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Denial of service (DoS)/Distributed DoS (DDoS) attack is an eminent threat to an 

authentication server, which is used to guard access to firewalls, virtual private networks 

and wired/wireless networks.  The major problem is that an authentication server needs to 

verify whether a request is from a legitimate user and if intensive computation and/or 

memory resources are needed for verifying a request, then DoS/DDoS attack is feasible. 

In this thesis, a new protocol called Identity-Based Privacy-Protected Access Control 

Filter (IPACF) is proposed to counter DoS/DDoS attack. This protocol is an 

improvement of IDF (Identity-Based Dynamic Access Control Filter).  The proposed 

protocol is stateless because it does not create a state for an authentication request unless 
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the request is from a legitimate user.  Moreover, the IPACF is stateless for both user and 

authentication server since a user and responder authenticate each other.  A filter value, 

which is generated by pre-shared secrets, is sent in a frame and checked to see if the 

request is legitimate.  Note that the process of checking filter value is not intensive 

computation.  The filter value is tabulated in a table with user identity so that a filter 

value represents a user’s identity and only the legitimate user and authentication server 

can figure out the identity.  When a filter value is from a legitimate source, a new filter 

value will be generated for the next frame. Consequently, the filter value is changed for 

every frame.  Thus the privacy of both user and server are protected. 

The IPACF is implemented for both user and authentication server. The 

performance of the implementation is reported in this thesis.  In order to counter more 

DoS/DDoS attacks that issue fake requests, parallel processing technique is used to 

implement the authentication server, which is divided into server 1 and server 2.  Server 1 

only checks the validity of the request filter value against the filter value table.  If the 

request is legitimate, the request will be passed to server 2 for generating a new filter 

value; otherwise, the fake request is rejected by server 1.  The performance comparison 

of dual server and single server is also reported. 
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CHAPTER ONE 

INTRODUCTION 

Authentication server is widely used to guard wireless access points, virtual private 

networks, firewalls and so on. Denial of service (DoS) or distributed DoS (DDoS) attacks 

floods the authentication server with fake packets and causes the server to exhaust its 

resources for processing fake packets.  When the resources of the authentication server is 

exhausted, legitimate user’s authentication requests can not be responded.  

In this thesis, we propose a stateless authentication protocol, which allows the 

authentication server to check if the request is from a legitimate user and to commit 

computational resources only if the request is legitimate.  This protocol protects the 

resources of an authentication server so that the resource consumption of DoS/DDoS 

attacks is minimized. 

1.1 Current Problem 

The advancement in wireless network technology provides wireless access networks 

to the Internet.  Authentication servers are used to defend the wireless access networks. 

Attackers can easily launch DoS/DDoS attacks to authentication servers and can disable 

the wireless access networks.  The current 802.1x [1] and 802.11i [2]  standards both still 

lack the ability to prevent the DoS/DDoS attacks to authentication servers and wireless 
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access points.  Firewalls and virtual private networks suffer the same drawback that 

DoS/DDoS can easily halt the authentication functions [3]. 

The major problem of DoS/DDoS attack is that the authentication server (or 

responder) needs to validate that the request is from a legitimate user (or initiator). 

However, the authentication server only has a limited CPU computation power and 

restricted amount of memory. When attackers initiate sufficient requests, the 

authentication server cannot respond to legitimate requests.  It is necessary to minimize 

the resource committed to a request before verifying the request is from a legitimate 

source.  

Ingress and egress filters based on IP address have been suggested to counter 

DoS/DDoS attacks. But a legitimate source IP address can be spoofed to launch 

DoS/DDoS attacks by sniffing the communication frames between the legitimate user 

and authentication server. 

1.2 Motivation of the Proposed IPACF protocol 

To address the current problems, a protocol called Identity-Based Privacy-Protected 

Access Control filter (IPACF) is proposed.  An identity based filtering is used instead of 

an IP address-based filtering.  The IPACF is based on pre-shared secrets that are known 

by a user (initiator) and an authentication server (responder).  Both user and responder 

generate a unique (one-time) filter value for each communication frame using pre-shared 

secrets.  Only the user and responder have the necessary secrets to calculate the filter 

values.  The filter value can be checked to make sure that the value is from a legitimate 

source.  If the filter value is correct, then a new filter value is generated for the next frame; 

otherwise, the received frame is rejected.  
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Follow the concept of a stateless protocol “Do not create any state or do 

expensive computation before you can ensure that the received frame is legitimate.”  the 

concept of stateless server and stateless connection was proposed to defend against DoS.  

If the server authenticates the user and verifies the user’s filter value without keeping 

states, the authentication scheme will be stateless.  Moreover, the protocol is stateless 

since a frame with an incorrect filter value is only checked and no other computation 

resource is committed.  Only when the frame has a legitimate filter value, then resource 

will be committed for calculating next filter value. 

The privacy of the identity relies on the one-time filter value and the pseudo ID 

which are an indication of the user identity.  Furthermore, the IPACF can prevent session 

hijacking, dictionary attacks and man-in-the-middle attacks using the secure master key 

exchange.    

1.3 Organization of the Thesis 

This thesis is divided into six chapters.  The first chapter provides the background 

information that is necessary to understand the rest of the work.  The remaining chapters 

are organized as follows. 

In Chapter 2, we present the related work and current research to show the 

importance of proposed IPACF protocol.  In Chapter 3, we propose a concept and the 

design goals for the new IPACF protocol.  We also point out a couple of disadvantage 

and drawbacks about Wang’s IDF protocol [4].  In Chapter 4, we explain the details of 

how the proposed IPACF protocol creates a truly stateless protocol environment and 

defends against DoS/DDoS attacks.  In Chapter 5, we implemented and simulated  
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Wang’s IDF protocol in the real-world implementation. We also describe the 

implementation and performance of the IPACF protocol and compare it with Wang’s IDF 

protocol; the compatibility of the IPACF protocol in IPv6 network is also described.  

Chapter 6 contains the conclusions and suggestions for future work. 
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CHAPTER TWO 

RELEATED WORKS 

2.1 Denial of Service (DoS) 

 The objective of DoS attack is to degrade services by flooding a network with 

faulty beacons, preventing legitimate traffic and causing systems not to respond.  Denial 

of service relies on methods that exploit the weaknesses of the network and attempts to 

reduce the ability of a responder to service users [5].   

DoS can be achieved by either overloading the ability of the target network, that 

causing a responder to neglect incoming traffic, or by sending network packets that 

causing target networks to behave unpredictably and crash.  For example, one common 

form of DoS is Ping of Death, which generates and sends certain kinds of network 

messages that are technically unsupported but known to cause problems for systems that 

receive them.  Other DoS attacks may simply "flood" a network with useless data traffic, 

rendering systems incapable by pretending as legitimate users.  The main problem is: 

when a responder receives a request that requires verifying the request using system 

resources, the computation and memory storage gives an adversary a chance to launch a 

DoS attack.  
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2.2 Current research 

DoS attacks continue to be a critical threat.  They can intervene critical services, 

prevent data transfer between devices, and decrease overall productivity.  Because DoS 

attacks can be extraordinarily costly and harmful to internetworking environment, 

networks must proactively counteract these attacks.  Authentication is a significant issue 

in establishing secure communication between the users and responders by identifying 

each other prior to accepting each other’s frames.  Several works [8-14] have been 

proposed to prevent DoS attacks and to improve the security or the computational 

performance based on public-key signatures authentication scheme.  Two password-

based integrated schemes for user authentication and access control was proposed by Jan 

and Tseng [13], defined as the JT-1 and the JT-2 schemes, to administer the security 

administration functions with respect to both the computational cost and the 

communicational overhead efficiency.  But both the JT-1 and the JT-2 schemes are not 

secure against an impersonation attack, an adversary can successfully fool the system to 

act as any other legitimate user, and take over all access rights granted to that user 

without being detected [14].  W. Aiello et al [8] provides a capability for perfect forward 

secrecy in order to efficiently defend against DoS attacks.  Although the public-key 

signatures scheme can provide a certain level of security to resist a DoS attack, it is still 

vulnerable to DoS attacks on the first and third message flows [8][10].  Since the first 

flow is sent in clear text, the adversary can sniff the legitimate user’s identity and then 

spoof it to become a legitimate user and pass the identity check from the server.   This 

process could lead to a DDoS attack.  If the server need not check the identity of the user 

like J. Leiwo’s scheme [10], the adversary can randomly generate a request nonce to the 
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server for launching a DoS attack.  This will cause the responder very busy in processing 

the spoofed requests sent from an adversary and has limited ability for legitimate users.  

In the third flow, the public-key signatures authentication scheme must verify the 

authenticity of the returned data that is sent from the legitimate uses.  This step is 

vulnerable to a DoS attack, because an adversary can send out a plethora of faked 

signatures to the server for verification that will require system resources and cause 

buffer overflow.  Zhiguo et al [12] proposed a PKC (Public Key Cryptosystem) based 

protocol which was combined with [8]’s key exchange protocol JFKi.  The user identity 

protection has been added but this protocol is susceptible to DoS attacks on the first 

message flow that the nonce generated by the client and sent in clear text to the server. 

