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Abstract

As deep sub-micron technologies are widely adopted in modern VLSI design and fabri-

cation process, the shrinking size and increasing complexity of digital circuits make it more

difficult to maintain a high yield. Diagnosis is the procedure used when circuit verifica-

tion fails. Determining the cause of the failure and finding the possible defect locations

are included in diagnosis. In this thesis, a procedure of diagnosing multiple net-faults is

proposed.

Many previous studies on fault diagnosis mainly focused on single failures. However,

considering the increasing complexity of current devices, multiple fault models may better

reflect the real failures. Therefore, this thesis aims at using multiple fault models for diag-

nosis, though only the single fault simulation information is used. We utilize test patterns

that have high diagnostic coverage for single stuck-at and single transition faults. Thus, we

can expect a better distinguishablility between faults and hopefully better diagnosis can be

achieved.

We propose a candidate filtering system based on probabilistic counting criteria, which

is different from previous methods that simply relied on strict matching criteria and simple

matching count. The proposed candidate filtering system utilizes information on passing

patterns as well as that on both erroneous and error-free primary outputs of failing patterns

to construct a balanced ratio-count for each fault that could potentially exist in the faulty

circuit. By using such ratio-count for each fault, we hope to have better chances of discovering

those faults that have been reported detected only few times. In reality this would be the

case with hard to detect faults. Fault candidates are then filtered by dropping those with

counts lower than an empirically determined threshold.
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After candidate filtering, we use a candidate ranking system to rank the remaining

fault candidates. We define a structure called erroneous primary output tree (EPO-Tree),

which for a failing pattern represents both the observed failing information from the circuit

under diagnosis (CUD) and the simulation information of fault candidates. Our ranking

procedure is performed within each EPO-Tree. A novel feature of this ranking system is

that we do not rank the fault candidates only based on the overall matching performance,

but we also consider their potential within each branch of the EPO-Tree. Any fault that has

a chance to be the top candidate in any branch of certain EPO-Tree will be selected as the

final candidates. By using this method, we can have a better chance to discover the fault

candidates that may have a worse overall ranking from first stage but are unique enough in

certain branch of EPO-Tree. What’s more our candidate ranking system does not require

the single-location-at-a-time (SLAT) ability of test pattern to activate single fault among

multiple faults as previous works do.

After the fault ranking, we expand the collapsed fault candidates by uncollapsing faults.

Each fault candidate in the final ranked list represents a net that it belongs to. According

to the ranks of faults on a net we rank the net candidates. All nets derived from the final

fault list are put into a net pool. The final net candidate list includes two parts: the first

part includes the nets that have more than two members in the net pool, and the second

part includes those nets that have only one member in the net pool. The further ranking of

the net depends on the top ranked fault’s rank.

We use a commercial fault simulation tool for experiments on ISCAS85 benchmark

circuits. When simulated faulty responses of benchmark circuit c7552 with multiple faults

on a single net were diagnosed, in 90% cases a set of one to three nets could be found such

that this set contained the actual faulty net. Similarly, when responses for two faulty nets

were diagnosed, up to six nets were identified containing the two real ones in 90% cases. We

thus assessed the diagnosis algorithms to have 90% diagnosability with a resolution of three.
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Chapter 1

Introduction

Due to high logic density, incomplete characterization information and variations in

modern VLSI devices, chips on the first round of tape-out often fail or suffer a relatively

low yield that may be economically unacceptable. Failure analysis plays an important role

in bringing the yield up. First, it collects the failing information from the failed devices.

Then it uses diagnostic methods to identify the possible causes and locations of failures.

Finally, it looks into the failing circuit and finds the real defects caused by manufacturing

processes or flaws of design. Subsequently, these failures or flaws are corrected. However,

with the increasing complexity of Integrated Circuit (IC) logic design and increasing difficulty

of physical inspection in today’s multi-layer deep sub-micron devices, failure analysis has

become exceedingly expensive and time-consuming. Therefore, improving the efficiency and

accuracy of failure analysis is necessary for the yield ramping-up. Logic-level fault simulation

and analysis are critical parts of failure analysis.

In failure analysis, a logic-level process called fault diagnosis is used to find the possible

faulty locations of real defects on a failing chip. A good diagnosis algorithm or method is

very critical for reducing the time spent on physical inspection and lowering the total cost of

product development. There are three basic requirements for a sound diagnosis framework:

high diagnosability, high resolution and good time efficiency. Diagnosability represents the

percentage of the true defects that can be covered in the final reported results. Resolution is

the average number of candidates that is identified in place of a true defect. Time efficiency

represents the time consumed in the process of diagnosis.

The objective of fault diagnosis research is to find methods to improve the criteria

mentioned above. Previous works on fault diagnosis have considered several aspects. For
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example, fault models have been evolved in order to perfectly represent the true defect

behavior. Several attempts are focused on algorithms that can improve the resolution and

accuracy of the diagnosis. Others have concentrated on reducing the time of the diagnosis. In

the present research we introduce a novel probabilistic filtering method and a fault candidate

ranking algorithm. The thesis aims to propose a diagnosis method that can achieve both

high resolution and accuracy for single and multiple net faults.

Net fault diagnosis is an important area in fault diagnosis. A net means a metal wire in

the circuit. Typically, net problems can be divided into two groups: problems on nets within

the logic gates and problems on nets which connect different logic gates. Due to the large

routing area of modern VLSI devices, compared to the nets within logic gates, the routing

interconnection nets are more vulnerable to certain manufacturing defects. In this work, our

objective is to locate one or more interconnection nets with possible defects.

1.1 Problem Statement

Given the failing responses, test patterns and a netlist of the circuit under diagnosis

(CUD), we must provide an effective method to identify the possible faulty nets.

1.2 Thesis Contributions

There are several original contributions in this thesis. First, we have proposed a novel

probabilistic candidate filtering system that can assign a more balanced count to each fault

compared to previous works, especially for those faults with fewer detection instances com-

pared to others. This filtering system uses a probabilistic count and a partial matching

criteria instead of the strict matching criteria or simply accumulated counting criteria as

used in in some previous diagnosis works.This candidate filtering system also utilizes the

passing pattern information together with the information of passing outputs under failing

patterns to reduce fault candidates in the first stage of diagnosis. Passing information has

seldom been used in the first stage of multiple fault diagnosis methods.
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A proposed data structure called erroneous primary output tree (EPO-tree) is used

to represent both the failing information of CUD and the simulation information of fault

candidates under certain failing pattern. Our ranking procedure is performed within each

EPO-Tree. The novel part of the proposed ranking system is that we do not rank the fault

candidates based on the fault performance on every EPO-Tree. The faults that have a

chance to be top candidates in any EPO-Tree are selected as the final candidates. By using

this method, we can have a better chance to discover the fault candidates that have fewer

detection instances because either they are hard to detect faults or their effects at primary

outputs are masked by other faults. After the fault ranking, we extend the diagnosis to

net candidates. Because our method has good diagnosis resolution and diagnosability for

multiple faults diagnosis, we have a good chance to diagnose a net fault, which often leads

to a multiple fault scenario.

The diagnosis method that we propose in this thesis can be used not only for net

fault diagnosis with stuck-at and transition faults but with other type of faults as well.

Besides, this method can be used both in cause-effect and effect-cause diagnosis procedures.

In this work, we utilize test patterns [52, 53] with relatively high diagnosibility for single

stuck-at faults and for single transition faults. Because we consider that the traditional

fault simulation methods can have a better accuracy of fault diagnosis compared to the

critical-path-tracing method, we utilize the traditional simulation method to perform fault

simulation.

1.3 Organization of Thesis

In Chapter 2, we will first talk about some basic concepts from the field of VLSI diagno-

sis. Previous work on fault diagnosis will be discussed in Chapter 3. A method of diagnosing

multiple faults will be presented in Chapter 4 and Chapter 5. The net diagnosis work will

be discussed in Chapter 6. The thesis will be concluded in Chapter 7.
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Chapter 2

Review of Concepts in Fault Diagnosis

In this chapter, we briefly review some basic concepts from the field of VLSI diagnosis.

2.1 Circuit Types

Generally speaking, digital circuits are divided into two main categories: combinational

circuit and sequential circuit. As showed in Figure 2.1, a combinational circuit is a type of

circuit for which the outputs of the circuit are functions of present inputs only, while the

values of sequential circuit outputs depend not only on the present input values but also on

the stored previous values. Sequential circuit usually contain memory components (e.g., D

flip-flops), which can store certain previous values of the circuit. A sequential circuit utilizing

D flip-flops as memory components is shown in Figure 2.2.

IN1

IN2

IN3

IN4

PO

Figure 2.1: A combinational circuit example.

In this thesis, we aim at solving the diagnosis problem for combinational circuits only.

Since scan-based design [6] is nowadays broadly used as a digital design-for-test (DFT)

structure, the contents of the memory components can be shifted out by a scan-chain and
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DFF

DFF

Combinational Circuit

{ }PI PO

Y1

Yn

Y1

Yn

Figure 2.2: A sequential circuit example.

observed by the tester. Assuming that the DFT structure of a circuit is full-scan, which

means all flip-flops in the circuit should be in the scan-chain and the contents of the flip-

flops can be scanned out after each test vector application, the testing as well as diagnosis

can be accomplished in a similar way as for combinational circuits. This is the reason why

we choose combinational circuit as the circuit type for diagnosis in this thesis. Diagnosis for

non-scan sequential circuits may be suggested for the future work.

2.2 Test Patterns and Circuit Testing

Input signals that are applied to the circuit for testing are called test patterns or test

vectors. In scan testing, the test patterns are not only applied at the primary inputs they

are also applied directly to the scan-registers as well. A passing pattern is the test pattern

under which that the observed response of the device-under-test (DUT) matches the expected

values, while a failing pattern is the test pattern under which the response of a circuit does

not match the expected values. The test patterns used for diagnosis can be of different types:

random patterns, N-detect patterns or fault-model based diagnostic patterns.

