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Abstract

In this thesis we give a new solution to the intersection problem for Steiner triple systems,

using results that were not available when the original solution was given. In particular

we show for each pair (n, k), where n ≡ 1 or 3 (mod 6) ≥ 19 and k ∈ {0, 1, 2, ..., x =

n(n−1)
6
}\{x − 1, x − 2, x − 3, x − 5}, the existence of a pair of Steiner triple systems (S,T1)

and (S,T2) of order n with the property that |T1 ∩ T2| = k.
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Chapter 1

Introduction and outline of the thesis

A Steiner triple system (STS) of order n is a pair (X,T) where T is a collection of edge

disjoint triangles (or triples) which partitions the edge set of Kn with vertex set X.

Example 1.1 (two triple systems of order 7).

1

2

3

45

6

7

1

23

1

45

1

674

62

5

63

4

73 5

2 7

1

2

3

4
5

6

7

4

1 6

5

1 7

4

2 7
1

3 2

6

2 5

5

3 4
7

3 6

It is immediate that the two triples in this example have exactly one triple in common,

namely
1

23

which we will denote by {1, 2, 3}.
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In general we will denote the triangle

a

bc

by {a, b, c}.

In this thesis, we will be looking at the intersection problem for Steiner triple systems.

It is well-known that the spectrum for Steiner triple systems is precisely the set of all

n ≡ 1 or 3 (mod 6) [3] and that if (X,T) is a triple system of order n, |T | = n(n−1)
6

.

Hence the following problem:

THE INTERSECTION PROBLEM: For each n ≡ 1 or 3 (mod 6), determine the set of

all k such that there exists a pair of STS(n) having exactly k triples in common.

The two triple systems in Example 1.1 have exactly one triple in common; namely

{1, 2, 3}.

Now, it turns out that a necessary condition for a pair of STS(n) to have k triples in

common is k ∈ I(n) = {0, 1, 2, ..., x = n(n−1)
6
}\{x−1, x−2, x−3, x−5}. This will be proved

in Chapter 2. It also turns out that except for n = 9, this necessary condition is sufficient.

Denote by J(n) = {k such that there exists two STS(n) having k triples in common}. The

following Theorem is due to C.C. Lindner and A. Rosa [5].

Theorem 1.2 J(n) = I(n) for all n ≡ 1 or 3 (mod 6), except for J(9). In this case

J(9) = {0, 1, 2, 3, 4, 6, 12} [4]. �

The following is an example showing J(7) = I(7) = {0, 1, 3, 7}.

Example 1.3 (J(7) = I(7)).

1 2 4

2 3 5

3 4 6

4 5 7

5 6 1

6 7 2

7 1 3

∩

1 2 6

2 3 7

3 4 1

4 5 2

5 6 3

6 7 4

7 1 5

= ∅
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6 7

4 5

5 7

4 6

5 6

4 7

5 7

4 6

5 6

4 7

6 7

4 5
∩ = 1

1 2 3 1 2 3

6 7

4 5

5 6

4 7

5 7

4 6

6 7

4 5

5 7

4 6

5 6

4 7
∩ = 3

1 2 3 1 2 3

Any STS(7) intersects with itself in 7 triples.
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Chapter 2

Necessary Conditions

In this section we show that a necessary condition for a pair of triple systems (S,T1) and

(S,T2) of order n to have k triples in common is for k ∈ {0, 1, 2, 3, 4, ..., x = n(n−1)
6
}\{x −

1, x−2, x−3, x−5}. A partial triple system of order n is a pair (S,P) where P is a collection

of edge disjoint triples of the edge set of Kn with vertex set S.

Example 2.1 (partial triple system of order 6)

K6

1 1

4635
2 2

3645

P1=

Two partial triple systems (S,P1) and (S,P2) are said to be balanced provided P1 and

P2 cover the same edges. Let P1 be the collection of triples in Example 2.1 and P2 be the

following collection of triples.

Example 2.2 (partial triple systems of order 6)

P2 =

1 1

3645
2 2

4635
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Then P1 and P2 are balanced. It is also the case that P1 and P2 are disjoint, that is, they

have no triples in common.