This message is not authenticated and could be sent by attackers to perform DoS attacks.  

DoS detection techniques has been brought up to reduce the threats [15][16]. These 

techniques and testing results provides insight into our ability to successfully identify 

DoS flooding attacks. But none completely solve the detection problem. 

The client puzzle is another technique that users are required to do a considerable 

amount of computation before consuming resources.  The first client puzzle was used to 

defend against connection depletion attacks proposed by Juels and Brainard [6].  A user 

must solve the puzzle correctly in order to get service from a responder.  Client puzzles 

were also proposed to similarly protect authentication protocols [7], which combined the 

stateless authentication protocols [19][20] with a client puzzle to address a DoS attack.  

In general, cryptographic puzzles have been employed for key agreement [21] and 

address the problem of junk e-mail [22].  The only implementation of a client puzzle in 

the context of transport layer security (TLS) was proposed by Dean [23].  Wang and 
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Reiter [24] proposed a puzzle auction that allows the client to determine the difficulty 

(bid) of the puzzle using their implementation within transmission control protocol (TCP).   

While the deployment of client puzzles in attack scenarios seems promising, but 

most proposed systems of this type have one basic shortcomings found by Waters [25]. 

The client puzzle mechanism itself can become the target of a denial-of-service attack. In 

most systems either the puzzle creation or verification operations (or both) require the 

server to perform a cryptographic hash computation [7][26][27]. This opens the 

possibility that the puzzle verification mechanism itself will be the target of a denial of 

service attack, in which an attacker floods the server with bogus puzzle solutions that the 

server has to process. 

Secure key exchange is also a critical issue in authentication scheme.  Internet 

Key Exchange (IKE) is an Internet Protocol Security (IPSec) standard protocol used for 

establishing and maintaining security associations, and to ensure security for virtual 

private network (VPN) using secure key exchange [28].  Several works [8], [29], [30], 

[31], and [32] have reported that IKE is vulnerable to DoS attacks.  The user identity can 

not be protected in IKE [8] and IKE is very vulnerable to untraceable DoS attacks against 

both computational and memory resources [32].  IKEv2 [33] was then proposed to 

replace the original IKE.  Some work has been done towards addressing, or at least 

examining, the DoS problems found in IKE [9][34].  Other protocol design that defend 

against DoS attacks include stateless cookies[36], forcing clients to store server state, 

rearranging the order of computations in a protocol [37], and the use of a formal method 

framework for analyzing the properties of protocols with respect to DoS attacks [38].   
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Any protocol for a server commits expensive computations or to store the 

protocol state prior to the client authentication is vulnerable to DoS attacks [7][19].  The 

advantages of being stateless, at least in the beginning of a protocol run, were recognized 

in the security protocol context in [19] and [20].   



 

 10

CHAPTER THREE 

PROTOCOLS DESIGN 

A new protocol, called the identity-based, privacy-protected access control filter 

(IPACF), has been proposed to defend DoS/DDoS attacks.  The design of the proposed 

protocol is described as follows. 

3.1 The Basic Concept of the Filter 

The IP address-based filter will not prevent DDoS attacks from coming into a 

network with a valid source IP address.  The IP address-based filter contains a fixed set 

of IP addresses and cannot change dynamically to protect the IP address from being 

sniffed and spoofed by an adversary.  An adversary can spoof source IP addresses from 

legitimate users or a subnet’s valid address range in order to pass through the IP address-

based filter and launch a DoS attack.  Using an identity-based filter, all users have their 

unique filter values and pseudo ID generated from their master pre-shared secret keys.  

The master key is protected by two-factor feature keys.  The user’s ID and password are 

memorized by the user, and nonce and timestamp are generated by the user’s system [4].  

Only legitimate users or responders have exact secrets to generate their filter values so 

that subsequent frames can pass through the access control filter.  Otherwise, the 

prohibited frames will be rejected by the filter.  To avoid sniffing and spoofing, the filter
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values cannot be reused, and thus the IPACF filter value should be changed dynamically.  

For the IPACF protocol, only the received frames that match the users’ or responders’ 

filter values will be allowed to use system resources as shown in Figure 1.  The system 

performs computations only after the frames have passed the privacy protected access 

control filter, F(t, Pid(t)), which is a time-dependent function that changes every frame 

(Pid(t) is the pseudo ID).  If received frames do not match the users’ or responders’ filter 

value, they will be rejected by the privacy protected access control filter.  At this point, 

the computer commits only the resources necessary to compare filter values.  Similar 

access control techniques are being used in packet filters, routers and firewalls and are 

well-known for their processing speed [4]. 

 

Figure 1: The Concept of Identity-Based Privacy-Protected Access Control Filter:  
if F(t, Pid(t)) matches the filter value, then E[Data] (encrypted data) is allowed to use 
system resources for decryption. 
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3.2 Design principle  

With the current designed protocol, it is clear that Wang’s IDF [4] has several 

weaknesses that are related to the server system resources.  The following design 

principles were improved in the thesis. 

• Efficient two frames used in the session mutual authentication stage (SMAS) 

• Stateless protocol for both the user and the responder in SMAS 

• User privacy is protected 

• Capable of being implemented on a firewall, router, access point and 

authentication server 

• Prevention of resource (memory and CPU) exhausting DoS and DDoS attacks, 

session hijacking, dictionary attacks, and men-in-the-middle attacks on both sides 

 

The hash based message authentication codes (HMAC) is used here because the 

computational cost for a keyed hash function is less than that for Public Key 

Infrastructure (PKI) based or signature-based schemes, both of which are more 

vulnerable to DoS attacks [7].  Confidentiality for packet transmissions can be provided 

using techniques that utilize symmetric key cryptography.  Encrypting the message with 

the secret keys shared among the users and the responders.  The Advanced Encryption 

Standard (AES) with HMAC [39] is used to guarantee the confidentiality and integrity of 

data during communication.  
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Figure 2: Identity-Based Privacy-Protected Access Filter (IPACF) Overview 
 

The Identity-Based Privacy-Protected Access Filter is derived from a user’s and 

responder’s pre-shared secrets.  Each user has a unique filter associated with a particular 

responder.  It is a time-dependent filter that changes with every frame.  Only legitimate 

users and responders can update their filters and confirm corresponding filter values, as 

illustrated in Figure 2.  The ID and password for user and responder are protected by 

human memory, never stored on a device, or sent in traffic.  These precautions 

theoretically guarantee IDs and passwords will not be lost.  When a responder receives 

the first frame from a user, the IPACF can determine the user ID by comparing the 

received filter value to the responder’s filter table using the pseudo ID.  Then the  
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Identity-Based Privacy-Protected Access Control Filter is triggered for a particular user.  

This time-dependent scheme involves both the user’s secret and a timestamp sent from 

the user.  The anonymity of the user’s ID protects the user’s privacy in wired/wireless 

networks. 
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CHAPTER FOUR 

THE IDENTITY-BASED PRIVACY-PROTECTED ACCESS  

CONTROL FILTER (IPACF) PROTOCOL 

The Identity-Based Privacy-Protected Access Control Filter (IPACF) protocol 

consists of three stages.  The first stage is the initial configuration stage (ICS).  During 

this stage, the master secret keys of a user and responder are generated and exchanged via 

a secure channel as pre-shared secrets.  Using the pre-shared secrets, the initial access 

control filter values for all legitimate users will be generated and stored on a responder 

filter table for authenticating legitimate users.  The second stage is the session mutual 

authentication stage (SMAS) used by users and responders to identify each other.  The 

third stage is the dynamic data communication stage (DDCS).  The computational for all 

stages should be designed with the stateless requirement in order to prevent DoS/DDoS 

attacks.  To keep the notations simple and easy to understand, the discussions of the 

IPACF protocol are based on one user with a responder. 

4.1 Notations for Identity-Based Privacy-Protected Access Control Filter 

PR 

TR 

NRi 

A responder’s secret key memorized by an administrator 

A timestamp generated by responder’s system when an administrator assigns the PR 

An initial nonce generated by responder’s system when PR is assigned 
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KR 

Uid 

Uid 

PUid 

PRid 

Pu 

Tu 

Nui 

KU 

Ni 

 

 

TKU 

NR   

 

TNR 

fR(t)   

fU(t) 

FR(t) 

FU(t) 

MACR(t) 

MACU(t) 

SRi    

SUi   

SR(t) 

Master secret key of a responder generated by a keyed hash function during the ICS 

User’s identifier 

Responder’s identifier 

Pesudo identifier for user 

Pesudo identifier for responder 

User password, typed in for each login session and not stored in the device 

A timestamp generated by a user’s system when a user is assigned a password 

An initial nonce generated by a user’s system when Pu is assigned 

Master secret key of a user generated by a keyed hash function during the initial stage

A random number is chosen by a user. This number remains the same during the 

user’s login session. It will be updated automatically after a new KU is generated and 

used for the next login session. 

Timestamp when KU is generated 

A nonce is generated by a responder. It is encrypted using the AES when sent to 

challenge a user during session mutual authentication stage. 

