
USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER

(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee.

This thesis does not include proprietary or classified information.

Chun-Ching Andy Huang

Certificate of Approval:

J. David Irwin
Professor
Electrical and Computer Engineering

Chwan-Hwa Wu, Chair
Professor
Electrical and Computer Engineering

Fa Foster Dai
Associate Professor
Electrical and Computer Engineering

Stephen L. McFarland
Acting Dean
Graduate School

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER

(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
August 7, 2006

 iii

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER

(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all

publication rights.

Signature of Author

Date of Graduation

 iv

VITA

 Chun-Ching Andy was born in December 1978, in Taipei, Taiwan. He graduated

with Bachelor of Science degree in Computer Science from University Of British

Columbia, Vancouver, Canada in 2003. Chun-Ching Andy Huang then entered Graduate

School, Auburn University, in January 2004.

 v

THESIS ABSTRACT

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER

(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

Master of Science, August 7, 2006
 (B.S., University Of British Columbia, Canada, 2003)

75 Typed Pages

Directed by Chwan-Hwa Wu

Denial of service (DoS)/Distributed DoS (DDoS) attack is an eminent threat to an

authentication server, which is used to guard access to firewalls, virtual private networks

and wired/wireless networks. The major problem is that an authentication server needs to

verify whether a request is from a legitimate user and if intensive computation and/or

memory resources are needed for verifying a request, then DoS/DDoS attack is feasible.

In this thesis, a new protocol called Identity-Based Privacy-Protected Access Control

Filter (IPACF) is proposed to counter DoS/DDoS attack. This protocol is an

improvement of IDF (Identity-Based Dynamic Access Control Filter). The proposed

protocol is stateless because it does not create a state for an authentication request unless

 vi

the request is from a legitimate user. Moreover, the IPACF is stateless for both user and

authentication server since a user and responder authenticate each other. A filter value,

which is generated by pre-shared secrets, is sent in a frame and checked to see if the

request is legitimate. Note that the process of checking filter value is not intensive

computation. The filter value is tabulated in a table with user identity so that a filter

value represents a user’s identity and only the legitimate user and authentication server

can figure out the identity. When a filter value is from a legitimate source, a new filter

value will be generated for the next frame. Consequently, the filter value is changed for

every frame. Thus the privacy of both user and server are protected.

The IPACF is implemented for both user and authentication server. The

performance of the implementation is reported in this thesis. In order to counter more

DoS/DDoS attacks that issue fake requests, parallel processing technique is used to

implement the authentication server, which is divided into server 1 and server 2. Server 1

only checks the validity of the request filter value against the filter value table. If the

request is legitimate, the request will be passed to server 2 for generating a new filter

value; otherwise, the fake request is rejected by server 1. The performance comparison

of dual server and single server is also reported.

 vii

ACKNOWLEDGMENTS

This thesis could not be done without the following individuals. First, I would like

to thank my major advisor Dr. Chwan-Hwa Wu. Dr. Wu gives me great learning

experiences. I could not finish this thesis with his guidance during my research. He also

turns me into a more mature person. Second, I would like to thank Dr. J. David Irwin for

giving me the great opportunity to be here and full support of my Master study. He

always encourages me on my researches. I would also like to thank Dr. Fa Dai. He

always concerns about my research every time we meet and gives me some feedbacks.

For the past two years of study in Auburn University, it’s really a pleasure to be

part of the research lab. Finally, I would like to dedicate this thesis to my parents Shun-

Ming Huang and Chin-Hui Kao, my brother Chun-Ju Huang, and my fiancée Szu-Hua

Chen for their continuously support and endless love.

 viii

Style manual or journal used: Bibliography conforms to the Institute of Electrical

and Electronics Engineers

Computer software used: Microsoft Word 2003, Microsoft Visio 2003

 ix

TABLE OF CONTENTS

TABLE OF CONTENTS……………………………………………………………..…. ix

LIST OF FIGURES……………………………………………………………………... xi

LIST OF TABLES…………………………………………………………………....... xii

CHAPTER ONE………………………………………………..………………………… 1

INTRODUCTION…………………………………………………………………...…… 1

1.1 Current Problem……………….………………………………………...…..…... 1

1.2 Motivation of the Proposed IPACF protocol………………………………..….... 2

1.3 Organization Of the Thesis………………………………………………………. 3

CHAPTER TWO………………………………………………………..…….………….. 5

RELATED WORKS…………………………………………………………………….... 5

2.1 Denial of Service (DoS)……….………………………………………...…..…... .5

2.2 Current research……………………………………………………………..….... 6

CHAPTER THREE…………………………………………………….….……...…….. 10

PROTOCOL DESIGN…………………………………………………………………... 10

3.1 The Basic Concept of the Filter.………………………………………………... 10

3.2 Design principle……………………………………………………………..….. 12

CHAPTER FOUR….………………………………………………….….…….............. 15

THE IDENTITY-BASED PRIVACY-PROTECTED……………………….….....…… 15

ACCESS CONTROL FILTER (IPACF) PROTOCOL……………………………….… 15

4.1 Notation for Identity-Based Privacy-Protected Access Control Filter...…..…… 15

4.2 Initial Configuration Stage…...……………………………………………….... 17

4.2.1 Master keys and pre-shared secrets generation..……….…...………....... 17

4.2.2 Initial Filter Setup in a Responder as a Filter Table.…...………….….... 19

4.2.3 User Login and Master Key Renew...………………………………..… 23

4.3 Session Mutual Authentication Stage (SMAS)……………………......……..… 26

 x

4.4 Dynamic Data Communication Stage (DDCS)……...…………………………. 32

4.5 The Summary of the Dynamic Data Communication Stage…...………………. 38

4.6 Privacy Protected Filter Exchange…………...……...…………………………. 43

CHAPTER FIVE….…………………………………….…………….….……............... 47

IMPLEMENTATION AND PERFORMANCE EVALUATION……………………… 47

5.1 Implementation……………………………………………………......…..……. 47

5.2 Performance……………..…...………………………………………………..... 49

5.2.1 Performance in authentication………………...……….…...………....... 49

5.2.2 Performance in DoS attacks……………………….…...………….……. 52

5.2.3 Performance in dual server over single server…...……………………... 54

5.3 Interoperability of IPv4 (user application) and IPv6 (responder)…..................... 55

CHAPTER SIX….…………………………………….…………….….…….................. 57

CONCLUSIONS AND FUTURE WORKS…………………………………………….. 57

BIBLIOGRAPHY………………………………………………………………………. 60

 xi

LIST OF FIGURES

Figure 1: The Concept of Identity-Based Privacy-Protected Access Control Filter……. 11

Figure 2: Identity-Based Privacy-Protected Access Filter (IPACF) Overview…………. 13

Figure 3: The Responder’s Truncated Function………………………………………… 21

Figure 4: The User’s Truncated Function……………………………………………..… 28

Figure 5: Session Mutual Authentication Stage Overview……………………………… 29

Figure 6: The Dynamic Data Communication Stage………………………………….… 34

Figure 7: The Overview of Dynamic Data Communication Stage……………………… 39

Figure 8: Filter Value Table Update Flowchart…………………………………………. 46

Figure 9: Diagram with dual servers design…………………………………………….. 49

Figure 10: The SMAS for the responder………………………………………………....51

Figure 11: The SMAS for the user………………………………………………………. 52

Figure 12: User performs SMAS to the responder while attackers perform DoS attack 53

Figure 13: Comparison chart of IPACF and IDF in averaged rejection time…………… 54

Figure 14: Comparison chart of dual server vs single server in average round trip time.. 54

Figure 15: UDP socket…………………………………………………………………... 56

Figure 16: UDP6 socket…………………………………………………………………. 56

 xii

LIST OF TABLES

Table 1: Responder’s Dynamic Access Filter Table………………………………….… 21

Table 2: User’s Dynamic Access Filter Table……………………………………...…… 28

 1

CHAPTER ONE

INTRODUCTION

Authentication server is widely used to guard wireless access points, virtual private

networks, firewalls and so on. Denial of service (DoS) or distributed DoS (DDoS) attacks

floods the authentication server with fake packets and causes the server to exhaust its

resources for processing fake packets. When the resources of the authentication server is

exhausted, legitimate user’s authentication requests can not be responded.

In this thesis, we propose a stateless authentication protocol, which allows the

authentication server to check if the request is from a legitimate user and to commit

computational resources only if the request is legitimate. This protocol protects the

resources of an authentication server so that the resource consumption of DoS/DDoS

attacks is minimized.

1.1 Current Problem

The advancement in wireless network technology provides wireless access networks

to the Internet. Authentication servers are used to defend the wireless access networks.

Attackers can easily launch DoS/DDoS attacks to authentication servers and can disable

the wireless access networks. The current 802.1x [1] and 802.11i [2] standards both still

lack the ability to prevent the DoS/DDoS attacks to authentication servers and wireless

 2

access points. Firewalls and virtual private networks suffer the same drawback that

DoS/DDoS can easily halt the authentication functions [3].

The major problem of DoS/DDoS attack is that the authentication server (or

responder) needs to validate that the request is from a legitimate user (or initiator).

However, the authentication server only has a limited CPU computation power and

restricted amount of memory. When attackers initiate sufficient requests, the

authentication server cannot respond to legitimate requests. It is necessary to minimize

the resource committed to a request before verifying the request is from a legitimate

source.

Ingress and egress filters based on IP address have been suggested to counter

DoS/DDoS attacks. But a legitimate source IP address can be spoofed to launch

DoS/DDoS attacks by sniffing the communication frames between the legitimate user

and authentication server.

1.2 Motivation of the Proposed IPACF protocol

To address the current problems, a protocol called Identity-Based Privacy-Protected

Access Control filter (IPACF) is proposed. An identity based filtering is used instead of

an IP address-based filtering. The IPACF is based on pre-shared secrets that are known

by a user (initiator) and an authentication server (responder). Both user and responder

generate a unique (one-time) filter value for each communication frame using pre-shared

secrets. Only the user and responder have the necessary secrets to calculate the filter

values. The filter value can be checked to make sure that the value is from a legitimate

source. If the filter value is correct, then a new filter value is generated for the next frame;

otherwise, the received frame is rejected.

 3

Follow the concept of a stateless protocol “Do not create any state or do

expensive computation before you can ensure that the received frame is legitimate.” the

concept of stateless server and stateless connection was proposed to defend against DoS.

