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Abstract

This thesis focuses on a digital Built-in Self-Test (BIST) approach to perform specifi-

cation oriented testing of the analog portion of a mixed-signal system. The BIST utilizes

a direct digital synthesizer (DDS) based test pattern generator (TPG) and a multiplier-

accumulator (MAC) based output response analyzer (ORA) to stimulate and analyze the

analog devices under test, respectively. This approach uses the digital-to-analog converter

(DAC) and the analog-to-digital converter (ADC), which typically already exist in a mixed

signal circuits, to connect the digital BIST circuitry to the analog device(s) under test (DUT).

Previous work has improved and analyzed the capabilities and effectiveness of using

this BIST approach to test analog circuitry; however, little work has been done to determine

the fault coverage of the digital BIST circuitry itself. Traditionally additional test circuitry

dedicated to testing would be added to the BIST circuitry to provide adequate fault cov-

erage of digital circuitry. While ensuring that the digital circuitry is thoroughly tested and

functioning properly, this circuitry incurs a potentially high area overhead and performance

penalty. This thesis focuses on using the existing BIST circuitry to test itself by utilizing a

dedicated digital loopback path. A set of test procedures is developed and analyzed which

can be used to provide a set of functional tests which provide a high effective fault coverage

of the digital portion of the BIST. To determine the effectiveness of these test procedures, the

mixed-signal BIST circuit is simulated and single stuck-at gate-level fault coverage results

are determined and presented. Finally several improvements to the dedicated loopback path

are proposed and simulated to analyze possible ways to improve the fault coverage of the

BIST with minimal area and performance impact.

ii



Acknowledgments

I would like to express my thanks to Dr. Charles Stroud for his help, patience, and

guidance in preparing this thesis and for affording me the opportunity to work on my Master

degree. His constant encouragement and insight has pushed me to develop my skills and to

learn. Without his help I may never have pursued my graduate degree or be publishing this

thesis.

I would also like to thank my co-adviser Dr. Fa Dai for his work in preparing this thesis

and his assistance with my research and related projects. I’d also like to extend my thanks

to my committee members including Dr. Victor Nelson and Dr. Vishwani Agrawal for their

input in finishing this thesis as well as the wisdom and knowledge I have learned from them

in my studies.

My thanks also goes out to all of the students who I have worked with at Auburn

University: Brad Dutton, George Starr, Joseph Cali, Justin Dailey, and Neil Da Cunha. I’d

especially like to thank Jie Qin for his help with my research and testing especially during

the Fall semester. Also to Justin Dailey, I owe you the most – one day soon I won’t lose by a

million. To all of you as well as the students I didn’t name, I couldn’t have done it without

all of your help.

For my parents Rhonda and Michael Lusco, thank you so much for your support both

morally and financially. Your help and guidance has made this journey much easier and

more fun. Without your influence over my entire life, I am not sure I would have had the

confidence necessary to pursue this goal.

Finally I’d like to thank my beautiful (soon to be) wife, Leann Stokes. Thank you for

all of your patience, advice, and support with not only this thesis but for our entire time at

Auburn. You’ve made my life so exciting and fun and I can not wait to be married to you!

iii



The views, opinions, and/or findings contained in this article/presentation are those

of the author/presenter and should not be interpreted as representing the official views or

policies, either expressed or implied, of the Defense Advanced Research Projects Agency or

the Department of Defense.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Why Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Basics of Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Built-In Self-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Digital Systems and Faults . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Analog Systems and Faults . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Mixed Signal Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Fault Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Collapsed vs Uncollapsed Faults . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 The Bridging Fault Model . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 AUSIM Fault Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 ASL Netlist Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 BIST Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 DDS Based TPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 ORA Multiplier-Accumulators . . . . . . . . . . . . . . . . . . . . . . 28

v



2.3.3 On-Chip Calculation Circuit . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Test Preparation, Development, and Verification . . . . . . . . . . . . . . . . . . 40

3.1 Converting to ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 ASL Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Value Change Dump File . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 OutToVCD Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Test Vector Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Fault Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Performing the Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Test Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Fault Coverage Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Potentially Detected Faults . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Undetectable Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Overall Fault Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Analysis and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Fault Coverage Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Fault Coverage Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 SSA BIST Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

vi



List of Figures

1.1 AND Gate with Input A Stuck-At ‘1’ . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Simple BIST for an AND Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 BIST Approach for Mixed-Signal Systems[1] . . . . . . . . . . . . . . . . . . . . 9

1.4 Mixed-Signal BIST with Multiple Loopback Paths . . . . . . . . . . . . . . . . 10

1.5 Fault Coverage v. Acceptable Value Range[7] . . . . . . . . . . . . . . . . . . . 11

2.1 NOR Gate with Six Uncollapsed and Four Collapsed Faults . . . . . . . . . . . 18

2.2 Structural Fault Collapsing Performed on a Group of Logic Gates . . . . . . . . 18

2.3 Bridging Fault where Net A Dominates Net B . . . . . . . . . . . . . . . . . . . 21

2.4 A Half-Adder Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 General BIST Architecture[20] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Block Diagram of DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 The OR Chain Which Calculates the Number of Clock Cycles from the Logical

OR of All Frequency Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Calculation Circuit Presented in [25] . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Input Spectrum v. DUT Output Response for two-tone test . . . . . . . . . . . 34

vii



3.1 Development Work-Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 VCD File Visualized in the GTKWave Viewer . . . . . . . . . . . . . . . . . . . 47

3.3 The Test Vector Development Process . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Method used to Represent Connection to VDD and to GND in AUSIM . . . . . 55

4.2 Individual Fault Coverage vs Cumulative Fault Coverage Percentage . . . . . . 58

viii



List of Tables

1.1 Advantages and Disadvantages of BIST[1] . . . . . . . . . . . . . . . . . . . . . 4

2.1 Built-In AUSIM Gates[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 FW3 and FW4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Read Address Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 C17 Verilog Netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 C17 ASL Netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Using the VerilogParser tool to convert a netlist to ASL . . . . . . . . . . . . . 43

3.4 Example VCD File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Example Usage of ASLToVCD Tool . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Simulated BIST Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Fault Simulation Test Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Individual Fault Coverage Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Fault Coverage of BIST Sub-Systems . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Fault Coverage of BIST Sub-Systems w/ Improvements . . . . . . . . . . . . . . 66

ix



List of Abbreviations

ADC Analog-to-Digital Converter

AIM Auburn University SIMulator

ASIC Application Specific Integrated Circuit

ASL Auburn Simulation Language

ATPG Automatic Test Pattern Generator

BIST Built-in Self-Test

CAD Computer-Aided Design

CORDIC COordinate Rotation DIgital Computer

DAC Digital-to-Analog Converter

dB Decibel

DDS Direct Digital Synthesizer

DFF Data Flip-Flop

DFT Design For Testability

DUT Device Under Test

FPGA Field-Programmable Gate Array

FR Frequency Response

FW Frequency Word

x



HPCC High Performance Computing Cluster

IC Integrated Circuit

IM3 third-order inter-modulation term

IMP Integer Multiple Period

IO Input-Output

IP3 Third Order Interception Point

LTU Logarithmic Translation Unit

LUT Lookup Table

MAC Multiplier Accumulator

MISR Multiple Input Signature Register

NCO Numerically Controlled Oscillator

NF Noise Figure

ORA Output Response Analyzer

PDT Potentially Detected

PVT Process, Voltage, and Temperature Variations

SNR Signal-to-Noise Ratio

SPI Serial Peripheral Interface

SSA Selective Spectrum Analysis

TCW Test Control Word

TPG Test Pattern Generator

xi



VCD Value Change Dump

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuit

xii



Chapter 1

Introduction

The testing of embedded systems is a large field with many different approaches and

techniques. Some techniques work most effectively for digital systems and others for analog

systems. One approach is a hybrid test and is used to test a mixed-signal system – a system

with both digital and analog circuitry. Mixed-Signal systems typically require the use of

multiple testing techniques from both the digital and analog domains to be fully tested.

In this chapter a short introduction to testing and relevant testing techniques for digital,

analog, and mixed-signal systems is given so that the reader can develop a foundation for

understanding the mixed-signal testing approach studied in this thesis.

1.1 Why Test Circuits

According to Stroud[1] there are three phases of a product where testing is of critical

importance: the design phase, manufacturing phase, and the system operation phase. Each

phase of the product’s life cycle uses testing to achieve different goals. During the design

phase of the product life cycle, the goal is to focus on finding and eliminating design errors.

During manufacturing the goal changes and is focused on eliminating manufacturer defects,

and finally the operation phase is focused on ensuring fault-free operation. All of these

different testing goals work to improve the device by reducing costs, improving reliability,

etc.

1.2 The Basics of Testing

The basics of testing a circuit are similar during all phases of a product’s life-cycle:
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• Generate a set of input stimuli or test vectors

• Apply those vectors to the device-under-test (DUT)

• Compare the output of the DUT to the expected output for each input value

• Note any discrepancies as indication that there is an error in the device (a fault)

In reality it is often more difficult to test circuits than this basic process makes it appear.

One way to ease this difficulty is by using design for testability (DFT) techniques to increase

the observability and controllability of a device during the design process[1]. Stroud defines

observability and controllability in [1] as the following:

“Controllability is the ease with which we can control a fault site and observability

is the ease with which we can observe a fault site.[1]”

Ultimately these properties determine the complexity of testing a circuit. As chips grow

it becomes increasingly challenging to maintain an acceptable level of controllability and

observability. According to [3]:

“The growth rate in integrated circuit (IC) transistor count is far higher than

the rate for IC pins and steadily reduces the accessibility of transistors from chip

pins – a big problem for IC test.[3]”

Large, modern circuits can contain billions of transistors and comparatively few input-output

(IO) pins[3]. Without careful design considerations these properties can negatively affect the

testability of a device[1].

There are many different methods for physically testing a device. Each method varies

in its requirements and has its own unique set of challenges, costs, and advantages. One

traditional method of testing uses automatic test equipment. Automatic test equipment is

commonly used during manufacturing to verify chips are manufactured without defects[3].

Unfortunately as the complexity and speed of ICs has increased, automatic testing equipment

2



has struggled to maintain an acceptable test coverage of performance-related defects[3]. To

test these more complex circuits requires more advanced and higher speed automatic test

equipment with additional IO capabilities[3]. [3] examines the cost of high-end automatic

test equipment and finds they may become cost prohibitive for complex circuits. [2] estimates

that without the inclusion of alternative testing approaches “tester costs will reach up to

$20 million dollars in 2010”. One such alternative to more expensive testing equipment is

Built-In Self-Test (BIST). BIST describes the technique of designing a device to test itself[1]

and can complement or eliminate the need for automatic test equipment[3].

1.3 Built-In Self-Test

[1] defines BIST as a circuit which can test itself and determine whether it is “good” or

“faulty.” In essence this entails designing the circuit to perform all of the steps in section 1.2

on itself. [1] continues by outlining the basics of a BIST architecture. This simple architec-

ture consists of several major components including a test pattern generator (TPG) which

generates the input stimuli necessary to test the circuit and an output response analyzer

(ORA) which compares the output of the circuit to the expected output for a given input

value. Additionally there is circuitry which isolates the device under test (DUT) during

testing as well as circuitry which controls the test during execution (Test Controller)[1].

BIST has many advantages and disadvantages when compared to other techniques.

[1] quantifies these advantages and disadvantages in Table 1.1. In addition [4] performs a

detailed economic analysis of including BIST in circuitry. [4] concludes that:

“As the product develops from the IC to system level and its complexity in-

creases, so does the complexity of successfully identifying a failure’s root cause.

So it makes economic sense for system owners and perhaps system producers to

implement BIST.[4]”
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Table 1.1: Advantages and Disadvantages of BIST[1]

Advantages Disadvantages
Vertical testability (wafer to system) Area overhead
High Diagnostic resolution Performance penalties
At-speed testing Additional design time & effort
Reduced need for automatic test equipment Additional risk to project
Reduced test development time & effort
More economical burn-in testing
Reduced manufacturing test time & cost
Reduced time-to-market

Though in some cases BIST can negatively impact the area and/or performance of a circuit,

the advantages of BIST and its ability to reduce test time and cost make it an excellent

choice for testing devices[3].

1.3.1 Digital Systems and Faults

Faults in a system are characterized by a fault model. A common model used for digital

systems (systems functioning at discrete ‘1’ and ‘0’ logic values) is the gate-level stuck-at

fault model[1]. According to [1], the stuck-at fault model allows for faults at the input or

output of a digital logic gate. These faults can cause the input or output to be stuck-at a

logic value ‘0’ or ‘1’ regardless of which value is applied or expected.

Figure 1.1 provides a truth table listing the faulty and fault-free output of an AND gate

with its ‘A’ input stuck-at ‘1’. The ‘X’ notation is used to indicate the location of the fault

and the ‘SA1’ (or ‘SA0’) designates whether the fault is a stuck-at ‘1’ or stuck-at ’0’[1]. The

truth table given in Figure 1.1 shows how a single fault can change the behavior of a gate,

often having a major impact on the overall behavior of the circuit. Since digital circuits

will always produce the same outputs for a given set of inputs, any difference between

the expected and actual output can be exploited to determine if a circuit is functioning

correctly[1]. In each clock cycle an input vector is applied and the output is compared with

the expected output. If any output does not match the expected output then the chip is
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considered faulty and is discarded. Unfortunately the storage required to hold each input

and expected output vector can be significant for large or complex chips and while feasible

for costly automatic test equipment, it is often impossible due to area considerations when

using a BIST approach[13].