Timestamp when a responder’s nonce NR is generated 

A 128-bit seed from a responder’s truncated function used to update filter FR(t) 

A 128-bit seed from a user’s truncated function used to update filter FU(t) 

Access filter stored in a responder’s filter table to filter the frames from users 

Access filter stored in a user’s filter table to filter the frames from a responder 

The output of HMAC-SHA-512, which is used to generate the filter for a responder 

The output of HMAC-SHA-512, which is used to generate the filter for a user 

A responder’s initial seed during the initial configuration stage 

A user’s initial seed during the initial configuration stage 

A responder’s seed used to update the frame key KRF(t)  
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SU(t) 

NU 

 

TNU 

KRF(t) 

K’RF(t) 

KUF(t) 

K’UF(t) 

MACRF(t) 

 

MACUF(t) 

 

TRF(t) 

TUF(t) 

NINI 

 

TINI 

KR(j) 

 

KU(j) 

 

h 

A user’s seed used to update the frame key KUS(t) 

A nonce is generated by a user. It is encrypted using the AES when sent to challenge a 

server during the mutual authentication stage. 

Timestamp when a user’s nonce NU is generated 

A responder’s frame key for AES encryption 

A responder’s HMAC key for integrity check 

A user’s frame key for AES encryption 

A user’s HMAC key for integrity check 

A 256-bit MAC that contains KRF(t)  and K’RF(t) that are used for responder as AES 

encryption key and HMAC key, respectively 

A 256-bit MAC that contains KUF(t)  and K’UF(t) that are used for user as AES 

encryption key and HMAC key, respectively 

A timestamp generated by a responder when updating its filter value 

A timestamp generated by a user when updating its filter value 

A nonce is generated by a responder. It is exchanged in initial configuration stage via 

secured channel for generating the first hash value of mutual authentication stage. 

A timestamp generated by a responder when nonce NINI is generated 

Updated master secret key of a user for session j generated by a hash function for the 

next session 

Updated master secret key of a responder for session j generated by a hash function 

for the next session 

HMAC operation.   
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4.2 Initial Configuration Stage 

4.2.1 Master keys and pre-shared secrets generation 

KU, KR, and Ni, are the pre-shared secrets of a user and a responder and are stored 

on both systems.  The pre-shared secrets KU, KR, and Ni could be delivered between a 

user and responder via a secure channel or could be used by a trusted third party to secure 

the delivery.  The actual techniques are beyond the scope of this paper.  KU and KR are the 

master secret keys of a user (initiator) and responder, respectively. 

KU = h ( )uiN [ Uid || Pu || Tu || Nui
 ] ( )1  

KR = h ( )RiN [ Rid || PR || TR || NRi
 ] ( )2  

Uid and Pu are the user’s ID and password, respectively, required for each login 

session, and should not be stored on any system.  Nui and Tu are generated automatically 

by the user’s system when a user types in the Uid and Pu during the system ICS.  The user 

system generates a different nonce Nui and timestamp Tu to ensure a user’s master key KU 

is refreshed. Nui is only known by the user’s system and will be the input key for the 

HMAC function in equation (1).  KU is a user’s master key generated by the HMAC 

function and must be stored in both the user’s and responder’s system.  The Rid and PR are 

the responder’s ID and password, respectively, and assigned by a system administrator 

during the ICS.  A responder’s initial nonce NRi and timestamp TR are known only by the 

responder’s system.  They are generated automatically by a system when the system 

administrator assigns the PR and Rid for a responder.  NRi is an input key for the HMAC 

function and used to generate the responder’s master key KR as shown in equation (2).  

Both the user’s password Pu and the responder’s password PR are dictionary attack 

resistant because they are protected by the nonce and timestamp that are known only by 
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the systems.  The user or responder knows half (Uid, Pu and Rid, PR) of the master secret 

and their systems know the other half (Nui, Tu and NRi, TR).  This mechanism is called a 

two-factor feature and widely used to protect the real user’s password and ID from 

dictionary attacks [4].  

Ni is a random number that must be chosen by a user during the ICS and stored in 

both the user’s and responder’s systems; this number remains constant during the same 

session for the user. After the ICS, Ni can be updated locally by equation (3) while the 

old Ni will be used in a HMAC function to generate a new Ni for a new login session [4]. 

Ni ←h ( )iu NK ⊕ [ Uid || KU || TKU || Ni
 ] ( )3  

The nonce NINI and the time stamp TINI will be generated by the responder while a 

user and responder are exchanging the pre-shared secrets KR, KU, and Ni via a secured 

channel.  NINI and TINI are used in ICS for a user and responder to generate the initial 

access control filter value FR(0).  The pseudo identifier PUid and PRid are assigned by the 

user and responder respectively to hide their real identities.  PUid and PRid will be changed 

for each frame to ensure the privacy protection in IPACF protocol.  During the ICS, [Rid, 

Ni, KU, KR, NINI, TINII, PUid, PRid] is stored on the user’s system and [Uid, Ni, KU, KR, NINI, 

TINII, PUid, PRid] is stored in the responder’s system as pre-shared secrets, which are used 

to generate the filter value and frame key. 
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4.2.2 Initial Filter Setup in a Responder as a Filter Table  

After a user and responder have saved the pre-shared secrets in their systems, the 

responder must generate a filter table for all of its legitimate users.  The user will also be 

able to create the initial access control filter value using the equations (3), (4), and (5).  

To create the initial filter table, the random nonce NINI and timestamp TINI will be used. 

To create the responder’s access control filter, two calculation steps are required as 

outlined in equations (4) and (5). 

h ( )Ri KN ⊕ [ Ni || NINI || TINI
 ] ≡  SRi ( )4  

KR is the master key of the responder and is a group key known by all of its 

legitimate users in IDF protocol proposed by Wang [4]; however, KR is a pairwise key 

shard by a user and a responder in this thesis.  Then the input key for the HMAC function 

is formed by KR XOR with Ni, which is chosen by a particular user.  Different users have 

different Ni and thus different SRi.  SRi is a 512-bit output of the HMAC function as 

shown in equation (4).  It is a responder’s initial seed and used only at the ICS.  This seed 

SRi is used as an input key for the HMAC function in equation (5).  The purpose of the 

formula in equation (4) is to generate different seeds for a particular user, given the user’s 

Ni, and use Ni, NINI, and TINI to avoid reusing the seed.  Because the input keys for the 

HMAC function are never reused, the output of the HMAC function in equation (5) is 

made very secure by avoiding dictionary attacks [18][35].  

h ( )
[ ]INIi

Ri

NN
S
⊕ [ Uid || KU || Ni

 || NINI || TINI] ≡  MACR(0) ( )5  
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[Ni ⊕ NINI] is the number of rounds used to conduct the hash function.  In 

consideration of performance, the number of rounds is recommended to be truncated to 

10 bit, which means that the number of rounds is limited to between 0 and 1023.  MACR(t) 

is a 512-bit keyed hash value and is  truncated in three parts, including the 128 most 

significant bits fR(t) and the 128 least significant bits SR(t), as shown in Figure 3.  t is the 

index of a time-dependent function, and t=0 is the responder’s first seed used to generate 

the first access control filter and frame key [4]. 

 

Figure 3: The Responder’s Truncated Function 

fR(0) is a seed used to generate a 160-bit responder’s access control filter FR(0) 

using equation (6).  The length of the HMAC function used to generate the access control 

filter is recommended to be a 160-bit HMAC-SHA-1, but different applications may vary.  

FR(0) is the initial access control filter value stored in a responder’s device.  The first 

frame sent from the user must match this value so that subsequent parts of this frame can 

be admitted into the responder’s system.  SR(0), which is the 128 least significant bits of 

MACR(0), is a seed used to update the frame key and then generate the new access filter 

for the next frame. 
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h ( )RiS [ KU || Ni
 || MACR(0) || TINI || fR(0)] ≡  FR(0) ( )6  

The responder can then create a table and store the identity-based filters and all the 

necessary key information as shown in Table 1. 

PUid  Flag Uid PRid Access  
Filter 

Hash Value Frame  
Key 

Packet  
counter 

Idle 
Time 

    FR(0) MACR(0)    

Table 1: Responder’s Dynamic Access Filter Table 

Each row specifies the information for a particular user.  The packet counter will 

accumulate all the received frames that pass the access control filter for a user’s login 

session.  The packet counter will repeat the process for each new login session.  This 

feature aids the responder in monitoring any abnormal traffic from the user and thus helps 

prevent a DDoS attack.  The idle time is represented by the time that the packet counter 

does not increase while the user remains connected.  The responder should ask the user to 

re-authenticate if the idle time is too long.  On the other hand, the users can generate the 

initial access control filter value FR(0) using equations (4), (5), and (6) that introduce a 

complete stateless configuration.  

