USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER

(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Except where reference is made to the work of others, the work described in this
thesis is my own or was done in collaboration with my advisory committee.
This thesis does not include proprietary or classified information.

Chun-Ching Andy Huang

Certificate of Approval:

J. David Irwin
Professor
Electrical and Computer Engineering

Chwan-Hwa Wu, Chair
Professor
Electrical and Computer Engineering

Fa Foster Dai
Associate Professor
Electrical and Computer Engineering

Stephen L. McFarland
Acting Dean
Graduate School

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER
(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

A Thesis
Submitted to
the Graduate Faculty of
Auburn University
in Partial Fulfillment of the
Requirements for the
Degree of

Master of Science

Auburn, Alabama
August 7, 2006

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER
(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon request of individuals or institutions and at their expense. The author reserves all
publication rights.

Signature of Author

Date of Graduation

11

VITA

Chun-Ching Andy was born in December 1978, in Taipei, Taiwan. He graduated
with Bachelor of Science degree in Computer Science from University Of British
Columbia, Vancouver, Canada in 2003. Chun-Ching Andy Huang then entered Graduate

School, Auburn University, in January 2004.

v

THESIS ABSTRACT

USING IDENTITY-BASED PRIVACY-PROTECTED ACCESS CONTROL FILTER
(IPACF) TO AGAINST DENIAL OF SERVICE ATTACKS

AND PROTECT USER PRIVACY

Chun-Ching Andy Huang

Master of Science, August 7, 2006
(B.S., University Of British Columbia, Canada, 2003)

75 Typed Pages

Directed by Chwan-Hwa Wu

Denial of service (DoS)/Distributed DoS (DDoS) attack is an eminent threat to an
authentication server, which is used to guard access to firewalls, virtual private networks
and wired/wireless networks. The major problem is that an authentication server needs to
verify whether a request is from a legitimate user and if intensive computation and/or
memory resources are needed for verifying a request, then DoS/DDoS attack is feasible.
In this thesis, a new protocol called Identity-Based Privacy-Protected Access Control
Filter (IPACF) is proposed to counter DoS/DDoS attack. This protocol is an
improvement of IDF (Identity-Based Dynamic Access Control Filter). The proposed

protocol is stateless because it does not create a state for an authentication request unless

the request is from a legitimate user. Moreover, the IPACEF is stateless for both user and
authentication server since a user and responder authenticate each other. A filter value,
which is generated by pre-shared secrets, is sent in a frame and checked to see if the
request is legitimate. Note that the process of checking filter value is not intensive
computation. The filter value is tabulated in a table with user identity so that a filter
value represents a user’s identity and only the legitimate user and authentication server
can figure out the identity. When a filter value is from a legitimate source, a new filter
value will be generated for the next frame. Consequently, the filter value is changed for
every frame. Thus the privacy of both user and server are protected.

The IPACF is implemented for both user and authentication server. The
performance of the implementation is reported in this thesis. In order to counter more
DoS/DDoS attacks that issue fake requests, parallel processing technique is used to
implement the authentication server, which is divided into server 1 and server 2. Server 1
only checks the validity of the request filter value against the filter value table. If the
request is legitimate, the request will be passed to server 2 for generating a new filter
value; otherwise, the fake request is rejected by server 1. The performance comparison

of dual server and single server is also reported.

vi

ACKNOWLEDGMENTS

This thesis could not be done without the following individuals. First, I would like
to thank my major advisor Dr. Chwan-Hwa Wu. Dr. Wu gives me great learning
experiences. | could not finish this thesis with his guidance during my research. He also
turns me into a more mature person. Second, I would like to thank Dr. J. David Irwin for
giving me the great opportunity to be here and full support of my Master study. He
always encourages me on my researches. I would also like to thank Dr. Fa Dai. He
always concerns about my research every time we meet and gives me some feedbacks.

For the past two years of study in Auburn University, it’s really a pleasure to be
part of the research lab. Finally, I would like to dedicate this thesis to my parents Shun-
Ming Huang and Chin-Hui Kao, my brother Chun-Ju Huang, and my fiancée Szu-Hua

Chen for their continuously support and endless love.

Vil

Style manual or journal used: Bibliography conforms to the Institute of Electrical

and Electronics Engineers

Computer software used: Microsoft Word 2003, Microsoft Visio 2003

viil

TABLE OF CONTENTS

TABLE OF CONTENTS. ... e ix
LIST OF FIGURES Xi
LIST OF TABLES. ...t Xii
CHAPTER ONE. ... e 1
INTRODUCTION. ...t e e e e e 1
I.1 Current Problem.........cooiiiii 1
1.2 Motivation of the Proposed IPACF protocol..............ccooiiiiiiiiiiiiiiiiien, 2
1.3 Organization Of the Thesis.........cooiiiiiiiii e, 3
CHAPTER TWO ..o 5
RELATED WORK S e, 5
2.1 Denial of Service (DOS)......viiiiiii i 5
2.2 CUITeNt TESEATCH.ttt 6
CHAPTER THREE. ... e 10
PROTOCOL DESIGN ...ttt e 10
3.1 The Basic Concept of the Filter...............ooooiiiiiiiii 10
3.2 Design PrinCIPI. . .vet ittt e 12
CHAPTER FOUR e 15
THE IDENTITY-BASED PRIVACY-PROTECTED........cccciiiiiiiiiiiiiieen 15
ACCESS CONTROL FILTER (IPACF) PROTOCOL.......cccvviiiiiiiiiiiiiiiiee 15
4.1 Notation for Identity-Based Privacy-Protected Access Control Filter.............. 15
4.2 Initial Configuration Stage............ovuiiniiiiiiii e 17

4.2.1 Master keys and pre-shared secrets generation...............cceevvenveenennn 17

4.2.2 Initial Filter Setup in a Responder as a Filter Table........................... 19
4.2.3 User Login and Master Key Renew................cooooiiiiiiiiiiiininn.. 23
4.3 Session Mutual Authentication Stage (SMAS).......ccooiiiiiiiiiii e 26

1X

4.4 Dynamic Data Communication Stage (DDCS)......ccccoooviiiiiiiiiiiiiiiiiii.. 32

4.5 The Summary of the Dynamic Data Communication Stage......................... 38
4.6 Privacy Protected Filter Exchange............ccoooiviiiiiii i, 43
CHAPTER FIVE. . .o 47
IMPLEMENTATION AND PERFORMANCE EVALUATION..........ccoviiiiiine... 47
5.1 IMPlementation.ooueinii it 47

5.2 PerfOormance.o.ouuiiiiiii i 49
5.2.1 Performance in authentication................cooeiiuiiiiiiiiiii i, 49

5.2.2 Performance in DoS attacks...........c..cooeviiiiiiiiiiiiice 52

5.2.3 Performance in dual server over single Server................oooveieennnnn 54

5.3 Interoperability of IPv4 (user application) and IPv6 (responder)............cc.u........ 55
CHAPTER SIX ..ttt 57
CONCLUSIONS AND FUTURE WORKS.o 57
BIBLIOGRAPHY ...t e 60

LIST OF FIGURES

Figure 1: The Concept of Identity-Based Privacy-Protected Access Control Filter....... 11
Figure 2: Identity-Based Privacy-Protected Access Filter (IPACF) Overview............. 13
Figure 3: The Responder’s Truncated Function................ooooiiiiiiiiiiiiiinnnn.. 21
Figure 4: The User’s Truncated FUNCHON.ooiiiiiiiiiiiiie 28
Figure 5: Session Mutual Authentication Stage OVerview............coevveiiniininianinn.. 29
Figure 6: The Dynamic Data Communication Stage............covviiiuiieiiniiinnnnenn... 34
Figure 7: The Overview of Dynamic Data Communication Stage..................c....c.... 39
Figure 8: Filter Value Table Update Flowchart....................o 46
Figure 9: Diagram with dual servers design.............ccooviiiiiiiiiiiii e, 49
Figure 10: The SMAS for the responder.............oovviiiiiiiiiiii e, 51
Figure 11: The SMAS for the USeT.........vviuiiiiii e, 52

Figure 12: User performs SMAS to the responder while attackers perform DoS attack 53
Figure 13: Comparison chart of IPACF and IDF in averaged rejection time............... 54
Figure 14: Comparison chart of dual server vs single server in average round trip time.. 54
Figure 15: UDP SOCKET. ...cuuuititi it 56
Figure 16: UDPO SOCKEL.ouiiiii e, 56

X1

LIST OF TABLES

Table 1: Responder’s Dynamic Access Filter Table...................oooooiiiiiiii..
Table 2: User’s Dynamic Access Filter Table..............cooooiiiiiiiiiiiiiiiiiiienn

X1l

CHAPTER ONE

INTRODUCTION

Authentication server is widely used to guard wireless access points, virtual private
networks, firewalls and so on. Denial of service (DoS) or distributed DoS (DDoS) attacks
floods the authentication server with fake packets and causes the server to exhaust its
resources for processing fake packets. When the resources of the authentication server is
exhausted, legitimate user’s authentication requests can not be responded.

In this thesis, we propose a stateless authentication protocol, which allows the
authentication server to check if the request is from a legitimate user and to commit
computational resources only if the request is legitimate. This protocol protects the
resources of an authentication server so that the resource consumption of DoS/DDoS

attacks 1s minimized.

1.1 Current Problem

The advancement in wireless network technology provides wireless access networks
to the Internet. Authentication servers are used to defend the wireless access networks.
Attackers can easily launch DoS/DDoS attacks to authentication servers and can disable
the wireless access networks. The current 802.1x [1] and 802.11i [2] standards both still

lack the ability to prevent the DoS/DDoS attacks to authentication servers and wireless

access points. Firewalls and virtual private networks suffer the same drawback that
DoS/DDoS can easily halt the authentication functions [3].

The major problem of DoS/DDoS attack is that the authentication server (or
responder) needs to validate that the request is from a legitimate user (or initiator).
However, the authentication server only has a limited CPU computation power and
restricted amount of memory. When attackers initiate sufficient requests, the
authentication server cannot respond to legitimate requests. It is necessary to minimize
the resource committed to a request before verifying the request is from a legitimate
source.

Ingress and egress filters based on IP address have been suggested to counter
DoS/DDoS attacks. But a legitimate source IP address can be spoofed to launch
DoS/DDoS attacks by sniffing the communication frames between the legitimate user

and authentication server.

1.2 Motivation of the Proposed IPACF protocol

To address the current problems, a protocol called Identity-Based Privacy-Protected
Access Control filter (IPACF) is proposed. An identity based filtering is used instead of
an IP address-based filtering. The IPACF is based on pre-shared secrets that are known
by a user (initiator) and an authentication server (responder). Both user and responder
generate a unique (one-time) filter value for each communication frame using pre-shared
secrets. Only the user and responder have the necessary secrets to calculate the filter
values. The filter value can be checked to make sure that the value is from a legitimate
source. If the filter value is correct, then a new filter value is generated for the next frame;

otherwise, the received frame is rejected.

Follow the concept of a stateless protocol “Do not create any state or do
expensive computation before you can ensure that the received frame is legitimate.” the
concept of stateless server and stateless connection was proposed to defend against DoS.
If the server authenticates the user and verifies the user’s filter value without keeping
states, the authentication scheme will be stateless. Moreover, the protocol is stateless
since a frame with an incorrect filter value is only checked and no other computation
resource is committed. Only when the frame has a legitimate filter value, then resource
will be committed for calculating next filter value.

