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Abstract

Uncertain disruptions complicate inventory management for retailers because it is dif-

ficult to determine when and how to adjust order quantities to ensure high service levels

before and after a possible disruption. In order to assist retailers with their decision-making,

three different models have been developed to determine the importance and effectiveness

of considering proactive approaches to disruptions, specifically, forecasted storms. The first

model addresses the time horizon when a storm is approaching and it is not known whether a

demand surge for emergency items will occur. Minimax decision criterion highlighted the cir-

cumstances that constitute increasing the order quantity or encouraging the retailer to adopt

a proactive approach instead of the current strategy of “wait-and-see”. Ordering strategies

also affect the response efforts as shown in the second model, which is comprised of two

uncertain disruptions. Minimax and minimax regret decision criteria were used to evaluate

the model and provided insight into the inventory management decisions during and after

the storm. Minimax regret decision criterion supported holding inventory during the storm

to ensure a higher service level after the storm while minimax decision criterion supported

the opposite. However, both criteria advocated holding the same order quantity during the

second disruption or demand surge after the storm. Lastly, a stochastic programming model

was developed to determine pre-positioned quantities for a network of retailers in addition

to post-storm shipments between retailers and the manufacturer to alleviate shortages. The

results from the commercial software and solution methodology supported pre-positioning

items at most retailers despite the manufacturer’s location. Overall, the research presented in

this dissertation illustrates the importance and cost effectiveness of incorporating inventory

strategies into management decisions when a storm is on the horizon.
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Chapter 1

Introduction

Recent natural disasters such as the terrorist attacks of 9/11, Hurricane Katrina, and the

flooding along the Mississippi River during the spring of 2011, have revealed the shortcomings

of the preparation and response procedures of public and private sectors. As a result, a

multitude of academic disciplines have begun to explore ways to mitigate risks, prepare in

advance for impending disasters, respond to supply disruptions caused by disasters, and

rebuild socio-economic structures affected by disasters.

Private sector organizations’ decisions regarding emergency management affect resi-

dents’ abilities to prepare for a possible storm. Their decisions also affect government and

non-governmental organizations’ execution of their policies to provide necessary supplies.

Retailers face the decision of whether or not they should order additional supplies to prepare

for a storm, and if the storm does not materialize, they will incur holding costs or be forced

to sell goods at discounted prices. On the other hand, if they are not prepared, they will

hinder the preparation and response processes and forfeit additional revenue. The uncer-

tainty of events such as hurricanes make decisions regarding emergency management for the

private sector challenging.

On a personal note, my parents evacuated for Hurricane Ike in 2008, and it made me

consider how to make the process of preparing for a storm seem less daunting. They, like

many others, struggled to find the necessary supplies and food to sustain them until the

retailers reopened. Through my research, I am thankful that I can utilize my knowledge

about inventory and operations research to solve meaningful problems that may alleviate

the stress for coastal residents in the event that they have to evacuate or prepare to ride out

a storm.
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1.1 Overview of Proposal

1.1.1 Minimax EOQ Policies with Demand Surge, Lead-Time and Lost Sales

Chapter 2 addresses an inventory control problem that seeks to determine an ordering

strategy for an uncertain demand disruption considering emergency supplies. The model

extends the model presented in Lodree [16] by including lead-time and lost sales. The

demand disruption that is explored in this paper is a possible sudden surge in demand or

an increase in the demand rate before a possible disaster. Retailers must decide if they

will adopt a proactive approach meaning they will modify their batch size before they are

certain the demand surge will occur, or a reactive approach which means that they will not

modify their batch size until they are certain the demand surge will occur. If retailers choose

a reactive ordering strategy, they may incur lost sales as a consequence of the lead-time.

The typical approach for handling demand uncertainty is determining an optimal order

quantity using long run approximations, which does not adequately address the problem

because each storm has different characteristics that will affect the strategy selection. In

order to effectively address the problem, minimax decision criterion is used to evaluate the

ordering strategy decision. Many papers have addressed risk mitigation associated with

supply or demand disruptions by determining optimal order quantities during disruptions

caused by various events (e.g., [46], [23] and [65]) and predicting the supplier’s availability to

determine optimal order quantities (e.g., [47], [47], and [55]). Within the demand disruption

literature, Lodree and Taskin [35] and Taskin and Lodree [62] allowed lost sales for single-

period problems when a demand surge occurs. Other papers in demand disruption literature

address lead-time, but not lost sales because the disruption is defined as a period of no

demand (e.g., [51]). As previously discussed, this paper investigates ordering strategies

for uncertain demand surges while considering lead-time and allowing lost sales. Minimax

decision criterion has been utilized in the literature considering optimal ordering quantities

(e.g., [49], [19], [28], and [18]), but minimax decision criterion has been applied to a disruption
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problem in only one other paper ([16]) to the knowledge of the authors. We develop a

framework to assist retailers with their decision-making before an uncertain demand surge

using minimax decision criterion.

This paper provides the following contributions:

� Closed form solutions are determined for the number of orders and order quantities for

items with non-zero lead-time during a demand disruption over a finite horizon.

� An ordering strategy (proactive or reactive) is determined by applying minimax deci-

sion criterion to inventory disruption problems.

1.1.2 Minimax and Minimax Regret Inventory Control Policies Regarding De-

mand Disruptions and Damaged Inventory

The model presented in Chapter 3 considers the time horizon that begins at the end of

the demand disruption that is explored in Chapter 2. When the time horizon in Chapter 3

begins, a second and third demand disruption may occur and last for a known amount of

time. The disruptions explored in Chapter 3 are a period of no demand where the retailer

might be closed as a result of an uncertain event such as a hurricane and the demand surge

that occurs after the effects of the storm have subsided. The surge in Chapter 2 captures

the preparation for the event, while Chapter 3 considers the time period during and after

the storm. When retailers are faced with an uncertain event, they must decide if they will

keep inventory on-hand to be prepared for a demand surge after the disruption is over. An

additional source of uncertainty that is considered in this chapter is whether the inventory

will be damaged during the disruption. Retailers may either hold inventory, which also

includes the decision about the quantity to hold, or they may not hold inventory assuming

that all of the inventory will be damaged.

In addition to minimax decision criterion, minimax regret decision criterion will be

utilized to determine the best strategy. Savage [57] first explored the minimax regret decision

rule to demonstrate its uses when making optimal decisions. Several authors have used

3



minimax regret decision criterion when considering the distribution free newsvendor problem

(e.g., [43], [32], [64], and [69]). Perakis and Roels [49] found solutions for the optimal order

quantity that minimize the maximum regret for not choosing optimally when the demand

distribution has partial information. Jammernegg and Kischka [29] considered two other

risk factors in their objective function to determine a robust solution for the order quantity.

With regard to our model, the absolute regret will be minimized considering each inventory

decision.

This paper provides similar contributions to Chapter 2 and they are the following:

� A model is developed for two possible disruptions that occur after the demand surge

presented in Chapter 2.

� A more general class of possible disruption cases with two sources of uncertainty are

considered.

� An ordering strategy is determined by applying minimax and minimax regret decision

criteria to an inventory disruption problem.

1.1.3 Pre-Positioning Hurricane Supplies in a Commercial Supply Chain

The fourth chapter considers the pre-positioning problem from a profit-driven perspec-

tive for a supply chain comprised of one manufacturer and a network of retailers. The

manufacturer must make decisions regarding the location and quantity of emergency items

that will be pre-positioned across a network of retailers when an observed storm might

make landfall at one or more of the retailers. After the storm comes ashore, transshipments

from other retailers and shipments directly from the manufacturer alleviate shortages at re-

tailer locations affected by the storm. The problem is formulated as a two-stage stochastic

programming model, which is illustrated by a numerical example and case study scenarios

derived by Rawls and Turnquist [53]. Commercial software and a solution approach that

reduces the model to the well-known transportation problem are employed to solve the first

4



and second stage decisions, which involve the pre-positioned quantities and post-storm ship-

ments including transshipments and direct shipments from the manufacturer. As a result

of several devastating hurricanes, earthquakes, and other disasters, pre-positioning has been

researched extensively for governmental and non-governmental agencies. Location, inventory

and distribution comprise the three aspects of pre-positioning mentioned in Richardson et

al. [54], and only a few studies integrate all three into a two-stage stochastic programming

model (e.g., [14], [38], [53], and [56]). The model presented in this chapter considers the

inventory and distribution decisions similar to Barbarosoğlu and Arda [6].

This paper provides the following contributions to the pre-positioning literature:

� A two-stage stochastic programming model is developed considering the manufacturer’s

perspective.

� The model takes into account the additional production costs incurred during the first

and second stages, transshipments from other retailers in addition to direct shipments

from the manufacturer.

5



Chapter 2

Minimax EOQ Policies with Demand Surge, Lead-Time and Lost Sales

2.1 Introduction

Many organizations such as FEMA and the Red Cross have been instrumental in pro-

viding disaster relief assistance to residents that have been affected by flooding, hurricanes,

and other catastrophic storms. These organizations set up shelters and pre-position supplies

to respond to the affected area as soon as possible after a storm has passed through. While

these organizations have provided assistance to millions of disaster victims, the success of

disaster relief efforts also depends heavily upon local retailers.

Retailers are an important part of the humanitarian relief supply chain because they

stockpile items that are consumed directly by victims. Consider that organizations such

as FEMA recommend that coastal residents prepare a survival kit at the beginning of the

hurricane season ([1]), which begins June 1st. However, most coastal residents do not gather

these items until they are certain an observed storm will make landfall. In 2010, the National

Hurricane Survival Initiative surveyed residents from the coast of Virginia to Texas and dis-

covered that 47 percent of the polled residents did not have a hurricane survival kit, which

is three day’s worth of water, food, and medicines for each family member [27]. Coastal resi-

dents or consumers typically wait until the last minute to gather supplies, and unfortunately,

many retailers adopt the same attitude regarding their preparation for a possible emergency

supply demand surge. As a result, residents are more susceptible to the risks posed by se-

vere storms or other hazards. Additionally, stockout of items penalize retailers in terms of

lost sales costs and possibly long term effects related to loss of customer goodwill. While

preparation is the residents’ responsibility, they can only prepare as well as the retailers that

provide the supplies.

6



In order to improve preparation efforts for a possible spike in demand for emergency

supplies that often accompanies disaster relief operations, this paper presents an approach

that allows the retailer to compare reactive and proactive inventory strategies. We consider

reactive and proactive inventory control policies for commodities such as food, water, and

over the counter medicines and supplies such as batteries and flashlights. Since these types

of items are typically characterized by a steady demand rate with minimal variation un-

der normal conditions, we assume an underlying continuous review inventory control policy,

particularly the economic order quantity. We do not specifically address demand for gas-

powered generators, which are slower moving items on a day-to-day basis. A newsvendor

or periodic review policy would be more appropriate for this purpose. We also evaluate

the effectiveness of the continuous review inventory control policy under storm uncertainty

according to the minimax decision criterion as opposed to the more mainstream expected

value criterion. Disruption management strategies based on the expected value criterion are

appropriate when planning for frequently occurring disruptions in which meaningful fore-

casts could be generated based on sufficient historical data. However, our focus in this paper

is severe storms, namely hurricanes or tropical storms, as well as winter storms. For these

and other extreme events, forecasts are less meaningful compared to more frequent disrup-

tion events. Interestingly, distribution free approaches to proactive disruption management

planning are a rare occurrence in the research literature. Existing proactive approaches to

disruption management are almost exclusively based on expected value criterion, which is

not appropriate for rare disruption events as described above. On the other hand, existing

approaches to disruption management that do apply to rare events are almost exclusively re-

active strategies. This paper investigates both reactive and proactive disruption management

policies for rare events that do not depend on unreliable forecasts. We extend Lodree’s [16]

work by incorporating lost sales and a non-zero lead-time into the model, and we seek to

answer the following questions:

7



Question 2.1 How does the lead-time and lost sales affect the strategy decision?

Question 2.2 What circumstances dictate the strategy decision?

Question 2.3 How does each parameter affect the strategy decision?