 In Wang’s IDF protocol [4], the user side was not completely stateless in the 

mutual authentication stage.  The user’s access control filter will be created after the user 

receives the beacon from the responder and can derive the responder’s nonce NR, and 

timestamp TNR, by using the responder’s pre-shared master key KR.  The IDF protocol 

requires one more frame in comparison to IPACF in the mutual authentication stage for 

the responder to broadcast the beacon to the legitimate users who can decrypt the beacon 
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encrypted with AES encryption.  Nonce NR and timestamp TNR will be the contents of the 

beacon.  NR and TNR will be the secrets for the user to generate filter value FR(0). 

The responder will pre-generate the filter value ahead of time in Wang’s IDF 

protocol [4].  NR and TNR are broadcast in the beacon by the responder; a user receives 

and generates the same filter value as the responder.  But there is one problem: what 

happens if the users do not log in during this period of time?  The responder will have to 

regenerate FR(0) for every user if NR and TNR are changed, and this is a computationally 

expensive process.  It is desirable that a protocol does not require every user to calculate 

FR(0) periodically.  Using equations (4), (5), and (6) will make the IPACF protocol for 

both the user and the responder stateless after ICS.  In addition, IPACF protocol has one 

less frame to complete in SMAS in comparison to IDF since there is no need of the 

beacon frame.  Because of the complete stateless configuration in IPACF, the user 

protocol becomes stateless in the SMAS, the user will not have to depend on the beacon 

broadcasted by the responder.  

At this point, the ICS is completed.  The pre-shared secrets and initial filter value 

FR(0) are stored in both user and responder, as well as the information for all of its 

legitimate users, in a filter table. 

4.2.3 User Login and Master Key Renew 

Session Login  

KU, KR and Ni, are the pre-shared secrets stored on a user’s system.  When a user 

wants to log in, the user must type in the user ID and password.  The user’s system has 

stored Nui and Tu from the initial setup; therefore, the user’s system can generate a KU  

 



 

 24

based upon the password and ID that the user entered using equation (1).  If this KU 

matches the pre-stored KU, then the system identifies that the user as a legitimate one.  If 

this KU does not match the pre-stored KU, after a reasonable number of trials, the user’s 

system should be locked.   In this case, no filter values will be generated for the particular 

user to prevent an on-line password guessing attack.  

Master Key Renewal 

The KU and Ni should be refreshed for every login session.  The Ni will be 

updated using equation (3).  During each login session, the pre-stored KU is matched to 

ensure that he is a legitimate user, and the system will generate a new nonce and 

timestamp.  Given the new nonce and timestamp, the system performs a calculation using 

equation (7) to obtain the new KU(j) for session j.  The new KU(j) and Ni for the next login 

session will be encrypted using the AES and then sent to the responder during 

communication. 

Wang’s IDF [4] on a fixed master key KR means that the responder must uses the 

same key to encrypt the packet.  All users must use the same master key KR to decrypt 

packets.  Since all users have the same KR, they not only have the ability to encrypt 

packets, but also have the capability to pretend to be a responder, and perform malicious 

actions.  Therefore, KR does not provide the essential security.  Furthermore, the master 

key KR will not be updated unless ICS is performed: this problematic feature is the most 

serious drawback in Wang’s IDF protocol.  If ICS is necessary to perform updating 

master key KR, all legitimate users will have to perform ICS at the same time, which 

means all legitimate users need to be synchronized to change KR while ICS is performed.  

A legitimate user will not be able to update the master key KR unless the user creates a 
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secured channel and updates the master key KR with the responder individually; 

otherwise, the legitimate user will not be able to decrypt any beacon sent by the 

responder in the mutual authentication stage.  

An entire group of users should not be responsible for updating master key KR(j). 

Legitimate users should have the flexibility of performing ICS, whenever necessary. On 

the other hand, having a pairwise master key KR(j) for each legitimate user will avoid 

malicious actions from other legitimate users.  IPACF protocol will be able to set up 

pairwise master keys with every legitimate user, and the master secret keys will be 

exchanged between the user and the responder in every session. 

KU(j+1) = h ( )uiN [ Uid || Pu || Nu || TNU || KU(j)]  j = 1, 2, 3… ( )7  

KR(j+1) = h ( )RiN [ Rid || PR || NR || TNR || KR(j)]  j = 1, 2, 3… ( )8  

In equations (7) and (8), KU, KR, and Ni are the pre-shared secrets of a user and a 

responder and are stored on both systems and j is the index of session number.  Uid and Pu 

are the user’s ID and password, respectively, required for each login session and should 

not be stored on any system.  Nu, TNU, NR, and TNR are nonce and time stamp generated 

for each session master key update and stored in both the user’s and the responder’s 

systems.  KR(j) and KU(j) are set for each session during which a user logs in and logs out.  

For each login session, the system generates a different nonce Nu, NR and timestamp TNU, 

TNR automatically to ensure that both a user’s master key KU and a responder’s master key 

KR are not reused before.  KR and KU are used as input key for the HMAC function in 
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equation (7) and (8).  The purpose of master key renewal is to provide authenticated 

keying material in a protected manner. 

Each user will have a pairwise master key KR to avoid malicious actions from 

other legitimate users and the master key KR(j) will be exchanged between the user, and 

the responder in every session.  We introduced the secured master secret key exchange 

(SMSKE) in ICS.  The idea of SMSKE is to negotiate and provide authenticated keying 

material for security associations in a protected manner.  SMSKE will be performed in 

the last frame of the SMAS and the first frame of the DDCS.  After the secured 

authentication has been initiated, the user and the responder have identified each other; a 

secured channel is created after SMAS using Advanced Encryption Standard (AES) 

encryption and HMAC message authentication code for integrity check.  The SMSKE 

will not only decrease the communication cost using a secured channel, but also 

improved the security of Wang’s IDF protocol [4] by using dynamic master key KR(j)  and 

KU(j) for each session while IDF must used a fixed master secret key KR.  

The IPACF protocol is based on the legitimate user’s pre-shared secret and not 

their IP address in order to avoid an IP spoofing attack.  The IPACF filter is not a fixed 

value filter.  The filter values vary with every frame by both the user and the responder to 

prevent sniffing and replay attacks. Perform SMSKE will make the result of secure 

master key update on both user and responder after every single success SMAS.  All the 

legitimate users will have a unique responder master key KR(j) that will increase the 

randomness of both master keys for the future SMAS. 
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4.3 Session Mutual Authentication Stage (SMAS) 

Following the initial configuration stage, two processes will be accomplished by a 

user before the user initiates the SMAS.  First, both the responder and the user will be 

able to generate the same FR(0) using equations (4), (5), and (6).  FR(0) is a 160-bit 

responder’s filter value and will be sent to the responder to check its access filter after the 

second step.  Second, before a user initiates SMAS, a user will generate a user’s nonce 

NU and a timestamp TNU for that nonce to authenticate the responder and also create the 

user’s initial dynamic access filter.  To create this filter, two rounds of calculation are 

required as outlined in equations (9) and (10).  

h ( )iU NK ⊕ [ Ni || NINI || NU || TNU
 ] ≡  SUi ( )9  

h ( )
[ ]Ui

Ui

NN
S
⊕ [ Uid || KU || Ni

 || NINI || NU || TNU] ≡  MACU(0) ( )10  

The message authentication code will be generated with HMAC-SHA1.  SHA1 is 

considered cryptographically stronger than MD5 even it takes more CPU cycles to 

compute. HMAC-SHA1 is also recommended in IPSec where the slightly superior 

security of SHA1 over MD5 is important [17].  SUi is a 512-bit output of the HMAC 

function in equation (9) and will be used as an input key for the HMAC function in 

equation (10).  It is a user’s initial seed and is only used in the initial configuration stage.  

This seed will be changed for every login session by the user because of varying 

properties of KU, Ni, NU, and TNU.  The primary aim of the formula in equation (9) is to 

generate different seeds for every login session to avoid reuse of the filter values.   
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[Ni⊕NU] is the number of rounds employed in conducting the hash function, and 

from a performance perspective, should be truncated to 10 bits.  Therefore, the number of 

rounds is limited to between 0 and 1023. MACU(t) is a 512-bit keyed hash value truncated 

in three parts, including the 128 most significant bits fU(t) and the 128 least significant bits 

SU(t), as shown in Figure 5.  t is an index for a time-dependent function, and t=0 is the 

user’s first seed that is used to generate the first access control filter and frame key [4]. 

 

Figure 4: The User’s Truncated Function 

fU(0) is a seed used to generate a 160-bit user’s access control filter FU(0), as 

illustrated in equation (11).  FU(0) is a user’s first access control filter value stored on the 

user’s system and is used for checking the frames sent from a responder.  If the frame 

does not match the filter, it will be blocked by the user’s system. SU(0) is a user’s first 

seed used to update the frame key and generates the new access filter for the next frame. 