The privacy of the identity relies on the one-time filter value and the pseudo ID
which are an indication of the user identity. Furthermore, the IPACF can prevent session
hijacking, dictionary attacks and man-in-the-middle attacks using the secure master key

exchange.

1.3 Organization of the Thesis

This thesis is divided into six chapters. The first chapter provides the background
information that is necessary to understand the rest of the work. The remaining chapters
are organized as follows.

In Chapter 2, we present the related work and current research to show the
importance of proposed IPACF protocol. In Chapter 3, we propose a concept and the
design goals for the new IPACF protocol. We also point out a couple of disadvantage
and drawbacks about Wang’s IDF protocol [4]. In Chapter 4, we explain the details of
how the proposed IPACF protocol creates a truly stateless protocol environment and

defends against DoS/DDoS attacks. In Chapter 5, we implemented and simulated

Wang’s IDF protocol in the real-world implementation. We also describe the
implementation and performance of the IPACF protocol and compare it with Wang’s IDF
protocol; the compatibility of the IPACF protocol in IPv6 network is also described.

Chapter 6 contains the conclusions and suggestions for future work.

CHAPTER TWO

RELEATED WORKS

2.1 Denial of Service (DoS)

The objective of DoS attack is to degrade services by flooding a network with
faulty beacons, preventing legitimate traffic and causing systems not to respond. Denial
of service relies on methods that exploit the weaknesses of the network and attempts to
reduce the ability of a responder to service users [5].

DoS can be achieved by either overloading the ability of the target network, that
causing a responder to neglect incoming traffic, or by sending network packets that
causing target networks to behave unpredictably and crash. For example, one common
form of DoS is Ping of Death, which generates and sends certain kinds of network
messages that are technically unsupported but known to cause problems for systems that
receive them. Other DoS attacks may simply "flood" a network with useless data traffic,
rendering systems incapable by pretending as legitimate users. The main problem is:
when a responder receives a request that requires verifying the request using system
resources, the computation and memory storage gives an adversary a chance to launch a

DoS attack.

2.2 Current research

DoS attacks continue to be a critical threat. They can intervene critical services,
prevent data transfer between devices, and decrease overall productivity. Because DoS
attacks can be extraordinarily costly and harmful to internetworking environment,
networks must proactively counteract these attacks. Authentication is a significant issue
in establishing secure communication between the users and responders by identifying
each other prior to accepting each other’s frames. Several works [8-14] have been
proposed to prevent DoS attacks and to improve the security or the computational
performance based on public-key signatures authentication scheme. Two password-
based integrated schemes for user authentication and access control was proposed by Jan
and Tseng [13], defined as the JT-1 and the JT-2 schemes, to administer the security
administration functions with respect to both the computational cost and the
communicational overhead efficiency. But both the JT-1 and the JT-2 schemes are not
secure against an impersonation attack, an adversary can successfully fool the system to
act as any other legitimate user, and take over all access rights granted to that user
without being detected [14]. W. Aiello et al [8] provides a capability for perfect forward
secrecy in order to efficiently defend against DoS attacks. Although the public-key
signatures scheme can provide a certain level of security to resist a DoS attack, it is still
vulnerable to DoS attacks on the first and third message flows [8][10]. Since the first
flow is sent in clear text, the adversary can sniff the legitimate user’s identity and then
spoof it to become a legitimate user and pass the identity check from the server. This
process could lead to a DDoS attack. If the server need not check the identity of the user

like J. Leiwo’s scheme [10], the adversary can randomly generate a request nonce to the

server for launching a DoS attack. This will cause the responder very busy in processing
the spoofed requests sent from an adversary and has limited ability for legitimate users.
In the third flow, the public-key signatures authentication scheme must verify the
authenticity of the returned data that is sent from the legitimate uses. This step is
vulnerable to a DoS attack, because an adversary can send out a plethora of faked
signatures to the server for verification that will require system resources and cause
buffer overflow. Zhiguo et al [12] proposed a PKC (Public Key Cryptosystem) based
protocol which was combined with [8]’s key exchange protocol JFKi. The user identity
protection has been added but this protocol is susceptible to DoS attacks on the first
message flow that the nonce generated by the client and sent in clear text to the server.
This message is not authenticated and could be sent by attackers to perform DoS attacks.
DoS detection techniques has been brought up to reduce the threats [15][16]. These
techniques and testing results provides insight into our ability to successfully identify
DoS flooding attacks. But none completely solve the detection problem.

The client puzzle is another technique that users are required to do a considerable
amount of computation before consuming resources. The first client puzzle was used to
defend against connection depletion attacks proposed by Juels and Brainard [6]. A user
must solve the puzzle correctly in order to get service from a responder. Client puzzles
were also proposed to similarly protect authentication protocols [7], which combined the
stateless authentication protocols [19][20] with a client puzzle to address a DoS attack.
In general, cryptographic puzzles have been employed for key agreement [21] and
address the problem of junk e-mail [22]. The only implementation of a client puzzle in

the context of transport layer security (TLS) was proposed by Dean [23]. Wang and

Reiter [24] proposed a puzzle auction that allows the client to determine the difficulty
(bid) of the puzzle using their implementation within transmission control protocol (TCP).

While the deployment of client puzzles in attack scenarios seems promising, but
most proposed systems of this type have one basic shortcomings found by Waters [25].
The client puzzle mechanism itself can become the target of a denial-of-service attack. In
most systems either the puzzle creation or verification operations (or both) require the
server to perform a cryptographic hash computation [7][26][27]. This opens the
possibility that the puzzle verification mechanism itself will be the target of a denial of
service attack, in which an attacker floods the server with bogus puzzle solutions that the
server has to process.

Secure key exchange is also a critical issue in authentication scheme. Internet
Key Exchange (IKE) is an Internet Protocol Security (IPSec) standard protocol used for
establishing and maintaining security associations, and to ensure security for virtual
private network (VPN) using secure key exchange [28]. Several works [8], [29], [30],
[31], and [32] have reported that IKE is vulnerable to DoS attacks. The user identity can
not be protected in IKE [8] and IKE is very vulnerable to untraceable DoS attacks against
both computational and memory resources [32]. IKEv2 [33] was then proposed to
replace the original IKE. Some work has been done towards addressing, or at least
examining, the DoS problems found in IKE [9][34]. Other protocol design that defend
against DoS attacks include stateless cookies[36], forcing clients to store server state,
rearranging the order of computations in a protocol [37], and the use of a formal method

framework for analyzing the properties of protocols with respect to DoS attacks [38].

Any protocol for a server commits expensive computations or to store the
protocol state prior to the client authentication is vulnerable to DoS attacks [7][19]. The
advantages of being stateless, at least in the beginning of a protocol run, were recognized

in the security protocol context in [19] and [20].

CHAPTER THREE

PROTOCOLS DESIGN

A new protocol, called the identity-based, privacy-protected access control filter
(IPACF), has been proposed to defend DoS/DDoS attacks. The design of the proposed

protocol is described as follows.

3.1 The Basic Concept of the Filter

The IP address-based filter will not prevent DDoS attacks from coming into a
network with a valid source IP address. The IP address-based filter contains a fixed set
of IP addresses and cannot change dynamically to protect the IP address from being
sniffed and spoofed by an adversary. An adversary can spoof source IP addresses from
legitimate users or a subnet’s valid address range in order to pass through the IP address-
based filter and launch a DoS attack. Using an identity-based filter, all users have their
unique filter values and pseudo ID generated from their master pre-shared secret keys.
The master key is protected by two-factor feature keys. The user’s ID and password are
memorized by the user, and nonce and timestamp are generated by the user’s system [4].
Only legitimate users or responders have exact secrets to generate their filter values so
that subsequent frames can pass through the access control filter. Otherwise, the

prohibited frames will be rejected by the filter. To avoid sniffing and spoofing, the filter

10

values cannot be reused, and thus the IPACF filter value should be changed dynamically.
For the IPACF protocol, only the received frames that match the users’ or responders’
filter values will be allowed to use system resources as shown in Figure 1. The system
performs computations only after the frames have passed the privacy protected access
control filter, F(z, Pi4y), which is a time-dependent function that changes every frame
(Pia 1s the pseudo ID). If received frames do not match the users’ or responders’ filter
value, they will be rejected by the privacy protected access control filter. At this point,
the computer commits only the resources necessary to compare filter values. Similar
access control techniques are being used in packet filters, routers and firewalls and are

well-known for their processing speed [4].

P, F(t, Piaw), Access
E[Data] Control If F(t, Piagyy) YES
Filter ";,IattCheSI s Rfsycff}i?es
F([, Pid(t)) lter vaiue
NO
v
F(t, Pigy)
Rejected

Figure 1: The Concept of Identity-Based Privacy-Protected Access Control Filter:
if F(t, Py matches the filter value, then E[Data] (encrypted data) is allowed to use
system resources for decryption.

11

3.2 Design principle
With the current designed protocol, it is clear that Wang’s IDF [4] has several
weaknesses that are related to the server system resources. The following design
principles were improved in the thesis.
e Efficient two frames used in the session mutual authentication stage (SMAS)
e Stateless protocol for both the user and the responder in SMAS
e User privacy is protected
e Capable of being implemented on a firewall, router, access point and
authentication server
e Prevention of resource (memory and CPU) exhausting DoS and DDoS attacks,

session hijacking, dictionary attacks, and men-in-the-middle attacks on both sides

The hash based message authentication codes (HMAC) is used here because the
computational cost for a keyed hash function is less than that for Public Key
Infrastructure (PKI) based or signature-based schemes, both of which are more
vulnerable to DoS attacks [7]. Confidentiality for packet transmissions can be provided
using techniques that utilize symmetric key cryptography. Encrypting the message with
the secret keys shared among the users and the responders. The Advanced Encryption
Standard (AES) with HMAC [39] is used to guarantee the confidentiality and integrity of

data during communication.

12

A

User
Access filters

1.Generate Fg(

2.Generate Ny, Tun

3.Generate user's
filter value Fu(o)

1.Check filter Fyg)

2.Generate responder's %

filter value FR(1)
3.Update filter value
Fu(o) to FU(1)

1.Check filter FU(1)

2.Generate responder's
filter value FR(Z)

3.Update filter value
Fuato Fue)

Puia), Frey, E[Nu, Tnul

[
|

Priso), Fuo), E[Data, Pyiq) |

Puia1), Fre), E[Data, Prig) |

-

P Pria1), Fugr), E[Data, Puyig) |

=

Responder
Access filters

1.Check filter Fr)

2.Generate user's
filter value Fy

3.Update filter value
Fro) t0 Fra)

1.Check filter FR(1)

2.Generate user's
filter value FU(1)

3.Update filter value
FR(1) to FR(Z)

Figure 2: Identity-Based Privacy-Protected Access Filter (IPACF) Overview

The Identity-Based Privacy-Protected Access Filter is derived from a user’s and
responder’s pre-shared secrets. Each user has a unique filter associated with a particular
responder. It is a time-dependent filter that changes with every frame. Only legitimate
users and responders can update their filters and confirm corresponding filter values, as
illustrated in Figure 2. The ID and password for user and responder are protected by
human memory, never stored on a device, or sent in traffic.
theoretically guarantee IDs and passwords will not be lost. When a responder receives
the first frame from a user, the IPACF can determine the user ID by comparing the

received filter value to the responder’s filter table using the pseudo ID. Then the

13

These precautions

Identity-Based Privacy-Protected Access Control Filter is triggered for a particular user.
This time-dependent scheme involves both the user’s secret and a timestamp sent from
the user. The anonymity of the user’s ID protects the user’s privacy in wired/wireless

networks.