It should be noted that this paper does not intend to show how the retailers can always

meet their customers’ needs during a crisis, but we demonstrate that there are circumstances

when it is beneficial for retailers to be prepared for a possible demand surge before a storm

affects their area. As a result, it might improve consumers’ ability to obtain the supplies

that they need to prepare for a storm. The paper is organized as follows: literature review,

model formulation, results, and summary and future extensions.

2.2 Literature Review

Supply and demand disruptions caused by events such as strikes, natural disasters,

unreliable suppliers, and machine breakdowns within the context of production, operations,

and supply chain management have been extensively researched in the literature. As a result

of disruptions, lost sales or backorders are common occurrences depending on the length of

the disruption.

Supply disruptions are characterized as an interruption in a supplier’s operations, which

means that the supplier becomes unavailable or unable to fill orders for various reasons

from strikes to machinery breakdowns. One of the earliest papers to address disruptions

and lost sales computed the percentage of unmet demand in a production system as a

result of a disruption [39]. Several papers have also concentrated on supply disruptions

within a production system and determined periodic review (e.g., [42], [34]) and continuous

review inventory policies ([41]). In relation to our model, Parlar and Berkin [46], Berk

and Arreola-Risa [9], Snyder [60], and Heimann and Waage [23] developed economic order

quantity inventory models considering supply disruptions. Recently, Qi et al. [50] found

an optimal order quantity when the retailer and supplier both face disruptions where the
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retailer’s disruption is a loss of inventory. The focus of this literature review will mainly be

on inventory models that consider demand disruptions, lead-time, and lost sales as well as a

brief review of minimax inventory models.

2.2.1 Demand Disruptions

Demand disruptions have been addressed as periods of no demand ([65]), fluctuating

demand ([61], [11]), and a surge in demand ([16], [35], [55]). Brill and Chaouch [11] found

results to support their claim that an adjustment should be made to an EOQ policy when

a major disruption occurs, but if the disruption is small, no adjustment is necessary. Ross

et al. [55] developed time-dependent policies for disruptions caused by a surge in demand.

Within the disaster management literature, Lodree and Taskin [35] compared the newsvendor

solution to the optimal inventory level they determined for a one-time decision for retailers

that were considering stocking up before a storm. However, the model can be applied to

any type of demand disruption that has a forecast associated with it. Using optimal control,

Lodree and Taskin [35] determined when retailers should increase their order quantity of

emergency supplies. In addition, Taskin and Lodree [62] determined how a retailer should

adjust their inventory level in anticipation of a demand surge that will occur during hurricane

season based on estimated demand that is a convolution of current demand and an estimate

of demand for hurricane season. Lodree [16] presented a model to determine the retailers’

ordering strategy for emergency supplies when they are faced with an uncertain demand

surge caused by a forecasted storm. He used minimax decision criterion to determine the best

ordering strategy, which is contrary to the approach in the demand and supply disruption

literature. Typically, long run approximations are used to determine order quantities in

order to alleviate the effects of a demand or supply disruption (e.g., [46], [23]). Similar to

the model presented in Lodree [16], we are considering infrequent, unpredictable storms,

and it is not appropriate to use these types of approximations as previously mentioned.

In addition, each storm is unique with different characteristics such as the severity of the
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storm, how long people may potentially be confined to their homes, etc. Therefore, the same

approximation for an order quantity cannot be applied to each storm. We handle this issue

by using Lodree’s [16] approach of employing minimax decision criterion to aid the retailer

in determining whether they should consider adopting a reactive (maintain order quantity)

or proactive (increase order quantity) strategy regarding inventory control policies before an

uncertain demand surge.

2.2.2 Minimax Decision Criterion

Lastly, we will briefly review a sample of minimax models in the inventory control lit-

erature. Scarf [58] developed the first distribution free model by determining the demand

distribution with a known mean and variance that would maximize the minimum profit.

Several authors have extended Scarf’s research by increasing the number of observed periods

([2]), proving Scarf’s ordering rule is optimal for the newsboy problem ([19]), determining

optimal (Q, r) policies ([28], [18]), and determining the ordering policy using linear program-

ming ([20]). By applying minimax decision criterion, Yu [68] solved the EOQ problem with

a random demand rate, order cost, and holding cost using an efficient linear time algorithm.

He demonstrated the many advantages of the robustness approach compared to the stochas-

tic approach. With respect to our model, the only other paper known to have used minimax

decision criterion within the context of disruption management is Lodree [16].

The main contribution of this paper is to provide a general decision framework that

retailers can utilize to determine when it is advantageous to increase their order quantity

before an uncertain demand surge. We provide an ordering strategy supported by minimax

decision criterion instead of a specific inventory policy, which is contrary to other literature

addressing demand disruptions and lost sales. If the retailer’s objective is to minimize the

cost for the worst outcome, the results given by minimax decision criterion will be more

useful than determining an inventory policy that minimizes average total cost.
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2.3 Model Formulation

2.3.1 Model Assumptions

The inventory model presented in this paper extends the model presented in Lodree [16],

which is based on an underlying continuous review model, and more specifically, the EOQ

model. We assume that if the disruption does not occur, the retailer employs an EOQ

ordering policy. The EOQ model is extended to consider how a change in the order quantity

will improve the retailers’ costs if a disruption occurs. If the disruption occurs, we determine

the conditions that promote increasing the current order quantity (EOQ) to accommodate

a surge in demand by using minimax decision criterion. In addition, lead-time is considered

in the model, and we assume that retailer will choose a reorder point that will minimize lost

sales. However, it should be noted that we are not focused on finding an optimal reorder

point or quantity, but determining the strategy that minimizes the retailers’ maximum cost.

The retailer may decide to adopt a reactive, R, inventory control strategy meaning that

the current order quantity will not be changed in response to learning about a potential

demand disruption or surge. After the demand surge begins, the retailer will have the op-

portunity to modify the order quantity, which will also alter the reorder point. On the other

hand, she may choose to be proactive, P , where the order quantity is increased in anticipa-

tion of a demand surge. If the disruption does not materialize, she will decrease the order

quantity to the normal order quantity (EOQ) after it is certain the demand surge will not

occur. It should be noted that the order quantity received before the demand disruption oc-

curs is based on the strategy selected before the first cycle begins. Please refer to Table 2.3.1

for the list of model assumptions in addition to the following EOQ model assumptions: con-

stant lead-time, known demand for disruption and normal conditions, constant demand, and

constant ordering cost.

A few of the model assumptions generate further explanation, which we will address

in this paragraph. We assume that the lead-time is short because the types of items that
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Table 2.3.1: Chapter 2 Model Assumptions
1. Single, fast-moving, non-perishable item is considered.
2. Lead-time is short.
3. Backorders are not allowed.
4. Order quantity under normal conditions is EOQ.
5. Reliable and adaptable supplier
6. Demand surge occurs during first inventory cycle.
7. Time horizon for disruption is known.
8. Time horizon for demand surge is long.
9. Retailers will not incur lost sales if they are proactive.
10. Order quantity (q) and number of orders (m) are non-integer valued.
11. Reordering decisions are based on strategy selection.
12. The one source of uncertainty is the occurrence of a disruption.

are considered are fast-moving items such as bottled water. Backorders are not allowed

because customers will not wait for the next order to arrive. In addition, we assume that

the demand surge occurs during the first inventory cycle meaning retailers make a decision

beforehand to receive either a modified order quantity or the EOQ at the beginning (t = 0)

of the cycle containing the possible demand surge. The time horizon considered is longer

than a usual inventory cycle because retailers would not be concerned about a negligible

disruption. An additional note about reordering is that the retailer may have to reorder

before the disruption is expected to occur. Therefore, when a retailer selects the proactive

strategy, she will reorder based on the assumption that the disruption will occur. On the

other hand, if the retailer decides to maintain her order quantity, she will reorder based on

the assumption that the disruption will not occur. This will be discussed further in the

sections regarding the strategies.

2.3.2 General Cost Equation and Model Notation

In order to determine the strategy supported by minimax decision criterion, cost equa-

tions were developed for all of the possible cases considering the model assumptions. The cost
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equations have the following notation (Please refer to Table 2.3.2 for the model notation):

TCD
S (~q) = A~m+ hI

D

S + sY D
S . (2.3.1)

Table 2.3.2: Chapter 2 Notation
Parameter Description
D ∈ {0, 1} 0, no disruption occurs or 1, disruption occurs
S ∈ {R,P} R, reactive strategy or P , proactive strategy
~q ∈ {qi, qi+1, ..., qM} ordering policy
qi ∈ {qE, qR, qP} order quantity i
qE economic order quantity
qR disruption order quantity for R
qP disruption order quantity for P
mi sum of the number of orders for each qi
A ordering cost
h holding cost (per unit/per unit time)

I average inventory level
s lost sales cost (per unit)
Y number of lost sales units
T1 time when disruption begins
T2 time when disruption ends
λ normal demand
λD surge demand

If the retailer chooses a reactive strategy and a demand surge does not occur, the

retailer’s cost will be TC0
R(~q); if a disruption does occur, the cost is TC1

Rj
(~q). If a reactive

strategy is selected, there are four different cost equations for the outcome, D = 1, which

are dependent upon the lead-time denoted by j ∈ {1, 2, 3, 4}. Similarly, the cost functions

for the proactive strategy are TC1
P (~q) and TC0

Pk
(~q) where k ∈ {1, 2, 3, 4}.

2.3.3 Minimax Decision Criterion

We apply minimax decision criterion to the cost equations developed for each combina-

tion of strategy and outcome to determine the strategy that minimizes the maximum cost.
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The general minimax formulation is shown in Eq. (2.3.2).

min
S∈{R,P}

max
D∈{0,1}

min
~q∈Q

TCD
S (~q), (2.3.2)

where

Q =
M∑
i=1

qimi = DT and I(t) ≥ 0 ∀ t ∈ [0, T2]

� Q = solution space for inventory policies

� qi = order quantity

� mi = number of orders of qi

� M = number of times qi changes

� DT = total demand fulfilled during time horizon

First, the inventory policies that minimize the cost for each of the cases are selected by

finding ~q, which is based on the strategy. Then, the cost function for the outcome that

maximizes the cost for each strategy is selected meaning that the choices are narrowed down

to two, a maximum cost equation for the reactive strategy and a maximum cost equation for

the proactive strategy. It should be noted that the cost equation used for the comparison

between the reactive disruption case (j) and proactive no disruption case (k) is based on

the parameters meaning two cost equations are compared for each strategy, which are no

disruption and disruption. Lastly, the maximum cost for each strategy is compared, and the

strategy with the smallest maximum cost is selected.

2.3.4 Reactive Strategy

In this section, we develop cost equations for each possible case, give the optimal dis-

ruption order quantity, and determine the maximum cost equation for the reactive strategy.

Four demand disruption cases are presented and the costs are compared to the no disruption

case, which is a finite horizon EOQ model.
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Disruption Cases

Based on our assumptions, the lead-time (L) and the time when the disruption begins

(T1) create four cases when a demand surge occurs. In addition, it is assumed that the time

horizon for the demand surge is long (i.e., T1 + L ≥ T2), so we only consider cases that

require the retailer to place at least one order of the disruption order quantity meaning the

lead-time is shorter than an inventory cycle regardless of whether the disruption occurs.

Case 1: qE−λT1
λD

≤ L ≤ qE−λT1
λ

The inventory level and order quantities over the time horizon are shown in Figure 2.3.1 for

Case 1. The inequality for the values of L gives the range of lead-time values that create the

situation where the retailer normally reorders after the disruption has begun and the lead-

time causes lost sales to occur. The lead-time is longer than the time between T1 and t1R

(time when the order is depleted). In a typical EOQ model, the retailer would reorder when

the inventory level is λL, and in this case, the reorder point will occur after the disruption

has begun indicating a short lead-time. We assume that the retailer places her order at T1

instead of waiting until the inventory level reaches λL. If the retailer waits to place her next

order when the inventory level reaches λL, she will incur higher lost sales costs, which is why

we assume the order is placed at T1. The retailer will increase her order quantity to qR at

T1 in order to meet demand during the remainder of the disruption. When the first order of

qR arrives at T1 + L, it will be after the inventory has been depleted at t1R and the retailer

will experience lost sales.