Once the user generates FU(0), an access filter table will be created as shown in Table 2, to 

store the filter value and other information. 

h ( )UiS [ KU || NU
 || MACU(0) || TNU || TINI || fU(0)] ≡  FU(0)  ( )11  
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PRid  Flag Rid PUid Access  
Filter 

Hash Value Frame  
Key 

Packet 
counter 

Idle 
Time 

    FU(0) MACU(0)    

Table 2: User’s Dynamic Access Filter Table 
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INSERT THIS END

User Responder

1.Check filter FR(0)
2.Figure out FU(0)
3.Update the filter

 to FR(1)

 Access filters

Check filter

 Access filters

1.Figure out FR(0) , and   
generate NU , TNU

2.Generate the
   User's filter FU(0)

Session Mutual Authentication Stage

Frame 1

Frame 2

PUid(0), FR(0), EAES(KU)[NU, TNU] 

PRid(0), FU(0), EAES(KRF(0))[Data, TRF(1), KR(j), PUid(1)]

Figure 5:  Session Mutual Authentication Stage Overview 
 

Frame 1   U →  R :  PUid(0), FR(0), EAES(KU)[NU, TNU] 

A legitimate user will be able to perform SMAS as the user desires.  After the 

responder receives Frame 1, the responder will perform three steps: First, the responder 

will check FR(0) to see if FR(0) matches one of the filter values in the filter value table.  If 

there is a match, the responder will know the user’s ID and KU in accordance with the 

received filter value.  The responder will also identify the user as legitimate and then pass 

the encrypted data to the system for decryption to obtain NU and TNU.  If Frame 1 

matches the value in the responder’s filter table, the responder has completed half of the 

SMAS for identifying a legitimate user.  If the received filter value FR(0) does not match 
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the responder’s filter values, the responder should block this frame and stop the session.  

Second, equations (9), (10), and (11) are used to derive SUi, MACU(0), fU(0), SU(0), and FU(0).  

Third, generate a timestamp TRF(1), and update the responder’s access filter table for the 

next frame using the previous secret MACR(0) to generate a new MACR(1) from equation 

(12).  fR(1) and SR(1) will be truncated from MACR(1).  fR(1) is a new seed that is used to 

update the responder’s access control filter from FR(0) to FR(1)  using equation (14).  SR(1) 

is a new seed that is used to update the responder’s frame key generation function KRF(t) 

for the next frame [4]. 

h ( ))0(RFMAC [ KR || KU || Ni
 || NINI || MACR(0) || TRF(1)] ≡  MACR(1) ( )12  

MACRF(t) is the generation function for the responder’s frame key.  When t=0, as 

shown in equation (13), MACRF(0) is the secret used by the responder to generate MACR(1) 

to update the access filter from FR(0) to FR(1) for the next frame using equations (12) and 

(14).  KRF(0) and K’RF(0) will be truncated from MACRF(0) with 128 most significant bits 

and 128 least significant bits, respectively.  KRF(0) is a frame key used by the AES to 

encrypt the data.  K’RF(0) is a new key used in HMAC for data integrity. The encrypted 

data, with filter value FU(0) , will be sent to the user after the responder updates the filter 

table. 

h ( ))( jRK [ SRi || SR(0) || TINI
 || NINI || KU || KR] ≡  MACRF(0) ( )13  

FR(1) is a new access control filter value, which is stored in the responder system and 

used for checking the next frame that is sent from the user. 
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h ( ))0(RFMAC [ KU || Ni
 || MACR(1) || TRF(1) || fR(1)] ≡  FR(1) ( )14  

Frame 2   R →  U :  PRid(0), FU(0), EAES(KRF(0)) [Data, TRF(1), KR(j), PUid(1)] 

After the responder has authenticated the user in Frame 1, the master secret key 

for the next session, KR(j) will be sent to the user in this frame.  When the user receives 

Frame 2, three steps are performed: First, check FU(0) to see if it matches the filter value.  

If there is a match, most likely this frame was sent from the responder, and then the 

encrypted data, TRF(1) and KR(j)  can be decrypted using the key KRF(0).  Since the user 

knows the same secrets SRi, SR(0), TINI, KU, and KR as the responder, the user can perform 

the same calculation to derive secret MACRF(0) by using equation (13).  KRF(0)  (128-bit 

AES key) and K’RF(0) (128-bit HMAC key) can be truncated from MACRF(0)  and the user 

is able to decrypt the data using frame key KRF(0)  to obtain the timestamp TRF(1) and KR(j).  

Second, use this secret MACRF(0) and the timestamp TRF(1) to derive MACR(1),  fR(1), SR(1) 

and FR(1) by using equations (12) and (14).  FR(1) is a filter value that will be sent to the 

responder for checking.  SR(1) is a seed used to update the responder’s secret from 

MACRF(0) to MACRF(1).  The user must also store this seed to update and synchronize the 

responder’s secret in the future.  In addition, the user must update the KR; original KR(j-1) 

will be replaced by KR(j).  Third, the user will update the access filter from FU(0) to FU(1) to 

check the next frame.  Two rounds are required to update the access filter:  

First Round: Generate the user’s frame key as follows:  

h ( ))( jUK [ SUi || SU(0) || Ni || NINI || TNU] ≡  MACUF(0) ( )15  
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MACUF(t) is the generation function for the user’s frame key.  When t = 0, as 

shown in equation (15), MACUF(0) is the secret employed by the user to generate MACU(1) 

to update the access filter from FU(0) to FU(1)  for the next frame using equations (16) and 

(17).  KUF(0) and K’UF(0) will be truncated from MACUF(0) with 128 most significant bits 

and 128 least significant bits, respectively.  KUF(0) is a frame key used by the AES to 

encrypt the data.  K’UF(0) is a key used in HMAC for data integrity. The encrypted data, 

with filter value FR(1) , will be sent to the responder after the user updates the filter table. 

Second Round: Calculate the new MAC value and update the access filter as follows: 

  h ( ))0(UFMAC [ KU || Ni
 || NINI || MACU(0) || TUF(1)] ≡  MACU(1) ( )16  

 fU(1) and SU(1) will be truncated from the MACU(1) in the same manner.  fU(1) is a 

seed used to generate a 160-bit user’s access control filter FU(1) using equation (17).  FU(1) 

is a new user’s access filter and is stored in the user’s access filter table for checking the 

next frame.  SU(1) is a new seed that is used to update the user’s secret MACUF(t), from 

MACUF(0) to MACUF(1).  

h ( ))0(UFMAC [ KU || MACU(0) || TUF(1) || fU(1)] ≡  FU(1) ( )17  

After the user identifies the responder, the SMAS for the IPACF protocol is 

completed.  The user will start Dynamic Data Communication Stage (DDCS). 
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4.4 Dynamic Data Communication Stage (DDCS) 

In the DDCS, the filter value is changed with every frame.  Because the responder 

must process a high volume of traffic, the cost of computation at this stage should be less 

than other stages.  This stage is called the dynamic data communication stage because at 

this stage, the user and the responder need not generate the nonce to identify each other. 

The amount of system computation is also less than that required in the SMAS because 

fewer rounds of the hash function are performed for every frame.  To enhance security, 

however, a time-dependent scheme is used at this point to refresh the frame key and 

update the filter for both the user and the responder.  The master key will be also updated 

in the first frame of DDCS. 

In the DDCS, both the access control filter values of the responder and the user 

are changed dynamically in every frame.  The advantage of this approach is that an 

adversary is unable to predict the dynamic access filter value for the next frame.  Only 

the legitimate user and responder that can match access filter values are allowed to use 

system resources.  During the DDCS, the user and responder identify each other 

continuously to match the access filter.  This mechanism prevents both the middleman 

attack and session-hijack because an adversary is unable to guess the filter values and 

frame keys.  If a frame is lost in this stage, a re-transmission by UDP will maintain the 

connectivity.  If a connectionless link is being used, then the SMAS must be carried out 

again to maintain high security for the re-established link.   
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PC
M

C
IA

56K

INSERT THIS END

PUid(1), FR(1), EAES(KUF(0))[Data, TUF(1), KU(j), PRid(1)]  

PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)]   

 PUid(2), FR(2), EAES(KUF(1))[Data, TUF(2), PRid(2)]  

 

Figure 6: The Dynamic Data Communication Stage 

In the DDCS, three steps are required on both sides for responders and users.  

First, check the access filter when a frame is received.  Second, determine the filter 

values on the other side.  Third, update the access control filter for the next frame.  For 

example, the following Frame 3 and 4, are the first and second frames for the DDCS as 

shown in Figure 6. 

Frame 3   U →  R : PUid(1), FR(1), EAES(KUF(0))[ Data, TUF(1), KU(j), PRid(1)] 

In the first frame of DDCS (Frame 3), the responder will perform three steps: 

First verify the FR(1) from the user based on the pseudo ID PUid(1).  If there is a match, the 



 

 35

responder will then decrypt data, TUF(1), and KU(j).  Since the responder knows the same 

secrets SUi, SU(0), TNU, Ni, and NINI as the user, the responder can perform the same 

calculation with the equation (15), which to derive secret MACUF(0).  Then, the responder 

is able to get the frame key KUF(0) and decrypts the data to obtain the timestamp TUF(1) and 

KU(j).  Second, using this secret MACUF(0) and the timestamp TUF(1) to derive MACU(1),  

fU(1), SU(1), and FU(1).  The responder must also update the KU(j), original KU(j-1) will be 

replaced by KU(j) to become the new KU.  Third, the responder will generate a timestamp 

TRF(2) and update the responder’s access control filter from FR(1) to FR(2) and pseudo ID 

from PUid(1) to PUid(2), check the next frame sent from the user using equations (18), (19) 

and (20). Two rounds are required to update the access control filter:  

First Round: the new responder’s frame key generation 

h ( ))( jRK [ SR(0) || SR(1) || KR || KU || TRF(1)] ≡  MACRF(1) ( )18  

MACRF(1) is a new responder’s secret which replaces MACRF(0).  MACRF(1) is used 

by the responder to generate MACR(2) to update the access control filter FR(1) to FR(2) .  