14

CHAPTER FOUR

THE IDENTITY-BASED PRIVACY-PROTECTED ACCESS

CONTROL FILTER (IPACF) PROTOCOL

The Identity-Based Privacy-Protected Access Control Filter (IPACF) protocol
consists of three stages. The first stage is the initial configuration stage (ICS). During
this stage, the master secret keys of a user and responder are generated and exchanged via
a secure channel as pre-shared secrets. Using the pre-shared secrets, the initial access
control filter values for all legitimate users will be generated and stored on a responder
filter table for authenticating legitimate users. The second stage is the session mutual
authentication stage (SMAS) used by users and responders to identify each other. The
third stage is the dynamic data communication stage (DDCS). The computational for all
stages should be designed with the stateless requirement in order to prevent DoS/DDoS
attacks. To keep the notations simple and easy to understand, the discussions of the

IPACEF protocol are based on one user with a responder.

4.1 Notations for Identity-Based Privacy-Protected Access Control Filter

Py A responder’s secret key memorized by an administrator
Tr A timestamp generated by responder’s system when an administrator assigns the Px
Nz An initial nonce generated by responder’s system when Py is assigned

15

TKU

N

T NR

Sro

Jow

Fry
Fuyy
MACrg
MACy,
S Ri

Sui

Sk

Master secret key of a responder generated by a keyed hash function during the ICS
User’s identifier

Responder’s identifier

Pesudo identifier for user

Pesudo identifier for responder

User password, typed in for each login session and not stored in the device

A timestamp generated by a user’s system when a user is assigned a password

An initial nonce generated by a user’s system when P, is assigned

Master secret key of a user generated by a keyed hash function during the initial stage
A random number is chosen by a user. This number remains the same during the
user’s login session. It will be updated automatically after a new Ky is generated and
used for the next login session.

Timestamp when K, is generated

A nonce is generated by a responder. It is encrypted using the AES when sent to
challenge a user during session mutual authentication stage.

Timestamp when a responder’s nonce Vg is generated

A 128-bit seed from a responder’s truncated function used to update filter Frg

A 128-bit seed from a user’s truncated function used to update filter Fyy,

Access filter stored in a responder’s filter table to filter the frames from users
Access filter stored in a user’s filter table to filter the frames from a responder

The output of HMAC-SHA-512, which is used to generate the filter for a responder
The output of HMAC-SHA-512, which is used to generate the filter for a user

A responder’s initial seed during the initial configuration stage

A user’s initial seed during the initial configuration stage

A responder’s seed used to update the frame key Kgrg)

16

Suvw A user’s seed used to update the frame key Ky

Ny A nonce is generated by a user. It is encrypted using the AES when sent to challenge a
server during the mutual authentication stage.

Tyy Timestamp when a user’s nonce Ny is generated

Kyrg A responder’s frame key for AES encryption

K’rrg A responder’s HMAC key for integrity check

Kyrg A user’s frame key for AES encryption

K’ury A user’s HMAC key for integrity check

MACgr; A 256-bit MAC that contains Kgr and K’z that are used for responder as AES
encryption key and HMAC key, respectively

MACyr, A 256-bit MAC that contains Ky and K’yr, that are used for user as AES

encryption key and HMAC key, respectively

Trrg A timestamp generated by a responder when updating its filter value
Turg A timestamp generated by a user when updating its filter value
Ny A nonce is generated by a responder. It is exchanged in initial configuration stage via

secured channel for generating the first hash value of mutual authentication stage.

T A timestamp generated by a responder when nonce /Ny, is generated

Ky Updated master secret key of a user for session j generated by a hash function for the
next session

Ky Updated master secret key of a responder for session j generated by a hash function
for the next session

h HMAC operation.

17

4.2 Initial Configuration Stage
4.2.1 Master keys and pre-shared secrets generation

Ky, K, and NV;, are the pre-shared secrets of a user and a responder and are stored
on both systems. The pre-shared secrets Ky, Kz, and N; could be delivered between a
user and responder via a secure channel or could be used by a trusted third party to secure
the delivery. The actual techniques are beyond the scope of this paper. Kyand Ky are the

master secret keys of a user (initiator) and responder, respectively.

Ku=nh [Ual| Pu|| Tu|| Nuil (1)
Ke=h, [Ria|| Pr|| Tz || Nui] (2)

U;and P, are the user’s ID and password, respectively, required for each login
session, and should not be stored on any system. N,; and T, are generated automatically
by the user’s system when a user types in the U;and P, during the system ICS. The user
system generates a different nonce N,; and timestamp 7, to ensure a user’s master key Ky
is refreshed. NV,; is only known by the user’s system and will be the input key for the
HMAC function in equation (1). Ky is a user’s master key generated by the HMAC
function and must be stored in both the user’s and responder’s system. The R;;and Py are
the responder’s ID and password, respectively, and assigned by a system administrator
during the ICS. A responder’s initial nonce Ng; and timestamp Tk are known only by the
responder’s system. They are generated automatically by a system when the system
administrator assigns the P and R;; for a responder. Ng; is an input key for the HMAC
function and used to generate the responder’s master key Kz as shown in equation (2).
Both the user’s password P, and the responder’s password Py are dictionary attack

resistant because they are protected by the nonce and timestamp that are known only by
18

the systems. The user or responder knows half (U, P, and R4, Pr) of the master secret
and their systems know the other half (V,;, T, and Ng;, Tg). This mechanism is called a
two-factor feature and widely used to protect the real user’s password and ID from
dictionary attacks [4].

N; is a random number that must be chosen by a user during the ICS and stored in
both the user’s and responder’s systems; this number remains constant during the same
session for the user. After the ICS, N; can be updated locally by equation (3) while the

old /V; will be used in a HMAC function to generate a new /V; for a new login session [4].
Ni (o) | Uid|| Ky || Txo || V) (3)

The nonce Nyyrand the time stamp 7Tyy; will be generated by the responder while a
user and responder are exchanging the pre-shared secrets Kz, Ky, and N; via a secured
channel. Njyyyand Tpny are used in ICS for a user and responder to generate the initial
access control filter value Fgg. The pseudo identifier Py;; and Pgqare assigned by the
user and responder respectively to hide their real identities. Py;; and Pg;s will be changed
for each frame to ensure the privacy protection in IPACF protocol. During the ICS, [R;,,
N, Ky, Kz, Nini, Tinig, Puia, Prig] 1s stored on the user’s system and [Uig, N, Ky, Kz, Ny,
Tivi, Puia, Pria] 1s stored in the responder’s system as pre-shared secrets, which are used

to generate the filter value and frame key.

19

4.2.2 Initial Filter Setup in a Responder as a Filter Table

After a user and responder have saved the pre-shared secrets in their systems, the
responder must generate a filter table for all of its legitimate users. The user will also be
able to create the initial access control filter value using the equations (3), (4), and (5).
To create the initial filter table, the random nonce Ny, and timestamp 7y, will be used.
To create the responder’s access control filter, two calculation steps are required as

outlined in equations (4) and (5).
h(M@KR)[M || Nini || Tini] = Ski (4)

K3 is the master key of the responder and is a group key known by all of its
legitimate users in IDF protocol proposed by Wang [4]; however, Ky is a pairwise key
shard by a user and a responder in this thesis. Then the input key for the HMAC function
is formed by Kz XOR with /V; which is chosen by a particular user. Different users have
different V; and thus different Sg;. Sy is a 512-bit output of the HMAC function as
shown in equation (4). It is a responder’s initial seed and used only at the ICS. This seed
Sr: 1s used as an input key for the HMAC function in equation (5). The purpose of the
formula in equation (4) is to generate different seeds for a particular user, given the user’s
N;, and use N,, Ny, and Ty to avoid reusing the seed. Because the input keys for the
HMAC function are never reused, the output of the HMAC function in equation (5) is

made very secure by avoiding dictionary attacks [18][35].

RS [Uy || Ky || Nil| Now || Toil = MACray (5)

20

[N;© Nyl is the number of rounds used to conduct the hash function. In

consideration of performance, the number of rounds is recommended to be truncated to
10 bit, which means that the number of rounds is limited to between 0 and 1023. MACry
is a 512-bit keyed hash value and is truncated in three parts, including the 128 most
significant bits fz and the 128 least significant bits Sk, as shown in Figure 3. ¢ is the
index of a time-dependent function, and =0 is the responder’s first seed used to generate

the first access control filter and frame key [4].

MAC RH= HMAC-SHA-512

frey Sk
128 most 128 least
significant bits significant bits

Figure 3: The Responder’s Truncated Function

Sfray 1s a seed used to generate a 160-bit responder’s access control filter Fry
using equation (6). The length of the HMAC function used to generate the access control
filter is recommended to be a 160-bit HMAC-SHA-1, but different applications may vary.
Fre is the initial access control filter value stored in a responder’s device. The first
frame sent from the user must match this value so that subsequent parts of this frame can
be admitted into the responder’s system. Sgq), which is the 128 least significant bits of
MACkq), 1s a seed used to update the frame key and then generate the new access filter

for the next frame.

21

h s, | Ku || Ni|| MACyo) || Tivi || fro)l = Fray (6)

The responder can then create a table and store the identity-based filters and all the

necessary key information as shown in Table 1.

Py | Flag | Uyg Prig | Access Hash Value | Frame Packet Idle
Filter Key counter Time
F R(0) MACR(O)

Table 1: Responder’s Dynamic Access Filter Table

Each row specifies the information for a particular user. The packet counter will
accumulate all the received frames that pass the access control filter for a user’s login
session. The packet counter will repeat the process for each new login session. This
feature aids the responder in monitoring any abnormal traffic from the user and thus helps
prevent a DDoS attack. The idle time is represented by the time that the packet counter
does not increase while the user remains connected. The responder should ask the user to
re-authenticate if the idle time is too long. On the other hand, the users can generate the
initial access control filter value Frq) using equations (4), (5), and (6) that introduce a
complete stateless configuration.

In Wang’s IDF protocol [4], the user side was not completely stateless in the
mutual authentication stage. The user’s access control filter will be created after the user
receives the beacon from the responder and can derive the responder’s nonce Ng, and
timestamp Tng, by using the responder’s pre-shared master key Kz. The IDF protocol
requires one more frame in comparison to IPACF in the mutual authentication stage for

the responder to broadcast the beacon to the legitimate users who can decrypt the beacon

22

encrypted with AES encryption. Nonce Ny and timestamp Tz will be the contents of the
beacon. Ny and Tz will be the secrets for the user to generate filter value Fr).

