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Abstract 
 
 

 Environmental problems such as global warming and fossil fuel shortage are some of the 

biggest challenges that human beings are facing nowadays.  Alternative fuels are the potential 

answer to many future energy needs and current environmental concerns.  A polygeneration plant 

is a complex system that can produce multiple products through different processing routes.  The 

study of novel alternative fuel production through optimal processing strategies is the key to 

solving worldwide energy and environmental problems in a more efficient and cost-saving way. 

 The objective of this research is primarily focused on the development of methodologies that 

integrate simulation, modeling and optimization tools for evaluation of the 

economic/environmental potentials of polygeneration facilities.  The production of hydrogen and 

Fischer-Tropsch fuels are presented as case studies.  Hydrogen is a “clean” energy source.  The 

only product from the combustion of hydrogen is water, leaving zero carbon footprints.  

Fischer-Tropsch fuels, on the other side, can be matched directly to the fuel market.  Therefore, 

case studies of different hydrogen production schemes and a comparison between traditional and 

novel FT fuel production processes have been developed to illustrate the methodology.  This 

work successfully compared reformation strategies based on the impact of utility requirements, 

energy integration potential, equipment costs, and raw material costs on the total production cost.  

Meanwhile, different production scenarios of alternative fuels such as Fischer-Tropsch fuels were 

investigated. A comparison between the traditional gas phase Fischer-Tropsch process and the
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novel supercritical phase Fischer-Tropsch process was made.  The results could lead us to a more 

efficient and environmental friendly alternative answer to satisfy many of the future energy needs. 

 In addition, a novel method has been developed to optimize complex process networks.  

Disjunctive-Genetic Programming (D-GP), which is based on the integration of Genetic 

Algorithm (GA) with the disjunctive formulations of the Generalised Disjunctive Programming 

(GDP) for optimization of process networks, has been developed.  This proposed approach 

eliminates the need for reformulation of the discrete/discontinuous optimization problems into 

direct MINLP problems, thus allowing for the solution of the original problem as a continuous 

optimization problem but only at each individual discrete and reduced search space.  This method 

was used to optimize the selection process for complex products and production routes. 
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Chapter 1  Introduction 
 
 

Polygeneration is the integrated production of three or more outputs in the form of 

tangibles, i.e. chemicals and fuels, or intangibles, i.e. heat and electricity from one or more natural 

resources.  It has multiple products and production routes and has tremendous integration 

potential, not only limited to recycling unused materials, but also in the form of energy recovery.  

It is an advanced chemical energy conversion technology, which provides opportunities for higher 

energy utilization efficiency and lower/zero emissions compared to conventional stand-alone 

power plants and chemical facilities [Serra, 2009; Gamou, 2002].  Many researchers have studied 

the processes, feasibility and environmental impact of different polygeneration systems.  Gao et 

al. (2004) investigated a coal-based polygeneration system for power and methanol production.  

By comparing with the original individual processes, the results indicated that the main 

contribution to the performance benefit of the polygeneration system is the synthesis on the basis 

of thermal energy utilization.  Joelsson et al. (2010) compared different options for the use of 

lignocellulosic biomass to reduce CO2 emission and oil use with traditional individual plants, 

focusing on polygeneration of biomass-based motor fuels and electricity.  The results indicated 

that the most efficient route to produce motor fuel from biomass was dimethyl ether (DME) via 

black liquor gasification through polygeneration facilities.  Polygeneration process designs are 

not only used to produce electricity and chemical fuels, but also for specific purposes, such as 

combining a lignocellulosic wood-to-ethanol process with an existing heat and power plant for 

higher energy utilization rates [Starfelt, 2010].  During the evaluation process, a model was built
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to compare the performance of the polygeneration system.  The results showed that the combined 

facility produced 2.7% more electricity per year. 

While the reported works provide a good fundamental understanding of different 

polygeneration facilities and their benefits, most of them focus on specific requirements or 

conditions.  The evaluation of different complex polygeneration concepts is associated with the 

difficulties of comparing systems with different inputs, i.e. biomass feedstock and different 

outputs (i.e. heat, electricity and fuels) with respect to multiple criteria such as economic 

feasibility and energy security.  Thus, a general systematic methodology is needed to determine 

this complex, large-scale and highly nonlinear process system. 

The scope of this dissertation will mostly focus on developing a methodology that leads to 

optimal novel fuel product portfolios through polygeneration facilities.  A systematic approach is 

utilized to reduce the complexity of the polygeneration plants and conceptual processes are 

developed for the production of clean and renewable energy sources such as H2 and 

Fischer-Tropsch fuels.  The methodology developed to achieve this stated research objective 

consists of several steps.  The first step involves gathering the initial data for the proposed process 

including the possible feedstocks and processing routes.  The primary purpose of this step is to 

determine the general technical feasibility of the process chemistry and to determine the general 

process operating conditions of the proposed processes.  Then data gathered from literature 

sources or collected from laboratory experimentation are extracted to develop the base case 

simulation models using computer-aided tools like Aspen Plus and Pro/II.  If the process is 

solvent-based, molecular design tools are utilized to design the alternative solvents that perform 

the same function but are safer and less hazardous to the environment.  Heat and mass integration 

techniques are applied to optimize the simulation models.  This key step ensures the minimum 
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usage of heating and cooling duties and raw materials that flow into the system.  Optimized 

models are utilized to generate economic and environmental performance metrics.  Mathematical 

optimization is used at this stage of development to identify candidate solutions that achieve the 

highest profitability.  Environmental impact is also measured and incorporated into the profit 

oriented optimization step.  Once the models are created, an evaluation based on economic 

performance and potential environmental impact can be completed.   

Chapter 2 gives a brief introduction on product and process design, process integration, 

economic and environmental analysis as related to the optimization and evaluation steps of the 

methodology.  This chapter also outlines concepts of polygeneration facilities and the alternative 

fuels that were studied using polygeneration technologies.  Chapter 3 describes the methodology 

to design polygeneration facilities, which decreases the complexity of the process design problem, 

through optimization and evaluation of desirable processes.  Chapter 4 includes several case 

studies on alternative fuel production; different hydrogen and Fischer-Tropsch fuel production 

schemes through polygeneration facilities are investigated to give a more complete view of the 

methodology illustrated in Chapter 3.  A Disjunctive-Genetic Programming (D-GP) approach is 

presented in Chapter 5 based on the integration of Genetic Algorithm (GA) with the disjunctive 

formulations of the Generalised Disjunctive Programming (GDP) for the optimization of process 

networks.  This algorithm provides a broader application of the methodology to solve complex 

chemical synthesis networks.  Several examples are presented based on the algorithm to illustrate 

its benefits over existing methods.  Chapter 6 summarizes the achievements in this dissertation 

discusses future directions.  

The work related to alternative fuel production and optimization methodology 

development has been published in several papers [Odjo et al. 2008, 2011; Yuan et al., 2008, 
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2009a, 2009b, 2011].  The work on the comparison of different hydrogen production strategies 

has been published in Computer Aided Chemical Engineering [Yuan, 2008].  The work related to 

Fischer-Tropsch fuel synthesis has been published in Computer Aided Chemical Engineering 

[Yuan, 2011].  Meanwhile, the work on the D-GP framework has been published in Industrial and 

Engineering Chemistry Research [Odjo, 2011], Computer Aided Chemical Engineering [Yuan, 

2009a] and Design for Energy and the Environment [Yuan, 2009b].
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Chapter 2  Theoretical Background 

 
 

 
2.1 Polygeneration Facilities 

Polygeneration is considered as a potentially attractive technology as it could provide 

feasible solutions to the worldwide problems of excessive greenhouse gas (GHG) emissions and 

ever-increasing depletion of fossil fuels.  Figure 2.1 shows an example of a polygeneration plant.  

Polygeneration systems offer the possibility to produce chemical products, synthetic fuels, 

hydrogen and electricity simultaneously.  They have multiple products and production routes.  

The carbonaceous feedstock possibilities include forest-based biomass, agricultural biomass, and 

coal.  The yellow diamonds represent the classes of chemicals that can be sold externally on the 

market or used internally by the biorefineries and/or their partners.  The blue rectangles represent 

the chemical processes that may include more than one subprocess and multiple production routes, 

which can achieve the goal of producing the desired products.  A typical polygeneration plant 

produces electricity and chemical synthesis products, in particular alternative fuels, such as 

methanol, dimethyl ether (DME), Fischer-Tropsch fuels and hydrogen.  It integrates existing or 

new techniques to produce multiple energy products including electricity, heat, ethanol and biogas.  

Such a system could preferably use local arable land and forest by-products to supply the feedstock.  

Thus, it requires a higher degree of integration than conventional power plants, because it must 

adapt to disparate infrastructures.  There will also be different markets and players and regulatory 

regimes to relate to it.
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Many researchers have studied the processes, feasibility and environmental impact of the 

polygeneration systems [Li, 2003; Ni, 2004; Yamashita, 2005].   

 

Figure 2.1:  Visualization of a polygeneration plant [Yuan, 2008] 
 

A successful integration requires that a number of conditions be satisfied, including the 

appropriate pricing mechanisms and that any significant barriers for market entry be identified and 

removed.  Polygeneration energy systems are considered to be superior to conventional 

stand-alone plants.  Their advantages rely on three main aspects.  First, integration techniques 

are applied to both chemical synthesis sections and the power generation, making the system more 

efficient.  Second, chemical products produced by a polygeneration plant can be used as 

substitutions for traditional liquid fuels; such as Fischer-Tropsch fuel for fossil fuels, hydrogen can 
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also be a product.  Finally, the large scale energy systems are expected to result in cost effective 

solutions for the implementation of CO2 capture and sequestration units. 

 

2.2 Alternative Fuel Production  

 

2.2.1 Introduction 

The possibility of climate change and the likely exhaustion of fossil fuel resources are two 

of the main energy concerns in the world today.  Human activities are most likely the reasons for 

the warming.  The world’s economy literally runs on energy.  More energy will be needed with 

the continuously fast-growing world population, even with significant improvements in energy 

efficiency.  The search for an environmentally friendly and energy efficient replacement for fossil 

fuel is very important.   

Alternative fuels can be defined as materials or substances, which can be used as a fuel, 

other than conventional fuels.  Biofuels, hydrogen, ethanol, and Fischer-Tropsch fuels are all 

within the scope of alternative fuels. 

In summary, the world energy development program has taken a few turns to produce 

alternative fuels for various reasons, some of which are listed below [Lee, 1996]: 

 The recessions in the early 1980s; the government cut spending, making long-term 

research and development a lower priority. 

 The Clean Air Act Amendments of 1990: additional restrictions on the use of 

conversional fuels have been implemented. 

 Energy integration concepts have been very popular, because of easy adaptation to 

existing facilities as well as enhanced efficiencies. 
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The field of alternative fuels is strategically important to the long-term future of human life 

as well as better utilization of global resources. 

 

2.2.2 Hydrogen as Alternative Fuel 

Hydrogen can become a potentially very promising fuel for transportation uses in the 

future.  It is very “clean”.  During combustion, it only produces water [Barretoa, 2002].  In 

addition, hydrogen has the highest gravimetric energy density of any known element (but the 

lowest volumetric energy density, which makes storage challenging).  It has a higher heating 

value than other fuels [U.S Department of Energy, 2004].   

Hydrogen can be produced from hydrogen-containing compounds, including fossil fuels, 

biomass or water through a variety of processes.  Different sources of energy will be needed 

depending on the processes, such as thermal, photolytic and electrolytic energy.   

 

2.2.2.1 Reformation Strategies 

Reforming is the process of converting hydrocarbon compounds to produce hydrogen 

containing products.  Hydrogen can be derived from hydrocarbons through various reformation 

techniques, such as thermal processes, electrolytic processes and photolytic processes, among 

which thermal processes are the most investigated reforming strategies, and believed to be key 

technologies for the potential development of a future hydrogen energy economy.   

Several reformation strategies were investigated, including steam reforming (SR), partial 

oxidation (POX), auto thermal reforming (ATR), supercritical water reforming (SCWR), dry 

reforming (DR), and catalytic dehydrogenation (CDH)  [Godat, 2003; Seo, 2002; Gadhe, 2005; 

Shao, 2005; Shah, 2001].  Each of these has advantages and disadvantages [Corma, 2007] 



 9

Among all of the processes, steam reforming is the most common and technically 

well-proven industrial reformation strategy.  Highest hydrogen yield could be expected through 

steam reformation.  In the chemical manufacturing industry, most hydrogen is prepared using 

steam reforming process [Bellona, 2004].  Steam reforming is an endothermic process that 

requires heating.  The hydrogen produced from steam reforming of methane makes up about 95% 

of the hydrogen produced in the United States today.  In this process, high-temperature steam 

(700 °C-1000 °C, 3-25 bar) reacts with methane over a heterogeneous catalyst.  The primary 

products are CO and H2, which are then further reacted using a catalyst to produce carbon dioxide 

and more hydrogen.  This is called the “water-gas shift reaction”.   In the last step, impurities, 

such as carbon dioxide, are removed from the gas stream [Wu, 2009; Martavaltzi, 2010].  

Partial Oxidation, on the other hand, is an exothermic process.  It is typically faster than 

steam reforming and requires smaller reactor vessels.  In this process, a limited amount of 

oxygen is provided, which is not enough to completely oxidize the hydrocarbons to produce 

carbon dioxide and water.  Instead, hydrogen and carbon monoxide are produced, which is 

often referred to as synthesis gas.  In order to maximize the amount of hydrogen produced, 

partial oxidation usually includes a water-gas shift (WGS) reaction to generate additional 

hydrogen from the oxidation of carbon monoxide to carbon dioxide by reaction with water [Heil, 

2001; Kim, 2004]. 

Auto-thermal reforming (ATR) consists of endothermic steam reforming and exothermic 

partial oxidation to give a close to energy neutral process.  It has been recognized as a feasible 

process for hydrogen production with regard to both hydrogen yield and heat management.  

Catalysts are critical factors that affect the conversion of the auto thermal reforming process 

[Youn, 2009].  
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Supercritical water reforming (SCWR) utilizes water above its critical point as a reaction 

medium.  The supercritical phase combines the desired properties of gas-like diffusivity along 

with liquid-like heat transfer.  Gases are soluble in all proportions in SCW, as are non-polar 

molecules [Gadhe, 2005].  The reaction happens at high temperature and pressure, which may 

be attractive to some applications where high pressure hydrogen is needed. 

Reactions pertinent to hydrocarbon reforming (Eqn. 2.1-2.2) and the water-gas shift 

reaction (Eqn. 2.3) may be summarized as follows: 

 

Steam reforming 

22 )5.0( HmnnCOOnHHC mn     endothermic process    (Eqn. 2.1) 

 

Partial oxidation 

2 20.5 0.5n mC H O nCO mH       exothermic process    (Eqn. 2.2) 

 

Autothermal reforming 

22 )5.0( HmnnCOOnHHC mn             (Eqn. 2.1) 

2 20.5 0.5n mC H O nCO mH               (Eqn. 2.2) 

 

All processes include the water-gas shift reaction 

222 HCOOHCO                 (Eqn. 2.3) 

 

Electrolytic processes use electricity to produce hydrogen and oxygen using water in a 

unit called an electrolyzer.  Alkaline electrolyzers, polymer electrolyte membrane (PEM) 
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electrolyzers and solid oxide electrolyzers are the most widely used.  Electrolysis using 

renewable sources of electricity as well as nuclear high-temperature electrolysis produces nearly 

zero greenhouse gas, which could be potentially very attractive.  However, this process is one 

of the most energy intensive processing methods [Mueller-Langer, 2007; Bellona, 2002] 

In photolytic processes, light energy is usually used to produce hydrogen and oxygen 

from water.  This method also provides a promising way for hydrogen production with low 

environmental impact.  Photobiological and photoelectrochemical are two subcategories.  

Photoelectrochemical processes were first conducted by Fujishima (1972).  A cell, which 

contained an n-TiO2 photo-electrode, a Pt counter electrode, and an electrolytic iron solution, 

was used.  The photobiological process requires specialized photosynthetic, which is an 

electron-donating substrate, and light as the energy to split water into hydrogen.  Ghirardi and 

co-workers (2009) summarized several processes in this area. 

 

2.2.3 Fischer-Tropsch Fuel Production 

More focus has been put into Fischer-Tropsch (FT) fuel production due to the stringency 

of environmental regulations as well as decreasing fossil fuel reserves.  With the development 

of new technology, the FT process is becoming a potential answer to meet many future energy 

needs and may significantly reduce the carbon emissions.  FT-liquids can be directly sold to the 

market.  Conventional fuels, such as diesel, kerosene and gasoline can be replaced directly 

[Leckel, 2009].  Historically, Franz Fisher and Hans Tropsch developed the Fischer-Tropsch 

process in Germany during the 1920s and later the process was commercialized during World 

War II.  Recently many studies of different processes, feedstocks, and catalysts have been 

undertaken in this area [Casci, 2009].   
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The Fischer-Tropsch process is an exothermic catalytic chemical reaction.  Hydrogen and 

carbon monoxide are the primary feedstock.  Liquid hydrocarbons are formed with various chain 

lengths.  The main reaction and the mechanism are shown in Eqn. 2.4 and Eqn. 2.5 respectively 

[Schulz, 1999]: 

OnHHCHmnnCO mn
Catalyst

22)2/(             (Eqn. 2.4) 

OHCHHCO 2222     molkJH /165          (Eqn. 2.5) 

 

The FT process is normally operated with two temperature ranges: a lower temperature 

range (180-250 ̊ C) and a higher temperature range (300-350 ̊ C) and at pressures from 20 to 40 bar.  

In the low temperature range synthesis process, Co-based catalysts are usually utilized with the 

production of n-paraffins and n-olefins (wax) [Bouchy, 2009].  In the higher temperature range, 

Fe-based catalysts are used and produce more gasoline [Kamara, 2009].   

No matter what reaction conditions and catalyst are used, the Fischer-Tropsch reaction 

produces a wide range of aliphatic hydrocarbon chains.  The carbon number distribution of the 

products is commonly described by the Anderson-Schultz-Flory (ASF) model which was 

developed based on Flory’s pioneering studies [Flory, 1936], and later extended by Herington 

(1946), Friedel (1950) and Henrici-Olive (1976).  The basic formula is shown in Eqn. 2.6 and 

Eqn. 2.7, where Wn stands for the weight percentage of all hydrocarbon products with carbon 

number n and α is the chain growth probability.  α mostly depends on the operating conditions and 

catalyst.  Usually a heavier hydrocarbon weight percentage should be observed with a higher α 

value.  In order to get a high selectivity toward heavy products, the growth probability α should be 

close to 1 [Schulz 1999].   