When using BIST the input vectors are often generated by the TPG circuitry deter-

ministically, algorithmically, or pseudo-randomly (among other methods)[1]. This keeps the

size of the TPG to a minimum and removes the need for a large memory or other means of

storing every input vector. Likewise it is impractical to store every expected output pattern

and compare it to the actual output in each clock cycle. To minimize storage requirements a

signature is often used to compress the output of the circuit into a single vector. Instead of

comparing each output at the end of each clock cycle, the signature is generated during the

test and compared to the expected signature at the end of a test[1][13]. A signature can be

generated in a number of different ways and may be as simple as a counter counting the num-

ber of 1’s or 0’s which occur in the output, 1’s or 0’s counting, or as complex as using a large

Multiple Input Signature Register[1]. The most appropriate signature generation method is

dependent on the requirements and output of the design and can significantly impact the

effectiveness of a BIST approach. If a method is used which does not produce a suitably

unique signature then faulty circuits can escape detection[1][13]. The use of an expected

signature to compress the circuit output allows for a significant reduction in storage cost, as

in most cases only a single comparison needs to be performed to verify the circuit[13].

Inputs Fault Free Faulty
(AB) Output (Z) Output (Z)
0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 1

Figure 1.1: AND Gate with Input A Stuck-At ‘1’
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Figure 1.2: Simple BIST for an AND Gate

Returning to the example in Figure 1.1, a simple BIST can be constructed to test the

AND gate. In Figure 1.2 a 2-bit counter is used as the TPG to generate all of the input

patterns possible for a two input AND gate: “00”, “01”, “10”, and “11”. Also in the figure

the output of the AND gate is connected to the Enable of an additional 2-bit counter to

count each ‘1’ and produce a signature. The fault-free signature for this circuit is “01” since

a normally operating AND gate should only produce a single logic ‘1’ when both its inputs

are logic ‘1’. If any input is stuck-at ‘1’ then it will produce at least one additional ‘1’; if

any input is stuck-at ‘0’ it will never produce a logic ‘1’. These two conditions will produce

invalid signatures. During execution of the BIST sequence, the TPG counts from “00” to

“11” and the 1’s counter will increment for each ‘1’ occurring at the output of the gate. At

the end of the sequence, if the value in the 1’s counter is not “01” then the gate is faulty.

This example is greatly simplified and is missing required circuitry to start and stop the

BIST as well as a method to isolate the inputs of the gate; however, it does demonstrate the

general principal behind using BIST to test a digital circuit.

1.3.2 Analog Systems and Faults

Analog systems function differently than digital systems. Unlike a digital system which

only has two discrete values, analog systems are continuous waveforms with multiple levels

of magnitude and in various frequency bands[5]. In addition to the complexities of analog

waveforms, analog components operate within a range of acceptable values[5]. This differ-

ence makes testing analog components for defects (defect-oriented testing) significantly more
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challenging and requires a more complex fault model. In analog components faults are clas-

sified as either parametric (soft-faults) or catastrophic (hard-faults)[11]. Parametric faults

are those which affect the performance of a specific component causing it to operate outside

of its expected tolerance range, for example an on-chip resistor value could vary 30% due

to process, voltage, and temperature (PVT) variations. In contrast catastrophic faults are

those which cause a component to fail, such as resistor which is no longer conductive and

appears as an open circuit[11]. To catch analog faults due to PVT variations requires com-

plicated and time consuming methods, such as Monte Carlo analysis, to determine different

component values which allow fault-free circuit operation[5]. Compounding these issues is

the fact that analog components

“function collectively to perform the overall functionality of a given circuit and,

as a result cannot always be treated as a collection of individual components[5]”

and consequently are difficult to isolate for effective defect-oriented testing[14]. Furthermore

any circuitry added into an analog circuit may potentially interfere and change the operating

range or output of that circuit[5]. This potential interference requires that any analog test-

ing circuitry be carefully simulated and verified to ensure it does not negatively affect the

overall circuit performance. An example of a defected-oriented approach, oscillation testing

is a testing approach which reconfigures the analog CUT so that it oscillates; this oscilla-

tion frequency is then measured and compared to an expected frequency. If the measured

frequency falls outside the expected range, the circuit is considered faulty[12]. This method

has been shown to be effective for the detection of catastrophic faults and some parametric

faults; however, it can require a significant amount of planning and design effort as it may

significantly impact the analog circuitry[12][5].

A simpler (and preferred[5]) method for testing analog components is via functional

testing. [6] defines functional tests as:

“... those which measure a circuit’s dynamic behavior ...[6]”
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Functional or specification testing is achieved by performing a set of tests to determine if

a system is operating correctly as defined by its specifications. This approach is used to

test the entire analog system collectively instead of attempting to understand the impli-

cations of specific faulty components[14]. Specification testing may include the testing of

important analog characteristics such as frequency response, linearity, and signal-to-noise

ratio (SNR)[5]; however, the characteristics which are important to test will vary between

designs. To adequately test most analog components, multiple measurements of several dif-

ferent characteristics must be taken, as a single characteristic is usually not sufficient to

ensure fault-free operation[14]. This process may require extra development time as test

procedures must be developed to test each characteristic and additional time is required to

perform each test[14].

1.3.3 Mixed Signal Testing

In a mixed-signal environment both digital and analog systems coexist and interact.

Due to the previously discussed differences in testing analog and digital systems, the testing

of the analog and digital sub-systems is generally developed separately and performed using

using different test procedures and approaches[14]. Ideally a designer would like to limit any

duplicate work and take advantage of a BIST approach which can be used to test both the

analog and digital sub-systems.

[1] defines a BIST approach to testing mixed-signal systems shown in Figure 1.3. This

BIST uses a digital BIST approach to functionally test the analog sub-system by measuring

certain analog characteristics which can be used ensure that the circuit is operating within

its specifications. This architecture is largely digital and thus can be integrated into the

digital circuitry already in the system with minimal analog overhead. This prevents excessive

interference with the analog circuitry, excluding analog multiplexers which facilitate the

sending and retrieving of test values to and from the analog sub-system[1]. To test the

analog circuitry, the BIST uses the existing digital to analog converter (DAC) to convert
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Figure 1.3: BIST Approach for Mixed-Signal Systems[1]

digitally generated test patterns from the TPG to analog signals and the existing analog

to digital converter (ADC) to convert the analog response back into the digital domain for

analysis by the ORA[1].

Figure 1.3 shows a basic version of this mixed-signal BIST approach using two multi-

plexers. In this case one multiplexer is placed before the DAC to select between the BIST

patterns and the system circuitry and a second multiplexer is positioned at the input of the

analog system to select between the system level inputs and the analog outputs. These two

multiplexers form a loop allowing the generated TPG pattern to be converted into an analog

signal and propagate through any analog circuitry before being routed back through the

analog inputs to the DAC for analysis by the ORA. While this implementation does allow

testing of all analog components, it does not allow a high level of diagnostic resolution[5].

To obtain a higher diagnostic resolution, additional analog multiplexers can be added to

further partition the system. Figure 1.4 shows an example of an implementation with three

separate multiplexed or loopback paths to facilitate a higher level of diagnostic resolution.

In Figure 1.4 the shortest loop, the short dashed path, is a digital only path (digital loopback

path) which can be used to test that the digital BIST is fault-free. The next loopback path,

the dashed path, connects the output of the DAC to the ADC bypassing any of the analog

circuitry (from here on referred to as the bypass path). This allows the verification of the
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Figure 1.4: Mixed-Signal BIST with Multiple Loopback Paths

ADC and DAC separately from the analog circuit. The final path is the analog test path,

the dotted path, and is similar to the path in Figure 1.3 in that it is responsible for testing

the analog circuitry. There is no limit to the number of multiplexers that can be added to

the system other than the increase in area overhead[5]. Additional analog multiplexers could

be added to the example in Figure 1.4 to further partition the analog circuitry and resolve

faulty behavior to a specific portion of the analog DUT.

In Figure 1.4 the digital loopback path is of particular importance. [7] has shown that

a digital loopback path is highly advantageous when testing the digital portion of the BIST

circuitry. When testing in a digital only environment a circuit produces exactly one output

signature for a given set of inputs. Verification of this signature allows for a quick an efficient

method of testing digital circuits. In the case of the BIST when no digital loopback path

is present, the digital TPG outputs are not directly observable and can only be observed

after conversion via the DAC and reconversion via the ADC. This will cause variations in

the output signature due to the inherent variations and noise which occur in analog signals

and circuits. To account for these variations, a range of acceptable output signatures must

be considered instead of an exact signature[7]. Unfortunately allowing for a range of good

signatures lowers the observability of the digital portion of the mixed-signal BIST and lowers

the maximum fault coverage which can be achieved.

Figure 1.5 shows a comparison of the maximum, digital fault coverage which can be
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Figure 1.5: Fault Coverage v. Acceptable Value Range[7]

achieved for several different ORA designs when different ranges of acceptable circuit signa-

tures are allowed. In the figure, three different 8-bit ORA accumulator designs are considered

(ORA design is discussed in more detail in the next chapter). Figure 1.5 shows that regard-

less of ORA design a (in some cases significant) reduction in the maximum achievable fault

coverage is to be expected when a range of good signatures is considered instead of an exact

signature. Thus the only way to achieve the maximum possible digital fault coverage is to

not allow a range of acceptable circuit signatures. This requires that no analog circuitry be

involved when performing a test; consequently, the digital loopback path must be used[7].

Performing a digital-only test using the digital loopback path separates the digital and analog

systems when testing the system for faults. This allows for the usage of tools and techniques

which target digital components separately from those used to generate the analog functional

tests on the analog sub-system[7]. When the three loopback paths shown in Figure 1.4 are

present, the test procedure should be performed first over the digital loopback path to verify

the digital BIST, then using the bypass path to verify that the ADC and DAC path are

functioning correctly, and finally over the entire circuit to verify the analog DUT[5][7]1.

1Several additional considerations must be made when verifying the analog DUT such as the impact the
of the ADC/DAC or any up/down converters may have on DUT performance
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Though this technique still requires separate testing of the analog and digital circuitry,

it is an improvement over the previously discussed method since the same BIST circuitry can

be used to test both the digital and analog circuitry[1]. This limits the amount of work that

must be duplicated to the determination of which tests must be run and the expected values

or range of values that must be considered. Furthermore the basic procedure for testing the

analog and digital circuits is the same (the only differences being which loopback path is

selected and the actual test being performed) which will limit the differences between test

sessions.

1.4 Summary

In this chapter a high-level look at both digital and analog systems has been given as well

as the challenges of testing these systems for faults. The concept of BIST has been presented

along with its advantages and a simple BIST architecture. In addition the challenges of test-

ing mixed-signal systems have been discussed and a basic mixed-signal BIST model has been

given along with an overview of the difficulties of testing the BIST without a digital loopback

path. In the next chapter a more detailed explanation of fault simulation and of the specific

mixed-signal BIST approach studied in this thesis is given. This approach builds upon the

simple architecture discussed in the previous section and addresses the challenges discussed

in Section 1.3.2. Building upon this explanation, Chapter III explores the preparation neces-

sary for simulating the mixed-signal BIST including necessary conversions and verification.

Chapter IV explores the main topic of this thesis: testing the actual mixed-signal testing

circuitry to determine its effectiveness and the level of fault coverage achievable. Methods

for improving the BIST and the maximum achievable fault coverage are explored before a

summary and conclusions are given in Chapter V.
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Chapter 2

Background

Before discussing the fault simulations performed in this thesis, it is important to have

a more thorough understanding of fault simulation techniques. In this chapter, an overview

of several fault simulation techniques will be given as well as an overview of the bridging

fault model which models faults between nets. Following this discussion a more detailed

outline of the simulation and design process will be given. Next the fault simulator AUSSIE

is detailed which is used to evaluate the fault coverage of the mixed-signal BIST approach

studied in the rest of this thesis. This chapter concludes with a detailed discussion of the

architecture of the mixed-signal BIST and its capabilities.

2.1 Fault Simulations

Knowledge of the basic concepts of simulation is important to understanding how fault

simulations are performed. The simulation process begins with a netlist. The netlist rep-

resents the circuit design to be simulated and defines the structure of the circuit at the

gate level. This includes both the gates used by the circuit as well as the interconnections

between those gates[19]. The generation of a netlist is discussed in more detail in Section

2.1.3. According to Section 1.2, the next step is to generate a set of test vectors to be used

to stimulate the circuit during testing. Test vectors may be generated automatically us-

ing Automatic Test Pattern Generation (ATPG) software [19] or manually by the designer.

When performing fault simulations, these vectors should ideally exercise as much of the in-

ternal circuitry of the design as possible so that high fault coverage can be achieved (fault

coverage is discussed towards the end of this section); consequently, test vectors generated

using ATPG can be advantageous as they typically guarantee a very high fault coverage[19].
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If vectors are created manually by the designer then it may be necessary to perform a logic

simulation of the circuit to ensure the vectors are valid and to obtain the fault-free output

of the circuit (when using ATPG the fault-free output is generally recorded along with the

test vector set). With both the test vector set generated and fault-free output of the circuit

known, fault simulations can begin.