Now let (S,T1) and (S,T2) be a pair of triple systems of order n. Then the partial triple

systems (S,T1\ (T1∩T2)) and (S,T2\ (T1∩T2)) are balanced and disjoint. We will show that

there does not exist a pair of balanced and disjoint partial triple systems containing 1,2,3,

or 5 triples. It follows that |T1\ (T1∩T2) | /∈ {1,2,3,5} and so |T1∩T2| /∈ {n(n−1)
6

= x−1, x−

2, x− 3, x− 5}. It follows that |T1 ∩T2| ∈ {0, 1, 2, ..., n(n−1)
6

= x} \{x− 1, x− 2, x− 3, x− 5}

is a necessary condition for a pair of triple systems to have x triples in common.

To begin, if (S, P1) and (S, P2) are balance and disjoint, every vertex must belong to

at least 2 triples in both P1 and P2. Suppose {x, y, z} ∈ P1 and is the only triple containing

x. Then x has degree 2 in P1. Now, in P2 we must have a triple of the form {x, y, a} since

the edge {x, y} has to be covered. However, if a 6= z, then the edge {x, a} must be covered

in P1, so x has to have degee at least 4.

b

y

x

a 6= z
yz

x

a

P1 P2

Now let (S, P1) and (S, P2) be a pair of partial balanced and disjoint triple systems.

Since every vertex in P1 must have degree at least 4 we cannot have |P1| = |P2| ∈ {1, 2, 3}.

We now show that we cannot have

1. |P1 ∩ P2| = 5, and

2. P1 and P2 are balanced

To begin, |S| must be at least 6, otherwise we could not cover 15 edges. However, since

a maximum partitioning of K6 contains 4 triples, we cannot have |S| = 6.
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Construct the following incidence matrix

1 2 3 4 . . . . . . i . . . . . . . . . n

t1

t2

t3

t4

t5

I = 1, if i ∈ t,
0, otherwise.{

Then I contains 15 ones. Since each vertex belongs to at least 2 triples we must have

2n ≤ 15 so, n ≤ 15
2

, and so n = 7.

It is now clear that I looks like

1 2 3 4 5 6 7
t1

t2

t3

t4

t5

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

This is to say exactly one vertex belongs to 3 triples and the rest to 2 triples. It follows

that P1 looks like

7

2

4

65

3

1
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These edges cannot be covered by 5 disjoint triples, and so, we have the following result:

Lemma 2.3 A necessary condition for a pair of triple systems (S,T1) and (S,T2) of order

n to have k triples in common is for k ∈ {0, 1, 2, 3, ..., n(n−1)
6

= x}\{x− 1, x− 2, x− 3, x− 5}.

�

In [5] this was shown to be sufficient for all n ≡ 1 or 3 (mod 6), except for n = 9. In

this case the intersection numbers are {0,1,2,3,4,6,12} [4].

The object of this thesis is a different and much simpler proof of the intersection problem.

We will first sketch a proof of the original solution. We then give a new construction using

results which were not available when the original paper was written.
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Chapter 3

The Original Construction

This chapter will give a brief sketch of the original solution of the intersection problem

[5]. The interested reader is referenced to the original paper for details. The original solution

uses the following two constructions.

The 2n+ 1 Construction: Let (S,T) be a STS(n) and (X,F), F = {F1, F2, ..., Fn}, a

1-factorization of Kn+1 with vertex set X, where X ∩ S = ∅. Let S∗ = S ∪ X and define a

collection of triples T ∗ as follows

1. T ⊂ T ∗, and

2. let α be any 1-1 mapping from S onto {1, 2, 3, ..., n}. For each x ∈ S and each

{a, b} ∈ Fxα place the triple {x, a, b} in T ∗.

Then (S∗, T ∗) is a STS(2n+ 1)

F1α F2α Fxα Fn

Kn =

STS(n)
x

a b
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The 2n+ 7 Construction: LetF = {F1, F2, ..., Fn} be a collection of n 1-factors of Kn+7

with vertex set X. Further let K = Kn+7\F and K1 and K2 two partitions of K into n + 7

triples, where K1 ∩K2 = ∅. Now let (S,T) be a STS(n) with vertex set S, such that

S ∩ X = ∅. Set S∗ = S∪ X and define a collection of triples T ∗ as follows:

1. T ⊂ T ∗,

2. Ki ⊂ T ∗, where i = 1 or 2 (but not both), and

3. let α be any 1-1 mapping from S onto {1, 2, 3, ..., n}. For each x ∈ S and each

{a, b} ∈ Fxα place the triple {x, a, b} in T ∗. Then (S∗, T ∗) is a STS(2n+ 7).