The ordering policy consists of two components, which are the order quantity received

at t = 0 (q1 = qE), and the order quantity received after the disruption has begun (q2 = qR).

After the retailer receives the order of qR, she will not incur lost sales for the remainder of

the disruption. We determined the number of orders, mi, by determining the total demand

that will be met by the retailer (excluding lost sales) and dividing by the order quantity, qi.

The values of m are as follows: m1 = λT1+λD(t1R−T1)
qE

and m2 = λD(T2−T1−L)
qR

. After inserting
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Figure 2.3.1: Reactive Strategy with Disruption: Case 1

the values for ~q and m into Eq. (2.3.2), we derived Eq. (2.3.3) in Appendix A.1.

TC1
R1

(qE, qR) = A

[
λT1

qE
+
λD(t1R − T1)

qE
+
λD(T2 − T1 − L)

qR

]
(2.3.3)

+h

(
qEt1R

2
+
qR(T2 − T1 − L)

2

)
+ sλD(T1 + L− t1R)

Case 2: L ≤ qE−λT1
λD

In Case 2, the lead-time is such that the retailer does not experience lost sales, and her

typical reorder point occurs after T1 meaning the lead-time is shorter than the lead-time in

Case 1. Again, we assume that the retailer will place an order at T1 and receive it when the

first order has been depleted at t1R. This case is similar to Case 1 as shown in Figure 2.3.1

with the exception of no lost sales. Eq. (2.3.4) gives the cost equation for Case 2.

TC1
R2

(qE, qR) = A

(
λT1

qE
+
λD(t1R − T1)

qE
+
λD(T2 − t1R)

qR

)
(2.3.4)

+h

(
qEt1R

2
+
qR(T2 − t1R)

2

)

Case 3: L ≥ qE
λD

+ qE
λ
− T1

The third case represents when the lead-time causes the time to reorder to occur before

T1. We assume that the retailer places another order of qE at her normal time to reorder
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because she has selected a reactive strategy. She maintains her order quantity because she

is ordering before it is known that the disruption will occur as shown in Figure 2.3.2. In

addition, we assume that the retailer places an order of qR at T1, and she will receive it at

T1 +L, which is after the second order has been depleted. This creates a second time period

of lost sales. Once she receives her order of qR, she will not incur lost sales for the remainder

of the disruption. The cost equation for Case 3 is shown in Eq. 2.3.5.
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Figure 2.3.2: Reactive Strategy with Disruption: Case 3

TC1
R3

(qE, qR) = A

(
λT1

qE
+
λD(t1R − T1)

qE
+ 1 +

λD(T2 − T1 − L)

qR

)
(2.3.5)

+h

(
qEt1R

2
+
qE

2

2λD
+
qR(T2 − T1 − L)

2

)
+ sλD

(
T1 + L− qE

λD
− t1R

)

Case 4: qE
λ
− T1 ≤ L ≤ qE

λD
+ qE

λ
− T1

The fourth and final case that we consider for the reactive strategy with a disruption is similar

to the third case because the retailer places her second order of qE before T1. However, the

lead-time is such that lost sales are not incurred after the second order is received. We

assume that the retailer chooses to order qR so that she receives it when the second order is

depleted at qE
λD

+ qE
λ

meaning the order will be placed after T1. Please refer to Eq. 2.3.6 for

17



the cost equation for Case 4.

TC1
R4

(qE, qR) = A

(
λT1

qE
+
λD(t1R − T1)

qE
+ 1 +

λD(T2 − qE
λD
− qE

λ
)

qR

)
(2.3.6)

+h

(
qEt1R

2
+
qE

2

2λD
+
qR(T2 − qE

λD
− qE

λ
)

2

)
+ sλD

(qE
λ
− t1R

)

We determine the optimal order quantity during the disruption by applying the first order

condition to each cost equation. The disruption order quantity is the same for each case,

and it is similar to the EOQ (qE) with the disruption demand rate, λD, replacing λ as shown

in Eq. (2.3.7).

qR =

√
2AλD
h

(2.3.7)

No Disruption Case

If the disruption does not occur, we have a finite horizon EOQ model. This means that

the disruption does not occur at T1 and the demand rate is λ during the time horizon [0, T2].

Please refer to Eq. 2.3.8 for the cost equation.

TC0
R(qE) = A

(
λT2

qE

)
+ h

(
T2qE

2

)
(2.3.8)

For the following proposition, the proofs are provided in Appendix A.2.

Proposition 1 When S = R,

max
D∈{0,1}

min
~q∈Q

TCD
S (~q) = TC1

Rj
(~q) ∀ j ∈ {2, 3, 4}

.

Proposition 1 states that when the reactive strategy is selected, the maximum cost is incurred

when a disruption occurs. There are a few conditions to this statement, though. For the

disruption cases, j = {2, 3, 4}, it is always clear that the cost is greater than if there is no
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disruption. If the disruption case j = 1 occurs, we are able to find that the cost is greater

than the case when there is no disruption if the lost sales cost satisfy the inequality, s ≥ hqR
λD

.

Overall, retailers can expect to incur the maximum cost if a disruption occurs, and a reactive

strategy is selected.

2.3.5 Proactive Strategy

Disruption Case

When the retailer selects a proactive strategy and the demand surge occurs, there is

only one case to consider. Regardless of whether the time to reorder is before or after T1, the

retailer will order qP , which is the optimal order quantity during the disruption if a proactive

strategy is selected. The retailer will base the ordering decision on the assumption that the

disruption will occur. Please refer to Figure 2.3.3 for the representation of the disruption

case for the proactive strategy.
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Figure 2.3.3: Proactive Strategy with Disruption

Eq. (2.3.9) gives the cost equation for the proactive strategy with a demand surge.

TC1
P (qP ) = A

(
DT

qP

)
+ h

(
T2qP

2

)
, (2.3.9)

where:

DT = λT1 + λD(T2 − T1)
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By applying the first order condition to Eq. (2.3.9), we are able to determine the optimal

order quantity for the proactive strategy given in Eq. (2.3.10).

qP =

√
2ADT

hT2

(2.3.10)

No Disruption Cases

If no disruption occurs, four cases are associated with the proactive strategy. The four

cases are dependent upon the lead-time, T1, and T2.

Case 1: L ≥ qP−λT1
λD

and T2 ≥ 2qP
λ

In this case, the lead-time is longer than the time between when the disruption begins and

the first order is depleted, which means that the retailer must reorder before being certain

that the demand surge will occur. Because the retailer has selected a proactive strategy,

she will reorder based on the assumption that the demand surge will occur as shown by

the two orders of qP in Figure 2.3.4. In addition, the retailer may delay the order to be

received at qP
λ

to decrease holding costs. We assume this change can be made at no penalty

because the supplier is adaptable and reliable. However, the supplier is not be able to rush

orders to prevent lost sales in previous cases. Also, the time horizon is such that the retailer

will switch her order quantity after T1 to qE. The cost equation for Case 1 is given in Eq.

(2.3.11).
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Figure 2.3.4: Proactive Strategy with No Disruption: Case 1
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TC0
P1

(qP , qE) = A

(
2 +

λT2 − 2qP
qE

)
+ h

(
qP

2

λ
+
qE
(
T2 − 2qP

λ

)
2

)
(2.3.11)

Case 2: L ≥ qP−λT1
λD

and T2 ≤ 2qP
λ

Case 2 is similar to Case 1 with the exception that the time horizon ends before the retailer

receives an order of qE. Essentially, the retailer receives at most two orders of qP . The cost

equation for Case 2 is given in Eq. (2.3.12).

TC0
P2

(qP ) = A

(
λT2

qP

)
+ h

(
qPT2

2

)
(2.3.12)

Case 3: L ≤ qP−λT1
λD

and T2 ≥ qP
λ

In the third case, the lead-time causes the time to reorder to occur after T1. This leads

the retailer to change her order quantity to qE, and she will reorder so that she will receive

the order of qE at qP
λ

. Figure 2.3.5 illustrates Case 3, and the cost equation is given in

Eq. (2.3.13).
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Figure 2.3.5: Proactive Strategy with No Disruption: Case 3

TC0
P3

(qP , qE) = A

(
1 +

λT2 − qP
qE

)
+ h

(
qP

2

2λ
+
qE
(
T2 − qP

λ

)
2

)
(2.3.13)
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Case 4: L ≤ qP−λT1
λD

and T2 ≤ qP
λ

Case 4 is similar to Case 3 except there is only one order of qP because the disruption ends

before the first order is depleted. Eq. (2.3.12) can be used to determine the cost for Case 4.

Proposition 2 When S = P ,

max
D∈{0,1}

min
~q∈Q

TCD
S (~q) = TC1

P (~q)

.

Similar to the reactive strategy, we are able to find that the maximum cost equation is always

the disruption cost equation when it is compared to the no disruption cost equations. Please

see Appendix A.3 for the proof of Proposition 2.

2.4 Results

It is impossible to analytically show that one strategy is always preferred over the

other based on minimax decision criterion, so we performed a numerical experiment and

sensitivity analysis. Our analysis enabled us to better understand the conditions when it is

advantageous to select either the reactive or proactive strategy when faced with a possible

demand disruption.

2.4.1 Numerical Experiment

In order to determine the conditions associated with each strategy selection, a 28 ex-

perimental design was created. Table 2.4.1 contains the set of values tested for each of the

eight parameters. We ensured that the values tested did not violate any of the previously

mentioned assumptions. For example, we checked that the lead-time was less than each type

of inventory cycle (depending on the demand rate and order quantity) and ensured that T2

was greater than the time when the first order is depleted (t1R and t1P ), which depends on

the strategy selected. In Table 2.4.2, we provide a sample of our results. The table contains
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Table 2.4.1: Values Tested for 28 Experiment
Parameter Low High

λD 50 100
T2 6 12
h 1 2
A 100 200
s 10 20
L 0.5 1
λ 10 15
T1 2 2.5

information regarding the description of the value (low or high) for each parameter, the cost

for each outcome associated with the strategy, and the best strategy for the given condi-

tions. When we performed the numerical experiment with the values in Table 2.4.1, there

Table 2.4.2: Sample Results for 28 Experiment
λD T2 h A L s λ T1 Decision
L L L L L L L L REACTIVE
L L L L L L L High PROACTIVE
L L L L L L High L REACTIVE
L L L L L L High High PROACTIVE
L L L L L High L L REACTIVE
L L L L L High L High PROACTIVE
L L L L L High High L REACTIVE
L L L L L High High High PROACTIVE

were cases with lost sales and no lost sales. The reactive strategy was selected for about 8%

of the tested combinations with lost sales. We found the reactive strategy combinations to

have the following characteristics if lost sales were incurred:

� High lost sales cost were allowed

� Short lead-time

� Small λD and T1

� tr ≥ T1

After analyzing the characteristics of the reactive strategy combinations, we explored the

explanations for each of the characteristics. Surprisingly, a high lost sales cost (s) did not

automatically mean that a proactive strategy was more cost effective. If the reactive strategy

was selected when s was at its high value, the amount of lost sales was minimal. In addition,
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the reactive strategy was predominantly chosen if the surge demand was at its smallest value,

which resulted in less lost sales. As expected, if the lead-time was short, the time to reorder

(tr) was after T1 supporting the reactive strategy. As a result, the retailer was able to change

her order quantity to qR at T1 and ensure no additional lost sales after she received the next

order.

When no lost sales were incurred, the proactive strategy was selected almost 50% of

the time. The ordering costs affected the selection of the proactive strategy in these circum-

stances. In our experiment, the reactive strategy always yielded higher ordering costs than

the proactive strategy while the proactive strategy had higher holding costs. With the values

tested, the reactive strategy was preferred when the difference in the number of orders was

small meaning there was a small difference in the ordering costs. The ordering costs affected

the strategy selection more than the holding costs, which is to be expected because A ≥≥ h.

In addition, when lost sales were not incurred, the time to reorder was after T1, which also

means that the lead-time (L) was short.