If the server authenticates the user and verifies the user’s filter value without keeping

states, the authentication scheme will be stateless. Moreover, the protocol is stateless

since a frame with an incorrect filter value is only checked and no other computation

resource is committed. Only when the frame has a legitimate filter value, then resource

will be committed for calculating next filter value.

The privacy of the identity relies on the one-time filter value and the pseudo ID

which are an indication of the user identity. Furthermore, the IPACF can prevent session

hijacking, dictionary attacks and man-in-the-middle attacks using the secure master key

exchange.

1.3 Organization of the Thesis

This thesis is divided into six chapters. The first chapter provides the background

information that is necessary to understand the rest of the work. The remaining chapters

are organized as follows.

In Chapter 2, we present the related work and current research to show the

importance of proposed IPACF protocol. In Chapter 3, we propose a concept and the

design goals for the new IPACF protocol. We also point out a couple of disadvantage

and drawbacks about Wang’s IDF protocol [4]. In Chapter 4, we explain the details of

how the proposed IPACF protocol creates a truly stateless protocol environment and

defends against DoS/DDoS attacks. In Chapter 5, we implemented and simulated

 4

Wang’s IDF protocol in the real-world implementation. We also describe the

implementation and performance of the IPACF protocol and compare it with Wang’s IDF

protocol; the compatibility of the IPACF protocol in IPv6 network is also described.

Chapter 6 contains the conclusions and suggestions for future work.

 5

CHAPTER TWO

RELEATED WORKS

2.1 Denial of Service (DoS)

 The objective of DoS attack is to degrade services by flooding a network with

faulty beacons, preventing legitimate traffic and causing systems not to respond. Denial

of service relies on methods that exploit the weaknesses of the network and attempts to

reduce the ability of a responder to service users [5].

DoS can be achieved by either overloading the ability of the target network, that

causing a responder to neglect incoming traffic, or by sending network packets that

causing target networks to behave unpredictably and crash. For example, one common

form of DoS is Ping of Death, which generates and sends certain kinds of network

messages that are technically unsupported but known to cause problems for systems that

receive them. Other DoS attacks may simply "flood" a network with useless data traffic,

rendering systems incapable by pretending as legitimate users. The main problem is:

when a responder receives a request that requires verifying the request using system

resources, the computation and memory storage gives an adversary a chance to launch a

DoS attack.

 6

2.2 Current research

DoS attacks continue to be a critical threat. They can intervene critical services,

prevent data transfer between devices, and decrease overall productivity. Because DoS

attacks can be extraordinarily costly and harmful to internetworking environment,

networks must proactively counteract these attacks. Authentication is a significant issue

in establishing secure communication between the users and responders by identifying

each other prior to accepting each other’s frames. Several works [8-14] have been

proposed to prevent DoS attacks and to improve the security or the computational

performance based on public-key signatures authentication scheme. Two password-

based integrated schemes for user authentication and access control was proposed by Jan

and Tseng [13], defined as the JT-1 and the JT-2 schemes, to administer the security

administration functions with respect to both the computational cost and the

communicational overhead efficiency. But both the JT-1 and the JT-2 schemes are not

secure against an impersonation attack, an adversary can successfully fool the system to

act as any other legitimate user, and take over all access rights granted to that user

without being detected [14]. W. Aiello et al [8] provides a capability for perfect forward

secrecy in order to efficiently defend against DoS attacks. Although the public-key

signatures scheme can provide a certain level of security to resist a DoS attack, it is still

vulnerable to DoS attacks on the first and third message flows [8][10]. Since the first

flow is sent in clear text, the adversary can sniff the legitimate user’s identity and then

spoof it to become a legitimate user and pass the identity check from the server. This

process could lead to a DDoS attack. If the server need not check the identity of the user

like J. Leiwo’s scheme [10], the adversary can randomly generate a request nonce to the

 7

server for launching a DoS attack. This will cause the responder very busy in processing

the spoofed requests sent from an adversary and has limited ability for legitimate users.

In the third flow, the public-key signatures authentication scheme must verify the

authenticity of the returned data that is sent from the legitimate uses. This step is

vulnerable to a DoS attack, because an adversary can send out a plethora of faked

signatures to the server for verification that will require system resources and cause

buffer overflow. Zhiguo et al [12] proposed a PKC (Public Key Cryptosystem) based

protocol which was combined with [8]’s key exchange protocol JFKi. The user identity

protection has been added but this protocol is susceptible to DoS attacks on the first

message flow that the nonce generated by the client and sent in clear text to the server.

This message is not authenticated and could be sent by attackers to perform DoS attacks.

DoS detection techniques has been brought up to reduce the threats [15][16]. These

techniques and testing results provides insight into our ability to successfully identify

DoS flooding attacks. But none completely solve the detection problem.

The client puzzle is another technique that users are required to do a considerable

amount of computation before consuming resources. The first client puzzle was used to

defend against connection depletion attacks proposed by Juels and Brainard [6]. A user

must solve the puzzle correctly in order to get service from a responder. Client puzzles

were also proposed to similarly protect authentication protocols [7], which combined the

stateless authentication protocols [19][20] with a client puzzle to address a DoS attack.

In general, cryptographic puzzles have been employed for key agreement [21] and

address the problem of junk e-mail [22]. The only implementation of a client puzzle in

the context of transport layer security (TLS) was proposed by Dean [23]. Wang and

 8

Reiter [24] proposed a puzzle auction that allows the client to determine the difficulty

(bid) of the puzzle using their implementation within transmission control protocol (TCP).

While the deployment of client puzzles in attack scenarios seems promising, but

most proposed systems of this type have one basic shortcomings found by Waters [25].

The client puzzle mechanism itself can become the target of a denial-of-service attack. In

most systems either the puzzle creation or verification operations (or both) require the

server to perform a cryptographic hash computation [7][26][27]. This opens the

possibility that the puzzle verification mechanism itself will be the target of a denial of

service attack, in which an attacker floods the server with bogus puzzle solutions that the

server has to process.

Secure key exchange is also a critical issue in authentication scheme. Internet

Key Exchange (IKE) is an Internet Protocol Security (IPSec) standard protocol used for

establishing and maintaining security associations, and to ensure security for virtual

private network (VPN) using secure key exchange [28]. Several works [8], [29], [30],

[31], and [32] have reported that IKE is vulnerable to DoS attacks. The user identity can

not be protected in IKE [8] and IKE is very vulnerable to untraceable DoS attacks against

both computational and memory resources [32]. IKEv2 [33] was then proposed to

replace the original IKE. Some work has been done towards addressing, or at least

examining, the DoS problems found in IKE [9][34]. Other protocol design that defend

against DoS attacks include stateless cookies[36], forcing clients to store server state,

rearranging the order of computations in a protocol [37], and the use of a formal method

framework for analyzing the properties of protocols with respect to DoS attacks [38].

 9

Any protocol for a server commits expensive computations or to store the

protocol state prior to the client authentication is vulnerable to DoS attacks [7][19]. The

advantages of being stateless, at least in the beginning of a protocol run, were recognized

in the security protocol context in [19] and [20].

 10

CHAPTER THREE

PROTOCOLS DESIGN

A new protocol, called the identity-based, privacy-protected access control filter

(IPACF), has been proposed to defend DoS/DDoS attacks. The design of the proposed

protocol is described as follows.

3.1 The Basic Concept of the Filter

The IP address-based filter will not prevent DDoS attacks from coming into a

network with a valid source IP address. The IP address-based filter contains a fixed set

of IP addresses and cannot change dynamically to protect the IP address from being

sniffed and spoofed by an adversary. An adversary can spoof source IP addresses from

legitimate users or a subnet’s valid address range in order to pass through the IP address-

based filter and launch a DoS attack. Using an identity-based filter, all users have their

unique filter values and pseudo ID generated from their master pre-shared secret keys.

The master key is protected by two-factor feature keys. The user’s ID and password are

memorized by the user, and nonce and timestamp are generated by the user’s system [4].

Only legitimate users or responders have exact secrets to generate their filter values so

that subsequent frames can pass through the access control filter. Otherwise, the

prohibited frames will be rejected by the filter. To avoid sniffing and spoofing, the filter

 11

values cannot be reused, and thus the IPACF filter value should be changed dynamically.

For the IPACF protocol, only the received frames that match the users’ or responders’

filter values will be allowed to use system resources as shown in Figure 1. The system

performs computations only after the frames have passed the privacy protected access

control filter, F(t, Pid(t)), which is a time-dependent function that changes every frame

(Pid(t) is the pseudo ID). If received frames do not match the users’ or responders’ filter

value, they will be rejected by the privacy protected access control filter. At this point,

the computer commits only the resources necessary to compare filter values. Similar

access control techniques are being used in packet filters, routers and firewalls and are

well-known for their processing speed [4].

Figure 1: The Concept of Identity-Based Privacy-Protected Access Control Filter:
if F(t, Pid(t)) matches the filter value, then E[Data] (encrypted data) is allowed to use
system resources for decryption.

 12

3.2 Design principle

With the current designed protocol, it is clear that Wang’s IDF [4] has several

weaknesses that are related to the server system resources. The following design

principles were improved in the thesis.

• Efficient two frames used in the session mutual authentication stage (SMAS)

• Stateless protocol for both the user and the responder in SMAS

• User privacy is protected

• Capable of being implemented on a firewall, router, access point and

authentication server

• Prevention of resource (memory and CPU) exhausting DoS and DDoS attacks,

session hijacking, dictionary attacks, and men-in-the-middle attacks on both sides

The hash based message authentication codes (HMAC) is used here because the

computational cost for a keyed hash function is less than that for Public Key

Infrastructure (PKI) based or signature-based schemes, both of which are more

vulnerable to DoS attacks [7]. Confidentiality for packet transmissions can be provided

using techniques that utilize symmetric key cryptography. Encrypting the message with

the secret keys shared among the users and the responders. The Advanced Encryption

Standard (AES) with HMAC [39] is used to guarantee the confidentiality and integrity of

data during communication.