F1α F2α Fxα Fnα

Kn+7 =

STS(n)
x

a b

= Ki

The Original Construction

1. Ad hoc constructions are used to solve the problem for all n ≤ 33. So we can assume

n ≥ 37.

2. Every m ≡ 1 or 3 (mod 6) can be written in the form 2n + 1 or 2n + 7, where n ≡ 1

or 3 (mod 6).

3. The proof uses induction. So assume we have solved the intersection problem for all

n ≡ 1 or 3 (mod 6) ≤ 33.
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4. If n ≡ 1(mod6) we use the 2n+ 1 Construction:

Let (S,T1) and (S,T2) be any two STS(n), F a 1-factorization of Kn+1, and α and β

1-1 mappings from S onto {1, 2, 3, ..., n}. Then,

F1α F2α Fnα

(S,T1)

F1β F2β Fnβ

(S,T2)

∩

= |T1 ∩ T2| +
∑ |Fiα ∩ Fiβ|. A bit of reflection shows that I(2n+ 1) = J(2n+ 1).

5. If n ≡ 3 (mod 6) use the 2n+ 7 construction.

Let (S,T1) and (S,T2) be any two STS(n), F a collection of n 1-factors of Kn+7, and α

and β 1-1 mappings from S onto {1, 2, 3, ..., n} Then,

F1α F2α Fnα

(S,T1)

F1β F2β Fnβ

(S,T2)

∩

Ki Kj

=|T1 ∩ T2| +
∑ |F1α ∩ Fiβ| + |Ki ∩Kj|. As with the 2n + 1 Construction it is quite

easy to show that I(2n+ 7) = J(2n+ 7).

With the original construction out of the way we can now proceed to a completly

different and new construction.
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Chapter 4

The intersection of quasigroups

Two quasigroups (Q,◦1) and (Q,◦2) are said to intersect in k products provided their

tables agree in exactly k cells.

Example 4.1 (Two quasigroups of order 4 intersecting in 6 products).

1 2 3 4

1

2

3

4

◦1 1 2 3 4

1

2

3

4

◦2
1 3 4 2

4 2 1 3

2 4 3 1

3 1 2 4

1 4 2 3

3 2 1 4

2 3 4 1

4 1 3 2

1

2 1

12

1

1

2 1

1

1

2

In [2] H.L Fu proved the following theorem.

Theorem 4.2 (H.L. Fu[2]) If n ≥ 5, there exists a pair of quasigroups having k products

in common if and only if k ∈ {0, 1, 2, ..., n2}\{n2 − 1, n2 − 2, n2 − 3, n2 − 5}. �

Let Q = {1, 2, ..., 2n} and let H = {h1, h2, ..., hn} be a partition of Q into 2-element

subsets (called holes of size 2).

Let (Q, ◦) be a quasigroup with the property that (hi, ◦) is a subgroup for every hole

hi ∈ H. Then (not too surprisingly) (Q, ◦) is said to be a quasigroup with holes H.

Two communitive quasigroups (Q,◦1) and (Q,◦2) with the same holes H are said to

intersect in k products provided their tables agree in exactly k cells above the holes.
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Example 4.3 (Two communitive quasigroups of order 6 with holes intersecting in 8

products)

1 2 3 4 5 6

1

2

3

4

5

6

◦1 1 2 3 4 5 6

1

2

3

4

5

6

◦2
1 2 5 6 4 3

2 1 6 5 3 4

5 6 3 4 2 1

6 5 4 3 1 2

4 3 2 1 5 6

3 4 1 2 6 5

1 2

2 1

3 4

4 3

5 6

6 5

6 5

5 6

4 3

3 4

6 5

5 6

4 3

3 4

1 2

2 1

2 1

1 2

4

3

2

1

3

4

1

2

4 3

3 4

2 1

1 2

The following theorem is due to C.M Fu [1].