Random patterns are the test patterns that are generated randomly by a computer

program or pattern generator (e.g., LFSR) [6, 41]. Because random patterns are generated
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without specific requirements, good diagnosability may require increasing the number of test

patterns. Usually, a random test set has a large data size for fault diagnosis. This causes

problems with test set storage and testing time, because the memory storage space in tester

is limited and time spent on testing each single circuit is critical for the whole testing cost.

N-detect patterns are model-based test patterns ensuring that each fault is detected by

at least N different test vectors. N-detect patterns can improve the defect coverage [3, 43]

by increasing, N, the number of times a single fault is detected [1, 3, 10, 16, 48]. However,

N-detect patterns face the same problems of large test size. Many efforts have been devoted

to minimizing the N-detect test size [19, 20, 33, 21].

Fault model based diagnostic patterns focus on some specific fault models, like bridging

fault [31], gate-design-error fault [44], transition fault [53, 11] and single stuck-at fault [52].

In this thesis, we utilize previously generated test patterns [52, 53], which are based on

single-stuck at and transition fault models, respectively, to solve the problem of net-fault

diagnosis.

Testing is a procedure of applying a test pattern to the circuit and observing the output

signals. A test set is a collection of tests that is used to test a certain circuit. The test set

is applied by a tester whose basic purpose is to drive the inputs and to monitor the outputs

of a device-under-test. Testers are popularly known as ATE (automatic test equipment) [6].

A test program is a program that runs on ATE and contains a sequence of instructions that

the tester must follow to conduct the testing. This sequence of instructions may include

controlling the power, applying clocks and patterns to the circuit, strobing output pins and

comparing output signals with the expected responses stored in the tester.

2.3 Fault Models

As we have discussed in Chapter 1, due to the complexity of VLSI device fabrication

and high logic density, there will be many types of design-errors or defects during the process

of chip design and manufacturing. A fault model is an abstraction of a real defect in a chip
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and we use different fault models to handle specific types of defects in testing and fault

diagnosis. In VLSI circuits, functional correctness is guaranteed by good timing and perfect

logic validity, so in order to model the behavior of real defects as well as it can a fault model

should focus on the logic and timing behaviors. Physical defects can be modeled as logical

faults or delay faults depending on whether the defect affects timing or logical function of

the circuit. Several common logic fault models are reviewed in the following sections.

2.3.1 Stuck-at Fault Model

The term stuck-at fault was first introduced in a paper by Galaey et al. [9] in 1961.

Stuck-at fault is a gate-level model, which assumes that certain interconnection of the circuit

has a fixed value of ’1’ or ’0’ (referred to as ”stuck-at-1” or ”stuck-at-0”). In a circuit of

n interconnections, there would be totally 2n stuck-at faults, but only one fault is assumed

to appear on a interconnection at one time. When some physical defects occurs during the

manufacturing precess, it can be modeled by stuck-at fault, like shorting of a signal line to

VDD (logic ’1’) or GND (logic ’0’). As showed in Figure 2.3, the OR gate has a stuck-at

’0’ fault on input line1. The expected output value should be ’1’, however, because of the

presence of the stuck-at fault on input line, the output has a faulty value ’0’. In order to

detect the stuck-at fault value in the circuit, the test set should force an opposite value on

the concerned line and drive the effect to primary outputs. As showed in Figure 2.3, if we

want to test whether line1 is stuck-at 0, we have to apply a ’1’ on line1 and at the same time

apply a non-controlling signal ’0’ on line 2 so that the value on line1 can be propagated to

the output without blocking.

2.3.2 Bridging Fault Model

As showed in Figure 2.4, there is low resistance short between two lines that are close

to each other. Because of such a short defect, there is an interfering effect between the two

lines and logical errors may appear on either or both of the lines. Bridging fault model
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Line 1

Line 2

Output

Good Signal: 1

Faulty Signal: 0

×
Good Signal: 1

Faulty Signal: 0

Good Signal: 0

Line 1 stuck at 0

Figure 2.3: A stuck-at fault illustration.

represents such logical interference effects between shorted lines. The most common models

for bridging are wired-AND and wired-OR. In the wired-AND model, when either of the

expected value on two bridged lines is ’0’, then the value on both lines will be represented

as ’0’. Likewise, in the wired-OR model, if either value on the two bridged lines is ’1’, then

the represented value on the two shorted lines will be ’1’. Another bridging fault model is

dominant bridging fault. In this model, the value on one of the bridged lines is much stronger

than that on the other line and always forces the signal value on the other line as its own

stronger signal value.

Signal Direction

Short 

between 

lines

Line1

Line2

Figure 2.4: A bridge defect.
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2.3.3 Transition Fault Model

Since modern VLSI devices usually work at very high clock frequencies, the requirement

of right timing becomes critical to VLSI design and fabrication. Due to the defects in the

fabrication process, some components like interconnection lines may add undesirable resis-

tance to propagation paths of signals and result in delays in signal propagation. Transition

delay fault model is one of the several delay fault models and it assumes that there is only

one gate in the circuit that has excess delay. It is often referred to as just transition fault.

The difference between the transition delay fault model and the stuck-at fault model is that

the faulty behavior of a transition delay fault is ‘slow to rise’ or ‘slow to fall’ instead of

permanently being ‘stuck-at-0’ or ‘stuck-at-1’. In order to trigger the transition delay fault,

a pair of test patterns has to be applied to the circuit inputs. The first pattern has to set the

initial value of the interconnecting line that needs to be examined. Then the second pattern

generates a transition on the line and also at the same time drives the effect to primary

outputs. The observed faulty response is similar to the stuck-at fault response. A transition

fault example is presented in Figure 2.5. There is a slow-to-rise fault on input line1 and the

correct value of line1 comes too late so that the faulty value of ’0’ instead of the expected

value ’1’ is observed on the output. In order to test whether there is a slow-to-rise fault on

Line1, first we have to use an input patten to set the value on Line 1 to be ’0’, and then

we apply an test pattern similar to the patterns that we have discussed for stuck-at fault

testing to propagate the ’rising’ signal to the output.

2.3.4 Open Fault Model

Open defects are the undesired breaks and electrical discontinuities in interconnects and

also one of the most important production defects [13, 22, 23, 37]. Depending on whether

the open crack is narrow or wide, open defects can be divided into two categories: weak

open or resistive open as shown in Figure 2.6 and hard open or complete open as shown in

Figure 2.7. A weak open only causes a small increase in the interconnection resistance and
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Figure 2.5: A transition delay fault example.

does not completely block the current through the line. Strong open causes a large increase

in line resistance (usually larger than 1GΩ). Weak open usually causes delay problems in

the circuit. The modeling of a strong open is complicated. There are three factors that may

influence the voltage level of the floating node [37]:

• Coupling capacitors between the floating node and the supply and ground.

• Drain voltage of the driven gates.

• Effects from surrounding lines.

The effect of a strong open defect can be modeled in two ways [34]:

1. We assume that the gates driven by floating lines may interpret the logic state of

the line differently, because of the variations of threshold voltages among the driven

gates. This is referred to as Byzantine effect [25, 28]. Thus, the open lines behave as

a combination of stuck-at-0 and stuck-at-1 faults at the inputs of the driven gates.

2. We assume that the open causes some lines to float. The open lines may be subject to

crosstalk due to capacitive coupling to other nodes in the circuit. In other words, the

states of the affected lines are pattern sensitive.
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Figure 2.6: A resistive open defect example.

From the results of experimental comparison between open fault and stuck-at fault conducted

by Intel [47], we found that in most cases the behavior of strong open defects can be explained

by certain stuck-at faults. So, in this thesis we assume that for the second case listed above

we only consider the supply and ground coupling capacitances (CH and CL in Figure 2.6

and Figure 2.7) and drain voltage of driven gates determine the dominant condition, then

we can assume that the voltage value on the floating node is fixed and would not change

dynamically with input patterns.

2.4 Fault Simulation

Fault simulation is a method that consists of simulating a circuit that has been injected

with single faults, comparing the response of the faulty circuit and the good circuit under

the same pattern, and determining which of the faults have been detected. A fault is found

to be detectable when the responses from the good circuit and the faulty circuit are different

under the same pattern. Three most important applications of fault simulation are listed

below [6]:
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Figure 2.7: A complete open defect example.

• To evaluate the quality of a test set.

• To incorporate undetected faults into an ATPG (automatic test pattern generator) for

test generation.

• To generate fault detection data for reducing fault candidates in diagnosis.

The testability of a test pattern set is usually measured by fault coverage. Fault coverage

is the ratio of the number of faults detected by a test set and the total number of potential

faults in the circuit. Because fault simulation is used to find out the faults that can be

detected by certain test pattern, a list of detectable faults can be constructed after simulation

and then the fault coverage of the test set can be computed. The representation of test

coverage is shown below in Equation 2.1. In order to generate as few test patterns as

possible to achieve highest fault coverage in test pattern generation, fault simulation can be

used to determine whether the fault coverage of the generated test set is high enough. If

the coverage is high, say close to 100%, then the test generation process can be stopped.

Fault simulation is also very crucial in fault diagnosis, because using a fault simulator we
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can compare the output responses of the an actual faulty circuit under test (CUT) and those

from fault simulation. If the response from fault simulation after injecting certain fault can

match the response from the real faulty CUT, then the simulated fault will be the diagnosed

fault candidate.