2.4.2 Sensitivity Analysis

In order to better understand the effect of each parameter on the strategy selection,

we performed a sensitivity analysis. The parameter in question was varied so that it did

not violate the model assumptions while the other parameters were kept at their low values

given in Table 2.4.1. We will first review the results of the parameters that incurred lost

sales for all values tested.

Parameters that Incurred Lost Sales Only

When T2 and s were tested, the reactive strategy was preferred for every tested case.

Through the results, we concluded that the lost sales cost and the length of the disruption

do not have a significant effect on the strategy selection.
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The time when the disruption begins (T1), the normal demand (λ), and the disruption

demand (λD) yielded reactive strategies at the lowest values tested. Intuitively, one would

expect the reactive strategy to be selected if the demand and disruption demand are both

small because the retailer would experience a smaller number of lost sales. In addition, if T1

is small, this means that tR ≥ T1, so the retailer will be able to change her order quantity

to qR and thus, only incur lost sales for one time period.

Parameters that Incurred Lost Sales and No Lost Sales

When the lead-time was tested at smaller values, there were no lost sales and mini-

max decision criterion supported a reactive strategy. On the other hand, when the retailer

incurred lost sales, the reactive strategy was selected if the lead-time was small meaning

that the number of lost sales was small. Otherwise, as the lead-time increases, the proactive

strategy is favored.

The lost sales cases were separated from lost sales in Figure 2.4.1 in order to show the

values of A where lost sales are present, which is when A is less than 100. In addition, there

is a greater difference between the total cost when lost sales are incurred, and we wanted

to highlight this finding. According to our model, the retailer experiences lost sales when

the order cost is small (or less than 100). As shown in Figure 2.4.1, the retailer should

choose a proactive strategy until the order cost reaches 100. Then, the retailer should select

a reactive strategy for a small range of values when lost sales are incurred. For these values

of A, the number of lost sales is very small, which is why the retailer may select a reactive

strategy. As the order cost increases, the retailer does not incur lost sales because the order

quantities increase while the lead-time remains the same. In general, one would expect for

the retailer to always choose a reactive strategy when they do not anticipate incurring lost

sales. However, we found that as the order cost increases, the proactive strategy is more cost

effective. It is apparent that the difference in the costs for each strategy is very small for

most values of A as shown in Figure 2.4.1, so the retailer should select the strategy that will
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Figure 2.4.1: The Effect of the Order Cost, A

best suit the circumstances. In all of the cases when the retailer does not incur lost sales,

the reactive strategy always has a larger order cost than the proactive strategy. Figure 2.4.2

illustrates that as the difference between the number of orders increases, it is better to select

the proactive strategy when there are no lost sales.

In contrast to the order cost, there were no lost sales incurred when the holding cost

was small, but as the holding cost increased, lost sales were incurred. When there were

no lost sales, the proactive strategy was preferred with the exception of a small range of h

values that yielded a reactive strategy. When the value of h causes a switch from no lost

sales to lost sales, there is a small range of h values that lead to a reactive strategy as shown

in Figure 2.4.3. As h increases, the chosen strategy is proactive. The amount of lost sales

increases because the order quantities decrease, thus, the proactive strategy is selected. The

lost sales cost is more expensive than the holding cost, so the difference in cost continues
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to increase until tr ≤ T1, and then, it begins to decline as shown in Figure 2.4.3. When

tr ≤ T1, the retailer will reorder based on her strategy and if she is reactive, she might incur

two periods of lost sales. However, the values we tested did not lead to two time periods

of lost sales. The decrease in the difference in cost is attributed to the decrease in holding

costs because with a reactive strategy, the retailer will hold two orders of qE, and then, a

smaller number of qR orders than if she had only placed one order of qE. Plus, during the

time period of lost sales, holding costs will not be incurred.

2.5 Summary and Future Extensions

The numerical experiment and sensitivity analysis provided us with valuable conclusions

about the conditions that warrant each strategy selection. The following is a summarized

list of our findings:
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1. Lead-time has a greater effect on strategy selection than lost sales cost.

2. It is possible to select the reactive strategy despite lost sales when lead-time is short.

3. It is possible to select the proactive strategy when there are no lost sales.

Perhaps the most interesting finding is that the lead-time has a greater effect than the lost

sales cost on the strategy selection, which was proven in the sensitivity analysis. The values

of T2 and s are arbitrary compared to the lead-time. As a practical application, the retailer

can determine which strategy she should choose based on the lead-time. We also found

that the proactive strategy is favored for most circumstances even when there are no lost

sales. A retailer should select the proactive strategy if her holding or ordering costs are high

regardless of whether lost sales occur. In summary, the retailer should adopt a proactive

strategy unless the lead-time is short and the other parameters have small values.
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In order to capture the essence of a disruption, the model could be extended in several

ways such as including a variable lead-time. During the demand surge, some suppliers may

experience many orders from other retailers, thus decreasing their ability to fulfill orders

in a timely manner. In addition, we could explore optimizing the reorder point because we

assume that it is optimal for the retailer to not incur lost sales if possible. Lastly, an ordering

strategy based on a retailer’s target service level could be determined.

Retailers play a key role in helping communities prepare for a forecasted storm, and

their preparation is crucial. Through our research, we were able to show situations where

it is beneficial for retailers to adopt a proactive strategy as well as a reactive strategy. In

most cases, it is better for them to select a proactive strategy, which will in turn assist the

community in their preparations because the retailers will be able to provide the necessary

supplies. However, there are situations when it is best to select the reactive strategy, and if

lost sales are incurred, it is a very small percentage, so most customers’ needs will be met.

All in all, our approach provides a practical tool for retailers to use when they are faced with

an uncertain demand surge.
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Chapter 3

Minimax and Minimax Regret Inventory Control Policies Regarding Demand Disruptions

and Damaged Inventory

3.1 Introduction

On September 13, 2008, residents in Galveston, Texas, assessed the damage that Hurri-

cane Ike left in its wake. Many parts of Galveston were unrecognizable, and power outages

were widespread on the island. The residents who stayed behind despite warnings to evac-

uate were running low on basic commodities such as gas for generators and non-perishable

food. Most retailers were unable to reopen quickly with the exception of one Kroger store

that opened it doors 3.5 days later ([48]). The purpose of this paper is to assist retailers

with inventory policy decisions during and after a forecasted storm.

In this paper, we focus on two disruptions that occur consecutively: a period of no

demand leading into a surge in demand for emergency items. Chapter 2 captures the disrup-

tion before the storm and provides insight into the conditions that support increasing the

order quantity before the disruption occurs using minimax decision criterion. In Chapter 3,

we evaluate two uncertain disruptions that occur during and after the storm by applying

minimax and minimax regret decision criteria to provide retailers with an inventory policy

depending on the objectives they strive to meet. Figure 3.1.1 illustrates the time horizon

considered for Chapters 2 and 3. Chapter 2 covers the time horizon between t = 0 and

t = T2, while Chapter 3 covers the time horizon between t = T2 to t = T4. Please note that

the demand rate for the disruption between T3 and T4 is greater than the demand rate for

the disruption between T1 and T2. It is assumed that all customers will not stock up on

emergency supplies before a possible storm, but if the storm occurs, all customers will be in

need of emergency supplies. In this paper, we will refer to the disruption between T2 and
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T3 as the first disruption while the second disruption refers to the demand surge between T3

and T4. We assume that T2 = 0 because we are considering the last two disruptions separate

from the disruption between T1 and T2.
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Figure 3.1.1: Time Horizon for Demand Disruptions

In the supply disruption literature, it has been shown that retailers should take disrup-

tions into account when determining inventory control policies (e.g., [46], [9], [50]). For the

time horizon considered in this paper, there are key factors that must be examined to deter-

mine inventory policies: the likelihood of the forecasted storm affecting the area and causing

the retailer to close, the likelihood of damaged inventory caused by a storm, the length of

time the retailer will be closed, the lead-time for emergency items, and the length of time

the demand surge will last after the storm. Our intention is to provide retailers with an

inventory policy based on two different criteria: minimax and minimax regret. If the retailer

decides to hold inventory during the first disruption, the inventory policy will be determined

based on the amount that the retailer assumes will be damaged. On the other hand, if the

retailer anticipates that all of the inventory will be lost, she will not hold inventory during

the first disruption. We seek to answer the following research questions using minimax and

minimax regret:

Question 3.1 Under what conditions should retailers hold inventory if they expect a storm

to affect their area?
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Question 3.2 If the retailer should hold inventory, how much inventory should be held

considering a percentage may be damaged?

Question 3.3 How does each parameter affect the inventory policy?

In the next section, we will review relevant disruption literature in addition to a brief

summary of minimax and minimax regret literature. After the literature review, the general

model is presented followed by the cost equations for each outcome associated with the

inventory policies. Then, the results of the numerical experiment and sensitivity analysis

give insight into the inventory policy supported by each decision criterion. In closing, a brief

summary of the findings and possible extensions are provided.

3.2 Literature Review

Supply and demand disruptions caused by events such as strikes, natural disasters,

unreliable suppliers, and machine breakdowns within the context of production, operations,

and supply chain management have been extensively researched in the literature. As a result

of disruptions, lost sales or backorders are common occurrences depending on the length of

the disruption.

Supply disruptions are characterized as an interruption in a supplier’s operations, which

means that the supplier becomes unavailable or unable to fill orders for various reasons

from strikes to machinery breakdowns. One of the earliest papers to address disruptions

and lost sales computed the percentage of unmet demand in a production system as a

result of a disruption ([39]). Several papers have also concentrated on supply disruptions

within a production system and determined periodic review (e.g., [42], [34]) and continuous

review inventory policies ([41]). In relation to our model, Parlar and Berkin [46], Berk

and Arreola-Risa [9], Snyder [60], and Heimann and Waage [23] developed economic order

quantity inventory models considering supply disruptions. Recently, Qi et al. [50] found

an optimal order quantity when the retailer and supplier both face disruptions where the
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retailer’s disruption is a loss of inventory. The focus of this literature review will mainly be

on inventory models that consider demand disruptions, lead-time, and lost sales as well as a

brief review of minimax and minimax regret inventory models.

3.2.1 Demand Disruptions

Demand disruptions have been addressed as periods of no demand ([65]), fluctuating

demand ([61], [11]), and a surge in demand ([16], [35], [55]). Brill and Chaouch [11] found

results to support their claim that an adjustment should be made to an EOQ policy when

a major disruption occurs, but if the disruption is small, no adjustment is necessary. Ross

et al. [55] developed time-dependent policies for disruptions caused by a surge in demand.

Within the disaster management literature, Lodree and Taskin [35] compared the newsvendor

solution to the optimal inventory level they determined for a one-time decision for retailers

that were considering stocking up before a storm. However, the model can be applied to

any type of demand disruption that has a forecast associated with it. Using optimal control,

Lodree and Taskin [35] determined when retailers should increase their order quantity of

emergency supplies. In addition, Taskin and Lodree [62] determined how a retailer should

adjust their inventory level in anticipation of a demand surge that will occur during hurricane

season based on estimated demand that is a convolution of current demand and an estimate

of demand for hurricane season. Lodree [16] presented a model to determine the retailers’

ordering strategy for emergency supplies when they are faced with an uncertain demand

surge caused by a forecasted storm. He used minimax decision criterion to determine the best

ordering strategy, which is contrary to the approach in the demand and supply disruption

literature. Typically, long run approximations are used to determine order quantities in order

to alleviate the effects of a demand or supply disruption ([46], [23]). Similar to the model

presented in Lodree [16], we are considering infrequent, unpredictable storms, and it is not

appropriate to use these types of approximations. In addition, each storm is unique with

different characteristics such as the severity of the storm, how long people may potentially
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be confined to their homes, etc. Therefore, the same approximation for an order quantity

cannot be applied to each storm. We handle this issue by adopting the approach of employing

minimax decision criterion in addition to minimax regret to aid the retailer in determining

an inventory policy for two possible disruptions with two sources of uncertainty similar to

the method presented in Lodree [16].