The responder will pre-generate the filter value ahead of time in Wang’s IDF
protocol [4]. N and Tyg are broadcast in the beacon by the responder; a user receives
and generates the same filter value as the responder. But there is one problem: what
happens if the users do not log in during this period of time? The responder will have to
regenerate Fgp for every user if Vi and Tyg are changed, and this is a computationally
expensive process. It is desirable that a protocol does not require every user to calculate
Frey periodically. Using equations (4), (5), and (6) will make the IPACF protocol for
both the user and the responder stateless after ICS. In addition, IPACF protocol has one
less frame to complete in SMAS in comparison to IDF since there is no need of the
beacon frame. Because of the complete stateless configuration in IPACF, the user
protocol becomes stateless in the SMAS, the user will not have to depend on the beacon
broadcasted by the responder.

At this point, the ICS is completed. The pre-shared secrets and initial filter value
Frq) are stored in both user and responder, as well as the information for all of its

legitimate users, in a filter table.

4.2.3 User Login and Master Key Renew
Session Login

Ky, K and NV, are the pre-shared secrets stored on a user’s system. When a user
wants to log in, the user must type in the user ID and password. The user’s system has

stored N,; and T, from the initial setup; therefore, the user’s system can generate a Ky

23

based upon the password and ID that the user entered using equation (1). If this Ky
matches the pre-stored Ky, then the system identifies that the user as a legitimate one. If
this Ky does not match the pre-stored Ky, after a reasonable number of trials, the user’s
system should be locked. In this case, no filter values will be generated for the particular
user to prevent an on-line password guessing attack.

Master Key Renewal

The Ky and N; should be refreshed for every login session. The V; will be
updated using equation (3). During each login session, the pre-stored K is matched to
ensure that he is a legitimate user, and the system will generate a new nonce and
timestamp. Given the new nonce and timestamp, the system performs a calculation using
equation (7) to obtain the new Ky for sessionj. The new Ky and V; for the next login
session will be encrypted using the AES and then sent to the responder during
communication.

Wang’s IDF [4] on a fixed master key Kz means that the responder must uses the
same key to encrypt the packet. All users must use the same master key Kz to decrypt
packets. Since all users have the same Kp, they not only have the ability to encrypt
packets, but also have the capability to pretend to be a responder, and perform malicious
actions. Therefore, Kz does not provide the essential security. Furthermore, the master
key Kiwill not be updated unless ICS is performed: this problematic feature is the most
serious drawback in Wang’s IDF protocol. If ICS is necessary to perform updating
master key Kz, all legitimate users will have to perform ICS at the same time, which
means all legitimate users need to be synchronized to change Kz while ICS is performed.

A legitimate user will not be able to update the master key Kr unless the user creates a

24

secured channel and updates the master key Kp with the responder individually;
otherwise, the legitimate user will not be able to decrypt any beacon sent by the
responder in the mutual authentication stage.

An entire group of users should not be responsible for updating master key Kzg.
Legitimate users should have the flexibility of performing ICS, whenever necessary. On
the other hand, having a pairwise master key Krg; for each legitimate user will avoid
malicious actions from other legitimate users. IPACF protocol will be able to set up
pairwise master keys with every legitimate user, and the master secret keys will be

exchanged between the user and the responder in every session.

Kugip=h oy [Uall Pull Nu|| Tl Kugl j=1,2,3... (7)
Krgepy=h [Ruall Pr|| Nz || Tar || Kzgyl j=1,2,3... (8)

In equations (7) and (8), Ky, Kz, and /V; are the pre-shared secrets of a user and a
responder and are stored on both systems and j is the index of session number. Ujand P,
are the user’s ID and password, respectively, required for each login session and should
not be stored on any system. N,, Tny, Nz, and Tygare nonce and time stamp generated
for each session master key update and stored in both the user’s and the responder’s
systems. Kprj and Ky are set for each session during which a user logs in and logs out.
For each login session, the system generates a different nonce N,, Ngand timestamp Ty,
Txr automatically to ensure that both a user’s master key Ky and a responder’s master key

Ky are not reused before. Ky and Ky are used as input key for the HMAC function in

25

equation (7) and (8). The purpose of master key renewal is to provide authenticated
keying material in a protected manner.

Each user will have a pairwise master key Kz to avoid malicious actions from
other legitimate users and the master key Kz; will be exchanged between the user, and
the responder in every session. We introduced the secured master secret key exchange
(SMSKE) in ICS. The idea of SMSKE is to negotiate and provide authenticated keying
material for security associations in a protected manner. SMSKE will be performed in
the last frame of the SMAS and the first frame of the DDCS. After the secured
authentication has been initiated, the user and the responder have identified each other; a
secured channel is created after SMAS using Advanced Encryption Standard (AES)
encryption and HMAC message authentication code for integrity check. The SMSKE
will not only decrease the communication cost using a secured channel, but also
improved the security of Wang’s IDF protocol [4] by using dynamic master key Kz; and
Ky for each session while IDF must used a fixed master secret key K.

The IPACF protocol is based on the legitimate user’s pre-shared secret and not
their IP address in order to avoid an IP spoofing attack. The IPACF filter is not a fixed
value filter. The filter values vary with every frame by both the user and the responder to
prevent sniffing and replay attacks. Perform SMSKE will make the result of secure
master key update on both user and responder after every single success SMAS. All the
legitimate users will have a unique responder master key Kgg that will increase the

randomness of both master keys for the future SMAS.

26

4.3 Session Mutual Authentication Stage (SMAS)

Following the initial configuration stage, two processes will be accomplished by a
user before the user initiates the SMAS. First, both the responder and the user will be
able to generate the same Fpy using equations (4), (5), and (6). Fgrg is a 160-bit
responder’s filter value and will be sent to the responder to check its access filter after the
second step. Second, before a user initiates SMAS, a user will generate a user’s nonce
Ny and a timestamp Tyy for that nonce to authenticate the responder and also create the
user’s initial dynamic access filter. To create this filter, two rounds of calculation are

required as outlined in equations (9) and (10).

B on) | Ni || Novt || Nu || Tvul = Sui (9)

RS Uyl Ko || Nil| N || No || Tvol = MACug (10)

The message authentication code will be generated with HMAC-SHA1. SHAL is
considered cryptographically stronger than MDS5 even it takes more CPU cycles to
compute. HMAC-SHA1 is also recommended in IPSec where the slightly superior
security of SHAT over MDS5 is important [17]. Sy; is a 512-bit output of the HMAC
function in equation (9) and will be used as an input key for the HMAC function in
equation (10). It is a user’s initial seed and is only used in the initial configuration stage.
This seed will be changed for every login session by the user because of varying
properties of Ky, N;, Ny, and Tyy. The primary aim of the formula in equation (9) is to

generate different seeds for every login session to avoid reuse of the filter values.

27

[V:©DNy] is the number of rounds employed in conducting the hash function, and

from a performance perspective, should be truncated to 10 bits. Therefore, the number of
rounds is limited to between 0 and 1023. MACyy is a 512-bit keyed hash value truncated
in three parts, including the 128 most significant bits f;/4) and the 128 least significant bits
Suw, as shown in Figure 5. ¢ is an index for a time-dependent function, and ¢=0 is the

user’s first seed that is used to generate the first access control filter and frame key [4].

MAC yy= HMAC-SHA-512

fugy Suy
128 most 128 least
significant bits significant bits

Figure 4: The User’s Truncated Function

Sfuw 1s a seed used to generate a 160-bit user’s access control filter Fyyy), as
illustrated in equation (11). Fyyq)is a user’s first access control filter value stored on the
user’s system and is used for checking the frames sent from a responder. If the frame
does not match the filter, it will be blocked by the user’s system. Sy is a user’s first
seed used to update the frame key and generates the new access filter for the next frame.
Once the user generates Fy), an access filter table will be created as shown in Table 2, to

store the filter value and other information.

hs [Ku|| Nu|| MACyg || Twu || T || fum] = Fue (1)

28

Priq | Flag | Ry Pyiq | Access Hash Value | Frame Packet Idle
Filter Key counter Time

FU(O) MA CU(O)

Table 2: User’s Dynamic Access Filter Table

Session Mutual Authentication Stage
=/ =

User Responder

Access filters Access filters
1.Figure out FR(O) , and

generate Ny, Tny
2.Generate the

User's filter Fy(Puiiw)> Fr), Eaesy)[Ny, Tyy] Frame 1

1.Check filter FR(O)

2.Figure out Fy)

3.Update the filter
to FR(1)

|

PRid(O)a FU({)), EAES(KRF(O))[Data, TRF(]), KRO)’ PU,-d(j)]Frame 2
Check filter -t

Figure 5: Session Mutual Authentication Stage Overview

Framel U — R: Py, Fro), Esso[Nu, Tau]

A legitimate user will be able to perform SMAS as the user desires. After the
responder receives Frame 1, the responder will perform three steps: First, the responder
will check Frq)to see if Fry matches one of the filter values in the filter value table. If
there is a match, the responder will know the user’s ID and K in accordance with the
received filter value. The responder will also identify the user as legitimate and then pass
the encrypted data to the system for decryption to obtain Ny and Tyy. If Frame 1
matches the value in the responder’s filter table, the responder has completed half of the

SMAS for identifying a legitimate user. If the received filter value Fg) does not match

29

the responder’s filter values, the responder should block this frame and stop the session.
Second, equations (9), (10), and (11) are used to derive Svui, MACuw), fuw, Suw), and Fyy,.
Third, generate a timestamp 7zr(;), and update the responder’s access filter table for the
next frame using the previous secret MACrg) to generate a new MACk;) from equation
(12). fra) and Sk will be truncated from MACr). fra) 1s a new seed that is used to
update the responder’s access control filter from Frg)to Fre) using equation (14). Sz
is a new seed that is used to update the responder’s frame key generation function Kzry

for the next frame [4].

B (yac) | KR || Ky || Ni|| Nivi || MACrg || Trra)] = MACrq) (12)

MACkrg is the generation function for the responder’s frame key. When =0, as
shown in equation (13), MACgr) is the secret used by the responder to generate MACr;)
to update the access filter from Frq)to Fr) for the next frame using equations (12) and
(14). Kgrro) and K’gr@) will be truncated from MACrr) with 128 most significant bits
and 128 least significant bits, respectively. Kgrq) is a frame key used by the AES to
encrypt the data. K’zrq)is a new key used in HMAC for data integrity. The encrypted
data, with filter value Fyyy will be sent to the user after the responder updates the filter

table.

hg.) [Ski |l Sroy || Tine || Nini || Ku || Krl = MACrr) (13)

Frq) is anew access control filter value, which is stored in the responder system and

used for checking the next frame that is sent from the user.