 13

P
C

M
C

IA

56K

INSERT THIS END

PUid(0), FR(0), E[NU ,TNU]

User Responder

1.Check filter FR(0)
2.Generate user's

filter value FU(0)
3.Update filter value

FR(0) to FR(1)

 Access filters

1.Check filter FU(0)
2.Generate responder's

filter value FR(1)
3.Update filter value

FU(0) to FU(1)

 Access filters

1.Generate FR(0)
2.Generate NU, TUN

 3.Generate user's
filter value FU(0)

1.Check filter FR(1)
2.Generate user's

filter value FU(1)
3.Update filter value

FR(1) to FR(2)

1.Check filter FU(1)
2.Generate responder's

filter value FR(2)
3.Update filter value

FU(1) to FU(2)

PRid(0), FU(0), E[Data, PUid(1)]

PUid(1), FR(1), E[Data, PRid(1)]

PRid(1), FU(1), E[Data, PUid(2)]

Figure 2: Identity-Based Privacy-Protected Access Filter (IPACF) Overview

The Identity-Based Privacy-Protected Access Filter is derived from a user’s and

responder’s pre-shared secrets. Each user has a unique filter associated with a particular

responder. It is a time-dependent filter that changes with every frame. Only legitimate

users and responders can update their filters and confirm corresponding filter values, as

illustrated in Figure 2. The ID and password for user and responder are protected by

human memory, never stored on a device, or sent in traffic. These precautions

theoretically guarantee IDs and passwords will not be lost. When a responder receives

the first frame from a user, the IPACF can determine the user ID by comparing the

received filter value to the responder’s filter table using the pseudo ID. Then the

 14

Identity-Based Privacy-Protected Access Control Filter is triggered for a particular user.

This time-dependent scheme involves both the user’s secret and a timestamp sent from

the user. The anonymity of the user’s ID protects the user’s privacy in wired/wireless

networks.

 15

CHAPTER FOUR

THE IDENTITY-BASED PRIVACY-PROTECTED ACCESS

CONTROL FILTER (IPACF) PROTOCOL

The Identity-Based Privacy-Protected Access Control Filter (IPACF) protocol

consists of three stages. The first stage is the initial configuration stage (ICS). During

this stage, the master secret keys of a user and responder are generated and exchanged via

a secure channel as pre-shared secrets. Using the pre-shared secrets, the initial access

control filter values for all legitimate users will be generated and stored on a responder

filter table for authenticating legitimate users. The second stage is the session mutual

authentication stage (SMAS) used by users and responders to identify each other. The

third stage is the dynamic data communication stage (DDCS). The computational for all

stages should be designed with the stateless requirement in order to prevent DoS/DDoS

attacks. To keep the notations simple and easy to understand, the discussions of the

IPACF protocol are based on one user with a responder.

4.1 Notations for Identity-Based Privacy-Protected Access Control Filter

PR

TR

NRi

A responder’s secret key memorized by an administrator

A timestamp generated by responder’s system when an administrator assigns the PR

An initial nonce generated by responder’s system when PR is assigned

 16

KR

Uid

Uid

PUid

PRid

Pu

Tu

Nui

KU

Ni

TKU

NR

TNR

fR(t)

fU(t)

FR(t)

FU(t)

MACR(t)

MACU(t)

SRi

SUi

SR(t)

Master secret key of a responder generated by a keyed hash function during the ICS

User’s identifier

Responder’s identifier

Pesudo identifier for user

Pesudo identifier for responder

User password, typed in for each login session and not stored in the device

A timestamp generated by a user’s system when a user is assigned a password

An initial nonce generated by a user’s system when Pu is assigned

Master secret key of a user generated by a keyed hash function during the initial stage

A random number is chosen by a user. This number remains the same during the

user’s login session. It will be updated automatically after a new KU is generated and

used for the next login session.

Timestamp when KU is generated

A nonce is generated by a responder. It is encrypted using the AES when sent to

challenge a user during session mutual authentication stage.

Timestamp when a responder’s nonce NR is generated

A 128-bit seed from a responder’s truncated function used to update filter FR(t)

A 128-bit seed from a user’s truncated function used to update filter FU(t)

Access filter stored in a responder’s filter table to filter the frames from users

Access filter stored in a user’s filter table to filter the frames from a responder

The output of HMAC-SHA-512, which is used to generate the filter for a responder

The output of HMAC-SHA-512, which is used to generate the filter for a user

A responder’s initial seed during the initial configuration stage

A user’s initial seed during the initial configuration stage

A responder’s seed used to update the frame key KRF(t)

 17

SU(t)

NU

TNU

KRF(t)

K’RF(t)

KUF(t)

K’UF(t)

MACRF(t)

MACUF(t)

TRF(t)

TUF(t)

NINI

TINI

KR(j)

KU(j)

h

A user’s seed used to update the frame key KUS(t)

A nonce is generated by a user. It is encrypted using the AES when sent to challenge a

server during the mutual authentication stage.

Timestamp when a user’s nonce NU is generated

A responder’s frame key for AES encryption

A responder’s HMAC key for integrity check

A user’s frame key for AES encryption

A user’s HMAC key for integrity check

A 256-bit MAC that contains KRF(t) and K’RF(t) that are used for responder as AES

encryption key and HMAC key, respectively

A 256-bit MAC that contains KUF(t) and K’UF(t) that are used for user as AES

encryption key and HMAC key, respectively

A timestamp generated by a responder when updating its filter value

A timestamp generated by a user when updating its filter value

A nonce is generated by a responder. It is exchanged in initial configuration stage via

secured channel for generating the first hash value of mutual authentication stage.

A timestamp generated by a responder when nonce NINI is generated

Updated master secret key of a user for session j generated by a hash function for the

next session

Updated master secret key of a responder for session j generated by a hash function

for the next session

HMAC operation.

 18

4.2 Initial Configuration Stage

4.2.1 Master keys and pre-shared secrets generation

KU, KR, and Ni, are the pre-shared secrets of a user and a responder and are stored

on both systems. The pre-shared secrets KU, KR, and Ni could be delivered between a

user and responder via a secure channel or could be used by a trusted third party to secure

the delivery. The actual techniques are beyond the scope of this paper. KU and KR are the

master secret keys of a user (initiator) and responder, respectively.

KU = h ()uiN [Uid || Pu || Tu || Nui
] ()1

KR = h ()RiN [Rid || PR || TR || NRi
] ()2

Uid and Pu are the user’s ID and password, respectively, required for each login

session, and should not be stored on any system. Nui and Tu are generated automatically

by the user’s system when a user types in the Uid and Pu during the system ICS. The user

system generates a different nonce Nui and timestamp Tu to ensure a user’s master key KU

is refreshed. Nui is only known by the user’s system and will be the input key for the

HMAC function in equation (1). KU is a user’s master key generated by the HMAC

function and must be stored in both the user’s and responder’s system. The Rid and PR are

the responder’s ID and password, respectively, and assigned by a system administrator

during the ICS. A responder’s initial nonce NRi and timestamp TR are known only by the

responder’s system. They are generated automatically by a system when the system

administrator assigns the PR and Rid for a responder. NRi is an input key for the HMAC

function and used to generate the responder’s master key KR as shown in equation (2).

Both the user’s password Pu and the responder’s password PR are dictionary attack

resistant because they are protected by the nonce and timestamp that are known only by

 19

the systems. The user or responder knows half (Uid, Pu and Rid, PR) of the master secret

and their systems know the other half (Nui, Tu and NRi, TR). This mechanism is called a

two-factor feature and widely used to protect the real user’s password and ID from

dictionary attacks [4].

Ni is a random number that must be chosen by a user during the ICS and stored in

both the user’s and responder’s systems; this number remains constant during the same

session for the user. After the ICS, Ni can be updated locally by equation (3) while the

old Ni will be used in a HMAC function to generate a new Ni for a new login session [4].

Ni ←h ()iu NK ⊕ [Uid || KU || TKU || Ni
] ()3

The nonce NINI and the time stamp TINI will be generated by the responder while a

user and responder are exchanging the pre-shared secrets KR, KU, and Ni via a secured

channel. NINI and TINI are used in ICS for a user and responder to generate the initial

access control filter value FR(0). The pseudo identifier PUid and PRid are assigned by the

user and responder respectively to hide their real identities. PUid and PRid will be changed

for each frame to ensure the privacy protection in IPACF protocol. During the ICS, [Rid,

Ni, KU, KR, NINI, TINII, PUid, PRid] is stored on the user’s system and [Uid, Ni, KU, KR, NINI,

TINII, PUid, PRid] is stored in the responder’s system as pre-shared secrets, which are used

to generate the filter value and frame key.

 20

4.2.2 Initial Filter Setup in a Responder as a Filter Table

After a user and responder have saved the pre-shared secrets in their systems, the

responder must generate a filter table for all of its legitimate users. The user will also be

able to create the initial access control filter value using the equations (3), (4), and (5).

To create the initial filter table, the random nonce NINI and timestamp TINI will be used.

To create the responder’s access control filter, two calculation steps are required as

outlined in equations (4) and (5).

h ()Ri KN ⊕ [Ni || NINI || TINI
] ≡ SRi ()4

KR is the master key of the responder and is a group key known by all of its

legitimate users in IDF protocol proposed by Wang [4]; however, KR is a pairwise key

shard by a user and a responder in this thesis. Then the input key for the HMAC function

is formed by KR XOR with Ni, which is chosen by a particular user. Different users have

different Ni and thus different SRi. SRi is a 512-bit output of the HMAC function as

shown in equation (4). It is a responder’s initial seed and used only at the ICS. This seed

SRi is used as an input key for the HMAC function in equation (5). The purpose of the

formula in equation (4) is to generate different seeds for a particular user, given the user’s

Ni, and use Ni, NINI, and TINI to avoid reusing the seed. Because the input keys for the

HMAC function are never reused, the output of the HMAC function in equation (5) is

made very secure by avoiding dictionary attacks [18][35].

h ()
[]INIi

Ri

NN
S
⊕ [Uid || KU || Ni

 || NINI || TINI] ≡ MACR(0) ()5

 21

[Ni ⊕ NINI] is the number of rounds used to conduct the hash function. In

consideration of performance, the number of rounds is recommended to be truncated to

10 bit, which means that the number of rounds is limited to between 0 and 1023. MACR(t)

is a 512-bit keyed hash value and is truncated in three parts, including the 128 most

significant bits fR(t) and the 128 least significant bits SR(t), as shown in Figure 3. t is the

index of a time-dependent function, and t=0 is the responder’s first seed used to generate

the first access control filter and frame key [4].

Figure 3: The Responder’s Truncated Function

fR(0) is a seed used to generate a 160-bit responder’s access control filter FR(0)

using equation (6). The length of the HMAC function used to generate the access control

filter is recommended to be a 160-bit HMAC-SHA-1, but different applications may vary.

FR(0) is the initial access control filter value stored in a responder’s device. The first

frame sent from the user must match this value so that subsequent parts of this frame can

be admitted into the responder’s system. SR(0), which is the 128 least significant bits of

MACR(0), is a seed used to update the frame key and then generate the new access filter

for the next frame.