Fault Coverage =
Number of faults detected

Total number of faults
(2.1)

2.5 Fault Dictionary

Using fault simulation, we can inject all single faults into the circuit and produce the

faulty response corresponding to each fault. The observed responses can be divided into two

parts: information on passing or failing pattern index and information on passing and failing

outputs under each failing pattern. Based on this, two kinds of fault dictionaries can be

constructed: pass-fail dictionary and full-response dictionary [26]. The pass-fail dictionary

only keeps the information of the failing pattern index for each fault and the full-response

dictionary keeps not only the failing pattern index but also the failing outputs information

for each fault. Table 2.1 shows a full-response dictionary of a single fault and Table 2.2

shows the corresponding pass-fail dictionary. The 1s in Table 2.1 represent mismatches

observed in the corresponding primary outputs and the 1s in Table 2.2 show that the faulty

responses are observed under the corresponding test patterns. In this thesis, we utilize a

partial full-response dictionary to store the simulated failing information that includes the

failing pattern index and failing output index for collapsed faults in in the circuit under

diagnosis (CUD). Fault dictionary usually are used for single fault diagnosis. For multiple

fault diagnosis, because of the exponential number of fault combinations, dictionary is not

used. In this work, because we only use single fault simulation information, in order to save

the time on fault simulation, we prefer to utilize a partial full-response dictionary.
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Table 2.1: A full-response dictionary.

Pattern Primary Outputs
Index PO1 PO2 PO3 PO4 PO5

P1 0 1 0 0 0
P2 0 1 1 0 0
P3 0 0 0 0 0
P4 0 0 1 0 0
P5 0 0 0 0 0
P6 0 0 0 0 0

Table 2.2: A pass-fail dictionary.

Pattern Index

P1 P2 P3 P4 P5 P6
1 1 0 1 0 0
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Chapter 3

Background Review on Previous Work on Diagnosis

In this chapter, we will review previous research work mainly focusing on stuck-at fault

and open net fault diagnosis.

3.1 Stuck-at Fault Diagnosis

The Single stuck-at fault model has been used in many research works to solve the

problem of fault diagnosis [35, 36, 49]. Traditional single stuck-at fault diagnosis usually

involves the use of a full-response fault dictionary. Some works like [35] focus on building

a diagnostic dictionary and compare the failing responses of a defective circuit and the

simulated responses for faults to identify the true candidate. The identification of a candidate

fault is based upon the number of times a mismatch occurs between fault simulation data

and the observed circuit under diagnosis (CUD) response. The simulated fault that has the

lowest mismatch count would be the candidate fault. The detailed counting method is as

follows: if a value of ’0’ or ’1’ is observed on a primary output which is different from the

simulation value of good circuit, then the count of this fault will be increased by 2. If the

observed value is unknown, then the mismatch count will be increased by 1. In other cases,

the count will not change.

In [36], instead of using a full-response dictionary covering the faulty behaviors of all

faults in the circuit, the author first utilizes a test set that has a 100 percent fault coverage

to test the circuit. After that, failing patterns from the first stage are used to do the fault

simulation and find the common faults that these test patterns can detect. Then a larger

test set is applied to construct a dynamic dictionary with relatively smaller size than the

one mentioned in [35] and use the similar method as in [35] to do the fault diagnosis. This
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method has the advantage of using less space for storing the simulation information, but

the total simulation times would be increased with the number of faulty circuit analyzed.

Single stuck-at fault model can cover many types of defects in circuit testing. However, in

fault diagnosis, single stuck-at fault model probably will not work where multiple defects

exist. So we need to extend the diagnosis model to multiple stuck-at faults. Because it is

not realistic to construct a dictionary for multiple fault diagnosis, many other methods are

proposed using ranking systems, Boolean equations, candidate elimination based on single

fault, multiple fault or symbolic simulation, or region model.

In [7], the authors proposed a balanced ranking system targeting single and multiple

fault diagnosis. This work considers both the failing pattern and passing pattern simulation

information. The authors assign different weights on primary output mismatches on both

failing and passing patterns to each fault, and then calculate the possibility that the fault

may exist on the basis of the final weight. By modifying traditional ranking system with

these weights, the algorithm assigned a quantitative ranking to each fault. The authors

claim that the method could be used to explicitly target defects that behave similar to but

not exactly like stuck-at faults. The shortcoming of this method is that although the author

tried to balance all factors of each fault, the purpose of the work is still to use the simulation

response of single fault to match all the erroneous responses of CUD under certain test

pattern. When faults are activated at the same time, the accuracy of the diagnosis will not

be guaranteed. So, this work may have a good diagnosis accuracy for single stuck-at fault

diagnosis. The results for multiple stuck-at fault diagnosis are, however, pessimistic. We can

only say that this work is an attempt, with many limitations, to extend the single stuck-at

fault diagnosis to multiple-stuck at fault or arbitrary fault diagnosis.

In [12], Huang proposed a concept called partially curable vector and a grading system

using this concept to handle multiple fault diagnosis problems. An input vector is partially

curable by a fault injection if primary outputs reachable by that fault can be corrected

by re-synthesis [5]. Then this vector will be a partially curable vector for the fault. The
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Figure 3.1: Multiple defects without mutual interference. EPO: erroneous primary output.

grading system in this work is based on this concept. The possibility of existence for each

fault depends on how many partially curable vectors the fault has. So more failing vectors

certain fault can fully explain, the higher possibility it has of being the true candidate.

The algorithm also records the total number of erroneous primary outputs that each fault

can correct. When there is more than one top candidate with the same number of curable

vectors, then the total number of corrected primary outputs will be used as the tie breaker.

The reason why the author abandoned the traditional curable output measure and used

such a grading system is because some faults may have larger number of curable outputs

than others and it depends on the circuit structure. Using the curable output measure the

diagnosis can be misleading in some cases. Besides, it is quite possible that there are more

than two defects in the faulty circuit and certain failing input vectors only activate just

one defect. Thus, the faults will not affect each other. This kind of vectors should have a

higher weight when grading the faults and faults detected by these vectors should be in a

top candidate list.

Although this work may find some faults which have the chance to be activated alone

among multiple faults, there is a shortcoming. The diagnosis depends heavily on the test

pattern’s ability to activate a single fault among multiple faults and assumes that there is
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Figure 3.2: Multiple defects with mutual interference. EPO: erroneous primary output.

no interfering effect between multiple faults as shown in Figure 3.1. The condition is too

restrictive and much information of fault simulation is ignored as a result. As showed in

Figure 3.2, when multiple faults affect each other, this method will not work. Experiment

results have shown that this method cannot handle multiple fault diagnosis very well. Similar

to the work mentioned above, other authors [2, 18] have proposed a diagnosis method using

SLAT (single location at-a-time) patterns. A SLAT pattern is a test pattern that produces

a failure on the tester and the circuit response exactly matches the simulation response of

some single stuck-at fault. In other words, under a certain test pattern, no matter how many

faults exists in the faulty circuit, a faulty response observed on the primary outputs can be

explained by at least one single stuck-at fault. The pattern which can activate such a fault

is a SLAT pattern. In this work, the author used all failing patterns and traditional fault

simulation to construct a table which contains all the SLAT pattern/fault pairs. After that,

the algorithm uses the constructed table to find the minimal set of faults called multiplet

that can explain all the SLAT patterns. The multiplet may have many combinations which

can be further analyzed by other methods like multiple fault simulation. Many works have

been proposed based on this SLAT idea [17, 27, 47, 51]. These works try to find single
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Figure 3.3: A SLAT pattern. EPO: erroneous primary output.

faults that can explain certain failing pattern responses. However, any method that relies

on the existence of SLAT patterns will fail if there is no such pattern or the number of

such patterns is not sufficient to locate all faults. What’s more, for existing ATPG tools,

it is hard to generate diagnostic test vectors to assure that there is only one fault activated

and the faulty response can be observed on the primary outputs. Existing ATPG algorithm

only guarantee that certain fault is detected without considering that other faults will not

be activated at the same time. As shown in [2], although many test patterns have the

SLAT ability, not all the faults can be properly activated when multiple faults exist. In [50],

the authors propose a multiple fault diagnosis algorithm that can use some types of non-

SLAT failing patterns together with SLAT patterns. However, when fault-canceling or fault

reinforcement exist in the failing patterns, the result will be pessimistic.

Instead of using traditional simulation methods, in [32], a diagnosis method based on

a backtrace simulation technique and a corresponding ranking system is proposed. The

method used in this work first backtraces from every erroneous primary output to identify

the possible fault candidate and, at the same time, the algorithm records how many times

the fault has been counted. This record is used to levelize the fault candidates, which means

if a fault has a higher count then the rank of the fault will be higher. However, this ranking
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system runs into problems when multiple faults exist in the faulty circuit. Multiple faults

may share the same propagating path and the faults in this shared path will have a high

count and can partially explain the faulty behavior observed on the primary outputs. In

such cases, the faults with the highest count in the ranking system may not be the right

candidates.

All the works mentioned above focus on using single fault simulation information to

deal with multiple fault diagnosis. Sometimes these methods will run into trouble when the

faults interfere with each other. When the fault density increases, multiple-fault behaviors

like fault enhancement or fault canceling will become common.

In [42], information of multiple fault injection and simulation is used to diagnose multiple

stuck-at faults. The authors present a fault diagnosis algorithm which involves both single

and multiple fault simulation. In this work, all faults that could exist in the circuit are first

added to fault candidate set. After that, the algorithm uses the passing pattern simulation

to remove the candidates that can be detected by these patterns. Then failing patterns

are used to add the faults which share the common failing primary outputs between single

fault simulation and the real faulty response of the CUD. Next, all the suspected faults are

injected into the circuit and multiple fault simulation is performed under passing patterns.

If the response observed on some primary outputs are different from correct value, then these

outputs are recorded and single fault simulation is performed again on all the suspected faults

under the same test patterns. Any fault that can cause the error on the recorded primary

output will be removed from the suspected fault list. These procedures are recursively

performed and the faults are added and removed from the suspected fault set. Finally a set

of faults is found that can explain all the faulty behaviors or the number of candidate cannot

be shrunk any more.