This secret will be truncated into 128-bit KRF(1) and 128-bit K’RF(1).  KRF(1) is used as a 

new frame key for AES to encrypt the data when the frame is sent to the user; K’RF(1) is a 

new key used in HMAC for data integrity. 

Second Round: Calculate the new MAC value and update the access filter 

h ( ))1(RFMAC [ KR || KU || Ni
 || NR || MACR(1) || TRF(2)] ≡  MACR(2) ( )19  
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 fR(2) and SR(2) will be truncated from MACR(2) using the method as shown in 

Figure 3.  fR(2) is a new seed used to update the responder’s access control filter from FR(1) 

to FR(2), as illustrated in equation (20). 

h ( ))1(RFMAC [ KU || Ni
 || MACR(2) || TRF(2) || fR(2)] ≡  FR(2) ( )20  

FR(2) is a new responder’s access filter and is stored in the responder’s access filter 

table for filtering the next frame.  SR(2) is a new seed that is used to update the responder’s  

secret MACRF(1) to MACRF(2). When the responder receives further frames from the user, 

the responder will repeat the same three steps outlined for Frame 3. 

Frame 4   R →  U : PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)] 

After the user receives Frame 4 from the responder, the user then performs these 

three steps: First, checks FU(1) to see if it matches the access control filter value based on 

pseudo ID PRid(1).  If there is a match, the user can verify that this frame was sent from the 

responder, and then pass the encrypted frame to the system for decryption using the 

frame key KRF(1).  Since the user knows the same secrets SR(0), SR(1), KU, KR, and TRF(1) as 

the responder, the user can perform the same calculation with the equation (18) as the 

responder to derive MACRF(1). Then, the user is able to get the frame key KRF(1) to decrypt 

the encryption data and the timestamp TRF(2).  Second, use this secret MACRF(1) and 

timestamp TRF(2) to perform the same calculation with equations (19) and (20) as the 

responder to derive MACR(2),  fR(2), SR(2), and FR(2).  FR(2) is a filter value that will be sent 

to the responder for checking.  SR(2) is a seed used to update the responder’s secret from 

MACRF(1) to MACRF(2).  Third, the user will generate a timestamp TUF(2) and update the 
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user’s access control filter from FU(1) to FU(2) and pseudo ID from PRid(1) to PRid(2) to check 

the next frame sent from the responder using equations (21), (22) and (23). Two rounds 

are required to update the access control filter:  

First Round: the new responder’s frame key generation 

h ( ))( jUK [ SU(0) || SU(1) || KR || KU || TUF(1)] ≡  MACUF(1) ( )21  

MACUF(1) is a new responder’s secret which replaces MACUF(0).  MACUF(1) is used 

by the responder to generate MACU(2) to update the access control filter FU(1) to FU(2).  

MACUF(1) will be truncated into KUF(1) and K’UF(1).  KUF(1) used as a new frame key for 

AES to encrypt the data when the frame is sent to the user; K’UF(1) is a key used in HMAC 

for data integrity. 

Second Round: Calculate the new MAC value and update the access filter 

h ( ))1(UFMAC [ KR || KU || Ni
 || NR || MACU(1) || TUF(2)] ≡  MACU(2) ( )22  

 fU(2) and SU(2) will be truncated from MACU(2) using the method shown in Figure 

3.  fU(2) is a new seed used to update the responder’s access control filter from FU(1) to 

FU(2), as illustrated in equation (23). 

h ( ))1(UFMAC [ KU || Ni
 || MACU(2) || TUF(2) || fU(2)] ≡  FU(2) ( )23  

FU(2) is a new responder’s access filter value and is stored in the responder’s access 

filter table for filtering the next frame.  SU(2) is a new seed that is used to update the 
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responder’s secret from MACUF(1) to MACUF(2). When the user receives further frames 

from the responder, the user will repeat the same three steps outlined for Frame 4. 

4.5 The Summary of the Dynamic Data Communication Stage 

During the DDCS, the frames sent from the user to the responder should appear as 

follows: 

U →  R : PUid(t), FR(t) , E ( ))1( −tUFK [Data, TUF(t), PRid(t)] t = 2, 3… 

Also, the frames sent from the responder to the user should appear as follows: 

R →  U : PRid(t), FU(t) , E ( ))1( −tRFK  [Data, TRF(t), PUid(t+1)] t = 1, 2, 3… 

Generally, during the DDCS, as shown in Figure 7, there are three steps needed 

for both the user and the responder.  The user and the responder check the filter values 

when they receive the frames. If the filter value matches, then the new filter value is 

calculated to address the other side’s filter. Next, they update their access control filters 

for filtering the next frame.  If an administrator determines that an adversary is unable to 

capture and replay the filter value at the frame speed, then the filter values may be 

changed for multiple frames instead of every frame.  However, in a high security 

environment, the filter values should be changed for every single frame.  
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PUid(1), FR(1), EAES(KUF(0))[Data, TUF(1), KU(j), PRid(1)]  

PRid(1), FU(1), EAES(KRF(1)) [Data, TRF(2), PUid(2)]   
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  PRid(2), FU(2), EAES(KRF(2)) [Data, TRF(3), PUid(3)] 

  PUid(3), FR(3), EAES(KUF(2))[Data, TUF(3), PRid(3)] 

 

Figure 7: The Overview of Dynamic Data Communication Stage 

Three steps for a user: 

First step: When a legitimate user receives the frame from a responder, the user 

compares it with the access control filter FU(t) to see if there is a match using pseudo ID 

PRid(t).  If the filter value matches the access filter value, the user will pass the encrypted 

data to the system for decryption, and then the system can derive the data and timestamp 

TRF(t+1).  Second step: Calculate the responder’s access control filter using equations (27), 

(28) and (29).  fR(t+1) and SR(t+1) will be truncated from MACR(t+1) using the same 
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technique shown in Figure 3. fR(t+1) is a new seed used for the user to calculate the 

responder’s access control filter FR(t+1) using equation (29).  FR(t+1) is a filter value sent 

with the user’s encrypted data frame to the responder for checking so the encrypted data 

will be allowed in the responder’s system.  SR(t+1) is a seed that must be stored in the user 

side for calculating the responder’s secret MACRF(t+1). The same method employed for 

the responder with equation (27) needs to be used.  This secret must also be stored on the 

user side for decrypting the next encrypted frame sent from the responder.  KRF(t+1) and 

K’RF(t+1) will be truncated from MACRF(t+1).  KRF(t+1) is the frame key used by the user to 

decrypt the data and K’RF(t+1) is the key for the data integrity.  Third step: Generate a 

timestamp TUF(t+1), and update the user’s access filter from FU(t) to FU(t+1)  and pseudo ID 

PRid(t) to PRid(t+1) for checking the next frame.  Two rounds are required to update the 

access filter: 

First Round: Frame key Generation Function 

h ( ))( jUK [ SU(t-1) || SU(t) || Ni || NINI || TUF(t)] ≡  MACUF(t) , t = 1, 2, 3… ( )24  

MACUF(t) is the generation function for the user’s frame key. It is an input key 

used by the HMAC to generate the new MAC value MACU(t+1) in equation (25) and to 

update the dynamic access control filter in equation (26). KUF(t) and K’UF(t) will be 

truncated from MACUF(t).  KUF(t) is the frame key used by the user to encrypt the data and 

K’UF(t) is the key for the data integrity.  Every frame has a unique frame key. 
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Second Round: Calculate the New MAC value and Update the User’s Filter 

h ( ))( tUFMAC [ KU || Ni
 || NINI || MACU(t) || TUF(t+1)] ≡  MACU(t+1) , t = 1, 2, 3… ( )25  

fU(t+1) and SU(t+1) will be truncated from MACU(t+1) using the same technique as 

shown in Figure 4.  fU(t+1) is a new seed used to update the user’s access control filter 

from FU(t) to FU(t+1) as illustrated in equation (26).  SU(t+1) is a seed used for the frame key 

generation function to update the secret from MACUF(t) to MACUF(t+1). 

h ( ))( tUFMAC [ KU || MACU(t+1) || TUF(t+1) || fU(t+1)] ≡  FU(t+1) , t = 1, 2, 3… ( )26  

FU(t+1) is used to replace the previous filter value FU(t) and is stored in the user’s 

filter table for checking the next frame sent from the responder.  

