Figure 5.3.10  MMR-RMD Chart Performance on Bivariate LGN Data with a 30% SS 
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distributed process with a 15% sustained shift of the mean.  At least 100 subgroups, as opposed 

to m ≥ 20 in the bivariate case, are required for MMR-MSD chart performance to surpass 

Hotelling's T
2
 chart performance.   

 

 

Figure 5.3.11  Control Chart Performance on LGN Data with a 15% SS in p = 5 
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for higher contamination levels when the number of subgroups is sufficiently large.  For the few 

cases in which Hotelling's T
2
 chart outperforms the MMR chart, more research is necessary 

because implementation of Hotelling's T
2
 chart with empirical UCL is only possible if the exact 

process distribution is known.   

 

 

Table 5.3.1  Recommended Phase I Control Chart Usage for Skewed Multivariate Data 
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Hotelling's T
2
 charts is smallest when n = 20, but the MMR-RMD chart remains the superior 

alternative throughout the range of subgroup sizes evaluated.  The overall trends for detection of 

isolated shifts in heavy-tailed and skewed processes are very similar, although shifts of smaller 

magnitude are detected more rapidly in a skewed process. 

 

 

 

 

Figure 5.4.1  Effects of Subgroup Size on Control Chart Performance Under an IS in p = 5 

  

 A comparable pattern of performance is witnessed in detection of 15% sustained shifts of 

the mean by the MMR-RMD and Hotelling's T
2
 charts.  Figure 5.4.2 shows that increasing the 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
m

p
ir

ic
a

l 
A

la
rm

 P
ro

b
a

b
il

it
y

Noncentrality Parameter

t(3) Process with an IS in p = 5

RMD (100,5)

RMD (100,20)

HT2 (100,5)

HT2 (100,20)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
m

p
ir

ic
a

l 
A

la
rm

 P
ro

b
a

b
il

it
y

Noncentrality Parameter

Lognormal Process with an IS in p = 5

RMD (100,5)

RMD (100,20)

HT2 (100,5)

HT2 (100,20)



 

93 

 

subgroup size raises the EAP for both charts considerably, but the MMR-RMD chart always 

performs better than Hotelling's T
2
 chart with empirically adjusted UCL. 

 

 

 

 

Figure 5.4.2  Effects of Subgroup Size on Chart Performance Under a 15% SS in p = 5 
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For more practical subgroup sizes such as 5 ≤ n ≤ 20, the distribution-free MMR chart is clearly 

the best alternative.  Complete tables of results for all subgroup size analyses performed are 

provided in Appendices Z - BB. 

 

5.5 Robust Estimators of Location and Scatter for the MMR Chart 

 It was originally decided to use the BACON method of Billor et al. (2000) to robustly 

estimate both the mean vector and covariance matrix for use with the MMR chart.  However, it 

was later determined that using the BACON location estimator with Type I error probability = 

0.10 and Hotelling's T
2
 scatter estimator S  would result in significantly enhanced MMR chart 

performance.  This choice of robust estimators was briefly addressed in Chapter 2, and will be 

discussed in detail here. 

 In early test runs, the MMR-RMD chart using strictly BACON estimators was compared 

to Hotelling's T
2
 chart with empirically adjusted UCL using a bivariate t(3) process with a 

sustained shift of the mean.  The BACON method of estimation with = 0.05 performed nearly 

perfectly in detecting large process shifts (≥8) and subsequently excluding OC points from the 

resulting location and scatter estimates.  With smaller shifts (< 8) however, the BACON 

method did not consistently identify outlying points, often resulting in estimated mean vectors 

and covariance matrices which were approximately equivalent to the classical nonrobust 

estimates.  The contamination in the estimated parameters resulted in degraded performance of 

the MMR chart and as indicated in Figure 5.5.1, this effect was magnified as the level of 

contamination in the data set was raised from 15% to 30%.  Limited testing of the MCD method 

to determine robust location and scatter estimates yielded similar results at the cost of a 

significantly higher computational burden. 
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Figure 5.5.1  Comparison of MMR-RMD (Using BACON Estimators) and HT2 Charts 

 

 Figure 5.5.2 shows why it is so difficult for even robust methods to distinguish IC from 

OC data when  is small.  The univariate t(3) plots represent probability density functions for 

various unshifted and shifted t(3) distributions.  The bivariate graphs were created by randomly 

generating 500 observations from a bivariate t(3) distribution and inducing a location shift upon 

15% of the data.  In the first row of Figure 5.5.2, a one unit shift is barely distinguishable.  In the 

second row, a four unit shift is more noticeable but still results in significant overlap between 

unshifted and shifted data.  It takes an eight unit shift, as depicted in the third row of Figure 

5.5.2, to clearly separate shifted data from unshifted data. 
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Figure 5.5.2  The Effects of Increasing Shift Sizes on Univariate and Bivariate t(3) Data 
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with respect to its subgroup mean iX  rather than the mean of the entire data set X  as with the 

classical covariance estimator S, which has (k,l)th entry   
1

1
.

1

N

jk jl

jN 


 


 X X X X   

Accordingly, S  is not inflated by OC subgroups as are classical methods which consider the 

data set as a whole or robust methods which fail to exclude outliers.   

 This result is true only for subgrouped data.  When individual data are encountered in a 

control charting application, Hotelling's T
2
 scatter estimator becomes the nonrobust classical 

covariance matrix.  Under those circumstances, robust parameter estimation methods such as 

BACON may be preferred because they exclude OC points corresponding to shifts with large .   

 Based on these findings, it was decided to substitute Hotelling's T
2
 scatter estimator S  

for the BACON scatter estimator in the MMR chart.  To achieve a more robust location estimate 

for the MMR chart, the BACON method was implemented with a higher Type I error 

probability.  Experimentation with the BACON method using = 0.05, 0.10, 0.20, and 0.35 

showed that = 0.10 provides the best compromise between Type I and Type II error.  As 

indicated in Figure 5.5.3, implementation of the MMR-RMD chart using the new estimators 

results in significantly enhanced performance over the MMR-RMD chart using strictly BACON 

estimators, especially when the contamination level is high.  
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Figure 5.5.3  Improvement in MMR-RMD Chart Performance with New Estimators 

 

 Surprisingly, even with the new estimators, 30% sustained shifts of the mean are detected 

by both charts with lower probability than 15% sustained shifts.  In the case of Hotelling's T
2
 

chart, this occurs because Hotelling's T
2
 scatter estimator is naturally robust but Hotelling's T

2
 

location estimator 
1

1 m

i

im 

 X X  is equivalent to the classical mean vector and is therefore 

nonrobust.  To verify this, the charts in Figure 5.5.1 were repeated using a known mean vector of 

all zeros.  As expected, Figure 5.5.4 shows that 30% sustained shifts are detected by Hotelling's 

T
2
 chart with higher probability than 15% sustained shifts when the mean vector is known, yet 

the same does not hold true for the MMR-RMD chart.  Additional experimentation revealed that 

this occurs because of the redistribution of the ranks assigned to depth values during the MMR 

control charting process, and is simply an unavoidable consequence of rank-based control 

charting.   
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Figure 5.5.4  Change in Chart Performance When the Mean is Known 
 

 

 To illustrate the redistribution of ranks in conjunction with higher contamination levels, 

100 observations consisting of m = 20 subgroups of size n = 5 from an in-control bivariate 

standard normal process were simulated.  Depth values for each point were computed using 

RMD with  BACON location estimator ( = 0.10) and Hotelling's T
2
 scatter estimator, and ranks 

were assigned to each point from nearest (rank = 1) to farthest (rank = 100) from the center.  

Next, 5% of the data were shifted by three units to the right, RMD values were recomputed, and 

new ranks were recorded.  Finally, this process was repeated using a 30% contamination level.   

 For both 5% and 30% shifts, Figure 5.5.5 illustrates scatterplots and rank charts of IC and 
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distinguish between them.  As the level of contamination in the data is raised, the level of 

distortion in the rankings increases and MMR chart performance decreases accordingly. 

 

  

  

  
 

Figure 5.5.5  Redistribution of Ranks Under 5% and 30% Sustained Shifts 
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n = 5(5)20, and p = 2, 5, and 10.  The MMR chart has the added advantage of being distribution 

free, unlike Hotelling's T
2
 chart which has to be tailored to the specific process distribution under 

study.  In order to illustrate a complete application of the MMR chart, an example is offered in 

the following chapter. 
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6 An Example Phase I Analysis Using the MMR Chart 

 

6.1 Simulating the Contaminated Reference Sample 

 In order to demonstrate an application of the MMR-MSD chart from start to finish, a 

simulated example involving a five-dimensional, lognormally distributed reference sample with 

m = 100, n = 5, and three isolated shifts of the mean is presented.  Data and shift directions were 

generated in accordance with the procedures outlined in Chapter 4.  Isolated shifts of increasing 

magnitude were applied to single subgroups as follows:   = 3 at subgroup 4,  = 5 at subgroup 

41, and  = 200 at subgroup 91.  The shift of magnitude = 3 represents the smallest shift for 

which the MMR-MSD chart was shown in Chapter 5 to have a nearly perfect detection ability, 

and the shift of magnitude  = 200 is designed to illustrate the sensitivity of robust and nonrobust 

estimators to extreme outliers.  Using a desired IC FAP of 0.05, the MMR-MSD chart using 

UCLs from Table 6.1.1 was compared to Hotelling's T
2
 chart with Alt's (1976) Phase I UCL.   

 

 
 

Table 6.1.1  MMR Chart UCLs for Chapter 6 Example 

  

 

UCL Simulated FAP

100 5 2.992 0.0483

99 5 2.99 0.0484

98 5 2.987 0.0482

97 5 2.986 0.0485

m n
Desired FAP = 0.05
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6.2 Removing Outliers from the Sample 

 MMR-MSD and Hotelling's T
2
 charts applied to the unedited reference sample are 

pictured in Figure 6.2.1.  Each chart contains a superimposed table of potential OC subgroups.   

 

 

 
 

Figure 6.2.1  Initial Application of Phase I Control Charts to the Lognormal Sample 
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the initial UCL for m = 100, n = 5.  The extreme outlier represented by subgroup 91 does not 
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extreme outlyingness is mitigated by the rank-based nature of the MMR-MSD control chart 
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position of that point with respect to the other N = m x n points in the sample as determined by a 

depth function -- the degree of outlyingness is not reflected in the ranking.  The most outlying 

point in a data set will receive a rank of N, regardless of whether the point is only marginally 

more outlying than all others or a significant distance away from the rest of the p-dimensional 

data cloud.  Also, computation of MSD does not involve estimation of a location vector, hence 

its robustness to isolated shifts in location no matter how extreme.  As was shown in Chapter 5, 

very high contamination levels can redistribute the ranks in such a manner that the MMR-MSD 

chart becomes ineffective at detecting sustained shifts, but extreme isolated shifts are detected 

with ease.  Even if the RMD function (which does require an estimated mean vector to compute) 

was used in this scenario, the BACON location estimator would exclude the extreme outlier 

represented by subgroup 91 and the resulting MMR-RMD control chart would be very similar to 

the MMR-MSD chart.  As a result of these properties, the MMR chart is well insulated against 

the effects of a single extreme outlier in a given reference sample. 

 With Hotelling's T
2
 chart, however, the extreme outlier has a dramatic effect on the T

2
 

statistic for each subgroup, as evidenced by the fact that the majority of the control chart 

statistics fall above the initial UCL.  This occurs because the grand mean X
 
used in computing 

   12
i iiT n


  X X S X X

 
is not robust to outliers.  A more robust estimator for the mean 

vector such as BACON could prevent this from occurring, but is beyond the scope of this 

research. 

 The next step in a Phase I analysis is to investigate each potential OC subgroup for an 

assignable cause.  In this example, it is assumed that all potential OC subgroups have assignable 

causes and therefore warrant removal from the data set.  Some control chart authors advocate 
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removing all OC subgroups at once, and then recalculating control limits.  Others believe that 

OC subgroups should be removed one at a time beginning with the most outlying subgroup, with 

the control limits being recalculated at each iteration.  This example will take the latter approach. 

 The most extreme OC subgroup for both the MMR-MSD and Hotelling's T
2
 control 

charts is subgroup 91, so it will be removed first.  Once an OC subgroup is removed from the 

data set, both control charts are reconstructed using control limits appropriate for the reduced 

number of subgroups.  The control charts for m = 99, n = 5 after removal of the first OC 

subgroup are depicted in Figure 6.2.2. 

 

 

 
 

Figure 6.2.2  Second Iteration of the MMR-MSD Control Chart 
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 After removing the extreme outlier, control chart statistics for the remaining two planted 

outliers still exceed the UCLs for both the MMR-MSD and Hotelling's T
2
 control charts.  Next, 

the outlier represented by subgroup 41 is removed and both control charts are recalculated using 

m = 98, n = 5.  Finally, the outlier represented by subgroup 4 is eliminated and the control charts 

are recomputed using m = 97, n = 5.  The final MMR-MSD and Hotelling's T
2
 control charts 

after sequentially removing all planted outliers are illustrated in Figure 6.2.3. 

 

 

 
 

Figure 6.2.3  Final Control Charts After Four Iterations of Phase I Analysis 
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Hotelling's T
2
 chart, despite following the same outlier removal process as the MMR-MSD chart,  

still identifies four potential OC subgroups after the third iteration of a Phase I analysis.  Further 

iterations could result in the identification of even more potential OC subgroups because the 

Phase I UCL for Hotelling's T
2
 chart is adjusted downward as the number of subgroups is 

decreased with each iteration.   

 

6.3 Analyzing the Results 

 Hotelling's T
2
 chart falsely identifies multiple potential OC subgroups because normal-

theory Phase I UCLs were applied to skewed data, illustrating the danger of applying a normal-

theory method without regard to the underlying distribution of a process.  Using UCLs 

empirically tailored to a five-dimensional multivariate lognormal distribution would solve the 

problem of multiple false alarms, but would also result in a loss in detection power as only the 

first two OC subgroups would be identified and removed.  In addition, the exact process 

distribution would not be known in anything but a simulation example such as the one presented 

here, so empirical UCLs for Hotelling's T
2
 chart are not practical for widespread implementation.  

The MMR chart is clearly a superior alternative because it offers accurate, distribution-free 

performance with a low computational burden. 
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7 Conclusion 

 

7.1 Synopsis of Findings 

 The MMR chart for detecting location shifts in subgrouped data represents the first 

known distribution-free Phase I multivariate control chart.  This work represents the culmination 

of extensive research to synthesize appropriate statistical process control techniques, data depth 

functions, and robust parameter estimation methods to create a distribution-free, computationally 

feasible, and accurate Phase I multivariate control charting methodology.  The MMR chart has 

been shown to be extremely effective in detecting isolated and sustained shifts of the mean in 

both heavy-tailed and skewed multivariate data. 

     

7.2 Summary of Research Conducted 

 The MMR chart was created as a multivariate extension of Jones-Farmer et al.'s (2009) 

univariate distribution-free Phase I mean-rank chart for subgroup location.  Given an unedited p-

dimensional reference sample consisting of m subgroups of size n, data depth functions in 

conjunction with robust estimators were used to reduce multivariate data to univariate depth 

values.  The robust Mahalanobis depth function for elliptically symmetric data was implemented 

using the BACON location estimator and Hotelling's T
2
 scatter estimator for subgrouped data.  

The Mahalanobis spatial depth function, which is not reliant on distributional assumptions and 

does not require a location estimator, was employed using Hotelling's T
2
 scatter estimator for 
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subgrouped data.  Depth values resulting from these functions were ranked and converted into 

MMR control chart statistics for each subgroup, which were then compared to empirical UCLs 

determined through simulation of the joint distribution of the MMR control chart statistic.    