3.2.2 Minimax Decision Criterion

Scarf [58] developed the first distribution free model by determining the demand distri-

bution with a known mean and variance that would maximize the minimum profit. Several

authors have extended Scarf’s research by increasing the number of observed periods ([2]),

proving Scarf’s ordering rule is optimal for the newsboy problem ([19]), determining optimal

(Q, r) policies ([28], [18]), and determining the ordering policy using linear programming

([20]). By applying minimax decision criterion, Yu [68] solved the EOQ problem with a ran-

dom demand rate, order cost, and holding cost using an efficient linear time algorithm. He

demonstrated the many advantages of the robustness approach compared to the stochastic

approach. With respect to our model, the only other paper known to have used minimax

decision criterion within the context of disruption management is Lodree [16].

3.2.3 Minimax Regret Decision Criterion

In addition to using minimax decision criterion, we will also apply minimax regret

decision criterion to the model. Minimax regret finds the minimum regret among the worst

case scenarios for each decision. Savage [57] first explored the minimax regret decision rule

to demonstrate its uses when making optimal decisions. Several authors used minimax

regret decision criterion when considering the distribution free newsvendor problem ([43],

[32], [64], [69]). Perakis and Roels [49] found solutions for the optimal order quantity that

minimize the maximum regret for not choosing optimally when the demand distribution has

partial information. Jammernegg and Kischka [29] considered two other risk factors in their

34



objective function to determine a robust solution for the order quantity. With respect to our

model, minimax regret decision criterion is applied to the objective function to determine the

ordering strategy that minimizes the maximum regret. The contributions of this paper to the

reviewed literature include: a general class of possible disruption cases with two sources of

uncertainty are considered and an ordering strategy is determined by applying minimax and

minimax regret decision criteria to an inventory disruption problem. In the next section, we

present the inventory model that will be evaluated using the two decision criteria previously

reviewed.

3.3 Model Formulation

3.3.1 General Model

The model presented in this paper closely resembles the EOQ model in that many un-

derlying assumptions for the EOQ model are included in the model presented in this section.

If no disruption occurs, the retailer’s inventory policy is the EOQ. However, the model con-

tains two sources of uncertainty that differentiate it from the EOQ model, which are the

occurrence of the two disruptions and the percentage of damaged inventory as a result of the

first disruption. In addition, the model includes lost sales if the retailer underestimates the

percentage of damaged inventory or decides not to hold inventory during the first disruption.

3.3.2 Model Assumptions and Notation

In this section, the notation shown in Table 3.3.1 will be discussed in addition to the

model assumptions. ~S, which is given in Eq. (3.3.1), represents the inventory policy selected

by the retailer and contains two decisions: the decision to hold inventory, and the amount

of inventory that will be held during the first disruption with assumptions made about

the amount of damaged inventory. S denotes the decision to hold (H) or not hold (NH)

inventory, while α represents the amount of inventory the retailer assumes will be damaged

during the first disruption. The list of possible decisions for ~S is given by Ω. If α < 1,
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Table 3.3.1: Chapter 3 Notation
Parameter Description
~S inventory policy
~D outcome
~q ∈ {q1, q2} ordering policy
q1 order quantity during first disruption
q2 order quantity during second disruption
qE economic order quantity
~n ∈ {n1, n2} number of orders of ~q
A order cost (per order)
h holding cost (per unit/per unit time)

I average on-hand inventory
z lost sales cost (per unit)
X number of lost sales units
y cost per unit of damaged inventory (purchase price)
W number of units of damaged inventory
θ percentage of damaged inventory
α percentage of inventory retailer assumes will be damaged
T3 time when first disruption ends
T4 time when second disruption ends
L lead-time
λ normal demand rate
λS surge demand rate

S = H, meaning the retailer assumes that all of the inventory will not be damaged, an order

quantity will be determined to attempt to combat lost sales. The retailer will not hold (NH)

inventory if α = 1 because it means that the retailer assumes that all of the inventory will

be damaged.

~S ∈ {S, α} (3.3.1)

S ∈ {H,NH} (3.3.2)

α ∈ [0, 1] (3.3.3)

Ω = {(H, 0), (H,α), ..., (NH, 1)} (3.3.4)

The notation for the first disruption is represented by ~D. The vector, ~D, has two entities,

D and Θ(D). D represents the occurrence of the disruption and the outcome space is
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D ∈ {d0, d1}. If no disruption occurs, D = d0, and if a disruption occurs, D = d1. Θ(D)

denotes the percentage of inventory that is damaged as a result of the disruption. Eqs. (3.3.5)-

(3.3.8) represent the outcome space for Θ(D) and ∆.

Θ(D) ∈ {Θ(d0),Θ(d1)} (3.3.5)

Θ(d0) = 0 (3.3.6)

Θ(d1) = {0, θ, ..., 1} (3.3.7)

∆ = {(d0, 0), (d1, 0), (d1, θ), ..., (d1, 1)} (3.3.8)

Please also note that the ordering policy consists of two order quantities as shown in

Table 3.3.1. We allow for different order quantities for each disruption if necessary. If a

disruption occurs and α < 1, we will explore two policies, q1 = q2 and q1 6= q2. If α = 1, the

retailer will not hold inventory, so q1 6= q2. As previously mentioned, if there is no disruption,

we assume that the retailer will place an order for the economic order quantity, qE, to be

received after it is certain that the first disruption will not occur meaning q1 > 0 or q1 = 0

and q2 = qE. The number of orders of each quantity is given by ~n and is determined by the

demand and order quantity; therefore, it is not a decision variable. The first entity, n1, will

either be 0 or 1 depending on the value for q1, and we allow n2 to be non-integer because it

accounts for the number of orders of q2 between the time when q1 is depleted or the retailer

receives q2 at L (depending on the inventory policy) and T4. The average on-hand inventory,

I, is determined by the number of orders of each order quantity. The number of lost sales

units given by X is determined by the length of time when the inventory level is zero and

the demand rate is greater than zero. Lost sales will occur if q1 = 0 or α < θ meaning the

retailer underestimated θ. The number of damaged units, W , is determined by q1 and the

percentage of units damaged, which is given by θ. The normal demand rate, λ, represents

the demand rate when the disruptions do not occur while λS represents the demand rate

during the second disruption.
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Table 3.3.2: Chapter 3 Model Assumptions
EOQ Assumptions
1. Lead-time is constant.
2. The retailer’s ordering policy does not include lost sales if q1 > 0.
3. Demand rate for surge is known.
4. All costs are constant.
Additional Assumptions
5. Single, fast-moving, non-perishable item is considered.
6. Supplier is reliable and adaptable.
7. The retailer will not be charged a holding cost and damaged inventory cost.
8. No backorders will be allowed.
9. The second disruption only occurs if the first one occurs.
10. If a disruption occurs, the retailer cannot place an order until t = T3.
11. The retailer will determine q2 after the first disruption begins.
12. Order quantity under normal conditions is EOQ.
13. First and second disruption time horizon is known.
14. Time horizon for demand surge is long (T4 ≥ T3 + L).

Table 3.3.2 provides a list of the assumptions for the model with the EOQ assump-

tions listed first followed by additional model assumptions. The EOQ model assumes all

parameters are known and lost sales are not allowed. If the retailer selects α based on the

assumption that all of the inventory will not be lost, she determines q1 such that lost sales

will not be incurred if θ = α. This means that the retailer will order more than the an-

ticipated demand to account for a percentage of the inventory being damaged during the

storm. We also assume that customers will be stocking up on fast-moving items such as

bottled water and canned goods to sustain them during the recovery period when drinking

water may be unsafe or electricity lines may be down. Also, if any or all of the inventory is

damaged, the retailer will not be charged a holding cost for the unusable items. Instead, she

will be charged the purchase price, y, for the items that were damaged if q1 > 0. We will

assume that the purchase price is greater than the holding cost. In addition, we do not allow

backorders if lost sales are incurred because customers will need items immediately after the

disaster is over, so if the items are unavailable, they will go to another retailer. Moreover,

the second disruption, which is characterized as a demand surge, will only occur if the first

disruption occurs. It is also assumed that if the first disruption occurs, the retailer will not
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be able to place an order of q2 until T3 because the retailer may not know the extent of the

damage or be able to place orders to the supplier until the disruption is over. Along the same

lines, Assumption 11 assumes that the retailer will determine q2 after the first disruption

begins because the retailer will know how to adjust q2, so that lost sales are not incurred for

the remainder of the time horizon. Lastly, the time horizon is assumed to be longer than

the time it takes to receive the first order of q2. Otherwise, the second disruption would be

negligible.

3.3.3 General Cost Equation

The general cost equation given in Eq. (3.3.9) is comprised of the ordering, holding,

damaged inventory, and lost sales costs.

TC
~D
~S

(~q) = A~n+ hI
~D
~S + yW

~D
~S

+ zX
~D
~S

(3.3.9)

where

W = θq1 q1 ≥ 0

X = max[0, λSL− (1− θ)q1] q1 ≥ 0

Before applying either of the decision criterion, we will find the inventory policy that mini-

mizes Eq. (3.3.9), and it is shown in Eq. (3.3.10).

MinTC
~D
~S

(~q) = min
(~q)∈Π

TC
~D
~S

(~q) (3.3.10)

where

(~q) ∈ Π, and

Π = {(~q) : n1q1 + n2q2 ≤ ΓΛ ∀ π, Λ ∈ {λ, λS}, Γ ∈ {T4, T4 − T3}}

39



Γ represents the amount of time that the demand rate is greater than zero while Λ represents

the demand rate during Γ. If the disruption occurs, Γ = T4 − T3 and Λ = λS, and if the

disruption does not occur, Γ = T4 and Λ = λ. The sum of the amount ordered during

the time horizon, n1q1 + n2q2, may be less than the total demand, which is given by ΓΛ.

The solution space accounts for the decision to hold or not hold inventory during the first

disruption. If the retailer decides not to hold inventory, the sum of the amount ordered

will be less than the total demand during the time horizon, and the retailer will experience

lost sales. After the solution that minimizes the cost equation for each combination of

outcome and inventory policy is determined, minimax and minimax regret decision criteria

are applied.

The general minimax formulation is presented first and is represented by Eq. (3.3.11).

First, the maximum cost equation is determined for each policy considering the outcomes

in ∆. Then, the minimum cost equation is found considering the maximum cost for each

policy.

min
~S∈Ω

max
~D∈∆

MinTC
~D
~S

(~q) (3.3.11)

Next, the minimax regret formulation is presented. The first step is to create a matrix with

columns representing the possible outcomes and rows representing the possible decisions for

q1 and q2 that minimizes the cost equation for each possible disruption outcome. If the

retailer decides to hold inventory, the amount held will be a quantity associated with a

disruption outcome meaning that q1 6= qE. The maximum regret formulation is given in

Eq. (3.3.12). Let Min∗TC
~D
~S

represent the minimum cost for each outcome, and please note

that the maximum regret is chosen for each decision in ~S. Please also note that Eq. (3.3.12)

finds the absolute value of the difference because the largest regret is determined by the

largest negative value. However, in order to dispel any confusion, we took the maximum of

the absolute value of the difference.

MaxMinTC
~D
~S

(~q) = max
~S
|Min∗TC

~D
~S

(~q)−MinTC
~D
~S

(~q) | (3.3.12)
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Lastly, the minimum regret is selected among the maximum regrets for each policy in Γ as

shown in Eq. (3.3.13).

min
~S∈Ω

MaxMinTC
~D
~S

(~q) (3.3.13)

3.3.4 Inventory Policy: Hold Inventory During 1st Disruption

The retailer bases her decision to hold inventory on the percentage of inventory that

is expected to be damaged by the storm. If the retailer underestimates the percentage of

damaged inventory, lost sales will be incurred. On the other hand, if the retailer has sufficient

on-hand inventory after the storm, she will meet customer demand and aid in the recovery

efforts.

Disruption Cases

If the retailer decides to hold inventory, there are three cases to consider if the disruption

occurs and two cases to consider if the disruption does not occur. The first case describes the

outcome where no lost sales are incurred, which occurs when (1− θ)q1 ≥ qL and qL = λSL.