Fault simulation starts with the selection of a fault model which characterizes the fault

behavior to be simulated. There are several different fault models used for digital circuits,

but the focus of this thesis will be the gate-level stuck-at fault model which was introduced

in Section 1.3.1. The stuck-at fault model has a low computation cost and accurately rep-

resents the behavior of most faults seen at the gate-level of digital circuits[1]. Other models

exist which characterize different fault behavior and have their own sets of advantages and

disadvantages. The bridging fault model, which will be introduced in Section 2.1.2, focuses

on faults which occur between nets as opposed to those that occur at gate inputs and outputs

and is used to accurately simulate faults that occur in circuit routing[17]. The transistor

fault model targets faults which occur at the transistor level. This level of detail makes it

more computationally expensive to simulate compared to the gate-level model; however, this

model more accurately represents the behavior of faults which occur during the manufac-

turing process[15] and may detect faults which are not detectable using the stuck-at fault

model. Regardless of its accuracy, it is more common to use the gate-level stuck-at model for

digital fault simulations since it is less computationally expensive and is acceptably accurate

at modeling the behavior of common defects in digital systems[15].

Once a fault model is chosen each fault must be simulated and the output of the circuit

recorded. The output of the faulty circuit is compared to the fault-free output and if any

discrepancy is found then the fault is recorded as detected. Similarly if the output of the

circuit is always the same as the fault-free circuit then the fault is not detected[15]. In

some cases a fault may be considered potentially detected; this special case is caused by an

unknown logic value occurring in the circuit and is an artifact of simulation. An unknown
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logic value will occur if a circuit element is not initialized properly[1]. In physical hardware

the value must be either logic ‘0’ or logic ‘1’; however, in simulation it is unknown which

logic value it will initialize to which causes the detection of the fault to be uncertain in

simulation[1]. The percentage of faults detected is said to be the fault coverage of the test

vector set[15][1]. Fault coverage is typically calculated using Equation 2.1 where D is the

number of detected faults, P is the number of potentially detected faults, Y is the probability

of potentially detected faults being detected, X is the number of undetectable faults and T

is the total number of faults simulated[1].

FC =
(D + (Y × P ))

(T −X)
(2.1)

Undetectable faults are faults which are impossible to detect by any test vector. These faults

are often caused by design issues such as re-convergent fan-out and redundant logic[1] and

since they cannot be detected are typically not considered when calculating fault coverage.

In the equation Y is typically .5 denoting that there is a 50% chance of a potentially detected

fault being detected. This represents the chance of an uninitialized logic value initializing to

the logic value required for detection when testing is performed in physical hardware. This

coefficient may be changed to represent a higher or lower chance of detecting potentially

detectable faults[1].

For a large number of faults or large number of test vectors the simulation process can

take a large amount of time to complete. In the worst case the time required to complete

a fault simulation is shown in Equation 2.2, where Tvec is the time required to simulate a

single vector, Nvec is the number of test vectors to be simulated, and Nflts is the number of

faults to be simulated.

Time = Tvec ×Nvec ×Nflts (2.2)

There are a couple of methods which can decrease the amount of time taken to simulate a list

of faults. One common method is fault dropping. When using fault dropping a fault is only
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simulated until a discrepancy between the output of the circuit and the fault-free output is

found. At that point the fault is recorded as detected, simulation of the fault is halted, and

a new fault is simulated[1]. The time required to perform fault simulation when using fault

dropping is shown in Equation 2.3 where Nflts is the number of faults to be simulated, Tvec

is the time required to simulate a single vector, and Nveci is the number of vectors simulated

for the ith fault.

Time =
Nflts∑
i=0

Tvec ×Nveci (2.3)

In the case where the ith simulated fault is detected early in the simulation, Nveci will be

small, shortening the simulation time for the fault; in contrast, if the ith fault is detected

toward the end of the simulation or not detected at all then Nveci will be approximately Nvec,

causing little to no savings in simulation time for the fault[1].

Further speed up can be obtained by performing parallel fault simulation. Equations

2.2 and 2.3 show the time required to perform serial fault simulations where a single fault

is simulated at a time. To decrease the time required for simulation, it is beneficial to

simulate multiple faults concurrently1. This is a common approach to decreasing simulation

time and at least in the case of gate-level stuck-at fault simulation, does not require any

additional considerations by the user[18]. Commonly 32 faults2 are simulated in parallel

though different simulators may have options to simulate more or less faults[18]. Equation

2.4 defines the worst case time required to perform parallel fault simulation and Equation 2.5

defines the time required to perform parallel fault simulation with fault dropping, assuming

32 faults are simulated in parallel (in this case Nvec is the number of vectors required to

detect all faults in a parallel group).

Time = Tvec ×Nvec × d
Nflts

32
e (2.4)

1This does not mean perform the simulation of multiple faults in the same circuit simultaneously; but
instead, it means perform multiple simulations in parallel each with a single fault[18]

2An integer is 32-bits on a 32-bit machine; consequently, simulating 32 faults allows for the use of the
integer data type in the simulator and makes parallel fault simulation easier to implement[18]
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Time =

d
Nflts

32
e∑

i=0

Tvec ×Nveci (2.5)

Using both fault dropping and parallel fault simulation can greatly decrease the required

simulation time for a large circuit. Due to this benefit both of these methods are used in the

fault simulations performed in this thesis. The next section discusses further optimizations

which can be performed to reduce the number of faults simulated and consequently the time

required to perform simulation.

2.1.1 Collapsed vs Uncollapsed Faults

When performing fault simulations certain optimizations can be made to improve the

efficiency of the simulation. One such optimization is fault collapsing. With the gate-level

single stuck-at fault model, each gate input and output can be stuck-at logic ‘0’ or logic

‘1’. For elementary logic gates this leads to many faults which produce identical faulty

behavior; these faults can be said to be equivalent[15]. During simulation these equivalent

faults can be collapsed, requiring only a single fault out of the group of equivalent faults

to be simulated[15]. Depending on the circuit this can substantially reduce the number of

faults to be simulated while still accurately representing the faults which can occur in the

circuit[15]. Figure 2.1 shows an example of fault collapsing. The NOR gate in the figure has

six uncollapsed faults; however, when either input is stuck-at ‘1’ it is equivalent to the output

being stuck-at ‘0’ and vice versa (since a logic ‘1’ is the controlling input for a NOR gate)

which results in four collapsed faults. These equivalent faults are shown in bold in the figure.

[1] states that the number of collapsed faults for any elementary logic gate with greater than

one input is K + 2 where K is the number of inputs to the gate. This is certainly apparent

with the NOR gate in Figure 2.1, where K + 2 = 4. Additionally when the output of a

gate is connected to exactly one input of another gate, a fault occurring at the output of the

source gate is indistinguishable from the same fault occurring at the input of the connected

gate[1]. These faults can be structurally collapsed together which leads to a large chain of
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Figure 2.1: NOR Gate with Six Uncollapsed and Four Collapsed Faults

Figure 2.2: Structural Fault Collapsing Performed on a Group of Logic Gates

faults being collapsed such as the example in Figure 2.2[1]. In the figure groups of equivalent

faults are shown with a line drawn between them. Unfortunately due to the limitation of

the single stuck-at fault model, which does not allow multiple faults to appear in the circuit

simultaneously (as opposed to a multiple fault model which allows this), the fan-out stem

in Figure 2.2 cannot be collapsed[15]. Since the output of the inverter fans-out to the input

of two different gates, collapsing these faults would make a fault appear to be on both the

input of the AND gate and the OR gate simultaneously which violates the single stuck-at

fault model and is not allowed[15]. Counting the faults in the figure, there are a total of 22

uncollapsed faults and a total of 12 collapsed faults, a significant reduction.

In the single stuck-at fault model the number of uncollapsed faults in a circuit are 2×Gio

where Gio is the number of gate inputs and outputs in the circuit[1]. In contrast the number

of collapsed faults can be determined by Equation 2.6 where Po is the number of primary

outputs, Fo is the number of fan-out stems, Gi is the number of gate inputs, and Ni is the
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number of inverters in the circuit[1].

F = 2(Po + Fo) + Gi −Ni (2.6)

As an example, the BIST model evaluated in this thesis has a total of 83386 uncollapsed

faults. It has 30 primary outputs, 4436 fan out stems, 27861 gate inputs, and 2740 inverters.

By using Equation 2.6 the number of collapsed faults in the BIST circuitry is 34053. This

results in a 59% reduction in the number of faults to be simulated.

[1] discusses the advantages and disadvantages of using the collapsed or uncollapsed

fault set for simulation purposes. According to [1] it is obvious that the simulation time

can be greatly reduced by using the collapsed fault list. This is very advantageous as more

simulations can be performed in the same amount of time. However, [1] does say that the

uncollapsed fault list more accurately represents the possible defects which occur during

manufacturing. Due to this difference, the fault coverage obtained with the collapsed fault

list may be different than the coverage according to the uncollapsed fault list by a few

percent[1]. Through the accuracy of the uncollapsed fault list is preferable, the collapsed

fault list is more often used due to its decreased simulation time[1].

2.1.2 The Bridging Fault Model

Though the focus of this thesis is gate-level stuck-at fault simulations, additional models

may be of interest for future work; specifically bridging fault simulations are commonly

performed to assess the fault coverage of faults which occur between nets. There are a

number of different fault models which describe the behavior of bridging faults, faults where

two nets are shorted together due to a manufacturing defect, including the Wired OR/AND,

Dominant, and Dominant OR/AND fault model[17]. In this section we will focus on the

dominant bridging fault model, as it is the most commonly used[1]. For many years it was

a commonly held belief that a high stuck-at fault coverage provided a high bridging fault
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coverage; however, more recent work has shown that this is not always the case and that it is

important to perform these simulations separately to ensure that an acceptably high bridging

fault coverage is achieved[16]. Unfortunately bridging fault simulation can be significantly

more time consuming than stuck-at fault coverage due to the large number of fault sites that

must be considered. Equation 2.7 shows the calculation to determine the number of possible

bridging fault sites in a circuit, where N is the number of nets in the circuit[1].

FB = (N2 −N)/2 (2.7)

Like the previous section, the BIST model can be used to give a sense of scale. The BIST

studied in this thesis has 15221 nets; applying Equation 2.7 results in 115,831,810 bridg-

ing fault sites. Depending on the bridging fault model up to four faults (when using the

Dominant AND/OR model[17]) are possible at each fault site, so this means that the worst

case number of faults to be simulated is almost 500 million! Similar to the gate-level model,

bridging faults can also be structurally collapsed, which can substantially lower the num-

ber of faults to be simulated (using the same circuit the number of collapsed faults was

approximately 30K when using the more common dominant model).

As discussed in the previous paragraph, there are different models to define the types

of bridging faults which can occur. Since it is the most common, the dominant bridging

fault model will be discussed. According to the dominant bridging fault model, two different

faults can occur at a bridging fault site: net A can dominate net B or net B can dominate

net A. Whichever net is dominated will be affected by the other net’s current logic value; this

occurs due to the dominant net having a stronger drive transistor[17]. Figure 2.3 shows an

example of a dominant bridging fault where net A dominates net B, along with a truth table

containing the fault-free and faulty behavior of the circuit. When net B has the same logic

value as net A its output is unaffected; however, when the logic value of net B is different

than that of net A, net B’s logic value will be changed to that of net A. The first two columns
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Net A Net B Faulty’
Net B’

0 0 0
0 1 0
1 0 1
1 1 1

(A) (B)

Figure 2.3: Bridging Fault where Net A Dominates Net B

of the truth table in Figure 2.3 represent the fault-free behavior of net A and net B and

the remaining column B’ represents the faulty output of net B when net A dominates it. In

the second row when net A is a ‘0’ and net B should be a ‘1’, B’ is instead a ‘0’ since it is

dominated by net A. Likewise in the third row when net A is a ‘1’, net B should be a ‘0’ but

instead is a ‘1’ due to the influence from net A.

Bridging faults are important to address during the design of a circuit. Unfortunately

they can be computationally expensive and can be difficult to test and observe[17]. Bridging

faults were not simulated in this thesis though it is a target of future work.

2.1.3 Design Process

The design of a digital circuit typically starts with a behavioral description of a circuit.

This is generally done in a high-level design language such as Verilog or VHSIC Hardware

Description Language (VHDL) and usually will not include any implementation details of

the circuit[19]. This code is then fed into a synthesis computer-aided design (CAD) tool

which will interpret the behavioral description of the design, combine it with parameters

such as the implementation technology, timing information, and/or area constraints, and

ultimately produce a gate-level netlist of the design[19]. Following this step a place-and-

route tool takes each gate and its interconnections and decides where on the silicon chip (or

in a field-programmable gate array (FPGA) or other programmable device) to place the gate
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so that any timing and area constraints can be achieved. Once completed the design is said

to be “post-layout” indicating it is ready for fabrication[19].

Logic simulation is important during each step of this design process, so that the circuit

behavior can be verified before fabrication[19]. During the behavioral modeling phase, design

verification is performed to ensure the description of the circuit is correct and that no design

errors have been made. Simulation is also performed after synthesis has taken place to verify

that the circuit’s behavior is still correct after it has been implemented at the gate-level and

to investigate any potential timing problems with the circuit[19]. Following post-synthesis

simulation, post-layout simulation is also performed. Post-layout represents the final version

of the circuit to be fabricated. Simulation can be performed using the circuit’s final timing

information and can incorporate many different performance characteristics. Post-layout is

the final opportunity to verify a circuit is functioning correctly before fabrication[19].

In contrast to logic simulation, fault simulation is not typically performed at any of the

high-level steps in the design process[1]. Ideally the post-layout netlist should be used for all

fault simulations, since the layout can have a significant impact on the faults in a circuit[15].

This is especially true of bridging fault simulations, as routing is not finalized until the layout

stage and thus cannot be accurately performed earlier in the design process[15]; however,

other fault models may be simulated earlier in the design verification process[1]. In this thesis

all fault simulations of the BIST are performed using the post-layout design. As discussed

in the next chapter, this does present a challenge since the post-layout design produced by

the CAD tools is a Verilog netlist which is not a format used by the fault simulator. As such

a tool was written to convert a Verilog netlist to the ASL netlist format recognized by our

simulator AUSIM (ASL and the fault simulator AUSIM will be discussed in Section 2.2).