 22

h ()RiS [KU || Ni
 || MACR(0) || TINI || fR(0)] ≡ FR(0) ()6

The responder can then create a table and store the identity-based filters and all the

necessary key information as shown in Table 1.

PUid Flag Uid PRid Access
Filter

Hash Value Frame
Key

Packet
counter

Idle
Time

 FR(0) MACR(0)

Table 1: Responder’s Dynamic Access Filter Table

Each row specifies the information for a particular user. The packet counter will

accumulate all the received frames that pass the access control filter for a user’s login

session. The packet counter will repeat the process for each new login session. This

feature aids the responder in monitoring any abnormal traffic from the user and thus helps

prevent a DDoS attack. The idle time is represented by the time that the packet counter

does not increase while the user remains connected. The responder should ask the user to

re-authenticate if the idle time is too long. On the other hand, the users can generate the

initial access control filter value FR(0) using equations (4), (5), and (6) that introduce a

complete stateless configuration.

 In Wang’s IDF protocol [4], the user side was not completely stateless in the

mutual authentication stage. The user’s access control filter will be created after the user

receives the beacon from the responder and can derive the responder’s nonce NR, and

timestamp TNR, by using the responder’s pre-shared master key KR. The IDF protocol

requires one more frame in comparison to IPACF in the mutual authentication stage for

the responder to broadcast the beacon to the legitimate users who can decrypt the beacon

 23

encrypted with AES encryption. Nonce NR and timestamp TNR will be the contents of the

beacon. NR and TNR will be the secrets for the user to generate filter value FR(0).

The responder will pre-generate the filter value ahead of time in Wang’s IDF

protocol [4]. NR and TNR are broadcast in the beacon by the responder; a user receives

and generates the same filter value as the responder. But there is one problem: what

happens if the users do not log in during this period of time? The responder will have to

regenerate FR(0) for every user if NR and TNR are changed, and this is a computationally

expensive process. It is desirable that a protocol does not require every user to calculate

FR(0) periodically. Using equations (4), (5), and (6) will make the IPACF protocol for

both the user and the responder stateless after ICS. In addition, IPACF protocol has one

less frame to complete in SMAS in comparison to IDF since there is no need of the

beacon frame. Because of the complete stateless configuration in IPACF, the user

protocol becomes stateless in the SMAS, the user will not have to depend on the beacon

broadcasted by the responder.

At this point, the ICS is completed. The pre-shared secrets and initial filter value

FR(0) are stored in both user and responder, as well as the information for all of its

legitimate users, in a filter table.

4.2.3 User Login and Master Key Renew

Session Login

KU, KR and Ni, are the pre-shared secrets stored on a user’s system. When a user

wants to log in, the user must type in the user ID and password. The user’s system has

stored Nui and Tu from the initial setup; therefore, the user’s system can generate a KU

 24

based upon the password and ID that the user entered using equation (1). If this KU

matches the pre-stored KU, then the system identifies that the user as a legitimate one. If

this KU does not match the pre-stored KU, after a reasonable number of trials, the user’s

system should be locked. In this case, no filter values will be generated for the particular

user to prevent an on-line password guessing attack.

Master Key Renewal

The KU and Ni should be refreshed for every login session. The Ni will be

updated using equation (3). During each login session, the pre-stored KU is matched to

ensure that he is a legitimate user, and the system will generate a new nonce and

timestamp. Given the new nonce and timestamp, the system performs a calculation using

equation (7) to obtain the new KU(j) for session j. The new KU(j) and Ni for the next login

session will be encrypted using the AES and then sent to the responder during

communication.

Wang’s IDF [4] on a fixed master key KR means that the responder must uses the

same key to encrypt the packet. All users must use the same master key KR to decrypt

packets. Since all users have the same KR, they not only have the ability to encrypt

packets, but also have the capability to pretend to be a responder, and perform malicious

actions. Therefore, KR does not provide the essential security. Furthermore, the master

key KR will not be updated unless ICS is performed: this problematic feature is the most

serious drawback in Wang’s IDF protocol. If ICS is necessary to perform updating

master key KR, all legitimate users will have to perform ICS at the same time, which

means all legitimate users need to be synchronized to change KR while ICS is performed.

A legitimate user will not be able to update the master key KR unless the user creates a

 25

secured channel and updates the master key KR with the responder individually;

otherwise, the legitimate user will not be able to decrypt any beacon sent by the

responder in the mutual authentication stage.

An entire group of users should not be responsible for updating master key KR(j).

Legitimate users should have the flexibility of performing ICS, whenever necessary. On

the other hand, having a pairwise master key KR(j) for each legitimate user will avoid

malicious actions from other legitimate users. IPACF protocol will be able to set up

pairwise master keys with every legitimate user, and the master secret keys will be

exchanged between the user and the responder in every session.

KU(j+1) = h ()uiN [Uid || Pu || Nu || TNU || KU(j)] j = 1, 2, 3… ()7

KR(j+1) = h ()RiN [Rid || PR || NR || TNR || KR(j)] j = 1, 2, 3… ()8

In equations (7) and (8), KU, KR, and Ni are the pre-shared secrets of a user and a

responder and are stored on both systems and j is the index of session number. Uid and Pu

are the user’s ID and password, respectively, required for each login session and should

not be stored on any system. Nu, TNU, NR, and TNR are nonce and time stamp generated

for each session master key update and stored in both the user’s and the responder’s

systems. KR(j) and KU(j) are set for each session during which a user logs in and logs out.

For each login session, the system generates a different nonce Nu, NR and timestamp TNU,

TNR automatically to ensure that both a user’s master key KU and a responder’s master key

KR are not reused before. KR and KU are used as input key for the HMAC function in

 26

equation (7) and (8). The purpose of master key renewal is to provide authenticated

keying material in a protected manner.

Each user will have a pairwise master key KR to avoid malicious actions from

other legitimate users and the master key KR(j) will be exchanged between the user, and

the responder in every session. We introduced the secured master secret key exchange

(SMSKE) in ICS. The idea of SMSKE is to negotiate and provide authenticated keying

material for security associations in a protected manner. SMSKE will be performed in

the last frame of the SMAS and the first frame of the DDCS. After the secured

authentication has been initiated, the user and the responder have identified each other; a

secured channel is created after SMAS using Advanced Encryption Standard (AES)

encryption and HMAC message authentication code for integrity check. The SMSKE

will not only decrease the communication cost using a secured channel, but also

improved the security of Wang’s IDF protocol [4] by using dynamic master key KR(j) and

KU(j) for each session while IDF must used a fixed master secret key KR.

The IPACF protocol is based on the legitimate user’s pre-shared secret and not

their IP address in order to avoid an IP spoofing attack. The IPACF filter is not a fixed

value filter. The filter values vary with every frame by both the user and the responder to

prevent sniffing and replay attacks. Perform SMSKE will make the result of secure

master key update on both user and responder after every single success SMAS. All the

legitimate users will have a unique responder master key KR(j) that will increase the

randomness of both master keys for the future SMAS.

 27

4.3 Session Mutual Authentication Stage (SMAS)

Following the initial configuration stage, two processes will be accomplished by a

user before the user initiates the SMAS. First, both the responder and the user will be

able to generate the same FR(0) using equations (4), (5), and (6). FR(0) is a 160-bit

responder’s filter value and will be sent to the responder to check its access filter after the

second step. Second, before a user initiates SMAS, a user will generate a user’s nonce

NU and a timestamp TNU for that nonce to authenticate the responder and also create the

user’s initial dynamic access filter. To create this filter, two rounds of calculation are

required as outlined in equations (9) and (10).

h ()iU NK ⊕ [Ni || NINI || NU || TNU
] ≡ SUi ()9

h ()
[]Ui

Ui

NN
S
⊕ [Uid || KU || Ni

 || NINI || NU || TNU] ≡ MACU(0) ()10

The message authentication code will be generated with HMAC-SHA1. SHA1 is

considered cryptographically stronger than MD5 even it takes more CPU cycles to

compute. HMAC-SHA1 is also recommended in IPSec where the slightly superior

security of SHA1 over MD5 is important [17]. SUi is a 512-bit output of the HMAC

function in equation (9) and will be used as an input key for the HMAC function in

equation (10). It is a user’s initial seed and is only used in the initial configuration stage.

This seed will be changed for every login session by the user because of varying

properties of KU, Ni, NU, and TNU. The primary aim of the formula in equation (9) is to

generate different seeds for every login session to avoid reuse of the filter values.

 28

[Ni⊕NU] is the number of rounds employed in conducting the hash function, and

from a performance perspective, should be truncated to 10 bits. Therefore, the number of

rounds is limited to between 0 and 1023. MACU(t) is a 512-bit keyed hash value truncated

in three parts, including the 128 most significant bits fU(t) and the 128 least significant bits

SU(t), as shown in Figure 5. t is an index for a time-dependent function, and t=0 is the

user’s first seed that is used to generate the first access control filter and frame key [4].

Figure 4: The User’s Truncated Function

fU(0) is a seed used to generate a 160-bit user’s access control filter FU(0), as

illustrated in equation (11). FU(0) is a user’s first access control filter value stored on the

user’s system and is used for checking the frames sent from a responder. If the frame

does not match the filter, it will be blocked by the user’s system. SU(0) is a user’s first

seed used to update the frame key and generates the new access filter for the next frame.

Once the user generates FU(0), an access filter table will be created as shown in Table 2, to

store the filter value and other information.

h ()UiS [KU || NU
 || MACU(0) || TNU || TINI || fU(0)] ≡ FU(0) ()11

 29

PRid Flag Rid PUid Access
Filter

Hash Value Frame
Key

Packet
counter

Idle
Time

 FU(0) MACU(0)

Table 2: User’s Dynamic Access Filter Table

P
C

M
C

IA

56K

INSERT THIS END

User Responder

1.Check filter FR(0)
2.Figure out FU(0)
3.Update the filter

 to FR(1)

 Access filters

Check filter

 Access filters

1.Figure out FR(0) , and
generate NU , TNU

2.Generate the
 User's filter FU(0)

Session Mutual Authentication Stage

Frame 1

Frame 2

PUid(0), FR(0), EAES(KU)[NU, TNU]

PRid(0), FU(0), EAES(KRF(0))[Data, TRF(1), KR(j), PUid(1)]

Figure 5: Session Mutual Authentication Stage Overview

Frame 1 U → R : PUid(0), FR(0), EAES(KU)[NU, TNU]

A legitimate user will be able to perform SMAS as the user desires. After the

responder receives Frame 1, the responder will perform three steps: First, the responder

will check FR(0) to see if FR(0) matches one of the filter values in the filter value table. If

there is a match, the responder will know the user’s ID and KU in accordance with the

received filter value. The responder will also identify the user as legitimate and then pass

the encrypted data to the system for decryption to obtain NU and TNU. If Frame 1

matches the value in the responder’s filter table, the responder has completed half of the

SMAS for identifying a legitimate user. If the received filter value FR(0) does not match

 30

the responder’s filter values, the responder should block this frame and stop the session.