30

B (i) L Ko || Nil| MACra) || Treay || frl = Frey (14)

Frame2 R — U: Pri), Fuo), Eesko) [Data, Trr), Krg), Puiaa)]

After the responder has authenticated the user in Frame 1, the master secret key
for the next session, Kz will be sent to the user in this frame. When the user receives
Frame 2, three steps are performed: First, check Fyyto see if it matches the filter value.
If there is a match, most likely this frame was sent from the responder, and then the
encrypted data, Trr) and Kgj can be decrypted using the key Kgr@). Since the user
knows the same secrets Sr;, Sz, Tivi, Ku, and Ky as the responder, the user can perform
the same calculation to derive secret MACxr) by using equation (13). Kgrp (128-bit
AES key) and K’z (128-bit HMAC key) can be truncated from MACgrq) and the user
is able to decrypt the data using frame key Krr@) to obtain the timestamp Trr(;) and Kgg.
Second, use this secret MACrr) and the timestamp Trr) to derive MACr), fre), Sk
and Fg) by using equations (12) and (14). Fg) 1s a filter value that will be sent to the
responder for checking. Sz is a seed used to update the responder’s secret from
MACrr)to MACrr(;). The user must also store this seed to update and synchronize the
responder’s secret in the future. In addition, the user must update the Kp; original Kz ;)
will be replaced by Kz;. Third, the user will update the access filter from Fy) to Fy;) to

check the next frame. Two rounds are required to update the access filter:

First Round: Generate the user’s frame key as follows:

g,) USuill Suw || Nill Nvi || Tvul = MACur (15)

31

MACyr is the generation function for the user’s frame key. When ¢ = 0, as
shown in equation (15), MACyrq) is the secret employed by the user to generate MACyy;
to update the access filter from Fy)to Fy;) for the next frame using equations (16) and
(17). Kuyrw and K’yrq) will be truncated from MACyrqe with 128 most significant bits
and 128 least significant bits, respectively. Kyrg) is a frame key used by the AES to
encrypt the data. K’yrq)is a key used in HMAC for data integrity. The encrypted data,

with filter value F(;) will be sent to the responder after the user updates the filter table.

Second Round: Calculate the new MAC value and update the access filter as follows:

R (sicy) | KU | Ni | Nivt || MACuq) || Tura)] = MACyy) (16)

Sfuay and Sy will be truncated from the MACy ;) in the same manner. fy) is a
seed used to generate a 160-bit user’s access control filter Fy, ;) using equation (17). Fyyy
is a new user’s access filter and is stored in the user’s access filter table for checking the
next frame. Sy is a new seed that is used to update the user’s secret MACyrq), from

MA CUF(O) to MA CUF(J)‘

B (vicop)| Ku || MACuw) || Tura) || funl = Fua (17)

After the user identifies the responder, the SMAS for the IPACF protocol is

completed. The user will start Dynamic Data Communication Stage (DDCS).

32

4.4 Dynamic Data Communication Stage (DDCS)

In the DDCS, the filter value is changed with every frame. Because the responder
must process a high volume of traffic, the cost of computation at this stage should be less
than other stages. This stage is called the dynamic data communication stage because at
this stage, the user and the responder need not generate the nonce to identify each other.
The amount of system computation is also less than that required in the SMAS because
fewer rounds of the hash function are performed for every frame. To enhance security,
however, a time-dependent scheme is used at this point to refresh the frame key and
update the filter for both the user and the responder. The master key will be also updated
in the first frame of DDCS.

In the DDCS, both the access control filter values of the responder and the user
are changed dynamically in every frame. The advantage of this approach is that an
adversary is unable to predict the dynamic access filter value for the next frame. Only
the legitimate user and responder that can match access filter values are allowed to use
system resources. During the DDCS, the user and responder identify each other
continuously to match the access filter. This mechanism prevents both the middleman
attack and session-hijack because an adversary is unable to guess the filter values and
frame keys. If a frame is lost in this stage, a re-transmission by UDP will maintain the
connectivity. If a connectionless link is being used, then the SMAS must be carried out

again to maintain high security for the re-established link.

33

Dynamic Data Communication Stage H
=/ (=

User Responder

Access filters Fyp) Access filters Fre))

Session Mutual Authentication Stage

1.Check filter

2.Figure out
Pyii), Frey, Eaeskoo)[Data, Tygeq), Kug, Priaa)] Frame3 e filter Fua
= 3.Update responder's

filter to FR(Z)

1.Check filter

2Figureout py.). Fug), Eatstku) [Data, Trre), Puiz)) Frame 4
the filter FR(z) -

-«

3.Update user's
filter to Fu(z)

1.Check filter
Puiaz), Frey, Eaesikoo)[Data, Tyr), Priaz))Frame 5 2.Figure out
> the filter Fu(z)
3.Update responder's
filter to FR(3)

Figure 6: The Dynamic Data Communication Stage

In the DDCS, three steps are required on both sides for responders and users.
First, check the access filter when a frame is received. Second, determine the filter
values on the other side. Third, update the access control filter for the next frame. For
example, the following Frame 3 and 4, are the first and second frames for the DDCS as

shown in Figure 6.

Frame 3 U — R : Pyiau), Fra), Eaeskoo)| Data, Tura), Kug), Priaa))
In the first frame of DDCS (Frame 3), the responder will perform three steps:

First verify the Fg;) from the user based on the pseudo ID Pyiq). If there is a match, the
34

responder will then decrypt data, Tyr:), and Kyg. Since the responder knows the same
secrets Sui, Suw), Tnu, Vi, and Ny as the user, the responder can perform the same
calculation with the equation (15), which to derive secret MACyrq). Then, the responder
is able to get the frame key Kyr) and decrypts the data to obtain the timestamp Tyr;) and
Kyj. Second, using this secret MACyrq) and the timestamp Tyr() to derive MACyy),
Jua), Sua), and Fyg). The responder must also update the Ky, original Kyy.;) will be
replaced by Ky to become the new Ky. Third, the responder will generate a timestamp
Trrp) and update the responder’s access control filter from Fg)to Fg;) and pseudo ID
from Puyiaq) to Puiacz), check the next frame sent from the user using equations (18), (19)

and (20). Two rounds are required to update the access control filter:

First Round: the new responder’s frame key generation
B,)| Sk || Sk || K || Ku || Tar) = MACreq) (18)

MACrr) is a new responder’s secret which replaces MACrr). MACrrq) 1s used
by the responder to generate MACr.) to update the access control filter Fry) to Frp) .
This secret will be truncated into 128-bit Kgr;) and 128-bit K’zr). Kgrq) 1s used as a
new frame key for AES to encrypt the data when the frame is sent to the user; K’zr)is a

new key used in HMAC for data integrity.

Second Round: Calculate the new MAC value and update the access filter

R (vsicpp)| K || Ku || Ni|| Ni || MACrq) || Trry) = MACre) (19)

35

Jfre) and Sgp) will be truncated from MACr;) using the method as shown in
Figure 3. fz) is a new seed used to update the responder’s access control filter from Fp)

to Fg(), as illustrated in equation (20).
B (yicp) L KU || Nil| MACRe || Treey || frel = Fre (20)

Fr) is a new responder’s access filter and is stored in the responder’s access filter
table for filtering the next frame. Sg() is a new seed that is used to update the responder’s
secret MACgr(;) to MACgr:2). When the responder receives further frames from the user,

the responder will repeat the same three steps outlined for Frame 3.

Frame 4 R — U : Pria), Fug), Eaeskaoy) [Data, Trr), Puiao)]

After the user receives Frame 4 from the responder, the user then performs these
three steps: First, checks Fyy;) to see if it matches the access control filter value based on
pseudo ID Pgiy). If there is a match, the user can verify that this frame was sent from the
responder, and then pass the encrypted frame to the system for decryption using the
frame key Krr(). Since the user knows the same secrets Srw), Sr(1), Ku, Kz, and Trr() as
the responder, the user can perform the same calculation with the equation (18) as the
responder to derive MACrr(;). Then, the user is able to get the frame key Kzr(;) to decrypt
the encryption data and the timestamp Tgrrp). Second, use this secret MACgg;) and
timestamp Trrp) to perform the same calculation with equations (19) and (20) as the
responder to derive MACr), fr2), Sre2), and Frp). Fpgp) is a filter value that will be sent
to the responder for checking. Sp)is a seed used to update the responder’s secret from

MACrr)to MACgr). Third, the user will generate a timestamp Tyrp) and update the

36

user’s access control filter from Fy;)to Fyp) and pseudo ID from Prig)to Priae)to check
the next frame sent from the responder using equations (21), (22) and (23). Two rounds

are required to update the access control filter:

First Round: the new responder’s frame key generation
B,) [Svw || Suay || Ke || Ku || Tur) = MACurg) (21)

MACyr) is a new responder’s secret which replaces MACyr). MACyr) is used
by the responder to generate MACy ;) to update the access control filter Fy) to Fyp).
MACyr) will be truncated into Kyr) and K’ur). Kur) used as a new frame key for
AES to encrypt the data when the frame is sent to the user; K’yr) is a key used in HMAC

for data integrity.

Second Round: Calculate the new MAC value and update the access filter

R (vic,y,,) [K || Ku || Ni|| Ne || MACyq) || Tur)] = MACyp (22)

Sfue) and Sy will be truncated from MACy;) using the method shown in Figure
3. fup 1s a new seed used to update the responder’s access control filter from Fyy;) to

Fy), as illustrated in equation (23).
B (i) | KU || Nil| MACue) || Ture 1] fue)l = Fue (23)

Fy is a new responder’s access filter value and is stored in the responder’s access

filter table for filtering the next frame. Sy 1s a new seed that is used to update the

37

responder’s secret from MACyr) to MACyr;). When the user receives further frames

from the responder, the user will repeat the same three steps outlined for Frame 4.

4.5 The Summary of the Dynamic Data Communication Stage
During the DDCS, the frames sent from the user to the responder should appear as

follows:

U—->R: PUid(t)a FR(t) 5 E(KU[_,(FU)[Data, TUF(I‘)’ PRid(z)] t=2,3...

Also, the frames sent from the responder to the user should appear as follows:

R — U: Priaw, Fup . E [Data, Trrw, Puiae+n] t=1,2,3...

RF([—I))

Generally, during the DDCS, as shown in Figure 7, there are three steps needed
for both the user and the responder. The user and the responder check the filter values
when they receive the frames. If the filter value matches, then the new filter value is
calculated to address the other side’s filter. Next, they update their access control filters
for filtering the next frame. If an administrator determines that an adversary is unable to
capture and replay the filter value at the frame speed, then the filter values may be
changed for multiple frames instead of every frame. However, in a high security

environment, the filter values should be changed for every single frame.

38

-/

User
Access filters

Finish Session Mutual
F U(l) Authentication Stage

——

Puia), Fray, EAEsk o) Data, Turg), Kug), Priaa)]Frame 3

1.Check filter

-

=

Responder

Access filters

F

R(1)

1.Check filter, Update Ky

2.Figure out the filter Fyy)

3.Update responder's
filter to FR(Z)

2.Figure out the Py, ;), Fuy1), EAESKo) [Data, Trrz), Puiao))Frame 4

filter FR(Z) -
3.Update user's
filter to FU(2)

Puiiz)s Frey, EAESKoo)[Data, Turz), Priao)]Frame S

.