Three steps for a responder: 

First step: When a responder receives the frames from a user, the responder 

checks the access control filter FR(t) to see if there is a match using pseudo ID PUid(t).  If 

the received frame matches the access control filter value, the responder will pass the 

encrypted data to the system for decryption, and then the system can derive the data and 

timestamp TUF(t+1).  Second step: Calculate the user’s access filter using equations (24), 

(25) and (26).  fU(t+1) and SU(t+1) will be truncated from MACU(t+1) using the same 

technique shown in Figure 4.  fU(t+1) is a new seed used by the responder to calculate the 

user’s access control filter FU(t+1) using equation (26).  FU(t+1) is a filter value sent with 

the responder’s encrypted data frame to the user for checking. SU(t+1) is a seed that must 

be stored in the responder side for calculating the user’s secret MACUF(t) via the same 



 

 42

method employed for the user, i.e. equation (24).  This secret must also be stored in the 

responder side for decrypting the next encrypted frame sent from user.  KUF(t) and K’UF(t) 

will be truncated from MACUF(t).  KUF(t) is the frame key used by the responder to decrypt 

the data and K’UF(t) is the key for the data integrity.  Third step: Generate a timestamp 

TRF(t+1), and update the responder’s access control filter from FR(t) to FR(t+1) and pseudo ID 

PUid(t) to PUid(t+1)for checking the next frame.  Two rounds are needed to update the access 

control filter: 

First Round: Frame key Generation Function 

h ( ))( jRK [ SR(t-1) || SR(t) || KR || KU || TRF(t)] ≡  MACRF(t) , t = 1, 2, 3… ( )27  

MACRF(t) is the generation function for the responder’s frame key.  KRF(t) and 

K’RF(t) will be truncated from MACRF(t).  KRF(t) is the frame key used by the responder to 

encrypt the data and K’RF(t) is the key for the data integrity.  Every frame has a unique 

frame key.  MACRF(t) is an input key for the HMAC to generate the new MAC value 

MACR(t+1) in equation (28) and to update the dynamic access filter in equation (29). 

Second Round: Calculate the New MAC value and Update the Responder’s Filter 

h ( ))( tRFMAC [ KR ||KU || Ni
 || NINI || MACR(t) || TRF(t+1)] ≡  MACR(t) , t = 1, 2, 3… ( )28  

fR(t+1) and SR(t+1) will be truncated from MACR(t+1) using the same method 

illustrated in Figure 3.  fR(t+1) is a new seed used to update the responder’s access control 

filter from FR(t) to FR(t+1) using equation (29).  SR(t+1) is a seed used by the frame key 

generation function in updating the secret from MACRF(t) to MACRF(t+1).  
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h ( ))( tRFK [ KU || Ni
 || MACR(t+1) || TRF(t+1) || fR(t+1)] ≡  FR(t+1) , t = 1, 2, 3… ( )29  

FR(t+1) is used to replace the previous filter value FR(t) and is stored in the responder’s 

filter table for filtering the next frame sent from the user. 

4.6 Privacy Protected Filter Exchange 

After the ICS, the responder will be able to generate FR(0),  and the FR(0) for each 

user (initiator) will be stored in the responder’s system.  When the user wants to initiate 

the SMAS, the user will send over the corresponding FR(0).  The responder will have to 

find out which user is trying to perform SMAS.  The responder will compare the FR(0) (as 

a function of PUid) with the filter table to see if there is a match.  If there is a match, the 

responder will be able to know the user’s identity and correspond with KU, Ni, NINI, and 

TINI.  What was described above introduces the privacy-protected feature of the IPACF 

protocol.  With the user identity hidden in the filter value and pseudo ID, which sent in 

plaintext for the stateless entry in SMAS, no one will be able to know which user 

initiated SMAS except the responder.  After the user finishes SMAS, the responder will 

need to update the FR(t) (t=1, 2, 3…etc.) for the DDCS and the FR(0) for the next session.  

The user will need to update the FU(t) (t=1, 2, 3…etc.) for the DDCS and generate FR(0) 

for the next session.    

The pseudo code algorithm to store and update for both the pseudo ID and filter 

value table on the responder side in ICS, SMAS, and DDCS is as follows:  
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m;              // maximum number of users 

n;             // number of users 

PUid [m]; // pseudo ID table 

FR [m];                       // filter value table  

// initialization 

for( i = 0; i < m; i++){ 

 PUid [i] = i; 

} 

j = m            // j is for available positions 

// When a user registers and Do Loop will run for each user 

For(k = 0; k < n-1; k++) { 

random # = rand() ;        // generate random #   

New Pid = random # mod j;        // new pseudo ID index  

j = j – 1;  // decrease the user size 

// shift the Pseudo ID table 

for( i = New Pid;  i < j-1 ; i++){ 

 PUid [i] = PUid [i+1];  

} 

FR [New Pid] = initial filter value;         // store initial filter value 

} 
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Do while(a user sends in a message) 

// When a user sends in a message 

IndexPUid;                                                      // the pseudo ID for the current user 

random # = rand();                                        // generate random #   

New Pid = random # mod j   ;                 // new pseudo ID index  

// shift the Pseudo ID table 

for( i = New Pid;  i < j-1 ; i++){   

PUid [i] = PUid [i+1]; 

} 

FR [New Pid] = updated filter value;                // store updated filter value 

PUid [j-1] = IndexPUid;                                      // add the used pseudo ID back to table 

 

Two tables are created for pseudo IDs and the filter values using arrays.  The filter 

value table uses the pseudo ID as an index to store each filter value for a specific user.  

The pseudo ID table will be initialized as the index of the array with m maximum number 

of users.  When n new user registers, the responder generates a random number and uses 

the remainder of the random number divided by j (mod j) as the new pseudo ID for each 

new user.  The pseudo ID that is used is removed from the table by the responder and the 

j available positions for the next new user are updated by shifting up the pseudo ID table.   

When a legitimate user sends in a message, the responder updates the registered 

user’s pseudo ID and filter value for the next frame in SMAS and DDCS as follows.  The 

responder generates the new pseudo ID for the user by using the same technique in ICS, 

removes the new pseudo ID from the available pseudo ID array by shifting up the pseudo 
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ID table, updates the filter value table for the new pseudo ID, and attaches the previous 

pseudo ID to the end of the pseudo ID array to ensure that the previous pseudo ID is 

available for other users. The same algorithm can be used on a user side.  

Figure 8 shows the flowchart of updating filter value by both responder and user 

where F(t, Pid(t)) is either FR(t, PUid(t)) or FU(t, PRid(t))  .  After the responder receives the 

filter value F(t, Pid(t)) from a user, the responder will compare the filter value by 

comparing the filter value table by using the pseudo ID.  If the filter value F(t, Pid(t)) is 

found, the responder will find the new pseudo ID for the filter value F(t+1, Pid(t+1)) and 

insert the filter value F(t+1, Pid(t+1)), and then the filter value F(t, Pid(t)) will be deleted 

from the filter value table.  The user conducts similar operations as the responder.  

 

Figure 8: Filter Value Table Update Flowchart
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CHAPTER FIVE 

IMPLEMENTATION AND PERFORMANCE EVALUATION 

5.1 Implementation 

IPACF protocol has been implemented in Linux systems. The software is 

implemented, compiled, and run in an IBM ThinkPad T42 with a Pentium M processor 

running at 1.7 GHz, with a L2 cache of 2MB, 512 MB of main memory and connecting 

with CAT 5e cable to 100BASET Ethernet switch.  IPACF protocol can also be split into 

a dual servers design as shown in Figure 9.  With a dual server design, the server 1 can 

filter out the packets for legitimate users and route the legitimate requests to Server 2.  

Server 1 listens for connections from the user on specific port number, which allows only 

the legitimate packets to go through to Server 2 by comparing the received filter value 

based on pseudo ID.  Server 1 rejects the packet right away if the filter value does not 

match; otherwise, it routes the packets to Server 2.  The Server 2 provides the service that 

generates the new filter value, then updates the filter value and sends it back to legitimate 

users through Server 1.   

When Server 1 receives a packet, Server 1 compares the filter value with the filter 

value table alone with the pseudo ID.  If there is a match, Server 1 can obtain the hidden 

user ID from the filter table and routes the packet with the user ID to Server 2; otherwise, 

the packet is dropped.  If the received packet is legitimate, Server 1 sends the packet to 
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Server 2 that performs the SMAS stage.  Server 2 updates the filter value for the specific 

user and updates the pseudo ID to ensures that the user real identity is hidden with four 

steps: first, generate the new pseudo ID, and the filter value is updated from the filter 

value table; the computation costs O(1) to update.  Second, Server 2 removes the original 

filter value from the filter value table; the computation costs O(1) to remove.  After 

Server 2 completes filter value update, it sends the updated filter value with the new 

pseudo ID to Server 1.  Server 1 then updates the filter value table in order to maintain its 

current status. 