Second, equations (9), (10), and (11) are used to derive SUi, MACU(0), fU(0), SU(0), and FU(0).

Third, generate a timestamp TRF(1), and update the responder’s access filter table for the

next frame using the previous secret MACR(0) to generate a new MACR(1) from equation

(12). fR(1) and SR(1) will be truncated from MACR(1). fR(1) is a new seed that is used to

update the responder’s access control filter from FR(0) to FR(1) using equation (14). SR(1)

is a new seed that is used to update the responder’s frame key generation function KRF(t)

for the next frame [4].

h ())0(RFMAC [KR || KU || Ni
 || NINI || MACR(0) || TRF(1)] ≡ MACR(1) ()12

MACRF(t) is the generation function for the responder’s frame key. When t=0, as

shown in equation (13), MACRF(0) is the secret used by the responder to generate MACR(1)

to update the access filter from FR(0) to FR(1) for the next frame using equations (12) and

(14). KRF(0) and K’RF(0) will be truncated from MACRF(0) with 128 most significant bits

and 128 least significant bits, respectively. KRF(0) is a frame key used by the AES to

encrypt the data. K’RF(0) is a new key used in HMAC for data integrity. The encrypted

data, with filter value FU(0) , will be sent to the user after the responder updates the filter

table.

h ())(jRK [SRi || SR(0) || TINI
 || NINI || KU || KR] ≡ MACRF(0) ()13

FR(1) is a new access control filter value, which is stored in the responder system and

used for checking the next frame that is sent from the user.

 31

h ())0(RFMAC [KU || Ni
 || MACR(1) || TRF(1) || fR(1)] ≡ FR(1) ()14

Frame 2 R → U : PRid(0), FU(0), EAES(KRF(0)) [Data, TRF(1), KR(j), PUid(1)]

After the responder has authenticated the user in Frame 1, the master secret key

for the next session, KR(j) will be sent to the user in this frame. When the user receives

Frame 2, three steps are performed: First, check FU(0) to see if it matches the filter value.

If there is a match, most likely this frame was sent from the responder, and then the

encrypted data, TRF(1) and KR(j) can be decrypted using the key KRF(0). Since the user

knows the same secrets SRi, SR(0), TINI, KU, and KR as the responder, the user can perform

the same calculation to derive secret MACRF(0) by using equation (13). KRF(0) (128-bit

AES key) and K’RF(0) (128-bit HMAC key) can be truncated from MACRF(0) and the user

is able to decrypt the data using frame key KRF(0) to obtain the timestamp TRF(1) and KR(j).

Second, use this secret MACRF(0) and the timestamp TRF(1) to derive MACR(1), fR(1), SR(1)

and FR(1) by using equations (12) and (14). FR(1) is a filter value that will be sent to the

responder for checking. SR(1) is a seed used to update the responder’s secret from

MACRF(0) to MACRF(1). The user must also store this seed to update and synchronize the

responder’s secret in the future. In addition, the user must update the KR; original KR(j-1)

will be replaced by KR(j). Third, the user will update the access filter from FU(0) to FU(1) to

check the next frame. Two rounds are required to update the access filter:

First Round: Generate the user’s frame key as follows:

h ())(jUK [SUi || SU(0) || Ni || NINI || TNU] ≡ MACUF(0) ()15

 32

MACUF(t) is the generation function for the user’s frame key. When t = 0, as

shown in equation (15), MACUF(0) is the secret employed by the user to generate MACU(1)

to update the access filter from FU(0) to FU(1) for the next frame using equations (16) and

(17). KUF(0) and K’UF(0) will be truncated from MACUF(0) with 128 most significant bits

and 128 least significant bits, respectively. KUF(0) is a frame key used by the AES to

encrypt the data. K’UF(0) is a key used in HMAC for data integrity. The encrypted data,

with filter value FR(1) , will be sent to the responder after the user updates the filter table.

Second Round: Calculate the new MAC value and update the access filter as follows:

 h ())0(UFMAC [KU || Ni
 || NINI || MACU(0) || TUF(1)] ≡ MACU(1) ()16

 fU(1) and SU(1) will be truncated from the MACU(1) in the same manner. fU(1) is a

seed used to generate a 160-bit user’s access control filter FU(1) using equation (17). FU(1)

is a new user’s access filter and is stored in the user’s access filter table for checking the

next frame. SU(1) is a new seed that is used to update the user’s secret MACUF(t), from

MACUF(0) to MACUF(1).

h ())0(UFMAC [KU || MACU(0) || TUF(1) || fU(1)] ≡ FU(1) ()17

After the user identifies the responder, the SMAS for the IPACF protocol is

completed. The user will start Dynamic Data Communication Stage (DDCS).

 33

4.4 Dynamic Data Communication Stage (DDCS)

In the DDCS, the filter value is changed with every frame. Because the responder

must process a high volume of traffic, the cost of computation at this stage should be less

than other stages. This stage is called the dynamic data communication stage because at

this stage, the user and the responder need not generate the nonce to identify each other.

The amount of system computation is also less than that required in the SMAS because

fewer rounds of the hash function are performed for every frame. To enhance security,

however, a time-dependent scheme is used at this point to refresh the frame key and

update the filter for both the user and the responder. The master key will be also updated

in the first frame of DDCS.

In the DDCS, both the access control filter values of the responder and the user

are changed dynamically in every frame. The advantage of this approach is that an

adversary is unable to predict the dynamic access filter value for the next frame. Only

the legitimate user and responder that can match access filter values are allowed to use

system resources. During the DDCS, the user and responder identify each other

continuously to match the access filter. This mechanism prevents both the middleman

attack and session-hijack because an adversary is unable to guess the filter values and

frame keys. If a frame is lost in this stage, a re-transmission by UDP will maintain the

connectivity. If a connectionless link is being used, then the SMAS must be carried out

again to maintain high security for the re-established link.

 34

PC
M

C
IA

56K

INSERT THIS END

PUid(1), FR(1), EAES(KUF(0))[Data, TUF(1), KU(j), PRid(1)]

PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)]

 PUid(2), FR(2), EAES(KUF(1))[Data, TUF(2), PRid(2)]

Figure 6: The Dynamic Data Communication Stage

In the DDCS, three steps are required on both sides for responders and users.

First, check the access filter when a frame is received. Second, determine the filter

values on the other side. Third, update the access control filter for the next frame. For

example, the following Frame 3 and 4, are the first and second frames for the DDCS as

shown in Figure 6.

Frame 3 U → R : PUid(1), FR(1), EAES(KUF(0))[Data, TUF(1), KU(j), PRid(1)]

In the first frame of DDCS (Frame 3), the responder will perform three steps:

First verify the FR(1) from the user based on the pseudo ID PUid(1). If there is a match, the

 35

responder will then decrypt data, TUF(1), and KU(j). Since the responder knows the same

secrets SUi, SU(0), TNU, Ni, and NINI as the user, the responder can perform the same

calculation with the equation (15), which to derive secret MACUF(0). Then, the responder

is able to get the frame key KUF(0) and decrypts the data to obtain the timestamp TUF(1) and

KU(j). Second, using this secret MACUF(0) and the timestamp TUF(1) to derive MACU(1),

fU(1), SU(1), and FU(1). The responder must also update the KU(j), original KU(j-1) will be

replaced by KU(j) to become the new KU. Third, the responder will generate a timestamp

TRF(2) and update the responder’s access control filter from FR(1) to FR(2) and pseudo ID

from PUid(1) to PUid(2), check the next frame sent from the user using equations (18), (19)

and (20). Two rounds are required to update the access control filter:

First Round: the new responder’s frame key generation

h ())(jRK [SR(0) || SR(1) || KR || KU || TRF(1)] ≡ MACRF(1) ()18

MACRF(1) is a new responder’s secret which replaces MACRF(0). MACRF(1) is used

by the responder to generate MACR(2) to update the access control filter FR(1) to FR(2) .

This secret will be truncated into 128-bit KRF(1) and 128-bit K’RF(1). KRF(1) is used as a

new frame key for AES to encrypt the data when the frame is sent to the user; K’RF(1) is a

new key used in HMAC for data integrity.

Second Round: Calculate the new MAC value and update the access filter

h ())1(RFMAC [KR || KU || Ni
 || NR || MACR(1) || TRF(2)] ≡ MACR(2) ()19

 36

 fR(2) and SR(2) will be truncated from MACR(2) using the method as shown in

Figure 3. fR(2) is a new seed used to update the responder’s access control filter from FR(1)

to FR(2), as illustrated in equation (20).

h ())1(RFMAC [KU || Ni
 || MACR(2) || TRF(2) || fR(2)] ≡ FR(2) ()20

FR(2) is a new responder’s access filter and is stored in the responder’s access filter

table for filtering the next frame. SR(2) is a new seed that is used to update the responder’s

secret MACRF(1) to MACRF(2). When the responder receives further frames from the user,

the responder will repeat the same three steps outlined for Frame 3.

Frame 4 R → U : PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)]

After the user receives Frame 4 from the responder, the user then performs these

three steps: First, checks FU(1) to see if it matches the access control filter value based on

pseudo ID PRid(1). If there is a match, the user can verify that this frame was sent from the

responder, and then pass the encrypted frame to the system for decryption using the

frame key KRF(1). Since the user knows the same secrets SR(0), SR(1), KU, KR, and TRF(1) as

the responder, the user can perform the same calculation with the equation (18) as the

responder to derive MACRF(1). Then, the user is able to get the frame key KRF(1) to decrypt

the encryption data and the timestamp TRF(2). Second, use this secret MACRF(1) and

timestamp TRF(2) to perform the same calculation with equations (19) and (20) as the

responder to derive MACR(2), fR(2), SR(2), and FR(2). FR(2) is a filter value that will be sent

to the responder for checking. SR(2) is a seed used to update the responder’s secret from

MACRF(1) to MACRF(2). Third, the user will generate a timestamp TUF(2) and update the

 37

user’s access control filter from FU(1) to FU(2) and pseudo ID from PRid(1) to PRid(2) to check

the next frame sent from the responder using equations (21), (22) and (23). Two rounds

are required to update the access control filter:

First Round: the new responder’s frame key generation

h ())(jUK [SU(0) || SU(1) || KR || KU || TUF(1)] ≡ MACUF(1) ()21

MACUF(1) is a new responder’s secret which replaces MACUF(0). MACUF(1) is used

by the responder to generate MACU(2) to update the access control filter FU(1) to FU(2).