The flaw of this method is that it injects all the suspected faults into the circuit and

performs a multiple fault simulation. As a result, unnecessary interfering effect among these

faults can seriously affect the judgment. What’s more, because of the recursive procedure, in
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which fault simulation requires large processing time making the algorithm inefficient. The

experimental results show that the diagnosis resolution is not very good.

Instead of injecting all the suspected faults into the circuit and performing the multiple

fault simulation, in [15], the authors proposed a diagnosis method using extensive multiple

fault enumeration and simulation. However, this method has an obvious shortcoming that

if the size of initial fault candidate set is too large, then the time spent on enumeration and

fault simulation would be tremendous because of the exponential candidates search space.

So there is a need to guide that enumeration instead of randomly selecting candidates to

construct the multiplets.

In [24], the authors presented a multiple stuck-at fault diagnosis method using a neural

networks method called particle swarm optimization. In this work, first the critical-path

tracing technique is used to identify all the suspected candidates that may cause a failure,

then a “particle” which is a series of binary numbers representing the existence or non-

existence of a fault is constructed. The main idea in this method is to change the combination

of the particle and perform the multiple faults simulation. By comparing the simulation

results and the real circuit response, the rank of the multiplet will be generated. The ranking

is based on the number of explained failing patterns. The selection of the next particle is

guided by the multiplet that currently has the best ranking. The diagnosis result of this

work shows that it is much more time efficient than the methods based on random fault

enumeration. There is one point of this work that needs improvement. That is the size of

the initial set of candidates is too large, which means the length of the particle will be very

long. More effort should be used to shrink the size of initial candidate set.

Besides conventional simulation methods, X-simulation is also used for multiple fault

diagnosis [4, 8, 40]. These methods are targeted at solving arbitrary faults including multiple

stuck-at faults that occur in a small connected area. The authors in [8] present a concept

called Xlists to represent a set of nodes whose actual values are replaced by an uncertain

value of X, and the signal propagation of these nodes will use 3-value (0, 1 and X) logic
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Figure 3.4: X region may include the real defect. EPO: erroneous primary output.

simulation. By using this concept, enumeration of combinations of the output of the small

area is avoided. After the 3-value logic simulation and a comparison of the response with

that of the real faulty circuit, if the X value can be propagated to the faulty primary outputs,

then the nodes with X injection could be the real fault sites. As shown in Figure 3.4, under

the failing pattern, if the output X symbol of the region can propagate to a faulty output,

then it is possible that this region includes the real fault. Otherwise, as in Figure 3.5, the

X symbol cannot propagate to the primary output with error, so it could not be the region

that includes the real fault. In [4], the authors first partition the circuit into small areas

with just one or two gates. Then inject the X value on the output boundary of a region

and perform the 3-value logic simulation mentioned above. Each region is ranked by the

matching situation after the simulation:

• If the X value can propagate to primary outputs with erroneous response, then a weight

of matching will be added to the count of the region.

• If a contradictory value of ‘0’ or ‘1’ propagates to a primary output with no error

observation in the circuit test, then the region is dropped from the candidate list.

• In other cases, the count of the region remain the same.

In [40], based on the work of [4], the authors proposed two techniques for improving the

diagnostic resolution. One is called flipping-fanout-bits. In this method, for each region, a

flipping operation is performed on every output signal, all except one outputs of the region
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are forced to an ‘X’ value, the left output is flipped to its opposite value, and 3-value logic

simulation is performed. By observing the simulated values on the primary outputs, if in all

flip cases, at least one erroneous output remains or an additional error is observed, then the

region should be abandoned. The other method is called distinguishing Xs. In this method,

every X is injected in the circuit with a unique sign. This sign is used to record the times

that the X is inverted in the signal propagation and determine the output value of the gate

that the X value generated from.

All of the three works mentioned above on X simulation have the same limitation that

the diagnosis resolution is low. This is because X simulation is a conservative method.

What’s more, all of these works are limited to a small area, usually these works only assume

that the region contains only one or two gates which is not practical in real diagnosis.

3.2 Open Fault Diagnosis

Open fault model usually is used for interconnection defect diagnosis. Much area of

modern ICs is taken by the metal interconnects compared to routing within the cell, so a

break is more likely to happen on the interconnect wiring metal than in the cell [46].

In [46], the authors proposed an open fault diagnostic model which is used to model the

faulty behavior in the presence of an open defect on an interconnection line. This diagnostic

model is a superset of all possible behaviors of a net under single stuck-at fault assumption.

As shown in Figure 3.6, the model treats each interconnection net as a diagnostic unit. All

the single fault simulation information of stuck-at-1 or stuck-at-0 faults of the stem and its
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Figure 3.6: A net diagnosis model.

branches are included in the net influence. If such superset of a net influence can include all

or most of the faulty behaviors, then this net will be selected as a candidate. Then influence

caused by the real defects is a subset of the net influences. After the first level selection, a

path-tracing technique is used to further reduce the number of candidates. This technique

can solve the single open fault very well, but is hard to apply to multiple open faults on

different nets, because the matching system of the method is based on the single net fault

assumption. When faults on multiple nets can be activated on the same test pattern the

matching system will not work.

In [14], a symbolic simulation method is proposed for open segment fault diagnosis.

This work aims to identify the faulty segments of a net with open defect. In this work, a

series of symbols are injected on each branch of a suspicious net and symbolic simulation is

performed as shown in Figure 3.7. Each influenced primary output will have an algebraic

expression constructed by these symbols to represent the real value of ‘1’ or ‘0’. The stuck-at

value of each faulty branch can be determined by solving the set of equations by relating the

faulty responses and the algebraic expressions together. Figure 3.8 shows an example of how
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this comparison works. From the comparison, we can determine that the values X2, X3 and

X4, are ‘0’, ‘1’ and ‘0’, respectively. Thus, we have the information on the stuck-at values of

the faulty branches. The limitation of this work is that it can only solve the problem for a

circuit of limited size because symbolic propagation requires a large memory space to store

the algebraic expression for each node, especially when more open segment faults exist in

the circuit.

In [22, 23], the authors propose a diagnosis method based on integer linear programming

(ILP) technique. The main idea of this work is to find smallest possible number of candidates

to explain the observed faulty behavior. The authors propose a three-stage method to

diagnose multiple open defects in combinational circuits. First, the method starts with a

path-tracing procedure to identify potential defect sites that can cause errors on the faulty

outputs. Each net is weighted to indicate its potential to explain the faulty behavior. In the

second stage, several constrains are formed with variables corresponding to the occurrence

of defects at each potential defect site. By solving the problem within these constraints, the

results of ILP are treated as possible fault combinations for the multiple defect diagnosis.

In the final stage, fault combinations that cannot explain all the failing output responses

are removed and physical information is taken into account to accurately determine metal

segments that can explain the faulty behavior. Since ILP is an NP-complete method and it
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Figure 3.8: Comparison between faulty response and symbolic simulation results. EPO:
erroneous primary output.

involves exhaustive searching of solutions, when the size of the test circuit or the number of

defects increase, time spent on computing will be huge and the method will not be practical.
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Chapter 4

A Fault Candidate Filtering System

The first stage of the proposed diagnosis algorithm is a fault candidate filtering system.

In this chapter, we will first discuss the motivation of the proposed system and then give a

detailed description of this system.

4.1 Motivation

As we mentioned in Chapter 3, the diagnosis of multiple faults is much more difficult

than that of single faults. This is because fault dropping can not be performed during mul-

tiple fault diagnosis and their interfering effects make the output matching harder. Even

though in recent works in which multiple fault injection and simulation techniques are used,

the exponential fault searching space is still the most difficult part of multiple fault enu-

meration. So a critical part of multiple faults diagnosis is how to shrink the size of the

initial fault candidate set. Then other techniques can work effectively on the reduced initial

candidate set. Since we try to avoid multiple enumerations in the first stage candidate reduc-

tion process, single fault simulation information is the main reference that we are concerned

about.

In Chapter 3, we have introduced many previous works which utilize single fault simula-

tion information to reduce the number of fault candidates. Multiple fault diagnosis methods

based on X simulations and region-model are not specific-model-based methods, so the re-

sults of such methods are conservative and still not accurate enough to be used. SLAT

methods try to find patterns that can activate a single fault at a time [2, 3, 12, 17, 27, 51].

However, these methods heavily rely on the single-fault activation ability of the test patterns.

Other works are mainly based on certain fault candidate ranking systems. No matter what
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kinds of fault simulation techniques these systems use, the ranking or filtering criteria are

almost similar and have their limitations.

Most previous multiple fault diagnosis methods that utilize ranking and filtering sys-

tems, rely on the simple or weighted accumulated count based on the matching situation of

primary outputs [7, 32, 47]. This means the more matching outputs that a fault has, more

possible it is that this fault really exists in the circuit. However, these methods ignored two

important scenarios in fault diagnosis. First, during the process of test pattern generation,

ATPG tools usually tend to select the same propagation path for a certain fault. This may

not have any influence on single fault diagnosis, but when there are multiple faults existing in

the circuit, and these faults share the same propagation path, then the problem may appear.

Faults on these propagation paths may have higher number of detection instances than the

real faults. This can incorrectly rank the suspected faults. Second, because some faults are

hard to activate by certain test sets, their detection times are much lower than other faults.

Although an N-detection test set can increase the overall detectability of all the faults, it

still cannot change this non-uniformity of the detection times of faults. It is not fair to just

use the simple or weighed sum of matching times to rank the candidates.

A simple case is illustrated in Figure 4.1. In this case, we assume there are three faults

f1, f2 and f3 whose fault effects propagate through the same path. When they arrive at the

AND gate inputs, they all perform as stuck-at-0 faults and we assume they can be detected

separately by the test set, which means they will not be activated together under the same

pattern. The total detection times of these three faults are shown in the figure, respectively.