The retailer will not incur lost sales if the on-hand inventory at T3 is at least qL to meet the

demand until the first order of q2 arrives. In this case, the retailer has an adequate amount of

on-hand inventory to meet demand after the first disruption ends and the second disruption

immediately begins as shown in Figure 3.3.1. The cost equation is given in Eq. (3.3.14).
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Figure 3.3.1: Hold Inventory with Disruption: Case 1
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TC1
(d1,θ)
(H,α)(q1, q2) = A

1 +
λS

(
T4 − T3 − (1−θ)q1

λS

)
q2

+ h(1− θ)q1T3 (3.3.14)

+h

(1− θ)2q1
2

2λS
+
q2

(
T4 − T3 − (1−θ)q1

λS

)
2

+ yθq1

The second case addresses the outcome in which lost sales are incurred where (1−θ)q1 ≤ qL.

The main difference between Case 1 and Case 2 is the inclusion of lost sales, which is caused

by the retailer ordering under the assumption that a smaller percentage of inventory will be

damaged (α < θ). Figure 3.3.2 illustrates the inventory levels for Case 2 when lost sales are

incurred. The cost equation for Case 2 is given in Eq. (3.3.15).
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Figure 3.3.2: Hold Inventory with Disruption: Case 2

TC2
(d1,θ)
(H,α)(q1, q2) = A

(
1 +

λS(T4 − T3 − L)

q2

)
+ h ((1− θ)q1T3) (3.3.15)

+h

(
(1− θ)2q1

2

2λS
+
q2(T4 − T3 − L)

2

)
+ yθq1 + z

(
L− (1− θ)q1

λS

)

The third and final case is shown in Figure 3.3.3. If the retailer anticipates that a large

percentage of her inventory will be damaged, she might order a very large order quantity.

However, the actual percentage of inventory lost may be much smaller than α causing the

retailer not to place another order before the second disruption is over as shown in Figure
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3.3.3. The cost equation for Case 3 is given in Eq. (3.3.16). In this case, q2 is not a decision
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Figure 3.3.3: Hold Inventory with Disruption: Case 3

variable because the retailer will revert back to the EOQ inventory policy when the second

disruption is over at T4.

TC3
(d1,θ)
(H,α)(q1) = A+ h

(
(1− θ)q1T3 +

(1− θ)q1(T4 − T3)

2

)
(3.3.16)

In order to utilize minimax and minimax regret decision criteria, the optimal inventory policy

associated with each outcome for θ where α = θ must first be determined. As previously

mentioned, it is assumed that the retailer either places an order for the quantity necessary

to satisfy demand if a disruption occurs or does not place an order. Two different policies

are considered for the special case {d1, 0}: q1 = q2 and q1 6= q2. Eq. (3.3.17) gives the cost

equation for the special case {d1, 0} where q = q1 = q2.

TC
(d1,0)
(H,0) (q, q) = A

(
λS(T4 − T3)

q

)
+ h

(
T3q +

q(T4 − T3)

2

)
(3.3.17)

By applying the first order condition, the closed form solution for q is derived and given in

Eq. (3.3.18).

q∗ =

√
2AλS(T4 − T3)

h(T4 + T3)
(3.3.18)
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Even though we are able to find a closed form solution similar to the EOQ, we are able to

prove that the total cost can be improved if q1 6= q2. However, the optimal values for q1 and

q2, considering the assumptions, must first be found before it can be explained that the cost

can be minimized by adopting an inventory policy where q1 6= q2. In order to determine the

optimal values for q1 and q2, the optimal value for one variable is found and plugged into

the cost equation before solving for the other variable. The optimal value for q2, which is

similar to the result that was found in Chapter 2, is given in Eq. (3.3.19). We will refer to

q2 as qS for the remainder of this section.

q2
∗ =

√
2AλS
h

(3.3.19)

In order to solve for q1, we employed the use of commercial software since a closed form

solution that guaranteed no lost sales could not be found. When the constraints for no lost

sales and non-negativity were included, the same solution was consistently returned, and it is

given in Eq. (3.3.20). Eq. (3.3.20) is the least amount that the retailer can hold to ensure no

lost sales until the first order can be received after the second disruption begins if α = θ = 0.

q1
∗ = λSL (3.3.20)

Eq. (3.3.20) can be generalized to include other decisions for α, not including α = 1, which

is shown in Eq. (3.3.21). In the results section, we will give insight into the conditions when

Eq. (3.3.21) is the best ordering policy for q1.

q1
∗ =

λSL

1− α
(3.3.21)

If the cost equations when q = q1 = q2 and q1 6= q2 are compared, the value of q that does

not allow lost sales has to be considered. Therefore, we employed commercial software to

compare the answer for q∗ to ensure that it did not allow lost sales if the amount of damaged
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inventory is known. Again, we considered the case (d1, 0) to solve for q and compared the

answer to the total cost for q1 6= q2. We are able to prove that if q1 = qL (qL = λSL)

and q2 = qS, the cost is less than if q = q1 = q2 as long as q ≥ qL. This proof is shown

in Appendix B. In addition, 64 combinations of eight parameters were tested to compare

q1 = qL and q2 = qS to q = q1 = q2. The constraint q ≥ qL was used to ensure no lost

sales, and the results showed that q = qL if q∗ ≤ qL, and q = q∗ if q∗ ≥ qL. The proof in

Appendix B shows that it is cheaper to hold two different quantities for q1 and q2 even when

q∗ was the optimal value for q.

No Disruption Cases

The retailer must consider the possibility that no disruption will occur if she decides to

hold inventory. If the disruption does not materialize, the retailer will incur more expensive

holding costs if q1 ≥≥ qE. There are two possible cases to consider if the retailer holds

inventory during the first disruption and the disruption does not occur. The first case is

illustrated in Figure 3.3.4, and represents the situation when the retailer places multiple

orders before T4. The cost equation for Case 1 is given in Eq. (3.3.22) where q1 is based on
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Figure 3.3.4: Hold Inventory with No Disruption: Case 1

(H,α) and q2 = qE.

TC4
(d0,0)
(H,α)(q1, q2) = A

(
1 +

λ
(
T4 − q1

λ

)
qE

)
+ h

(
q1

2

2λ
+
qE
(
T4 − q1

λ

)
2

)
(3.3.22)
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The fifth and final outcome associated with holding inventory during the first disruption

does not require any additional orders before T4 occurs. The figure is not provided because

it is similar to Figure 3.3.4 with the exception that there is only one order, q1. The cost

equation is given in Eq. (3.3.23).

TC5
(d0,0)
(H,α)(q1) = A+

hq1T4

2
(3.3.23)

3.3.5 Inventory Policy: Do Not Hold Inventory During 1st Disruption

Based on forecasts, retailers may decide that it is better to not hold inventory during

the first disruption if they expect the storm to severely damage their property. However,

forecasts are typically not accurate, so retailers will risk lost sales and dissatisfied customers

if the disruption does not occur or if the disruption is not as extreme as predicted.

Disruption Case

If the disruption occurs, the retailer will experience lost sales until an order can be received

at T3 +L as shown in Figure 3.3.5. As previously mentioned, it is assumed that the retailer

is unable to place an order until the disruption is over at T3, which is why the first order of

q2 will not be received until T3 + L. The cost equation associated with Figure 3.3.5 is given
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Figure 3.3.5: Do Not Hold Inventory with Disruption

in Eq. (3.3.24). Please note that if θ = 1, it would be better for the retailer to not hold

inventory because the retailer would not incur the damaged inventory cost, y, or ordering
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cost, A, for the damaged inventory if Eq. (3.3.24) is compared to Eq. (3.3.14).

TC
(d1,θ)
(NH,1)(q1, q2) = A

(
λS(T4 − T3 − L)

q2

)
+ h

(
q2(T4 − T3 − L)

2

)
+ zλSL (3.3.24)

Regarding the inventory policy, it is assumed that q1 = 0, and if the first order condition

is applied to Eq. (3.3.24), q2 = qS, which is the same result if the retailer decides to hold

inventory during the first disruption. Therefore, we can conclude that the retailer’s decision

for q2 will be the same regardless of the decision for q1.

No Disruption Case

If no disruption occurs, the retailer will incur lost sales until she is able to receive an order

at t = L. It is assumed that the retailer will place an order of qE at t = 0 after it is known

that the disruption will not occur as shown in Figure 3.3.6. Depending on the holding costs

resulting from q1 ≥≥ qE, it might be beneficial from a cost perspective to incur lost sales.
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Figure 3.3.6: Do Not Hold Inventory with No Disruption

The cost equation for the not holding inventory when no disruption occurs is given in

Eq. (3.3.25). Please note that q1 = 0 and q2 = qE.

TC
(d0,θ)
(NH,1)(q1, q2) = A

(
λ (T4 − L)

qE

)
+ h

(
qE(T4 − L)

2

)
+ zλL (3.3.25)
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After identifying all of the possible outcomes considering the assumptions, we performed a

numerical experiment to determine the conditions that support each inventory policy. The

results of the numerical experiment and sensitivity analysis are provided in Section 3.4.

3.4 Results

A 29 experimental design was created to determine the inventory policy supported by

minimax and minimax regret decision criteria. Both decision criteria were applied because

different retailers may approach uncertain disruptions with contrasting objectives, and we

wanted to determine if the decision criteria would provide contradicting decisions.

Table 3.4.1 gives the values tested in the numerical experiment. One constraint was

considered when the values were selected, and it is based on the inequality, T3 +L ≤ T4. The

constraint was necessary because retailers may consider the second disruption negligible if

the first shipment is received after the demand rate has returned to λ. It should be noted that

the lead-time values are longer than the tested values in Chapter 2 because the supplier’s

lead-time may increase after a disruption.

Table 3.4.1: Values Tested for 29 Experiment
Parameter Low High

λS 100 200
λ 10 15
T3 2 4
T4 8 16
h 1 2
A 100 200
L 1 2
z 10 20
y 4 8

3.4.1 First Experiment: θ = {0, 1}

For the first experiment, we assumed that only three outcomes might occur: no disrup-

tion, disruption and all of the inventory was damaged, or disruption and none of the inventory

was damaged. Minimax decision criterion supported the decision not to hold inventory if
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a possible disruption may interfere with the retailer’s operations for all tested cases, and

this result can be proven analytically. The maximum cost equation for the decision to hold

inventory is always the cost equation associated with the outcome where all of the inventory

is damaged, θ = 1. By referring back to Eqs. (3.3.14) and (3.3.24), it is obvious that the

difference between the two maximum cost equations is yqL, the cost of damaged inventory,

and the order cost for q1, A. This leads us to the conclusion that minimax decision criterion

supports the decision not to hold inventory for an uncertain disruption.

When we performed the numerical experiment using the values from Table 3.4.1 for the

special case θ = {0, 1}, we found that q1 = qL when minimax regret decision criterion is

applied. This is contrary to our results found using minimax decision criterion. Therefore,

we can assume that there are conditions when it is favorable to hold inventory during the

first disruption if the retailer seeks to minimize the maximum regret regarding costs.

3.4.2 Second Experiment: θ ∈ [0, 1]

In order to understand the impact of θ on the retailers ordering decision, a numerical

experiment including additional values of θ was performed. When five different values of

θ ∈ [0, 1] were tested, minimax decision criterion advocated not holding inventory, which is

the same result as the first experiment. The total cost for each decision of q1 was compared

considering all outcomes (θ), and the maximum cost for each decision occurred when θ = 1.

After the maximum cost was found for each q1, the minimum cost considering all of the

order quantities associated with the maximum cost was found to be q1 = 0. This result is

intuitive because q1 = 0 minimizes the cost equation when θ = 1, which always gives the

maximum cost for each decision. An example is given in Table 3.4.2 for five values of θ and

five values of q1 based on Eq. (3.3.21). When we determined the order quantity, q1, associated

with each value of θ, we assumed that the retailer ordered more than qL to accommodate

the damaged inventory caused by the first disruption meaning the retailer would have qL

on-hand to satisfy demand after the disruption. It should be noted that when θ = 0.75, the
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minimum cost occurred when q1 = 0 not q1 = qL
1−0.75

. We will explore the selection for q1 to

minimize costs by considering a threshold value for θ later in this section. In Table 3.4.2,

the bolded values represent the maximum cost for each decision for q1, and the minimum

maximum cost occurred when q1 = 0 with a total cost of $1,707.