1.Check filter

-

1.Check filter

2.Figure out the filter Fyy

3.Update responder's
filter to FR(3)

2.Figure out the Prid2), Fup), EAESKw) [Data, Trr), Puia)) Frame 6

filter FR(g) -t
3.Update user's
filter to FU(3)

Puia), Fres), Eaeskre)[Data, Tyrg), Prias)|Frame 7

[y

-

1.Check filter

2.Figure out the filter Fy s

3.Update responder's
filter to FR(4)

Figure 7: The Overview of Dynamic Data Communication Stage

Three steps for a user:

First step: When a legitimate user receives the frame from a responder, the user

compares it with the access control filter Fyy to see if there is a match using pseudo ID

Priay. If the filter value matches the access filter value, the user will pass the encrypted

data to the system for decryption, and then the system can derive the data and timestamp

Trre+1)- Second step: Calculate the responder’s access control filter using equations (27),

(28) and (29). fre+1 and Sge+y will be truncated from MACg;+;) using the same

39

technique shown in Figure 3. frs+; is a new seed used for the user to calculate the
responder’s access control filter Fgg+;) using equation (29). Fgg+p) is a filter value sent
with the user’s encrypted data frame to the responder for checking so the encrypted data
will be allowed in the responder’s system. Sgq-) is a seed that must be stored in the user
side for calculating the responder’s secret MACgrr;+;). The same method employed for
the responder with equation (27) needs to be used. This secret must also be stored on the
user side for decrypting the next encrypted frame sent from the responder. Kgzr;+;) and
K’y will be truncated from MACgr;+;). Kgrrqip) 1s the frame key used by the user to
decrypt the data and K’grq+) is the key for the data integrity. Third step: Generate a
timestamp Tyrq+1), and update the user’s access filter from Fy to Fyg+;) and pseudo ID
Priqp) to Prige+1) for checking the next frame. Two rounds are required to update the

access filter:

First Round: Frame key Generation Function

B,) [Suan || Suw || Ne || Now || Tor] = MACury, t=1,2,3.... (24)

Ku(j

MACyr is the generation function for the user’s frame key. It is an input key
used by the HMAC to generate the new MAC value MACyy+;) in equation (25) and to
update the dynamic access control filter in equation (26). Kyry and K’yry will be
truncated from MACyry. Kurqy 1s the frame key used by the user to encrypt the data and

K’yrq 1s the key for the data integrity. Every frame has a unique frame key.

40

Second Round: Calculate the New MAC value and Update the User’s Filter

h e,) [Kull Nill Nivt || MACuq || Turg+)] = MACyq+p, 1 =1,2,3... (25)

Sfua+n) and Sye+1) will be truncated from MACy+;) using the same technique as
shown in Figure 4. fyq+1) 1s a new seed used to update the user’s access control filter
from Fyy)to Fyg g as illustrated in equation (26). Sy+s) is a seed used for the frame key

generation function to update the secret from MACyr) to MACyr+).
B yicopo)| Ku || MACuusp) || Turarn || fuwen) = Fugen, t=1,2,3... (26)

Fyg+p) 1s used to replace the previous filter value Fyy) and is stored in the user’s

filter table for checking the next frame sent from the responder.

Three steps for a responder:

First step: When a responder receives the frames from a user, the responder
checks the access control filter Frg to see if there is a match using pseudo ID Pyigp. If
the received frame matches the access control filter value, the responder will pass the
encrypted data to the system for decryption, and then the system can derive the data and
timestamp Turq+7). Second step: Calculate the user’s access filter using equations (24),
(25) and (26). fue+y and Syg+y) will be truncated from MACy;+;) using the same
technique shown in Figure 4. fy,+;) is a new seed used by the responder to calculate the
user’s access control filter Fy+;) using equation (26). Fyq+y) is a filter value sent with
the responder’s encrypted data frame to the user for checking. Sy+;) is a seed that must

be stored in the responder side for calculating the user’s secret MACyry) via the same

41

method employed for the user, i.e. equation (24). This secret must also be stored in the
responder side for decrypting the next encrypted frame sent from user. Kyry and K’yrg
will be truncated from MACuyry. Kurg is the frame key used by the responder to decrypt
the data and K’yry is the key for the data integrity. Third step: Generate a timestamp
Trrq+1), and update the responder’s access control filter from Fg) to Fre-+1)and pseudo ID
Puiaw to Pyiaq+nfor checking the next frame. Two rounds are needed to update the access

control filter:

First Round: Frame key Generation Function

h (¢,)| Skt || Sk || Ke || Ku || Trr] = MACrrg, £ =1,2,3... (27)

Kkm)

MACkgrq is the generation function for the responder’s frame key. Kgry and
K’rrq will be truncated from MACrry. Krrp is the frame key used by the responder to
encrypt the data and K’rr is the key for the data integrity. Every frame has a unique
frame key. MACgrq is an input key for the HMAC to generate the new MAC value

MACr;+) 1in equation (28) and to update the dynamic access filter in equation (29).

Second Round: Calculate the New MAC value and Update the Responder’s Filter

B (e,)| Ki |10 || Nil| Nt || MACkg) || Trrgs) = MACry , £ =1,2,3... (28)

Jravy and Sge+p will be truncated from MACgq+,) using the same method
illustrated in Figure 3. fz;+1) is a new seed used to update the responder’s access control
filter from Frq) to Fr+1) using equation (29). Srq+s) 1S a seed used by the frame key

generation function in updating the secret from MACgry) to MACrr+1).
42

hic. \[Kull Ni|| MACkip) || Trraen || frarn)l = Frar, t =1,2,3... (29)

KRI«'(t)

Frq+1)1s used to replace the previous filter value Frg) and is stored in the responder’s

filter table for filtering the next frame sent from the user.

4.6 Privacy Protected Filter Exchange

After the ICS, the responder will be able to generate Fr(), and the Frg) for each
user (initiator) will be stored in the responder’s system. When the user wants to initiate
the SMAS, the user will send over the corresponding Frg). The responder will have to
find out which user is trying to perform SMAS. The responder will compare the Fr) (as
a function of Py;;) with the filter table to see if there is a match. If there is a match, the
responder will be able to know the user’s identity and correspond with Ky, N;, Ny, and
T;n;. What was described above introduces the privacy-protected feature of the IPACF
protocol. With the user identity hidden in the filter value and pseudo ID, which sent in
plaintext for the stateless entry in SMAS, no one will be able to know which user
initiated SMAS except the responder. After the user finishes SMAS, the responder will
need to update the Fry) (=1, 2, 3...etc.) for the DDCS and the Fpg, for the next session.
The user will need to update the Fyy (=1, 2, 3...etc.) for the DDCS and generate Frq)
for the next session.

The pseudo code algorithm to store and update for both the pseudo ID and filter

value table on the responder side in ICS, SMAS, and DDCS is as follows:

43

m; // maximum number of users

n; // number of users
Pyig [m]; // pseudo ID table
Fr[m]; // filter value table

// initialization
for(1=0;1<m;i++){

Pyiq [1] = 1;

j=m //'j is for available positions
//' When a user registers and Do Loop will run for each user

For(k =0; k <n-1; k++) {

random # = rand() ; // generate random #
New P;; = random # mod j; /I new pseudo ID index
i=ji—-L /I decrease the user size

// shift the Pseudo ID table
for(1i=New Py 1<j-1;i++){
Py [1] = Pyia [1+1];

}

Fg [New P;;] = initial filter value; // store initial filter value

44

Do while(a user sends in a message)

//' When a user sends in a message

IndexPyq4; // the pseudo ID for the current user
random # = rand(); // generate random #
New Pj;=random# mod j ; /I new pseudo ID index

// shift the Pseudo ID table
for(1=New Piz; 1<j-1;1++){

Pyiq [1] = Pyia [1+1];

}
Fy [New P;;] = updated filter value; // store updated filter value
Pyiq [j-1] = IndexPyq; // add the used pseudo ID back to table

Two tables are created for pseudo IDs and the filter values using arrays. The filter
value table uses the pseudo ID as an index to store each filter value for a specific user.
The pseudo ID table will be initialized as the index of the array with m maximum number
of users. When n new user registers, the responder generates a random number and uses
the remainder of the random number divided by j (mod j) as the new pseudo ID for each
new user. The pseudo ID that is used is removed from the table by the responder and the
j available positions for the next new user are updated by shifting up the pseudo ID table.

When a legitimate user sends in a message, the responder updates the registered
user’s pseudo ID and filter value for the next frame in SMAS and DDCS as follows. The
responder generates the new pseudo ID for the user by using the same technique in ICS,

removes the new pseudo ID from the available pseudo ID array by shifting up the pseudo

45

ID table, updates the filter value table for the new pseudo ID, and attaches the previous
pseudo ID to the end of the pseudo ID array to ensure that the previous pseudo ID is
available for other users. The same algorithm can be used on a user side.

Figure 8 shows the flowchart of updating filter value by both responder and user
where F(t, Piyy) 1s either Fr(t, Puin) or Fu(t, Priaw) . After the responder receives the
filter value F(t, Pyu) from a user, the responder will compare the filter value by
comparing the filter value table by using the pseudo ID. If the filter value F(?, Piyy) is
found, the responder will find the new pseudo ID for the filter value F(¢+1, Piy4+1)) and
insert the filter value F(t+1, Pjq.+1), and then the filter value F(t, Piqq) will be deleted

from the filter value table. The user conducts similar operations as the responder.

Delete the Insert
: C Update th
Filter Value ompare YES IPRELO U current F(t, Pigy) F(t+1, Pige)
— F(t, Pia) see if pseudo ID for 5 Fit+
F(t, Pigy) the;’e s & et F(t+1, P,) from filter value into filter value
i) table table

F(t, Piar)
Rejected

Figure 8: Filter Value Table Update Flowchart

46

CHAPTER FIVE

IMPLEMENTATION AND PERFORMANCE EVALUATION

5.1 Implementation

IPACF protocol has been implemented in Linux systems. The software is
implemented, compiled, and run in an IBM ThinkPad T42 with a Pentium M processor
running at 1.7 GHz, with a L2 cache of 2MB, 512 MB of main memory and connecting
with CAT 5Se cable to I00BASET Ethernet switch. IPACF protocol can also be split into
a dual servers design as shown in Figure 9. With a dual server design, the server 1 can
filter out the packets for legitimate users and route the legitimate requests to Server 2.
Server 1 listens for connections from the user on specific port number, which allows only
the legitimate packets to go through to Server 2 by comparing the received filter value
based on pseudo ID. Server 1 rejects the packet right away if the filter value does not
match; otherwise, it routes the packets to Server 2. The Server 2 provides the service that
generates the new filter value, then updates the filter value and sends it back to legitimate
users through Server 1.

When Server 1 receives a packet, Server 1 compares the filter value with the filter
value table alone with the pseudo ID. If there is a match, Server 1 can obtain the hidden
user ID from the filter table and routes the packet with the user ID to Server 2; otherwise,

the packet is dropped. If the received packet is legitimate, Server 1 sends the packet to

47

Server 2 that performs the SMAS stage. Server 2 updates the filter value for the specific
user and updates the pseudo ID to ensures that the user real identity is hidden with four
steps: first, generate the new pseudo ID, and the filter value is updated from the filter
value table; the computation costs O(1) to update. Second, Server 2 removes the original
filter value from the filter value table; the computation costs O(1) to remove. After
Server 2 completes filter value update, it sends the updated filter value with the new
pseudo ID to Server 1. Server 1 then updates the filter value table in order to maintain its
current status.

In a DoS/DDoS attack, the attacker attempts to make network services unavailable
by flooding the authentication server in the network with numerous requests. The CPU
usage eventually reaches its maximum and the server service becomes unavailable. A
dual server design can improve request response time using Server 2 to calculate filter
values and frame key so that Server 1 only performs the comparison of filter values. In
this paper, we will demonstrate the IPACF protocol with both single server and dual

server and conduct the comparison for the performance evaluation.