Fault f4 is a stuck-at-0 fault on the output of the AND gate, so the total activation times

of f4 would be 20. The single fault simulation information of these four faults is listed in

Table 4.1. Now we assume that f1 and f2 are the real faults that exist in the circuit and

patterns P1 through P17 fail in the CUD test. If we do not consider the passing pattern

detection penalty, which means a fault is activated by certain pattern in the single fault

simulation while this pattern passed in the CUD test, then a negative count will be given
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Figure 4.1: Multiple defects sharing the same propagation path.

for the fault. We do not consider such penalty weight, so the counts for f1, f2, f3 and f4

will be 2, 15, 0 and 17, respectively. From this calculation we see that because of this kind

of circuit structure, instead of ranking f1 and f2 at the top, f4 becomes the top candidate in

the diagnosis. If we consider the passing pattern penalty and because we have to consider

the interfering effect, like fault canceling, between the multiple faults, we cannot set the

penalty weight too high. So we set the negative count weight the same as the positive count

weight and the count for these faults will be 2, 15, 0 and 14. From the calculation we can

see that f4 still has a much higher count than f1. In a real CUD case, there could be many

more defects than in this simple case, so previous ranking methods will introduce many false

faults, like f4, in fault diagnosis and ignore faults like f1 that have much lower detection

count than other faults after applying some selected threshold value. What makes it worse

is that these faults may lose the chance to be the fault candidates for further analysis after

the candidate filtering because of the low rank.

So in this thesis, we want to first propose a novel candidate filtering system which can

reduce such effects caused by the circuit structure and the non-uniformity of the test set with

respect to multiplicity of detecting faults. The single fault simulation information that we uti-

lize includes both failing pattern index information and passing-failing outputs information
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Table 4.1: Single fault simulation information.

Fault Failed Pattern Index

f1 P1 - P2

f2 P3 - P17

f3 P18 - P20

f4 P1 - P20

Phase 1: Failing Pattern Index Matching & 

Candidate Filtering

Phase 2: Further Failing Pattern Index Matching with 

EPO Hitting & Candidate Filtering

Phase 3: EPO Matching & Candidate Filtering

Observed CUD ResponsesSingle Fault Simulation Information

Candidates For Further Analysis

Figure 4.2: Candidate filtering system.

under failing patterns. This system contains three phases: Failing-pattern-index-matching

(FPIM) and candidate filtering, Further FPIM with erroneous primary output (EPO) hitting

and candidate filtering and EPO-matching and candidate filtering. The overall candidate

filtering system is shown in Figure 4.2 .

4.2 Failing-Pattern-Index-Matching and Candidate Filtering

For introducing this diagnostic phase, we first require some definitions.
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Figure 4.3: Relationships of DPS, SPS and FPS.

Definition 4.1 The union of all the failing pattern indexes from the single fault simulation

of a fault candidate is defined as the detectable pattern set (DPS) of this fault under test.

Definition 4.2 The union of all the failing pattern indexes of the observed CUD response

is defined as the failing pattern set (FPS) of the test.

Definition 4.3 The shared part between the DPS of a fault candidate and the FPS of CUD

is called the shared pattern set (SPS) of this candidate.

Theorem 4.1 If the CUD is a circuit with multiple faults and we assume that all the multiple

faults in the circuit will not totally cancel (mask) each other at primary outputs, then the

DPS of any one of the multiple faults in the circuit should be a subset of FPS of the test.

In other words, the SPS of the fault candidate equals its DPS.

The relationships of sets according to Definitions 4.1, 4.2 and 4.3 are shown in Figure 4.3.

Based on Theorem 4.1, we can conclude that generally the more SPS covers the DPS of a

fault candidate, greater is the possibility that this fault is the real one in CUD, so we can

calculate a count for each fault according to how much SPS overlaps onto the DPS of the

candidate, Thus, in general, higher the ratio of these two values, more likely it is that the

candidate exist in the circuit. The count for each fault is calculated as follows:

31



Table 4.2: An example of pass (p)-fail (f) information of CUD and faults.

Pattern Index CUD Fault 1 Fault 2 Fault 3

P1 p p p f
P2 p p p f
P3 p p p f
P4 f f p f
P5 f f p p
P6 f f p p
P7 f f f p
P8 f p f p

Table 4.3: Information from Table 4.2.

FPS
DPS

Fault 1 Fault 2 Fault 3

P4-P8 P4-P7 P7-P8 P1-P4

Count =
Number of patterns in SPS

Number of patterns in DPS
(4.1)

To better illustrate the count calculation, we use a simple example shown in Table 4.2.

In Table 4.2, ‘f’ indicates the CUD (on actual test) or the fault (on simulation) shows ‘failure’

under the corresponding pattern and ‘p’ indicates the CUD or fault ‘passes’ the pattern. So

from this data we can get the information shown in Table 4.3. Using this information, we

can calculate the count for each fault as shown in Table 4.4. From this table we can see that

because DPS of Fault 1 and Fault 2 are both subsets of FPS of CUD, they have higher

counts than Fault 3.

Thus the Theorem 4.1 tells us that, at least in an ideal sense, the detectable pattern set

of a real fault in the circuit must be a subset of total failing pattern set of CUD. Then the

count for the fault would be 1, like Fault 1 and Fault 2 in the preceding example. However,

in a practical situation, multiple faults in the circuit may totally cancel (mask) each other
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Table 4.4: Calculation of count in first phase.

cardinality of SPS cardinality of DPS Count for Fault

Fault 1 4 4 4/4 = 1
Fault 2 2 2 2/2 = 1
Fault 3 1 4 1/4 = 0.25

under certain patterns, then the count of the real faults may be lower than 1 and we have

to set a margin to handle this case so that the real faults that have such masking will not

be pruned out because of the over-constraint. In this work, we will set a threshold value to

filter fault candidates. In this first phase of fault diagnosis, all collapsed faults in the circuit

will be initial candidates and the calculation mentioned above will be applied to them. It

should be noted that we use a ratio value for the count instead of simply using the number of

matching patterns. This is because we want to reduce the non-uniform number of detections

across faults, as mentioned in the motivation part, which is caused by the circuit structure

and by relatively hard to detect faults. We want to give an equal opportunity to each fault

no matter how many times the fault can be detected by the test set. Therefore, in this work

we always use ratio values as the criteria to weigh and filter out fault candidates.

4.3 Further Failing-Pattern-Index-Matching with EPO Hitting and Candidate

Filtering

In the first diagnosis phase, we only considered how much that detection pattern set of

a fault candidate overlaps with the failing pattern set of CUD. However, only considering

those patterns is not enough. Because through observation from experiments we found that

some fault candidates may show detection upon simulation under a failing pattern of CUD,

but they do not affect the actually observed failing primary outputs of CUD. In other words,

their erroneous primary outputs (EPOs) have no shared part with the ones observed from
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CUD. So in the second phase we consider for each pattern in SPS, whether the candidate

simulation response and the test response from CUD have at least one shared EPO.

This phase of candidates filtering is called further failing-pattern-index-matching with

EPO hitting. To better understand the procedure of this phase, we first give a definition for

‘EPO hitting’:

Definition 4.4 Under certain test pattern, if the affected primary outputs of a candidate

fault upon simulation share at least one common erroneous output with the faulty response

of CUD, then we say that this fault candidate can ‘hit’ the EPO under this pattern and the

pattern is called a hit-pattern of the candidate fault.

Theorem 4.2 If the CUD is a circuit with multiple faults and we assume that there is no

canceling (masking) effect among those faults, then the number of hit-patterns for any one

of these faults in the circuit should be the same as the number of patterns in the respective

SPS.

The procedure of this phase is based on the Theorem 4.2, from which we conclude that

for a candidate fault if more hit-patterns are in SPS, greater will be the possibility that the

candidate fault exists in the circuit. So we utilize another ratio measure as a count for each

fault. It is defined below:

Count =
Number of Hit-Patterns in SPS

Number of patterns in DPS
(4.2)

This count is similar to the one in the previous phase with one difference, that is, we only

count the hit-patterns in SPS instead of all patterns in SPS. For the same reason as discussed

in motivation and phase 1, we use a ratio value instead of the total number of hit-patterns

for the candidate. Similarly, because we want to consider the canceling (masking) effect

among faults, we set a rather relaxed threshold value to avoid over-constrained filtering of

fault candidates.

34



Fault1 Fault2

CUD

PEPSF1 PEPSF2

PEPSC

SPEPS1 SPEPS2

Figure 4.4: Relationships of PEPSC, PEPSF and SPEPS.

4.4 EPO-Matching and Candidate Filtering

For each failing case of the faulty circuit under a given pattern, there can be some faulty

outputs and other passing outputs. Until now we only used the faulty output information.

However, passing outputs provide additional information, which can improve the diagnosis.

Hence the second phase of our diagnosis procedures. Several definitions are relevant to this

phase.

Definition 4.5 A pattern-EPO-pair (PEP) is a pair of failing pattern number and an EPO

associated with it. For example, [P2, PO1] is a PEP indicating that under pattern P2, we

observed an error on primary output PO1. A PEP could be used to represent either an

observed faulty response of CUD or the fault simulation results of a fault candidate.

Definition 4.6 The union of all the PEPs from CUD test is called PEP-set-of-CUD (PEPSC)

and the union of PEPs under all the patterns in SPS of a fault candidate is called the PEP-

set-of-fault (PEPSF). The shared part of PEPSC with a fault candidate PEPSF is called

shared-PEP-set (SPEPS) of that fault candidate.

The sets of Definition 4.6 are shown in Figure 4.4. The procedure of this phase is based

on the following theorem:
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Theorem 4.3 If a CUD has multiple faults and we assume that there is no canceling (mask-

ing) effect among these faults, then the PEPSF of a fault candidate in single fault simulation

should be the subset of PEPSC of CUD and the SPEPS of the fault candidate should equal

its PEPSF.