                (Eqn. 2.6) 1 2(1 )n
nW n  
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2(1 )
ln( ) ln ln( )nW

n
n





                (Eqn. 2.7) 

 

The FT synthesis processes can use a variety of feedstocks, such as coal, biomass and 

natural gas and different reaction media, such as gas-phase and liquid-phase.  Traditional FT 

processes have been performed in both reaction media.  For the gas-phase FT processes, the 

syngas feed reacts on the surface of the catalyst.  Due to the production of waxes, these processes 

are used widely.  However, it has some drawbacks such as the accumulation of heavy wax in the 

catalyst pores and overheating on the catalyst surface, which may lead to short catalyst lifetimes 

and low conversion [Dry, 2002].  FT performed in liquid-phase reaction media has benefits such 

as greater temperature uniformity.  However, liquid phase FT is limited by the mass transfer 

which leads to relatively large reactor volumes [Anderson, 1984].  Recently, a lot of efforts have 

been put into the studies of supercritical phase FT processes.  Supercritical phase has the 

characteristics of gas-like transport properties and liquid-like heat capacity and solubility.  

Elbashir and co-workers (2005) used supercritical hexane as the reaction media, and the IR results 

indicated that it could provide a well-controlled FT reaction in the supercritical phase.   

 

2.3 Product and Process Design 

The concept of process design is the process of assembling knowledge from known routes, 

such as experimental or literature data, combined with approximation and assumptions to design 

simulation models for certain processes.  It provides ways to search among the feasible options.  

The designs are expected to be reliable, economically attractive and generated within a limited 

time frame [Seider, 2004].  Historically, experimental based analysis and approximate 

approaches were used to develop and design the desired chemical products.  A more modern 



 14

approach to the design and development of chemical products involves computer-aided modeling 

to simplify the design process by reducing time-consuming experiments. 

Conceptual process synthesis and design is becoming an increasingly important field in 

both industry and in academia.  The total cost savings by industrial application of process 

synthesis range from 20% to 60% during the last several decades [Harmsen, 1999].  There are 

several reasons for its importance.  First is because of the reduced profitability due to increase in 

global industrial capacity and in the number of total producers.  The rising prices of raw material 

and energy have sustained interest in the development of process synthesis tools as well.  

Government funding shifted to research that encourages process design [Gadewar, 2004].   
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Figure 2.2:  Steps in product and process design [Seider, 1999] 
 

Chemical engineers who participate in product and process design usually face different 

challenges.  These challenges include analyzing and selecting the composition of chemical 
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mixtures which can provide the desired properties with low utility costs and easier operations, 

development of desired products, and the selection of proper operating conditions [Seider, 1999].  

Figure 2.2 shows the basic steps in designing chemical products and processes.  Beginning with a 

potential opportunity, the design team creates and assesses an initial model.  If necessary, the 

design team seeks to find chemicals or chemical mixtures that have the desired properties and 

performance.  If the gross profit is favorable, a base case is designed.  The steps illustrated above 

belong to part one in figure 2.2.  At the same time, detailed process synthesis based on algorithmic 

methods is commenced in order to find a better flowsheet.  Meanwhile, plant wide controllability 

assessment is undertaken to eliminate processes that are difficult to control.  Then the promising 

designs are passed down and used as a basic model for detailed design, including equipment sizing 

and further optimization.   

The objective in the product design is to identify the most appropriate chemicals that 

satisfy the final goal, such as general behavior or characteristics.  Moggridge and Cussler (2000) 

suggested four steps for the design procedure which is shown in figure 2.3:  

                                

Figure 2.3:  Design procedure [Moggridge and Cussler, 2000] 
 

Manufacture 
Product  

Select Among Ideas

Generate Ideas to  
Meet the Needs  

Define Needs
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First, we define the needs as a marketing function, which includes customer desires and 

their requirements.  The next step is the generation, production and screening of ideas from 

human, chemical sources, etc.  The ideas are then ranked.  The best one or two are selected.  The 

most promising candidates are introduced for the manufacturing step.  The products which have 

the required quality are then tested as prototypes before final production.   

Process synthesis reviews are readily available in the open literature.  Early work on 

construction design processes reflects decisions that led to state-of-the-art continuous processes.  

The rule-based hierarchies, developed by Siirola (1996) and Douglas (1988), can be divided into 

five main decision levels: 

 Batch vs. continuous 

 Input-output structure of the flowsheet 

 Reactor and recycle structure of the flowsheet 

 Separation system synthesis 

 Heat recovery network 

 

In the hierarchical decomposition method developed by Douglas (1988) one only looks at 

the input-output structure of the process at the first level.  In subsequent levels more detail is 

added, finally ending with the entire flowsheet.  Later, Biegler (1997), Harmsen (1999) and 

Seider (2004) further developed the method based on the fundamental work by Douglas et al 

(1988).  Biegler et al. (1997) lists the basic steps in flowsheet/process synthesis as: (1) gathering 

information, (2) representation of alternatives, (3) assessment of preliminary design, and (4) the 

generation and search among alternatives. 
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2.3.1 Conceptual Process Design Approaches 

Based on the structure, the various approaches can be organized as: 1) 

structure-independent methods, which solve the synthesis problem by breaking it down into 

multiple stages to reduce the dimensionality of the problem.  Within each stage, the design targets 

are identified and used in the following stage; 2) structure based methods, which include the 

structure of the process as well as all the design and operating parameters for each piece of 

equipment as part of its formulation; therefore, the superstructure encompasses many redundant 

paths and equipment alternatives for achieving the design objectives.  Both methods follow the 

basic steps of process synthesis and design which are summarized by Biegler and co-workers 

(1997).   

The methods which try to address the problems outlined and design the desired products 

can also be further divided into three groups: conceptual process design by function-integration 

design; conceptual process design by heuristic selection of unit operations and recycle structure; 

and conceptual design by superstructure optimization.  The principal difference among these is 

that the optimization-based and heuristic methods solve problems by generating and searching 

flowsheet structures, while the others focus on the representation of physical knowledge of the 

system [Grossmann, 1996].  

 

2.3.1.1 Conceptual Process Design by Heuristic Selection of Unit Operations and Recycle 

Structure 

The sequence and structure of heuristic methods for the selection of the best designs are 

based on the long-term experience of engineers and researchers [Douglas, 1988].  These methods 

are usually used for industrial process synthesis problems, which only solve the constraint 
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equations of the optimization problem and develop feasible but not necessarily optimal solutions.  

The search space is reduced by analyzing the problem and fixing many of the discrete variables.  

Heuristics are developed as a tool to aid in deciding which decisions should be made and how.  

There are advantages and disadvantages of these methods.  Without heuristics, design problems 

are usually too difficult and too large to converge.  However, it is not guaranteed that the optimal 

solution is generated [Westerberg, 2004].  When and only when the problem that needs to be 

solved is related closely to the types of problems that have been solved, the approaches become 

useful [El-Halwagi, 1997].  Shortcut calculations are carried out at every stage of process design 

based on economic criteria.  A representative example of the heuristic search approach is the 

hierarchical decomposition method by Douglas [Douglas, 1985; 1988; 1990].  The major 

advantage of this method is that it allows for the quick identification of flowsheet structures that 

are often close to optimal solutions so that a large problem can be solved more efficiently.  

However, heuristic methods cannot communicate well between different design levels 

[Westerberg, 2004]. 

 

2.3.1.2 Conceptual Process Design by Superstructure Optimization 

Superstructure optimization, which is also referred to as the optimization-based approach, 

is the combination of stochastic algorithmic methods, e.g. genetic algorithms (GA) with traditional 

methods, e.g. mixed-integer non-linear programming (MINLP) [Grossmann, 1985].  This method 

was described by Seider (2004), Biegler (1997) and Floudas (1995).  It solves the entire 

optimization problem including the objective function.  Depending on the complexity of 

problems, a globally optimum solution cannot be guaranteed using current solvers.  Using these 

methods, a process structure is first developed, which combines all potentially useful unit 
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operations and relevant interconnections.  Then, a mathematical model including unit models and 

a group of equations, such as interconnection equations, is derived into an optimization problem.  

There are two common characteristics, including the subsequent use of optimization as well as 

mathematical representations.  The advantage of the optimization-based approach lies in 

modeling and simultaneous optimization.  It shows a systematic framework, and for synthesis 

problems, it provides automated capabilities.  That is to say, it generates a superstructure that 

contains all potentially profitable alternatives.  The weaknesses of this approach lie in the fact that 

it cannot automatically form the superstructures of a flowsheet and there are difficulties in solving 

large-scale problems. Sometimes it also has the possibility of getting trapped into poor suboptimal 

solutions [Subramanian, 2001; Bagirov, 2003].  

 

2.3.1.3 Conceptual Process Design by Function Integration Design 

The function integration design method could be illustrated as follows:  Define objective 

functions and then integrate these functions into a process design containing novel process units 

[Harmsen, 2004].  The process is illustrated by functions and combinations of functions.  Many 

case studies can be found in the open literature.  Siirola (1996) described a design example of a 

methyl acetate process using this method and Stankiewicz (2000) also introduced several 

industrial examples.  It utilizes heuristics, thermodynamic insights and/or other qualitative 

process knowledge to impose bounds on the optimization variables.  

The process is designed by functions and also defined by combinations of functions.  That 

enhances creativity and the number of attractive alternative processes are increased.  Functions 

that are operated under the same conditions can be combined into one.  The capital expenditure 

and energy losses are often reduced [Harmsen, 2004].  
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2.3.2 The Combination of Experimentation and Mathematical Models in Product and Process 

Design 

Mathematical modeling, simulation, and optimization are important in understanding, 

explaining, and exploiting the behavior of large and complex dynamic systems.  Usually it is 

desirable in the modeling area to replace as much as possible the experiment-based tasks, which 

normally are expensive and time-consuming.  However, accurate experimental data are crucial 

for the evaluation/accuracy of mathematical models.  A smart combination of experiment-based 

and model-based approaches may be a better alternative in chemical product-process design.  The 

use of mathematical models can easily overcome the limitations of time and resources which 

prevent the experimental exploration of all of the potentially feasible solutions for a certain 

process, and the necessary experimental data could further improve the mathematical model.  The 

integration of laboratory experimentation with mathematical modeling can be mutually beneficial.   

 

2.4 Process Integration 

Process integration is a holistic approach to process design.  It is one of the most important 

means for improving process efficiency, reducing environmental impact and increasing economic 

feasibility.  Before defining the details of the process, the entire chemical process is addressed 

with the consideration of the interactions between unit operations from the outset, instead of 

simulating and optimizing separately [Smith, 2005; El-Halwagi, 1997].  Integration requires the 

ability to translate the objectives in terms of engineering parameters.  For example, the objective 

of maximizing profit can be defined as minimizing raw material usage.  The global performance 

targets need to be identified before any development activity.  The optimal strategy to reach the 

targets also needs to be defined [Srinivas, 1997].  It is necessary to find and evaluate the 
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maximum performance targets before creating the design to obtain understanding about potential 

opportunities.  Process integration techniques could improve process design, increase process 

productivity, reduce mass and energy resources usage, and save expenses in the operating and 

capital costs. 

There are two main fields of process integration: energy integration and mass integration.  

Energy integration aims at heat recovery within a process through system-level optimization of 

heat, power, fuel and utilities.  It can also identify the optimal system configuration for the 

minimal energy consumption [Linnhoff, 1982; 1983].  Mass integration techniques provide 

means of identifying optimum performance targets by generating and selecting among alternatives 

for allocating the flow of material (species) in the process [El-Halwagi, 1989;1997].   

 

2.4.1 Energy Integration 

Energy integration has become more and more attractive due to significant increases in cost 

of energy.  Integration between processes can reduce energy usage and emissions, saving 

expenses.  One of the most important pieces of equipment used in energy integration is the heat 

exchanger.  A heat exchanger exchanges heat from a hot process stream to a cold process stream.  

Using the system energy, the hot streams could be cooled down to desired temperature utilizing the 

energy capacity of the cold streams.  Meanwhile, the cold streams could be heated to the desired 

level.  The target of energy integration is to recover maximum system energy while minimizing 

the external utility usage.  An heat exchanger network (HEN) is usually designed in a process 

plant to achieve the integration target.  To design the best heat exchanger network, the total cost is 

minimized.  It is then translated into an optimization problem that needs a cost-effective 

approach.  The total cost mainly consists of two parts: the exchanger units and the utilities.  
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Identifying the heat exchange area, the unit cost and annual consumption are the key factors to 

solving the cost objective functions.  The studies of process integration using HEN began with 

Masso and Rudd (1969).  They first defined the heat exchanger network design problem in a 

rigorous manner.  The minimization of the total cost for designing an optimum heat exchanger 

network was proposed.   

The basic heat exchanger network synthesis (HENS) problem can be formulated as 

follows, given:  

 A set of hot process streams which need to be cooled 

 A set of cold process streams which need to be heated 

 The heat capacities for each of the streams with the temperature changes as they pass 

through the heat exchange process 

 The available utilities, their temperatures, and their costs per unit of heat provided or 

removed 

Determine the heat exchanger network for energy recovery that will minimize the 

annualized cost of the equipment plus the annual cost of utilities [Biegler, 1997]. 

To solve HEN optimization problems, El-Halwagi (1997) presented the solution of 

synthesizing an optimal HEN as identification of the answers to the following questions: 

 Which heating/cooling utilities should be used, if any? 

 What is the optimal heat load removed or added by these utilities? 

 How should the hot and cold process streams be matched? 

 What is the optimal system configuration in terms of arrangement, stream splitting, and 

stream mixing? 

By answering these questions, the cost objective functions could be solved.  
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There are two main areas to solve the energy integration problems: sequential synthesis 

methods and simultaneous synthesis methods. 

 

2.4.1.1  Sequential synthesis methods 

For the sequential synthesis method, the HEN problem is divided into subproblems.  In 

this way, the entire problems could be simplified by reducing the computational requirements.  

The laws of thermodynamics should be used as rules throughout the simplification process.  The 

optimal or near optimal process network has the following characteristics:  

 Minimum utility cost 

 Minimum number of units 

 Minimum investment cost 

 

It is possible to have conflicts among these characteristics.  Therefore, assumptions should 

be made: the problems should be solved base on the heuristic of identifying the minimum number 

of units, subject to the minimum utilities cost [Biegler, 1997]. 

Sequential synthesis methods can be further divided into two subcategories: 

(1) evolutionary design methods: such as pseudo-pinch methods and pinch design 

methods [Linnhoff, 1983; 1990; 1993; Trivedi, 1989] 

(2) mathematical programming techniques [Floudas, 1986; 1990] 

 

The pinch method is an innovative development in process design [Linnhoff, 1983].  The 

first and second laws of thermodynamics are used as the fundamentals to solve the HEN problems.  

The main objective is to save expenses by maximizing process to process heat recovery and 
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reducing the external utility usage.  A minimum temperature difference should be given first.  

Then, the design targets are set in terms of minimum utility consumption, minimum number of 

units and minimum area and cost.  Three steady state parameters should be defined, including hot 

and cold source temperature Ts, target temperature Tt and heat capacity flowrate HCp. 
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Figure 2.4:  Thermal pinch diagram - maximum heat integration [El-Halwagi, 1997] 
 

Usually a grid diagram is used to present the HEN as shown in figure 2.4.  First, the 

process streams are sorted into hot and cold streams.  Then, all the hot and cold streams are 

combined individually to construct the composite curves, which are used to determine the 
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minimum energy consumption target for a given process.  As shown in figure 2.4, all of the hot 

streams are combined to generate the Hot Composite Curve and all the cold streams are combined 

to give the Cold Composite Curve, which are generated by summing up the parameters of heat 

capacity of all streams of the same kind (hot or cold) within each temperature interval.  The 

temperature interval is defined as the temperature difference of the inlet and outlet streams.  Each 

temperature interval transfers heat from the hot streams to the cold streams, provides heat to the 

cold streams and passes on a heat residual to the next temperature interval. 

After the hot and cold composite curves are generated, the lowest heat supply and heat 

demand for the process could be calculated.  The hot composite streams and cold composite 

streams are represented as straight lines as shown in figure 2.4.  Then, the curves are moved from 

left to right and from right to left, respectively.  The relative position of the hot and cold 

composite curves could be identified by the minimum temperature differences, which should be 

defined ahead of time.  When the two curves are drawn together to achieve the minimum 

temperature difference, the pinch point is obtained and the minimum energy usage could be 

measured.  The HEN can be designed above the pinch and below the pinch separately.  The 

pinch point divides the diagram into two regions, which are thermodynamically separated.  

Different sources of energy are needed below and above the pinch point: cooling utility and 

heating utility, respectively.  If heating is provided below the pinch point, the amount of cooling 

requirement will be increased, while the objective of minimum utility cost and minimum external 

utility usage could not be achieved.  Similarly, no cooling utility is needed above the pinch point 

in order to achieve the objective function [Seider, 2004].  

When solving a HEN problem, three rules need to be followed [Linnhoff, 1983]: 

 Do not transfer heat across the pinch. 
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 Do not use external cooling utilities above the pinch. 

 Do not use external heating utilities below the pinch. 

 

The second parts of sequential synthesis approaches are mathematical programming 

techniques.  The sequential solution of continuous, integer linear programs and nonlinear 

optimization problems are the fundamentals of these methods [Papoulias, 1983; Cerda, 1983; 

Floudas, 1986].  The HEN synthesis problem is sequentially decomposed.  The solutions of 

previous objective functions are usually used as parameters in the next step.  Similar to the other 

methods, the basic subproblems also include minimum utility cost, minimum number of units and 

minimum investment cost.  There are several disadvantages of the mathematical programming 

problems.  Suboptimal solutions may exist and it is not as easy to implement as the pinch analysis 

method.  An important character of pinch analysis is that prior to detailed design, the performance 

targets for utility consumption could be set for any processes.  However, the heat transfer 

coefficients and heat exchanger area are not considered properly.  In addition, the composite 

curves are assumed to be straight lines; thus the heat capacity flow rate needs to be constant over 

the entire temperature range.  

In summary, the sequential targeting and optimization approach has the advantage of 

decomposing the synthesis problem.  The problem is made more manageable by solving a 

sequence of smaller problems.  However, it has the disadvantage that the trade-offs between 

energy, number of units and area are not rigorously taken into account.  Meanwhile, it does not 

guarantee the design of a network with the minimum annual cost [Biegler, 1997].  