MACUF(1) will be truncated into KUF(1) and K’UF(1). KUF(1) used as a new frame key for

AES to encrypt the data when the frame is sent to the user; K’UF(1) is a key used in HMAC

for data integrity.

Second Round: Calculate the new MAC value and update the access filter

h ())1(UFMAC [KR || KU || Ni
 || NR || MACU(1) || TUF(2)] ≡ MACU(2) ()22

 fU(2) and SU(2) will be truncated from MACU(2) using the method shown in Figure

3. fU(2) is a new seed used to update the responder’s access control filter from FU(1) to

FU(2), as illustrated in equation (23).

h ())1(UFMAC [KU || Ni
 || MACU(2) || TUF(2) || fU(2)] ≡ FU(2) ()23

FU(2) is a new responder’s access filter value and is stored in the responder’s access

filter table for filtering the next frame. SU(2) is a new seed that is used to update the

 38

responder’s secret from MACUF(1) to MACUF(2). When the user receives further frames

from the responder, the user will repeat the same three steps outlined for Frame 4.

4.5 The Summary of the Dynamic Data Communication Stage

During the DDCS, the frames sent from the user to the responder should appear as

follows:

U → R : PUid(t), FR(t) , E ())1(−tUFK [Data, TUF(t), PRid(t)] t = 2, 3…

Also, the frames sent from the responder to the user should appear as follows:

R → U : PRid(t), FU(t) , E ())1(−tRFK [Data, TRF(t), PUid(t+1)] t = 1, 2, 3…

Generally, during the DDCS, as shown in Figure 7, there are three steps needed

for both the user and the responder. The user and the responder check the filter values

when they receive the frames. If the filter value matches, then the new filter value is

calculated to address the other side’s filter. Next, they update their access control filters

for filtering the next frame. If an administrator determines that an adversary is unable to

capture and replay the filter value at the frame speed, then the filter values may be

changed for multiple frames instead of every frame. However, in a high security

environment, the filter values should be changed for every single frame.

 39

P
C

M
C

IA

56K

INSERT THIS END

)1(RF)1(UF

PUid(1), FR(1), EAES(KUF(0))[Data, TUF(1), KU(j), PRid(1)]

PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)]

 PUid(2), FR(2), EAES(KUF(1))[Data, TUF(2), PRid(2)]

 PRid(2), FU(2), EAES(KRF(2)) [Data, TRF(3), PUid(3)]

 PUid(3), FR(3), EAES(KUF(2))[Data, TUF(3), PRid(3)]

Figure 7: The Overview of Dynamic Data Communication Stage

Three steps for a user:

First step: When a legitimate user receives the frame from a responder, the user

compares it with the access control filter FU(t) to see if there is a match using pseudo ID

PRid(t). If the filter value matches the access filter value, the user will pass the encrypted

data to the system for decryption, and then the system can derive the data and timestamp

TRF(t+1). Second step: Calculate the responder’s access control filter using equations (27),

(28) and (29). fR(t+1) and SR(t+1) will be truncated from MACR(t+1) using the same

 40

technique shown in Figure 3. fR(t+1) is a new seed used for the user to calculate the

responder’s access control filter FR(t+1) using equation (29). FR(t+1) is a filter value sent

with the user’s encrypted data frame to the responder for checking so the encrypted data

will be allowed in the responder’s system. SR(t+1) is a seed that must be stored in the user

side for calculating the responder’s secret MACRF(t+1). The same method employed for

the responder with equation (27) needs to be used. This secret must also be stored on the

user side for decrypting the next encrypted frame sent from the responder. KRF(t+1) and

K’RF(t+1) will be truncated from MACRF(t+1). KRF(t+1) is the frame key used by the user to

decrypt the data and K’RF(t+1) is the key for the data integrity. Third step: Generate a

timestamp TUF(t+1), and update the user’s access filter from FU(t) to FU(t+1) and pseudo ID

PRid(t) to PRid(t+1) for checking the next frame. Two rounds are required to update the

access filter:

First Round: Frame key Generation Function

h ())(jUK [SU(t-1) || SU(t) || Ni || NINI || TUF(t)] ≡ MACUF(t) , t = 1, 2, 3… ()24

MACUF(t) is the generation function for the user’s frame key. It is an input key

used by the HMAC to generate the new MAC value MACU(t+1) in equation (25) and to

update the dynamic access control filter in equation (26). KUF(t) and K’UF(t) will be

truncated from MACUF(t). KUF(t) is the frame key used by the user to encrypt the data and

K’UF(t) is the key for the data integrity. Every frame has a unique frame key.

 41

Second Round: Calculate the New MAC value and Update the User’s Filter

h ())(tUFMAC [KU || Ni
 || NINI || MACU(t) || TUF(t+1)] ≡ MACU(t+1) , t = 1, 2, 3… ()25

fU(t+1) and SU(t+1) will be truncated from MACU(t+1) using the same technique as

shown in Figure 4. fU(t+1) is a new seed used to update the user’s access control filter

from FU(t) to FU(t+1) as illustrated in equation (26). SU(t+1) is a seed used for the frame key

generation function to update the secret from MACUF(t) to MACUF(t+1).

h ())(tUFMAC [KU || MACU(t+1) || TUF(t+1) || fU(t+1)] ≡ FU(t+1) , t = 1, 2, 3… ()26

FU(t+1) is used to replace the previous filter value FU(t) and is stored in the user’s

filter table for checking the next frame sent from the responder.

Three steps for a responder:

First step: When a responder receives the frames from a user, the responder

checks the access control filter FR(t) to see if there is a match using pseudo ID PUid(t). If

the received frame matches the access control filter value, the responder will pass the

encrypted data to the system for decryption, and then the system can derive the data and

timestamp TUF(t+1). Second step: Calculate the user’s access filter using equations (24),

(25) and (26). fU(t+1) and SU(t+1) will be truncated from MACU(t+1) using the same

technique shown in Figure 4. fU(t+1) is a new seed used by the responder to calculate the

user’s access control filter FU(t+1) using equation (26). FU(t+1) is a filter value sent with

the responder’s encrypted data frame to the user for checking. SU(t+1) is a seed that must

be stored in the responder side for calculating the user’s secret MACUF(t) via the same

 42

method employed for the user, i.e. equation (24). This secret must also be stored in the

responder side for decrypting the next encrypted frame sent from user. KUF(t) and K’UF(t)

will be truncated from MACUF(t). KUF(t) is the frame key used by the responder to decrypt

the data and K’UF(t) is the key for the data integrity. Third step: Generate a timestamp

TRF(t+1), and update the responder’s access control filter from FR(t) to FR(t+1) and pseudo ID

PUid(t) to PUid(t+1)for checking the next frame. Two rounds are needed to update the access

control filter:

First Round: Frame key Generation Function

h ())(jRK [SR(t-1) || SR(t) || KR || KU || TRF(t)] ≡ MACRF(t) , t = 1, 2, 3… ()27

MACRF(t) is the generation function for the responder’s frame key. KRF(t) and

K’RF(t) will be truncated from MACRF(t). KRF(t) is the frame key used by the responder to

encrypt the data and K’RF(t) is the key for the data integrity. Every frame has a unique

frame key. MACRF(t) is an input key for the HMAC to generate the new MAC value

MACR(t+1) in equation (28) and to update the dynamic access filter in equation (29).

Second Round: Calculate the New MAC value and Update the Responder’s Filter

h ())(tRFMAC [KR ||KU || Ni
 || NINI || MACR(t) || TRF(t+1)] ≡ MACR(t) , t = 1, 2, 3… ()28

fR(t+1) and SR(t+1) will be truncated from MACR(t+1) using the same method

illustrated in Figure 3. fR(t+1) is a new seed used to update the responder’s access control

filter from FR(t) to FR(t+1) using equation (29). SR(t+1) is a seed used by the frame key

generation function in updating the secret from MACRF(t) to MACRF(t+1).

 43

h ())(tRFK [KU || Ni
 || MACR(t+1) || TRF(t+1) || fR(t+1)] ≡ FR(t+1) , t = 1, 2, 3… ()29

FR(t+1) is used to replace the previous filter value FR(t) and is stored in the responder’s

filter table for filtering the next frame sent from the user.

4.6 Privacy Protected Filter Exchange

After the ICS, the responder will be able to generate FR(0), and the FR(0) for each

user (initiator) will be stored in the responder’s system. When the user wants to initiate

the SMAS, the user will send over the corresponding FR(0). The responder will have to

find out which user is trying to perform SMAS. The responder will compare the FR(0) (as

a function of PUid) with the filter table to see if there is a match. If there is a match, the

responder will be able to know the user’s identity and correspond with KU, Ni, NINI, and

TINI. What was described above introduces the privacy-protected feature of the IPACF

protocol. With the user identity hidden in the filter value and pseudo ID, which sent in

plaintext for the stateless entry in SMAS, no one will be able to know which user

initiated SMAS except the responder. After the user finishes SMAS, the responder will

need to update the FR(t) (t=1, 2, 3…etc.) for the DDCS and the FR(0) for the next session.

The user will need to update the FU(t) (t=1, 2, 3…etc.) for the DDCS and generate FR(0)

for the next session.

The pseudo code algorithm to store and update for both the pseudo ID and filter

value table on the responder side in ICS, SMAS, and DDCS is as follows:

 44

m; // maximum number of users

n; // number of users

PUid [m]; // pseudo ID table

FR [m]; // filter value table

// initialization

for(i = 0; i < m; i++){

 PUid [i] = i;

}

j = m // j is for available positions

// When a user registers and Do Loop will run for each user

For(k = 0; k < n-1; k++) {

random # = rand() ; // generate random #

New Pid = random # mod j; // new pseudo ID index

j = j – 1; // decrease the user size

// shift the Pseudo ID table

for(i = New Pid; i < j-1 ; i++){

 PUid [i] = PUid [i+1];

}

FR [New Pid] = initial filter value; // store initial filter value

}

 45

Do while(a user sends in a message)

// When a user sends in a message

IndexPUid; // the pseudo ID for the current user

random # = rand(); // generate random #

New Pid = random # mod j ; // new pseudo ID index

// shift the Pseudo ID table

for(i = New Pid; i < j-1 ; i++){

PUid [i] = PUid [i+1];

}

FR [New Pid] = updated filter value; // store updated filter value

PUid [j-1] = IndexPUid; // add the used pseudo ID back to table

Two tables are created for pseudo IDs and the filter values using arrays. The filter

value table uses the pseudo ID as an index to store each filter value for a specific user.