 Hotelling's T
2
 control chart with Alt's (1976) Phase I UCLs for normally distributed data 

and empirically adjusted UCLs for nonnormally distributed data was used to establish a baseline 

level of Phase I performance.  Performance comparisons of the MMR chart to Hotelling's T
2
 

chart included scenarios involving simulated multivariate normally distributed data, heavy-tailed 

data represented by the multivariate t(3) distribution, and skewed data represented by the 

multivariate lognormal distribution for m = 20, 50(50)200 subgroups of size n = 5 and 

dimensions p = 2, 5, and 10.  All data were standardized, without loss of generality, to have zero 

mean vector and identity covariance matrix.  IC performance was measured by each chart's 

ability to maintain the desired FAP using simulated IC data.  OC performance was measured by 

each chart's EAP under isolated as well as 5%, 15%, and 30% sustained shifts of the mean 

assuming constant within-subgroup covariance.  Shifts were fixed in a specific direction with 

elliptically symmetric distributions without loss of generality, and averaged over a uniform 

distribution of shift directions with skewed distributions.  Limited analysis was performed on the 

effect of increased subgroup sizes on control chart performance in Phase I. 

 

7.3 Recommendations for Phase I Analysis 

 A comprehensive simulation study shows that when normality of Phase I multivariate 

process data can be established, Hotelling's T
2
 chart with Alt's (1976) Phase I UCL is preferred 

for detecting isolated or sustained shifts of the mean.  This is not unexpected, as one would 

expect a normal-theory method to outperform a distribution-free method when a process is 
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multivariate normally distributed, and the original intent of the MMR chart was to provide a 

distribution-free control charting methodology for processes demonstrating clear departures from 

normality.   

 When Phase I process data are heavy-tailed or skewed, the MMR chart usually 

outperforms Hotelling's T
2
 chart in detecting isolated or sustained shifts of the mean.  More 

importantly, the MMR chart offers truly distribution-free performance because the UCL for a 

given application depends only on the number of subgroups, the size of each subgroup, and the 

desired IC FAP without regard to the form of the underlying process distribution.  UCLs for 

Hotelling's T
2
 chart, on the contrary, must be empirically tailored to the exact distribution of a 

nonnormally distributed process to achieve the desired IC FAP, something which is only possible 

in a simulation environment.  An added benefit of the MMR chart is that, for a given OC 

scenario involving nonnormally distributed data, its performance is far more invariant to the size 

of m than Hotelling's T
2
 chart with empirical UCL, thus making it even more attractive as a 

distribution-free alternative.   

 As indicated in Table 5.2.1, the MMR-RMD chart is recommended for most situations 

involving heavy-tailed data as long as the required minimum number of subgroups is present.  As 

shown in Table 5.3.1, when process data are skewed, the MMR-MSD chart is almost always 

recommended if the contamination level is less than 15%, and the MMR-RMD chart is preferred 

for contamination levels above 15% if the number of subgroups is sufficiently large.  In all cases 

tested, as the dimension of the data or the level of contamination is raised, the minimum number 

of subgroups required for the MMR chart to achieve superiority over Hotelling's T
2
 chart with 

empirical limits correspondingly increases but remains within reasonable bounds.  These general 

conclusions are based on a subgroup size of at least n = 5.  Larger subgroup sizes reduce the 
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minimum number of subgroups required for MMR chart performance to surpass that of 

Hotelling's T
2
 chart.  

 

7.4 Recommendations for Phase II Monitoring 

 Once an IC reference sample has been determined through a successful Phase I analysis 

using the MMR chart, it can be used in conjunction with an appropriate Phase II method to 

monitor future observations for any departures from the IC state.  As noted by C. Champ 

(personal communication, May 12, 2011), since more is known about a process at the conclusion 

of a Phase I analysis, the form of a Phase II control chart does not necessarily have to match the 

form of a Phase I control chart.  Although this research will assume nonnormally distributed data 

throughout the retrospective analysis and monitoring phases, this means that even though the 

Phase I MMR chart is specifically designed for multivariate data collected in subgroups, the 

search for the most suitable Phase II complement to the Phase I MMR chart need not be limited 

to methods requiring subgrouped multivariate data. 

 After an extensive literature review, the MEWMA chart proposed by Lowry et al. (1992), 

with small smoothing parameter as recommended by Stoumbos and Sullivan (2002), is 

recommended for Phase II monitoring because it is easy to understand and implement, well 

documented in statistical process control literature, and robust to the underlying process 

distribution.  The MEWMA control chart statistic represents a weighted average of all Phase II 

observations, with the most recent observation assigned a weight equal to the smoothing constant 

r and all previous observations assigned weights which geometrically decrease according to their 

age.  Stoumbos and Sullivan (2002) showed that the MEWMA chart can be successfully applied 

to nonnormally distributed individual or subgrouped multivariate data if a sufficiently small 
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smoothing constant is chosen.  Based on the results of a comprehensive simulation exercise, the 

authors recommend a smoothing constant of  0.02, 0.05r  for five or less dimensions and r ≤ 

0.02 for more than five dimensions for reliable detection of sustained location shifts in heavy-

tailed or skewed multivariate data.  A subsequent study by Testik et al. (2003) mirrored the 

findings of Stoumbos and Sullivan (2002) regarding use of the MEWMA chart as a robust Phase 

II method.   

 It should be noted that all three aforementioned MEWMA chart studies are based on the 

assumption that the IC mean vector and covariance matrix are known.  If the MEWMA chart is 

employed following a Phase I analysis using the MMR chart, the mean vector and covariance 

matrix are not known but rather estimated from an IC reference sample.  If the IC reference 

sample is too small, using estimated as opposed to known parameters can lead to more frequent 

false alarms and a lower probability of detecting of OC conditions, especially when the 

smoothing constant is small.  For the univariate EWMA chart, this effect was detailed by Jones, 

Champ, and Rigdon (2001), and design strategies to alleviate this problem were offered by Jones 

(2002).  For the MEWMA chart, Champ and Jones-Farmer (2007) showed that widening the 

control limits through simulation to account for the additional variability introduced by the use of 

estimated parameters results in nearly the same performance as the known parameter case.  An 

analytical method of determining control limits for the MEWMA chart with estimated 

parameters as well as the minimum sample size required for estimated parameter performance to 

equal known parameter performance are topics for future research.  Despite these open issues, 

the MEWMA chart represents the most broadly applicable control charting methodology for 

Phase II monitoring of nonnormally distributed multivariate data. 



 

113 

 

 A potential criticism of the MEWMA chart is that using a small smoothing parameter to 

improve robustness to nonnormality decreases control chart sensitivity to large sustained mean 

shifts and isolated outlying observations, but it can be argued that this is not a significant 

disadvantage in a Phase II control charting scenario.  As previously noted in Chapter 3 of this 

document, Montgomery (2005, p. 386) characterizes control charts which accumulate 

information from sequences of points (e.g. CUSUM, EWMA, and their multivariate 

counterparts) as being ideally suited for Phase II monitoring because they are more sensitive to 

small process shifts than Shewhart type charts which use information only from the most recent 

observation.  According to Montgomery (2005, p. 386), sensitivity to small shifts is desirable for 

a Phase II control chart because in contrast to Phase I, "assignable causes do not typically result 

in large process upsets or disturbances" in Phase II.  If greater control chart sensitivity to large 

sustained mean shifts or individual outliers is desired, the reader is directed to the Chapter 1 

discussion of Phase II nonparametric, distribution-free, and robust control charts.  Although a 

few such methods could potentially supplement the MEWMA control chart in certain scenarios, 

none have proven as effective as the MEWMA chart with small smoothing constant on a wide 

range of nonnormally distributed data in higher dimensions. 

 

7.5 Future Research Directions 

 The MMR chart fills a notable gap in current multivariate quality control literature, yet  

much work remains to be done in the field of distribution-free Phase I multivariate quality 

control.  Although it is believed that the fundamental structure of the MMR chart is sound, 

potential refinements include further exploration of the BACON method to determine optimal 

input parameters (e.g. Type I error probability) for maximum robustness to shifts of all 



 

114 

 

magnitudes, implementation of other location and scatter estimators to improve robustness to 

higher contamination levels, and experimentation with alternative data depth functions which 

may enhance MMR chart performance.  Additionally, since the MMR chart is designed to detect 

location changes in subgrouped multivariate data during Phase I, an equivalent distribution-free 

chart for detecting scale changes is needed for Phase I scenarios in which the assumption of 

constant within-subgroup covariance is not appropriate.  Finally, Phase I distribution-free charts 

for detecting both location and scale changes in small subgroups (n < 5) and individual 

multivariate observations (n = 1) should be sought as well.  It is the hope of this author that the 

success of the MMR chart as the first proposed distribution-free Phase I multivariate method will 

serve as the catalyst for some or all of this additional research.  
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Appendix A:  MATLAB Code for Computing Robust Mahalanobis Depth 

 
function depth=computeRMDv1(X,Xbar_robust,S_robust) 

  
% Computes the Robust Mahalanobis Depth (RMD) of each point in a multivariate 

data set. 
% Adapted by Richard Bell on 20100928 from code provided by Satyaki Mazumder 

on 20100707. 
% X is the multivariate reference data set. 
% Xbar_robust is the robust location estimate. 
% S_robust is the robust scatter estimate. 
% Version 2 uses the square root in the Mahalanobis distance computation, 

whereas Version 1 does not. 

     
rows=length(X(:,1));  % identify the number of rows in the sample data set 

  
depth=zeros(rows,1);  % initialize the (rows x 1) vector of depth values for 

speed 

     
for i=1:rows 
    depth(i)=1/(1+((X(i,:)-Xbar_robust)/S_robust*(X(i,:)-Xbar_robust)'));  

% compute the RMD for each observation in the sample; don't use the "mahal" 

function in MATLAB because it uses the (nonrobust) sample mean vector and 

covariance matrix 
end 
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Appendix B:  MATLAB Code for Computing Mahalanobis Spatial Depth 

 
function depth=computeMSDfast(X,S_robust) 

  
% Computes the Mahalanobis Spatial Depth of each point in a multivariate data 

set. 
% Adapted by Richard Bell on 20100928 from code provided by Satyaki Mazumder 

on 20100707. 
% X is the (N x p) multivariate reference data set. 
% S_robust is the (p x p) robust scatter matrix, raised to the -1/2 power and 

used as the transformation-retransformation functional. 

  
Xtr=X/(sqrtm(S_robust));  % transform the data using the TR functional 
[rows,cols]=size(Xtr);  % store the dimensions of the transformed data set 
depth=zeros(rows,1);  % initialize the vector of depth values for speed 

  
% implementation of the Mahalanobis Spatial Depth function 
for i=1:rows  % perform the outer loop for each x 
    e=zeros(rows,cols);  % initialize the matrix of unit vectors from x to 

all Xi's in the sample 
    for j=1:rows  % perform the inner loop to compare each x to all Xi's in 

the sample (including itself) 
        Euclid=norm(Xtr(i,:)-Xtr(j,:));  % compute the Euclidean distance 

between the current x and all Xi's 
        if (Euclid~=0) 
            e(j,:)=(Xtr(i,:)-Xtr(j,:))/Euclid;  % if the Euclidean distance 

is nonzero, use it to normalize the distance between the current x and all 

other Xi's in the sample 
        else 
            e(j,:)=0;  % if the Euclidean distance is zero, x is being 

compared to itself so the normalized distance is zero 
        end 
    end  % end of inner loop 
    depth(i)=1-norm(mean(e));  % compute Mahalanobis Spatial Depth of the 

point x as one minus the average of the unit vectors from x to all Xi's in 

the sample 
end  % end of outer loop 
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Appendix C:  Expanded Table of Empirical UCLs for the MMR Chart 

 

 

UCL Simulated FAP UCL Simulated FAP

20 5 2.476 0.0941 2.650 0.0486

20 10 2.519 0.0984 2.737 0.0476

30 5 2.581 0.0964 2.749 0.0471

30 10 2.642 0.0975 2.849 0.0477

40 5 2.650 0.0984 2.815 0.0488

40 10 2.724 0.0982 2.925 0.0484

50 5 2.702 0.0983 2.861 0.0487

50 10 2.787 0.0981 2.980 0.0480

60 5 2.743 0.0974 2.895 0.0485

60 10 2.840 0.0983 3.030 0.0486

70 5 2.776 0.0972 2.924 0.0472

70 10 2.881 0.0982 3.065 0.0485

80 5 2.810 0.0967 2.949 0.0487

80 10 2.917 0.0982 3.100 0.0487

90 5 2.831 0.0961 2.969 0.0485

90 10 2.946 0.0983 3.127 0.0489

100 5 2.854 0.0982 2.992 0.0483

100 10 2.972 0.0974 3.150 0.0488

110 5 2.872 0.0980 3.008 0.0482

110 10 2.998 0.0967 3.176 0.0488

120 5 2.890 0.0974 3.019 0.0489

120 10 3.022 0.0980 3.198 0.0478

130 5 2.904 0.0975 3.038 0.0479

130 10 3.042 0.0984 3.214 0.0480

140 5 2.919 0.0984 3.048 0.0486

140 10 3.060 0.0969 3.226 0.0489

150 5 2.932 0.0983 3.057 0.0486

150 10 3.076 0.0971 3.244 0.0486

160 5 2.945 0.0980 3.067 0.0488

160 10 3.088 0.0984 3.262 0.0484

170 5 2.953 0.0983 3.082 0.0477

170 10 3.104 0.0976 3.274 0.0488

180 5 2.964 0.0982 3.089 0.0488

180 10 3.119 0.0977 3.285 0.0485

190 5 2.977 0.0961 3.098 0.0483

190 10 3.134 0.0983 3.300 0.0486

200 5 2.985 0.0981 3.104 0.0485

200 10 3.144 0.0985 3.310 0.0482

m n
Desired FAP = 0.10 Desired FAP = 0.05
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Appendix D:  MATLAB Code for Finding Empirical UCLs for the MMR Chart 

 

%=========================================================================% 
%           FINDING EMPIRICAL CONTROL LIMITS FOR THE MMR CHART            % 
%=========================================================================% 
%  -Created by Richard Bell on 3/1/2011; last updated on 3/22/2011.       % 
%  -Variables named for robust Mahalanobis depth (RMD) are used here,     % 
%   although this file is not reliant on any particular depth measure.    % 
%=========================================================================% 

 
%>>>>> INSTRUCTIONS: Start with 10k iterations to get a ballpark estimate, 

then fine-tune with 100k iterations. 

  
clear all  % clear all objects in the MATLAB workspace 
clc  % clear the output screen 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% INPUT SIMULATION PARAMETERS %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% AUTOMATED INPUTS (for simulating multiple scenarios using an input file) 

  
% read in m, n, UCL, shift size, and p from an Excel file 
iterations=100000;  % number of simulation iterations to be performed 
input=xlsread('c:\Users\Rich\Documents\InputFile.xlsx','Sheet1','A1:C50');   
inputRows=length(input(:,1));  % determine the number of rows of data in the 

input file 
APtable=zeros(inputRows,3);  % initialize the array of estimated alarm 

probability (AP) values for speed 

  
for row=1:inputRows  % perform the simulation below for each m, n, p, UCL, 

and shift size combination in the input file 
m=input(row,1);  % read in the desired value for sample size (m) 
n=input(row,2);  % read in the desired value for subgroup size (n) 
UCL=input(row,3);  % read in the upper control limit 
N=m*n;  % determine the pooled sample size (=m in the case of individual 

observations) 
AP=1;  % initialize the AP to 1 so at least one repetition of the UCL search 

will be performed 
reps=0;  % initialize the counter for the number of repetitions required to 

find the optimal UCL 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% GENERATE DATA AND COMPUTE ROBUST ESTIMATES %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
while AP > 0.0985  % set the threshold AP based on the lower limit of an 

upper 95% CI for a proportion 

  
UCL=UCL+0.001;  % set the desired increment for each iteration of the UCL 

search; use 0.10 first, then 0.01 and 0.001 to refine 
reps=reps+1;  % count the number of repetitions required to find the optimal 