2.2 AUSIM Fault Simulator

For the fault simulations performed in this thesis the Auburn University SIMulator or

AUSIM is used. Developed by Dr. Charles Stroud[8][9], AUSIM can perform both logic
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and fault simulations. In addition it supports multiple fault models including the gate-level

stuck-at and multiple bridging fault models[8]. It supports all of the previously discussed

methods of improving simulation time including fault collapsing and parallel fault simulation

of both bridging and stuck-at faults[8]. A detailed description of the operation and usage of

AUSIM will not be given in this thesis; however, more information can be found in [8][9];

instead, the focus of this section is an overview of the Auburn Simulation Language or ASL

which is the netlist format used by AUSIM.

2.2.1 ASL Netlist Format

Before a circuit can be simulated by AUSIM it must be in a format that AUSIM can

understand. The Auburn Simulation Language (ASL) is the circuit description used by

AUSIM[9]. ASL is used to provide a textual representation of a circuit at the gate-level to

the simulator. This gate-level netlist is used to describe each connection and gate used in

a circuit design and allows the simulator to build a representation of the circuit under test.

ASL begins with a top-level circuit declaration. This declaration defines the name of the

circuit and uses the in and out keywords to define the inputs and outputs to the circuit[9].

An example circuit is given in Figure 2.4. Figure 2.4 A is a half-adder which takes in two

inputs and outputs a sum (S) and carry bit (C); the corresponding ASL description is given

in Figure 2.4 B. As can be seen from the figure the circuit declaration is started by the

ckt keyword[9]. Each keyword in ASL is followed by a ‘:’ character[9]. Following the ckt

keyword is the name of the circuit in this case “HF”. Following that, the primary inputs and

outputs are declared using the in and out keywords. Each statement in ASL is terminated

using a ‘;’ character[9]. After the circuit statement the gate-level description of the circuit

is given. The format of each gate is similar to the format of the circuit statement:

GATE: Name IN: In1 In2... InN OUT: Out1 Out2... OutN ;[9]

All gate declarations in ASL follow this simple syntax. All of the elementary logic gates

(AND, OR, XOR, etc..) as well as the data flip-flop (DFF) and two input multiplexer are
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Half-Adder Circuit

1. # Half-Adder ;

2. ckt: HF in: A B out: S C ;

3. xor: X1 in: A B out: S ;

4. and: A1 in: A B out: C ;

(A) (B)

Figure 2.4: A Half-Adder Circuit

built-in to AUSIM and available to all circuits[9]. Table 2.1 shows each built-in gate and its

inputs and outputs.

Table 2.1: Built-In AUSIM Gates[9]

AUSIM Keywords
Gate Example
AND AND: a1 in: i1.. iN out: Z ;
OR OR: o1 in: i1.. iN out: Z ;
NAND NAND: na1 in: i1.. iN out: Z ;
NOR NOR: no1 in: i1.. iN out: Z ;
NOT NOT: n1 in: A out: Z ;
XOR XOR: x1: in: i1... iN out: Z ;
MUX2 MUX2: m1 in: i1 i2 s1 out: Z ;
DFF DFF: d1 in: CLK D out: Q Qn ;

It is important to understand that custom gates can be implemented hierarchically and

used in a similar syntax. To do this one must use the subckt command. While an ASL file can

only have a single circuit declaration, it can have any number of sub-circuit declarations[9].

Each sub-circuit has its own set of top-level inputs and outputs and its own gate-level net-

list. Once defined the name of the sub-circuit can be used as a gate and be instantiated

elsewhere in the circuit description. These sub-circuit definitions can be used to define the

behavior of more complex CMOS standard cell gates such as the OAI222 etc. For the BIST
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Figure 2.5: General BIST Architecture[20]

discussed in this thesis, an entire library of sub-circuits was created to support simulation.

This library is required for simulation and defines many of the complex CMOS logic gates

and several technology specific standard cells used by the BIST circuitry.

2.3 BIST Architecture

The BIST architecture analyzed in this thesis is a mixed-signal BIST approach which

uses Selective Spectrum Analysis (SSA) to functionally test analog circuitry[26]. SSA has

many advantages when used to measure frequencies in an analog spectrum. First it benefits

from being a largely digital approach and integrates well into a BIST environment. In

addition, due to SSA measuring only a single frequency point at a time, the hardware

overhead is much lower when compared to alternative approaches such as FFT[27]. However,

since only a single frequency is measured at one time, test time can become long when a

large number of frequencies are of interest. Likewise SSA can prove very advantageous when

only a few frequencies are of interest in the analog spectrum, such as when performing a

two-tone linearity measurement[26]. Furthermore, [24] discusses a number of optimizations

(some of which will be discussed in Section 2.3.2) which when used can greatly reduce the

time required to perform a measurement.
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A block diagram of the basic architecture of the SSA BIST approach can be seen in

Figure 2.5. This BIST architecture is capable of measuring a number of different analog char-

acteristics including the frequency response and linearity (also known as third-order intercep-

tion point or IP3) of a DUT[22]. In addition, by sweeping through a frequency spectrum both

Signal-to-Noise Ratio (SNR) and Noise Figure[21] can be measured. The architecture in Fig-

ure 2.5 consists of a Direct Digital Synthesizer (DDS) based TPG, Multiplier-Accumulator

(MAC) based ORA, and test controller (not shown). Also not shown in the figure is an

on-chip calculation circuit which will be discussed in Section 2.3.3. The following sections

will discuss each of the major BIST components and discuss how each test is performed and

calculated so that the reader can develop an understanding of the capabilities and uses of

this BIST architecture as it pertains to this thesis.

2.3.1 DDS Based TPG

DDS is a popular technique for generating analog frequencies on chip. Compared to

other techniques of frequency generation it offers the ability to produce very precisely con-

trolled frequencies which can be rapidly manipulated and changed using digital inputs[28].

In addition with adequate design considerations, DDS designs can have extremely fine fre-

quency and phase resolution. The BIST TPG is DDS based consisting of three numerically

controlled oscillators (NCOs) which utilize the existing DAC in the mixed-signal system to

generate the analog waveforms for testing[20]. Each NCO utilizes a phase accumulator and

sine/cosine lookup table (LUT) to produce a frequency based on a supplied frequency word

fw. The supplied frequency word is accumulated each clock cycle by the phase accumula-

tor. The value of the phase accumulator is truncated and used as a lookup address to find

the appropriate sine or cosine value in the LUT. The value retrieved from the LUT is then

converted by the DAC into an analog signal. The basic steps of this process are shown in

Figure 2.6. The resulting frequency generated by the NCO is determined by Equation 2.8,

where fgen is the generated sine wave frequency, fw is the supplied frequency word, fclk is
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Figure 2.6: Block Diagram of DDS

the system clock frequency, and n is the number of bits in the frequency word. The max-

imum frequency resolution of the DDS is shown in Equation 2.9 and is directly related to

the number of bits used for the frequency words, n.

fgen =
fw × fclk

2n
(2.8)

fres =
fclk
2n

(2.9)

As shown in Figure 2.5, there are three NCOs. The first two NCOs are used to generated

frequencies which stimulate the analog DUT. There are two possible configurations for these

two NCOs when testing the analog DUT. In case one, only a single tone needs to be generated

for testing. This case is used when performing measurements such as frequency response at a

given frequency (measurements will be explained in more detail in Section 2.3.3[26]). When

only a single tone is necessary, both NCOs are supplied the same frequency word and produce

the same frequency[24]. This frequency output is then selected and passed into the DUT.

In the second case, two different tones are generated, such as when a linearity measurement

is performed. In this case NCO1 is assigned the first frequency word and NCO2 is assigned

the second. The outputs of these two NCOs are added together so that the two sine waves

are super-imposed before being converted by the DAC[24]. The third NCO NCO3 is used

by the ORA. NCO3 is slightly different from both NCO1 and NCO2 in that it produces

both the sine and cosine output for a given frequency word. These two outputs are used

by the ORA to measure the in-phase and out-of-phase components of the DUT response at

a frequency of interest (the ORA operation is explained in detail in the next section)[24].

These three NCOs allow for up to two separate frequencies to be generated simultaneously
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as well as any frequency of interest to be measured by the ORA. When coupled with the test

controller, this architecture is very powerful and, as will be discussed shortly, can be used to

measure several significant analog characteristics.

2.3.2 ORA Multiplier-Accumulators

After generating the analog frequencies required to stimulate the DUT, the output of

the DUT is analyzed by the BIST ORA. The ORA consists of two multiplier-accumulators,

DC1 and DC2[22]. By multiplying the response of the DUT by the cosine wave output

of NCO3, DC1 will accumulate the out-of-phase component of the DUT response at the

frequency of interest, ω. Likewise by multiplying the response of the DUT by the sine wave

output of NCO3, DC2 will accumulate the in-phase component of the DUT response at ω.

The accumulator values of both DC1 and DC2 can be described in Equations 2.10 and 2.11.

In these equations nTclk represents the sampled output response of the DUT[27].

DC1 =
∑
n

f(nTclk) ∗ cos(ωnTclk) (2.10)

DC2 =
∑
n

f(nTclk) ∗ sin(ωnTclk) (2.11)

It has been shown in [24],[27] and others that these calculations are similar to an FFT.

Unlike the FFT, the entire frequency domain is not computed simultaneously; instead, only

a single frequency is measured for each accumulation[27]. When more than one frequency ω

is of interest, each must be measured through successive accumulations (each accumulation

at a single frequency will be referred to as a single measurement).

The DC1 and DC2 results of a measurement can be used to obtain both the amplitude

and phase of the signal at the measured frequency ω. The amplitude calculation is shown in

Equation 2.12 and the phase calculation is shown in Equation 2.13[24].

A(ω) =
√
DC2

1 + DC2
2 (2.12)
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∆φ(ω) = tan−1
DC2

DC1

(2.13)

To obtain these measurements a hardware method must be used to calculate arc-tangent

function used in Equation 2.13 and the square and square-root functions used in Equa-

tion 2.12. These calculations are performed using on-chip calculation circuitry and will be

discussed in the next section.

Before discussing the calculation circuitry, it is important to understand how the amount

of accumulation time required for a measurement is determined. The accumulation time is

exceptionally important to achieving an accurate measurement due to potential AC calcula-

tion errors which are accumulated[24]. A large body of work has been devoted to determining

both the appropriate length of time to accumulate and a method for determining the length

of time efficiently in hardware. [24] and [20] discuss in detail the complexity and importance

of stopping accumulation at the correct moment to reduce error. As it is only pertinent to

this thesis due to its relation to fault simulation time, it will only be briefly discussed here.

More details can be found in [24].

As mentioned, there is the potential for errors to occur in an SSA approach due to

AC errors accumulating in the ORA[24]. One method of minimizing or eliminating these

AC errors requires that the BIST accumulate for a very long period of time (referred to as

free-run accumulation). Unfortunately the amount of time required for accumulation would

be prohibitively high[20]. [24] discusses a method of reducing the required accumulation

time while still retaining the accuracy of free-run accumulation. This method requires that

accumulation occur for an exact number of clock cycles, determined by the integer multiple

period (IMP) of the frequency being measured. Though there are intricate complications

associated with determining the IMP in hardware, it will be discussed at a high-level so that

the reader can understand how measurement time is affected.

As explained in [20], if accumulation is stopped at a multiple of the interested frequency’s

period (n∗ 1
f
) the AC error will be greatly reduced resulting in a very accurate measurement.
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This does not mean that frequencies with the shortest periods result in the shortest tests;

instead, it is a function of both the frequency word chosen and the width of the phase

accumulator which determines the length of the test. More specifically the length of the

test is determined by the effective number of bits used in the DDS by the frequency word

(Meff ). Equation 2.14 shows how the effective number of bits is calculated, where Mfull is

the bit-width of the phase accumulator and m is the bit position of the least significant ‘1‘

in the given frequency word(s)[24]. The resulting number of accumulation clock cycles is

determined by 2Meff .

Meff = Mfull −m (2.14)

For example, if given a four-bit wide phase accumulator and the frequency word 1010 (or

decimal 10), Meff would be equal to 4−1 or 3. This makes the required number of clock cycles

23 or 8. In hardware this corresponds to the moment when all bits of the phase accumulator

are logic ‘0’ and the carry-out bit is a logic ‘1’[24]. For large phase accumulators the number

of clock cycles to accumulate can vary greatly depending on the frequency word(s) chosen. In

the studied BIST, 16-bit phase accumulators are used. In this case the difference between the

shortest possible accumulation time of two clock cycles and the longest possible accumulation

time of 65535 clock cycles is significant. Consequently frequency words should be carefully

chosen so as to minimize test time when test time is of concern[24].

The previous example represents the simple case where only a single tone is of inter-

est. For a multi-tone test (one where either two-tones are generated or where the measured

tone is not the same as the generated tone) the IMP must be the common IMP of all

frequency words[24]. In this case logically OR’ing all frequency words together then calcu-

lating the resulting Meff number of bits will result in the number of clock cycles required

for accumulation[24][20].