 

2.4.1.2 Simultaneous synthesis methods 
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The goal of simultaneous HEN synthesis is to find the optimal network without 

decomposition of the problem.  Simultaneous synthesis methods are primarily MINLP 

formulations of the HEN synthesis problem subject to various simplifying assumptions used to 

facilitate the solution of these complex models.  One of the earliest simultaneous HEN synthesis 

formulations was proposed by Yuan (1989).  Later, Yee (1990) and Ciric (1991) proposed more 

detailed HEN synthesis formulations. 

Floudas (1990) developed a simultaneous match network hyperstructure model to optimize 

all of the capital costs of a HEN.  The proposed approach for solving HEN synthesis problems 

includes four basic steps as shown in figure 2.5.  First, one decides to construct the problem as a 

pinch point synthesis problem or as a pseudo-pinch synthesis problem.  If it is selected as a pinch 

point synthesis problem, the problem should be divided into two independent sub networks strictly.  

The pseudo-pinch problem means the heat is allowed to flow across the pinch point.  Therefore, if 

it is chosen as a pseudo-pinch synthesis problem, the problem must be solved as a single network.  

Then, the utility consumption levels are designed.  For pseudo-pinch design, the utility 

consumption levels are measured as independent variables.  For strict-pinch design problems, the 

utility consumption levels are treated as functions.  Next, the information on the utility 

consumption levels is combined to formulate MINLP problems, which contain all potential 

network configurations.  Finally, the resulting MINLP problem is solved utilizing the 

Generalized Benders Decomposition proposed by Geoffrion (1972), to provide an optimal HEN in 

the fourth and final step. 
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Figure 2.5:  Outline of simultaneous match network procedure [Ciric, 1991] 
 

One important aspect of simultaneous optimization methods is that they do not rely on 

heuristics.  The advantage of the simultaneous approach is that the trade-offs are all taken 

simultaneously into account, so the possibility of finding improved solutions are increased.  

However, the computational requirements and time are greatly increased. 
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2.4.2 Mass Integration 

Mass integration is a holistic, systematic approach which could provide a fundamental 

understanding of global flow of mass throughout the process.  It illustrates a comprehensive 

methodology for targeting yields, emissions, and capacities, as well as designing reaction, 

separation, and waste-processing systems [El-Halwagi, 1998].  The concept of Mass Exchanger 

Networks (MENs) was first introduced by El-Halwagi and Manousiouthakis (1989, 1988) on a 

continuous model, where they pointed out that mass exchangers use mass-separating agents 

(MSAs) to transfer material from solute-rich streams to solute-lean streams.  In order to 

synthesize a cost-effective MEN, a mixed-integer linear programming method is used.  The 

objective is to recover waste chemical species to the maximum extent possible with the lowest 

possible cost.  Figure 2.6 is a general representation of the MEN synthesis problem.  A MEN 

consists of a number of mass exchangers.  The mass exchangers transfer mass of certain species 

among process streams.  In general, it is assumed that the equipment used in the MEN employs 

countercurrent flow of the rich and lean streams.  This is similar to the assumption of the use of 

countercurrent flow heat exchangers in HENs.   

 

Figure 2.6:  Mass exchange network (MEN) synthesis [El-Halwagi, 1989] 
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The general MEN synthesis problem is stated as follows, given:  

 A set of rich process streams; 

 A set of lean process streams; 

 A set of external lean external streams 

Synthesize a network of mass exchanger units that can transfer a set of certain species from 

the rich streams to the lean streams at minimum cost. 

Major goals in the development of a MEN are to find and minimize the need for MSAs 

[Seider, 2004].  The solutions are usually based on design targets like minimum cost of MSAs and 

minimum number of mass exchanger units.  El-Halwagi and coworkers (1989, 1988) proposed a 

systematic, two-stage procedure for the synthesis of cost-effective MENs: 

 Generation of preliminary networks: the pinch points are identified using a 

thermodynamically-oriented procedure based on maximizing mass exchange. 

 Development of the final configuration: the preliminary networks are defined.  The MEN 

meets the assigned exchange duty based on the minimum cost. 

 

El-Halwagi and Maniousionthakis (1989) developed a mass pinch method for the design of 

MENs.  Similar to thermal pinch analysis in the above section, the rich and lean process streams 

can be combined into composite curves.  Then, mass pinch analysis could be performed similar to 

the heat pinch analysis, which is introduced and extended by Linnhoff (1983) and others.  Figure 

2.7 shows a mass pinch diagram.  The red line represents the lean composite stream that combines 

all the lean streams.  The blue line represents the rich composite stream that contains all the rich 

steam information.  The two composite curves are moved towards each other when mass is 

transferred from a rich stream to a lean stream until reaching the pinch point.  The pinch point is 
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defined as the minimum composition deference.  It can be identified by moving the lean 

composite curve down vertically until it meets the rich composite line.  If the lean process stream 

is to the left of the rich that means that mass can be exchanged between the two streams.   
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Figure 2.7:  Mass pinch diagram [El-Halwagi, 1998] 
 

From the diagram, the excess capacity of the internal process streams can be calculated.  

No external MSAs should be used above the pinch.  The load should be removed by external 

MSAs and could also be measured.  The integrated mass exchange gap in between represents the 

maximum amount of mass that can be exchanged internally.   

The target compositions of streams may need to be controlled with different degrees of 

precision.  Consequently, the MEN synthesis should strive to attain not only the minimum total 

cost, but also the superior control performance. 
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2.5 Environmental Impact Assessment 

 

2.5.1 Environmental Protection 

Global scale environmental problems have attracted more and more attention and efforts 

since the late 1970s.  The Environmental Protection Agency (EPA) and the U.S. Congress 

cooperated to focus on the environmental protection.  It is becoming a primary issue throughout 

the manufacturing and transportation sectors all over the world.  Due to the stringent regulations, 

the manufacturing costs of the end products have increased to satisfy requirements of 

environmental protection.  

A pollution minimization methodology, which is called the Waste Reduction (WAR) 

algorithm, was developed to evaluate the environmental impact for chemical processes [Young, 

1999].  It is based on measuring the mass flows that are entering and leaving both the chemical 

process and the corresponding processes that provide energy with normalized scores. 

 

2.5.2 Waste Reduction Algorithm 

The advantages of pollution prevention to minimize waste production lie on better 

utilization of raw materials, energy, and reduced waste treatment and disposal costs [Mallick, 

1996].  El-Halwagi and Manousiouthakis (1989) were the first to introduce pollution prevention 

techniques into process design.  They implemented the idea of mass exchange networks (MENs).  

The principle is to concentrate pollutants in desired waste streams by removing them from other 

streams.  However, there are some limitations, such as it failed to calculate the impact of the 

pollution generated within a process [Young, 1999].  To fill this gap, a potential environmental 

impact (PEI) balance as an amendment to the Waste Reduction (WAR) algorithm was developed 
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by Hilaly (1994) and later refined by Mallick (1996).  Cano-Ruiz and McRae (1998) provided a 

comprehensive review of the different techniques used to incorporate environmental 

considerations into process design.  All of the procedures above simply included the chemical 

process.  Based on Cabezas’s work (1997), Young (1999) made an improvement of the WAR 

algorithm which includes the energy generation process into the balance. 

 

 

Figure 2.8:  Potential environmental impact (PEI) for a given system [Young, 1999] 
 

The WAR algorithm is a methodology used to evaluate the relative environmental impact 

of a chemical process.  It only takes into account the manufacturing aspect of the product's life 

cycle.  Figure 2.8 shows the overall mass and energy balance around a chemical process.  The 

dashed line represents the system boundary.  Both the chemical process and the energy generation 

process are taken into account to measure the potential environmental impact (PEI).  It can either 

enter the system, exit the system, or even be generated and accumulate within the system.  The 

PEI balance for a process and energy generation system can be formulated as [Young, 1999]:  

 (Eqn. 2.8) 

 

)()()()()()()( t
gen

ep
we

cp
we

ep
out

cp
out

ep
in

cp
in

system IIIIIII
t

I 









 35

where, systemI  is the PEI for both the chemical process and the energy generation process, )(cp
inI  

and )(cp
outI  are the PEI input and output rates for the chemical process, )(ep

inI  and )(ep
outI  are the PEI 

input and output rates for the energy generation process, )(cp
weI and )(ep

weI  are the outputs of PEI 

related to waste energy lost from the chemical process and energy generation process.  )(t
genI  is the 

rate of generation of PEI inside the system [Young, 1999]. 

For steady state processes, equation 2.8 can be simplified as follows [Young, 1999]: 

 

 (Eqn. 2.9) 

There are eight categories of environmental impacts for each process [Young, 2000]. 

 Human toxicity potential by ingestion (HTPI) 

 Human toxicity potential by exposure both dermal and inhalation (HTPE) 

 Terrestrial toxicity potential (TTP) 

 Aquatic toxicity potential (ATP), 

 Global warming potential (GWP) 

 Ozone depletion potential (ODP) 

 Photochemical oxidation potential (PCOP) 

 Acidification potential (AP) 

 

Based on these eight categories, each potential environmental impact index )(tI can be 

calculated individually as follows [Young, 1999]: 
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Where )(t
iI  is the PEI index for category i ,  is the weighting factor associated with 

potential environmental impact category i , jM  is the mass flow rate of stream j , kjx  is the 

mass fraction of component k  in stream j , and s
ki  is the specific potential environmental 

impact of component k  associated with environmental impact category i , which is calculated 

using a normalization scheme [Young, 2000].  The individual weighting for each of the 

categories can be changed, depending on the emphasis.   

 

2.6 Economics Analysis 

 

2.6.1 Capital Investment 

When making a cost analysis to measure capital investment, different categories of costs 

should be included, such as fixed costs, raw material costs, utilities and other miscellaneous items.  

These costs constitute the two main contributions to capital investment: Fixed Capital Investment 

and Working Capital. 

The fixed capital investment stands for the capital that is related to complete all process 

operation, such as equipment installation.  It is sorted as the nonmanufacturing fixed capital 

investment, which include components that are not directly related to process operation.  The land, 

transportation, utilities and other permanent parts all belong to the plant components.  The 

working capital investment stands for the total amount of expenses related to raw materials, 

products, monthly operating payment and so on.   

 

2.6.2 Approximation of Capital Investment 

The estimation of the capital investment is performed by using “Lang” factors, which were 

proposed originally by Lang [Peters, 2003].  The idea of this method is that the cost of a process 
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plant may be obtained by multiplying the basic equipment cost by some factor to approximate the 

capital investment.  The factors are given in Table 2.1.  It should be noted that these factors 

include costs for land and contractor’s fees. 

 

Table 2.1:  Lang Multiplication Factors for Estimation of Investment. 
(Factor ×delivered-equipment cost = fixed-capital investment or total capital investment for major 
additions to and existing plant). [Peters, 2003]. 

 

Type of plant 

Factor for 

Fixed-capital 

investment 

Total capital  

investment 

Solid-processing plant 

Solid-fluid-processing plant 

Fluid-processing plant 

3.9 

4.1 

4.8 

4.6 

4.9 

5.7 

In order to have a more accurate estimation, an improved method can be used by using a 

number of factors instead of just one factor. 

 

2.6.3 Total Production Cost 

The total product cost consists of total plant operating cost, selling the products, recovering 

the capital investment, and contributing to corporate functions.  Determination of the necessary 

capital investment is only one part of the complete cost estimation.  Another equally important 

part is the estimation of costs for operating the plant and selling products.  These costs can be 

divided into two parts: manufacturing costs and general expenses [Peters, 2003].  Figure 2.9 

shows the costs involved in total product cost for a typical chemical process plant. 
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Raw materials
Operating labor
Operating supervision
Steam
Electricity
Fuel Refrigeration 
Maintenance and repairs
Operating supplies
Laboratory charges 
Catalysts and solvents

Direct production cost

Depreciation
Taxes
Manufacturing
Insurance
Rent
Cost

Medical
Safety and protection
General plant overhead
Payroll overhead
Packaging
Restaurant  
Recreation
Salvage                              
Control 
Total
Plant
Product
Storage
Cost

Executive salaries
Clerical wages
Engineering and legal costs
Office maintenance
Communication

Sales offices
Salesmen expenses
Shipping
General
Advertising     
Expenses
Technical sales service

Research and development
Financing

Gross earnings expense

Plant overhead costs

Fixed charges

Administrative expenses

Distribution and 
marketing expense

Laboratories 
superintendence 
facilities

 

Figure 2.9:  Costs involved in total product cost for a typical chemical process plant [Peters, 
2003].
 

 



 39

Chapter 3  Methodology 
 
 

3.1 Introduction and Background 

The objective of this study is to develop a methodology for integrating experimental and 

literature data with process simulation and optimization techniques, under the principles of process 

design to optimize the overall performance of novel fuel production through polygeneration 

facilities.  In order to achieve pre-defined objectives which are subject to physical and/or practical 

constraints, process pathway design and mathematical optimization are necessary.  Integration 

techniques such as heat and mass integration are introduced to maximize the usage of natural 

resources and minimize energy consumption.  Economic evaluation must be taken into 

consideration in order to measure the profitability and added value that these possible 

polygeneration plants will impart to any given product portfolio.  The evaluation of overall 

performance is not only limited to economic considerations, but also takes into account the 

potential environmental impact.  While profitability is indeed critical for a chemical facility to 

sustain operation, the environmental impact must also be estimated for each possible fuel 

production design. 

This methodology is illustrated by several case studies.  A variety of hydrogen production 

schemes including traditional and novel processes are simulated and compared.  Fischer-Tropsch 

fuel production through different processes such as gas-phase and supercritical phase are also 

investigated.
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Polygeneration facilities have many advantages over conventional single production 

chemical plants and will result in lower capital costs and lower product/energy costs in comparison 

to construction and operation of separate facilities.  It can provide alternatives for solving the 

increasing global problems of fossil fuel shortage and greenhouse gas emissions by utilizing 

conventional and renewable resources through multiple production processes to produce various 

alternative fuels that can replace gasoline and diesel.  Meanwhile, it also enhances energy 

conversion and utilization [Gamou, 2002].   

Figure 3.1 shows an example of a polygeneration plant.  The goal of a polygeneration 

plant is to select the most profitable pathway among many possible alternatives.  The feedstocks 

in this system include multiple carbon sources, such as biomass, coal, natural gas and so on.  The 

detailed classification of these primary energy feedstocks is not under consideration.  The various 

carbon sources are processed through different production routes as shown in the blue rectangles, 

which may include more than one subprocess, through chemical and biochemical processes, 

combustion, gasification, liquefaction and so on.  The yellow diamonds represent the products 

which are in the form of tangibles, such as liquid fuels and chemicals, or intangibles, such as 

electricity and heat.  The products can be sold externally to the market or used internally by the 

other production routes in the system as raw material to be processed further to other products.   
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Figure 3.1:  Visualization of a polygeneration plant [Yuan, 2008] 
 

The main focus of a polygeneration plant is to produce the desired (primary) product, while 

increasing the profitability of the overall plant by manufacturing other valuable co-products.  

Although many of the fundamental processing steps involved in polygeneration are well-known, a 

methodology is still needed to evaluate the integrated processes to ensure optimal utilization of 

raw material and energy.  Polygeneration plants possess tremendous integration potential, for 

recycling unused material as well as in terms of energy recovery.   

The production of alternative fuels such as hydrogen and Fischer-Tropsch fuels is 

becoming more and more attractive due to stringent environmental regulations, technological 

developments and changes in fossil energy reserves.  A methodology is needed to help determine 
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the best fuel production scenario that provides maximum profitability in an environmentally 

friendly way.  

 

3.2 Solution Methodology 

A systematic optimization framework has been developed to determine the optimal 

production schemes for different plants based on the economic performance [Sammons, 2007].  

The simulation models for each process are developed based on the information provided by the 

chemical processes, such as conversion, energy usage from both experimental and literature data.  

Process integration techniques are then used to optimize the simulation models.  Finally, the 

economic and environmental performance metrics are generated using the optimized models.  

The Waste Reduction (WAR) algorithm is used for the environmental impact measurement step 

[Young, 2000].  
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Figure 3.2:  Strategy for identification of performance metrics [Sammons, 2007] 
 

Figure 3.2 shows the methodology proposed by Sammons (2007) for process development 

and decision making.  In the first step, the primary feedstocks are selected and a superstructure of 

all the feasible possibilities and production technologies for the chosen feedstocks is generated 

based on extracting knowledge on process conversion and energy usage from literature and 

experimental data.  One can start from given feedstocks or types of feedstocks to determine what 

products could be made, or conversely, for certain desired products determine pathways that can 
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be used to manufacture the products.  At this point, it is necessary to do the capacity expansion 

planning, which includes the estimation of when to expand, which technologies to use, and exactly 

how much should be produced.  At this stage it is also necessary to do the production planning, 

which includes the estimation of how much energy the selected technologies require. 

If the given process is solvent-based, computer-aided molecular design techniques 

(CAMD) and property clustering techniques could be used to design alternative solvents, which 

perform the same function, but are safer and more environmentally friendly.  At the end of this 

step, basic simulation models are constructed.   

In the second step, process integration techniques are utilized to integrate the simulation 

model.  Thermal pinch methods are usually applied to analyze the energy saving potential for 

each process.  Mass exchange networks are generated at the same time, if necessary, to reduce the 

mass usage.  During the process integration procedure, we look at mass and energy flows that are 

coming in and out of the system.  This is the central part of the framework to ensure optimal 

utilization of materials and energy resources.   

In the third step, integrated simulation models are then used to generate the performance 

metrics; here we refer to economic performance and environmental performance metrics.  In the 

process optimization step, the financial and environmental objectives are evaluated.  Both factors 

are critical in determining which polygeneration pathways should be pursued in order to add value 

while maintaining a minimal level of environmental impact.  By integrating environmental 

impact analysis into the standard design, the design engineer can ensure that the resulting process 

is not only optimized in terms of overall performance but also based on minimizing the 

environmental impact of the process as well.   
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Only the economic and environmental performance metrics are incorporated in the solution 

framework; thus the complex models could be simplified from the decision making process.  This 

approach has the advantage of continuously updating the results.  The selection methodology is 

not needed to be reformulated to generate new data.  Similarly, additional metrics can be 

introduced into the framework if new processes are added.  The end result is a superstructure of 

all the possible processing routes, a library of simulation models for those routes, and a database of 

economic and environmental metrics for the simulation models. 

3.3 Process Optimization Framework 

An optimization framework is given in figure 3.3.  This framework uses a numerical 

solver to optimize the solution networks.  This is the central part of the solution framework to 

efficiently solve the problems.  The objective of the optimization step is to identify candidate 

solutions that maximize economic performance, and then the candidates are ranked according to 

environmental performance.  If a candidate satisfies the environmental objectives, the optimal 

production strategies have been identified.  If there are no candidates who satisfy the 

environmental impact constraints, then the desired economic performance requirements are 

relaxed until a solution with acceptable environmental performance has been identified.   