UCL 
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count=0;  % initialize the counter for the number of iterations performed 
alarmCount=0;  % initialize the alarm counter 

  
while count < iterations  % run the entire loop for a set number of 

iterations 

  
%=====> SIMULATE UNIFORM(0,1) NUMBERS REPRESENTING DEPTH VALUES FROM 0 TO 1 

  
X=unifrnd(0,1,[N,1]); 

  
%=====> PARTITION DATA INTO SUBGROUPS 

  
% assign a subgroup identifier to each simulated data point 

  
i=1;  % start with the first observation in the data set 
assigned=0;  % initialize the total number of observations which have been 

assigned subgroups 
ID=1;  % initialize the subgroup identifier for the first subgroup 
subgroup=zeros(N,1);  % initialize the N x 1 vector of subgroup identifiers 

for speed 

  
while assigned <= N-n  % perform loop until all observations in the data set 

have been assigned subgroup identifiers 
size=0;  % initialize the number of observations contained in each subgroup 
while size < n  % perform loop until each subgroup reaches size n 
subgroup(i)=ID;  % assign the subgroup identifier "ID" to an observation 
size=size+1;  % increment the number of observations in the current subgroup 
i=i+1;  % move to the next observation 
end 
ID=ID+1;  % increment the subgroup identifier 
assigned=assigned+n;  % increment the total number of observations which have 

been assigned subgroups 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% RANK DATA AND COMPUTE SUBGROUP MEAN RANKS %%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% rank each uniform random number generated 

  
RMDrank=tiedrank(X);  % use the midrank method in the event of a tie; MATLAB 

default is to rank from smallest (rank=1) to largest (rank=N) 

  
% compute subgroup mean ranks 

  
subgroup(N+1)=0;  % create a fictitious subgroup identifier for the 

nonexistent (N+1)st rank so the following while loop doesn't cause an error 

at the Nth rank in the data set 
RMDtotal=0;  % initialize the total RMD rank for the first subgroup to 0 
i=1;  % initialize the index for the N x 1 vector of ranks resulting from the 

depth function 
k=1;  % initialize the index for the m x 1 vector of subgroup mean ranks to 

be computed 
alarm=0;  % initialize the number of RMD alarms to 0 
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RMDsubgrpAvg=zeros(m,1);  % initialize the m x 1 vector of RMD subgroup mean 

ranks for speed 

  
while i <= N  % perform loop for all N ranks resulting from application of 

the depth function 
j=i;  % initialize the rank identifier to point to the first observation in 

each subgroup 
RMDtotal=RMDrank(j);  % initialize the total RMD rank for each subgroup to be 

the first rank in the subgroup 
while subgroup(j)==subgroup(j+1)  % perform loop until the subgroup 

identifier changes 
RMDtotal=RMDtotal+RMDrank(j+1);  % add the next RMD rank in the current 

subgroup to the total 
j=j+1;  % increment the rank identifier by 1 
end 
RMDsubgrpAvg(k)=RMDtotal/n;  % compute the average subgroup RMD rank for the 

current subgroup 
k=k+1;  % increment the index for the vector of subgroup mean ranks 
i=i+n;  % count the number of ranks for which subgroup averages have been 

computed in order to regulate the while loop 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COMPARE STANDARDIZED SUBGROUP MEAN RANKS TO CONTROL LIMITS %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% compute the theoretical mean and variance of subgroup mean ranks 

  
ExpRbar=(N+1)/2;  % compute the expected value of the subgroup mean rank 
VarRbar=((N-n)*(N+1))/(12*n);  % compute the variance of the subgroup mean 

rank 
Z_RMD=zeros(m,1);  % initialize the m x 1 vector of standardized subgroup RMD 

mean ranks 

  
% standardize subgroup mean ranks resulting from the RMD function and compare 

to the UCL 

  
for i = 1:m  % perform loop for all m subgroup mean ranks 
if alarm==0  % continue loop as long as no alarms occur 
Z_RMD(i)=(RMDsubgrpAvg(i)-ExpRbar)/sqrt(VarRbar);  % standardize each 

subgroup mean rank 
if Z_RMD(i)>UCL  % compare each standardized subgroup mean rank statistic to 

the UCL 
alarm=1;  % signal if a standardized subgroup mean rank falls above the UCL 
end 
end 
end 

  
if alarm==1 
alarmCount=alarmCount+1;  % if a control chart issues an alarm, increment the 

counter representing total alarms for all iterations 
end 
count=count+1;  % increment counter for total number of iterations performed 
end 
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AP=alarmCount/iterations;  % estimate the alarm probability (AP) for the 

current scenario 

  
APtable(row,1)=reps;  % record the results of each UCL evaluation in a table 
APtable(row,2)=UCL; 
APtable(row,3)=AP; 

  
disp(APtable);  % display AP for the current scenario 

  
end 

  
% send the results to an Excel file 
xlswrite('c:\Users\Rich\Documents\OutputFile.xlsx',APtable,'Sheet1','A1'); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix E:  Empirical UCLs for Hotelling's T
2
 Chart 

 

 

Process

Distribution UCL Simulated FAP

20 5 11.51 0.0970

50 5 14.01 0.0963

100 5 15.88 0.0976

150 5 17.06 0.0971

200 5 17.94 0.0977

20 5 15.66 0.0954

50 5 27.47 0.0973

100 5 43.79 0.0967

150 5 58.02 0.0965

200 5 70.40 0.0976

20 5 25.79 0.0967

50 5 42.34 0.0967

100 5 68.76 0.0958

150 5 92.55 0.0967

200 5 114.51 0.0968

100 5 68.76 0.0958

100 10 61.43 0.0980

100 15 57.42 0.0963

100 20 54.69 0.0970

20 5 42.41 0.0970

50 5 59.65 0.0976

100 5 91.52 0.0971

150 5 123.51 0.0970

200 5 154.03 0.0959

20 5 19.05 0.0977

50 5 33.05 0.0971

100 5 50.32 0.0964

150 5 64.26 0.0975

200 5 75.56 0.0963

20 5 29.73 0.0978

50 5 45.79 0.0976

100 5 68.01 0.0975

150 5 86.07 0.0973

200 5 102.01 0.0977

100 5 68.01 0.0975

100 10 56.94 0.0976

100 15 51.12 0.0974

100 20 47.25 0.0972

10

2

5

5

5t (3)

lognormal

Desired FAP = 0.10

t (3)

t (3)

t (3)

t (10)

lognormal

lognormal

m np

2

2

5
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Appendix F:  MATLAB Code for Finding Empirical UCLs for Hotelling's T
2
 Chart 

 

%=========================================================================% 
%   FINDING EMPIRICAL CONTROL LIMITS FOR HOTELLING'S T^2 CONTROL CHART    % 
%=========================================================================% 
%  -Created by Richard Bell on 9/15/2010; last updated on 4/26/2011.      % 
%  -Based on Hotelling's T2 control chart with Alt's (1976) Phase I UCL   % 
%   adjusted for the number of subgroups.                                 % 

%  -File is set up to run multiple scenarios; before using, undesired     % 
%   sections must be commented out using "%".                             % 
%=========================================================================% 

  
%>>>>> INSTRUCTIONS: Start with 10k iterations to get a ballpark estimate, 

then fine-tune with 50k iterations. 

  
clear all  % clear all objects in the MATLAB workspace 
clc  % clear the output screen 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% INPUT SIMULATION PARAMETERS %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% AUTOMATED INPUTS (for simulating multiple scenarios using an input file) 

  
% read in m, n, UCL, shift size, and p from an Excel file 
iterations=50000;  % number of simulation iterations to be performed 
input=xlsread('c:\Users\Rich\Documents\InputFile.xlsx','Sheet1','A1:E50');   
inputRows=length(input(:,1));  % determine the number of rows of data in the 

input file 
APtable=zeros(inputRows,3);  % initialize the array of estimated alarm 

probability (AP) values for speed 

  
for row=1:inputRows  % perform the simulation below for each m, n, p, UCL, 

and shift size combination in the input file 
m=input(row,1);  % read in the desired value for sample size (m) 
n=input(row,2);  % read in the desired value for subgroup size (n) 

UCL=input(row,3);  % read in the upper control limit 

shiftSize=input(row,4); % read in the desired shift size 
p=input(row,5);  % read in the number of variables 
N=m*n;  % determine the pooled sample size (=m in the case of individual 

observations) 
AP=1;  % initialize the AP to 1 so at least one repetition of the UCL search 

will be performed 
reps=0;  % initialize the counter for the number of repetitions required to 

find the optimal UCL 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% GENERATE DATA AND CONSTRUCT HOTELLING'S T2 CHART %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

  
while AP > 0.0978  % set the threshold AP based on the lower limit of an 

upper 95% CI for a proportion 
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UCL=UCL+0.01;  % set the desired increment for each iteration of the UCL 

search; use 1.0 first, then 0.25 and 0.01 to refine 
reps=reps+1;  % count number of repetitions required to find the optimal UCL 
count=0;  % initialize the counter for the number of iterations performed 
alarmCount=0;  % initialize the alarm counter 

  
while count < iterations  % run the entire loop for a set number of 

iterations 

  
%=====> SIMULATE MULTIVARIATE NORMAL AND MULTIVARIATE T DATA (ELLIPTICAL) 

  
% OPTION 1: Simulate in-control data. 

  
% multivariate normal distribution 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
X=mvnrnd(mu,sigma,N);  % generate multivariate normal data 

  
% multivariate t distribution 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
X=mvtrnd(sigma,df,N);  % generate multivariate t data with specified degrees 

of freedom 

  
% OPTION 2: Simulate out-of-control data with isolated or sustained shifts of 

the mean. 

  
% multivariate normal -- isolated shift of the mean during the first subgroup 

only 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu+shift,sigma,n);  % generate the shifted subgroup 
Xb=mvnrnd(mu,sigma,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate t -- isolated shift of the mean during the first subgroup only 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
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Xa=mvtrnd(sigma,df,n)+repmat(shift,n,1);  % generate the first subgroup and 

add the shift 
Xb=mvtrnd(sigma,df,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 
 

% multivariate normal -- sustained shift of the mean during the last 

"percentOC" % of the sample (irrespective of subgroups) 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
percentOC=0.15;  % designate the percentage of out-of-control points 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu,sigma,N-numberOC);  % generate the in-control points 
Xb=mvnrnd(mu+shift,sigma,numberOC);  % generate the out-of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate t -- sustained shift of the mean during the last "percentOC" % 

of the sample (irrespective of subgroups) 
percentOC=0.15;  % designate the percentage of out-of-control points 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvtrnd(sigma,df,N-numberOC);  % generate the in-control points 
Xb=mvtrnd(sigma,df,numberOC)+repmat(shift,numberOC,1);  % generate the out-

of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
%=====> SIMULATE MULTIVARIATE LOGNORMAL DATA (SKEWED) 

  
% STEP 1: Simulate uniformly distributed vector of shift directions using 

algorithm by Johnson (1987), page 127. 

  
StdNorm=zeros(1,p);  % initialize vector of standard normal random numbers 
Unif=zeros(1,p);     % initialize vector of shift directions 

  
for i = 1:p 
StdNorm(1,i)=normrnd(0,1);  % generate p independent standard normal variates 
end 

  
for i = 1:p 
Unif(1,i)=StdNorm(1,i)/sqrt(sum(StdNorm.^2));  % create vector of shift 

directions IAW Johnson (1987), page 127 
end 
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% STEP 2: Simulate the sample data set and standardize. 

  
mu_Y=zeros(1,p);  % create a mean vector of all zeros 
sigma_Y=eye(p);  % set the covariance matrix equal to the identity matrix 
Y=mvnrnd(mu_Y,sigma_Y,N);  % simulate N multivariate normal observations 
X=exp(Y);  % transform multivariate normal observations to multivariate 

lognormal observations 

  
% NOTE: THE FOLLOWING RESULTS ONLY APPLY TO MULTIVARIATE LOGNORMAL DATA 

CREATED USING MULTIVARIATE NORMAL DATA WITH ZERO MEAN VECTOR AND IDENTITY 

COVARIANCE MATRIX! 

 
ExpX=exp(1/2);  % compute theoretical expected value of X 

  
sigma_X=zeros(p,p);  % initialize covariance matrix to all zeros 
for i=1:p  % fill in diagonals of covariance matrix 
for j=1:p 
if i==j 
sigma_X(i,j)=exp(1)*(exp(1)-1);  % from Law and Kelton (2000), page 382 
end 
end 
end 

  
X=(X-ExpX)/sqrtm(sigma_X);  % standardize multivariate lognormal observations 

to have zero mean vector and identity covariance matrix 

  
% STEP 3: Scale the vector of shift directions to achieve a specified 

noncentrality parameter. 

  
sigma_X=eye(p);  % specify theoretical covariance matrix of standardized data 
Unif=shiftSize*Unif;  % scale the directional shift vector 
NCP=sqrt(Unif/sigma_X*Unif');  % check the noncentrality parameter to ensure 

it equals the desired value 

 
% STEP 4: Induce isolated or sustained shifts of the mean. 

  
% isolated shift of the mean during the first subgroup only 

  
Xa=X(1:n,:)+repmat(Unif,n,1);  % replicate the shift vector n times and add 

it to the first subgroup 
Xb=X(n+1:N,:);  % identify the remaining (unshifted) observations in the data 

set 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% <OR> sustained shift of the mean during the last "percentOC" % of the 

sample (irrespective of subgroups) 

  
percentOC=0.15;  % designate the percentage of out-of-control points 
numberOC=round(percentOC*N);  % determine the number of in-control points, 

rounded to the nearest integer 
Xa=X(1:(N-numberOC),:);  % identify unshifted observations in the data set 
Xb=X(N-numberOC+1:N,:)+repmat(Unif,numberOC,1);  % replicate the shift vector 

and add it to the remaining observations 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 
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%=====> PARTITION DATA INTO SUBGROUPS 

  
% assign a subgroup identifier to each simulated data point 

 
i=1;  % start with the first observation in the data set 
assigned=0;  % initialize the total number of observations which have been 

assigned subgroups 
ID=1;  % initialize the subgroup identifier for the first subgroup 
subgroup=zeros(N,1);  % initialize the N x 1 vector of subgroup identifiers 

for speed 

  
while assigned <= N-n  % perform loop until all observations in the data set 

have been assigned subgroup identifiers 
size=0;  % initialize the number of observations contained in each subgroup 
while size < n  % perform loop until each subgroup reaches size n 
subgroup(i)=ID;  % assign the subgroup identifier "ID" to an observation 
size=size+1;  % increment the number of observations in the current subgroup 
i=i+1;  % move to the next observation 
end 
ID=ID+1;  % increment the subgroup identifier 
assigned=assigned+n;  % increment the total number of observations which have 

been assigned subgroups 
end 
 

%=====> COMPUTE ROBUST ESTIMATES OF LOCATION AND SCATTER 

  
subgroupMeans=zeros(m,p);  % initialize the matrix of individual subgroup 

mean vectors 
totalMeans=zeros(1,p);  % initialize the total of all subgroup mean vectors 
totalCovs=zeros(p,p);  % initialize the total of all subgroup covariance 

matrices 
subgroup(N+1)=0;  % create a fictitious subgroup for the nonexistent (N+1)st 

observation so the following while loop doesn't cause an error at the Nth 

observation 
i=1;  % initialize the index for the N x p vector of observations 

  
while i <= N  % perform loop for all N observations 
currentSubgroup=X(i,:);  % start with first observation in the data set 
j=i;  % initialize the subgroup index to point to the first observation in 

each subgroup 
while subgroup(j)==subgroup(j+1)  % perform loop until the subgroup 

identifier changes (this is where the fake subgroup is needed) 
currentSubgroup=cat(1,currentSubgroup,X(j+1,:));  % combine individual 

observations into their respective subgroups 
j=j+1;  % increment the subgroup index by 1 
end 
subgroupMeans(j/n,:)=mean(currentSubgroup);  % store individual subgroup 

means in a vector 
totalMeans=totalMeans+subgroupMeans(j/n,:);  % keep a running total of all 

subgroup mean vectors 
totalCovs=totalCovs+cov(currentSubgroup);  % keep a running total of all 

subgroup covariance matrices 
i=i+n;  % count the number of observations for which subgroup averages have 

been computed in order to regulate the while loop 
end 
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Xbar_robust=totalMeans/m;  % compute average of subgroup means; serves as 

unbaised estimate of mean vector 
S_robust=totalCovs/m;  % compute average of subgroup variances; serves as 

unbiased estimate of covariance matrix 

 
%=====> COMPUTE HOTELLING'S T2 STATISTICS AND COMPARE TO UCL 

  
alarm=0;  % initialize indicator variable representing an alarm (=1) or no 

alarm (=0) 
T2vector=zeros(m,1);  % initialize vector of T2 statistics 

  
for i=1:m 
if alarm==0  % continue loop as long as no false alarms occur 
T2stat=n*(subgroupMeans(i,:)-Xbar_robust)/S_robust*(subgroupMeans(i,:)-