Table 3.4.2: Minimax Costs
q1 θ = 0 θ = 0.25 θ = 0.50 θ = 0.75 θ = 1 No Disruption
qL $1,057 $1,335 $1,620 $1,910 $2,207 $500
qL

1−0.25
$1,116 $1,190 $1,563 $1,946 $2,340 $633

qL
1−0.50

$1,266 $1,349 $1,457 $2,020 $2,607 $900
qL

1−0.75
$1,983 $1,974 $2,066 $2,257 $3,407 $1,700

0 $1,707 $1,707 $1,707 $1,707 $1,707 $413

In order to gain more insight about the effect of θ on the ordering decision, we compared

two outcomes: one value of θ and no disruption. Again, we determined the possible solutions

for q1 based on Eq. (3.3.21) for each value of θ < 1. The experiment demonstrated that there

is a threshold value of θ when it is best not to hold inventory even if all of the inventory is

not damaged. This means q1 = qL
1−α is not optimal for some problem instances even when

α = θ. We compared the total cost of not holding inventory and holding inventory such that

qL would be available at T3 regardless of θ. The threshold value of θ was most sensitive to

changes in the lost sales cost. As expected, if the lost sales cost was increased, the threshold

value of θ increased. When the low values for each parameter were tested, the value of θ

caused the decision to switch from q1 = qL
1−θ to q1 = 0 when at least 61% of the inventory

was lost. This explains the result we found for the minimum cost for θ = 0.75 in Table 3.4.2.

If z = 40, or ten times the purchase price, y, the threshold value was 90%. We were able to

find a value of z that supports the threshold value as shown in Eq. 3.4.1. If z upholds the

inequality in Eq. (3.4.1), it is best to hold q1 = qL
1−α when α = θ.

z ≥ hT3 +
hL(θ − 2)

2
+ y

(
1

1− θ
− 1

)
(3.4.1)
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Next, we applied minimax regret decision criterion considering the same five values for

θ. First, we found the lowest cost for each outcome (column), which is shown in Table 3.4.3,

considering all of the combinations in the 29 experiment. Please note that q1 = 0 was a

minimum cost alternative for every outcome. Also, the value of q1 that ensured no lost sales

for each value of θ was also a minimum cost alternative for combinations in the experiment.

When the lost sales cost was less than 2.5 times the purchase price, y, minimax decision

criterion supported the decision to hold less inventory, thus resulting in lost sales in some

situations when the holding cost and T3 were at their highest values. As expected, if the

disruption damaged all of the inventory, the retailer should not hold inventory, which is the

same result supported by minimax decision criterion.

Table 3.4.3: Possible Minimum Cost Decisions for Each Outcome
Outcome Possible Minimum Cost Decisions
θ = 0 q1 = 0, q1 = qL
θ = 0.25 q1 = 0, q1 = qL, q1 = qL

1−0.25

θ = 0.50 q1 = 0, q1 = qL, q1 = qL
1−0.50

θ = 0.75 q1 = 0, q1 = qL
1−0.75

θ = 1 q1 = 0
No Disruption q1 = 0, q1 = qL

In order to test the sensitivity of the decisions based on z, we performed the same

experiment, but increased the values of z to be five, ten and twenty times the purchase

price, y, to see the effect on the minimum cost. We found that the minimum cost occurred

when q1 = qL
1−θ for θ < 1 and q1 = 0 for θ = 1 if we assumed θ to be known. These results

matched previous results when we found the value of q1 that minimized the cost equation.

If no disruption occurred, the minimum cost was almost split evenly between q1 = 0 and

q1 = qL. The difference between the decision depended on the lead-time, lost sales cost,

holding cost, and order cost. However, if the disruption does not occur, the retailer should

not hold more than qL in order to minimize costs.

We then compared the maximum regret for each row (decision) to determine the decision

that supported the smallest maximum regret. In Table 3.4.4, the regret matrix is shown for
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the costs given in Table 3.4.2, and the bolded values represent the maximum regret for

each decision. The largest negative value in each row represents the largest regret for each

decision.

Table 3.4.4: Regret Matrix
q1 θ = 0 θ = 0.25 θ = 0.50 θ = 0.75 θ = 1 No Disruption
qL $0 -$145 -$163 -$203 -$500 -$87
qL

1−0.25
-$59 $0 -$106 -$239 -$633 -$220

qL
1−0.50

-$209 -$159 $0 -$313 -$900 -$487
qL

1−0.75
-$926 -$784 -$609 -$550 -$1,700 -$1,287

0 -$650 -$517 -$250 $0 $0 $0

Table 3.4.5 gives the possible outcomes that resulted in the maximum regret for each

decision. As expected, the possible maximum regret outcomes were associated with the

extreme scenarios (e.g., θ = 0) with the exclusion of q1 = qL.

Table 3.4.5: Possible Maximum Regret Outcomes for Each Decision
q1 Possible Maximum Regret Outcomes
qL No Disruption, θ = 50%, θ = 1
qL

1−0.25
No Disruption, θ = 1

qL
1−0.50

No Disruption, θ = 0, θ = 1
qL

1−0.75
No Disruption, θ = 0, θ = 1

0 θ = 0

When we evaluated the eleven different possibilities for maximum regret, only six gave

the minimum maximum regret for the 512 combinations tested. The decision, outcome, and

percentage of occurrence is given in Table 3.4.6. It was best to hold qL for more than half

of the combinations. On the other hand, 45% of the combinations tested supported the

decision not to hold inventory.

3.4.3 Sensitivity Analysis

In the sensitivity analysis, we tested the same values for θ that were used in the numerical

experiment for θ = [0, 1]. All of the parameters were kept at the lowest value given in Table

3.4.1, and the parameter in question was increased or decreased. Table 3.4.7 gives the lowest
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Table 3.4.6: Minimax Regret Outcomes
q1 Outcome Percentage of Occurrence
qL No Disruption 9%
qL θ = 0.5 9%
qL θ = 1 33%
qL

1−0.25
No Disruption 0.2%

qL
1−0.25

θ = 1 4%

0 θ = 0 45%

and highest values tested for each parameter. We did not allow any of the parameters to

equal zero because that would not be realistic, and if T3 = 0, there would be no disruption.

For T3 and L, we did not test values that would cause T3 + L > T4 because the second

disruption would be negligible. For h and y, we did not test values that were higher than

z because the holding cost and purchase price would most likely not be greater than the

lost sales cost. In addition, the values of z were all higher than y because the lost sales cost

would probably be at least the purchase price.

Table 3.4.7: Sensitivity Analysis Values
Parameter Lowest Value Highest Value

λD 25 500
λ 5 100
A 25 500
h 0.25 4
y 1 10
s 4 80
T3 1 6
T4 3 20
L 1 6

We discovered that z was the only cost that changed the decision given by minimax

decision criterion if the lost sales cost was about 1.5 times y. The lost sales cost often

encompasses the retail price of the item and loss of customer goodwill while y represents

the purchase price, which in most cases, will be less than the retail price. Therefore, we can

still conclude that minimax decision criterion will always support the inventory policy to not

hold inventory during the first disruption.
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On the other hand, the sensitivity analysis for minimax regret decision criterion provided

many insights into the effect of each parameter. In the next four subsections, we separate

the parameters according to how they affect q1.

q1 = qL ⇒ 0

Four of the parameters, A, h, T3, and y, showed a change in the decision for q1 from qL

to 0 as the parameters were increased. This result is expected because a low ordering cost,

holding cost, and purchase price as well as a short first disruption will constitute holding

inventory when minimax regret decision criterion is applied. However, as the costs and

duration of the first disruption increase, it becomes more cost effective not to hold inventory

during the first disruption, especially if the retailer expects a large percentage of the inventory

to be damaged.

q1 = 0⇒ qL

There were only two parameters, L and λS, that caused a change in q1 from 0 to qL. As

the lead-time and disruption demand rate were increased, the total cost increased as well. A

short lead-time allows the retailer to order at T3 and incur minimal lost sales. In some cases,

the total lost sales may be cheaper than the order and holding costs incurred for holding

inventory during the first disruption. If the disruption demand rate, λS, is small, then the

cost of lost sales will also be minimal similar to the result for the short lead-time.

No Change

Two parameters, λ and T4, supported holding qL during the first disruption for all tested

parameter values. Therefore, we can conclude that the normal demand and the length of

second disruption do not have an affect the decision for q1. This result is intuitive because

neither parameter affects lost sales or q1.
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Multiple Changes in q1

The lost sales cost, z, altered the value of q1 four times for the tested values meaning

all of the values of q1 beginning with q1 = 0 were utilized as z increased. The value for z was

increased in increments of four with the first value equaling y. If z ≥ 50 or more than 12

times the purchase price, the retailer will hold qL
0.25

(θ = 0.75), which is the largest amount

of inventory we tested to be held by the retailer. This result indicates that the decision is

very sensitive to changes in the lost sales cost as expected. Retailers must seriously consider

how they will value lost sales because it will affect their ordering decisions, particularly if

they implement minimax regret decision criterion.

3.5 Summary and Future Extensions

Minimax and minimax regret decision criteria provided different solutions in our numer-

ical experiment, and the retailer must prioritize the objectives of the company when making

decisions regarding inventory policies for possible disruptions caused by forecasted storms.

The following is a summarized list of our findings:

1. It is best to hold a different quantity for each disruption (q1 6= q2).

2. Minimax decision criterion always yielded q1 = 0 unless the lost sales cost was slightly

higher than the holding cost.

3. Both decision criteria supported q2 = qS.

4. A threshold value of θ exists indicating that even if all of the inventory is not damaged,

it is better to not hold inventory depending on the lost sales cost, z.

5. The minimax regret decision is very sensitive to changes in the lost sales cost, but it

is also sensitive to changes in all other parameters except λ and T4.

The results showed the importance of the retailer accurately estimating the lost sales cost

because it will drastically change the decision for q1. However, it is difficult to assess the

ramifications of not meeting the customers’ needs. In addition, the forecast may play a
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significant role in the retailers’ inventory policy. If the storm is expected to be catastrophic,

it is probably in the best interests of the retailer not to hold any inventory. On the other

hand, most property structures for retailers such as grocers are able to withstand the effects

of storms. Based on the results, our recommendation is that the retailer carefully consider

how lost sales are valued when selecting an inventory policy. Our results indicated that if

the lost sales cost is estimated to be five times or more than the purchase price, then the

retailer should hold at least qL. Otherwise, the retailer should hold nothing.

The model could be extended to include the disruption discussed in Chapter 2. It seems

that if minimax decision criterion is used to solve the extended model, q1 would either be 0 or

the amount of inventory at the retailer at T2. On the other hand, it might be worth exploring

the problem using minimax regret decision criterion. In addition, a variable lead-time and

flexible reorder point could also be included to make the model more realistic.

Customers are often in search of items such as bread, milk, and fruit after a storm, and

the model could be extended to include perishable items. We did not consider perishable

items because we assumed that the retailer would not stock up on such items because of the

uncertainty surrounding the length of the disruption between T2 and T3. Also, if perishable

items were included, the cost for the decision to hold inventory would only increase, resulting

in the decision not to hold inventory. This is the same decision we found for minimax

decision criterion considering non-perishable items. We also predict that the decision not to

hold inventory would increase among the situations we tested considering minimax regret

decision criterion because the total cost for holding inventory during the first disruption

would increase.