Theorem 4.4 (C.M Fu [1]) If 2n ≥ 10, there exists a pair of commutative quasigroups of

order 2n having the same holes intersecting in k products if and only if

k ∈ {0, 1, 2, ..., x = 2n(n− 1)}\{x− 1, x− 2, x− 3, x− 5}. �

The results in Theorems 4.2 and 4.3 were obtained many years after the original solution

of the intersection problem for Steiner triple systems. We can now use the results in these

two theorems to give a new and much easier solution to this problem.
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Chapter 5

The 6n+ 1 Construction

In this chapter we will give a 6n + 1 Construction along with the results in Theorems

4.2 and 4.4 to give a new solution of the intersection problem for all 6n + 1 ≥ 19. We will

give two examples before giving the general construction.

Example 5.1 (n = 19)

Write n = 3 • 6 + 1. Let |Q| = 6 and set S = {∞} ∪ (Q × {1, 2, 3}). Let (S,T1) and (S,T2)

be two STS(19)s defined by:

∞
x

y

z

◦1 y

x z

({∞} ∪Q, T11)

({∞} ∪Q, T12)

({∞} ∪Q, T13)

T1

STS(7)
(Q,◦1)

{0,1,3,7}

and

∞

a

b

c

◦2 b

a c

({∞} ∪Q, T21)

({∞} ∪Q, T22)

({∞} ∪Q, T23)

T2

STS(7) (Q,◦2)

∩{0, 1, 2, ..., 36}\
{35, 34, 33, 31}
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It is a straightforward computation to see that any number n ∈ {0, 1, 2, ..., 57}\

{56, 55, 54, 52} can be written in the form |T11 ∩ T21| + |T12 ∩ T22| + |T13 ∩ T23| + |(Q, ◦1)∩

(Q, ◦2)|.

Example 5.2 (n = 25)

Write n = 3 • 8 + 1. Let |Q| = 8, set S = {∞} ∪ (Q× {1, 2, 3}), and proceed exactly as in

Example 5.1

The solution for 6n + 1 ≥ 31

Write 6n + 1 = 3(2n) + 1(2n ≥ 10), let |Q| = 2n, and set S = {∞} ∪ (Q × {1, 2, 3}). Let

(S, T1) and (S, T2) be STS(6n+ 1) defined as follows:

∞

x y a b

c

For each hole

(S,T1i)

◦i 1 2
1
2

a

a

b

b

2n

2n

c

c

xy = yx

quasigroup
(Q,◦i) with
holes h1, h2, ..., hn

hi = {x, y}

T1

Where (Q,◦1) is used between levels 1 and 2, (Q,◦2) is used between levels 2 and 3, and

(Q,◦3) is used between levels 3 and 1.
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∞

x y c d

l

hi = {x, y}

(S,T2i)

◦i 1 2
1
2

d

d

c

c

2n

2n

l

l

xy = yx

quasigroup
(Q,◦i) with
holes h1, h2, ..., hn

For each hole

T2

Where (Q,◦1) is used between levels 1 and 2, (Q,◦2) is used between levels 2 and 3, and

(Q,◦3) is used between levels 3 and 1.

As in the above two examples it is easy to see that any number

m ∈ I(n) can be written in the form∑ |T1i ∩ T2i| + |(Q, ◦1) ∩ (Q, ◦1)| + |(Q, ◦2) ∩ (Q, ◦2)| + |(Q, ◦3) ∩ (Q, ◦3)|. We will illistrate

this with an example.

Example 5.3 (Two STS(31)s intersecting in 87 triples).

1. Take |T1i ∩ T2i| = 7, for i = 1, 2, 3, 4, 5;

2. |(Q, ◦1) ∩ (Q, ◦1)| = 40 between Q× {1} and Q× {2}; and

3. |(Q, ◦2) ∩ (Q, ◦2)| = 12 between Q× {2} and Q× {3}.

4. |(Q, ◦3) ∩ (Q, ◦3)| = 0 between Q× {3} and Q× {1}.