Xbar_robust)';  % compute T2 control statistic 
T2vector(i)=T2stat;  % store T2 control statistics in a vector 
if T2stat > UCL 
alarm=1;  % issue a false alarm if the T2 control statistic exceeds the UCL 
end 
end 
end 

  
if alarm==1 
alarmCount=alarmCount+1;  % if a control chart issues a false alarm, 

increment the counter representing total false alarms for all iterations 
end 

  
count=count+1;  % increment the counter for the total number of iterations 

performed 

  
end 

  
AP=alarmCount/iterations;  % estimate the alarm probability (AP) for the 

current scenario 
APtable(row,1)=reps;  % record the results of each UCL evaluation in a table 
APtable(row,2)=UCL; 
APtable(row,3)=AP; 
disp(APtable);  % display AP table for Hotelling's T2 chart on screen, if 

desired 

  
end 

  
% send the results to an Excel file 
xlswrite('c:\Users\Rich\Documents\OutputFile.xlsx',APtable,'Sheet1','A1'); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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Appendix G:  MATLAB Code for Assessing MMR Chart Performance 

 

%=========================================================================% 
%         MULTIVARIATE MEAN-RANK (MMR) CONTROL CHART PROGRAM FILE         % 
%=========================================================================% 
%  -Created by Richard Bell on 9/18/2010; last updated on 3/1/2011.       % 
%  -Can be modified to find empirical APs for specified scenarios,        % 
%   determine empirical UCLs for specific distributions, or construct     % 
%   control charts for preliminary data sets.                             % 

%  -File is set up to run multiple scenarios; before using, undesired     % 
%   sections must be commented out using "%".                             % 
%=========================================================================% 

 
clear all  % clear all objects in the MATLAB workspace 
clc  % clear the output screen 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% INPUT SIMULATION PARAMETERS %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% AUTOMATED INPUTS (for simulating multiple scenarios using an input file) 

  
% read in m, n, control limits, shift size, and p from an Excel file 
iterations=10000;  % number of simulation iterations to be performed 
input=xlsread('c:\Users\Rich\Documents\InputFile.xlsx','Sheet1','A1:E50'); 
inputRows=length(input(:,1));  % determine the number of rows of data in the 

input file 
RMD_APtable=zeros(inputRows,1);  % initialize the array of estimated alarm 

probability (AP) values for the MMR chart using RMD 
MSD_APtable=zeros(inputRows,1);  % initialize the array of estimated alarm 

probability (AP) values for the MMR chart using MSD 

  
for row=1:inputRows  % perform the simulation below for each m, n, UCL, shift 

size, and p combination in the input file 
m=input(row,1);  % read in the desired value for sample size (m) 
n=input(row,2);  % read in the desired value for subgroup size (n) 
UCL=input(row,3);  % read in the upper control limit (UCL) corresponding to 

the m,n combination 
shiftSize=input(row,4);  % read in the size of the desired shift 
p=input(row,5);  % read in the number of variables 

  
N=m*n;  % determine the pooled sample size (=m in the case of individual 

observations) 
count=0;  % initialize the counter for the number of iterations performed 
RMDalarmCount=0;  % initialize the alarm counter for the RMD function 
MSDalarmCount=0;  % initialize the alarm counter for the MSD function 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% GENERATE DATA AND COMPUTE ROBUST ESTIMATES %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
while count < iterations  % run the entire loop for a set number of 

iterations 
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%=====> SIMULATE MULTIVARIATE NORMAL AND MULTIVARIATE T DATA (ELLIPTICAL) 

  
% OPTION 1: Simulate in-control data. 

  
% multivariate normal distribution 
mu=zeros(1,p);  % set the mean vector to all zeros  
sigma=eye(p);  % set the covariance matrix equal to the identity matrix  
X=mvnrnd(mu,sigma,N);  % generate multivariate normal data 

  
% multivariate t distribution 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
X=mvtrnd(sigma,df,N);  % generate multivariate t data with specified degrees 

of freedom 

  
% OPTION 2: Simulate out-of-control data with isolated or sustained shifts of 

the mean. 

  
% multivariate normal -- isolated shift of the mean during the first subgroup 

only 
mu=zeros(1,p);  % set the mean vector to all zeros  
sigma=eye(p);  % set the covariance matrix equal to the identity matrix  
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu+shift,sigma,n);  % generate the shifted subgroup 
Xb=mvnrnd(mu,sigma,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate t -- isolated shift of the mean during the first subgroup only 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvtrnd(sigma,df,n)+repmat(shift,n,1);  % generate the first subgroup and 

add the shift 
Xb=mvtrnd(sigma,df,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate normal -- sustained shift of the mean during the last 

"percentOC" % of the sample (irrespective of subgroups) 
percentOC=0.15;  % designate the percentage of out-of-control points 
mu=zeros(1,p);  % set the mean vector to all zeros  
sigma=eye(p);  % set the covariance matrix equal to the identity matrix  
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu,sigma,N-numberOC);  % generate the in-control points 
Xb=mvnrnd(mu+shift,sigma,numberOC);  % generate the out-of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 
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% multivariate t -- sustained shift of the mean during the last "percentOC" % 

of the sample (irrespective of subgroups) 
percentOC=0.15;  % designate the percentage of out-of-control points 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvtrnd(sigma,df,N-numberOC);  % generate the in-control points 
Xb=mvtrnd(sigma,df,numberOC)+repmat(shift,numberOC,1);  % generate the out-

of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
%=====> SIMULATE MULTIVARIATE LOGNORMAL DATA (SKEWED) 

  
% STEP 1: Simulate uniformly distributed vector of shift directions using 

algorithm by Johnson (1987), page 127. 

  
StdNorm=zeros(1,p);  % initialize vector of standard normal random numbers 
Unif=zeros(1,p);     % initialize vector of shift directions 

  
for i = 1:p 
StdNorm(1,i)=normrnd(0,1);  % generate p independent standard normal variates 
end 

  
for i = 1:p 
Unif(1,i)=StdNorm(1,i)/sqrt(sum(StdNorm.^2));  % create vector of shift 

directions IAW Johnson (1987), page 127 
end 

  
% STEP 2: Simulate the sample data set and standardize. 

  
mu_Y=zeros(1,p);  % create a mean vector of all zeros 
sigma_Y=eye(p);  % set the covariance matrix equal to the identity matrix 
Y=mvnrnd(mu_Y,sigma_Y,N);  % simulate N multivariate normal observations 
X=exp(Y);  % transform multivariate normal observations to multivariate 

lognormal observations 

  
% NOTE: THE FOLLOWING RESULTS ONLY APPLY TO MULTIVARIATE LOGNORMAL DATA 

CREATED USING MULTIVARIATE NORMAL DATA WITH ZERO MEAN VECTOR AND IDENTITY 

COVARIANCE MATRIX! 

 
ExpX=exp(1/2);  % compute theoretical expected value of X 
VarX=exp(1)*(exp(1)-1);  % compute theoretical variance of X 
X=(X-ExpX)/sqrt(VarX);  % standardize multivariate lognormal observations to 

have zero mean vector and identity covariance matrix (can use this method 

since the observations are independent) 
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% STEP 3: Scale the vector of shift directions to achieve a specified 

noncentrality parameter. 

  
sigma_X=eye(p);  % specify theoretical covariance matrix of standardized data 
Unif=shiftSize*Unif;  % scale the directional shift vector 
NCP=sqrt(Unif/sigma_X*Unif');  % check the noncentrality parameter to ensure 

it equals the desired value 

  
% STEP 4: Induce isolated or sustained shifts of the mean. 

  
% isolated shift of the mean during the first subgroup only 

  
Xa=X(1:n,:)+repmat(Unif,n,1);  % replicate the shift vector n times and add 

it to the first subgroup 
Xb=X(n+1:N,:);  % identify the remaining (unshifted) observations in the data 

set 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% <OR> sustained shift of the mean during the last "percentOC" % of the 

sample (irrespective of subgroups) 

  
percentOC=0.15;  % designate the percentage of out-of-control points         
numberOC=round(percentOC*N);  % determine the number of in-control points, 

rounded to the nearest integer 
Xa=X(1:(N-numberOC),:);  % identify the unshifted observations in the data 

set 
Xb=X(N-numberOC+1:N,:)+repmat(Unif,numberOC,1);  % replicate the shift vector 

and add it to the remaining observations 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
%=====> PARTITION DATA INTO SUBGROUPS 

  
% assign a subgroup identifier to each simulated data point 

  
i=1;  % start with the first observation in the data set 
assigned=0;  % initialize the total number of observations which have been 

assigned subgroups 
ID=1;  % initialize the subgroup identifier for the first subgroup 
subgroup=zeros(N,1);  % initialize the N x 1 vector of subgroup identifiers 

for speed 

  
while assigned <= N-n  % perform loop until all observations in the data set 

have been assigned subgroup identifiers 
size=0;  % initialize the number of observations contained in each subgroup 
while size < n  % perform loop until each subgroup reaches size n 
subgroup(i)=ID;  % assign the subgroup identifier "ID" to an observation 
size=size+1;  % increment the number of observations in the current subgroup 
i=i+1;  % move to the next observation 
end 
ID=ID+1;  % increment the subgroup identifier 
assigned=assigned+n;  % increment the total number of observations which have 

been assigned subgroups 
end 
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%=====> COMPUTE ROBUST ESTIMATES USING HOTELLING'S T^2 OR BACON METHODS 

  
% OPTION 1:  Hotelling's T^2 Method 

  
totalMeans=zeros(1,p);  % initialize the total of all subgroup mean vectors 
totalCovs=zeros(p,p);  % initialize the total of all subgroup covariance 

matrices 
subgroup(N+1)=0;  % create a fictitious subgroup for the nonexistent (N+1)st 

observation so the following while loop doesn't cause an error at the Nth 

observation 
i=1;  % initialize the index for the N x p vector of observations 

  
while i <= N  % perform loop for all N observations 
currentSubgroup=X(i,:);  % start with first observation in the data set 
j=i;  % initialize the subgroup identifier to point to the first observation 

in each subgroup 
while subgroup(j)==subgroup(j+1)  % perform loop until the subgroup 

identifier changes 
currentSubgroup=cat(1,currentSubgroup,X(j+1,:));  % combine individual 

observations into their respective subgroups 
j=j+1;  % increment the subgroup identifier by 1 
end 
totalMeans=totalMeans+mean(currentSubgroup);  % keep a running total of all 

subgroup mean vectors 
totalCovs=totalCovs+cov(currentSubgroup);  % keep a running total of all 

subgroup covariance matrices 
i=i+n;  % count the number of observations for which subgroup averages have 

been computed in order to regulate the while loop 
end 

  
Xbar_robust=totalMeans/m;  % compute average of subgroup means; serves as 

unbaised estimate of mean vector 
S_robust=totalCovs/m;  % compute average of subgroup variances; serves as 

unbiased estimate of covariance matrix 

  
% OPTION 2:  BACON method for estimating mean vector and covariance matrix 

  
out=baconV(X,1,.10,4);  % compute BACON estimates for location and scatter 

using Mahalanobis distance, alpha=0.05, and c=4; use version 2 (Euclidean 

distance) if expected contamination exceeds 20 percent 

  
Xbar_robust=out.center3;  % BACON estimate for mean vector 
S_robust=out.cov3;  % BACON estimate for covariance matrix 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% RANK DATA USING DATA DEPTH %%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% NOTE: The following code simultaneously applies both the robust Mahalanobis 

depth (RMD) and Mahalanobis spatial depth (MSD) functions to the same data 

set. 

  
[RMD]=computeRMDv1(X,Xbar_robust,S_robust);  % compute the Robust Mahalanobis 

Depth of each point in the sample 
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RMDrank_interim=tiedrank(RMD);  % rank each depth value; use the midrank 

method in the event of a tie; MATLAB default is to rank from smallest 

(rank=1) to largest (rank=N) 

  
RMDrank=N-RMDrank_interim+1;  % following data depth convention, adjust the 

ranks to go from largest depth value (rank=1) to smallest depth value 

(rank=N) 
 

[MSD]=computeMSDfast(X,S_robust);  % compute the Mahalanobis Spatial Depth of 

each point in the sample 

  
MSDrank_interim=tiedrank(MSD);  % rank each depth value; use the midrank 

method in the event of a tie; MATLAB default is to rank from smallest 

(rank=1) to largest (rank=N) 

  
MSDrank=N-MSDrank_interim+1;  % following data depth convention, adjust the 

ranks to go from largest depth value (rank=1) to smallest depth value 

(rank=N) 

  
% compute subgroup mean ranks 

  
subgroup(N+1)=0;  % create a fictitious subgroup identifier for the 

nonexistent (N+1)st rank so the following while loop doesn't cause an error 

at the Nth rank in the data set 
RMDtotal=0;  % initialize the total RMD rank for the first subgroup to 0 
MSDtotal=0; % initialize the total MSD rank for the first subgroup to 0 
i=1;  % initialize the index for the N x 1 vector of ranks resulting from the 

depth function 
k=1;  % initialize the index for the m x 1 vector of subgroup mean ranks to 

be computed 
RMDalarm=0;  % initialize the number of RMD alarms to 0 
MSDalarm=0;  % initialize the number of MSD alarms to 0 
RMDsubgrpAvg=zeros(m,1);  % initialize the m x 1 vector of RMD subgroup mean 

ranks for speed 
MSDsubgrpAvg=zeros(m,1);  % initialize the m x 1 vector of MSD subgroup mean 

ranks for speed 

  
while i <= N  % perform loop for all N ranks resulting from application of 

the depth function 
j=i;  % initialize the rank identifier to point to the first observation in 

each subgroup 
RMDtotal=RMDrank(j);  % initialize the total RMD rank for each subgroup to be 

the first rank in the subgroup 
MSDtotal=MSDrank(j);  % initialize the total MSD rank for each subgroup to be 

the first rank in the subgroup 
while subgroup(j)==subgroup(j+1)  % perform loop until the subgroup 

identifier changes 
RMDtotal=RMDtotal+RMDrank(j+1);  % add the next RMD rank in the current 

subgroup to the total 
MSDtotal=MSDtotal+MSDrank(j+1);  % add the next MSD rank in the current 

subgroup to the total 
j=j+1;  % increment the rank identifier by 1 
end 
RMDsubgrpAvg(k)=RMDtotal/n;  % compute the average subgroup RMD rank for the 

current subgroup 
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MSDsubgrpAvg(k)=MSDtotal/n;  % compute the average subgroup MSD rank for the 

current subgroup 
k=k+1;  % increment the index for the vector of subgroup mean ranks 
i=i+n;  % count the number of ranks for which subgroup averages have been 

computed in order to regulate the while loop 
end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% COMPARE STANDARDIZED SUBGROUP MEAN RANKS TO CONTROL LIMITS %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% compute the theoretical mean and variance of subgroup mean ranks 