A novel solution methodology for process structure optimization is presented in Chapter 5.  

A Disjunctive-Genetic Programming (D-GP), based on the integration of Genetic Algorithm (GA) 

with the disjunctive formulations of the Generalised Disjunctive Programming (GDP) for the 

optimization of process networks, is proposed to solve the optimization framework.  This 

approach provides a more efficient technique in solving the chemical process networks.   
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Figure 3.3:  Optimization step for decision making process [Sammons, 2009] 
 

Based on the process optimization framework, simulation models are developed and 

optimized, optimal solutions are selected.  The simulation models for each process are 

developed based on data from experiments or literature.  Then the data are introduced into 

computer simulation software, such as AspenTM Plus or Pro/II.  If a solvent needs to be used 
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and designed, property clustering techniques will be employed to identify alternative solvents 

that minimize environmental and safety concerns. 

Once material recycles have been implemented and optimized, it is necessary to 

integrate the energy of heat sources to save energy.  Thermal pinch analysis is utilized to 

identify the minimum energy requirements.  Aspen Energy Analyzer generates candidate HEN 

designs based on minimizing the total annualized cost of the utility requirements and process 

equipment size, and is used to design the corresponding minimum cost heat exchanger networks 

that optimize the trade-off between capital and utility.  The minimum hot and cold utility 

requirements are calculated based on the utilities anticipated to be available in an existing 

multiple user industrial facility.  The minimum utility operating costs were based on the coldest 

cold utility and the hottest hot utility available.  The integration of mass and energy of heating 

and cooling utility requirements and potential opportunities could reduce the overall process 

energy consumption. 

Economic as well as environmental performance metrics are identified by using the 

simulation models.  The initial equipment cost analysis is based on sizing data from the models, 

which are obtained from Aspen Icarus, which is software to estimate the individual equipment 

cost.  The utilities cost is extracted from Aspen Energy Analyzer.  Standardized process 

economics methods are employed to translate the equipment and utility cost into the total 

production cost, which accounts for everything from engineering to construction, monitoring, 

supervision and operation.   

The environmental performance metric is developed by using the US-EPA Waste 

Reduction (WAR) algorithm.  The WAR algorithm looks at mass flows that are entering and 

leaving the chemical process and the corresponding process that provides energy.  Environmental 



 48

impact is measured through eight categories that include atmospheric and toxicological concerns.  

As a simplification, steady state is assumed for all the processes and the following equations are 

used to calculate the impacts [Young, 2000]:  

 (Eqn. 3.1) 

 

Each potential environmental impact index I can be approximated as follows [Young, 

2000]: 
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Where )(tI  is the PEI index for category i , α is the weighting factor for each potential 

environmental impact category i , jM  is the mass flow rate of stream j , kjx  is the mass 

fraction of component k  in stream j , and s
ki  is the specific potential environmental impact of 

component k  associated with environmental impact category i , calculated by using a 
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picture of the true impact of the production process itself.  The contribution of the process and 

total energy to the total PEI is reported on a per kilogram of product basis. 

In summary, the methodology illustrated above provides a guide for integrating 

experimental and literature data with process simulation to aid in discovering innovative designs.  

In the following chapters several case studies based on this approach are presented.
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Chapter 4  Alternative Fuel Production Case Studies 
 
 

4.1 Introduction 

In this chapter, case studies of alternative fuel production are developed to illustrate the 

methodology outlined in the preceding chapters.  Aspen Plus was used to simulate the processes.  

The heat integration was achieved through utilizing Aspen HX-Net, while the economic analysis 

was completed by introducing data into Aspen Icarus and an Excel spreadsheet. 

 
4.2 Hydrogen Production Strategies  

 
4.2.1 Background 

Global scale environmental problems such as the increase in atmospheric CO2 and the 

decrease in fossil fuel resources are some of the increasingly severe difficulties facing the world.  

The issue of global warming due to anthropogenic activities has been an international concern for 

the past two decades.  Almost the entire world has united to address the concern, resulting in an 

international treaty called the Kyoto Protocol.  The protocol requires developed countries to 

reduce the greenhouse gas (GHG) emissions below certain levels between period 2008 and 2012 

[Energy Information Administration, 2008; United Nations Framework Convention on Climate 

Change, 2008]. 

Hydrogen-based energy systems are considered to be one of the most promising energy 

systems with a great potential of providing a future replacement for fossil fuel based energy 

systems.  Hydrogen is a promising energy carrier for future transportation uses.  A hydrogen fuel 

cell is one of the main schemes for utilizing hydrogen as a fuel [Derwent, 2006].  Utilizing
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hydrogen as an energy provider has the benefits, such as clean and efficient.  No greenhouse gases 

and pollution chemicals are generated during combustion produces [Barretoa, 2002].  In addition, 

hydrogen has the highest gravimetric energy density of any known element although the 

volumetric energy density is the lowest [U.S. Department of Energy, 2004].  Thus, the study of 

hydrogen production is important. 

A hydrogen polygeneration plant aims at increasing the economic and environmental 

sustainability potential of fossil fuel based production facilities.  The polygeneration plant could 

provide a wider range of co-products, in addition to hydrogen.  

 
4.2.2 Modeling of Hydrogen Production Strategies 

4.2.2.1 Hydrogen Production Feedstocks  

Several hydrogen production schemes with different feedstocks have been investigated, 

including natural gas, diesel, methanol, and biomass.  Natural gas was approximated by 

methane.  Diesel was approximated by dodecane, and biomass was approximated by glucose.  

Table 4.1 illustrates the different feedstocks and production routes.  

 

Table 4.1:  Hydrogen Production Schemes and Feedstocks (▲ stands for the corresponding 
feedstock and process). 

 POX SR ATR DR CDH SCWR 

Natural Gas ▲ ▲ ▲ ▲ ▲  

Diesel ▲ ▲ ▲    

Methanol      ▲ 

Biomass      ▲ 

 

4.2.2.2 Hydrogen Production Schemes  
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Process models have been developed for a variety of hydrogen production schemes.  

Using process integration techniques and advanced computer-aided tools, the systems have been 

optimized and the economic potential of the technologies evaluated.  Several reforming 

techniques including four developed within the Consortium for Fossil Fuel Science (CFFS) have 

been studied for small and large scale production of hydrogen.  Literature data along with data 

obtained in another research project at Auburn University has been used to develop models for 

partial oxidation (POX), steam (SR) and autothermal reforming (ATR) of a variety of 

hydrocarbon resources [Wilder, 2007; Godat, 2003; Seo, 2002].  In addition, data provided by 

other researchers in CFFS has been used to build similar models for super critical water 

reforming (SCWR) of methanol [Gadhe, 2005] and biomass [Byrd, 2007], dry reforming (DR) of 

methane [Shao, 2005] and finally a catalytic dehydrogenation (CDH) of methane [Shah, 2001].  

The last process is a single step process that in addition to high producing purity hydrogen also 

produces a valuable carbon nanotube byproduct. 

 

 Steam Reforming (SR) 

SR models were developed for both methane and dodecane to approximate natural gas 

and diesel fuel, respectively.  First the reactants are heated and combined with steam with a 

C:H2O ratio of 1:2 and fed to an isothermal SR reactor at 1 atm.  The SR reactor is modeled as a 

conversion reactor and ran at 800ºC and 1 atm [Seo, 2002] as shown in figure 4.1.  Equations 

4.1 and 4.2 represent reforming of methane and dodecane, respectively.  Hydrogen yields are 

further increased in a separate reactor at 200 ºC and 1 atm by the water-gas shift (WGS) reaction, 

given in equation 4.3.  The conversion of WGS reaction is set as 0.991 of carbon monoxide 

[Seo, 2002].   
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4 2 2    3CH H O H CO    (Eqn. 4.1) 

 

12 26 2 212     25 12C H H O H CO    (Eqn. 4.2) 

 

2 2 2    CO H O H CO    (Eqn. 4.3)  
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Figure 4.1:  Steam reforming process in Aspen Plus 
 

 Partial Oxidation (POX) 

Methane and dodecane fuel are the feedstocks considered for this process.  The process 

is illustrated in figure 4.2.  The feedstocks are mixed with air in a C:O2 ratio of 1.67:1.  The 

reaction was modeled in a conversion reactor at 802 ºC and 1atm [Seo, 2002].  The product 

stream was fed into a water gas shift (WGS) reactor at 200ºC and 1 atm to produce carbon 

dioxide and more hydrogen with a feed of steam to carbon monoxide of 2.2:1 [Seo, 2002].  The 
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extent of the reactions is assumed to be 0.9912.  The reactions involved are shown in equation 

4.4 and 4.5. 

   

4 2 2 2 20.6     1.87 0.93 0.07 0.13CH O H CO CO H O      (Eqn. 4.4) 

 

12 26 2 2 2 27.2     12 10.36 1.6 0.89C H O H CO CO H O      (Eqn. 4.5) 

 

2 2 2    CO H O H CO    (Eqn. 4.6) 
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Figure 4.2:  Partial oxidation process 
 

 Autothermal reforming (ATR) 

The autothermal reforming models were simulated for methane and dodecane mixed with 

air in a C:O2 ratio of 1.75, and superheated steam fed at a C:H2O ratio of 5.  The ATR reactor is 

modeled as a conversion reactor and operates at 788ºC and 1 atm.  The products were then 

introduced into an isothermal WGS reactor with a feed of steam to carbon monoxide of 2.2:1 

[Seo, 2002].  The extent of the net fuel reformation reactions is 0.9912, while the extent of the 

water production is 1.0 [Seo, 2002] as all the oxygen is consumed in the reformer.  The 
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reactions involved are shown in equations 4.6 to 4.8.  The stoichimetric coefficients are based 

on the model which was built by Seo (2002). 

 

4 2 2 20.35 0.20     0.70 0.31 0.04CH O H CO CO     (Eqn. 4.7) 

 

12 26 2 2 26.54     13 10.92 1.08C H O H CO CO     (Eqn. 4.8) 

 

2 2 20.5     H O H O   (Eqn. 4.9) 

 

2 2 2    CO H O H CO    (Eqn. 4.10) 
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Figure 4.3:  Auto thermal reforming process 
 

 Supercritical Reforming (SCWR) 

The supercritical methanol reforming simulation models were developed for methanol 

and biomass, which was approximated by glucose.  For the methanol process, the methanol and 
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water are compressed, then heated to 600ºC and 276 bar and sent to the SCWR reactor.  The 

SCWR reactor is modeled as a yield reactor.  The molar yields for methane, carbon dioxide, 

carbon monoxide, hydrogen, and water are as follows: 9.65×10-5, 2.83×10-3, 2.89×10-4, 8.97×10-3, 

and 4.73×10-2, respectively which are defined as the product to feed molar ratio [Gadhe, 2005]. 

For the glucose process, the glucose and water are compressed to 276 bar and heated to 

700ºC.  Then the feed stream is sent to the SCWR reactor.  Two weight percentages of glucose 

are investigated, 1 wt% and 5 wt%.  The conversion is set as 1 [Byrd, 2007].   

2226126 1266 HCOOHOHC   (Eqn. 4.11) 

3

PRODUCTS

2
FEED

SCW

B2

B3

 

Figure 4.4:  Supercritical water reforming  
 

 Catalytic dehydrogenation process (CDH) 

The catalytic dehydrogenation process uses methane as feedstock.  The CDH reactor is 

modeled as a conversion reactor and operates at 750ºC and 5 atm, with a conversion of 0.8 [Shah, 

2001].  This process produces a co-product of carbon nanotubes as illustrated in Figure 4.6.  

  

4 2750
2M Fe

C
CH C H

 
 (Eqn. 4.12) 
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Figure 4.5:  Catalytic dehydrogenation of methane  
 

 

  

 

 

Figure 4.6:  Multiwalled nanotubes (MWNT) (left) and stacked cone nanotubes (SCNT) (right) 
produced by dehydrogenation of methane over Fe-Ni/Mg(Al)O at 650ºC and 500ºC, respectively 

 

 Dry methane reforming (DR) 

For this process, methane and carbon dioxide were preheated and sent to a DR reactor 

operating at 850 ºC and 5 atm.  Cobalt-tungsten carbide is used as catalyst.  The conversion of 

the reformation process is 0.78 based on carbon dioxide and the methane decomposition reaction 

is defined by a methane fractional conversion of 0.18 [Shao, 2005].  The reactions are shown in 

equation 4.13 and 4.14.  The water-gas shift reaction as shown in equation 4.3 is operated at 

200 ºC and 1 atm [Seo, 2002]. 

4 2 2    2CH CO CO H    (Eqn. 4.13) 
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4 2    2CH C H   (Eqn. 4.14) 

 

2 2 2    CO H O CO H     (Eqn. 4.3) 
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Figure 4.7:  Dry reformation of methane  

 

4.2.2.3 Hydrogen Production Scenario 

Simulation models were developed for two scenarios, small scale (1,000 Nm3/hr) and 

large scale (100,000 Nm3/hr), based on different hydrogen production plants.  Aspen Plus was 

used to generate these models.  The models included all the feed pretreatment steps, reforming 

reactors, and effluent treatment including the water-gas-shift reactors.  Once material recycles 

had been implemented and optimized, thermal pinch analysis was utilized to identify the 

minimum energy requirements.  Aspen HX-Net was used to design the corresponding minimum 

cost heat exchanger networks that optimize the trade-off between capital and utility.   
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4.2.3 Results and Discussions 

4.2.3.1 Economic Analysis 

An economic analysis of all the generated case studies was performed to evaluate the 

hydrogen production cost.  The initial equipment cost analysis was based on sizing data from 

the models themselves coupled with Lang factors provided by contacts in the chemical 

processing industry.  Standardized process economics methods were employed to translate the 

equipment and utility cost into the total production cost, which accounts for everything from 

engineering to construction, monitoring, supervision and operation.  The total production cost 

was then normalized using the results for steam reforming of natural gas, which is the prevailing 

means of producing hydrogen.  The results are shown in figure 4.8 for both large and small 

scale hydrogen production.  The x-coordinate represents all the hydrogen production schemes 

with different feedstocks and processes.  The y-coordinate represents the relative hydrogen 

production cost compared with steam reforming of natural gas.  The blue bar stands for the 

large scale hydrogen production.  The purple bar stands for the small scale hydrogen 

production.   
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Figure 4.8:  Relative hydrogen production cost for different hydrogen production schemes 
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The analysis of the various hydrogen production schemes clearly shows that for industrial 

scale production only the dry reforming (DR) of natural gas has the potential to compete with the 

traditional steam reforming (SR) process.  The conversion of more complex liquid hydrocarbon 

fuels, e.g. diesel and methanol, are not competitive given the current market prices; however, 

such fuels have other benefits such as ease of storage and transportation etc. that can lead to 

different conclusions in specific cases.  Also, with the recent development of biofuel production 

technologies, biodiesel and bio-alcohols could be another promising feedstock to investigate, 

especially with respect to sustainability.  The supercritical water reforming (SCWR) of 

methanol does have one major benefit compared to the other technologies, i.e. the hydrogen is 

produced at very high pressures, which may be attractive for some applications.  For 

comparison, if the hydrogen produced from conventional steam reforming was compressed to the 

SCWR pressure of 276 bar, that would result in the new SCWR process being only 30% more 

expensive than the traditional approach.  If more efficient separation of the supercritical water 

phase from the hydrogen product can be developed, e.g. membranes or hydrogels, then the 

production costs could be significantly reduced by recycling the reaction phase without having to 

reheat and/or recompress the water to these extreme conditions.  

The same considerations apply to SCWR of biomass, which is not profitable without the 

ability to recycle the water phase directly.  Feed concentrations of 1 and 5 wt% biomass in 

water were investigated.  Although a significant reduction in production cost was observed 

when increasing the glucose concentration, it was not enough to offset the high compression and 

recycle cost.  Even if biomass wastes such as wood trimmings were used as feedstock, a 

significant tipping fee would still be needed to make the process profitable.  Using the average 

tipping fee for unspecified biomass, in order to make the current SCWR process comparable in 
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cost to conventional methods, the glucose feed concentration needs to be increased to around 18 

wt%, which is still under development. 

The catalytic dehydrogenation process (CDH) as described by Shah (2001) could 

potentially be a very attractive alternative to existing hydrogen production schemes.  The 

process produces a valuable byproduct of carbon nanotubes.  In addition, since the process has 

the benefit of integrated carbon capture, additional revenue can be secured through credits for 

reduced CO2 emissions compared to conventional production schemes.  Currently carbon 

credits are traded at approximately $35/ton [www.pointcarbon.com].  To break even with steam 

reforming of natural gas, the carbon nanotube byproduct would have to be sold at approximately 

$0.20/lb.  Although this breakeven sale price of the carbon nanotubes is significantly lower than 

the open market value of carbon nanotubes, it is questionable whether a market exists for such 

huge amounts of nanotubes that would be available if/when the CDH process is introduced on an 

industrial scale.  

 

4.2.3.2 Environmental Impact Analysis 

The impact on the environment is considered for each process using the Waste Reduction 

(WAR) algorithm.  There are eight categories to evaluate the environment [Young, 2000; 1999].  

The individual weighting for each of the eight categories was set to be the same in this study.  

The contribution of the process and total energy to the total PEI is reported based on a per 

kilogram of product basis.  Figure 4.9 gives the result of PEI for each process for both chemical 

and energy processes.  Only the large scale scheme is shown, as the result of the small scale 

strategy is simply 100 times less than the large scale.  The x-coordinate stands for all the 
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processes and the y-coordinate stands for the relative score.  The purple bar is the energy 

impact and the blue bar is the chemical process impact. 
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Figure 4.9:  PEI analysis for large scale productions, where I ep stands for the impact of energy 
process while I cp stands for the impact of chemical processes 
 

These results show that the environmental impacts of most of the hydrogen production 

strategies are similar.  However, the impact of partial oxidation of diesel is much higher than 

SR NG.  This is because the POX process produced more CO2 than other processes, increasing 

the impact of the greenhouse gas factor of the evaluation process.  The energy impacts from 

SCWR of MeOH and CDR NG are higher than any of the others.  This is because the reaction 

phase is compressed and heated to a high pressure and temperature.  More energy is needed to 

achieve the reaction conditions.  If more efficient separation of the supercritical water phase 

from the hydrogen product can be developed, the energy consumption could be significantly 

reduced by recycling the reaction phase without having to reheat and/or recompress the water to 

these extreme conditions.   
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4.2.4 Conclusion 

The main achievement of this case study is the holistic comparison of several reformation 

strategies based on the impact of their utility requirements, energy integration potential, equipment 

costs, and raw material costs on the total production cost.  The results from the economic analysis 

allow the reformation strategies to be evaluated for a specific hydrogen application and determine 

which strategy is the most suitable for that specific application.  Moreover, this study could 

provide a guide for the direction of novel hydrogen production methods in order to be competitive 

to the traditional one in terms of cost and environmental impact. 