In hardware a similar method is used which directly calculates the number of clock cycles

required for accumulation. After first OR’ing all frequency words together, an or-chain is

used to determine the number of clock cycles to accumulate. Figure 2.7 shows this or-chain.
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Figure 2.7: The OR Chain Which Calculates the Number of Clock Cycles from the Logical
OR of All Frequency Words

As shown in the figure, if a logic ‘1’ is in the LSB of any of the frequency words, it will

result in the maximum number of clock cycles for the given phase accumulator width. Using

the resulting clock cycle count, the BIST uses a clock cycle counter to determine when to

stop accumulation on an IMP and minimize the error. Once accumulation has completed

the calculation step is triggered and the results are handed off to the calculation circuitry

for further processing.

2.3.3 On-Chip Calculation Circuit

The ORA portion of the BIST accumulates the in-phase and out-of-phase components

into DC1 and DC2 at the frequency of interest. Using these values more advanced measure-

ments of special analog characteristics such as linearity, SNR, and NF can be performed. To

do this, DC1 and DC2 must be transformed mathematically into the relative magnitude and

phase using Equations 2.12 and 2.13[25]. Traditionally this can be performed off-chip using

a mathematical tool such as MATLAB; however, the BIST architecture discussed in this

thesis uses an on-chip calculation circuit to perform both of these calculations and to per-

form multi-measurement tests on-chip[25]. First the calculation Coordinate Rotation Digital

Computer (CORDIC), which converts the DC1 and DC2 values to the magnitude and phase

values, will be discussed.
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[25] discusses the original implementation of the calculation circuitry for the BIST ap-

proach. Shown in Figure 2.8 the original calculation circuit uses a custom CORDIC de-

veloped in [25] to perform the operations from Equations 2.12 and 2.13 and determine the

magnitude and phase from the DC1 and DC2 values; TC indicates control signals from the

test controller. The CORDIC algorithm, explained in depth in [25], is a well-known, low-

overhead approach to approximating a number of linear, circular, and hyperbolic functions

using successive approximation and inexpensive digital operations such as shift, add, and

subtract. Due to its low area-overhead and convenience, an implementation of this algorithm

is used to calculate the magnitude and phase from the DC1 and DC2 values[25]. Since it

requires successive approximation, the calculation CORDIC requires several clock cycles to

complete. At the end of the approximation the outputs of the calculation CORDIC are

the raw magnitude and phase values which can be read directly and used by the remaining

calculation circuitry to perform higher-order analysis[25].

The remaining circuitry in the BIST is used for performing multi-measurement tests

including measurements of the DUT linearity, SNR, noise figure (NF), and frequency sweeps.

Before discussing each test in detail, it is important to understand that the result of the

calculation circuit will be a logarithmic value expressed in decibels. Decibels (dB) are a

common unit used to represent signal strength. To simplify the evaluation of measurement

output, the calculation circuitry converts the output to decibels as described in Equation

2.15[25]. This operation is performed by the Logarithmic Translation Unit (LTU) shown at

the output in Figure 2.8.

dB = 20 ∗ log10(MAGNITUDE) (2.15)

With the help of the test controller the BIST can perform multi-measurement tests and

consequently measure several different important analog characteristics. The first such test

measures the linearity of the analog DUT. The linearity of a system is usually measured
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Figure 2.8: Calculation Circuit Presented in [25]
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Figure 2.9: Input Spectrum v. DUT Output Response for two-tone test

by analysis of the third-order inter-modulation point (IP3) using a two-tone test[22]. When

two tones f1 and f2 are generated and are used to stimulate the DUT, the resulting output

frequency will consist of not only f1 and f2 but also the third-order inter-modulation terms

(IM3) caused by the non-linearity of the DUT. The resulting output spectrum due to non-

linearity of a DUT is shown in Figure 2.9. The linearity of a system can be measured by

injecting two tones into the DUT and calculating the difference in magnitude between the

fundamental tone and the IM3 tone; this is often referred to as ∆P [22]. When performed

in the BIST this requires two measurements. In both measurements, two frequencies are

generated by the DDS, f1 and f2. In the first test the measured frequency is set to f2 and

the ORA will accumulate the magnitude and phase of the fundamental frequency f2. This

result is stored in the calculation circuit while a second measurement is performed. The

second measurement measures the IP3 tone at 2 ∗ f2 − f1[20][24]. The resulting magnitude

is subtracted from the magnitude of the previous calculation and the result is the ∆P .

The frequency sweep test searches a given spectrum for the largest magnitude frequency.

Spurious tones can appear in the spectrum and may negatively affect the output of a DUT.

These tones may be caused by undesired harmonics or due to other issues such as clipping. It

is often required to minimize spurious output and therefore it may be beneficial to measure

the magnitude and location of spurious tones in the output of the DUT[25]. To perform a

frequency sweep no fundamental frequency is generated by the DDS. To begin the test the
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frequency of interest f is set to a starting frequency fs and the magnitude measured. This

magnitude is stored in the calculation circuitry while f is incremented by a predetermined

amount finc. A new measurement will be made at the new frequency of interest f and the

magnitude compared to the previously recorded magnitude. If the new magnitude is greater

than the previously stored magnitude, the existing stored values are replaced with the new

frequency word and magnitude. This process will repeat for the number of samples specified.

The result of the test will be the magnitude and frequency word of the largest magnitude

spur located in the measured bandwidth[25]. In a special case, if Samples = 0 only a single

frequency’s magnitude is measured. This allows for the frequency response of the DUT to

be measured at the specified frequency. This test can be repeated with a fundamental tone

supplied by the DDS and swept through the spectrum to measure the frequency response of

the DUT over the specified bandwidth[22].

Signal-to-Noise ratio (SNR) and noise figure (NF) are important characteristics of an

analog system. SNR measures the power of the signal of interest in comparison to the average

power of the noise in the system over a specified bandwidth. NF measures the amount of

noise and signal degradation added to the system by the DUT by measuring the SNR at the

input to the DUT, SNRin, and comparing it to the SNR at the output of the DUT, SNRout.

The formulas for these calculations are given in Equations 2.16 and 2.173, respectively[29].

SNR = 20 ∗ log10(
Signal Magnitude

Average Noise Magnitude
) (2.16)

NF = SNRin − SNRout (2.17)

The BIST can directly perform these tests and measure both of these characteristics. When

performing a SNR measurement the BIST first measures the magnitude of the fundamen-

tal signal and stores it. The next measurement begins at the starting frequency of the

bandwidth of interest, f and measures the magnitude. This measurement is repeated for

3The noise figure formula assumes that SNRin and SNRout are already in dB
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a predetermined number of samples and the result of each measurement is accumulated in

the calculation circuit. For each repetition the measured frequency f is incremented by a

constant finc specified by the user. After the specified number of samples has been taken,

the accumulated noise magnitude is divided by the number of samples to obtain an average

noise magnitude as shown in Equation 2.18, where fs is the starting frequency, Samples is

the number of noise samples to take, and finc is the constant frequency value by which f is

incremented.

Average Noise Magnitude =

∑fs+Samples∗finc
f=fs

|f |
Samples

(2.18)

After the average noise magnitude is calculated the original signal magnitude is divided by

the noise magnitude to obtain the SNR ratio shown in Equation 2.16. The calculation for

NF is very similar. When performing a NF test the SNRin is calculated by bypassing the

DUT (using the previously discussed bypass path) and then divided by the result of a second

SNR test SNRout calculated using the standard loopback path. The result is the NF ratio

of the DUT[29].

While the general principals and methods employed by the calculation circuit described

in [25] are still used, improvements to this circuit have been made in the BIST studied in

this thesis. Like the previous calculation circuit it uses the same calculation CORDIC based

on the design by [25] to convert the DC1 and DC2 values to their magnitude and phase

representations. Unlike the previous circuit, the LTU has been moved to the front of the

circuit so that all operations are performed in the logarithmic domain. The divider was

replaced by a subtractor as division is performed via subtraction in the log domain. Coupled

with other improvements, the new circuit allows for faster operation and a large reduction

in area and power (approximately 33%).

2.3.4 Summary

With an understanding of the TPG, ORA, and calculation circuitry of the BIST, the

last important aspect of the BIST is how it is controlled and observed (recall that Section
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Table 2.2: FW3 and FW4 Definitions

Test Type Frequency Word 3 (FW3) Frequency Word 4 (FW4)
Linearity IM3 Frequency Unused
Frequency Sweep Starting Frequency Fs Frequency Step (Finc)
SNR & NF Starting Frequency Fs Frequency Step (Finc)

1.1 states that controllability and observability directly influence the testability of a circuit).

Excluding a run signal and the ADC inputs, the majority of the BIST is controlled via a

Serial Peripheral Interface (SPI) interface. An overview of this SPI interface is important to

understanding the BIST model. The SPI input to the BIST consists of an 88-bit SPI word

which includes four 15-bit frequency words, FW1 through FW4, the number of samples, and

a test control word (TCW) specifying which test to run. FW1 and FW2 always control

the two frequencies generated by the BIST DDS circuitry. FW3 and FW4 have different

meanings depending on the test run and are shown in Table 2.2. The number of samples is

optional and will only be used when a frequency sweep, SNR, or NF test is being executed as

discussed in Section 2.3.3. The TCW includes the test type to run as well as some additional

flags including those which optionally select for the use of the digital loopback or bypass path

and a bit to enable the use of the half-IMP accumulation time4.

To read data out of the BIST the same SPI is used. For a read to occur, a SPI write

is performed with the read flag set and must include two address bits. The address bits are

decoded by the test controller and correspond to four different 64-bit words which can be

read out of the BIST, each containing different calculation data related to the test. The

values retrievable are summarized in Table 2.3. DC1 and DC2 correspond to the in-phase

and out-of-phase components of the measured frequency (the contents of the MACs). The

magnitude and phase output is the output of the calculation CORDIC and corresponds to

the magnitude and phase of the measured signal (directly calculated from DC1 and DC2).

4Half-IMP accumulation time causes the BIST to accumulate for half of the number of clock cycles that
a test would usually require. This introduces additional error into the calculation but will greatly decrease
test-time for long tests[26]. This mode is used extensively for fault simulations to minimize test time.
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Table 2.3: Read Address Values

Address Values
00 DC1

01 DC2

10 Magnitude and Phase
11 Spur FW, Log Result, Noise Floor Value

The final values include values specific to each test. The “Spur FW” value corresponds to the

location of the largest spur detected when performing a frequency sweep, the “Log Result”

represents the result of the test in dB, and finally the “Noise Floor Value” represents the

average noise power as calculated during a SNR test.

In addition to the SPI inputs and outputs, there are a few other important outputs

used in simulation. First there is the DDS output which is the generated tone for the test

being executed. There is also a 10-bit test result output which is the result of the test in

dB. Finally, there is a “Done” flag used to denote that the BIST has finished performing the

test requested and that the results are ready for retrieval via the SPI.

2.4 Thesis Statement

While these descriptions of the BIST architecture are not a comprehensive operating

manual, they are provided to give a background of the circuit so that a basic understanding

can be developed by the reader. The focus of subsequent chapters will shift away from

the underlying BIST architecture instead focusing on evaluating the effectiveness of the

developed test procedures for achieving a high fault coverage when testing a mixed-signal

BIST approach by using the SSA BIST circuit as both a benchmark and for context. In

the next chapter the necessary steps for conversion and verification of the circuit model to

ASL is discussed. In addition the development and verification of fault simulation vectors is
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presented. These test vectors utilize the digital loopback path5 to perform measurements and

are used to exercise the BIST circuitry. After verifying both the ASL and the test vectors,

fault simulations are performed and the resulting fault coverage obtained is evaluated in

Chapter 4 before a summary and conclusions are drawn in Chapter 5.

5The digital loopback path is the loopback path which directly connects the TPG to ORA bypassing any
analog circuitry including the ADC and DAC. It is discussed in Section 1.3.3 and its effectiveness in testing
the digital portion of mixed-signal circuitry is evaluated in more depth in [7]
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Chapter 3

Test Preparation, Development, and Verification

To perform fault simulations using AUSIM several steps must be injected into the de-

velopment process. This new work-flow, shown in Figure 3.1, first requires conversion of

the circuit model to the ASL netlist format which AUSIM can simulate. Once converted

this netlist must be functionally verified as equivalent to ensure that no errors have been

introduced during the conversion process. This chapter will focus first on the conversion

process to ASL and the differences between the ASL and Verilog formats. Following the

conversion process, a method of functionally verifying the ASL netlist is introduced which

simplifies the verification process by using the Value Change Dump (VCD) format and a

VCD Viewer. Finally using a similar method the development and verification of the test

vectors for fault simulation is discussed. In the case of the SSA BIST, these test vectors con-

sist of a number of different measurements including frequency sweep, frequency response,

SNR, NF, and IP3 measurements which will exercise the BIST circuitry during simulation.

These measurements utilize the digital loopback path (the path which bypasses any external

circuitry, including the ADC and DAC, and directly connects the output of the TPG to the

ORA) to facilitate the testing of the digital portion of the BIST for faults, avoiding any

interference that could be caused by any external analog circuitry.

3.1 Converting to ASL

Behavioral models are commonly written in a high-level hardware description language

such as the VHSIC1 Hardware Description Language (VHDL) or Verilog. These languages

1VHSIC is an acronym for Very-High-Speed Integrated Circuit
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Figure 3.1: Development Work-Flow

allow for the behavior of a circuit to be modeled without specifically defining how the behav-

ior is to be implemented in hardware. For Application Specific Integrated Circuit (ASIC)

design this implementation is usually a gate-level implementation of the circuit behavior

using technology specific standard cells. This synthesized netlist is then taken through a

place-and-route tool where routing is finalized and a final Verilog netlist is generated[19]. As

discussed in Section 2.1.3 simulation should ideally be performed using this final implementa-

tion of the circuit; unfortunately, AUSIM requires a netlist in the ASL2 format. To facilitate

the rapid simulation of this netlist a tool was developed which allows easy conversion from

Verilog to the ASL format. The VerilogParser tool is written in C#[23] and allows a user to

perform fault simulations on any circuit model by synthesizing it to a Verilog netlist then

converting it to ASL. By using the VerilogParser tool, fault simulations using AUSIM can

be integrated into the design work-flow easily and efficiently.