  
ExpRbar=(N+1)/2;  % compute the expected value of the subgroup mean rank 
VarRbar=((N-n)*(N+1))/(12*n);  % compute the variance of the subgroup mean 

rank 
Z_RMD=zeros(m,1);  % initialize the m x 1 vector of standardized subgroup RMD 

mean ranks 
Z_MSD=zeros(m,1);  % initialize the m x 1 vector of standardized subgroup MSD 

mean ranks 

  
% standardize subgroup mean ranks resulting from the RMD function and compare 

to the UCL 

  
for i = 1:m  % perform loop for all m subgroup mean ranks 
if RMDalarm==0  % continue loop as long as no alarms occur; no need to 

perform further computations once an alarm occurs (for example, recall that 

FAP is the probability of observing ONE OR MORE signals from a control chart 

when the process is in control, so the total number of false alarms on a 

single chart is irrelevant; same concept applies to EAP in out-of-control 

scenarios) 
Z_RMD(i)=(RMDsubgrpAvg(i)-ExpRbar)/sqrt(VarRbar);  % standardize each 

subgroup mean rank 
if Z_RMD(i)>UCL  % compare each standardized subgroup mean rank statistic to 

the UCL 
RMDalarm=1;  % signal if a standardized subgroup mean rank falls above UCL 
end 
end 
end 

  
if RMDalarm==1 
RMDalarmCount=RMDalarmCount+1;  % if a control chart issues an alarm, 

increment the counter representing total alarms for all iterations 
end 

  
% standardize subgroup mean ranks resulting from the MSD function and compare 

to the UCL 
for i = 1:m   
if MSDalarm==0   

Z_MSD(i)=(MSDsubgrpAvg(i)-ExpRbar)/sqrt(VarRbar);   

if Z_MSD(i)>UCL   

MSDalarm=1;   

end 
end 
end 



 

146 

 

if MSDalarm==1 
MSDalarmCount=MSDalarmCount+1; 
end 

  
count=count+1;  % increment the counter for the total number of iterations 

performed 
end 
% record results for both RMD and MSD methods 

  
RMD_AP=RMDalarmCount/iterations;  % estimate the RMD alarm probability (AP) 

for the current scenario and store in an array  

RMD_APtable(row,1)=RMD_AP; 

 
MSD_AP=MSDalarmCount/iterations;  % estimate the MSD AP for the current 

scenario and store in an array 
MSD_APtable(row,1)=MSD_AP; 

  
disp('EAP Table for MMR-RMD'); 
disp(RMD_APtable);  % display AP table for MMR chart using RMD on screen, if 

desired 
disp('EAP Table for MMR-MSD'); 
disp(MSD_APtable);  % display AP table for MMR chart using MSD on screen, if 

desired 

  
% send the estimated APs to an Excel file 
xlswrite('c:\Users\Rich\Documents\OutputFile.xlsx',APtable,'Sheet1','A1'); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix H:  MATLAB Code for Assessing Hotelling's T
2
 Chart Performance 

 

%=========================================================================% 
%               HOTELLING'S T^2 CONTROL CHART PROGRAM FILE                % 
%=========================================================================% 
%  -Created by Richard Bell on 9/15/2010; last updated on 3/22/2011.      % 
%  -Based on Hotelling's T2 control chart with Alt's (1976) Phase I UCL   % 
%   adjusted for the number of subgroups.                                 % 
%  -Can be modified to find empirical APs for specified scenarios,        % 
%   determine empirical UCLs for specific distributions, or construct     % 
%   control charts for preliminary data sets.                             % 

%  -File is set up to run multiple scenarios; before using, undesired     % 
%   sections must be commented out using "%".                             % 
%=========================================================================% 

  
clear all  % clear all objects in the MATLAB workspace 
clc  % clear the output screen 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%% INPUT SIMULATION PARAMETERS %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% AUTOMATED INPUTS (for simulating multiple scenarios using an input file) 

  
% read in m, n, UCL, shift size, and p from an Excel file 
iterations=10000;  % number of simulation iterations to be performed 
input=xlsread('c:\Users\Rich\Documents\InputFile.xlsx','Sheet1','A1:E50');   
inputRows=length(input(:,1));  % determine the number of rows of data in the 

input file 
APtable=zeros(inputRows,1);  % initialize the array of estimated alarm 

probability (AP) values for speed 

  
for row=1:inputRows  % perform the simulation below for each m, n, p, UCL, 

and shift size combination in the input file 
m=input(row,1);  % read in the desired value for sample size (m) 
n=input(row,2);  % read in the desired value for subgroup size (n) 
UCL=input(row,3);  % read in the upper control limit 
shiftSize=input(row,4); % read in the number of variables 
p=input(row,5);  % read in the number of variables 

  
N=m*n;  % determine the pooled sample size (=m in the case of individual 

observations) 
count=0;  % initialize the counter for the number of iterations performed 
alarmCount=0;  % initialize the alarm counter 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%% GENERATE DATA AND CONSTRUCT HOTELLING'S T2 CHART %%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

  
while count < iterations  % run the entire loop for a set number of 

iterations 
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%=====> SIMULATE MULTIVARIATE NORMAL AND MULTIVARIATE T DATA (ELLIPTICAL) 
 

% OPTION 1: Simulate in-control data. 

  
% multivariate normal distribution 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
X=mvnrnd(mu,sigma,N);  % generate multivariate normal data 

  
% multivariate t distribution 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
X=mvtrnd(sigma,df,N);  % generate multivariate t data with specified degrees 

of freedom 

  
% OPTION 2: Simulate out-of-control data with isolated or sustained shifts of 

the mean. 

  
% multivariate normal -- isolated shift of the mean during the first subgroup 

only 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu+shift,sigma,n);  % generate the shifted subgroup 
Xb=mvnrnd(mu,sigma,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate t -- isolated shift of the mean during the first subgroup only 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvtrnd(sigma,df,n)+repmat(shift,n,1);  % generate the first subgroup and 

add the shift 
Xb=mvtrnd(sigma,df,N-n);  % generate the rest of the (unshifted) sample 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate normal -- sustained shift of the mean during the last 

"percentOC" % of the sample (irrespective of subgroups) 
alpha=.10;  % desired overall false alarm probability (FAP) for the chart 
alphaAdjusted=1-(1-alpha)^(1/m);  % desired FAP for each individual 

comparison 
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UCL=((p*(m-1)*(n-1))/(m*n-m-p+1))*finv(1-alphaAdjusted,p,m*n-m-p+1);  % Alt's 

Phase I upper control limit for Hotelling's T2 chart 
percentOC=0.15;  % designate the percentage of out-of-control points 
mu=zeros(1,p);  % set the mean vector to all zeros 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvnrnd(mu,sigma,N-numberOC);  % generate the in-control points 
Xb=mvnrnd(mu+shift,sigma,numberOC);  % generate the out-of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% multivariate t -- sustained shift of the mean during the last "percentOC" % 

of the sample (irrespective of subgroups) 
percentOC=0.30;  % designate the percentage of out-of-control points 
df=3;  % degrees of freedom for multivariate t distribution 
sigma=eye(p);  % set the covariance matrix equal to the identity matrix 
numberOC=round(percentOC*N);  % determine the number of out-of-control 

points, rounded to the nearest integer 
shift=zeros(1,p);  % initialize the shift vector 
shift(1)=shiftSize;  % place the desired shift in the first position of the 

shift vector 
Xa=mvtrnd(sigma,df,N-numberOC);  % generate the in-control points 
Xb=mvtrnd(sigma,df,numberOC)+repmat(shift,numberOC,1);  % generate the out-

of-control points 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
%=====> SIMULATE MULTIVARIATE LOGNORMAL DATA (SKEWED) 

  
% STEP 1: Simulate uniformly distributed vector of shift directions using 

algorithm by Johnson (1987), page 127. 

  
StdNorm=zeros(1,p);  % initialize vector of standard normal random numbers 
Unif=zeros(1,p);     % initialize vector of shift directions 

  
for i = 1:p 
StdNorm(1,i)=normrnd(0,1);  % generate p independent standard normal variates 
end 

  
for i = 1:p 
Unif(1,i)=StdNorm(1,i)/sqrt(sum(StdNorm.^2));  % create vector of shift 

directions IAW Johnson (1987), page 127 
end 

  
% STEP 2: Simulate the sample data set and standardize. 

  
mu_Y=zeros(1,p);  % create a mean vector of all zeros 
sigma_Y=eye(p);  % set the covariance matrix equal to the identity matrix 
Y=mvnrnd(mu_Y,sigma_Y,N);  % simulate N multivariate normal observations 
X=exp(Y);  % transform multivariate normal observations to multivariate 

lognormal observations 
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% NOTE: THE FOLLOWING RESULTS ONLY APPLY TO MULTIVARIATE LOGNORMAL DATA 

CREATED USING MULTIVARIATE NORMAL DATA WITH ZERO MEAN VECTOR AND IDENTITY 

COVARIANCE MATRIX! 

 

ExpX=exp(1/2);  % compute theoretical expected value of X 

sigma_X=zeros(p,p);  % initialize covariance matrix to all zeros 
for i=1:p  % fill in diagonals of covariance matrix 
for j=1:p 
if i==j 
sigma_X(i,j)=exp(1)*(exp(1)-1);  % from Law and Kelton (2000), page 382 
end 
end 
end 

  
X=(X-ExpX)/sqrtm(sigma_X);  % standardize multivariate lognormal observations 

to have zero mean vector and identity covariance matrix 

  
% STEP 3: Scale the vector of shift directions to achieve a specified 

noncentrality parameter. 

  
sigma_X=eye(p);  % specify theoretical covariance matrix of standardized data 
Unif=shiftSize*Unif;  % scale the directional shift vector 
NCP=sqrt(Unif/sigma_X*Unif');  % check the noncentrality parameter to ensure 

it equals the desired value 

  
if abs(NCP-shiftSize)>0.00001  % display error message if calculated NCP does 

not equal the shift size (they should be equal since the theoretical 

covariance matrix of X is I) 
disp('ERROR in NCP!') 
end 

  
% STEP 4: Induce isolated or sustained shifts of the mean. 

  
% isolated shift of the mean during the first subgroup only 

  
Xa=X(1:n,:)+repmat(Unif,n,1);  % replicate the shift vector n times and add 

it to the first subgroup 
Xb=X(n+1:N,:);  % identify the remaining (unshifted) observations in the data 

set 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 

  
% <OR> sustained shift of the mean during the last "percentOC" % of the 

sample (irrespective of subgroups) 

  
percentOC=0.15;  % designate the percentage of out-of-control points         
numberOC=round(percentOC*N);  % determine the number of in-control points, 

rounded to the nearest integer 
Xa=X(1:(N-numberOC),:);  % identify the unshifted observations in the data 

set 
Xb=X(N-numberOC+1:N,:)+repmat(Unif,numberOC,1);  % replicate the shift vector 

and add it to the remaining observations 
X=vertcat(Xa,Xb);  % combine shifted and unshifted data 
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%=====> PARTITION DATA INTO SUBGROUPS 

  
% assign a subgroup identifier to each simulated data point 

  
i=1;  % start with the first observation in the data set 
assigned=0;  % initialize the total number of observations which have been 

assigned subgroups 
ID=1;  % initialize the subgroup identifier for the first subgroup 
subgroup=zeros(N,1);  % initialize the N x 1 vector of subgroup identifiers 

for speed 

  
while assigned <= N-n  % perform loop until all observations in the data set 

have been assigned subgroup identifiers 
size=0;  % initialize the number of observations contained in each subgroup 
while size < n  % perform loop until each subgroup reaches size n 
subgroup(i)=ID;  % assign the subgroup identifier "ID" to an observation 
size=size+1;  % increment the number of observations in the current subgroup 
i=i+1;  % move to the next observation 
end 
ID=ID+1;  % increment the subgroup identifier 
assigned=assigned+n;  % increment the total number of observations which have 

been assigned subgroups 
end 

  
%=====> COMPUTE ROBUST ESTIMATES OF LOCATION AND SCATTER 

  
subgroupMeans=zeros(m,p);  % initialize the matrix of individual subgroup 

mean vectors 
totalMeans=zeros(1,p);  % initialize the total of all subgroup mean vectors 
totalCovs=zeros(p,p);  % initialize the total of all subgroup covariance 

matrices 
subgroup(N+1)=0;  % create a fictitious subgroup for the nonexistent (N+1)st 

observation so the following while loop doesn't cause an error at the Nth 

observation 
i=1;  % initialize the index for the N x p vector of observations 

  
while i <= N  % perform loop for all N observations 
currentSubgroup=X(i,:);  % start with first observation in the data set 
j=i;  % initialize the subgroup index to point to the first observation in 

each subgroup 
while subgroup(j)==subgroup(j+1)  % perform loop until the subgroup 

identifier changes (this is where the fake subgroup is needed) 
currentSubgroup=cat(1,currentSubgroup,X(j+1,:));  % combine individual 

observations into their respective subgroups 
j=j+1;  % increment the subgroup index by 1 
end 
subgroupMeans(j/n,:)=mean(currentSubgroup);  % store individual subgroup 

means in a vector 
totalMeans=totalMeans+subgroupMeans(j/n,:);  % keep a running total of all 

subgroup mean vectors 
totalCovs=totalCovs+cov(currentSubgroup);  % keep a running total of all 

subgroup covariance matrices 
i=i+n;  % count the number of observations for which subgroup averages have 

been computed in order to regulate the while loop 
end 
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Xbar_robust=totalMeans/m;  % compute average of subgroup means; serves as 

unbaised estimate of mean vector 
S_robust=totalCovs/m;  % compute average of subgroup variances; serves as 

unbiased estimate of covariance matrix 

 

%=====> COMPUTE HOTELLING'S T2 STATISTICS AND COMPARE TO UCL 

  
alarm=0;  % initialize indicator variable representing an alarm (=1) or no 

alarm (=0) 
T2vector=zeros(m,1);  % initialize vector of T2 statistics 

  
for i=1:m 
if alarm==0  % continue loop as long as no false alarms occur 
T2stat=n*(subgroupMeans(i,:)-Xbar_robust)/S_robust*(subgroupMeans(i,:)-

Xbar_robust)';  % compute T2 control statistic 
T2vector(i)=T2stat;  % store T2 control statistics in a vector 
if T2stat > UCL 
alarm=1;  % issue a false alarm if the T2 control statistic exceeds the UCL 
end 
end 
end 

  
if alarm==1 
alarmCount=alarmCount+1;  % if a control chart issues a false alarm, 

increment the counter representing total false alarms for all iterations 
end 

  
count=count+1;  % increment the counter for the total number of iterations 

performed 
 

end 

  
AP=alarmCount/iterations;  % estimate the alarm probability (AP) for the 

current scenario and store in an array 

APtable(row,1)=AP; 

 
disp('AP Table for Hotellings T2 Chart'); 
disp(APtable);  % display AP table for Hotelling's T2 chart on screen, if 

desired 

  
% send the estimated APs to an Excel file 
xlswrite('c:\Users\Rich\Documents\OutputFile.xlsx',APtable,'Sheet1','A1'); 

  
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF PROGRAM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix I:  Simulation Results Using In-Control Symmetric Data 

 

 

  