This work is an initial step in establishing a future alternative energy economy.  The 

hydrogen energy infrastructure is still under development, which requires large investments in 

production and distribution systems.  For specific fuel sources and reaction kinetics a simplified 

approach was used to study the feasibility of each process.  The four different representative fuels 

investigated here were natural gas, diesel, methanol and biomass.  In order to develop a basic 

understanding of the reformation relationships, minor simplification of the fuels were applied.  

For example, natural gas was simplified as methane, while dodecane provided a simple 

representation of diesel fuel and glucose is used to approximate biomass.  More models, with 

specific detailed compositions of each fuel, should be further investigated to better understand the 

effects of fuel composition on the energy integration potential of the process system.  Similarly, 

complex reaction kinetics were also simplified by stoichiometric equations.  Yet again, more 

work is necessary to broaden the understanding and advance the development of the reaction 

equations, which is a critical component for the construction of efficient reformers.  However, 

few kinetic works are available concerning the exact breakdown of complex hydrocarbon fuels 

during reformation.   
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The ability to produce hydrogen cheaply is only the first of many challenges that need to 

be addressed.  It is apparent that the current technologies for producing hydrogen from liquid 

fuels are not attractive if evaluated only by the production cost along with the environmental 

impact.  Benefits such as transportability etc. will need to be quantified for all types of fuels in 

order to better compare the technologies.  However, the dry reforming technology being 

developed by CFFS researchers appears to be a potentially cheaper alternative to the current state 

of the art.  Furthermore, supercritical water reforming shows significant promise for biomass 

waste processing but requires additional research focused on separation of the reactive water 

phase and the high pressure hydrogen.  The catalytic dehydrogenation process developed by 

CFFS researchers also shows great potential to be competitive with current technologies due to 

the integrated carbon capture and marketable carbon nanotube byproduct. 

 

4.3 Fischer-Tropsch Fuel Synthesis and Comparison 

4.3.1 Introduction 

Fischer-Tropsch (FT) processes are becoming more attractive due to the stringency of 

environmental regulations, decreasing fossil fuel reserves and development of new technologies.  

It is becoming a potential answer to meet many future energy needs and may provide a carbon 

neutral alternative.  Paraffins and α-olefins are the main products.  Table 4.2 summarizes the 

overall reactions.  Table 4.3 summarizes the common names for the main products.  
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Table 4. 2:  Major Overall Reactions in the Fischer-Tropsch Synthesis [Van Der Laan, 1999]. 
Main reactions 

1. Paraffins 

2. Olefins 

3. WGS reaction 

 

OnHHCnCOHn nn 22222)12(    

OnHHCnCOnH nn 22222   

222 HCOOHCO   

Side reactions 

4. Alcohols 

5. Catalyst Oxidation/Reduction 

 

6. Bulk Carbide Formation 

7. Boudouard Reaction 

 

OHnOHCnCOnH nn 22222 )1(2    

(a) xMOyHyHOM yx  22  

(b) xMyCOyCOOM yx  2  

yxCMxMyC   

22 COCCO   

 

Table 4.3:  Common Name of Main Products[Van Der Laan, 1999]. 
Chain Length Common Name 
C1-2 Fuel gas 
C3-4 LPG 
C5-12 Gasoline 
C5-10 Naphtha 
C11-13 Kerosene (Jet fuel) 
C13-17 Diesel (Fuel oil) 
C10-20 Middle distillates (Light gas oil) 
C19-23 Soft wax 

C24-35 Medium wax 
C35+ Hard wax 

 

Traditional FT processes can be performed in both gas phase and liquid phase [Dry, 2002; 

Anderson, 1984].  Recently, many studies have been done to produce FT fuels in supercritical 

phase.  Yokota and co-workers (1990) found that compared to gas phase, SCF medium has the 

benefit of efficiently transporting and extracting heavy products.  Based on their work, Elbashir 
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(2005) used supercritical hexane as the reaction media and the results indicated that it could 

provide a better controlled FT reaction in supercritical phase.  They noticed that because of the 

high compressibility, very small changes in pressure and/or temperature can lead to large 

changes in density-dependent properties with the presence of the supercritical solvent, which 

results in several improvements over the gas-phase FT process: the formation of undesirable 

products is reduced; less methane is produced; more long-chain olefins are generated; the desired 

reaction pathways are promoted and secondary reactions that reduce product selectivity are 

prevented. 

In this work, several Fischer-Tropsch models for different process specifications were 

developed for a supercritical phase FT process (SCF-FTS) as well as a gas-phase FT process 

(Gas-FTS).  In order to compare the two processes, models are built based on the same syngas 

feed flowrate.  The objective is to construct and investigate the optimal flowsheet structures of 

the FT processes and compare different models based on their economic and environmental 

performance.  The optimal flowsheet structure is selected for each process within the different 

simulated flowsheet structures.  Gasoline and Jet-fuel were designed as our final products.  

The fuel produced from the FT process has a wide carbon distribution, but the percentage of 

heavy carbons (larger then C25) is very small [Van Der Laan, 1999; Elbashir, 2005].  

Accordingly, it is assumed that the FT fuel production range is from C1 to C25. 

 

4.3.2 Supercritical-Fluid Fischer-Tropsch Process (SCF-FTS) 

4.3.2.1 Process Illustration 

Figure 4.10 is a simplified generic process block diagram representing the SCF-FTS 

process.  The hexane and syngas streams are introduced into a FT reactor.  The detailed data is 
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based on the work presented by Elbashir (2005).  Synthesis gas produced from steam reforming 

is introduced into the system with a H2/CO ratio of 2.17.  Hexane is initially fed with syngas to 

the system with a purity of 99%.  15% Co/Al2O3 catalyst is used in the FT reactor to convert 

syngas to hydrocarbons in the supercritical hexane solvent.  After the FT reaction the liquid 

FTS products are refined to yield gasoline and jet fuel.  This step includes an integrated 

cracking unit to hydrotreat/crack the heavy products.  Extra hydrogen is added to crack heavy 

products (C16–C25) back to light and middle distillates (C1–C12) for further processing.  The 

hexane and light carbons-rich stream coming out of the light fractionation unit and the two 

distillation columns are recycled back to the FT reactor. 

 

Figure 4.10:  SCF-phase process block diagram 
 
4.3.2.2 Simulation of SCF-FTS Reactor  

Based on the experimental data from Elbashir and co-workers (2005), several SCF-FTS 

reactor models are built in order to understand the performance of the reaction.  The 

experimental results from Elbashir (2005) are shown in figure 4.11 and figure 4.12.  Sensitivity 

analysis was undertaken by varying the reaction conditions, such as temperature and pressure.   
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Figure 4.11:  Effect of reaction temperature on CO conversion at a total pressure of 65 bar and 
syngas/hexane molar ratio of 1/3 [Elbashir, 2005] 
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Figure 4.12:  Effect of reaction pressure on CO conversion at 250 °C and syngas/hexane molar 
ratio of 1/3 [Elbashir, 2005]. 

 

In order to determine the optimal processing conditions, simulation models of SCF-FTS 

reactors are developed for a variety of reaction conditions based on the CO conversion at 

different pressures and temperatures, which are summarized in Figure 4.11 and 4.12.  First, the 

pressure is fixed at 65 bar in order to investigate how the hydrocarbon production distribution 

changes with temperature.  Then the temperature is set to be 250 °C to simulate how production 

distribution varies with pressure.  The complexity of phase behavior under the supercritical 

condition leads to an increase of heavy hydrocarbon production.  This makes the product 

distribution in the SCF-FTS reactor different from the Anderson-Schulz-Flory (ASF) model.  

More detailed simulation results for SCF-FTS reactors are shown in Figure 4.13 to Figure 4.16.  

In the first case at 65 bar, four temperatures are investigated, 230 °C, 240°C, 250 °C and 260 °C 

respectively as shown in Figure 4.13.  With increasing temperature from the near critical point 
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(230°C, 240°C) to the supercritical region (240°C, 250°C), more light hydrocarbons fractions are 

produced.  This is mainly because that temperature could dramatically affect the chain growth 

mechanism, which is directly related to the hydrocarbon products distributions.  The production 

rates of gasoline and jet fuel at different temperature ranges at 65 bar were normalized and 

compared with the fuel production rate at 230°C in Figure 4.14.  The production rate of gasoline 

increases with temperature while the rate of jet fuel reaches a maximum at around 250°C.  

Although the gasoline production is slightly higher at 260°C, the jet fuel production rate is less 

than one third of the peak value.  The results indicates that in the supercritical hexane solvent 

with fixed pressure of 65 bar, the maximum fuel production rate is achieved at 250°C.  After 

optimizing the temperature, three pressures (35, 65 and 80 bar) are selected for simulation and 

comparison under 250°C, and the results are shown in Figure 4.15 and 4.16.  By increasing the 

pressure from below critical pressure (35 bar) to critical pressure (80 bar), the product 

distribution profile did not change significantly.   Again, figure 4.16 shows the relative fuel 

production rate compared to the rate at 35 bar.  Clearly, both gasoline and jet fuel reach the 

peak production rate at 65 bar.  The experimental data shows that the CO conversion peaks at 

0.85 under conditions of 250°C and 65 bar.  The syngas/hexane molar ratio is 1/3.  The 

simulation results also indicated that the optimal operating conditions to maximize FT fuel 

production appear at 250°C and 65 bar.  The total pressure could influence the bed residence 

time, which is defined as the volume of feed at the applied pressure passing through the volume 

of the catalyst bed per second, and affect the equilibrium of the FTS products [Elbashir, 2005]. 
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Figure 4.13:  Simulation results of hydrocarbon product distribution from SCF-FTS at 65 bar.  
Reaction conditions; H2/CO feed ratio of 2.17.  Hexane/syngas molar ratio of 3/1 
 

 

Figure 4.14:  Simulation results of relative SCF fuel production at 65 bar.  Reaction conditions; 
H2/CO feed ratio of 2.17.  Hexane/syngas molar ratio of 3/1.   
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Figure 4.15:  Simulation results of hydrocarbon product distribution from SCF-FTS at 250 ⁰C.  
Reaction conditions; H2/CO feed ratio of 2.17.  Hexane/syngas molar ratio of 3/1. 

 

 

 
Figure 4.16:  Simulation results of relative SCF fuel production at 250 ⁰C.  Reaction conditions; 
H2/CO feed ratio of 2.17.  Hexane/syngas molar ratio of 3/1. 
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4.3.2.3 Model Specification and Results 

Based on literature and simulated reactor data, the SCF-FTS process was developed in 

Aspen Plus as shown in Figure 4.17.   

 Feedstock 

Syngas is fed into the SCF-FTS reactor with a H2/CO ratio of 2.17/1.  The molar flow 

rate is 2370 kmol/hr.  This flow rate is based on the industrial fuel production scale which can 

be changed according to the desired fuel production rate.  Hexane is used as supercritical 

solvent in FT reactor.  It is only pumped into the system once at the beginning with a purity of 

99%.  Then the inert hexane stream is recycled in the system as shown in Figure 4.18. 

 

 
Figure 4.17:  Initial SCF-FTS model in Aspen Plus 
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Figure 4.18:  Refined SCF-FTS model in Aspen Plus 
 

 SCF-FT synthesis 

The FT reaction operates at the optimal conditions of 250 °C and 65 bar (as we have 

identified before) in the supercritical hexane solvent with a CO conversion of 0.85.  15% 

Co/Al2O3 is used as the catalyst [Elbashir, 2005].  The main products are paraffins, olefins and 

oxygenated products.  In this work, only paraffins are considered as the products.  Olefins and 

oxygenates have not been included yet.  The SCF-FT reactor is modeled using a stoichiometric 

reactor.  Detailed reactions are shown in Table 4.4 below.  The overall reaction is divided into 

individual sub-reactions.  The sum of all the individual conversions is equal to the overall CO 

conversion of 0.85. 
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Table 4.4:  Detailed Stoichiometry in SCF-FT Reactor. 
Stoichiometry Conversion 

CO +  3 H2 -->  CH4 +  H2O 0.14718332 

2 CO +  5 H2 -->  C2H6 +  2 H2O 0.00504988 

3 CO +  7 H2 -->  C3H8 +  3 H2O 0.01066858 
4 CO +  9 H2 -->  C4H10 +  4 H2O 0.01238410 
5 CO +  11 H2 -->  C5H12 +  5 H2O 0.01757500 
6 CO +  13 H2 -->  C6H14 +  6 H2O 0.01805530 
7 CO +  15 H2 -->  C7H16 +  7 H2O 0.03314586 
8 CO +  17 H2 -->  C8H18 +  8 H2O 0.02893211 
9 CO +  19 H2 -->  C9H20 +  9 H2O 0.04958491 
10 CO +  21 H2 -->  C10H22 +  10 H2O 0.05129589 
11 CO +  23 H2 -->  C11H24 +  11 H2O 0.04196833 
12 CO +  25 H2 -->  C12H26 +  12 H2O 0.04456514 
13 CO +  27 H2 -->  C13H28 +  13 H2O 0.05179173 
14 CO +  29 H2 -->  C14H30 +  14 H2O 0.05111690 
15 CO +  31 H2 -->  C15H32 +  15 H2O 0.04268219 
16 CO +  33 H2 -->  C16H34 +  16 H2O 0.04247476 
17 CO +  35 H2 -->  C17H36 +  17 H2O 0.04252344 
18 CO +  37 H2 -->  C18H38 +  18 H2O 0.04200030 
19 CO +  39 H2 -->  C19H40 +  19 H2O 0.03033064 
20 CO +  41 H2 -->  C20H42 +  20 H2O 0.02319241 
21 CO +  43 H2 -->  C21H44 +  21 H2O 0.01897179 
22 CO +  45 H2 -->  C22H46 +  22 H2O 0.01502597 
23 CO +  47 H2 -->  C23H48 +  23 H2O 0.01146745 
24 CO +  49 H2 -->  C24H50 +  24 H2O 0.01056270 

25 CO +  51 H2 -->  C25H52 +  25 H2O 0.00745130 

Overall CO Conversion 0.85 
 

 Crude fractionation  

In addition to the FTS products, the effluent from the FTS reactor also contains unreacted 

carbon monoxide, hydrogen, hexane and water.  The C7+ products are separated by a condenser 

and sent to the middle distillate fractionation and cracker to produce FT fuels.  The unreacted H2, 

CO, and lighter paraffin products are recycled to replace the initial syngas feed.   
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Figure 4.19:  Recovery percentage of light product stream out of the condenser 
 

After the condenser, we can obtain basically two product streams: light products, mainly 

containing C1-C5, which will be recycled as feedstock the FT reactor; and the fuel product, which 

will be sent to the distillation column.  The fuel products C7+ will be further processed to gasoline 

and jet fuel.  In order to save energy and raw materials, the hexane stream should be recycled 

inside the system after the initial feed, which means it should be separated with the lights.  As 

shown in Figure 4.19, after the condenser, only 7% of hexane is recovered with the light product.  

Thus a hexane separation unit should be added to separate the excess hexane from the fuel 

products.  The product stream coming out the condenser is then introduced to a hexane recovery 

unit.  The detailed recovery data is shown in Figure 4.20.  92% of hexane is recovered into the 

light product stream which is recycled to the FT reactor. 
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Figure 4.20:  Recovery percentage of light product stream out of the hexane recovery unit 
 

 First Distillation Column  

After the lights are recycled, the fuel products are introduced into a fractionation unit.  

The C5-C9 portion is separated from the heavier products as gasoline and the C10-C14 portion is 

separated as the Jet-fuel product.  The C15+ portion is converted into smaller paraffin structures in 

a hydrocracking unit, which is presented by the heavy portion in figure 4.21.  The C1-C6 portion 

(light in figure 4.21) is recycled as feedstock back to the FT reactor.  Figure 4.21 shows the 

detailed mass flow rates of different product streams coming out of the distillation tower.  The 

light product stream that is coming out of the distillation tower contains mainly the low molecular 

weight hydrocarbons from C1 to C6.  This fraction is going to be sent back to FT reactor as part of 

the feed.  The heavy (bottoms) fraction of the product stream is mostly larger than C13, which will 

be sent to the hydrocracking unit.  The gasoline product is concentrated within C5-C12 range and 

the jet fuel product falls in the range between C11 and C14.  
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Figure 4.21:  Mass flow rate of product streams out of the distillation tower 
 

 Hydrocracker 

The FTS heavy products need further hydrocracking to enhance the yield of fuel range 

products.  Hydrogen is added to hydrogenate the products from the high molecular weight 

C15-C25 to a lower paraffin fraction.  A stoichiometric reactor is used to simulate the reactor with a 

temperature of 380 °C and pressure of 1400 psi [Ali, 2002].  Figure 4.22 shows the detailed mass 

flow rates coming out of the hydrocracker.  The feed stream contains mainly the heavy carbon 

fraction from C15 to C25.  This is an important step to convert the unused heavy fraction to our 

desired products.  However, it could also be separated as base stock for lubricant if there is a base 

oil plant nearby. After hydrocracking, the product stream is rich in the fuel product fractions from 

C5 to C13 as shown in the figure below. 
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Figure 4.22:  Mass flow rate of streams in and out of the hydrocracker 
 

 Second Distillation Column  

The stream coming out of the hydrocracker is then introduced to a second middle distillate 

fractionation unit.  The hydrocracked heavy hydrocarbons are further separated to produce 

additional gasoline and Jet-fuel.  Similar to the first distillation tower, the light portion is recycled 

to the FT reactor feed.  The light stream coming out of the distillation tower contains mainly the 

light carbon fraction from C1 to C5, which will be sent back to the FT reactor.  The heavy (bottom 

products) fraction is mainly larger than C13, which will be recycled back to the hydrocracking unit 

again.  The product streams are shown in Figure 4.23.  
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Figure 4.23:  Mass flow rate of second distillation tower 
 
4.3.2.4 SCF-FTS Fuel Production Results 

SCF FT process produces a total of 7317kg/hr of fuel range products comprised of 4755 

kg/hr of gasoline and 2562 kg/hr of jet fuel.  Figure 4.24 shows the detailed distribution of 

product mass flow rate for the final products, gasoline and jet-fuel, and they are both in the 

appropriate carbon number range. 
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Figure 4.24:  Mass flow rate distribution with different carbon numbers for gasoline and jet fuel 
products 

 

4.3.3 Gas-Phase Fischer-Tropsch Process (Gas-FTS) 

4.3.3.1 Process Illustration 

In order to evaluate the potential of the novel supercritical FT process, a traditional gas 

phase FT reactor is simulated according to the experimental data from Elbashir (2005).  Figure 

4.25 is a simplified generic process block diagram representing the system considered here.  In 

this process, synthesis gas produced from steam reforming is introduced into the system.  The 

cleaned syngas is then introduced into the gas-phase FT reactor.  After the FT reaction the 

off-gas is recycled and the liquid FTS products are treated to yield gasoline and jet fuel.  The 

products from the reactor are introduced into a crude fractionation unit, for separation and 

recycling of unreacted syngas.  Then the products are further refined in a distillation column to 

produce the desired FT fuels.  An integrated cracking unit is added to hydrotreat/crack the 

heavy products.  In this step, extra hydrogen is added to crack heavy products (C16–C25) back to 

light and middle distillates (C1–C12) for further processing.  Another distillation column is 
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introduced to recover additional gasoline and Jet-fuel.  The light fraction from various 

processing units are fed into a reformer, where extra steam is added to react with the light 

hydrocarbon fraction to produce additional synthesis gas for recycle, avoiding purging a valuable 

stream. 