48

IPACF Dual Server Design

User Attacker Attacker Attacker

192.168.1.100 192.168.1.101 192.168.1.102 192.168.1.103

kb

0
subnet #1
192.168.1.0
g subnet #2 ‘
Server 1 131.204.128.0 Server 2

NIC #2: 131.204.128.1

Figure 9: Diagram with dual servers design

IPACEF protocol is implemented in RedHat Linux 9.0, using gcc and g++ compiler
with Crypto++ Library. Crypto++ Library is a free C++ class library of cryptographic
schemes. Integrity uses hash function HMAC with SHA1 keyed-hash and confidentiality
uses AES are tested. In this experiment, we use 128 bits for both key size and block size
in AES.
5.2 Performance
5.2.1 Performance in authentication

The server accepts the packet from a user and verifies the filter value. If the
corresponding filter value of the user matches, the server will perform the SMAS.
During the SMAS stage, after the server verifies the filter value, the server has
authenticated the user. The server will decrypt the secrets, which are the time stamp and

nonce, sent by the user to perform the same calculation for the user to authenticate the

49

server. The server will send the filter value, time stamp, and the master secret key Kz
back to the user, and allow the user to verify the filter value and update the server secret
master key from Kggjto Kgj+). After the user authenticates the server by comparing the
filter value sent by the server, the SMAS is completed, and the filter value Frp will be
updated for the DDCS and for next session login. Figure 10 and Figure 11 show the
session mutual authentication for the responder and the user, respectively. The averaged
wired authentication time for the responder in SMAS is 4.2003 millisecond (ms) while
IDF needs 181.55 ms, IPACF needs only 2.31% authentication time of IDF in wired links;
the averaged wireless (using 802.11b instead of Ethernet) authentication time for the
responder in SMAS is 9.12124 ms while IDF needs 189.37 ms, IPACF needs only 4.86%

authentication time of IDF in wireless links.

50

hadroot® localhost:/home/IDF/crypto - Shell - Konsole

Session Edit View Bookmarks Settings Help

)|

e

PesudoID Received: 730

Received Filter Value: 8fabfcebsff37ef6c27f858aa693d90ea8d6bdsc
Pre-Generated Filter Value: 8fabfceb5ff37e66c27f858aa693d90ea8d6bdsc
Filter Value Matches!!

Stage II Frame 1

NU Integrity Check OK!!
Time NU Integrity Check OK!!

New Pseudo ID For Next Frame Is: 50

PesudoID Received: 50

Received Filter Value: cc9Bc343401be7ab89f9a70f32318a82405b0244d
Pre-Generated Filter Value: cc98c343401be7ab89f9a70f3318a82405b0244d
Filter Value Matches!!

Stage II Frame 2

Client 1 0l1d Filter Value: 8fabfceb5ff37e66c27fB58aa693d90eaBd6bdoc
Client 1 New Filter Value: 601e50b700e4l17c8a4316aca66d9eff6151a5f78
New Pseudo ID For Next Frame Is: 508

Available Position: 1014

Stage II Complete

2-Way Authentication Complete!!

Time Of Authentication Is: 0.011191 Seconds
li:erage Time of Authentication Is: 0.0156813 Seconds

[»

II_<I|

Figure 10: The SMAS for the responder

51

b gdrooti localhost:(home/IDF/crypto - Shell - Konsole

Session Edit View Bookmarks Settings Help

|y

S

wrxsrettWelcome To IPACF Testing Program#®####®ss

Stage I
Stage I Is Completed

Stage II

Sending Pseudo ID: 0730

Filter Value Matches!!

New Pseudo ID For Next Frame Is: 0050
Stage IT Complete

New Pseudo ID For Next Frame Is: 0508

Time For 2-Way Authentication Is: 0.017872 Seconds
2-Way Authentication Complete!!

lEEmulatiun Complete For Client!!

Received Filter Value: 35d041e89606540035e5ch9cd37cf3cad0748552
Pre-Generated Filter Value: 35d041e89606540035e5cb9cd37cf3cad0v48552

ll:"

Figure 11: The SMAS for the user

5.2.2 Performance in DoS attacks

When a hacker performs an attack to the server, we can see the screen capture in

which packets get rejected by the server after the verification of the filter value is failed

as shown in Figure 12. When a legitimate user tries to get authenticated by the server

while attackers are trying to perform the attacks to the server, we can see the rejected

messages from the server. When the attack is performed, the server shows the “Login

Failed” message after comparing the filter value that does not match. When the SMAS is

performed successfully for the legitimate user, we can see “Filter Value Matches” in

Figure 12.

52

hadroot@localhost:fhome/IDF/crypto - Shell - Konsole

Session Edit View Bookmarks Settings Help

L)

PesudoID Received: 779 Received Filter Value: aacd52bB5d3be420aeef9fcblel2695d0b9d32cH8 LogIn Failed
PesudoID Received: 185 Received Filter Value: 021d3afca895f25ea7754fb3aB8blel6fe4a47c39 LogIn Failed
PesudoID Received: 8

Received Filter Value: 3ce6c28bacl42a5c8e9d3609f75dafo78cddfode

Pre-Generated Filter Value: BceBc2Bbacl42a5cBe9d3609f75daf978cddfode

Filter Value Matches!!
Stage II Frame 1

NU Integrity Check OK!!
Time NU Integrity Check OK!!

New Pseudo ID For Next Frame Is: 686

PesudoID Received: 544 Received Filter Value: 4de9bd8dfb294bdcfe6cl03efaaac®5521ef5a20 LogIn Failed
PesudoID Received: 686

Received Filter Value: 54d752cf2d00dbe87f6e5e649fa45c79d90e5425

Pre-Generated Filter Walue: 54d752cf2d00dbeB87f6e5e649fa45c79d90e5425

Filter Value Matches!!

Stage II Frame 2

Client 1 01d Filter Value: 3ce6c28bacl42a5cB8e9d3609f75dafa78cddfode
Client 1 New Filter Value: 58193c67fa534956026f0ac84b337fe7c04414f6
New Pseudo ID For Next Frame Is: 120

Available Position: 1014

Stage II Complete

2-Way Authentication Complete!!

Time Of Authentication Is: 0.028796 Seconds
Average Time of Authentication Is: 0.034345 Seconds

PesudoID Received: 186 Received Filter Value: f78569ec4e9cec6ee46076f2c09fdc9f5228¢c987 LogIn Failed
PesudoID Received: 902 Received Filter Value: 1a275c0a5635a08d90c4aebadl11b361f80e01f6 LogIn Failed
'PesudoID Received: 195 Received Filter Value: 601377a4474fe708fc90dlabcBaad237ab81fde6 LogIn Failed

<]
=

Figure 12: User performs SMAS to the responder while attackers perform DoS attack

As shown in Figure 13, the averaged rejection time as a function of the number of

attacking PCs is defined as the time between an attacker sends out Frame I and receives

the rejection from the server. Both IPACF and IDF have an averaged reject time 5.90 ns

(nanoseconds) by the responder.

53

IPACF/IDF Averaged Rejection Time

10.00
8.00

6.00

*

L 3
L 3
L 3
<*

—— [PACHIDF Averaged

4.00
2.00 A

Rejection Time

Averaged Rejection
Time (nanoseconds)

0.00

2 3 4 5
Of Attacking PCs

Figure 13: Comparison chart of IPACF and IDF in averaged rejection time

5.2.2 Performance in dual server over single server

In our experiments, the dual server needs only 5.4% authentication time of single

server while a number of attackers are performing attacks as shown in Figure 14.

1.000E+00

1.000E-01

1.000E-02

Authentication Time (sec)

1.000E-03

Dual Server vs Single Server

——single server

—8— dual server

Of Attacking PCs

Figure 14: Comparison chart of dual server vs single server in average round trip time

54

5.3 Interoperability of IPv4 (user application) and IPv6 (responder)

The IPACF implementation is designed to be compatible with IPv6 networks, a
server code is bound to the IPv6 address and the server will be able to accept connections
from IPv4 and IPv6 clients. When an IPv4 client is connecting to the IPv6 server, the
dual stack kernel converts the client IPv4 address to the IPv4-mapped IPv6 address since
the IPv6 server can only deal with IPv6 connections. When porting to [Pv6, most of
changes will be made in the transport module, which is User Datagram Protocol that is in
charge of establishing communications to remote nodes. If the IPACF implementation is
changed to IPv6, only the transport module should be modified. Figure 15 and Figure 16
show the difference between UDP and UDP6 socket. The inet6 family is an [Pv6 version
of inet4 family. While inet4 implements Internet Protocol version 4, inet6 implements
Internet Protocol version 6. inet6 is a collection of protocols layered atop the Internet
Protocol version 6 (IPv6) transport layer, and utilizing the IPv6 address format.
UDP/UDPS6 is used to support the SOCK_DGRAM abstraction (UDP) in ineté family
that provides access to the [Pv6 protocol.

Each protocol-specific data structure is designed to carry the addresses for each
protocol, so it can be cast into a protocol-independent data structure - the "sockaddr"
structure. The sockaddr in structure is the protocol-specific address data structure for
IPv4; the sockaddr in6 structure is the protocol-specific address data structure for IPv6.
They both pass addresses between applications and the system in the socket programming
functions. A new address family name, AF _INET®6, distinguishes between the original
AF _INET sockaddr in address data structure and the new sockaddr in6 data structure.

The sin6_port field contains the 16-bit UDP port number. This field is used in the same

55

way as the sin_port field of the sockaddr_in structure and the port number is stored in the
network byte order. Applications use in6addr any similarly to the way that they use
INADDR ANY in IPv4. In Figure 15, the server creates a sockaddr in structure with
AF INET family, which contains its source IPv4 address to bind the socket to port
number 32000. In Figure 16, the server creates a sockaddr in6 structure with AF_INET6

family, which contains its source [Pv6 address to bind the socket to port number 32000.

hdl!PACF_Serverlplus2.cpp - KWrite -3

FEile Edit View Bookmarks Tools Settings Help

NG5 88 0nc b X AAY

/ This 1s to prepare the UDP sockett sockfd;

[+

int sockfd;

struct sockaddr_in servaddr,cliaddr; //structure for ip address and port
int n;

socklen_t len; J/varialble for the socket
sockfd=socket (AF_INET,SOCK_DGRAM,0) ; //create socket

bzero(&servaddr, sizeof(servaddr)); //initialize server
servaddr.sin_family = AF_INET; /initialize family
servaddr.sin_port=htons(32000); //initialize port

servaddr.sin_addr.s_addr=htonl{INADDR_ANY): S/initialize address

[«]1

Line: 10,137 Col: 2 INS NORM

Figure 15: UDP socket

h!PACF_Serverlplus2_IPv6.cpp - KWrite -
Eile Edit View Bookmarks Tools Settings Help
; =y W B OF
NE I owarabd XAAY
'/ This is to prepare the UDP6 sockett sockfd; R
int sockfd;
struct sockaddr_in6 servaddr,cliaddr; A/structure for ip address and port
int n;
socklen_t len; S/varialble for the socket
sockfd=socket (AF_INETE,S0CK_DGRAM,0); //create socket
bzero(&servaddr,sizeof(servaddr)); //initialize server]
servaddr.sin6_family = AF_INET6; nitialize family -
servaddr.sin6_port=htons(32000); A/initialize port el
memcpy (&servaddr.sin6_addr, &in6addr_any, sizeof(servaddr)); //initialize address .
Line: 10,140 Col: 13 INS NORM

Figure 16: UDP6 socket

56

CHAPTER SIX

CONCLUSIONS AND FUTURE WORKS

In this thesis, we introduced an identity-based privacy-protected access control
filter (IPACF) to solve DoS/DDoS problems. The IPACF protocol provides the following

unique properties.

e The IPACEF filter is based on the legitimate users’ identities, which is hidden in
the filter values that are generated by the pre-shared secrets, nonce, timestamp,
user ID and password.

e The IPACF filter value varies with every frame for both responder and user to
prevent sniffing attacks.

e A filter value table is initialized for both users and responder during ICS. The
identities of both users and responder are tabulated with pseudo ID in the filter
value table.

e The privacy of both user and responder is guarded by the one-time filter value,
which is the temporary equivalent identity that is accessible in the communication.
Only the legitimate user and responder can figure out the identity from the filter
value table.

e The IPACF protocol is stateless because the input filter value is checked against

the filter table without creating a state unless the filter value is legitimate. When a

57

legitimate filter value is received, a new state is created by calculating the new
filter value for the next frame. When a legitimate filter value comes in, a sorted
filter value table is maintained by deleting the old filter value, searching the new
index for the new filter value and inserting it into the filter table.

e The stateless property provides the capability to resist DoS/DDoS attacks.