Process

Distribution p = 2 p = 5 p = 10 p = 2 p = 5 p = 10 p = 2 p = 5 p = 10

20 5 0.0984 0.0992 0.0995 0.0919 0.0967 0.0947 0.0902 0.0947

50 5 0.0979 0.0990 0.1019 0.0996 0.1020 0.0975 0.1006 0.0975

100 5 0.1004 0.1006 0.0979 0.0998 0.0985 0.0972 0.0983 0.0972

150 5 0.0997 0.1040 0.0995 0.1009 0.1019 0.0990 0.1019 0.0990

200 5 0.0972 0.1005 0.1016 0.0973 0.0929 0.0973 0.0967 0.0973

20 5 0.1205 0.0851 0.0862

50 5 0.1634 0.0961 0.0981

100 5 0.1907 0.1031 0.1035

150 5 0.2203 0.0939 0.0940

200 5 0.2317 0.0988 0.0988

20 5 0.3040 0.3843 0.4266 0.0973 0.0930 0.0981 0.0959 0.0912 0.0981

50 5 0.5892 0.7876 0.9055 0.0978 0.1010 0.1004 0.0973 0.1021 0.1004

100 5 0.7876 0.9591 0.9932 0.0994 0.1022 0.0974 0.0974 0.1009 0.0974

150 5 0.8864 0.9895 0.9998 0.0950 0.1037 0.0981 0.0957 0.1035 0.0981

200 5 0.9348 0.9971 1.0000 0.1019 0.1013 0.0957 0.1035 0.1015 0.0957

t (10)

t (3)

Empirical FAP for MMR-MSD Chart

normal

Empirical FAP for Hotelling's T
2

 Chart Empirical FAP for MMR-RMD Chart
m n
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Appendix J:  Simulation Results Using Symmetric Data with an IS in p = 2 

 

 

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6

20 5 0.0984 0.2523 0.8795 0.9835 0.9990 1.0000 1.0000 1.0000 1.0000

50 5 0.0979 0.2091 0.8497 0.9847 0.9991 1.0000 1.0000 1.0000 1.0000

100 5 0.1004 0.1826 0.8222 0.9770 0.9983 0.9999 1.0000 1.0000 1.0000

150 5 0.0997 0.1703 0.7876 0.9712 0.9979 1.0000 1.0000 1.0000 1.0000

200 5 0.0972 0.1610 0.7827 0.9641 0.9985 1.0000 1.0000 1.0000 1.0000

20 5 0.0974 0.1918 0.7438 0.9360 0.9917 0.9993 1.0000 1.0000 1.0000

50 5 0.0934 0.1505 0.6629 0.9110 0.9894 0.9991 0.9998 1.0000 1.0000

100 5 0.1019 0.1295 0.5951 0.8790 0.9815 0.9978 0.9999 1.0000 1.0000

150 5 0.0970 0.1231 0.5417 0.8442 0.9733 0.9978 0.9998 1.0000 1.0000

200 5 0.0997 0.1196 0.4977 0.8268 0.9751 0.9976 0.9999 1.0000 1.0000

20 5 0.0985 0.1154 0.2468 0.4115 0.6287 0.8065 0.9060 0.9811 0.9952

50 5 0.0987 0.1061 0.1170 0.1496 0.2546 0.4322 0.6503 0.9242 0.9852

100 5 0.0990 0.0988 0.1058 0.0991 0.1122 0.1488 0.2296 0.6279 0.9233

150 5 0.1025 0.1005 0.0957 0.0984 0.1055 0.1013 0.1257 0.3033 0.7200

200 5 0.1007 0.0983 0.0973 0.1060 0.1008 0.1020 0.1115 0.1610 0.4645

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6

20 5 0.0919 0.1120 0.4927 0.7795 0.9408 0.9894 0.9984 1.0000 1.0000

50 5 0.0996 0.1090 0.4482 0.7518 0.9268 0.9861 0.9980 1.0000 1.0000

100 5 0.0998 0.1092 0.4013 0.7012 0.9063 0.9807 0.9969 0.9998 1.0000

150 5 0.1009 0.1091 0.3694 0.6740 0.8936 0.9760 0.9959 0.9999 1.0000

200 5 0.0973 0.1065 0.3565 0.6577 0.8752 0.9771 0.9953 0.9997 1.0000

20 5 0.0851 0.1067 0.3870 0.6811 0.8891 0.9674 0.9912 0.9994 0.9999

50 5 0.0961 0.1037 0.3447 0.6374 0.8679 0.9622 0.9891 0.9986 0.9998

100 5 0.1031 0.0977 0.2989 0.5842 0.8339 0.9488 0.9862 0.9974 0.9996

150 5 0.0939 0.1062 0.2754 0.5473 0.8055 0.9406 0.9804 0.9975 0.9995

200 5 0.0988 0.1041 0.2518 0.5180 0.8026 0.9335 0.9773 0.9973 0.9992

20 5 0.0973 0.1033 0.2135 0.3926 0.6432 0.8208 0.9263 0.9872 0.9956

50 5 0.0978 0.1025 0.1774 0.3318 0.5795 0.7957 0.9095 0.9817 0.9939

100 5 0.0994 0.1014 0.1411 0.2598 0.4940 0.7432 0.8892 0.9765 0.9933

150 5 0.0950 0.1010 0.1265 0.2344 0.4493 0.6983 0.8667 0.9714 0.9912

200 5 0.1019 0.0988 0.1251 0.2091 0.4061 0.6681 0.8471 0.9694 0.9914

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6

20 5 0.0902 0.1064 0.4549 0.7387 0.9219 0.9836 0.9976 1.0000 1.0000

50 5 0.1006 0.1087 0.4302 0.7318 0.9168 0.9837 0.9978 1.0000 1.0000

100 5 0.0983 0.1074 0.3899 0.6902 0.8987 0.9794 0.9968 0.9999 0.9999

150 5 0.1019 0.1082 0.3631 0.6653 0.8902 0.9755 0.9958 0.9999 1.0000

200 5 0.0967 0.1059 0.3515 0.6506 0.8717 0.9758 0.9956 0.9999 1.0000

20 5 0.0862 0.1046 0.3508 0.6351 0.8559 0.9543 0.9856 0.9996 0.9997

50 5 0.0981 0.1047 0.3302 0.6157 0.8513 0.9555 0.9872 0.9989 0.9996

100 5 0.1035 0.0970 0.2907 0.5702 0.8237 0.9435 0.9817 0.9989 0.9995

150 5 0.0940 0.1071 0.2679 0.5372 0.7977 0.9382 0.9781 0.9980 0.9995

200 5 0.0988 0.1041 0.2480 0.5088 0.7948 0.9312 0.9762 0.9979 0.9992

20 5 0.0959 0.1024 0.1914 0.3475 0.5767 0.7645 0.8873 0.9766 0.9956

50 5 0.0973 0.1010 0.1679 0.3065 0.5462 0.7683 0.8948 0.9793 0.9932

100 5 0.0974 0.1007 0.1388 0.2502 0.4760 0.7233 0.8790 0.9760 0.9924

150 5 0.0957 0.0995 0.1253 0.2305 0.4371 0.6847 0.8611 0.9715 0.9902

200 5 0.1035 0.0992 0.1249 0.2049 0.3936 0.6559 0.8397 0.9657 0.9902

2

2

2

m n

m n

p

2

2

2

p
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2
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normal
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2

2

2

p m n
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Appendix K:  Simulation Results Using Symmetric Data with an IS in p = 5 

 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5 λ  = 6 λ  = 7

20 5 0.0992 0.1791 0.7391 0.9939 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0990 0.1532 0.7034 0.9944 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.1006 0.1408 0.6658 0.9935 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.1040 0.1323 0.6440 0.9939 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.1005 0.1212 0.6137 0.9892 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0987 0.1039 0.1697 0.4600 0.6703 0.8194 0.9184 0.9660 0.9930 0.9984

50 5 0.1045 0.0960 0.1037 0.1538 0.2215 0.3817 0.5886 0.7732 0.9563 0.9934

100 5 0.0973 0.0986 0.1024 0.0997 0.1047 0.1218 0.1495 0.2523 0.6051 0.9049

150 5 0.0936 0.0990 0.0978 0.1055 0.1009 0.0960 0.1089 0.1176 0.2296 0.5849

200 5 0.1008 0.0997 0.1001 0.0992 0.1010 0.1055 0.1043 0.1030 0.1235 0.2728

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5 λ  = 6 λ  = 7

20 5 0.0967 0.1044 0.3214 0.8282 0.9539 0.9911 0.9993 0.9999 1.0000 1.0000

50 5 0.1020 0.1060 0.2838 0.7967 0.9455 0.9891 0.9988 0.9998 1.0000 1.0000

100 5 0.0985 0.1069 0.2295 0.7485 0.9173 0.9838 0.9980 1.0000 1.0000 1.0000

150 5 0.1019 0.1068 0.2223 0.7105 0.9090 0.9799 0.9964 0.9991 1.0000 1.0000

200 5 0.0929 0.0956 0.2025 0.6996 0.8992 0.9765 0.9965 0.9994 1.0000 1.0000

20 5 0.0930 0.0980 0.1184 0.2897 0.4630 0.6691 0.8206 0.9200 0.9873 0.9981

50 5 0.1010 0.1014 0.1032 0.2045 0.3414 0.5607 0.7768 0.9126 0.9881 0.9986

100 5 0.1022 0.0971 0.1044 0.1474 0.2535 0.4412 0.6859 0.8720 0.9849 0.9973

150 5 0.1037 0.0998 0.0998 0.1357 0.2105 0.3736 0.6098 0.8190 0.9810 0.9975

200 5 0.1013 0.0977 0.1074 0.1222 0.1740 0.3234 0.5481 0.7898 0.9761 0.9971

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5 λ  = 6 λ  = 7

20 5 0.0912 0.0980 0.1141 0.2520 0.3997 0.5950 0.7547 0.8708 0.9716 0.9943

50 5 0.1021 0.0998 0.1041 0.1899 0.3110 0.5200 0.7321 0.8848 0.9847 0.9975

100 5 0.1009 0.0970 0.1033 0.1431 0.2394 0.4147 0.6537 0.8424 0.9792 0.9978

150 5 0.1035 0.0989 0.0997 0.1336 0.2046 0.3549 0.5846 0.8132 0.9779 0.9968

200 5 0.1015 0.0988 0.1076 0.1199 0.1706 0.3137 0.5309 0.7691 0.9725 0.9964

m n

m n

m n

p

5

5

p
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Appendix L: Simulation Results Using Symmetric Data with an IS in p = 10 

 

 

 

  

Process

Distribution λ  = 0 λ = 1 λ = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0995 0.1387 0.5438 0.9670 0.9998 1.0000 1.0000 1.0000 1.0000

50 5 0.1019 0.1268 0.5379 0.9764 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0979 0.1199 0.5038 0.9736 0.9999 1.0000 1.0000 1.0000 1.0000

150 5 0.0995 0.1197 0.4692 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.1016 0.1157 0.4553 0.9667 0.9999 1.0000 1.0000 1.0000 1.0000

20 5 0.0987 0.1038 0.1395 0.3195 0.6983 0.9302 0.9894 0.9991 0.9996

50 5 0.1030 0.1035 0.1068 0.1284 0.2556 0.5971 0.9037 0.9843 0.9981

100 5 0.0943 0.0971 0.0964 0.1045 0.1131 0.1594 0.3705 0.7529 0.9531

150 5 0.0979 0.0972 0.0949 0.0985 0.0995 0.1029 0.1342 0.2857 0.6659

200 5 0.1005 0.0994 0.0993 0.1006 0.1011 0.0973 0.1085 0.1396 0.2816

Process

Distribution λ  = 0 λ = 1 λ = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0947 0.1079 0.2509 0.6957 0.9668 0.9992 1.0000 1.0000 1.0000

50 5 0.0975 0.0993 0.1889 0.6289 0.9546 0.9985 0.9999 1.0000 1.0000

100 5 0.0972 0.1015 0.1644 0.5607 0.9379 0.9985 0.9999 1.0000 1.0000

150 5 0.0990 0.1044 0.1518 0.5260 0.9225 0.9964 0.9999 1.0000 1.0000

200 5 0.0973 0.1026 0.1494 0.5009 0.9162 0.9952 0.9999 1.0000 1.0000

20 5 0.0981 0.0979 0.1070 0.1528 0.3362 0.6653 0.8966 0.9823 0.9968

50 5 0.1004 0.1029 0.0966 0.1146 0.2004 0.4930 0.8380 0.9778 0.9973

100 5 0.0974 0.0999 0.1059 0.1064 0.1402 0.3368 0.7346 0.9640 0.9972

150 5 0.0981 0.0975 0.0985 0.1005 0.1273 0.2522 0.6426 0.9393 0.9956

200 5 0.0957 0.1026 0.1034 0.0995 0.1139 0.2106 0.5652 0.9221 0.9947

10

10

10

p m n
Empirical AP for an Isolated Shift Using the MMR-RMD Chart
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2
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t (3)

normal

t (3)

normal

p m n

10
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Appendix M:  Simulation Results Using Symmetric Data with a 5% SS in p = 2 

 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0956 0.2576 0.8755 0.9835 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.1012 0.2906 0.9625 0.9987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0990 0.4052 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.1031 0.4354 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0993 0.4841 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0985 0.1176 0.2473 0.4248 0.6404 0.8041 0.9079 0.9793 0.9936 0.9985 0.9991

50 5 0.0987 0.1022 0.1313 0.1891 0.3091 0.5196 0.7544 0.9594 0.9941 0.9989 1.0000

100 5 0.0990 0.0946 0.1058 0.1186 0.1597 0.2605 0.4569 0.8859 0.9902 0.9992 0.9997

150 5 0.1025 0.1007 0.1122 0.1134 0.1186 0.1428 0.2103 0.5985 0.9344 0.9944 0.9990

200 5 0.1007 0.0959 0.1038 0.1071 0.1163 0.1310 0.1561 0.3909 0.8497 0.9856 0.9986

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0919 0.1157 0.4920 0.7743 0.9414 0.9910 0.9989 1.0000 1.0000 1.0000 1.0000

50 5 0.0996 0.1194 0.5842 0.8872 0.9892 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000

100 5 0.0998 0.1345 0.7941 0.9872 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.1009 0.1417 0.8360 0.9951 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0973 0.1503 0.8985 0.9987 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0973 0.0953 0.2167 0.4078 0.6423 0.8240 0.9264 0.9848 0.9963 0.9983 0.9993

50 5 0.0978 0.0984 0.2060 0.4160 0.6855 0.8878 0.9728 0.9983 0.9994 0.9995 0.9998

100 5 0.0994 0.0993 0.2359 0.4995 0.8355 0.9743 0.9960 0.9994 0.9998 0.9999 1.0000

150 5 0.0950 0.0981 0.2209 0.4957 0.8335 0.9812 0.9980 0.9998 1.0000 1.0000 1.0000

200 5 0.1019 0.0986 0.2272 0.5167 0.8672 0.9890 0.9988 0.9997 0.9999 0.9999 1.0000

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0959 0.0949 0.1953 0.3621 0.5784 0.7676 0.8914 0.9768 0.9939 0.9976 0.9990

50 5 0.0973 0.0965 0.1868 0.3507 0.5913 0.8139 0.9349 0.9933 0.9994 0.9995 0.9999

100 5 0.0974 0.0998 0.2100 0.4191 0.7379 0.9316 0.9879 0.9995 0.9997 0.9996 1.0000

150 5 0.0957 0.0999 0.2005 0.4121 0.7169 0.9336 0.9934 0.9996 0.9995 0.9999 0.9999

200 5 0.1035 0.1009 0.2029 0.4271 0.7623 0.9554 0.9957 0.9996 0.9994 1.0000 0.9999
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Appendix N:  Simulation Results Using Symmetric Data with a 15% SS in p = 2 