The pseudo ID table will be initialized as the index of the array with m maximum number

of users. When n new user registers, the responder generates a random number and uses

the remainder of the random number divided by j (mod j) as the new pseudo ID for each

new user. The pseudo ID that is used is removed from the table by the responder and the

j available positions for the next new user are updated by shifting up the pseudo ID table.

When a legitimate user sends in a message, the responder updates the registered

user’s pseudo ID and filter value for the next frame in SMAS and DDCS as follows. The

responder generates the new pseudo ID for the user by using the same technique in ICS,

removes the new pseudo ID from the available pseudo ID array by shifting up the pseudo

 46

ID table, updates the filter value table for the new pseudo ID, and attaches the previous

pseudo ID to the end of the pseudo ID array to ensure that the previous pseudo ID is

available for other users. The same algorithm can be used on a user side.

Figure 8 shows the flowchart of updating filter value by both responder and user

where F(t, Pid(t)) is either FR(t, PUid(t)) or FU(t, PRid(t)) . After the responder receives the

filter value F(t, Pid(t)) from a user, the responder will compare the filter value by

comparing the filter value table by using the pseudo ID. If the filter value F(t, Pid(t)) is

found, the responder will find the new pseudo ID for the filter value F(t+1, Pid(t+1)) and

insert the filter value F(t+1, Pid(t+1)), and then the filter value F(t, Pid(t)) will be deleted

from the filter value table. The user conducts similar operations as the responder.

Figure 8: Filter Value Table Update Flowchart

 47

CHAPTER FIVE

IMPLEMENTATION AND PERFORMANCE EVALUATION

5.1 Implementation

IPACF protocol has been implemented in Linux systems. The software is

implemented, compiled, and run in an IBM ThinkPad T42 with a Pentium M processor

running at 1.7 GHz, with a L2 cache of 2MB, 512 MB of main memory and connecting

with CAT 5e cable to 100BASET Ethernet switch. IPACF protocol can also be split into

a dual servers design as shown in Figure 9. With a dual server design, the server 1 can

filter out the packets for legitimate users and route the legitimate requests to Server 2.

Server 1 listens for connections from the user on specific port number, which allows only

the legitimate packets to go through to Server 2 by comparing the received filter value

based on pseudo ID. Server 1 rejects the packet right away if the filter value does not

match; otherwise, it routes the packets to Server 2. The Server 2 provides the service that

generates the new filter value, then updates the filter value and sends it back to legitimate

users through Server 1.

When Server 1 receives a packet, Server 1 compares the filter value with the filter

value table alone with the pseudo ID. If there is a match, Server 1 can obtain the hidden

user ID from the filter table and routes the packet with the user ID to Server 2; otherwise,

the packet is dropped. If the received packet is legitimate, Server 1 sends the packet to

 48

Server 2 that performs the SMAS stage. Server 2 updates the filter value for the specific

user and updates the pseudo ID to ensures that the user real identity is hidden with four

steps: first, generate the new pseudo ID, and the filter value is updated from the filter

value table; the computation costs O(1) to update. Second, Server 2 removes the original

filter value from the filter value table; the computation costs O(1) to remove. After

Server 2 completes filter value update, it sends the updated filter value with the new

pseudo ID to Server 1. Server 1 then updates the filter value table in order to maintain its

current status.

In a DoS/DDoS attack, the attacker attempts to make network services unavailable

by flooding the authentication server in the network with numerous requests. The CPU

usage eventually reaches its maximum and the server service becomes unavailable. A

dual server design can improve request response time using Server 2 to calculate filter

values and frame key so that Server 1 only performs the comparison of filter values. In

this paper, we will demonstrate the IPACF protocol with both single server and dual

server and conduct the comparison for the performance evaluation.

 49

 subnet #1
192.168.1.0

 subnet #2
131.204.128.0 Server 1 Server 2

User Attacker AttackerAttacker

IPACF Dual Server Design

192.168.1.100 192.168.1.101 192.168.1.102 192.168.1.103

NIC #2: 131.204.128.1
131.204.128.2 NIC #1: 192.168.1.1

Figure 9: Diagram with dual servers design

IPACF protocol is implemented in RedHat Linux 9.0, using gcc and g++ compiler

with Crypto++ Library. Crypto++ Library is a free C++ class library of cryptographic

schemes. Integrity uses hash function HMAC with SHA1 keyed-hash and confidentiality

uses AES are tested. In this experiment, we use 128 bits for both key size and block size

in AES.

5.2 Performance

5.2.1 Performance in authentication

The server accepts the packet from a user and verifies the filter value. If the

corresponding filter value of the user matches, the server will perform the SMAS.

During the SMAS stage, after the server verifies the filter value, the server has

authenticated the user. The server will decrypt the secrets, which are the time stamp and

nonce, sent by the user to perform the same calculation for the user to authenticate the

 50

server. The server will send the filter value, time stamp, and the master secret key KR(j)

back to the user, and allow the user to verify the filter value and update the server secret

master key from KR(j) to KR(j+1). After the user authenticates the server by comparing the

filter value sent by the server, the SMAS is completed, and the filter value FR(0) will be

updated for the DDCS and for next session login. Figure 10 and Figure 11 show the

session mutual authentication for the responder and the user, respectively. The averaged

wired authentication time for the responder in SMAS is 4.2003 millisecond (ms) while

IDF needs 181.55 ms, IPACF needs only 2.31% authentication time of IDF in wired links;

the averaged wireless (using 802.11b instead of Ethernet) authentication time for the

responder in SMAS is 9.12124 ms while IDF needs 189.37 ms, IPACF needs only 4.86%

authentication time of IDF in wireless links.

 51

Figure 10: The SMAS for the responder

 52

Figure 11: The SMAS for the user

5.2.2 Performance in DoS attacks

When a hacker performs an attack to the server, we can see the screen capture in

which packets get rejected by the server after the verification of the filter value is failed

as shown in Figure 12. When a legitimate user tries to get authenticated by the server

while attackers are trying to perform the attacks to the server, we can see the rejected

messages from the server. When the attack is performed, the server shows the “Login

Failed” message after comparing the filter value that does not match. When the SMAS is

performed successfully for the legitimate user, we can see “Filter Value Matches” in

Figure 12.

 53

Figure 12: User performs SMAS to the responder while attackers perform DoS attack

As shown in Figure 13, the averaged rejection time as a function of the number of

attacking PCs is defined as the time between an attacker sends out Frame 1 and receives

the rejection from the server. Both IPACF and IDF have an averaged reject time 5.90 ns

(nanoseconds) by the responder.

 54

IPACF/IDF Averaged Rejection Time

0.00

2.00

4.00

6.00

8.00

10.00

1 2 3 4 5

Of Attacking PCs

A
v

e
ra

g
ed

 R
ej

ec
ti

o
n

T
im

e
(n

an
o

se
co

n
d

s)

IPACF/IDF Averaged
Rejection Time

Figure 13: Comparison chart of IPACF and IDF in averaged rejection time

5.2.2 Performance in dual server over single server

 In our experiments, the dual server needs only 5.4% authentication time of single

server while a number of attackers are performing attacks as shown in Figure 14.

Dual Server vs Single Server

1.000E-03

1.000E-02

1.000E-01

1.000E+00

1PC 2PCs 3PCs 4PCs

Of Attacking PCs

A
u

th
en

ti
ca

ti
o

n
 T

im
e

(s
ec

)

single server

dual server

Figure 14: Comparison chart of dual server vs single server in average round trip time

 55

5.3 Interoperability of IPv4 (user application) and IPv6 (responder)

The IPACF implementation is designed to be compatible with IPv6 networks, a

server code is bound to the IPv6 address and the server will be able to accept connections

from IPv4 and IPv6 clients. When an IPv4 client is connecting to the IPv6 server, the

dual stack kernel converts the client IPv4 address to the IPv4-mapped IPv6 address since

the IPv6 server can only deal with IPv6 connections. When porting to IPv6, most of

changes will be made in the transport module, which is User Datagram Protocol that is in

charge of establishing communications to remote nodes. If the IPACF implementation is

changed to IPv6, only the transport module should be modified. Figure 15 and Figure 16

show the difference between UDP and UDP6 socket. The inet6 family is an IPv6 version

of inet4 family. While inet4 implements Internet Protocol version 4, inet6 implements

Internet Protocol version 6. inet6 is a collection of protocols layered atop the Internet

Protocol version 6 (IPv6) transport layer, and utilizing the IPv6 address format.

UDP/UDP6 is used to support the SOCK_DGRAM abstraction (UDP) in inet6 family

that provides access to the IPv6 protocol.

Each protocol-specific data structure is designed to carry the addresses for each

protocol, so it can be cast into a protocol-independent data structure - the "sockaddr"

structure. The sockaddr_in structure is the protocol-specific address data structure for

IPv4; the sockaddr_in6 structure is the protocol-specific address data structure for IPv6.

They both pass addresses between applications and the system in the socket programming

functions. A new address family name, AF_INET6, distinguishes between the original

AF_INET sockaddr_in address data structure and the new sockaddr_in6 data structure.

The sin6_port field contains the 16-bit UDP port number. This field is used in the same

 56

way as the sin_port field of the sockaddr_in structure and the port number is stored in the

network byte order. Applications use in6addr_any similarly to the way that they use

INADDR_ANY in IPv4. In Figure 15, the server creates a sockaddr_in structure with

AF_INET family, which contains its source IPv4 address to bind the socket to port

number 32000. In Figure 16, the server creates a sockaddr_in6 structure with AF_INET6

family, which contains its source IPv6 address to bind the socket to port number 32000.

Figure 15: UDP socket

Figure 16: UDP6 socket

 57

CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

In this thesis, we introduced an identity-based privacy-protected access control

filter (IPACF) to solve DoS/DDoS problems. The IPACF protocol provides the following

unique properties.

• The IPACF filter is based on the legitimate users’ identities, which is hidden in

the filter values that are generated by the pre-shared secrets, nonce, timestamp,

user ID and password.

• The IPACF filter value varies with every frame for both responder and user to

prevent sniffing attacks.

• A filter value table is initialized for both users and responder during ICS. The

identities of both users and responder are tabulated with pseudo ID in the filter

value table.