In a DoS/DDoS attack, the attacker attempts to make network services unavailable 

by flooding the authentication server in the network with numerous requests.  The CPU 

usage eventually reaches its maximum and the server service becomes unavailable.  A 

dual server design can improve request response time using Server 2 to calculate filter 

values and frame key so that Server 1 only performs the comparison of filter values.  In 

this paper, we will demonstrate the IPACF protocol with both single server and dual 

server and conduct the comparison for the performance evaluation. 
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 subnet #1 
192.168.1.0 

 subnet #2 
131.204.128.0 Server 1 Server 2

User Attacker AttackerAttacker

IPACF Dual Server Design

192.168.1.100 192.168.1.101 192.168.1.102 192.168.1.103 

NIC #2: 131.204.128.1 
131.204.128.2 NIC #1: 192.168.1.1 

 

Figure 9: Diagram with dual servers design 

IPACF protocol is implemented in RedHat Linux 9.0, using gcc and g++ compiler 

with Crypto++ Library.  Crypto++ Library is a free C++ class library of cryptographic 

schemes.  Integrity uses hash function HMAC with SHA1 keyed-hash and confidentiality 

uses AES are tested.  In this experiment, we use 128 bits for both key size and block size 

in AES.  

5.2 Performance 

5.2.1 Performance in authentication 

The server accepts the packet from a user and verifies the filter value.  If the 

corresponding filter value of the user matches, the server will perform the SMAS.  

During the SMAS stage, after the server verifies the filter value, the server has 

authenticated the user.  The server will decrypt the secrets, which are the time stamp and 

nonce, sent by the user to perform the same calculation for the user to authenticate the 
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server.  The server will send the filter value, time stamp, and the master secret key KR(j) 

back to the user, and allow the user to verify the filter value and update the server secret 

master key from KR(j) to KR(j+1).  After the user authenticates the server by comparing the 

filter value sent by the server, the SMAS is completed, and the filter value FR(0)  will be 

updated for the DDCS and for next session login.  Figure 10 and Figure 11 show the 

session mutual authentication for the responder and the user, respectively.  The averaged 

wired authentication time for the responder in SMAS is 4.2003 millisecond (ms) while 

IDF needs 181.55 ms, IPACF needs only 2.31% authentication time of IDF in wired links; 

the averaged wireless (using 802.11b instead of Ethernet) authentication time for the 

responder in SMAS is 9.12124 ms while IDF needs 189.37 ms, IPACF needs only 4.86% 

authentication time of IDF in wireless links.   
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Figure 10: The SMAS for the responder 
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Figure 11: The SMAS for the user 

5.2.2 Performance in DoS attacks 

When a hacker performs an attack to the server, we can see the screen capture in 

which packets get rejected by the server after the verification of the filter value is failed 

as shown in Figure 12.  When a legitimate user tries to get authenticated by the server 

while attackers are trying to perform the attacks to the server, we can see the rejected 

messages from the server.  When the attack is performed, the server shows the “Login 

Failed” message after comparing the filter value that does not match.  When the SMAS is 

performed successfully for the legitimate user, we can see “Filter Value Matches” in 

Figure 12.  
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Figure 12: User performs SMAS to the responder while attackers perform DoS attack 

As shown in Figure 13, the averaged rejection time as a function of the number of 

attacking PCs is defined as the time between an attacker sends out Frame 1 and receives 

the rejection from the server.  Both IPACF and IDF have an averaged reject time 5.90 ns 

(nanoseconds) by the responder. 
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Figure 13: Comparison chart of IPACF and IDF in averaged rejection time 

5.2.2 Performance in dual server over single server  

 In our experiments, the dual server needs only 5.4% authentication time of single 

server while a number of attackers are performing attacks as shown in Figure 14.  
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Figure 14: Comparison chart of dual server vs single server in average round trip time 
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5.3 Interoperability of IPv4 (user application) and IPv6 (responder)  

The IPACF implementation is designed to be compatible with IPv6 networks, a 

server code is bound to the IPv6 address and the server will be able to accept connections 

from IPv4 and IPv6 clients.  When an IPv4 client is connecting to the IPv6 server, the 

dual stack kernel converts the client IPv4 address to the IPv4-mapped IPv6 address since 

the IPv6 server can only deal with IPv6 connections.  When porting to IPv6, most of 

changes will be made in the transport module, which is User Datagram Protocol that is in 

charge of establishing communications to remote nodes.  If the IPACF implementation is 

changed to IPv6, only the transport module should be modified.  Figure 15 and Figure 16 

show the difference between UDP and UDP6 socket.  The inet6 family is an IPv6 version 

of inet4 family.  While inet4 implements Internet Protocol version 4, inet6 implements 

Internet Protocol version 6.  inet6 is a collection of protocols layered atop the Internet 

Protocol version 6 (IPv6) transport layer, and utilizing the IPv6 address format.  

UDP/UDP6 is used to support the SOCK_DGRAM abstraction (UDP) in inet6 family 

that provides access to the IPv6 protocol.   

Each protocol-specific data structure is designed to carry the addresses for each 

protocol, so it can be cast into a protocol-independent data structure - the "sockaddr" 

structure.  The sockaddr_in structure is the protocol-specific address data structure for 

IPv4; the sockaddr_in6 structure is the protocol-specific address data structure for IPv6.  

They both pass addresses between applications and the system in the socket programming 

functions.  A new address family name, AF_INET6, distinguishes between the original    

AF_INET sockaddr_in address data structure and the new sockaddr_in6 data structure.  

The sin6_port field contains the 16-bit UDP port number.  This field is used in the same 
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way as the sin_port field of the sockaddr_in structure and the port number is stored in the 

network byte order.  Applications use in6addr_any similarly to the way that they use 

INADDR_ANY in IPv4.  In Figure 15, the server creates a sockaddr_in structure with 

AF_INET family, which contains its source IPv4 address to bind the socket to port 

number 32000.  In Figure 16, the server creates a sockaddr_in6 structure with AF_INET6 

family, which contains its source IPv6 address to bind the socket to port number 32000.   

 

Figure 15: UDP socket 

 

Figure 16: UDP6 socket 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORKS 

In this thesis, we introduced an identity-based privacy-protected access control 

filter (IPACF) to solve DoS/DDoS problems. The IPACF protocol provides the following 

unique properties. 

• The IPACF filter is based on the legitimate users’ identities, which is hidden in 

the filter values that are generated by the pre-shared secrets, nonce, timestamp, 

user ID and password. 

• The IPACF filter value varies with every frame for both responder and user to 

prevent sniffing attacks. 

• A filter value table is initialized for both users and responder during ICS. The 

identities of both users and responder are tabulated with pseudo ID in the filter 

value table. 

• The privacy of both user and responder is guarded by the one-time filter value, 

which is the temporary equivalent identity that is accessible in the communication.  

Only the legitimate user and responder can figure out the identity from the filter 

value table. 

• The IPACF protocol is stateless because the input filter value is checked against 

the filter table without creating a state unless the filter value is legitimate.  When a
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legitimate filter value is received, a new state is created by calculating the new 

filter value for the next frame.  When a legitimate filter value comes in, a sorted 

filter value table is maintained by deleting the old filter value, searching the new 

index for the new filter value and inserting it into the filter table. 

• The stateless property provides the capability to resist DoS/DDoS attacks. 

The IPACF protocol ensures a secure update for both user and responder session 

master key KR(j) and KU(j).  A pairwise key KR exists for each user so that a user cannot 

pretend to be a responder.   

Future research direction is proposed as follows.  In PKI ((Public Key Infrastructure) 

authentication protocols, a server must use the system resources to compute and store a 

hash, it makes the DoS/DDoS attack feasible [12].  When a web server integrates with the 

IPACF protocol, the web server immediately turns into an application server to offer safe, 

secure information exchange to registered/legitimate clients.  The implementation of PKI 

that combined with IPACF to defend against DoS/DDoS attacks is via web server and 

client certificates.   

There are three steps during the initial configuration stage in a secured channel such 

as a SSL (Secure Socket Layer) channel.  First, a client and the web server exchange their 

certificates via a SSL channel.  Second, a client generates the master secret key KU using 

equation (30) without a user ID and a password, using its private key KPU instead, 

encrypts KU and Ni with the web server’s public key, and then sends the encrypted 

information to the web server.  Third, after the web server receives the encrypted 

information, it will decrypt the received information using its private key KPR.  The web  

 



 

 59

server will generate the master secret key KR using equation (31) without a responder ID 

and a password, using its private key KPR instead, encrypts KR, TINI and NINI with the 

client’s public key, and then sends the encrypted information back to the client.  Since 

most of users do not have a certificate, as an alternative, a user can use a user ID and a 

password instead of a private key as shown in equation (1).  

KU = h ( )uiN [ KPU || Tu || Nui
 ] ( )30  

KR = h ( )RiN [ KPR || TR || NRi
 ] ( )31  

After the initial configuration stage, the client will be able to perform authentication 

with the web server.  The authentication scheme will be stateless for both client and web 

server to against DoS/DDoS attacks.  The initial configuration stage will not need to be 

performed unless it is necessary for a new client to register.  The session key will be 

generated for any further authentication. 

The web server uses the authentication and encryption/decryption services of IPACF 

and can securely communicate with clients, which will be able to use the server-side 

resources.  The IPACF protocol provides compatibility with the PKI schemes to prevent a 

DoS/DDoS attack.  
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