The IPACF protocol ensures a secure update for both user and responder session
master key Kzj;and Ky;. A pairwise key Kr exists for each user so that a user cannot
pretend to be a responder.

Future research direction is proposed as follows. In PKI ((Public Key Infrastructure)
authentication protocols, a server must use the system resources to compute and store a
hash, it makes the DoS/DDoS attack feasible [12]. When a web server integrates with the
IPACEF protocol, the web server immediately turns into an application server to offer safe,
secure information exchange to registered/legitimate clients. The implementation of PKI
that combined with IPACF to defend against DoS/DDoS attacks is via web server and
client certificates.

There are three steps during the initial configuration stage in a secured channel such
as a SSL (Secure Socket Layer) channel. First, a client and the web server exchange their
certificates via a SSL channel. Second, a client generates the master secret key Ky using
equation (30) without a user ID and a password, using its private key Kpy instead,
encrypts Ky and N; with the web server’s public key, and then sends the encrypted
information to the web server. Third, after the web server receives the encrypted

information, it will decrypt the received information using its private key Kpgr. The web

58

server will generate the master secret key Kz using equation (31) without a responder ID
and a password, using its private key Kpg instead, encrypts Kz, Ty and Ny with the
client’s public key, and then sends the encrypted information back to the client. Since
most of users do not have a certificate, as an alternative, a user can use a user ID and a

password instead of a private key as shown in equation (1).

Ky=h,)| Kpul| T, || Nl (30)
KR=h(NRl)[KPRH TRH NRi] (31)

After the initial configuration stage, the client will be able to perform authentication
with the web server. The authentication scheme will be stateless for both client and web
server to against DoS/DDoS attacks. The initial configuration stage will not need to be
performed unless it is necessary for a new client to register. The session key will be
generated for any further authentication.

The web server uses the authentication and encryption/decryption services of IPACF
and can securely communicate with clients, which will be able to use the server-side
resources. The IPACF protocol provides compatibility with the PKI schemes to prevent a

DoS/DDoS attack.

59

[8]

BIBLIOGRAPHY

IEEE Standard for Local and metropolitan area networks: Port-Based Network
Access Control, IEEE Std 802.1X-2003.

IEEE Std 802.111/D4.1, “Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Medium Access Control (MAC) Security
Enhancements,” July 2003.

A. Saxena and B. Soh, “Distributed Denial of Service Attacks and Anonymous
Group Authentication on the Internet,” Third International Conference on
Information Technology and Applications, vol. 2, ICITA 2005, pp.460-464.

C. Wang, C. Wu and J. D. Irwin, “Using an Identity-Based Dynamic Access
Control Filter (IDF) to Defend Against DoS Attacks,” In [IEEE Wireless
Communications and Networking Conference, vol. 1, March 2004, pp. 639-645.

P. Owezarski, “On the impact of DoS attacks on Internet traffic characteristics and
QoS,” In Proc. 1 4™ International Conference on Computer Communications and
Networks, ICCCN 2005, pp. 268-274.

A. Juels and J. Brainard, “Client puzzles: A cryptographic countermeasure against
connection depletion attacks,” In Proc. of the Network and Distributed Systems
Security Symposium (NDSS "99), February 1999, pp. 151-165.

T. Aura, P. Nikander, and J. Leiwo, “ DOS-resistant authentication with client
puzzles,” In Proc. of the 8th International Workshop on Security Protocols, April
2000, pp.170-177.

W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. loannidis, A. Keromytis, and O.
Reingold, “Efficient, DoS-Resistant, Secure Key Exchange for Internet Protocols,”
In Proceedings of the 9th ACM conference on Computer and communications
security, Washington D.C., 2002, pp. 48-58.

K. Matsuura and H. Imai, “Modified aggressive mode of Internet key exchange
resistant against denial-of-service attacks,” In IEICE Transactions on Information
and Systems, May 2000, pp. 972-979.

60

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Leiwo, P. Nikander, and T. Aura, “Towards network denial of service resistant

protocols,” In Proc. of the 15" International Information Security Conference
(IFIP/SEC), August 2000, pp. 301-310.

C. Meadows, “A formal framework and evaluation method for network denial of
service,” In Proc. of the 12th IEEE Computer Security Foundations Workshop, June
1999, pp. 4-13.

W. Zhiguo, Zhu Bo, R.H. Deng, Bao Feng, and A.L. Ananda, “DoS-resistant access
control protocol with identity confidentiality for wireless networks,” IEEE Wireless
Communications and Networking Conference, vol. 3, March 2005, pp. 1521-1526.

JAN, J.K., and TSENG, Y.M., “Two integrated schemes of user authentication and
access control in a distributed computer network”, /IEE Proc. Comput. Digit. Tech.,
1998, 145, (6), pp. 419-424.

W.H He, and T.C. Wu, “Security of the Jan-Tseng integrated schemes for user
authentication and access control” /IEE Proc. Comput. Digit. Tech., 147, (5), 2002,
pp. 365-368.

G. Carl, G.Kesidis, R.R.Brooks, Rai Suresh, ‘“Denial-of-service attack-detection
techniques,” IEEE Internet Computing, vol. 10, January 2006, pp.82-89.

J. Mirkovic, J. Martin, and P. Reiher, “A Taxonomy of DDoS Attacks and DDoS
Defense Mechanisms,” ACM Sigcomm Computer Comm. Rev., vol. 34, no. 2, 2004,
pp- 39-53.

A. Ferrante, V. Piuri, and J. Owen, “IPSec hardware resource requirements
evaluation,” Next Generation Internet Networks, April 2005, pp. 240-246.

M. Bellare, and R. Canetti, “HMAC: keyed-hashing for message authentication,”
Request for Comments 2104, Internet Engineering Task Force, February 1997.

T. Aura and P. Nikander, “Stateless connections,” In Proc. Of International
Conferenec on Information and Communications Security (ICICS °97), Lecture
Notes in Computer Science, vol. 1334, Springer, November 1997, pp. 87-97.

P. Janson, G. Tsudik, and M. Yung, “Scalability and flexibility in authentication
services: The KryptoKnight approach,” In IEEE INFOCOM97, Tokyo, April 1997,
pp. 725-736.

R. C.Merkle, “Secure communications over insecure channels,” Communications of
the ACM, vol. 21, April 1978, pp. 294— 299.

61

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

C. Dwork and M. Naor, “Pricing via processing or combating junk mail,” In E.
Brickell, editor, Proceedings of Advances in Cryptology - Proc. CRYPTO 92, vol.
1323, Santa Barbara, CA USA , August 1992, Springer-Verlag, pp. 139-147.

D. Dean and A. Stubblefield, “Using Client Puzzles to Protect TLS,” In
Proceedings of the 10th USENIX Security Symposium, Washington D.C., August
2001, pp. 1-8.

X.F. Wang and M .K. Reiter, “Defending Against Denial-of-Service Attacks with
Puzzle Auctions,” In IEEE Symposium on Security and Privacy, May 2003, pp. 78-
92.

Brent Waters, Ari Juels, J. Alex Halderman, and Edward W. Felten, “New client
puzzle outsourcing techniques for DoS resistance,” The 11th ACM Conference on
Computer and Communications Security (CCS 2004) ACM Press, 2004, pp. 246—
256.

D. Dean and A. Stubblefield, “Using client puzzles to protect TLS,” In [0th
USENIX Security Symposium, 2001, pp. 1-8.

A. Juels and J. Brainard, “Client puzzles: A cryptographic countermeasure against
connection depletion attacks,” In Proc. of the Network and Distributed Systems
Security Symposium (NDSS ’99), February 1999, pp. 151-165.

D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” Request for
Comments 2409, Internet Engineering Task Force, November 1998.

N. Ferguson and B. Schneier, “A Cryptographic Evaluation of IPSec,” In
http://'www.counterpane.com/ipsec.pdf, January 2000.

C. Kaufman and R. Perlman, “Analysis of IKE,” In I[EEE Transactions on Network
Computing, vol. 4, November 2000, pp. 50-56.

Matsuura and H. Imai, “Resolution of ISAKMP/Oakley key-agreement protocol
resistant against denial-of-service attack,” In Proc. of Internet Workshop (IWS '99),
February 1999, pp. 17-24.

W. A. Simpson, “IKE/ISAKMP Considered Harmful,” USENIX ;login:, December
1999, pp. 48-58.

D. Harkins, C. Kaufman, S. Kent, T. Kivinen, and R. Perlman, “Proposal for the

IKEv2 Protocol,” In draft-ietf-ipsec-ikev2-01.txt, Internet Engineering Task Force,
April 2002. Work in progress.

62

[34]

[35]

[36]

[37]

[38]

[39]

K. Matsuura and H. Imai, “Resolution of ISAKMP/Oakley key-agreement protocol
resistant against denial-of-service attack,” In Proc. of Internet Workshop (IWS '99),
February 1999, pp. 17-24.

M. Bellare, R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message
Authentication,” Abridged version appears in CRYPTO '96, vol. 1109 of Lecture
Notes in Computer Scienc, Springer-Verlag, 1996 e, pp. 1-15.

M. Jakobsson and A. Juels, “Proofs of work and bread pudding protocols,” In Proc.
of the IFIP TC6 and TCI11 Joint Working Conference on Communications and
Multimedia Security, September 1999, pp. 258-272.

R. Oppliger, “Protecting key exchange and management protocols against resource
clogging attacks,” In Proc. of the IFIP TC6 and TC11 Joint Working Conference on
Communications and Multimedia Security (CMS '99), September 1999, pp. 163—
175.

S. Hirose and K. Matsuura, “Enhancing the resistance of a provably secure key
agreement protocol to a denial-of-service attack”, In Proceedings of the 2™
International Conference on Information and Communication Security (ICICS "99),
Lecture Notes in Computer Science vol. 1726, Sydney, Australia, November 1999,
Springer, pp. 169—182.

M.T. Goodrich, “Leap-frog packet linking and diverse key distributions for

improved integrity in network broadcasts,” In IEEE Symposium on Security and
Privacy, May 2005, pp. 196-207.

63