From Theorem 4.3 we can conclude that, in general, the more SPEPS overlaps the PEPSF of

a fault candidate, more are the chances that this fault is included among the multiple faults

of the circuit. Therefore, we can calculate a count for each fault based on this theorem, using

the following equation:

Count =
Number of PEPs in SPEPS

Number of PEPs in PEPSF
(4.3)

To illustrate how the count is calculated for each fault, we take a simple example shown in

Table 4.5. The data in the table indicates that PEPs in PEPSF of Fault 1 are [P1, PO1],

[P2, PO1], [P2, PO3] and PEPs in PEPSE of Fault 2 are [P1, PO2], [P1,PO3], [P2, PO2],

[P2, PO3]. Also, we find that PEPs in SPEPS of Fault 1 are [P1, PO1], [P2, PO1], [P2,

PO3] and PEPs in SPEPS of Fault 2 are [P1, PO2], [P2, PO2], [P2, PO3]. So we can get

the count of Fault 1 as 3/3 = 1.0 and count of Fault 2 as 3/4 = 0.75.

4.5 Threshold Value Determination

We will use three-step filtering to narrow down the diagnostic resolution. For each step,

we need to set a threshold (TH) value for the computed count value to filter unnecessary fault

candidates out. A higher threshold (close to 1.0) tends to reduce the suspected fault group

thus improving the diagnostic resolution. However, this has the potential for filtering the

real fault away and produce a misleading diagnosis. On the other hand, too low a threshold
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Table 4.5: A full-response example.

Pattern Index Failing Outputs

CUD
P1 PO1, PO2
P2 PO1, PO2, PO3
P3 None

Fault1
P1 PO1
P2 PO1, PO3
P3 None

Fault2
P1 PO2, PO3
P2 PO2, PO3
P3 PO2

might preserve the real fault candidate but group it with a large number of other suspects

thus lowering the diagnostic resolution.

The TH values depend on the our assumption on fault density of the circuit. Usually

we set these TH values with conservative assumption on fault density. In our work, we use a

training system to set the TH value for each candidate filtering step. In the proposed training

system, we determine the TH values for each step one at a time. Because the constraint

in phase one is the easiest and that in phase three is the hardest to satisfy, we first start

from phase one and finally end at phase three. When we try to set one TH value, other

two TH values must be fixed and when a TH value is determined, it will not change for the

rest of the training procedure. For each TH value, we run several rounds of experiments to

determine its value. For each round of experiments, we constructed 20 faulty circuits from

each benchmark circuit and for each faulty circuit we randomly injected four stuck-at faults.

By running the candidate filtering system, we can get the list of remaining faults and count

how many injected fault can survive from the filtering procedure. The percentage of total

surviving faults out of the total injected faults is defined as survival rate. For each phase we

have different survival rate requirements as shown in Figure 4.5. The starting value of each

TH is 1.0. After a round of experiment, if the survival rate requirement is satisfied, then the

TH value of this phase is determined as the current value. If the survival rate requirement is
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Figure 4.5: Training procedure for determining filter thresholds (TH) on counts.

not satisfied, then the current TH value is lowered by 0.1 and another round of experiments

is performed. This procedure continues until the survival rate is satisfied.

4.6 Experimental Results on Candidate Filtering

In this work, all the experiments are conducted on ISCAS85 benchmark circuits. Be-

cause it is not possible to have too many faults in the CUD, in this work we assume that

in each benchmark circuit, there are probably four multiple faults in the circuit. According

to this assumption, we perform the training procedure to determine the TH values for each

benchmark circuit. In order to see the effectiveness of the reduction stage, we randomly

constructed 50 faulty circuits for each benchmark circuits, and for each faulty circuit we

randomly injected 4 stuck-at faults. The reduction results is shown in Table 4.6. The re-

duction rate is defined as the number of abandoned faults over total number of faults. The
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Table 4.6: Results of candidate filtering system.
Circuit # of total faults Reduction Rate Survival Rate

C432 524 0.77 0.975
C880 942 0.97 0.96
C1355 1574 0.75 0.97
C1908 1879 0.85 0.95
C2670 2747 0.925 0.97
C3540 3428 0.95 0.965
C6288 7744 0.993 0.96
C7552 7419 0.992 0.96

survival rate is defined as the ratio of the number of remaining injected faults after reduction

process over the number of injected faults. From the experimental results we can see that

large partial of the fault candidates can be reduced by our method.
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Chapter 5

Candidate Ranking System

The previous chapter described the first stage of the diagnosis procedure, namely, fault

filtering. In this chapter we will continue to discuss the fault ranking method that we use in

our diagnosis procedure.

5.1 Motivation and Structure for Ranking System

After the filtering stage of diagnosis, a relatively small list of candidates can be obtained.

However, the fault filtering stage gives us a group of candidates that is likely to include the

real faults, which means the result is conservative. In order to have a better resolution in

diagnosis, we need to rank the fault candidates and put the most suspicious faults at the

top of the candidate list. The proposed ranking system is actually a probabilistic ranking

system. The final rank of each fault indicates the possibility that the fault will exist in the

circuit compared to other fault candidates. Higher this fault rank, more likely is the fault

to exist in the CUD. The structure of the ranking system is shown in Figure 5.1.

We start with the filtered candidate list. At this stage, we want to reduce the influence

of any lack of diagnostic capabilities in the test set. We group the undistinguished fault

candidates and let one fault in each group represent all members of that group. Because

the test sets we use in this work [52, 53] have high diagnosability, after we get the reduced

(filtered) list of candidates from the previous level, we directly process that list and group

undistinguished faults by comparing the simulation results, as shown in Figure 5.1. For

each group, we assume that its members are functionally equivalent; to be exact, they are

conditionally equivalent [38, 39] with respect to the test set. In net fault diagnosis, we will

recover the candidate list. Detailed recovering procedure will be discussed in a later chapter.
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Figure 5.1: Fault candidate ranking system.
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Figure 5.2: An example of EPO-tree.

The proposed ranking system uses a tree structure, called EPO-Tree, that relates the

fault simulation information to the circuit response. A sample EPO-Tree is shown in Fig-

ure 5.2. In this figure, the root of the EPO-tree is a failing pattern from the test set of CUD,

shown as FP1. The erroneous primary outputs (EPOs) for this pattern are the branches of

the tree, e.g., PO1 and PO3 in the figure. The leaves on each branch are the fault candidates

that can cause an error on the corresponding EPO according to their single fault simulations.

From the figure we can see that, all fault candidates that can cause at least one EPO to fail

are listed as the leaves of the EPO-Tree. We can thus analyze the effects caused by these

potential fault candidates in each step of the ranking procedure. A collection of EPO-Trees

that include all the information of CUD test and the fault simulations is called a forest of

EPO-Trees.

Having introduced the basic analysis structure, we can now describe the ranking system.

As shown in Figure 5.1, the proposed ranking system includes six steps: ranking in EPO-

trees with same branch combinations, ranking with count of FPIM, ranking with count of

FPIM with EPO-hitting, ranking with leaf count in EPO-tree,ranking with EPO matching

and fault ranking.

In this ranking system, there are two types of ‘ranking’ procedures. The first is branch-

ranking, which is performed in each of the first five steps. The other is the final candidate

ranking, which is performed after the branch ranking. The first five analysis steps rank fault
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candidates within each branch of every EPO-tree according to different measurements. The

branch ranking is a step-by-step process, the constraint that we add in each step becomes

tighter and tighter gradually. In other words, the constrain in the first step is most relaxed

and that in the last step is the tightest. The reason why we follow this kind of sequence is

that the ranking procedure in each step is based on the results from the previous step. If

we set the constraint too tight in an initial step, we may eliminate a candidate before it is

examined in detail. As shown in Figure 5.1, in steps one and four, we make some intuitive

assumptions based on the observations in the experiments and the rankings of candidates are

based on those assumptions. In steps two, three and five, we use the three count values that

we got from candidate reduction stage as the measurements to rank the candidates. After

collecting the ranking information of all EPO-trees, the final candidate ranking procedure is

carried out and gives out a ranked fault list. After applying a maximum value on number

of candidates, we finally get a list of fault candidates to be used in the net diagnosis (next

chapter).

5.2 Branch Ranking Procedure

As mentioned before the branch procedure includes five steps. For each of these five

steps, we will use either an intuitive assumption or certain count value we have obtained in

previous stage to perform the branch ranking. A novel part of our analysis procedure is that

a fault candidate may have different ranks in different branches. We perform the analysis

only within each branch, which means even in the same EPO-tree but in different branches

a fault candidate may have different ranks.

5.2.1 Branch Ranking in EPO-Trees with Same Branch Combination

In the first step of analysis procedure, we rank the involved fault candidates based on

following observation from experiment:
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Observation 5.1 The activation situations are sometimes similar under certain test pat-

terns, which means these patterns can trigger same set of injected faults in the CUD and the

observed EPO combinations from the CUD are the same. Such a situation is usually hard to

be repeated by other set of injected faults.

Based on this observation, we make an intuitive assumption on fault behaviors:

Assumption 5.1 Assuming we have a circuit with large enough number of primary outputs,

when the failing outputs combinations are the same under different test patterns, because it

is not very easy to repeat the same combinations for different injected faults in CUD, it is

possible that the causes of these failures are identical. If we can find shared set of faults

between the EPO-trees under these failing outputs, then these shared faults are more likely

than other faults in branch to be the real faults.