 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0901 0.3966 0.9854 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.1026 0.4790 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0990 0.6014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.1009 0.6486 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0941 0.6901 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0985 0.1369 0.3595 0.5747 0.7921 0.9088 0.9617 0.9941 0.9976 0.9992 0.9995

50 5 0.0987 0.1150 0.1713 0.2584 0.4344 0.6663 0.8420 0.9795 0.9950 0.9988 0.9998

100 5 0.0990 0.0965 0.1229 0.1425 0.2015 0.3140 0.5217 0.8979 0.9888 0.9964 0.9995

150 5 0.1025 0.1043 0.1056 0.1240 0.1388 0.1940 0.2585 0.6328 0.9326 0.9915 0.9980

200 5 0.1007 0.1004 0.1106 0.1202 0.1339 0.1506 0.2000 0.4280 0.8296 0.9790 0.9981

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0919 0.1266 0.5698 0.8621 0.9820 0.9984 0.9998 1.0000 0.9999 0.9997 1.0000

50 5 0.0996 0.1402 0.6561 0.9375 0.9973 1.0000 1.0000 0.9999 0.9999 1.0000 1.0000

100 5 0.0998 0.1519 0.7984 0.9876 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.1009 0.1541 0.8408 0.9945 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0973 0.1550 0.8786 0.9978 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0973 0.0996 0.2185 0.3975 0.6356 0.8208 0.9317 0.9935 0.9985 0.9996 1.0000

50 5 0.0978 0.1042 0.2132 0.3951 0.6463 0.8559 0.9593 0.9974 0.9989 0.9999 0.9999

100 5 0.0994 0.1071 0.2188 0.4136 0.7085 0.9106 0.9813 0.9985 0.9996 1.0000 1.0000

150 5 0.0950 0.1041 0.2084 0.4129 0.6911 0.9072 0.9854 0.9993 0.9994 0.9999 0.9999

200 5 0.1019 0.1021 0.2042 0.3984 0.6999 0.9176 0.9870 0.9993 0.9997 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0959 0.0991 0.1814 0.2853 0.4414 0.5971 0.7399 0.9126 0.9722 0.9919 0.9976

50 5 0.0973 0.1036 0.1751 0.2743 0.4180 0.5841 0.7152 0.9040 0.9677 0.9889 0.9966

100 5 0.0974 0.1062 0.1811 0.2913 0.4575 0.6264 0.7664 0.9362 0.9844 0.9966 0.9993

150 5 0.0957 0.1041 0.1771 0.2845 0.4415 0.6041 0.7576 0.9320 0.9835 0.9957 0.9987

200 5 0.1035 0.1021 0.1740 0.2804 0.4408 0.6185 0.7657 0.9406 0.9859 0.9970 0.9991
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Appendix O:  Simulation Results Using Symmetric Data with a 30% SS in p = 2 

 

 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0970 0.4486 0.9877 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0971 0.5508 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.1012 0.6391 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0974 0.6695 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0965 0.7107 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0985 0.1478 0.3740 0.5731 0.7725 0.8920 0.9542 0.9875 0.9961 0.9988 0.9993

50 5 0.0987 0.1181 0.1860 0.2727 0.4284 0.6168 0.8144 0.9666 0.9934 0.9970 0.9986

100 5 0.0990 0.1020 0.1335 0.1577 0.2076 0.2829 0.4083 0.7743 0.9599 0.9915 0.9973

150 5 0.1025 0.1073 0.1236 0.1357 0.1635 0.1884 0.2384 0.4802 0.8231 0.9701 0.9917

200 5 0.1007 0.1094 0.1127 0.1236 0.1404 0.1622 0.1990 0.3221 0.6076 0.9028 0.9820

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0952 0.1097 0.2626 0.4342 0.6330 0.7909 0.9085 0.9922 0.9998 0.9998 1.0000

50 5 0.0985 0.1159 0.3212 0.5213 0.7209 0.8661 0.9517 0.9974 1.0000 1.0000 1.0000

100 5 0.0969 0.1245 0.3571 0.5759 0.7708 0.9073 0.9694 0.9988 1.0000 1.0000 1.0000

150 5 0.0973 0.1185 0.3755 0.6052 0.8109 0.9276 0.9794 0.9989 1.0000 1.0000 1.0000

200 5 0.0996 0.1233 0.4044 0.6288 0.8314 0.9364 0.9811 0.9994 0.9999 1.0000 1.0000

20 5 0.0942 0.0987 0.1379 0.1935 0.2853 0.3839 0.5116 0.7353 0.8950 0.9669 0.9947

50 5 0.0945 0.0997 0.1406 0.1919 0.2743 0.3875 0.5054 0.7428 0.8997 0.9725 0.9957

100 5 0.0948 0.0948 0.1345 0.1852 0.2681 0.3769 0.4966 0.7524 0.9073 0.9717 0.9947

150 5 0.0992 0.1012 0.1316 0.1795 0.2609 0.3566 0.4955 0.7442 0.9049 0.9712 0.9933

200 5 0.0954 0.0981 0.1288 0.1761 0.2598 0.3615 0.4859 0.7498 0.9043 0.9675 0.9915

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 2.5 λ  = 3 λ = 3.5 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8

20 5 0.0948 0.0941 0.1145 0.1354 0.1679 0.1864 0.2148 0.2668 0.2974 0.3257 0.3451

50 5 0.0948 0.0992 0.1210 0.1412 0.1702 0.1945 0.2151 0.2586 0.3087 0.3292 0.3553

100 5 0.0945 0.0972 0.1193 0.1379 0.1687 0.1921 0.2164 0.2722 0.3126 0.3422 0.3705

150 5 0.0991 0.1021 0.1200 0.1363 0.1662 0.1845 0.2196 0.2712 0.3001 0.3332 0.3621

200 5 0.0968 0.0981 0.1144 0.1353 0.1668 0.1944 0.2032 0.2691 0.3084 0.3494 0.3631

2

m n
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p

t (3)

t (3)

normal 2

2

Empirical AP for a 30% Sustained Shift Using the MMR-MSD Chart
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Appendix P:  Simulation Results Using Symmetric Data with a 5% SS in p = 10 

 

 

 

  

Process

Distribution λ = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.1010 0.1417 0.5407 0.9664 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.1029 0.1569 0.7098 0.9978 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0977 0.1790 0.9170 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0936 0.1894 0.9526 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.1005 0.2041 0.9808 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0987 0.1050 0.1396 0.3116 0.6846 0.9251 0.9896 0.9990 0.9999 0.9999 1.0000

50 5 0.1030 0.0996 0.1086 0.1491 0.3094 0.6567 0.9241 0.9894 0.9986 0.9999 1.0000

100 5 0.0943 0.1013 0.1070 0.1153 0.1551 0.2771 0.6562 0.9387 0.9938 0.9992 0.9999

150 5 0.0979 0.0985 0.1032 0.1086 0.1128 0.1446 0.2346 0.5196 0.8724 0.9851 0.9972

200 5 0.1005 0.0981 0.0951 0.1016 0.1060 0.1215 0.1591 0.2767 0.6207 0.9207 0.9897

Process

Distribution λ = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.0947 0.1107 0.2460 0.6923 0.9681 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0975 0.1095 0.2431 0.7505 0.9876 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0972 0.1073 0.3075 0.9262 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0990 0.1029 0.3264 0.9447 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0973 0.1034 0.3605 0.9756 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0981 0.0988 0.1094 0.1587 0.3444 0.6559 0.8976 0.9802 0.9969 0.9994 0.9999

50 5 0.1004 0.1001 0.1022 0.1186 0.2185 0.4938 0.8180 0.9693 0.9979 0.9994 0.9999

100 5 0.0974 0.0953 0.1037 0.1167 0.2178 0.5369 0.9032 0.9907 0.9996 1.0000 1.0000

150 5 0.0981 0.1015 0.0995 0.1096 0.1747 0.4674 0.8701 0.9894 0.9998 1.0000 1.0000

200 5 0.0957 0.1013 0.1030 0.1146 0.1757 0.4738 0.8888 0.9952 0.9996 1.0000 1.0000

p

10

10

m
Empirical AP for a 5% Sustained Shift Using Hotelling's T

2
 Chart

Empirical AP for a 5% Sustained Shift Using the MMR-RMD Chart

n

m n

normal

t (3)

p
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t (3)

10

10
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Appendix Q:  Simulation Results Using Symmetric Data with a 15% SS in p = 10 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.0995 0.1831 0.7445 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0950 0.2261 0.9049 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0968 0.2464 0.9848 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0973 0.2713 0.9949 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0982 0.2946 0.9992 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0987 0.1121 0.1772 0.4380 0.8039 0.9680 0.9962 0.9997 0.9999 1.0000 1.0000

50 5 0.1030 0.1065 0.1329 0.1984 0.4178 0.7694 0.9578 0.9949 0.9994 0.9998 1.0000

100 5 0.0943 0.1026 0.1113 0.1282 0.1909 0.3578 0.6962 0.9421 0.9944 0.9988 0.9998

150 5 0.0979 0.0964 0.1045 0.1205 0.1428 0.1828 0.2854 0.5475 0.8508 0.9762 0.9976

200 5 0.1005 0.0980 0.1040 0.1071 0.1216 0.1386 0.1961 0.3136 0.5851 0.8851 0.9825

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.0947 0.1094 0.2859 0.7599 0.9839 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0975 0.1075 0.2744 0.7892 0.9951 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.0972 0.1088 0.3130 0.9012 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0990 0.1082 0.3314 0.9240 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0973 0.1121 0.3573 0.9519 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0981 0.1004 0.1051 0.1649 0.3047 0.5756 0.8267 0.9511 0.9920 0.9993 1.0000

50 5 0.1004 0.0959 0.1057 0.1272 0.2051 0.3934 0.6600 0.8851 0.9816 0.9993 1.0000

100 5 0.0974 0.1009 0.1029 0.1186 0.1881 0.3850 0.6887 0.9214 0.9905 0.9998 1.0000

150 5 0.0981 0.0908 0.1002 0.1147 0.1675 0.3294 0.6172 0.8768 0.9814 0.9993 1.0000

200 5 0.0957 0.0973 0.1017 0.1126 0.1703 0.3129 0.6219 0.8908 0.9871 0.9996 1.0000

n

m n

p
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10

10
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Appendix R:  Simulation Results Using Symmetric Data with a 30% SS in p = 10 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.0957 0.2040 0.7375 0.9952 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

50 5 0.0969 0.2504 0.9008 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 5 0.1030 0.2719 0.9682 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

150 5 0.0978 0.2935 0.9860 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

200 5 0.0962 0.3092 0.9934 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 5 0.0987 0.1122 0.1859 0.4187 0.7523 0.9482 0.9931 0.9994 0.9999 0.9999 1.0000

50 5 0.1030 0.1094 0.1439 0.2264 0.4202 0.7460 0.9434 0.9938 0.9992 0.9998 1.0000

100 5 0.0943 0.1066 0.1196 0.1510 0.1979 0.3169 0.5278 0.8218 0.9639 0.9954 0.9994

150 5 0.0979 0.1004 0.1093 0.1254 0.1489 0.1960 0.2900 0.4356 0.6899 0.9171 0.9870

200 5 0.1005 0.1012 0.1094 0.1200 0.1337 0.1589 0.2058 0.2651 0.4123 0.6195 0.8686

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.1013 0.1136 0.1759 0.4025 0.7251 0.9344 0.9944 0.9993 1.0000 1.0000 1.0000

50 5 0.1024 0.1121 0.1818 0.4155 0.7651 0.9613 0.9976 1.0000 1.0000 1.0000 1.0000

100 5 0.0969 0.1032 0.1736 0.4387 0.8137 0.9713 0.9989 1.0000 1.0000 1.0000 1.0000

150 5 0.0967 0.1001 0.1769 0.4457 0.8223 0.9807 0.9996 1.0000 1.0000 1.0000 1.0000

200 5 0.1021 0.1057 0.1835 0.4711 0.8435 0.9845 0.9990 1.0000 1.0000 1.0000 1.0000

20 5 0.0946 0.0996 0.1112 0.1237 0.1710 0.2612 0.4224 0.6628 0.8747 0.9701 0.9923

50 5 0.0967 0.1015 0.1052 0.1094 0.1406 0.2009 0.2903 0.4543 0.7347 0.9553 0.9973

100 5 0.0985 0.0997 0.0996 0.1068 0.1324 0.1619 0.2527 0.3618 0.5623 0.9034 0.9960

150 5 0.0995 0.0993 0.0999 0.1017 0.1253 0.1551 0.2254 0.3298 0.4823 0.8402 0.9928

200 5 0.0961 0.0969 0.0991 0.1064 0.1221 0.1476 0.2184 0.3138 0.4491 0.7572 0.9903

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7 λ  = 8 λ  = 9 λ  = 10

20 5 0.0909 0.0948 0.1041 0.1093 0.1278 0.1605 0.2134 0.2560 0.3182 0.3837 0.4417

50 5 0.0960 0.0997 0.1029 0.1060 0.1176 0.1445 0.1661 0.2075 0.2530 0.3155 0.3456

100 5 0.0979 0.0979 0.0980 0.1037 0.1211 0.1266 0.1586 0.1930 0.2341 0.2755 0.3192

150 5 0.0992 0.0999 0.0997 0.0996 0.1131 0.1283 0.1493 0.1832 0.2119 0.2544 0.2983

200 5 0.0965 0.0967 0.0994 0.1033 0.1141 0.1202 0.1459 0.1779 0.2087 0.2390 0.2912
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Appendix S:  Simulation Results Using In-Control Skewed Data 

 

 

  

Process

Distribution p = 2 p = 5 p = 2 p = 5 p = 2 p = 5

20 5 0.4414 0.4803 0.0935 0.0965 0.0991

50 5 0.7618 0.8676 0.1019 0.0994 0.0987

100 5 0.9353 0.9827 0.1012 0.1030 0.1005

150 5 0.9779 0.9972 0.0949 0.0957 0.1020

200 5 0.9915 0.9998 0.0996 0.0997 0.1023

lognormal

Empirical FAP for MMR-MSD ChartEmpirical FAP for MMR-RMD ChartEmpirical FAP for Hotelling's T
2
 Chart

m n
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Appendix T:  Simulation Results Using Skewed Data with an IS in p = 2 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3

20 5 0.0984 0.1234 0.2527 0.5734 0.8771 0.9857 0.9995

50 5 0.0979 0.1138 0.2139 0.5128 0.8494 0.9812 0.9994

100 5 0.1004 0.1041 0.1846 0.4545 0.8181 0.9777 0.9994

150 5 0.0997 0.1071 0.1717 0.4171 0.7983 0.9682 0.9986

200 5 0.0972 0.1036 0.1617 0.4075 0.7840 0.9668 0.9978

20 5 0.0967 0.1071 0.1579 0.3973 0.7084 0.8826 0.9586

50 5 0.0956

100 5 0.1009 0.0991 0.1003 0.1016 0.1254 0.2423 0.5404

150 5 0.1001

200 5 0.0979 0.0999 0.1008 0.1017 0.1008 0.1066 0.1618

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3

20 5 0.0919 0.0899 0.1240 0.2274 0.4873 0.7792 0.9401

50 5 0.0996 0.0962 0.1140 0.2012 0.4509 0.7458 0.9348

100 5 0.0998 0.0977 0.1085 0.1858 0.4046 0.7065 0.9075

150 5 0.1009 0.1001 0.1067 0.1725 0.3713 0.6672 0.8929

200 5 0.0973 0.0995 0.1030 0.1555 0.3491 0.6587 0.8768

20 5 0.0935 0.1048 0.2979 0.7470 0.9430 0.9861 0.9918

50 5 0.1019

100 5 0.1012 0.1027 0.1518 0.5256 0.9168 0.9788 0.9918

150 5 0.0949

200 5 0.0996 0.0956 0.1173 0.3561 0.8533 0.9684 0.9891

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3

20 5 0.0902 0.0887 0.1181 0.2117 0.4489 0.7387 0.9216

50 5 0.1006 0.0948 0.1107 0.1910 0.4327 0.7244 0.9163

100 5 0.0983 0.0969 0.1087 0.1809 0.3958 0.6934 0.9005

150 5 0.1019 0.1003 0.1066 0.1682 0.3618 0.6640 0.8891

200 5 0.0967 0.0990 0.1033 0.1549 0.3465 0.6517 0.8745

20 5 0.0965 0.1785 0.3991 0.6790 0.8966 0.9759 0.9914

50 5 0.0994

100 5 0.1030 0.1579 0.3564 0.6137 0.9052 0.9836 0.9938

150 5 0.0957

200 5 0.0997 0.1366 0.3322 0.5517 0.8622 0.9805 0.9918

2
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2

normal

normal

lognormal
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Appendix U:  Simulation Results Using Skewed Data with an IS in p = 5 