As a simple example, a post-layout Verilog netlist of the ISCAS’85 C17 benchmark

circuit3 is shown in Table 3.1 and its ASL equivalent is shown in Table 3.2. C17 is a small

circuit and works well for demonstrating the conversion process as well as the differences

between a Verilog and ASL netlist.

2See Section 2.2.1
3C17 and other ISCAS’85 benchmark circuits can be downloaded from http://courses.engr.

illionois.edu/ece543/iscas85.html
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Table 3.1: C17 Verilog Netlist
1 module c17(gat1, gat2, gat3, gat6, gat7, gat22, gat23)
2 input gat1, gat2, gat3, gat6, gat7;
3 output gat22, gat23;
4 wire gat1, gat2, gat3, gat6, gat7;
5 wire gat22, gat23;
6 wire n 0, n 1;
7 AO21 B g58(.A1 (gat1), .A2 (gat3), .B(n 1), .Z (gat22));
8 AO21 B g59(.A1 (n 0), .A2 (gat7), .B(n 1), .Z (gat23));
9 AND2 B g60(.A (n 0), .B (gat2), .Z (n 1));
10 NAND2 A g61(.A (gat3), .B (gat6), .Z (n 0));
11 endmodule

Table 3.2: C17 ASL Netlist
1 CKT: c17 IN: gat1 gat2 gat3 gat6 gat7 OUT: gat22 gat23 ;
2 AO21: g58 IN: gat1 gat3 n-1 OUT: gat22 ;
3 AO21: g59 IN: n-0 gat7 n-1 OUT: gat23 ;
4 AND: g60 IN: n-0 gat2 OUT: n-1 ;
5 NAND; g61 IN: gat3 gat6 OUT: n-0 ;

The most significant challenge converting from Verilog to ASL is the difference in the

treatment of inputs and outputs of gates. In Table 3.1, line 7, the instantiation of the AO21

gate is shown. In Verilog, the gate’s inputs and outputs are not designated separately;

instead, they use a type of keyword notation which assigns a net to an input or output

name. In this notation, the order of the inputs and outputs does not matter and as such no

guarantee is made that the order will be consistent between synthesis tools. In contrast to

this method, Table 3.2, line 2, shows the same gate instantiated in ASL. ASL uses a syntax

that declares the inputs and outputs to a gate by position rather than by name and uses

the keywords IN and OUT to clearly separate the input nets from the output nets. For the

translation from Verilog to ASL to be successful, the inputs and outputs of the instantiated

gates must be ordered correctly; this includes the ordering of any custom gates defined in

an ASL library (library files are discussed in Section 2.2.1).
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Table 3.3: Using the VerilogParser tool to convert a netlist to ASL
C:\Applications\ausim>VerilogParser.exe -aio c17.v c17.asl
Please select the top level module from the list:
—————————————–
0) c17
Please input the number corresponding to the top level module: 0

To solve this problem, several assumptions are made by the VerilogParser tool. First,

it is assumed that in the Verilog netlist elementary logic gates will follow a standard net

naming convention where ‘Z’ is the output of the gate. A similar assumption is made for a

Data Flip-Flop (DFF) where the ‘Q’ and/or ‘QBAR’ net names are used for outputs and

the ‘D’ and ‘DBAR’ are used for inputs. More complex logic gates, those gates which are

not built-in to AUSIM and require a sub-circuit definition, are treated in a special manner.

With these gates the inputs and outputs are sorted from A-Z when converted. This means to

function correctly each ASL library sub-circuit should have its input and output nets sorted

alphabetically. To determine which nets are inputs and which are outputs, the tool first

checks if the instantiated logic gate is defined as a Verilog module. If a module definition is

found, the tool extracts the inputs and outputs of the module to determine how to convert

the instantiation to ASL. Failing this method, the standard rules for elementary logic gates

are used where nets prefixed with ‘Z’ and ‘Q’ are assumed to indicate an output while

the remaining letters indicate an input4. Currently there is no method for defining custom

translations of the inputs and outputs other than to make modifications to the source code

and recompile the tool from scratch.

As a reference, Table 3.3 demonstrates how to use the tool on a Verilog netlist. The

tool works by scanning the Verilog file for module definitions, subsequently parsing those

modules into an intermediate representation of the circuit. It then prompts the user to choose

which module should be used as the top-level circuit in the ASL netlist before outputting

the resulting ASL. Certain improvements could be made to the parser including automatic

4There are several other net names which are explicitly recognized as outputs such as Sum and Cout
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detection of the top-level module. This improvement would require static analysis of the

netlist to determine which module is not dependent on any other and as such is suggested

for a future version of the tool. It is also important to note that while the ASL generated

by the tool will always be syntactically correct, the tool does not check the validity of the

netlist. It is assumed that any required sub-circuits have already been created and verified

in ASL.

In addition to use in this thesis, this tool has been used to perform other simulations

including bridging fault simulations in [30]. In [30] the VerilogParser tool is used to convert

the final post-layout Verilog netlist to the ASL format so that accurate bridging fault sim-

ulations can be performed. The VerilogParser allowed [30] to easily integrate multiple CAD

tools which required different netlist formats (in this case a .bench format for automatic test

pattern generation using Atalanta, .v for synthesis and place-and-route, and .asl for bridg-

ing fault simulations using AUSIM). The ability to convert between netlist formats easily is

clearly advantageous when working with multiple, specialized CAD tools.

3.2 ASL Verification

Once the netlist has been converted to ASL using the VerilogParser tool, it must be

functionally verified to ensure that it performs identically to the original Verilog circuit

model. This ensures that there were no errors introduced by the conversion process and that

the ASL model will behave as expected during simulations. The most direct way of verifying

the ASL netlist is to perform logic simulations using the ASL netlist and subsequently

compare the output to the output of logic simulations using the original Verilog model. If

the circuit output of both simulations is identical then the ASL netlist is verified5. For

the SSA BIST test vectors had already been developed to verify the behavioral model of

the circuit during the design process. A subset of these test vectors were converted to the

5It is important to note that a single logic simulation is not enough to fully verify the ASL model. Ideally
the same logic simulations used to verify the behavior of the Verilog model should be repeated to verify the
ASL model; regardless the model is not fully verified unless an exhaustive set of inputs is used.
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AUSIM vector format and logic simulation performed. The results were then compared to

the simulation results from ModelSim to ensure that they were identical. Unfortunately the

comparison between the AUSIM output and ModelSim can be difficult since the formats

used are different. AUSIM uses a straight-forward text based output format where each line

of text represents a test vector applied to the circuit and the corresponding circuit output.

This makes a direct comparison between the output of AUSIM and ModelSim impossible;

consequently, a tool was written to convert the AUSIM output to a standard format, the

Value Change Dump (VCD) format. By using a VCD viewer a graphical comparison between

the ModelSim and AUSIM output can be performed and the output can be easily analyzed

each clock cycle. This significantly reduces the time required for verification. The next

section provides more information on the VCD format and the conversion process.

3.2.1 Value Change Dump File

The Value Change Dump or VCD format is defined in section 15 of the IEEE 1364-1995

standard for Verilog[10]. Originally created as a light-weight format to dump simulation re-

sults for post-processing[10], the VCD format is an industry standard format and is typically

used to store logic simulation results in as small of a footprint as possible[10]. In addition

as an IEEE standard it is supported in a number of free and commercial viewers which can

easily visualize and navigate the underlying simulation data.

The VCD format compresses simulation results into a smaller footprint by only storing

the changes between vectors instead of every vector[10]. While this can make the output of

the file less readable it makes it very easy to store large amounts of simulation data and for

a viewer to parse and display the file. An example of a VCD file is shown in Table 3.46.

On the right in Table 3.4 is a text description explaining each section of the VCD file. In

addition to the file size reduction, the key benefit of conversion to the VCD format is the

ability to visualize the output of a logic simulation in one of a number of commercial viewer

6It is important to note that while all IO in this example are a single bit, values in a VCD file can be any
arbitrary width and in that case operate as a bit-vector.
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Table 3.4: Example VCD File
VCD File Description
$date The date section defines the day which this file

was createdTuesday, December 07, 2010
$end
$version A comment detailing the version of the

application creating this fileGenerated For Alex, ASLVCD 1.0
$end
$comment An additional comment section detailing

information about the file.VCD File
$end
$timescale 10ns $end Defines the time scale used in this file
$scope module logic $end The simulation scope, particular to the simulation
$var wire 1 ! A $end

This section aliases each input with a single
ASCII character. This shrinks long IO names
condensing large simulation dumps greatly.

$var wire 1 ” B $end
$var wire 1 # S $end
$var wire 1 $ C $end
$upscope $end
$enddefinitions $end End of header
$dumpvars Sets the initial value for each input
0! Each IO must be set to an initial value here
0” The !,”,#, & $ characters represent the
0# nets aliased in the $var section
0$
$end
#1 The #N construct denotes a time step to apply

the following value changes, in this case at 10ns.
Only nets whose value changed appear in the
time step

1”
1#

#2 These changes occurred at 20ns
1!
0”
#3 These changes occurred at 30ns
1”
0#
1$
#4 The end of the simulation, no changes occurred
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Figure 3.2: VCD File Visualized in the GTKWave Viewer

Table 3.5: Example Usage of ASLToVCD Tool
C:\Applications\ausim>ASLToVCD.exe -g groups.txt c17.out c17.vcd

applications. For the example in Figure 3.2 GTKWave was used to visualize the VCD file

in Table 3.4. GTKWave is a free, open source VCD file viewer for Linux available on-line at

http://gtkwave.sourceforge.net. In GTKWave each IO is displayed as a waveform which

changes over time. The displayed waveforms can be panned, zoomed and combined. This

functionality alone makes it much easier to verify the output of a complex logic simulation.

3.2.2 OutToVCD Converter

The OutToVCD tool is used to convert an AUSIM output file to the VCD format. It is

fairly straight forward to use and greatly simplifies verification of an ASL model by allowing

visual inspection of its output using GTKWave. An example of using the tool is shown in

Table 3.5. This command will convert the logic simulation output of C17 to a VCD file

which can be viewed in GTKWave. The ‘-g’ switch provides a list of outputs which should

be concatenated and treated as a bit vector instead of individual bits. This switch allows

for easier verification of multi-bit values. The tool performs all necessary conversions with

no user interaction.
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Figure 3.3: The Test Vector Development Process

3.3 Test Vector Development

After verifying the ASL, the test vectors to be used for fault simulation must be de-

veloped and verified. This process is similar to the verification of the ASL in that a set of

test vectors must be created, logic simulation performed, and the output verified. Once logic

simulation is performed, the output is converted to VCD and analyzed in GTKWave to verify

that the test vector set produces the expected output. Additionally in the case of the SSA

BIST, the test vector development process is not automated; instead, an iterative process

is required. This process, outlined in Figure 3.3, shows the procedure used for developing

these test vectors for the SSA BIST. Initially the test vectors used for fault simulation were

manually developed based on an understanding of the underlying BIST architecture. Using

knowledge of the BIST architecture, an attempt was made to develop disparate tests which

perform measurements that exercise as many different sub-systems of the BIST as possible.

The final measurements used in the fault simulations and the fault coverage obtained are

detailed in the next chapter; however, it is important to note that the test procedure shown

in Figure 3.3 does not allow for the fault coverage of a set of test vectors to be accurately pre-

dicted in advance. Consequently improvements to the test vector set must occur iteratively

using feedback from the fault simulations being performed using the current test vector set.
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For the SSA BIST, simulations were repeatedly performed using several different measure-

ments and the undetected faults analyzed. Using this feedback, changes to the initial test

vector set were made and new measurements were developed and simulated leading to more

analysis and modifications until a suitable fault coverage was obtained.

3.4 Summary

Using both the VerilogParser tool and the VCD format, ASL conversion and verification

can be performed efficiently and quickly. Once verified, the test vector development process

can begin and an initial set of test vectors developed. This set of test vectors is not the final

set of vectors used for fault simulation but instead is simulated and the resulting fault cov-

erage analyzed. Using this analysis, the test vector set can be modified allowing for iterative

improvements in fault coverage. The next chapter discusses the fault simulations and result-

ing fault coverage achieved using a test vector set developed using this iterative approach.

In addition certain methods are presented which greatly speed up the fault simulations and

simplify the analysis of the results.
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Chapter 4

Fault Simulations and Results

Six measurements were developed using the previously discussed methods and used in

fault simulations of the SSA BIST. These six measurements are the result of efforts to develop

a set of measurements which would exercise as much of the BIST circuitry as possible so

that a high fault coverage can be obtained. As previously stated, no tool exists to develop

these measurements automatically; consequently, development must occur iteratively with

additional measurements added and existing measurements modified based on feedback from

fault simulation until a suitable fault coverage is obtained.

In the next section the six measurements are discussed, as well as the challenges associ-

ated with simulating these measurements. Following that the results of the fault simulations

are analyzed including methods used to determine the individual fault coverage of each

measurement, the cumulative fault coverage of all six measurements, and a method used to

optimize the ordering of the measurement set.