Based on this assumption, we developed a ranking method that we can use to rank the

faults in the branches of this kind of situation. In reality, we use a simple method which just

records the total existing count of each fault in the corresponding branches, and then rank

the faults in each branch by comparing their counts. The example in Figure 5.3 illustrates

how we rank candidates in each branch. In this case, failing patterns FP1 and FP3 have the

same EPO combinations: PO1, PO3 and PO4. Now we assume that it may be possible that

the cause of these EPOs is the same set of faults. First, we divide the fault candidates into

different groups according to the branches that these faults belong to as shown in the figure.

By counting the number for each fault candidate, we can rank faults in the group. When

two candidates have the same count in the same group, we will give them the same rank,

like f4 and f2 in group PO1 and f2 and f7 in group PO3. After the ranking, we see that f4

and f2 are ranked at the top of group PO1, f4 is ranked at the top of group PO3 and f5 is

ranked at the top of group PO4.
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Figure 5.3: An example of ranking procedure of step one.

It should be noted that in this step of analysis, only the EPO-trees with the same branch

arrangements as others will be considered. EPO-Tree with unique branch arrangements will

not be considered in this step.

5.2.2 Branch Ranking with Counts from Reduction Stage

We now discuss the branch ranking procedure used in steps two, three and five. The

reason why we jump across step four is that the procedures of the three steps are similar:

they all use the counts of each fault from the reduction stage to rank the candidates in each

branch.

As we have discussed in Chapter 4, we use three counts for each fault to reduce candi-

dates in the candidate reduction stage, now we want to use these counts again to rank the

candidates in each branch. In step two, we use the count of failing pattern index matching

(FPIM). In step three and step five we will use the count of FPIM with EPO-hitting and

EPO matching, respectively. Let us take an example of step two to illustrate the method.
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Figure 5.4: An example of ranking procedure of step two.

In Figure 5.4 we can see that after the first step, the candidates in each branch already have

an initial rank. Next, we utilize the FPIM count of each fault obtained from reduction stage

ranking of candidates within each already ranked group. The FPIM count of each fault is

listed in the figure. Based on this count, each fault group with more than two candidates

is analyzed and ranked as shown in the figure. Here the ‘group’ we mentioned refers to the

candidates that have the same rank in previous ranking steps in certain branch, like f1 and

f2 in branch PO1 in this case. Each group may have one or more candidates. In branch

PO1, f1 and f2 are in the same group. Because the count of f1 is higher than f2, f1 is

put into a group with higher rank and f2 is ranked below f1. It should be noted that even

though f3 has a count higher than f2, it still cannot be ranked higher than f2 because no

candidate in our ranking system would get a rank better than the existing rank before the

present ranking began. Otherwise, the previous ranking steps will become meaningless. In

steps three and five, the procedures are similar to the one just described and we will not

discuss them anymore.

5.2.3 Branch Ranking with Leaf Count in EPO-Tree

In step four, we will consider the number of leaves that each candidate has in the

EPO-tree. The ranking procedure in this step is based on the following assumption:
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Figure 5.5: An example of ranking procedure of step four.

Assumption 5.2 If several fault candidates still have the same rank after some previous

ranking steps, then we assume that those with more leaves in the EPO-tree have greater

chance to be real faults in CUD, because it is much easier to activate just one or two faults

than many faults together to cause the same effect.

An example in Figure 5.5 illustrates how the procedure works in this step. In this figure

we can see that the number of branches in the EPO-tree of each fault is listed. The ranking

procedure is kind of similar as before, which is performed in each group.

5.3 Final Fault Ranking

In previous sections, we have described how we rank each fault candidate in each branch

of EPO-tree. In this section, we will discuss how we collectively handle the results from the

analysis procedures. Fault ranking will finally give out a list of faults that are most suspicious

among all fault candidates and those faults will be used as clues to locate faulty nets in next

stage.

At this point, we need to introduce a very crucial concept in our ranking system, namely,

top-single-fault (TSF). A TSF is a single fault that has top rank in the branch. This kind of

faults are considered top suspects. This is because we have already applied many constrains
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in the branch ranking procedure and these faults have retained with highest potential to

be the real ones compared to other faults in the branch. Second, a TSF is the only fault

candidate in the top group of the branch, so there is no other fault has the same potential.

Through experiments, we found that the TSFs have much higher chance to be the real faults

in CUD than other faults.

Based on the reasons mentioned above, we first use the TSFs as the top candidates in our

final fault list. It should be noted that, because we have applied many constraints in branch

ranking, the earlier a TSF comes out, more suspicious it should seem. From Figure 5.1 we

see that TSF check is performed after the forest of EPO-trees is built and after each analysis

step in the ranking system. The new TSFs will be kept after each checking.

Sometimes TSFs alone cannot include all the real faults in the CUD. Then, we have

to include more fault candidates than just TSFs in the final candidate list to increase diag-

nosability. In our system, the ranking of other candidates depends on the top-ranks they

achieve in the branch ranking. For example, if a fault is detected in five branches and the

top rank it gets in branch ranking among these five branches is one, which means it is in the

top group in one branch, then we will use the top rank of this fault to compare with other

faults.

An advantage of our ranking strategy is that a real fault candidate does not have to

show its potential in every branch that it belongs to. We not only consider the overall

matching performance of the candidates in branch ranking, we also consider their per-test

performance in the final ranking. Every branch in each EPO-tree is unique. In multiple

fault diagnosis, the interactions between faults are quite common. It is very possible that

in some affected branches of certain injected fault, this fault may have a lower rank than

other injected faults. If this situation occurs in most of this fault’s affected branches and

we consider the overall branch ranking performance, then we may give this fault a low rank.

Therefore, for any fault candidate, no matter how many EPOs it interacted with or was

masked by other candidates, as long as it can show a high potential even in one branch, it
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Figure 5.6: Arrangement of final candidate list.

is considered unique enough to be one of our final candidates. One more advantage that we

have in comparison to previous per-test diagnosis works, which mainly rely on SLAT-based

methods [27, 29], is that we are not constrained by the SLAT ability of test patterns.

The arrangement of final candidate list is shown in Figure 5.6. From the figure can we

see that the list is levelized. In each level there may exist more than one fault candidate.

So the next thing we need to do is to rank the fault candidates in each level in the list. The

ranking procedure is similar to the one we use in steps two, three and five. We use the three

counts from candidate reduction stages to rank the faults in each level in the list. One thing

we need to mention is that this ranking is only performed in each level in the list, which

means a candidate will not get out of the level it belongs to after the ranking.
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Table 5.1: Diagnosis results for a single stuck-at fault.

Circuit Diagnosability FHR Resolution Time (s)

C2670 1.0 1.0 1.0 6.4
C3540 1.0 1.0 1.0 0.5
C6288 1.0 1.0 1.0 0.6
C7552 1.0 1.0 1.0 1.5

Table 5.2: Diagnosis results for two stuck-at faults.

Circuit Diagnosability FHR Resolution Time (s)

C2670 0.97 1.0 2.0 8
C3540 0.95 1.0 1.0 0.6
C6288 0.99 1.0 2.0 1
C7552 0.93 1.0 2.0 1.7

5.4 Experimental Results of Candidate Ranking

We have performed multiple stuck-at faults diagnosis experiments on four ISCAS85

benchmark circuits to examine the effectiveness of the fault reduction and ranking procedures

of our diagnosis method. These experiments were performed on a Linux Server with Ubuntu

10.04 operating system consisting of 2*1GHz CPU with 2 MB cache, 2G RAM and 2G swap

space. For each benchmark circuit, we randomly constructed 200 faulty circuit instances.

For each faulty circuit we randomly injected 1 to 4 stuck-at faults. The average results of

the diagnosis are shown in Tables 5.1, 5.2, 5.3 and 5.4. Diagnosability is defined as the

percentage of the injected faults that could be identified. First hit rank (FHR) is defined as

the first index of the injected fault in the ranked fault list. After diagnosis is completed and

an ordered list of suspected faults is generated, next follows a physical examination of the

faulty device. One naturally examines the sites of faults in the list staring at the top. That is

the reason FHR is an important measure; ideally it should be 1. In the present experimental

scenario it is a measure of how quickly we can locate an injected fault. Resolution is defined as

the ratio of the number of reported fault candidates over the number of injected faults. The
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Table 5.3: Diagnosis results for three stuck-at faults.

Circuit Diagnosability FHR Resolution Time (s)

C2670 0.94 1.0 2.0 13
C3540 0.94 1.0 2.0 0.7
C6288 0.95 1.0 2.0 2.7
C7552 0.90 1.04 2.0 2.9

Table 5.4: Diagnosis results for four stuck-at faults.

Circuit Diagnosability FHR Resolution Time (s)

C2670 0.89 1.06 2.0 17
C3540 0.91 1.0 2.0 1.8
C6288 0.92 1.02 2.0 5.7
C7552 0.88 1.1 2.0 3.2

ideal value of resolution is 1 and larger values mean poor resolution. From these experimental

results we can see that our method has very good diagnostic resolution and first hit rank

(FHR), which is very crucial in net diagnosis to be discussed in the next chapter. Because

we will expand the collapsed fault set to an uncollapsed fault set, if we have too many fault

candidates (i.e., poor resolution), then we will encounter difficulty in locating the faulty net.
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Chapter 6

Diagnosis of Nets

In previous chapters, we have described procedures that reduce and rank fault candi-

dates. From the ranking procedure, we can get a short list of fault candidates that may

be related to the nets that physically contain failures. Finding and fixing physical defects

or their causes is extremely important for the success of VLSI industry. Identification of

faulty nets without tying the diagnosis to specific fault models is an effective way of using

the failure data. In this chapter, we introduce a detailed method to diagnose faulty nets by

using the fault information we obtained in previous chapters.

6.1 Candidate List Extension

In previous chapters we used collapsed faults in the fault reduction and ranking pro-

cedures. In ranking procedure, we further collapse the faults grouped on the basis of the

test vector simulation data resulting in functional (or vector-specific) equivalence [38, 39].