• The privacy of both user and responder is guarded by the one-time filter value,

which is the temporary equivalent identity that is accessible in the communication.

Only the legitimate user and responder can figure out the identity from the filter

value table.

• The IPACF protocol is stateless because the input filter value is checked against

the filter table without creating a state unless the filter value is legitimate. When a

 58

legitimate filter value is received, a new state is created by calculating the new

filter value for the next frame. When a legitimate filter value comes in, a sorted

filter value table is maintained by deleting the old filter value, searching the new

index for the new filter value and inserting it into the filter table.

• The stateless property provides the capability to resist DoS/DDoS attacks.

The IPACF protocol ensures a secure update for both user and responder session

master key KR(j) and KU(j). A pairwise key KR exists for each user so that a user cannot

pretend to be a responder.

Future research direction is proposed as follows. In PKI ((Public Key Infrastructure)

authentication protocols, a server must use the system resources to compute and store a

hash, it makes the DoS/DDoS attack feasible [12]. When a web server integrates with the

IPACF protocol, the web server immediately turns into an application server to offer safe,

secure information exchange to registered/legitimate clients. The implementation of PKI

that combined with IPACF to defend against DoS/DDoS attacks is via web server and

client certificates.

There are three steps during the initial configuration stage in a secured channel such

as a SSL (Secure Socket Layer) channel. First, a client and the web server exchange their

certificates via a SSL channel. Second, a client generates the master secret key KU using

equation (30) without a user ID and a password, using its private key KPU instead,

encrypts KU and Ni with the web server’s public key, and then sends the encrypted

information to the web server. Third, after the web server receives the encrypted

information, it will decrypt the received information using its private key KPR. The web

 59

server will generate the master secret key KR using equation (31) without a responder ID

and a password, using its private key KPR instead, encrypts KR, TINI and NINI with the

client’s public key, and then sends the encrypted information back to the client. Since

most of users do not have a certificate, as an alternative, a user can use a user ID and a

password instead of a private key as shown in equation (1).

KU = h ()uiN [KPU || Tu || Nui
] ()30

KR = h ()RiN [KPR || TR || NRi
] ()31

After the initial configuration stage, the client will be able to perform authentication

with the web server. The authentication scheme will be stateless for both client and web

server to against DoS/DDoS attacks. The initial configuration stage will not need to be

performed unless it is necessary for a new client to register. The session key will be

generated for any further authentication.

The web server uses the authentication and encryption/decryption services of IPACF

and can securely communicate with clients, which will be able to use the server-side

resources. The IPACF protocol provides compatibility with the PKI schemes to prevent a

DoS/DDoS attack.

 60

BIBLIOGRAPHY

[1] IEEE Standard for Local and metropolitan area networks: Port-Based Network
Access Control, IEEE Std 802.1X-2003.

[2] IEEE Std 802.11i/D4.1, “Wireless Medium Access Control (MAC) and Physical

Layer (PHY) Specifications: Medium Access Control (MAC) Security
Enhancements,” July 2003.

[3] A. Saxena and B. Soh, “Distributed Denial of Service Attacks and Anonymous

Group Authentication on the Internet,” Third International Conference on
Information Technology and Applications, vol. 2, ICITA 2005, pp.460-464.

[4] C. Wang, C. Wu and J. D. Irwin, “Using an Identity-Based Dynamic Access

Control Filter (IDF) to Defend Against DoS Attacks,” In IEEE Wireless
Communications and Networking Conference, vol. 1, March 2004, pp. 639-645.

[5] P. Owezarski, “On the impact of DoS attacks on Internet traffic characteristics and

QoS,” In Proc. 14th International Conference on Computer Communications and
Networks, ICCCN 2005, pp. 268-274.

[6] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermeasure against

connection depletion attacks,” In Proc. of the Network and Distributed Systems
Security Symposium (NDSS ’99), February 1999, pp. 151–165.

[7] T. Aura, P. Nikander, and J. Leiwo, “ DOS-resistant authentication with client

puzzles,” In Proc. of the 8th International Workshop on Security Protocols, April
2000, pp.170-177.

[8] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. Keromytis, and O.

Reingold, “Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols,”
In Proceedings of the 9th ACM conference on Computer and communications
security, Washington D.C., 2002, pp. 48-58.

[9] K. Matsuura and H. Imai, “Modified aggressive mode of Internet key exchange

resistant against denial-of-service attacks,” In IEICE Transactions on Information
and Systems, May 2000, pp. 972–979.

 61

[10] J. Leiwo, P. Nikander, and T. Aura, “Towards network denial of service resistant
protocols,” In Proc. of the 15th International Information Security Conference
(IFIP/SEC), August 2000, pp. 301-310.

[11] C. Meadows, “A formal framework and evaluation method for network denial of

service,” In Proc. of the 12th IEEE Computer Security Foundations Workshop, June
1999, pp. 4–13.

[12] W. Zhiguo, Zhu Bo, R.H. Deng, Bao Feng, and A.L. Ananda, “DoS-resistant access

control protocol with identity confidentiality for wireless networks,” IEEE Wireless
Communications and Networking Conference, vol. 3, March 2005, pp. 1521-1526.

[13] JAN, J.K., and TSENG, Y.M., “Two integrated schemes of user authentication and

access control in a distributed computer network”, IEE Proc. Comput. Digit. Tech.,
1998, 145, (6), pp. 419-424.

[14] W.H He, and T.C. Wu, “Security of the Jan-Tseng integrated schemes for user

authentication and access control” IEE Proc. Comput. Digit. Tech., 147, (5), 2002,
pp. 365-368.

[15] G. Carl, G.Kesidis, R.R.Brooks, Rai Suresh, “Denial-of-service attack-detection

techniques,” IEEE Internet Computing, vol. 10, January 2006, pp.82-89.

[16] J. Mirkovic, J. Martin, and P. Reiher, “A Taxonomy of DDoS Attacks and DDoS

Defense Mechanisms,” ACM Sigcomm Computer Comm. Rev., vol. 34, no. 2, 2004,
pp. 39–53.

[17] A. Ferrante, V. Piuri, and J. Owen, “IPSec hardware resource requirements

evaluation,” Next Generation Internet Networks, April 2005, pp. 240-246.

[18] M. Bellare, and R. Canetti, “HMAC: keyed-hashing for message authentication,”

Request for Comments 2104, Internet Engineering Task Force, February 1997.

[19] T. Aura and P. Nikander, “Stateless connections,” In Proc. Of International
Conferenec on Information and Communications Security (ICICS ’97), Lecture
Notes in Computer Science, vol. 1334, Springer, November 1997, pp. 87–97.

[20] P. Janson, G. Tsudik, and M. Yung, “Scalability and flexibility in authentication

services: The KryptoKnight approach,” In IEEE INFOCOM’97, Tokyo, April 1997,
pp. 725-736.

[21] R. C.Merkle, “Secure communications over insecure channels,” Communications of

the ACM, vol. 21, April 1978, pp. 294– 299.

 62

[22] C. Dwork and M. Naor, “Pricing via processing or combating junk mail,” In E.
Brickell, editor, Proceedings of Advances in Cryptology - Proc. CRYPTO ’92, vol.
1323, Santa Barbara, CA USA , August 1992, Springer-Verlag, pp. 139–147.

[23] D. Dean and A. Stubblefield, “Using Client Puzzles to Protect TLS,” In

Proceedings of the 10th USENIX Security Symposium, Washington D.C., August
2001, pp. 1-8.

[24] X.F. Wang and M.K. Reiter, “Defending Against Denial-of-Service Attacks with

Puzzle Auctions,” In IEEE Symposium on Security and Privacy, May 2003, pp. 78-
92.

[25] Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten, “New client
puzzle outsourcing techniques for DoS resistance,” The 11th ACM Conference on
Computer and Communications Security (CCS 2004) ACM Press, 2004, pp. 246–
256.

[26] D. Dean and A. Stubblefield, “Using client puzzles to protect TLS,” In 10th

USENIX Security Symposium, 2001, pp. 1–8.

[27] A. Juels and J. Brainard, “Client puzzles: A cryptographic countermeasure against
connection depletion attacks,” In Proc. of the Network and Distributed Systems
Security Symposium (NDSS ’99), February 1999, pp. 151–165.

[28] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” Request for

Comments 2409, Internet Engineering Task Force, November 1998.

[29] N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPSec,” In
http://www.counterpane.com/ipsec.pdf, January 2000.

[30] C. Kaufman and R. Perlman, “Analysis of IKE,” In IEEE Transactions on Network

Computing, vol. 4, November 2000, pp. 50-56.

[31] Matsuura and H. Imai, “Resolution of ISAKMP/Oakley key-agreement protocol

resistant against denial-of-service attack,” In Proc. of Internet Workshop (IWS ’99),
February 1999, pp. 17–24.

[32] W. A. Simpson, “IKE/ISAKMP Considered Harmful,” USENIX ;login:, December

1999, pp. 48-58.

[33] D. Harkins, C. Kaufman, S. Kent, T. Kivinen, and R. Perlman, “Proposal for the

IKEv2 Protocol,” In draft-ietf-ipsec-ikev2-01.txt, Internet Engineering Task Force,
April 2002. Work in progress.

 63

[34] K. Matsuura and H. Imai, “Resolution of ISAKMP/Oakley key-agreement protocol
resistant against denial-of-service attack,” In Proc. of Internet Workshop (IWS '99),
February 1999, pp. 17-24.

[35] M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message

Authentication,” Abridged version appears in CRYPTO '96, vol. 1109 of Lecture
Notes in Computer Scienc, Springer-Verlag, 1996 e, pp. 1-15.

[36] M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” In Proc.
of the IFIP TC6 and TC11 Joint Working Conference on Communications and
Multimedia Security, September 1999, pp. 258-272.

[37] R. Oppliger, “Protecting key exchange and management protocols against resource

clogging attacks,” In Proc. of the IFIP TC6 and TC11 Joint Working Conference on
Communications and Multimedia Security (CMS ’99), September 1999, pp. 163–
175.

[38] S. Hirose and K. Matsuura, “Enhancing the resistance of a provably secure key

agreement protocol to a denial-of-service attack”, In Proceedings of the 2nd
International Conference on Information and Communication Security (ICICS ’99),
Lecture Notes in Computer Science vol. 1726, Sydney, Australia, November 1999,
Springer, pp. 169–182.

[39] M.T. Goodrich, “Leap-frog packet linking and diverse key distributions for

improved integrity in network broadcasts,” In IEEE Symposium on Security and
Privacy, May 2005, pp. 196-207.