Then
∑ |T1i ∩ T2i| + |(Q, ◦1) ∩ (Q, ◦1)| + |(Q, ◦2) ∩ (Q, ◦2)| + |(Q, ◦3) ∩ (Q, ◦3)| =

35 + 40 + 12 + 0 = 87
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Summary Examples 5.1, 5.2, and the 6n+1 ≥ 31 Construction gives a complete solution

of the intersection problem for all 6n + 1 ≥ 19. As previously mentioned, the case of

6n+ 1 = 13 is handled by an ad hoc construction in the original paper[5].
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Chapter 6

The 6n+ 3 Construction

It is well known that I(9) = {0, 1, 2, 3, 4, 6, 12} and I(15) = J(15). So we will begin

with examples for 21 and 27, which cannot be done in general with the 6n+ 3 Construction.

Example 6.1 (n = 21)

Let Q be a set of size 7 and set S = Q ×{1, 2, 3}. Define two STS(21)s (S,T1) and (S,T2) as

follows:

T1

x

y

z

◦1 y

x z

(Q, T11)

(Q, T12)

(Q, T13)

STS(7)

(Q,◦1) a quasigroup

of order 7.

T2

a

b

c

◦2 b

a c

(Q, T21)

(Q, T22)

(Q, T23)

(Q,◦2) a quasigroup

of order 7.

STS(7)

Then if k ∈ {0, 1, 2, ..., 70}\{69, 68, 67, 65}, k = |T11 ∩ T21| + |T12 ∩ T22| + |T13 ∩ T23| +

|(Q, ◦1) ∩ (Q, ◦2)|.

Example 6.2 (n = 27)

Let Q be a set of size 9 and set S = Q×{1, 2, 3}. Define two STS(27) (S,T1) and (S,T2) and

proceed as in Example 6.1
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The solution for 6n+3 ≥ 33 Write 6n+ 3 = 3 + 3 • 2n and let Q be a set of size 2n

with holes H = {h1, h2, ..., hn} of size 2. Set S = {∞1,∞2,∞3} ∪ (Q× {1, 2, 3}) and define

two STS(6n+ 3)s, (S,T1) and (S,T2) as follows:

T1

T11 T12 T13

Any STS(9)

x y

z

∞1 ∞2 ∞3

T1n

STS(9) containing {∞1,∞2,∞3}

◦i 1 2 2ny

x z

xy=yx quasigroup (Q,◦i)
with holes H = {h1, h2, ..., hn}.

Where (Q,◦1) is used between levels 1 and 2, (Q,◦2) is used between levels 2 and 3, and

(Q,◦3) is used between levels 3 and 1.

18



T2

T21 T22 T23

Any STS(9)

a b

c

∞1 ∞2 ∞3

T2n

STS(9) containing {∞1,∞2,∞3}

◦i 1 2 2nb

a c

xy=yx quasigroup (Q,◦i).
with holes H = {h1, h2, ..., hn}.

Where (Q,◦1) is used between levels 1 and 2, (Q,◦2) is used between levels 2 and 3, and

(Q,◦3) is used between levels 3 and 1.

Now, let m ∈ I(6n+3). Then m = |T11∩T21|+
∑ |(T1i∩T2i)\{∞1,∞2,∞3}|+ |(Q, ◦1)∩

(Q, ◦1)|(between levels 1 and 2) +|(Q, ◦2) ∩ (Q, ◦2)|(between levels 2 and 3)+|(Q, ◦3) ∩

(Q, ◦3)|(between levels 3 and 1).

We illustrate this construction for 6n+ 3 = 33.
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Example 6.3 (A pair of STS(33) intersecting in 102 triples).

Take |T11∩T21| = 0 each |(T1i\{∞1,∞2,∞3}| = 0 (this is simply a pair of triple systems

of order 9 having just the triple {∞1,∞2,∞3} in common, |(Q, ◦1) ∩ (Q, ◦1)| = 40 between

levels 1 and 2 and 2 and 3, and |(Q, ◦3) ∩ (Q, ◦3)| = 22 between levels 3 and 1.

Summary In this chapter we have given a complete solution of the intersection problem

for all n ≡ 3(mod 6) ≥ 21.
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Chapter 7

Concluding remarks

In this thesis we have given a new solution to the intersection problem for Steiner triple

systems using results that were not available when the original solution was obtained. In

particular we have given a new solution for all n ≡ 1 or 3(mod 6)≥ 19. Our solution is much

simpler than the original solution and has the added benefit of not using induction.
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