 

 

Figure 4.25:  Gas-phase FT process block diagram 
 

4.3.3.2 Model Specification and Results 

Figure 4.26 shows the process model which was developed in Aspen Plus. 
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Figure 4.26:  Gas-phase FTS model in Aspen Plus 
 

 Fischer-Tropsch synthesis 

The syngas feed flow rate is 2370 kmol/hr which is kept the same as in the supercritical 

FT model.  Similarly, a multicomponent product with a wide range of hydrocarbon formed.  

The major products are paraffins, olefins and oxygenated products.  In this work, only paraffins 

are considered as the products.  The FT reaction operated at the same temperature of 250 ⁰C but 

a different pressure of 20 bar with Co/Al2O3 as catalyst, because gas phase FT reactors do not 

require high pressure.  The syngas H2/CO ratio is still 2.17.  The conversion of CO is reported 

to be 0.65 under these conditions [Van Der Laan, 1999].  The FT reactor is modeled as a 

stoichiometric reactor in Aspen Plus.  Detailed reactions are shown in Table 4.5 below.  The 

overall reaction is divided into individual sub-reactions of different hydrocarbons.  The sum of 

all the individual conversions should be equal to the overall CO conversion of 0.65. 
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Table 4.5:  Detailed Stoichiometry in Gas-FT Reactor. 
Stoichiometry Conversion 

CO +  3 H2 -->  CH4 +  H2O 0.15542490 

2 CO +  5 H2 -->  C2H6 +  2 H2O 0.00353901 

3 CO +  7 H2 -->  C3H8 +  3 H2O 0.01220428 
4 CO +  9 H2 -->  C4H10 +  4 H2O 0.02010356 
5 CO +  11 H2 -->  C5H12 +  5 H2O 0.04385817 
6 CO +  13 H2 -->  C6H14 +  6 H2O 0.04858571 
7 CO +  15 H2 -->  C7H16 +  7 H2O 0.04116813 
8 CO +  17 H2 -->  C8H18 +  8 H2O 0.04170226 
9 CO +  19 H2 -->  C9H20 +  9 H2O 0.04156033 
10 CO +  21 H2 -->  C10H22 +  10 H2O 0.03700033 
11 CO +  23 H2 -->  C11H24 +  11 H2O 0.03260203 
12 CO +  25 H2 -->  C12H26 +  12 H2O 0.02848311 
13 CO +  27 H2 -->  C13H28 +  13 H2O 0.02373892 
14 CO +  29 H2 -->  C14H30 +  14 H2O 0.02130319 
15 CO +  31 H2 -->  C15H32 +  15 H2O 0.01827218 
16 CO +  33 H2 -->  C16H34 +  16 H2O 0.01560146 
17 CO +  35 H2 -->  C17H36 +  17 H2O 0.01326815 
18 CO +  37 H2 -->  C18H38 +  18 H2O 0.01124411 
19 CO +  39 H2 -->  C19H40 +  19 H2O 0.00949896 
20 CO +  41 H2 -->  C20H42 +  20 H2O 0.00655158 
21 CO +  43 H2 -->  C21H44 +  21 H2O 0.00646039 
22 CO +  45 H2 -->  C22H46 +  22 H2O 0.00589306 
23 CO +  47 H2 -->  C23H48 +  23 H2O 0.00471601 
24 CO +  49 H2 -->  C24H50 +  24 H2O 0.00393785 

25 CO +  51 H2 -->  C25H52 +  25 H2O 0.00328232 

Overall CO Conversion 0.65 
 

Figure 4.27 illustrates the mass flow rate for different paraffin products in the gas phase 

FT reactor.  Fewer C1 to C5 products were obtained here.   



 85

 

Figure 4.27:  Gas phase FT reactor product distribution for different carbon numbers 
 

 Crude fractionation  

The effluent from the FTS reactor also contains unreacted carbon monoxide and hydrogen.  

The C5+ products are separated by a condenser and sent to the middle distillate fractionation and 

hydrocracking section, while unreacted H2, CO, and lighter paraffin products are recycled.  By 

combining the recycle gas with steam through a reformer, we can convert C1-C5 back to syngas.  

Figure 4.28 shows the detailed mass flow rates in and out of the condenser.  
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Figure 4.28:  Mass flow rate of products out of the condenser 
 

As we can see, after the condenser, we can obtain basically two product streams: light 

products, mainly containing C1-C5, which will be sent to the reformer to convert back to syngas; 

and the fuel product, which will be sent to the distillation step. The fuel products are mainly 

C5-C15, which will be further processed to gasoline and jet fuel. 

 First Distillation Column 

After the lights are recycled, the fuel products are introduced into a middle distillate 

fractionation unit. In this first distillation column, the C5-C10 portion is separated from the heavier 

products such as gasoline and the C11-C14 portion is separated as the Jet-fuel product.  The C15+ 

portion is converted into smaller paraffins in a hydrocraking unit.  Figure 4.29 shows the detailed 

mass flow rates out of the distillation tower.  The light stream coming out of the distillation tower 

contains mainly the light carbon fraction from C1 to C5.  This stream will be converted to syngas 

through a reformation process and recycled to the FT reactor.  The heavy (bottoms) fraction is 
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mostly larger than C15, which will be introduced into a hydrocracking unit.  The gasoline product 

is concentrated within C5-C11 and the jet fuel product falls in the range between C11 to C14.  

 

Figure 4.29:  Mass flow rate out of the distillation tower 
 

 Hydrocracker 

Similarly, the FTS heavy product requires hydrocracking to increase the yield of fuel range 

products.  Hydrogen is added to hydrogenate the stream from the high molecular weight C16-C25 

paraffin fraction.  The reactor is operated at 380 °C and 1400 psi [Ali, 2002].  A stoichiometric 

reactor was used.   

 Second Distillation Column 

The stream coming out of the hydrocracker is introduced to a second distillation unit.  

Seen from Figure 4.30, the converted heavy hydrocarbons are further processed to produce 

gasoline and Jet-fuel.  Similar to the first middle distillate tower, the light fraction is reformed 

back to syngas and recycled to the hydrocracker.   
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Figure 4.30:  Product mass flow rate for different hydrocarbons from the second distillation 
column 
 

 Reformer 

To avoid costly purges in the FT system, a reformer is incorporated to convert the 

combined light hydrocarbon fraction from the condenser and two middle distillate units back to 

syngas.  The reactions in the reformer are based on steam reforming data obtained at 1000 °C and 

28.5 atm.  All the light fractions are assumed to be converted back to syngas.  A stoichiometric 

reactor is used to simulate the reactor.  Then the syngas from the light fraction is combined with 

the initial syngas feed stream and fed into the FT reactor. 

4.3.3.3 Gas-FTS Fuel Production Results 

The gas phase FT process produces a total of 2449 kg/hr of fuel range products 

comprised of 1279 kg/hr of gasoline and 1170 kg/hr of jet fuel based on the same syngas feed 



 89

rate.  Figure 4.31 shows the detailed mass product carbon distribution for the final products, 

gasoline and jet-fuel.  

 

Figure 4.31:  Gas phase fuel product carbon distributions 
 

4.3.4 Results and Discussion 

4.3.4.1 Fuel Production Cost Evaluation 

Fuel production costs for both processes have been evaluated and compared.  The 

evaluation process includes several procedures.  The first step is to calculate the total equipment 

cost, estimated using the methods provided by Peters (2003).  The utility cost is extracted from 

Aspen HX-NetTM directly.  Then the equipment and utility costs are translated into the total 

production cost according to the method provided by Peters et al (2003), which accounts for 

monitoring, engineering and so on. 

The fixed capital investment (FCI), which has a linear relationship to the equipment cost, 

represents the installed process equipment with all elements that are needed for completing 

process operation.  Working capital investment is the sum of monthly raw materials, labor 

supervision and maintenance.  The raw materials cost is calculated based on the data from 
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Chemical Market Reporter2010 as follows:  0.0516 $/mol for hexane, 0.00000828 $/mol for 

water, 0.0049 $/mol for hydrogen and 0.00202 $/mol for syngas.  The labor costs are then 

calculated based on work hours, processing steps, number of workers, etc.  The total production 

cost is defined as the sum of all the raw materials, utilities, operating labor, operation supervision, 

service, maintenance, operating supplies, laboratory charges, overhead, administrative and 

distribution costs divided by the fuel production rate.   

 

 

Figure 4.32:  Relative cost analysis of gas phase and supercritical phase  
 

Figure 4.32 illustrates the relative costs for fixed capital investment and total utility cost for 

both gas phase and supercritical phase FTS models.  The fixed capital investments for both cases 

are on the same level.  The major difference is the utility cost.  Compared to the gas phase 

process, the utility consumption is much higher for the supercritical phase process.  That is 

because more energy is needed to compress and heat the hexane stream to supercritical 

conditions and the extra unit for separating the inert solvent from the product stream increased 
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the energy consumption.  Moreover, the SCF-FTS reaction is operated at a relatively higher 

pressure, making it more energy intensive.  

 

 

Figure 4.33:  Production rate and cost comparison for different FTS processes 
 

The total production rate and cost are normalized by setting the Gas-FTS model as 

baseline, which is shown in Figure 4.33.  The supercritical phase process has high 

compressibility and desirable properties of gas-like diffusion along with liquid-like heat transfer 

and solubility properties, which provides better controlled FTS behavior.  Therefore, with the 

same FT reactor feed, the fuel production rate of the SCF-FTS model is three times higher than 

that of the Gas-phase model.  Although the SCF-FTS models has higher utility cost due to the 

high production rate, a much lower production cost can be observed, which is only half that of 

the Gas-phase process.  
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4.3.4.2 Environmental Performance 

In order to ensure the final designs are not only optimal in economic performance but 

also environmentally friendly, environmental performance metrics are generated for both 

processes based on the WAR algorithm [Young, 2000].  The WAR algorithm looks at mass 

flows that are entering and leaving both the chemical process and the corresponding process that 

provides the energy.  It calculates the environmental impact based on a weighting factor and 

normalized score.  Environmental impact is measured through eight categories that include 

atmospheric and toxicological concerns, and databases are an excellent tool to decrease the work 

involved in determining the environmental impact of a chemical process.  Figure 4.34 shows 

the results for both processes. 

 

Figure 4.34:  PEI analysis for large scale productions, where I cp and I ep stand for the impact of 
chemical processes and energy processes based on per kg product, respectively. 
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As we can see in figure 4.34, in terms of the impact of chemical processes, Gas-FTS has 

slightly more impact due to the inefficiency in the FT reaction.  But SCF-FTS shows higher 

impact on energy processes because of the high energy demands in compression and heating as 

we analyzed before.  In general, the overall environmental impacts of both models are very 

similar. 

 

4.3.5 Conclusion 

The main objective of this study was to construct and investigate the optimal flowsheet 

structures for gas-phase and supercritical phase Fischer-Tropsch processes.  A conceptual 

design and corresponding ASPEN Plus simulation model was developed for the two 

Fischer-Tropsch (FT) fuel production processes.  One great benefit of creating these models is 

that we can study and compare the effects of plant size, syngas conversion, and Fischer-Tropsch 

synthesis product distribution on the yields and cost of the plant for each Fischer-Tropsch 

process in the future.   

The results show that although SCF-FTS is slightly more energy intensive, the production 

cost is much lower due to the savings in equipment, operating cost, and in particular higher 

production rate. 
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Chapter 5  Process Optimization Framework: Disjunctive-Genetic Programming 
 
 

5.1 Introduction 

Disjunctive-Genetic Programming (D-GP), based on the integration of Genetic Algorithm 

(GA) with the disjunctive formulations of the Generalised Disjunctive Programming (GDP) for 

the optimization of process networks, has been proposed to solve the framework.  The genetic 

algorithm (GA) has been used as a jumping operator to the different terms of the discrete search 

space and for the generation of different feasible fixed configurations.  This approach eliminates 

the need for the reformulation of the discrete/discontinuous optimization problems into direct 

MINLP problems, thus allowing for the solution of the original problem as a continuous 

optimization problem but only at each individual discrete and reduced search space. 

Segment-based Mutation (SBM) and Segment-based Floating Crossover (SBFC) strategies were 

proposed for the efficient handling of the population of chromosomes comprising the coded terms 

of the disjunctions. 

Problems with nonlinear functions and discontinuities in the objective and/or constraint 

space can be found in many synthesis problems in process systems engineering.  It has been 

shown that modeling these nonlinear optimization problems using disjunctions for the expression 

of discrete decisions which conditions the selection of process units (including variable intervals 

and cost functions) among various alternatives, can be very beneficial in the handling of 

discontinuities [Mussati, 2008; Vecchietti, 2003; Turkay, 1996b].  Turkay and Grossmann (1996a, 

1996b, 1998) proposed Generalised Disjunctive Programming (GDP), a generalization of the
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Disjunctive Programming by Balas (1985), as an efficient alternative to Mixed Integer Non-Linear 

Programming (MINLP) in problems that contain a combination of discrete and continuous 

objective functions and constraints. In GDP, problems are modelled with Boolean and continuous 

variables for the optimization of a given objective function subject to different types of constraints.  

GDP represents discrete decisions in the continuous space with disjunctions and constraints in the 

discrete space with logic propositions.  

In their works, Grossmann and Lee (2003) used the GDP approach to model, among 

various benchmark problems they presented, a process network synthesis problem which was 

originally modelled via MINLP by Duran and Grossmann (1986a).  Coupled with the convex hull 

formulation of this problem [Turkay, 1998], they were able to achieve, as in all the benchmark 

problems they analyzed, a global optimal solution in a reduced number of search nodes.  This 

solution method, however, resulted in a higher number of variables and additional constraint 

equations as a result of the partitioning of the original variables into the number of terms necessary 

for each disjunction.  An important difference between GDP and MINLP for the solution of 

discrete/continuous optimization problems is that GDP facilitates the representation of discrete 

decisions through the combination of algebraic and logic equations, while MINLP is based wholly 

on algebraic equations and inequalities. Further examples of the application of GDP to different 

classes of process synthesis problems are available in literature [Mussati, 2008; Farkas, 2005; 

Oldenburg, 2005; Caballero, 2004]. 

As in all optimization problems, finding a set of solutions that can guarantee convergence 

and lead to the globally optimal solution is an important and non-trivial task, especially when 

nonlinear equality constraints and non-convex functions are involved. This can be further 

worsened by the presence of discrete decisions which could lead to infeasible solutions if not 
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explicitly modelled and adequately handled using appropriate algorithms.  An infeasible or even 

suboptimal solution in the discrete or binary space will never lead to an optimal solution of the 

synthesis problem.  Many solution strategies have been proposed for the solution of 

discrete/continuous optimization problems modelled either as an original MINLP problem, or as 

reformulations of GDP problems. These strategies, now termed as standard methods, among 

others include the Branch and Bond (B&B) method [Dakin, 1965; Garfinkel, 1972; Gupta, 1985; 

Stubbs, 1999], the Outer Approximation (OA) method [Duran, 1986b], the Logic-based OA 

method [Bergamini, 2005], the Outer Approximation with Equality Relaxation and Augmented 

Penalty method (OA/ER/AP) by Viswanathan and Grossmann (1990), and the LP-NLP based 

Branch and Bond method [Quesada, 1995].  However, the formulation of these models could be 

very difficult and time consuming.  Current techniques for the solution of GDP problems 

reformulated to logic based MINLP problems involve the iterative solution of MILP master 

problems and NLP sub-problems with fixed configurations.  At the beginning of the MILP-NLP 

iterative procedure, an initial NLP problem is solved, where the integrity conditions of the 

propositional logical statements (represented by Boolean variables with values True or False, or 1 

or 0, to denote the existence or non-existence of a unit, equipment, or process), are relaxed, and the 

information about the obtained solution is used for the construction of the MILP master problem.  

Though this approach has been widely used, the choice of good initial points of the optimization 

variables still remains an important factor to consider [Noronha, 1997; Manninen, 1998].  

Furthermore, for the solution of the MILP master problem, cumulative information about the 

linearization of the constraint and objective functions at the earlier NLP iteration solution points, 

as well as feasibility (or integer) cuts (Emhamed, 2005; Maravelias, 2004) are needed.  As the 

number of iterations is increased, the dimensionality and complexity of this master problem 
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increase, making the optimization problem very difficult to converge, and leading to possible 

generation of local solutions which may not be optimal, or even infeasible solutions 

(configurations) in this MILP space, unless an alternative robust and efficient evolutionary, purely 

deterministic, or a hybrid deterministic-stochastic search algorithm is used. 