4.1 Performing the Simulations

Table 4.1 shows the details of the six measurements that are used in fault simulations

of the SSA BIST. The first column is the type of measurement (SNR, NF, Linearity (IP3),

Frequency Response (FR), or Frequency Sweep (Sweep)) that is performed during the sim-

ulation. The first and second frequency word columns (FW1 and FW2 ) correspond to

frequencies that are generated by the SSA BIST during the test. The meaning of the FW3

and FW4 varies depending on the type of measurement being executed by the BIST and is

defined in Table 2.2. TC Word is the test control word used for the measurement, this word

includes information for the test controller including the measurement type as well as several
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Table 4.1: Simulated BIST Measurements
Type FW1 FW2 FW3 FW4 TC Word Samples Clock Cycles
SNR 1200 1400 600 200 13CC 513 103000
Long FR 101 101 102 33 0D24 0 34500
Sweep 1000 1500 100 100 0CA4 513 131500
IP3 3000 5000 800 0 070C 0 1050
Short FR 4000 6000 2000 0 07A0 0 900
NF 0CFC 0AFC 10FC 7CCC 1B60 2 91601

other measurement flags such as the half-IMP flag1 which halves accumulation time at the

expense of measurement accuracy and can greatly shorten the time required for fault simu-

lation. Measurement accuracy is not a concern for fault simulations since no real signal is

being measured; consequently, the half-IMP flag is enabled in most simulated measurements

to take advantage of the shortened simulation time. Samples corresponds to the number of

frequencies to measure when performing a frequency sweep, SNR, or NF measurement. The

Clock Cycles column is the total number of clock cycles the measurement is simulated and

includes SPI writes, reads, and actual measurement accumulation time. The accumulation

time a measurement requires is directly related to the values of its frequency words and is

explained in Section 2.3.2.

Fault simulations were performed for each of the measurements shown in Table 4.1. For

each separate simulation the entire fault list containing 39,497 collapsed, gate-level, single

stuck-at faults was used to determine the individual fault coverage of each test. Using the

entire fault list for each test causes a large increase in fault simulation time (recall that

Equation 2.2 shows that fault simulation time increases as the number of faults simulated

increases); however, due to available computing power this was the preferred approach and

will be discussed in more detail in the next section.

1Discussed in Section 2.3.4
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4.1.1 Test Time

Initially fault simulation was performed using a standard desktop computer performing

very short measurements such as the IP3 measurement from Table 4.1. This soon proved un-

feasible as even fault simulation of the relatively short IP3 measurement took approximately

24 hours to complete. Realizing that longer tests would prove impossible to complete using

this method, an alternative approach was implemented which utilized the Auburn Univer-

sity High Performance Computing Cluster (HPCC). More information can be found about

this system at http://www.eng.auburn.edu/admin/ens/hpcc. As a general overview the

Auburn HPCC consists of four separate computing nodes, each with 128 processing cores. It

has 20.48TB of raw storage, 1.536TB of shared RAM, and has an overall performance calcu-

lated at 5.735 teraflops2. By using this system to perform the fault simulations in parallel,

simulation time can be drastically reduced.

To take advantage of the HPCC a method was developed to split a given fault list into

a number of smaller fault lists each containing the same number of faults. Each new fault

list was copied into its own sub-directory along with a copy of the AUSIM files required to

perform the fault simulation including the ASL netlist of the BIST, a test vector file for the

measurement being performed, and the output from a previously performed logic simulation.

Once the fault list has been split up and prepared, a job scheduler script was submitted to

the HPCC scheduler which requests the required number of processing cores. Once loaded

into the HPCC, this script forks the appropriate number of AUSIM processes (one for each

CPU core) and each split fault list is simulated in parallel. Due to limitations imposed by

the HPCC administrator a maximum of only 128 CPU cores could be requested by a single

user, thus limiting the number of parallel simulations that could be run at a given time to

1283.

2This and more information about the HPCC is available at the HPCC website
3As shown in Table 4.2 greater than 128 CPU cores were used in some measurements due to temporary

changes in the restriction by the HPCC administrator
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Table 4.2: Fault Simulation Test Time
Type CPUs Used CPU Time (Hr) Wall Time (Hr) Speed Up
Combined 128 6072 74 x82
SNR 127 2018 20 x100
Long FR 25 12.5 .6 x21
Sweep 384 3450 28 x123
IP3 25 8.5 .5 x17
Short FR 99 609 9 x68
NF 256 2544 21.7 x117

Table 4.2 shows the total CPU time used by each test in hours vs the number of ac-

tual hours required to perform the simulation (wall time). In addition to the original six

measurements shown in Table 4.1, an additional simulation is also shown where all six mea-

surements were combined together and run sequentially in a single fault simulation. Looking

at the worst case fault simulation time (the combined simulation), without using the Auburn

HPCC for simulation the combined measurement would have take 6072 hours or approxi-

mately 253 days to complete! Instead, by splitting it up and running 128 parallel simulations

it required only three days to perform. This speed up provided the flexibility to perform

longer measurements without concern for the simulation time.

This technique does not come without disadvantages. First additional development

was required to create the methods and techniques used to perform these simulations as no

previous work had been done which used the HPCC for fault simulation purposes. This

process involved some trial and error as the HPCC job scheduling system was not well

documented and best practices for using the system had to be determined. Second, it can

complicate the analysis of the fault simulation results since results are split among a number

of different parallel simulations and must be recombined and processed before any results

can be determined. The next section discusses in detail the methods used to calculate both

the individual and cumulative fault coverage obtained for the six tests in Table 4.1.
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4.2 Fault Coverage Results

Once a fault simulation has been completed using the HPCC, the fault coverage results

are split amongst separate sub-folders. In each folder (one for each CPU core used in the

simulation) there are three files of interest, the detected fault list, the potentially detected

fault list, and the undetected fault list. The first step to determining the fault coverage

is to recombine all of these separate fault lists, creating one combined list for each type of

fault. To do this a simple script is used which utilizes the Linux cat and awk commands to

concatenate the files together and then remove any blank lines or comments from the output.

The result of this operation is three files (one for each type of fault: detected, undetected, or

potentially detected (PDT)). Each of these files contains either the total number of detected,

undetected, or PDT faults for this measurement. By applying Equation 2.1 to this data, the

fault coverage can be calculated by taking the number of detected faults, adding a percentage

of the potentially detected faults, and then dividing by the total number of faults (less any

faults which are undetectable). However, before using Equation 2.1 to calculate the fault

coverage, an analysis of the PDT fault list is performed so that a more accurate estimate of

the likelihood of a potentially detected fault being detected can be formed.

4.2.1 Potentially Detected Faults

It is common to assume that 50% of the PDT faults will be detected in a real system and

subsequently multiply P by .5 in Equation 2.1. This is an easy assumption to make; however,

with some simple analysis of the PDT fault list we can do a better job approximately the

likelihood of a PDT fault being detected.

The PDT fault list that AUSIM outputs includes both the fault name and the number

of times the fault was potentially detected during simulation. By making the assumption

that a high number of detections of a PDT fault will result in a high likelihood of that PDT

fault being detected in a real system, the fault list can be post-processed to mark any PDT

faults that fulfill this criteria as detected faults. When analyzing the fault simulation results
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Figure 4.1: Method used to Represent Connection to VDD and to GND in AUSIM

of the SSA BIST, there proved to be a large separation between the PDT faults which were

detected only a few times and those which were detected a high number of times. Based on

this qualitative data, a threshold of 300 detections was chosen to separate the two categories.

An automated script was then developed to perform this processing, and, when run, marks

any PDT fault detected greater than or equal to 300 times as detected. In the future more

research should be done to determine a more quantitative relationship between the number

of times a PDT fault is detected verse the likelihood of detecting the fault in real hardware.

4.2.2 Undetectable Faults

As shown in Equation 2.1, any undetectable faults should be excluded from the total

number of faults when calculating fault coverage. Due to optimizations made by the syn-

thesis tools when generating the post-layout Verilog netlist of the SSA BIST, a number of

undetectable faults were encountered when performing fault simulations that had to be re-

moved. These faults occur due to nets which may be tied directly to VDD or GND due to

logic minimization performed by the synthesis tool4. Unfortunately AUSIM has no direct

method of representing a net tied to VDD or GND so a slightly modified sub-circuit is used.

Shown in Figure 4.1 an AND gate and inverter are used to generate a value which is always

logic ‘0’ (GND) and an OR gate and an inverter are used to generate a value which is always

logic ‘1’ (VDD). In both of these circuits, CLK is used as the input net; however, any net can

be used that is convenient. Regardless of the input value these circuits will always generate

a logic ‘0’ and logic ‘1’ respectively. While these two sub-circuits work well to solve the issue

4Other undetectable faults may exist in the BIST circuitry but are generally more difficult to prove as
undetectable.
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during conversion and logic simulation, they each introduce an additional undetectable fault

which must be accounted for during fault simulation. In the case of the AND circuit, any net

stuck-at ‘0’ is undetectable since the output of the AND gate is always a logic ‘0’. Likewise

in the case of the OR gate, any net stuck-at ‘1’ is undetectable since the output of the OR

gate is always a logic ‘1’. After conversion to ASL, the SSA BIST contained approximately

14 undetectable faults due to these circuits. These faults were removed via an automated

script from the fault list and not included in any of the fault coverage calculations.

4.2.3 Overall Fault Coverage

Each of the six measurements in Table 4.1 were simulated and the results recorded.

Each test was simulated against the entire list of 39497 faults. The individual fault coverage

of each test is shown in Table 4.3. The Raw Detected and Raw Potentials columns are the

number of faults reported by AUSIM; however, as discussed in the previously any potentially

detected faults which were detected greater than 300 times were marked as detected. This

is shown in the Detected column which contains the number of raw detected faults plus the

number of PDT faults which were detected greater than 300 times and in the Potentials

column which contains the number of raw PDT faults less any PDT faults detected greater

than 300 times. The overall fault coverage is in the Coverage column and is calculated

using Equation 2.1. This coverage is calculated using the modified detected and PDT fault

numbers and assumes a 50% probability of detecting any remaining PDT faults (those which

were potentially detected less than 300 times). It is important to note that Table 4.1 is the

individual fault coverage of each measurement and that further processing must be done to

obtain the cumulative fault coverage of all measurements.

To determine the cumulative fault coverage, all measurements must be combined and

the unique set of both detected and potentially detected faults extracted. Once extracted the

unique PDT fault list is analyzed and PDT faults which are detected more than 300 times

are removed and marked as detected. The final fault numbers are then used with Equation
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Table 4.3: Individual Fault Coverage Results
Type Raw Detected Raw Potentials Detected Potentials Coverage
SNR 27310 3387 30570 127 77.55%
Long FR 25526 3337 28313 551 72.38%
Sweep 25256 3406 28419 243 72.26%
IP3 22122 3102 24994 230 63.57%
Short FR 20617 3456 23815 258 60.62%
NF 27883 3354 31007 230 78.80%

2.1 and the final cumulative fault coverage can be determined. In the case of the SSA BIST

the raw, cumulative number of detected faults was 31639 and the raw, cumulative number of

potential faults was 3521. After filtering out the potential faults which were detected greater

than 300 times, the number of detected faults rose to 34831 and the number of potential

faults became 360. This results in a cumulative fault coverage of 88.64%.

To obtain a better understanding of which measurements are most effective at detecting

faults in the SSA BIST, it is beneficial to determine the incremental fault coverage each test

contributes to the cumulative fault coverage total of 88.64%. By determining the number

of additional unique faults each measurement detects, the measurements can be ranked and

ordered by highest incremental improvement in fault coverage. This has a number of practical

implications. First it can be used to determine which measurements are providing the most

benefit to the cumulative fault coverage. Measurements which provide only a minor increase

in the cumulative fault coverage may need to be reworked or replaced. Unfortunately as the

cumulative fault coverage becomes higher, it becomes increasingly more difficult to obtain

substantial improvements in fault coverage with each additional measurement. Secondly if

the measurements are ordered from the highest to least number of unique detected faults

then the time required to perform a combined fault simulation (similar to the one performed

in Table 4.2) of all measurements can be minimized. This decrease in time occurs due to

fault dropping of detected faults (Section 2.1) causing a decrease in the number of faults

simulated for the entire length of the simulation. In addition when verifying an actual
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Figure 4.2: Individual Fault Coverage vs Cumulative Fault Coverage Percentage

hardware implementation using this test procedure, measurements which detect the most

faults will be performed first, increasing the likelihood that a fault is detected early in the

test sequence. This will shorten the overall verification time as unnecessary measurements

are not run.

To determine the optimum measurement order a script was developed which analyzes

the detected fault lists from an arbitrary number of simulated measurements. First the

measurement with the highest number of detected faults is selected as the initial measurement

to be run. Starting with this initial list of detected faults, the measurement which provides

the highest incremental improvement of fault coverage is then selected to be run next. This

is repeated until the optimum test order is determined.

Figure 4.2 shows the optimum ordering of the six measurements and the individual

and cumulative fault coverage gain for each measurement. As discussed previously any

potentially detected faults detected greater than 300 times are included in the number of

detected faults. As shown in the graph the cumulative fault coverage rises little after the

first three measurements have been performed (NF, SNR, Long FR). In fact these first three
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measurements detect a total of 34335 faults, a cumulative fault coverage of 86.93%. The

remaining measurements only detect an additional 623 faults.

After determining the optimum order to perform the measurements, a fault simulation

was performed where all measurements were executed sequentially in a single fault simulation

and the fault coverage obtained verified. This combined fault simulation required a total

of 1,011,900 test vectors to be simulated, requiring approximately 673 hours of CPU time.