Before we begin with the net diagnosis we expand the diagnosed fault list by uncollapsing.

This is because each fault represents a physical site on some net. If we only considered the

collapsed faults, the physical net information will remain incomplete.

In the first stage of fault extension, we first extend each fault candidate to a group

of functionally equivalent faults. We then add the equivalent faults of each fault into the

groups they belong to. As shown in Figure 6.1, each single fault in the initial candidate list

is extended to a group of equivalent faults. It should be noted that, after the extension, the

rank of each group of equivalent faults remains the same as that of the single fault that they

are expanded from.
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Figure 6.1: Candidate list extension.

6.2 Net Diagnosis

The target of our diagnosis is to locate possible faulty nets in the circuit. We utilize the

extended fault list from last step to locate the suspicious nets.

From the netlist of the circuit, we can get the corresponding net for each fault. Then

each group of equivalent faults can be transformed into a set of nets. As shown in Figure 6.2,

similar to the fault extension procedure of the last section, each net set still has the same

rank as the fault group that they were derived from.

After we transform the fault candidates to the net candidates, we do net ranking. First,

we build a net pool, which includes all the net candidates of each rank group, if a net

candidate is found in different rank groups, all of them will be included. The final net

candidate list has two parts. The first part includes the nets for which we can find more

than two members in the net pool. In other words, there are more than two fault candidates

in the final fault list can locate the net. The second part includes the nets that can only

be found once in the net pool. In both parts of the net ranking list, the rank of each net

depends on the rank of the group that the net belongs to. If after this, there are still certain
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Figure 6.3: Net ranking.

nets that have the same rank, then their number in the net pool is used to break the tie. A

case is shown in Figure 6.3. From the figure we note that Net1, Net2 and Net3 are found

more than once in the initial list, so they are ranked in the first part of the candidate list

as shown in the middle part in the figure. We also see that the occurrence of Net2 is more

frequent than Net1 in the list, but because the top rank of Net1 is higher than Net2, Net1

is still ranked higher than Net2 in the final list as shown in the right part of the figure.

The reason why we use such ranking strategy is because our previous work on diagnosing

multiple faults produced very good FHR (first hit rank) and resolution and we must retain

that advantage in net ranking.
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Table 6.1: Diagnositic coverage of single stuck-at faults [52].

Circuit # of Patterns Diagnostic coverage

C432 69 100%
C880 60 100%
C1355 88 100%
C1908 135 98.78%
C2670 150 98.94%
C3540 170 97.17%
C6288 166 99.52%
C7552 296 99.35%

6.3 Experimental Results

The net fault diagnosis algorithm in this thesis was implemented using the Python

programming language [45], including the scripts for fault injection, diagnosis and result

analysis. We use a commercial fault simulator Fastscan [30] from Mentor Graphics as the

simulation tool. All experiments used ISCAS85 benchmark circuits in order to examine

the performance of the proposed diagnosis algorithms. In this section we will discuss the

experimental results of the net diagnosis.

6.3.1 Diagnostic Patterns

In these experiments, we used test patterns that were generated for high diagnostic

coverage of stuck-at faults [52] and that of transition faults [53]. The diagnostic coverage is

defined as the ratio of number of distinguished equivalent fault groups to the number of total

equivalence collapsed faults. High diagnostic coverage means that most of non-equivalent

faults in the circuit can be distinguished. If two faults can be distinguished that means that

the faults are not equivalent and certain test pattern produces different responses in presence

of those faults. The diagnostic coverages for benchmark circuits by test patterns used are

listed in Tables 6.1 and 6.2. From the tables we can see that most single faults in the circuit

can be distinguished by the test patterns.

55



Table 6.2: Diagnositic coverage of single transition faults [53].

Circuit # of Pattern Diagnostic Coverage

C432 159 100%
C880 159 100%
C1355 305 100%
C1908 395 98.78%
C2670 251 98.94%
C3540 566 97.17%
C6288 205 99.52%
C7552 490 99.35%

Table 6.3: Fault dictionaries for stuck-at faults and vectors of Table 6.1.

Circuit Constructing Time (s) Data Size (MB)

C432 4.5 0.12
C880 6 0.17
C1355 12 0.56
C1908 22 1.5
C2670 32 1.7
C3540 35 2.5
C6288 81 5.7
C7552 140 10.2

6.3.2 Fault Dictionary Construction

Our dictionary stores the single fault simulation information in order to save the time

by avoiding repeated fault simulation during diagnosis. Fault simulation is done without

fault dropping. The dictionary stores all failing information about simulated faults, failing

patterns and failing primary outputs. We use Fastscan as the fault simulation tool [30], which

can simulate stuck-at and transition faults. The CPU time to construct the dictionaries and

their sizes are listed in Tables 6.3 and 6.4. As before these experiments were also performed

on a Linux Server with Ubuntu 10.04 operating system consisting of 2*1GHz CPU with 2

MB cache, 2G RAM and 2G swap space.
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Table 6.4: Fault dictionaries for transition faults and vectors of Table 6.2.

Circuit Constructing Time (s) Data Size (MB)

C432 6 0.17
C880 20 1.4
C1355 32 1.2
C1908 45 3
C2670 84 1.8
C3540 120 5.1
C6288 328 11.1
C7552 510 14.3

D Q

D Q

Stem

Branches

Delay

Figure 6.4: Transition fault injection.

6.3.3 Experimental Results of Net Diagnosis

We use eight benchmark circuits to conduct experiments. For each fault model and

each benchmark circuit, we randomly constructed 20-50 faulty circuits for diagnosis. For

each injected net fault, we randomly selected 2 to 4 fault-sites which could be either the

stem or branches of the net. For stuck-at model, we injected one single stuck-at fault on

each fault site and for transition fault model we injected a D-flip-flop on each fault site to

represent the delay behavior as shown in Figure 6.4.
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Table 6.5: Results of diagnosing single faulty net with stuck-at faults.

Circuit Net Diagnosability FHR Net Resolution Time (s)

C432 1.0 1.1 2.0 0.08
C880 1.0 1.1 2.0 0.1
C1355 0.98 2.0 3.0 1.06
C1908 0.92 1.4 3.0 7.5
C2670 0.98 1.4 3.0 7.4
C3540 0.98 1.04 3.0 0.5
C6288 0.98 1.1 3.0 3
C7552 0.96 1.1 3.0 3

Table 6.6: Results of diagnosing circuits with two faulty nets with stuck-at faults.

Circuit Net Diagnosability FHR Net Resolution Time (s)

C432 0.975 1.2 3.0 0.2
C880 1.0 1.1 3.0 0.15
C1355 0.75 2.6 5.0 16
C1908 0.86 1.3 3.0 13
C2670 0.95 1.14 4.0 12
C3540 0.96 1.1 3.0 0.7
C6288 0.9 1.06 3.0 4
C7552 0.9 1.2 3.0 11

The experimental results of net fault diagnosis with stuck-at fault model are listed in

Tables 6.5 and 6.6. The results of net fault diagnosis with transition fault model are listed

in Tables 6.7 and 6.8. Similar to the multiple stuck-at faults diagnosis in Chapter 5, the

Diagnosability is defined as the percentage that the net with injected faults can be identified.

First hit rank (FHR), defined as the index of the actual net with injected fault in ranked

net list. It is a measure of how decisively we have found the real faulty net. Resolution is

the ratio of the number of reported net candidates over the actual number of faulty nets.

From the experimental result we can see that our diagnosis algorithm generally has very

good diagnosability and resolution.
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Table 6.7: Results of diagnosing single faulty net with transition faults.

Circuit Net Diagnosability FHR Net Resolution Time (s)

C432 1.0 1.05 2.0 0.48
C880 0.9 1.2 2.0 0.8
C1355 1.0 1.0 1.0 0.9
C1908 0.96 1.2 2.0 7.2
C2670 1.0 1.16 2.0 0.9
C3540 0.98 1.2 2.0 1.7
C6288 1.0 1.08 2.0 2.8
C7552 0.98 1.3 2.0 7.5

Table 6.8: Results of diagnosing circuits with two faulty nets with transition faults.

Circuit Net Diagnosability FHR Net Resolution Time (s)

C432 0.9 1.2 3.0 0.7
C880 0.8 1.3 3.0 2.3
C1355 0.86 1.3 3.0 13
C1908 0.93 1.4 3.0 35
C2670 0.97 1.06 2.0 4.6
C3540 0.95 1.1 2.0 2.3
C6288 0.92 1.3 2.0 2.8
C7552 0.96 1.08 2.0 13.1
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Chapter 7

Conclusion

Traditional gate faults are closely related to the fault models and not necessarily to

physical defects. Therefore, from a practical viewpoint it makes sense to diagnose a faulty

net on a VLSI chip than to locate a “modeled” fault. Our use of stuck-at and transition

faults models is for a practical reason, i.e., availability of tools for test generation and fault

simulation. These models are used only for the possibility and simplicity of analysis they

offer. In identifying faulty nets no assumption is made about the actual fault on them except

that those nets ‘may’ have caused the observed and simulated errors. The fault models may,

or may not be, used as suggestions. We verified against the injected multiple-faults.

The main ideas forwarded in this thesis are:

1. Because the number and variety of actually possible defects are enormous, almost

unimaginable, diagnosis should focus on the physical location of defect and not on its

type.

2. Once the faulty area of defect is located, the algorithms for finding the actual defect

mechanism cannot be a purely analytical because that will require assumptions, leading

back to fault models. That part of the procedure should be experimental or at best,

interactive.

3. Fault models should be used without implication or assumption that they might repre-

sent actual defects. Their use is beneficial and should be encouraged because it permits

analysis and use of tools; simplest models are the best.

In the future, arbitrary defects such as bridges, opens, short, etc., should be examined

to evaluate the presented diagnosis algorithms.
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