Evolutionary search methods, of which the most widely used is the Genetic Algorithm 

(GA), originally initiated by Holland (1975), has been known to be less susceptible to ending in 

local optimal solutions in optimization problems, yielding very good solutions even with 

discontinuous objective and/or constraint functions.  The use of GA in chemical engineering 

applications has been consolidated in several published works [Androulakis, 1991; Coello, 2000; 

Deb, 2000; Michalewicz, 1996].  In many of these works, the evolutionary search method 

solutions have been found in some cases to outperform those obtained through traditional 

deterministic approaches, among other factors, by exhibiting robustness through the use of the 

objective function information and not derivatives, and due to the ease at which they handle 

discrete and integer variables as well as non-smooth and non-continuous functions.  Yet, the 

overall applicability of these algorithms to constrained problems remains an active research focus, 

especially taking into consideration the fact that they may exhibit slow convergence and may have 

difficulties finding the optimal solution to a problem with very small feasibility space.  However, 

promising results are being obtained in joint heuristic and evolutionary (deterministic and 

stochastic) approaches to the efficient solution of engineering processes.  Lewin et al. (1998a, 

1998b) synthesized cost-optimal heat exchanger networks using stochastic optimization 

approaches.  In their work, Cai et al. (2001) applied a combined GA-Linear Programming (LP) 

approach to the solution of a number of network management models, obtaining very satisfactory 

results. 
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The following work is based on the integration of the GA with the disjunctive 

representation of discrete/continuous optimization problems.  The strategy involves the 

decoupling of the disjunctions and the propositional logic from the overall disjunctive formulation 

to the GA space where these constraints are treated before being returned as active terms with 

satisfied logic to the resulting NLP space.  The population of disjunctive terms, corresponding to 

the different process superstructures or configurations, are manipulated by the genetic operators in 

an evolutionary manner in order to obtain the best NLP solution.  The implication of this is the 

final solution of an optimization problem with smooth nonlinear constraints and objectives 

confined within a reduced search space corresponding to specific active terms of a set of 

disjunctions, as determined by the GA.  An advantage of this approach, as will be seen, is that, 

apart from the fact that the dimensionality of the optimization problem can be considerably 

reduced due to the reduction in the total number of constraint equations (only common and active 

disjunctive terms equations are analysed at each NLP call), only feasible superstructures are 

generated.  As such, the resulting problems can be easily solved using widely available direct 

NLP methods such as the reduced-gradient or other deterministic methods. 

 
5.2 Disjunctive formulation of discrete/continuous optimization problems 

In general discrete/continuous optimization problems can be represented by disjunctions, 

Boolean variables, and propositional logical statements, as given by Problem A below [Turkay, 

1996b; Lee, 2000]: 
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In this representation, the continuous variable is represented by x. The disjunction Kk   

consists of a number of terms kJj  inter-separated by the logical OR operator.  Each term of a 

disjunction comprises a Boolean variable, represented by Yjk, sets of inequality and equality 

constraints, and a cost variable ck, which consists of fixed charges denoted by λjk.  Here these 

disjunctions may represent a process, process unit, or equipment such as heat exchangers, pumps, 

reactors, and distillation columns.  The terms of the disjunctions may represent the different 

configurations of these units or processes, such as types of distillation column, areas of reactor, or 

different processing routes.  The logic proposition, expressed in the conjunctive normal form and 

in terms of the Boolean variables, is given by TrueY  )( .  This implies that at least one term of 

a disjunction interconnected by the OR operator must be true.  If Yjk is true, then the constraint 

equations as well as the cost functions of the corresponding j term are enforced; otherwise they are 

ignored.  The function r(x) represents sets of constraint equations that are common to all 

alternatives, and they hold independent of the discrete decisions.  
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Different approaches have been used for the solution of the discrete/continuous 

optimization problem presented in Problem A.  Current programming approaches involve the 

reformulation of the Big M-Outer Approximation formulation and the convex hull formulation as 

proposed by Turkay and Grossmann (1996a), smooth approximation, piecewise linear 

approximation, and the direct NLP approach.  It should be noted, however, that the direct NLP 

approach, being the most trivial of all the approaches, may lead to unreliable results if the 

discontinuities are not effectively defined [Turkay, 1996b].  In this chapter, it is shown that 

discontinuities in the cost and constraint functions modelled as disjunctions can be effectively 

handled through decoupling from the traditional optimization model and handling within a GA 

framework, thus allowing for the efficient solution of large scale combinatorial discrete functions 

and reduced NLP problems using available deterministic algorithms. 

 
5.3 Genetic algorithms 

Genetic algorithms (GAs) belong to the group of stochastic evolutionary search methods 

that are analogous to the natural evolution process [Michakewicz, 1992; Goldberg, 1989].  GAs 

can encode highly complex individuals and the gradual transformation (evolution) of these 

individuals through collective learning processes to the global optimal solution.  Since 

evolutionary methods do not use any information about function derivatives, this has made GA 

methods more attractive in cases where conventional deterministic approaches fail.  The 

individual in the GA contains sets of parameters which represent potential candidate solutions to 

the optimization problem. 

Generally, genetic algorithms involve five different components: the representation of 

individuals in terms of chromosomes which encodes possible solution alternatives, an evaluation 

function which may correspond to the objective function of the optimization problem, rating of 
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these individuals according to their current fitness using the evaluation function, alteration of 

parent individuals to reproduce children, and the genetic parameters.  These genetic parameters 

define the performance of the GA and include the size of the population, the number of generations, 

the selection procedure, the mutation rate, the crossover type and rate.  Of these, the crossover 

parameters and procedures greatly affect the evolutionary process since they define the 

reproduction process of offspring to subsequent generations. 

The GA first creates a pre-specified population size of randomly generated chromosomes, 

which could be random values of a set of variables, or different configurations of a process 

network.  This is followed by calculation of the fitness of these individual chromosomes using a 

fitness or objective function.  The population of chromosomes with their corresponding fitness 

value are sorted in order to identify individual chromosomes which will not only take part in the 

reproduction of children through the crossover operations, but also when specified, pass over to 

the next generation without alteration (elitism).  These chromosomes are called parents, and are 

usually those within the highest score range according to the fitness function.  

For the crossover operation, pairs of parents are selected at random, and this is followed by 

the swapping of parts of the components of one parent chromosome to the other.  As a result, the 

generated offspring (child) contains structures from two high-ranking parents.  In order to 

guarantee the diversity of the genetic algorithm and to avoid the algorithm getting entangled in 

local optimum solutions through loss of potential feasible structures, mutation is performed.  This 

is basically the random alternation of the components of a chromosome.  The parent selection, 

crossover and mutation form the process called reproduction.  The whole process is repeated a 

number of times which corresponds to the number of generations, until a convergence criterion is 

met.  Different convergence criteria have been developed and proposed for GAs [Leboreiro, 2004; 
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Reeves, 1997].  In this work, the termination of the genetic algorithm is based on the attainment of 

the maximum specified number of generations. 

 
5.4 The D-GP concept for optimization problems with discontinuous functions 

The basic idea behind the D-GP approach involves the decoupling of the disjunctive terms, 

represented by the Boolean variables as well as the proposition logic-based constraints formed by 

these variables, to the genetic algorithmic space where they are encoded into chromosomes with 

specific structures corresponding to potential superstructure solution alternatives.  In a typical 

solution framework such as the Big M -OA approach [Williams, 1999], the reformulation of 

optimization problems with discontinuous functions modelled with disjunctions would involve the 

conversion of the Boolean variables to binary and logical proposition into simple linear equations, 

leading to MINLP problems which in turn could be solved using an iterative MILP-NLP scheme as 

shown in figure 5.1.  An important feature of our proposed approach is that no MINLP 

reformulation of the disjunctive representation is needed.  Terms of the disjunctions only need to 

be identified, well defined, and coded into strings or chromosomes.  To facilitate the adaptation of 

GA for efficient handling of the class of generated chromosomes, special operators for 

segment-based crossover and mutation are proposed. Furthermore, we apply the all-feasible 

populations approach, consisting of the creation and use of chromosomes that always satisfy the 

logical constraints [Odjo, 2008; Yuan, 2009].  The basic steps of the D-GP framework are 

depicted in figure 5.2. 
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Figure 5.1:  (left) MILP-NLP iterative solution approach, and (right) the GA-NLP framework 
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Figure 5.2:  The D-GP solution framework 
 

5.4.1 Real codification of the disjunctive terms 

Given a set of disjunctions dk, where Kk   each with terms tj, and where kJj  as 

represented in problem A; a chromosome Pi , where P is a population whose size is defined by 

a pre-specified value npop (number of population) will have the following basic parameters:  

 

 
j k

jktL 2
 (Eqn. 5.1) 
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1 
k

kdS
 (Eqn. 5.2) 

 
Here, L and S are the length (total number of genes) and the total number of segments, 

respectively, of a chromosome.  In this work, real-coded chromosomes [García-Martínez, 2008] 

are adopted instead of binary codifications which have been shown to exhibit poor performance 

when dealing with chromosomes with large L values [Chang, 2006; Achiche, 2004].  Each 

chromosome has been codified such that each gene takes a real numerical but random value of the 

Boolean variables (0, 1).  It is worth noting that a segment sq, where q=1…S, of a chromosome i 

will have a length 
kqtl

j
js   ,

.  

In each chromosome, two special genes, corresponding to the constant at the right hand 

side of Eq. 5.1, store information about the performance of that particular chromosome, namely 

the termination criteria at each NLP call and the GA fitness value, which invariably equals the 

objective function value of the reduced NLP problem that used the structure of that chromosome as 

the fixed configuration.  The numerical values of these two genes (hereby known as the 

performance segment, corresponding to the constant of Eq. 5.2), play the most important role in 

the scaling of individuals of the population and in child breeding during crossover and mutation 

operations. 

 

5.4.2 Creation of the initial population: Population of feasible chromosomes 

A basic and important step in the application of GA to the solution of optimization 

problems is the creation of a population of random individuals, in our case, P, with a fixed number 

of members npop.  This population typically corresponds to the search space of the optimization 

problem (e.g. npop numbers of randomly generated temperature or pressure values between a 
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specified lower and upper limit).  This is particularly trivial if the feasible region of the problem is 

as large as the search space.  However, synthesis problems with a large number of variables give 

rise to huge combinatorial problems such as different candidate flowsheet configurations for a 

process with a large number of units and process streams.  When this is coupled with the existence 

of a narrow feasibility region due to different specifications and restrictions, the traditional 

approach of generating the individuals within the optimization search space might lead to slow 

convergence and even sub-optimal solutions.  Therefore, in this work, a population of feasible 

chromosomes approach is adopted. The basic idea behind this approach is portrayed in figure. 5.3 

and will be explained in detail in the example involving the synthesis of a simple heat exchanger 

network with cost functions defined over multiple areas of the equipment.  As will be seen, the 

important aspect of this approach is that infeasible chromosomes have been eliminated from the 

initial population before the GA fitness function evaluation stage, in contrast to the traditional 

approach where feasibility constraints defined by the logic propositions and embedded as linear 

algebraic equations were satisfied during the GA fitness function evaluation. 
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Figure 5.3:  Generation of populations of feasible chromosomes 

 

5.4.3 Segment-based Floating Crossover Operation Strategy 

In order to not only conserve parts of the feasible configuration from the parents to the 

offspring, but also to achieve less disruptive chromosomes, the crossover operation strategy 

employed in this work involved the selection of two strings (parent chromosomes) with consistent 

identification and exchange of identical segments of the parents.  The number of identical 

segments in a parent string or chromosome is dependent not on the size of the optimization 
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problem, but on the number of disjunctions in the synthesis problem, as the genes in each segment 

would represent the terms of the disjunctions.  The rules governing the crossing over of the 

identical segments involve the selection and direct inter-exchange of the bulk of those segments, 

but not the individual genes within the segments.  Consider a network synthesis problem 

expressed in disjunctive form with 3 sets of disjunctions, two of which carry three terms each, and 

one with 5 terms (Problem B).  The chromosomal codification (without the performance segment) 

of these disjunctions will be given by the parent strings in figure 5.4.  The numbers of segments 

for crossover and their position were chosen at random. Segments in the parent string or 

chromosome comprising only two genes could be crossed over using the linear crossover 

operation proposed by Tang et al. (1998).  In this study, such segments were not modified in order 

to increase the feasible configurations of the obtained offspring. 
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Figure 5.4:  Adopted crossover operation strategy for the D-GP approach 
 
5.4.4 Segment based mutation  

Mutation, carried out at random on any bit of a string (gene) of the population, often leads 

to infeasible configurations.  This can be improved, however, if the operator is modified by 

incorporating specific information on desired mutation routes.  For example, rather than 

executing mutations on individual genes, mutations were performed on segments of specific size 

and position in the string, corresponding to individual disjunctions and the order in which they are 

placed, respectively.  It is worth noting that the length of each segment (or the number of genes 

within) corresponds to the number of terms in each disjunction. In this work, this leads to the 

creation of mutant genes, which can be considered sets of disjunctions of the current problem with 

different configurations of propositional logic.  Consider the set of disjunctions in Problem B.  

The propositional logic constraints in this equation imply that only one of the terms of each 

disjunction must hold (that is Yjk = 1), while the remaining terms are false (that is Yjk = 0 for any Yjk 

≠ 1). Consider the parent string i=1 in figure 5.4.  If the current numerical configuration of this 

chromosome is assumed to be given as the parent string in figure 5.5a, an example of a traditional 

mutation operation would involve random replacement of one or more genes in the chromosome, 

which may potentially lead to infeasible mutated strings.  Instead, in this work, sets of mutant 

genes were created and randomly chosen to replace segments with equal length in the parent 
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chromosome.  Segments to be replaced were also selected randomly, and in this way, diversity of 

the next population was guaranteed without loss of feasibility. 

 

 
 
Figure 5.5:  (a) Traditional mutation with infeasible offspring, and (b) proposed segment based 
mutation with mutant genes 

 

5.5 Application of the D-GP approach to process synthesis problems. 

The efficacy and the applicability of the D-GP approach was tested on a number of small 

and medium scale optimization problems with discrete/continuous functions.  Example 1 is used 

for illustrative purposes, where the proposed different GA operators are further elaborated. 

 
5.5.1 Example 1: The 3 heat exchanger network  

The following example was taken from Turkay and Grossman (1996a), though with a 

slight modification for ease of demonstration and simulation in a modular simulator environment 

as given by [Caballero, 2006; Caballero, 2007].  The heat exchanger network consists of a tubular 

0

Segments j ( disjunctions ): 1 2 3A . 

1 0 10 0 0 0 10 0Parent string i = 1 

01 0 10 0 0 0 10 1Mutated offspring ( infeasible ) 

Mutation on gene position 11 , chosen at random (replace 0 by 1)
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B .
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heat exchanger, a heater, and a cooler (E101, E102, and E103 respectively), interconnected as 

shown in figure 5.6.  Specifically, the problem involves the optimization of process models with 

discontinuous cost functions and fixed charges defined over different area regions of the heat 

exchangers.  More details on this problem can be found in Turkay and Grossman (1996b). 

 

 

Figure 5.6:  A HYSYS representation of the 3 heat exchanger network 
 

The problem was simulated using HYSYS®, and expressed in disjunctive form as given in 

Problem C, and it was sought to minimize the total cost and select the corresponding heat 

exchangers based on the optimised values of their areas.  
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In this formulation, CU and IC represent the utility and the investment costs of the whole 

process respectively.  The solution of this problem using the D-GP as proposed in this work 

involves the decoupling of the logical propositional constraints from the general optimization 

model, and consequent generation, in a genetic algorithmic framework, of feasible configurations 

that satisfy these logical constraints.  For illustration purposes, the above problem has been 

explicitly represented in Problem D below.  

A chromosome template was defined, consisting of 11 genes with four distinct segments 

(figure 5.7).  The first three segments correspond to the disjunctions, and the 9 genes they contain 

correspond to the terms of these disjunctions.  The last segment, common to all chromosomes, 

contains two genes which store information on the performance of the particular chromosome, 

namely the NLP termination criteria and objective function, respectively.  It should be noted, that 

the propositional logic relations were defined and satisfied at the genetic algorithmic population 

generation stage using a drag and drop method. Logical constraints were satisfied through the 

comparison of each randomly generated segment with a set of predefined conditions in the form of 

simple linear equations.  To create a chromosome, an empty string is chosen, and the genes were 
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selected randomly with real values 0 and 1.  If the created chromosome satisfies the logical 

propositional constraints, it is chosen, else it is dropped (that is, the chromosome is illegal), and a 

new combination is chosen until the logical constraints are satisfied. No penalization is applied for 

illegal chromosomes.  By this means, npop always feasible populations were generated. 

 

 
 
Figure 5.7:  Chromosome structure for the 3 heat exchanger network problem 

 

In some optimization problems, the number of unequal strings that satisfies the 

propositional logic constraints might be small; thus if a high value of npop is chosen, the 

population will contain traces of identical chromosomes.  Although this factor will not affect the 

optimal value of the optimization problem, it will increase the computational time taken to get to 

that optimum. 

 



 114

 
 
 

)(0,,

0;1,0,,

0;1,0,,

0;1,0,,

5025

46500600

2510

150001500

100

30002750

5025

46500600

2510

150001500

100

30002750

5025

46500600

2510

150001500

100

30002750

0),(

..

min

321

333231

232221

131211

3333231

2232221

1131211

3

6.0
33

3,3

3

6.0
33

2,3

3

6.0
33

1,3

2

6.0
22

3,2

2

6.0
22

2,2

2

6.0
22

1,2

1

6.0
11

3,1

1

6.0
11

2,1

1

6.0
11

1,1

1

321

DICICIC

TRUEYYY

TRUEYYY

TRUEYYY

AYYY

AYYY

AYYY

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

A

AIC

Y

uAh

ts

ICICICQCQCZ coolerwHeaters

























































































































































































 

 

In the representation as given by Problem D, hI(A1, u) = 0  represents the energy balance, 

material balance, and other unit operation equations performed by the simulator, QHeater and QCooler 

are the total heat exchanged in kilowatt between the hot (steam) and cold (water) utility streams 

respectively, and Cs and Cw are their respective costs in $/kW per year.  The GA parameters 

included the npop set to 25 and number of generations ngen set to 25.  Crossover fraction was 0.8 

and mutation fraction was 0.1.  The fitness function of the GA corresponds to the returned optimal 

value of the reduced NLP sub-problem with fixed configurations corresponding to the generated 

feasible strings (chromosomes). The Matlab® fmincon functionality from the Matlab 

Optimization Toolbox, which solves nonlinear constrained optimization problems using gradient 
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based methods, was used to solve the reduced NLP problem. Chromosomes that return infeasible 

reduced NLP solutions (that is tc = -1) were penalized with a fixed weighting factor rendering these 

chromosomes less competitive in the next population selection, crossover and mutation process. 

The GA termination criteria was based on the attainment of the maximum specified number of 

generations (ngen). 

Table 5.1 shows the GA parameter and solution summary from solving the three heat 

exchanger problem.  Since different solutions may be obtained when GA is executed, even with 

the same parameters, the D-GP sequence was executed five times in this example.  In almost all 

runs, the optimal objective value of $125,600 per year was obtained at the first generation.  