As shown in 4.2 this time was reduced to approximately 74 hours using the parallel fault

simulation techniques discussed previously. As expected the fault coverage obtained in the

combined test was 88.64% matching the coverage calculated from the individual measurement

simulations.

4.3 Experimental Results

The six measurements developed using this test procedure have successfully been used

to verify a hardware implementation of the SSA BIST discussed in this thesis. Using the

digital loopback path of the SSA BIST, each of the six measurements was executed on each

SSA BIST chip and the output compared to the previously performed logic simulations.

This entire process was automated and performed at the system clock speed of 80MHz.

Approximately 500,000 clock cycles are required to perform all six measurements which

correlated to a test time of a little under 10ms. If, during the testing process, a chip did not

produce the expected results after performing a given measurement then it was considered

faulty. Using this procedure several chips were identified as faulty after failing to return

the correct values. In addition, in one specific case the location of the fault was able to

be diagnosed based on analysis of the invalid BIST results. The successful use of this

test procedure to verify actual hardware proves that this method is an efficient and viable

method for the fault-free verification of mixed-signal systems and in some cases can aid in

fault diagnosis.
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The next chapter will summarize these findings and address some of the implications

of the fault coverage obtained as it relates to the observability and testability of the BIST

approach. Opportunities for improvements to the BIST approach will be briefly discussed

including some simple modifications to the underlying BIST architecture which may result

in an increase in fault coverage by improving the testability of the BIST.
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Chapter 5

Analysis and Summary

While a cumulative fault coverage of almost 89% is an excellent starting point, a higher

fault coverage of at least 95% would be better. In an effort to obtain a higher fault coverage,

key sub-circuits of the BIST which are not throughly tested by the current test vector set

need to be identified. This chapter starts by analyzing the fault coverage obtained in Chapter

4 and determining areas of the SSA BIST which are not easily controllable or observable.

After identifying these weakly covered areas, several design modifications to the BIST are

explored and simulated to see if an increase in the cumulative fault coverage is obtained.

Finally an overview of this thesis is provided and a summary is given of the work completed.

5.1 Fault Coverage Analysis

By analyzing the faults which were undetected in the fault simulations performed in

Chapter 4, a better understanding of the testability of the SSA BIST can be obtained.

Table 5.1 shows the fault coverage of several of the BIST sub-systems obtained by running

the six previously discussed measurements1. Each major sub-system of the SSA BIST is

represented in the Table and the approximate fault coverage of each is given. As shown in

the table, several areas of the BIST, including the DDS, MACs, and reference CORDIC,

have greater than 95% fault coverage using the existing measurement set. The high fault

coverage of these sub-systems is not particularly surprising as each is extensively exercised

every time a measurement is performed. Unfortunately several of the other sub-systems

are not as easily testable. Particularly the calculation circuitry, some related normalization

1The Fullswing Power and Spur Calibration sub-systems are circuitry which normalize the result of an
accumulation when performing a single frequency response measurement
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Table 5.1: Fault Coverage of BIST Sub-Systems
Subsystem Total Faults Coverage
DDS 4995 99.7%
Fullswing Power 438 70.09%
LOG Calculation 11621 81.06%
ORA Accumulators 10608 98.37%
Reference CORDIC 3977 95.22%
Spur Calibration 660 71.06%
Test Controller 1829 85.27%
SPI Interface 4259 81.71%

circuitry, portions of the test controller, and the external SPI interface have a relatively

low fault coverage compared to other sub-systems. In an attempt to improve the overall

fault coverage obtained, several improvements to the BIST are proposed and simulated. The

subsequent fault coverage is analyzed to determine if any improvement in the coverage of

the LOG calculation, test controller, spur calibration, and fullswing power sub-systems. Due

to design restrictions it is not possible to make modifications to the SPI interface and any

improvements that could be made to it were excluded from consideration.

5.2 Fault Coverage Weaknesses

By analyzing the logic simulation results of the six measurements performed in Chapter

4 several weaknesses were identified in the testability of the SSA BIST. The first major

weakness identified was the limited signal magnitudes that could be measured when using

the digital loopback path. When simulating or performing measurements using the digital

loopback path any signals to be measured must be generated by the DDS. Since the digital

loopback path is a purely digital path, there is no noise introduced nor is there any signal

degradation or loss possible. This means that the only type of measurable signal when using

the digital loopback path is a pure, DDS generated, sine-wave with no noise. This measured

signal can only be one possible magnitude: the maximum possible power (full-swing power)

of the signal generated by the DDS. When performing a frequency response measurement
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this limits the resulting values calculated by the BIST to either zero, when no signal is

present, or the full-swing power, when a signal is present at the measured frequency. This

limits the bits exercised in the calculation circuitry as well as the fullswing power and spur

calibration circuitry.

A second major weakness identified is also rooted in the pure digital nature of the digital

loopback path. As stated previously the digital loopback path introduces no noise or signal

degradation; consequently, it has perfect linearity and SNR. This is an issue when performing

linearity or SNR measurements, as it limits the values that are calculated by the calculation

circuitry, subsequently lowering the maximum fault coverage achievable.

Finally the test controller has a fairly low test coverage, though the reasoning behind

this isn’t quite as easily attributed to a single issue. For one this is likely due to the mea-

surement set developed in this thesis not exercising all of the measurement options available.

Unfortunately this is difficult as some measurement options cannot be performed when in

loopback mode (such as usage of the bypass path or using the certain preset circuitry2).

An additional measurement option that is difficult to observe is the samples register.

The samples register controls the number of samples that are taken when performing an

SNR, Frequency Sweep, or Noise Figure measurement. This register is a 10-bit register

allowing up to 1024 samples to be taken in a single measurement. To fully verify that this

register is fault-free, a measurement must be performed which takes a minimum of 5133

samples and the results verified. Performing a measurement that takes 513 samples requires

a lengthy simulation time. Currently a measurement that does exactly this is performed

as part of the six measurements simulated in Chapter 4 to test this register and associated

circuitry; however, if this register was easier to observe it would not require that such a

2The preset circuitry holds a number of predetermined BIST measurements hard-coded into the model
and selectable via the SPI and external pins. These measurements each include the test type and options not
allowing for the digital loopback path to be used. This effectively prevents this circuitry from being tested.

3This ensures that while decrementing the counter all of its bits are toggled between a logic ’1’ and ’0’
at least once.
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long measurement be included in the test vector set potentially, allowing for a more effective

measurement or even multiple shorter measurements to be performed in its place.

5.3 SSA BIST Improvements

To address these issues, four main improvements to the SSA BIST were suggested and

subsequently simulated to determine if any improvement in fault coverage was obtained.

These four improvements incurred little area penalty (<2%) and include:

• The option to disable certain output normalization circuitry when performing fre-

quency response measurements

• The ability to perform a shift operation on the DDS output to attenuate the signal so

that multiple magnitude signals can be produced and measured

• The ability to purposely clip the DDS output within the digital loopback path intro-

ducing harmonics that can be measured in linearity tests

• Allow the testing of the preset circuitry by forcing any preset measurement to be

performed using the digital loopback path

• Allow the samples register to be read out via the BIST SPI interface

The original six measurements discussed in Chapter 4 were re-simulated using the mod-

ified BIST architecture and the fault coverage recorded. Following the original six mea-

surements four additional measurements were developed using the test procedure outlined

in Chapter 3. Each of these four measurements utilized the improvements made to the

BIST circuit to determine the effectiveness of the discussed improvements. The four newly

developed measurements are:

• A frequency response measurement with a single sample which uses the shift function-

ality to reduce the magnitude of the generated DDS signal
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• A linearity test which utilizes the clipping ability to introduce non-linearity into the

digital loopback path

• A SNR measurement with 513 samples which uses the clipping and shifting to modify

the DDS signal measured

• A frequency response measurement that is stored in the preset circuitry of the BIST

and utilizes the override flag to run using the digital loopback path

The resulting fault coverage of all ten measurements is broken down in Table 5.2. Each

of the sub-systems in represented in the table and compared to the fault coverage obtained

using the previous model. It is important to note that, due to the design changes, the

new model contains an additional 669 faults compared to the previously discussed BIST

model. As shown in the table, two of the sub-systems with the lowest fault coverage (LOG

Calculations and SPUR Calibration) did show some improvement in fault coverage using the

new measurement set; while the other two low-coverage sub-systems, the Fullswing Power

and Test Controller, showed almost no change and a decrease in coverage, respectively. Also

shown in the table is a new sub-system, the BIST loopback. This sub-system encapsulates

most of the modifications made to the BIST loopback path and facilitates the newly added

clipping and shifting operations. Even though this sub-system is exercised in nearly all of

the newly performed measurements, it has a surprisingly low fault coverage.

Unfortunately the overall fault coverage of the measurement set (bottom of the table)

using the new BIST model proved to be only 89.5%; an increase in coverage of almost 1%.

While this does not invalidate the improvements made to the BIST loopback (some fault

coverage increase was obtained), it does show that the fault coverage is not explicitly limited

by the factors discussed. This likely means that future improvements to fault coverage will

come via iterative improvements to the measurement set. This also likely indicates that

it will be difficult to achieve major increases in fault coverage in future iterations and any

progress made will require adding additional measurements to the measurement set with
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Table 5.2: Fault Coverage of BIST Sub-Systems w/ Improvements
Subsystem Total Faults Coverage Old Coverage
DDS 4801 99.63% 99.70%
Fullswing Power 434 70.05% 70.09%
LOG Calculation 11582 82.00% 81.06%
ORA Accumulators 10618 98.5% 98.37%
Reference CORDIC 3957 95.35% 95.22%
Spur Calibration 661 74.36% 71.06%
Test Controller 1833 82.76% 85.27%
BIST Loopback 557 70.56% N/A
SPI Interface 4485 80.97% 81.71%

Overall BIST 40170 89.5% 88.64%

only small increases in the number of detected faults (on the order of a few hundred faults).

5.4 Conclusions

Unfortunately 89.5% fault coverage is as high as was achieved using the measurement

set developed in this thesis. Even with the improvements proposed and implemented in the

BIST the gain realized was minimal. This does not mean that the maximum fault coverage

that can be achieved using this test procedure is limited to 89.5%; however, it does indicate

that without more analysis to understand the factors limiting the fault coverage, progress

beyond 89.5% may prove difficult.

One factor which may be contributing to the lower than expected fault coverage is the

fact that certain areas of the BIST are impossible to test while using the digital loopback

mode in simulation. These areas are mostly related to external circuitry such as external run

control and the bypass and ADC paths and control logic. Since these areas are unable to be

tested, they represent a potentially significant group of undetectable faults. As an example,

by removing all faults associated with the SPI interface (a sub-system of the SSA BIST that

cannot be modified due to project constrains and has a low testability), the fault coverage

obtained using the six measurements from Chapter 4 improves to 91.8%. This represents a
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little more than a 3% improvement in fault coverage. In this case the SPI interface is not a

sub-system that is untestable in the loopback mode; however, it does show how significantly

an untestable circuit could negatively influence the fault coverage. Future research should

determine the number of faults attributed to untestable paths and what fault coverage could

be achieved after removing these faults.

Regardless of the marginal improvement in fault coverage provided by the changes to

the BIST, a fault coverage of almost 90% was obtained using the test procedure outlined

in this thesis. In this test procedure a method was presented to iteratively develop a set

of measurements to be executed by a mixed-signal BIST system to test itself for faults.

A conversion process was outlined which converts any post-layout Verilog model to the

ASL format (and verifies the correctness of the ASL model) so that fault simulation can

be performed and the fault coverage of developed measurements evaluated. Using the SSA

BIST as a benchmark, this procedure has shown that by utilizing the digital loopback a set

of measurements can be created which allow a mixed-signal BIST to effectively test itself for

faults without the need for external test equipment and without requiring dedicated testing

circuitry.

As compared to other testing approaches there were several difficulties associated with

this test procedure that were explored in this thesis. First this procedure does require a

significant amount of time to iteratively develop and simulate the measurement set used

when testing the mixed-signal BIST. There is no automated tool that can develop the test

vector set and some trial and error is needed to develop a test vector set which yields a

sufficiently high fault coverage. Second, as discussed earlier, it may prove difficult to achieve

the highest levels of fault coverage (>95%) due to some portions of the BIST, such as external

run pins and external loopback paths, being untestable. These types of circuitry (and related

control circuitry) cannot be tested in a digital loopback mode and could potentially be the

source of a number of undetected faults limiting the maximum fault coverage obtained in

the SSA BIST. Additional testing would be required to fully test this circuitry.
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Regardless of these disadvantages, this test procedure does have a significant number

of advantages compared to other methods. It is circuit agnostic and can be applied to a

number of mixed-signal BIST setups since it only requires a post-layout Verilog model for

the conversion process and a digital loopback path for testing purposes. So while development

of the test vector set must occur iteratively, it can be fine-tuned for the specific architecture

being tested and intuitively evolved. In addition by utilizing this method of testing no

performance penalty and little area overhead is incurred in the circuit. This is a significant

advantage compared to many other BIST techniques which require additional circuitry to

be included in the circuit which in some cases can negatively affect system performance

and increase chip area. In the discussed procedure all testing is performed using the digital

loopback path and no dedicated test circuitry must be inserted into critical path ways. This

means that the testing of the BIST can be performed at system speed and without the need

for external test equipment. Furthermore this allows for the testing of the BIST at all stages

of the product life cycle including during the manufacturing process and at any point during

in-system operation, such as before being used to make measurements in the analog portion

of a mixed-signal system, making this procedure an excellent candidate for systems with

high availability and reliability requirements.
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