 

 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4

20 5 0.0934 0.1119 0.1279 0.2515 0.5461 0.8207 0.9455 0.9851 0.9945

50 5 0.0963

100 5 0.0958 0.0968 0.0975 0.1001 0.1110 0.1400 0.2783 0.6024 0.8719

150 5 0.0968

200 5 0.0967 0.0953 0.0976 0.1012 0.0989 0.1018 0.1128 0.1577 0.3426

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4

20 5 0.0991 0.0977 0.1258 0.2897 0.5647 0.8285 0.9420 0.9855 0.9962

50 5 0.0987

100 5 0.1005 0.1001 0.0964 0.1760 0.4048 0.7213 0.9350 0.9926 0.9987

150 5 0.1020

200 5 0.1023 0.0969 0.1038 0.1370 0.3094 0.6104 0.8813 0.9850 0.9986

lognormal

Empirical AP for an Isolated Shift Using Hotelling's T
2
 Chart

lognormal

Empirical AP for an Isolated Shift Using the MMR-MSD Chart

p

5

p

5

m n

m n
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Appendix V:  Simulation Results Using Skewed Data with a 5% SS in p = 2 

 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0967 0.1072 0.1577 0.3914 0.7022 0.8842 0.9589 0.9839 0.9938 0.9967 0.9974

50 5 0.0956

100 5 0.1009 0.1028 0.1055 0.1258 0.1868 0.4334 0.7751 0.9465 0.9876 0.9978 0.9996

150 5 0.1001

200 5 0.0979 0.1012 0.1024 0.1102 0.1258 0.1842 0.3438 0.7156 0.9361 0.9885 0.9983

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0935 0.1072 0.3005 0.7387 0.9436 0.9821 0.9934 0.9966 0.9985 0.9990 0.9993

50 5 0.1019

100 5 0.1012 0.1024 0.2126 0.7795 0.9933 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

150 5 0.0949

200 5 0.0996 0.1020 0.1746 0.7258 0.9955 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0965 0.1868 0.4053 0.6796 0.8998 0.9737 0.9921 0.9963 0.9984 0.9995 0.9993

50 5 0.0994

100 5 0.1030 0.2552 0.5387 0.7700 0.9632 0.9987 0.9999 1.0000 1.0000 1.0000 1.0000

150 5 0.0957

200 5 0.0997 0.2678 0.5578 0.7762 0.9664 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000

2

n

m n

p m n

p
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p
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m
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Appendix W:  Simulation Results Using Skewed Data with a 15% SS in p = 2 

 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0967 0.1150 0.2044 0.5074 0.8041 0.9374 0.9746 0.9904 0.9972 0.9984 0.9991

50 5 0.0956

100 5 0.1009 0.1058 0.1160 0.1553 0.2504 0.4650 0.7737 0.9310 0.9858 0.9960 0.9982

150 5 0.1001

200 5 0.0979 0.1011 0.1056 0.1287 0.1626 0.2307 0.4078 0.6638 0.8988 0.9806 0.9957

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0935 0.1099 0.2674 0.6685 0.9247 0.9895 0.9981 0.9993 0.9999 0.9998 0.9997

50 5 0.1019

100 5 0.1012 0.1075 0.1904 0.5607 0.9053 0.9927 0.9992 1.0000 1.0000 1.0000 1.0000

150 5 0.0949

200 5 0.0996 0.1050 0.1649 0.4819 0.8685 0.9907 0.9993 1.0000 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0965 0.2099 0.4151 0.6046 0.7839 0.9072 0.9648 0.9889 0.9955 0.9983 0.9993

50 5 0.0994

100 5 0.1030 0.2263 0.4239 0.6243 0.8080 0.9372 0.9857 0.9976 0.9997 0.9998 0.9999

150 5 0.0957

200 5 0.0997 0.2103 0.4125 0.6021 0.8056 0.9404 0.9894 0.9978 0.9989 0.9997 0.9996

p m n

2

p m n

2

p m n

2

Empirical AP for a 15% Sustained Shift Using the MMR-MSD Chart

Empirical AP for a 15% Sustained Shift Using the MMR-RMD Chart
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2
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lognormal

lognormal
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Appendix X:  Simulation Results Using Skewed Data with a 30% SS in p = 2 

 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0967 0.1256 0.2241 0.4939 0.7701 0.9173 0.9714 0.9868 0.9949 0.9973 0.9989

50 5 0.0956

100 5 0.1009 0.1073 0.1247 0.1722 0.2658 0.4155 0.6337 0.8513 0.9522 0.9859 0.9962

150 5 0.1001

200 5 0.0979 0.1048 0.1144 0.1400 0.1746 0.2546 0.3735 0.5437 0.7171 0.8843 0.9654

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0955 0.1013 0.1440 0.2777 0.5222 0.7769 0.9319 0.9846 0.9972 0.9993 1.0000

50 5 0.0983

100 5 0.0982 0.0999 0.1368 0.2239 0.3961 0.5983 0.7691 0.9078 0.9808 0.9985 0.9997

150 5 0.1008

200 5 0.0992 0.1019 0.1386 0.2079 0.3640 0.5372 0.7020 0.8314 0.9433 0.9940 0.9997

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0965 0.1458 0.1946 0.2119 0.2345 0.2724 0.2992 0.3175 0.3537 0.3645 0.3771

50 5 0.0994

100 5 0.1030 0.1390 0.1630 0.1993 0.2314 0.2801 0.3116 0.3556 0.3829 0.3986 0.4240

150 5 0.0957

200 5 0.0997 0.1258 0.1562 0.1843 0.2258 0.2756 0.3145 0.3499 0.3852 0.4220 0.4270

p m n

2

p m n

2

p m n

Empirical AP for a 30% Sustained Shift Using the MMR-MSD Chart

Empirical AP for a 30% Sustained Shift Using the MMR-RMD Chart

Empirical AP for a 30% Sustained Shift Using Hotelling's T
2
 Chart

lognormal

lognormal

lognormal 2
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Appendix Y:  Simulation Results Using Skewed Data with a SS in p = 5 

 

 

 

 

 

  

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0934 0.1031 0.1236 0.2490 0.5473 0.8198 0.9456 0.9857 0.9970 0.9989 0.9998

50 5 0.0963

100 5 0.0958 0.0980 0.1020 0.1112 0.1419 0.2260 0.5187 0.8406 0.9713 0.9965 0.9994

150 5 0.0968

200 5 0.0967 0.0947 0.0973 0.1025 0.1097 0.1356 0.1916 0.3595 0.6965 0.9435 0.9919

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0991 0.0920 0.1296 0.2995 0.5772 0.8201 0.9460 0.9865 0.9974 0.9989 0.9998

50 5 0.0987

100 5 0.1005 0.1050 0.1067 0.2296 0.5250 0.8371 0.9689 0.9974 0.9994 0.9999 1.0000

150 5 0.1020

200 5 0.1023 0.0998 0.1054 0.1922 0.4607 0.7969 0.9658 0.9989 0.9999 0.9999 1.0000

p m n

5

p m n

lognormal

lognormal 5

Empirical AP for a 5% Sustained Shift Using Hotelling's T
2
 Chart

Empirical AP for a 5% Sustained Shift Using the MMR-MSD Chart

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0934 0.1109 0.1574 0.3359 0.6643 0.8916 0.9749 0.9945 0.9989 0.9996 0.9999

50 5 0.0963

100 5 0.0958 0.1013 0.1085 0.1309 0.1843 0.2998 0.5539 0.8396 0.9653 0.9960 0.9988

150 5 0.0968

200 5 0.0967 0.0958 0.0993 0.1123 0.1282 0.1688 0.2459 0.4111 0.6712 0.9096 0.9856

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0991 0.0907 0.1251 0.2176 0.3862 0.6074 0.7847 0.9006 0.9572 0.9829 0.9931

50 5 0.0987

100 5 0.1005 0.1046 0.1055 0.1588 0.2801 0.4819 0.6916 0.8418 0.9446 0.9816 0.9932

150 5 0.1020

200 5 0.1023 0.0978 0.1034 0.1453 0.2316 0.3983 0.6119 0.8036 0.9173 0.9730 0.9907

p m n

5

p m n

lognormal

lognormal 5

Empirical AP for a 15% Sustained Shift Using the MMR-MSD Chart

Empirical AP for a 15% Sustained Shift Using Hotelling's T
2
 Chart

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0934 0.1137 0.1713 0.3298 0.6137 0.8508 0.9568 0.9896 0.9973 0.9984 0.9997

50 5 0.0963

100 5 0.0958 0.1014 0.1143 0.1431 0.1914 0.2863 0.4627 0.6808 0.8868 0.9739 0.9942

150 5 0.0968

200 5 0.0967 0.0967 0.1020 0.1200 0.1401 0.1793 0.2447 0.3458 0.5092 0.7166 0.8836

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

20 5 0.0991 0.0878 0.1065 0.1140 0.1477 0.1793 0.2306 0.2725 0.3227 0.3643 0.4048

50 5 0.0987

100 5 0.1005 0.1028 0.0992 0.1102 0.1316 0.1546 0.2014 0.2350 0.2736 0.3244 0.3615

150 5 0.1020

200 5 0.1023 0.0975 0.0980 0.1150 0.1283 0.1491 0.1870 0.2183 0.2597 0.2960 0.3410

p m n

5

Empirical AP for a 30% Sustained Shift Using Hotelling's T
2
 Chart

Empirical AP for a 30% Sustained Shift Using the MMR-MSD Chart

lognormal

p m n

5

lognormal
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Appendix Z:  Subgroup Size Analysis Using In-Control Data 

 

 

  

Process Empirical FAP for Empirical FAP for

Distribution Hotelling's T
2

 Chart MMR-RMD Chart

100 5 0.9541 0.0964

100 10 0.9054 0.1050

100 15 0.8708 0.1020

100 20 0.8332 0.1047

100 5 0.9833 0.0986

100 10 0.9437 0.1042

100 15 0.9029 0.0949

100 20 0.8602 0.1030

t (3)

lognormal

m np

5

5
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Appendix AA:  Subgroup Size Analysis Using Data with an IS in p = 5 

 

 

 

 

  

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7

100 5 0.0999 0.0991 0.0990 0.0990 0.1201 0.2394 0.6120 0.8989

100 10 0.0942 0.0999 0.0974 0.1434 0.5595 0.9532 0.9973 0.9998

100 15 0.0984 0.1000 0.1075 0.4214 0.9614 0.9990 1.0000 0.9999

100 20 0.1004 0.0994 0.1402 0.8056 0.9971 0.9999 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7

100 5 0.1022 0.1013 0.1055 0.1498 0.4484 0.8643 0.9851 0.9975

100 10 0.0986 0.1038 0.1395 0.5409 0.9767 0.9998 1.0000 1.0000

100 15 0.0964 0.1030 0.1915 0.8414 0.9995 1.0000 1.0000 0.9999

100 20 0.1021 0.1050 0.2741 0.9650 0.9999 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

100 5 0.0933 0.0925 0.0977 0.1019 0.1080 0.1333 0.2812 0.5998 0.8664 0.9692 0.9929

100 10 0.1016 0.0951 0.0952 0.1190 0.2992 0.7866 0.9787 0.9987 0.9997 1.0000 1.0000

100 15 0.0977 0.0998 0.1133 0.2610 0.8405 0.9947 0.9998 0.9999 1.0000 1.0000 1.0000

100 20 0.0898 0.1038 0.1310 0.6108 0.9852 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4 λ  = 4.5 λ  = 5

100 5 0.0986 0.1016 0.1028 0.1130 0.2076 0.5308 0.8765 0.9826 0.9976 0.9994 1.0000

100 10 0.1042 0.1012 0.1173 0.3757 0.9080 0.9981 1.0000 1.0000 1.0000 1.0000 1.0000

100 15 0.0949 0.1093 0.1767 0.7495 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

100 20 0.1030 0.1085 0.2768 0.9339 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Empirical AP for an Isolated Shift Using Hotelling's T
2

 Chart

t (3)

Empirical AP for an Isolated Shift Using the MMR-RMD Chart

p m n

5

t (3)

Empirical AP for an Isolated Shift Using Hotelling's T
2

 Chart

p m n

5

p m n

lognormal

Empirical AP for an Isolated Shift Using the MMR-RMD Chart

lognormal

5

p m n

5
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Appendix BB:  Subgroup Size Analysis Using Data with a 15% SS in p = 5 

 

 

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7

100 5 0.0963 0.0980 0.1120 0.1361 0.2236 0.5038 0.8621 0.9806

100 10 0.0917 0.1067 0.1270 0.3049 0.8734 0.9970 1.0000 1.0000

100 15 0.1003 0.1015 0.1805 0.7814 0.9979 1.0000 1.0000 1.0000

100 20 0.1021 0.1144 0.2951 0.9834 0.9999 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 1 λ  = 2 λ  = 3 λ  = 4 λ  = 5 λ  = 6 λ  = 7

100 5 0.0950 0.0996 0.1130 0.2132 0.5115 0.8817 0.9861 0.9988

100 10 0.0989 0.1058 0.1997 0.7429 0.9961 0.9997 0.9999 1.0000

100 15 0.0998 0.0985 0.3297 0.9696 0.9996 1.0000 1.0000 1.0000

100 20 0.0996 0.1147 0.4881 0.9977 1.0000 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4

100 5 0.0933 0.0966 0.1075 0.1304 0.1843 0.2998 0.5591 0.8385 0.9673

100 10 0.1016 0.1014 0.1256 0.2416 0.6156 0.9663 0.9992 0.9998 1.0000

100 15 0.0977 0.1111 0.1791 0.5726 0.9905 0.9999 1.0000 1.0000 1.0000

100 20 0.0898 0.1202 0.2824 0.9500 0.9999 1.0000 1.0000 1.0000 1.0000

Process

Distribution λ  = 0 λ  = 0.5 λ  = 1 λ  = 1.5 λ  = 2 λ  = 2.5 λ  = 3 λ  = 3.5 λ  = 4

100 5 0.0986 0.1026 0.1078 0.1390 0.2592 0.5200 0.8104 0.9541 0.9957

100 10 0.1042 0.1035 0.1601 0.5318 0.9633 0.9994 1.0000 1.0000 1.0000

100 15 0.0949 0.1157 0.2799 0.8985 0.9995 1.0000 1.0000 1.0000 1.0000

100 20 0.1030 0.1189 0.4525 0.9899 1.0000 1.0000 1.0000 1.0000 1.0000

p m n

5

p m n

5

Empirical AP for a 15% Sustained Shift Using Hotelling's T2 Chart

t (3)

Empirical AP for a 15% Sustained Shift Using the MMR-RMD Chart

t (3)

Empirical AP for a 15% Sustained Shift Using Hotelling's T
2

 Chart
p m n

lognormal

Empirical AP for a 15% Sustained Shift Using the MMR-RMD Chart

lognormal

5

p m n

5