However, when a population of 10 chromosomes were chosen and the number of generations set to 

10, the D-GP found the same optimal solution, but at a slightly higher generation count on average 

than when npop was fixed at 25 (figure 5.8). As can be seen from Table 5.1, even Run 3 returned a 

string with a sub-optimal value of $137,930 per year as solution at the third generation, after which 

no improvement in the objective value was obtained. GAs are more effective while using an 

optimal combination of the GA parameters, which in turn depends on the problem complexity, 

dimension, and type. 
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Table 5.1:  Solution Summary of the 3 Heat Exchanger Network Using Proposed D-GP. 
 

GA parameters  D-GP Performance 

Property Value  Runs 
Optimal 

Generation
Objective Value 

($1000/year) 
Optimal Chromosome 

   npop = 25       ngen = 25 
Crossover fraction 0.8       1            1 125.60 010010001(+1)(125.60) 
Mutation fraction 0.1       2            2 125.60 010010001(+1)(125.60) 
Selection type: Tournament       3            1 125.60 010010001(+1)(125.60) 
        4            1 125.60 010010001(+1)(125.60) 
       5            1 125.60 010010001(+1)(125.60) 
  npop = 10      ngen = 10 

       1            1 125.60 010010001(+1)(125.60) 
       2            2 125.60 010010001(+1)(125.60) 
       3            3 137.93 010001001(+1)(137.93) 
       4            1 125.60 010010001(+1)(125.60) 
       5            2 125.60 010010001(+1)(125.60) 

 

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Generations

O
bj

ec
tiv

e 
V

al
ue

, 
x1

00
0 

$/
ye

ar

 

 

npop=25, ngen=25

npop=10, ngen=10

 
Figure 5.8:  Best and worst objective values with two different values of the GA generation and 
population 

 

Table 5.2 and figure 5.9 show a comparison of the reduced NLP model parameters of the 

D-GP and the NLP sub-problems (with fixed structures) of the MINLP reformulation of the GDP 

technique as proposed by Turkay and Grossman (1996a).  The NLP sub-problem of the GDP 

formulation found an objective function which was almost 20% worse than that found by the D-GP.  

A clear reduction in the total number of constraint equations as well as variables of the NLP 
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problem can be observed using this proposed approach.  This is because, at each GA-NLP 

iteration only the constraints of the active terms of the disjunctions (which correspond to the 

configuration of each chromosome) were solved, leading to a reduced search space and 

dimensionality of the NLP problem.  Thus, the reduced NLP problem of the optimal chromosome 

structure is given in Problem E, with constraint functions which are continuous in their respective 

variables. 
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Table 5.2:  Model Parameters of the Reduced NLP Problem of the D-GP Approach and 
Comparison with the NLP Sub-problem of the MINLP Reformulation of the GDP Formulation of 
the Problem Using the Outer Approximation (OA) Algorithm Coupled with the Big-M 
Transformation. 
 

Model parameters 
Formulations 

D-GP GDP-OA 
Objective value, $1000/year 125.60 150.32 
Total investment cost, $1000/year 75.99 100.36 
Total utility cost, $1000/year 49.61 50.16 
Optimal areas, m2: Heat exchanger 25 24.95 
                               Heater 26.18 21.94 
                               Cooler 30.28 28.07 
Number of variables 4 15 
Total number of equations 12 39 
Constraints: Nonlinear 6 36 
 Linear 6 3 
Number of bonds 6 15 
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Figure 5.9:  Comparison of the reduced NLP model parameters of D-GP with those of the NLP 
subproblem of the MINLP formulation of the 3 heat exchanger network 

 

5.5.1.1 Mixed vs. all-feasible initial population  

Here, the efficacy of the feasible population strategy adopted for the D-GP approach is 

shown by comparing results obtained from a mixed initial population.  For the case of the mixed 

population type, the initial populations consisted of randomly created chromosomes which were 

not subjected to feasibility tests at the creation stage.  As a result, this population contains strings 
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which may not satisfy the propositional logic constraints.  The feasibility tests on these 

chromosomes were embedded into the GA fitness function before the reduced NLP problem call.  

In the fitness function, infeasible chromosomes were penalised with large fixed weight factors, 

returning a fitness value large enough to render the corresponding chromosome less competitive 

for selection in subsequent reproduction operations.  Infeasible strings at this stage were simply 

returned and the next member of the population evaluated.  If a string satisfied the propositional 

logic constraints, the NLP problem was solved with fixed configurations corresponding to the 

chromosome structure.  The GA fitness takes the value of the returned objective function of the 

reduced NLP problem, and this information, coupled with the corresponding termination state, 

was returned and stored for the next generation population creation using the different specified 

GA operators. 

Poor performances were obtained using the mixed population approach, as can be seen in 

Table 5.3, which shows the objective values of 10 different runs of the D-GP with GA parameters 

npop and ngen being 25 each.  Only 30% of the total runs carried out were capable of finding the 

optimal objective value and configuration.  An important factor to consider in this approach is 

that in some problems, only a small fraction of the population (those which meet the logic 

constraints) of each generation passes on to the NLP space.  This consequently increases not only 

the mean fitness value of the population members of a particular generation due to the 

accumulation of large penalty weights on the infeasible strings, but also the number of generations 

needed to find the global objective value.  This can be seen in figure 5.10, which shows the 

evolution of the GA fitness function value with the generations (for the best run, Run 3 in Table 

5.3), as compared to the case with feasible initial populations.  As can be seen in this figure, the 

mean fitness value (objective value) of the population, that has undergone feasibility tests during 
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the population creation stage was significantly lower than the population which comprised both 

feasible and infeasible chromosomes.  Similarly, in the earlier case, the total number of iterations 

needed to attain the optimal solutions was smaller, which highlights the strength of the feasible 

initial population in the execution of this D-GP approach. 

 
Table 5.3:  Performance of the D-GP with Mixed Initial Population Through Repetitive Runs. 
 

Runs Objective Value Generation Optimal String Structure 
1 809.86 2 010001100(-1)(809.86) 
2 125.60 2 010010001(1)(125.60) 
3 125.60 1 010010001(1)(125.60) 
4 135.90 2 010010001(1)(135.90) 
5 125.60 7 010010001(1)(125.60) 
6 656.02 5 001100100(-1)(656.02) 
7 934.87 2 010100001(-1)(934.87) 
8 925.70 3 100100100(-1)(925.70) 
9 809.86 2 010001100(-1)(809.86) 
10 809.87 1 010001100(-1)(809.86) 
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Figure 5.10:  Evolution of the GA fitness function value with the generations for best 
performance (Run 3) 
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5.5.2 Example 2: Process network synthesis 

In this example, which was taken from Lee and Grossmann (2000) and was originally 

proposed by Duran and Grossmann (1986a), it was sought to determine the most profitable 

flowsheet configuration involving the possible selection of 8 processes from the network 

presented in figure 5.11.  This model has been originally formulated as an MINLP and later as a 

GDP problem [Turkay, 1996a].  The D-GP model took advantage of the original disjunctive 

formulation of the problem (Problem F) for the chromosome structure definition and codification 

within a GA framework.  In this example, each chromosome contained 10 genes, with the first 

eight containing the information on the activation or non-activation of a certain term of each 

disjunction.  Following similar procedures and with GA parameters as in Example 1, the GA 

returned a chromosome with the structure 01010101(+1)(68.009) at the first generation, from 

which it can be seen that the optimal flowsheet configuration involved the selection of units 2, 4, 6 

and 8, with an optimal objective value of 68.01.  This implies that the chromosome with the 

optimal flowsheet configuration was among the initial parent population of feasible chromosomes 

generated during the first population creation.  Several runs were performed and the generation 

containing the worst optimal objective value was the third generation.  The obtained optimal 

value and configuration agree well with the values obtained in other works [Duran, 1986a; Turkay, 

1996a].  This same problem was reformulated from the GDP [Lee, 2000] to the MINLP and 

iteratively solved between the NLP sub-problems and the MILP master problems using GAMS 

[Brooke, 1992] NLP (SNOPT7) and LP (Cplex) solvers respectively.  Similarly to Example 1 

involving the 3 heat exchanger network, a notable decrease was observed in the dimensions of the 

reduced NLP problem in the proposed D-GP method.  In Table 5.4, it can be seen that the reduced 
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NLP problem of the D-GP approach has been simplified by the existence of fewer nonlinear 

constraints than in the case of NLP subproblems developed from the MINLP method. 

 
Table 5.4:  Comparison of NLP model parameters of D-GP with GAMS SNOPT7 output. 

Model parameters 
Formulations 

Reduced NLP (D-GP) NLP (GAMS SNOPT7), MINLP 
Objective value ($1000/year) 68.01 68.01 
Number of variables 33 34 
Total number of equations 38 61 
Constraints: Nonlinear  10 10 
 Linear 28 51 
Number of bonds 33 34 
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Figure 5.11:  Superstructure for process network synthesis example 
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5.5.3 Example 3: Jobshop scheduling 

The application of the D-GP methodology was further tested for the solution of a 

scheduling problem (Problem G) with discontinuous constraints (linear functions) representing the 

boundaries of the feasible region.  The objective is the minimization of the makespan given a set 

of three jobs and three stages, expressed in disjunctive terms.  Details of this problem can be 

found in the original work [Lee, 2000].  The obtained results demonstrate the ease with which the 

D-GP method tackles process synthesis problems of this nature. 

The GA number of generations and number of populations were each set to 25, and the 

optimal solution provided by the D-GP yielded a chromosome at the second GA generation (figure 

5.12), with the configuration 011001(1)(11), corresponding to Y1=FALSE, Y2=TRUE, and 

Y3=FALSE. The optimal values for the variables x1, x2, and x3 were 3, 0, and 1 correspondingly.  

This is clearly in agreement with the optimal solutions found in Lee and Grossmann (2000), 

though no comparison could be made on the performance of the method employed by those 

authors and the D-GP approach since both involved the use of different solution frameworks.  
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Figure 5.12:  Optimal value and generation for the jobshop schedule problem 
 
5.5.4 Example 4: Biorefinery Optimal Product Allocation (BOPA)  

The applicability of the D-GP approach to chemical engineering process synthesis is 

further demonstrated through its application to the identification of the optimal set of products and 

the best route for producing them, given a set of bio-resources and finite production paths with 

performance criteria. Details of this problem can be found in the works of Sammons et al. (2007, 

2008).  The superstructure of the different production paths is given in figure 5.13.  The BOPA 

problem was first expressed in terms of disjunctions with propositional logic, from which 

information about the GA chromosome structure was extracted.  An interesting feature of this 

problem is the existence of process sub-routes, giving rise to embedded disjunctions as shown in 

Problem H.  Analogous to the previous examples, the length of the chromosome equals the total 

number of disjunctions in the formulation plus 2, where the information on the termination criteria 

and objective function values of the individual chromosome is stored. In this example, the number 

Optimal value 
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of segments in a chromosome equals 4, with segment 3 embedding two sub-segments.  Following 

similar procedures as elaborated earlier, populations of feasible chromosomes were generated in 

the GA framework, followed by the solution of the reduced NLP problem with fixed configuration 

(information which is passed on to this non-linear optimization space from the information 

contained in the GA generated chromosomes). 

 

 
 
Figure 5.13:  Superstructure of the general biorefinery model (Sammons et al., 2006) 

 

The optimal configuration and parameter values of the BOPA problem obtained using the 

D-GP approach are shown in figure 5.14.  The optimal objective value was $16,277.00 with 

routes leading to the production of products 1, 2, 4, 5 and 6 being selected. In the optimal 

configuration, route 1 was not selected; however, 130 units of product 1 are being produced and 

sold to the market due to the feasibility of production sub-route R02,01 as shown figure 5.14.  
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Figure 5.14:  Optimal superstructure and flow parameters for the general BOPA problem 

 

It is also worth noting that although production path 3 was selected, no part of product 3 

being processed from this route was sold to the market since the D-GP approach determined that it 

was more profitable to further reprocess this product through routes R02,02 and R02,03.  For the 

attainment of this feasible configuration and optimal value, the optimization model included a total 

of 40 constraint equations from which 13 are nonlinear.  
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General equations: 
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Where: 
 
PCn  Processing Costs of given route n per unit input;  7...1n  
PRn  Production rates for given route n 
TSk  To Sell (final output to market);  6...1k  
TCn  Total Cost (total equipment and processing cost) 
Cn   Cost (Cost of production, cost of processing resource through specific route) 
m    Raw material input quantity (feed) 
Pk    Price of product  
BP   Biomass Price per mass unit 
BC   Total Biomass Cost 
Revk  Revenues from obtained products 
 

 

5.6 Summary 

This chapter has presented a joint disjunctive-genetic algorithm (D-GP) representation 

approach to synthesis of process networks involving discrete/discontinuous functions, or where 

the selection of different equipment, units, or processes are involved, given a set of alternatives.  

Special modified GA operators were presented to better handle the proposed solution approach, 

and it was found that the generation of feasible populations yields better results as compared to the 

case when the population is composed of randomly generated individuals that underwent 

feasibility testing at the fitness function evaluation stage.  An interesting feature of the D-GP 
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approach is that it eliminates the need for the reformulation of the GDP problems into direct 

MINLP problems, thus allowing the solution of the original problem as a continuous optimization 

problem but only at each individual discrete and reduced search space.  The effectiveness of the 

D-GP has been shown in different chemical engineering problems, and in all the examples studied, 

no more than five generations of the genetic algorithm were needed to find the optimal solution. 

An important contribution of this paper is based on the use of the evolutionary approach as an 

alternative to the efficient handling of discontinuities in optimization problems while 

simultaneously applying deterministic approaches to handle the continuous functions.



 134

Chapter 6  Conclusions and Future Directions 
 
 

6.1 Conclusions 

The work presented in this dissertation pertains to research in the areas of process synthesis, 

integration and optimization of novel fuel production.  It specifically targets developing a 

methodology to design simulation models based on the analysis of the experimental or literature 

data and includes the considerations of environmental and economic metrics.     

Based on the methodology, the case studies successfully compared the reformation 

strategies based on the impact of utility requirements, energy integration potential, equipment 

costs, and raw material costs on the total production cost.  Two specific applications were 

evaluated for the reformation strategies: hydrogen production and the Fischer-Tropsch (FT) 

process.  In this work, simulation models were first developed for different fuel production 

schemes and then environmental and economic analyses were performed for each process.  

Several fuel reformation strategies were considered and four different fuel sources in the hydrogen 

production models and two different FT synthesis approaches were evaluated.  Since the 

reformation kinetics are very complex, a systematic approach using simplified reaction 

stoichiometry was developed.  The economic analysis was performed for each reformation 

strategy and reforming fuel, allowing for the determination of the most economical way to obtain 

the desired fuel product. 

The success of alternative fuels such as hydrogen and FT fuels is largely dependent on cost 

competitiveness with other transportation fuels.  Currently, the price cannot beat gasoline from
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the traditional refinery processes.  The development of alternative fuel infrastructure (i.e. 

hydrogen stations) and transportation could be even more expensive. Therefore, the ability to 

produce alternative fuels in a cost-effective way is only the first of many challenges that need to be 

addressed, although it is a very important step in our decision-making process.  The 

implementation of an alternative energy infrastructure will require enormous investments in new 

production and distribution systems.  

As previously mentioned, it is apparent that the current technologies for producing 

hydrogen from liquid fuels are not attractive if evaluated only on the production costs.  However, 

it would be much more competitive if hydrogen could be efficiently generated from electrolysis of 

water with the use of solar energy, but this technology is still under development and is dependent 

on the improvement of the solar cell panels.  Moreover, besides cost, benefits such as storage, 

transportability, etc. will need to be quantified for all types of fuels in order to better compare the 

technologies.  From this study, dry reforming appears to be a potential alternative to the current 

technique in terms of cost and performance.   

The other case study was focused on developing generic process simulation models of 

traditional gas-phase Fischer-Tropsch Synthesis (FTS) process and novel supercritical-phase FTS 

process in collaboration with our colleagues at Auburn University.  FTS is an attractive pathway 

to convert carbonaceous feedstock into synthetic hydrocarbon fuels that are directly compatible 

with existing infrastructure.  The results show that the novel FTS process by using supercritical 

fluid could produce more fuels than the gas phase FTS process and only has half of the production 

cost with similar/lower environmental impact. 

A joint disjunctive-genetic algorithm (D-GP) representation approach was proposed in the 

optimization step.  Special modified GA operators were presented to better handle the proposed 
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solution approach, and it was found that the generation of feasible populations yields better results 

as compared to the case when the population is composed of randomly generated individuals that 

underwent feasibility testing at the fitness function evaluation stage.  An interesting feature of the 

D-GP approach is that it eliminates the need for the reformulation of the GDP problems into direct 

MINLP problems, thus allowing the solution of the original problem as a continuous optimization 

problem but only at each individual discrete and reduced search space.  The effectiveness of the 

D-GP has been shown in different chemical engineering problems, and in all the examples studied, 

no more than five generations of the genetic algorithm were needed to find the optimal solution.   

 

6.2 Future Directions 

In the FT case study, it should be noticed that the environmental performance is not 

included in the optimization step.  Economic and environmental evaluations are made 

separately.  So far, no standards exist for environmental metrics, and thus the choice of 

appropriate metrics is quite difficult.   

Besides developing more complex, detailed models for current fossil fuel processing, 

research into alternative fuels which are environmentally friendly appears promising.  The 

reforming of bio-derived fuels, such as ethanol, bio-diesel and di-methyl-ether (DME) are 

considered to be excellent types of future alternative fuel.  Bio-derived fuels have energy 

densities comparable to other hydrocarbon fuels and are renewable, unlike fossil fuels [Gerhartz, 

2003].   

Seeing that one of the major challenges of the future fuel energy economy is the cost, more 

reformation models such as the production of olefins and FT fuels to perform the cost analysis of 

the different reforming strategies in the final step need to be generated and investigated.  Various 
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reforming fuels should be evaluated in order to develop a relationship between raw material and 

production cost and to make sure the process system is achieving the highest fuel production levels 

for the lowest raw material cost.  By evaluating alternative fuels and strategies we can obtain 

more information on how to produce them in a cost effective, environmentally friendly manner for 

various applications.  Currently, the cost of production for alternative transportation fuels is not 

competitive with conventional fuels and technologies.  Further research is needed to significantly 

reduce the capital equipment, operational, and maintenance costs to improve the efficiency of 

alternative fuel production technologies such as hydrogen production.   

Syngas production was not included in the analysis of the Fischer-Tropsch processes.  The 

next step in the modeling of the FT processes will combine the results from the hydrogen 

production studies with the FT process models to evaluate the best syngas production schemes for 

FT fuel production.  Process design under uncertainty could potentially avoid design related issue 

such as suboptimal decisions, overdesign or underdesign at an early design stage.  Uncertainty 

analysis should also be included in the model to make analysis of scaling up to industrial levels 

more accurate and fit for global analysis.   
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