In closing, our results indicated the importance of estimating cost parameters as well

as selecting decision criterion to determine an inventory policy for disruptions. However, if

retailers do not consider the impact of their inventory decisions before a disruption, they

will not be able to capitalize on an opportunity to generate additional profit as well as foster

positive customer relationships during a time of crisis.
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Chapter 4

Pre-Positioning Hurricane Supplies in a Commercial Supply Chain

4.1 Background

4.1.1 Disastrous Hurricanes and Emergency Management

Hurricane Katrina was a daunting reminder that hurricanes represent one of Nature’s

most destructive forces. This catastrophic storm, which left a trail of destruction along the

United States Gulf Coast in August 2005, was responsible for more than 1,800 casualties,

250,000 displaced residents, and $125 billion in expenditures making it the costliest disas-

ter in United States history [21]. Although the significant environmental, socio-economic,

and cultural repercussions of Hurricane Katrina are evident, disastrous hurricanes are cer-

tainly not a new phenomenon. For example, the 18th century storm known as the “Great

Hurricane” claimed 22,000 lives throughout the Caribbean and is the deadliest hurricane of

recorded history [40]. The deadliest hurricane in United States history was responsible for

an estimated 8,000 to 12,000 casualties in Galveston, Texas during the year 1900 [26]. More

recently, hurricanes Ike, Gustav, and Dolly in 2008 and Dennis, Katrina, Rita, and Wilma

in 2005 each accounted for over $1 billion in expenditures and numerous casualties [37].

The field of Emergency Management outlines a framework for protecting civilization

from the adverse effects of natural and man-made disasters caused by hazards such as hur-

ricanes, tornadoes, earthquakes, drought, and terrorist attacks. This framework entails the

following functional areas: (i) mitigation, (ii) preparedness, (iii) response, and (iv) recovery.

Mitigation refers to “a sustained action to reduce or eliminate risk to people and prop-

erty from hazards and their effects” [22]. Mitigation activities focus on long-term solutions

such as construction design and structural control (e.g., strengthening levee systems), and
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tend to be the most expensive emergency management options. In contrast to mitigation,

preparedness targets short term activities directly related to response and recovery such as

preparing large-scale evacuation plans or securing emergency supply items. The objective of

the response function is to provide immediate short term relief following disaster by saving

lives, protecting property, and meeting basic human needs. Activities include search and

rescue, medical assistance, law and order, and immediate food and shelter. The final stage

of the disaster-relief lifecycle is the recovery effort, which seeks to restore communities to pre-

disaster conditions, and also to curtail future vulnerability. Examples of recovery activities

include debris removal, rebuilding residential properties, and restoring businesses.

4.1.2 Pre-Positioning

The focus of this paper will be strategic positioning of emergency supplies in anticipation

of a threatening hurricane or other predictable hazard, which can be considered a cross-

section of the preparedness and response activities of the Emergency Management framework

described in Section 4.1.1. Pre-positioning is defined as the “stockpiling of equipment and

supplies at, or near the point of planned use” [15]. Although originally applied within

military contexts (e.g., [8], [31]), public and private sector organizations have adopted pre-

positioning strategies to prepare for civilian response and recovery operations. For example,

the U.S. Federal Emergency Management Agency (FEMA) oversees a variety of permanent

and temporary staging locations for pre-positioning commodities, equipment, and personnel.

Permanent facilities include nine FEMA Logistics Centers, which are traditional distribution

centers for commodities geographically dispersed throughout the Continental United States,

as well as a number of commercial storage sites owned and operated by private firms [59].

On a smaller scale, locating ambulances and fire stations can also be considered a form of

public sector pre-positioning (e.g., [3], [52]).

Private sector firms implemented a most noteworthy application of temporary staging

and pre-positioning in response to Hurricane Katrina. In particular, The Home Depot and
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Wal-Mart independently pre-positioned commodities at temporary staging locations near

New Orleans prior to Katrina’s landfall in 2005 (e.g., [24]). As a result, emergency supplies,

equipment, and personnel were readily available for initial response efforts in contrast to

the government’s slow and uncoordinated response. The logistics response of Wal-Mart

and The Home Depot to Hurricane Katrina accentuates the pivotal role of private sector

firms in facilitating effective disaster relief operations, which is a perspective that has been

acknowledged in the humanitarian logistics research literature.

4.2 Problem Description: Commercial Pre-Positioning of Commodities

In an effort to encourage a critical mass of private sector firms to follow the lead of

Wal-Mart and The Home Depot in responding to domestic disasters as described in Section

4.1, this study examines a humanitarian logistics problem from the perspective of a tradi-

tional profit-driven private sector firm. Specifically, the problem presented in this paper is

motivated by a real-world supply chain scenario consisting of one manufacturer, multiple

retailers, and one or more observed storms that threaten the consumers served by these

retailers. The manufacturer produces items such as bottled water, non-perishable foods, or

portable electronic devices that are in high demand during the hurricane season, especially

in the presence of an ominous hurricane or tropical storm. In particular, it is common for

retailers to experience a spike in demand for these and other emergency supply items during

the inventory cycles that precede an observed storm’s probable landfall. Such “pre-storm

demand surge” is predominantly driven by consumers who are preparing for emergency

evacuation, or by consumers planning to “ride out the storm” and risk the inconvenience

of potentially pervasive power outages. A temporary spike in demand can also be observed

subsequent the actual landfall of a major storm as a result of disaster relief and recovery

activities.

Based on conversations between one of the authors and supply chain managers from a

manufacturing firm that encounters potential post-storm demand surge as described above,
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orders for emergency supplies are typically initiated by retailers in response to a realized pre-

or post-storm demand spike. In other words, the retailers served by this manufacturer exhibit

a propensity for adopting reactive inventory policies that respond to an actual demand

surge as opposed to proactive inventory policies that anticipate a likely demand surge. Such

reactive approaches to stock control coupled with the delivery lead-times associated with

order fulfillment often lead to widespread stockout of emergency supplies during peak demand

surge periods, which in turn exacerbates the vulnerability of the populace affected by an

approaching storm, inhibits post-storm response and recovery efforts, and proliferates lost

sales and/or backorders for the above-mentioned supplier-retailer supply chain.

In order to alleviate the negative effects of supply shortages that often occur during

pre- and post-storm demand surge periods, this paper will explore inventory pre-positioning

strategies from the standpoint of the manufacturing firm described at the beginning of this

section. The proposed pre-positioning strategy is characterized by a manufacturer that

proactively pushes inventory upon geographically dispersed retailers in anticipation of pre-

or post-storm demand surge, which is a strategy that contrasts the reactive wait-and-see

approach indicative of current practice. After the storm subsides and actual demands become

known, inventory is then transhipped among the retailers and manufacturer.

The proposed pre-positioning strategy assumes that the manufacturer bears all the costs

and risks of pre-positioning, similar to vendor-managed inventory (VMI) systems. These

costs may be attributed to production at the manufacturing facility, material handling at

the manufacturing facility, and transportation of products from the manufacturer to the

retailers. On the other hand, risks are driven by the uncertainty of which retailers will

experience a demand surge for emergency supplies as a result of a storm making landfall at

their location. These risks include the expected costs due to inventory shortages or excess

inventory at each retailer location, and the possibility of additional transportation costs for

redistributing improperly pre-positioned supplies. If there is a shortage of inventory at a

retailer location, the items are backordered, and the manufacturer will incur a shortage cost
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representing loss of customer goodwill for not providing the item immediately after the effects

of the storm have subsided. Additionally, conversations with the representative manufacturer

also revealed the risk of a prohibitively constrained post-storm logistics system characterized

by a scarcity of available third-party logistics providers (3PLs). This environment inhibits

post-storm redistribution efforts, or significantly increases the cost of doing so. Within the

above-mentioned context, this investigation will be driven by the following research questions.

Question 4.1 Given the possibility of a post-storm demand surge for an emergency supply

item, how should the manufacturer optimally pre-position the commodity among a network

of geographically dispersed retailers? In particular, what quantity should be stockpiled at each

retailer prior to a potential post-storm demand surge?

Question 4.2 How beneficial is pre-positioning relative to the existing wait-and-see approach

currently used in practice?

Note that Question 1 includes the possibility that the pre-position quantities for any one

or more retailers could be zero, which suggests that pre-positioning will occur for a subset of

the retailers. Also note that the manufacturer’s interests relative to these research questions

will be represented solely in terms of expected cost, which is consistent with the commercial

perspective of this study.

The remainder of this manuscript is organized as follows. First, Section 4.3 surveys the

relevant academic literature. Next, Section 4.4 introduces a stochastic programming based

methodology. Specifically, the manufacturer’s problem is represented as a two-stage stochas-

tic programming model with recourse where the first stage decision is the quantity of supplies

to stockpile at each retailer situated in the projected path of an observed storm, and the

recourse decision entails the redistribution of supplies throughout the supply chain network

after all demand surge information (i.e., quantities and locations) is known with certainty. In

addition to the stochastic programming methodology, an alternative solution methodology
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is applied to the pre-positioning problem, which utilizes a heuristic to compute the pre-

positioned quantities and reduces the model to the well-known transportation problem. The

stochastic programming and alternative solution methodology are illustrated via numerical

examples, including a case study based on real-world data in Section 4.5. The examples are

solved using the scenario driven stochastic programming capability of the commercial opti-

mization software, What’s Best�. Then, the optimal solution found by What’s Best� and

the solution approach are compared. A sensitivity analysis is also provided to illustrate the

effects of the cost parameters on the expected benefit of pre-positioning. The final section of

the paper, Section 4.6, summarizes key ideas and findings, discusses limitations, and outlines

an agenda for future research.

4.3 Literature Review

As previously mentioned, the model presented in this paper resembles a VMI (vendor-

managed inventory) system because the manufacturer assumes a majority of the costs and

risk associated with the production and distribution of an item. VMI models also consider

various costs associated with holding, transportation, shortage, and ordering costs incurred

by the vendor that are similar to the costs considered in our model ([33], [67]). Moreover,

many models within the VMI literature determine the optimal shipment quantity to the

retailer(s) (e.g., [13], [17]), which is also determined in our model. However, the model

presented in this paper differs from a VMI system in several ways. Current VMI models

assume a multi-period or infinite planning horizon ([13],[33]) in contrast to our model, which

considers a short planning horizon with a one-time decision regarding inventory quantities

at retailers. In addition, our model allows for transshipments between retailers if a shortage

is experienced at a retailer, which is not characteristic of VMI models. Lastly, we consider

an increased unit transportation cost after the extreme event (i.e., hurricane) has occurred.

Our model is formulated as a two-stage stochastic program to determine the quantity that

should be pre-positioned at each retailer in the network, which is similar to the models
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presented in the pre-positioning literature. Therefore, the focus of the literature review will

be pre-positioning models that are closely related to the model presented in this paper.

The definition of pre-positioning presented in [15] as the “stockpiling of equipment and

supplies at, or near the point of planned use” suggests that pre-positioning activities entail

both location and inventory related choices. In fact, the more recent definition proposed in

Richardson et al. [54] implies that pre-positioning encompasses location, inventory, and dis-

tribution decisions, which spans the preparation and response dimensions of the emergency

management framework. More specifically, pre-positioning in preparation for potential dis-

aster relief operations involves determining the number, location, and capacity of permanent

or temporary warehouses used to coordinate distribution of emergency supplies to disaster

areas following a catastrophic event. In addition, pre-positioning also concerns inventory

decisions for these facilities as well as transportation policies (e.g., shipping and routing) for

distributing commodities from storage facilities to affected communities. From this perspec-

tive, the academic literature related to inventory pre-positioning can be characterized as a

cross-section among the facility location, inventory control, and distribution / routing liter-

atures. Indeed, several studies address some of these areas individually within the context

of disaster relief. For instance, Jia et al. [30] and Huang et al. [25] consider humanitarian

relief chain design in terms of facility location with no explicit inventory or routing decisions,

while inventory models related to disaster relief with no network design or distribution deci-

sions include Beamon and Kotleba [7], Lodree and Taskin [36], and Taskin and Lodree [63].

Papers that focus exclusively on “last-mile distribution” with no location or inventory de-

cisions include Özdamar et al. [45] and Balçik et al. [4]. A few studies also integrate the

location, inventory, and distribution aspects of pre-positioning described in Richardson et

al. [54], namely Chang et al. [14], Mete and Zabinsky [38], Rawls and Turnquist [53], and

Salmerón and Apte [56]. Nevertheless, the focus of this review is a series of papers that

consider at least two components of pre-positioning including location and inventory ([5],
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[12]), inventory and distribution ([6]), and the above-mentioned papers [14], [38], [53], and

[56].

One of the first papers to investigate pre-positioning of commodities in preparation for

potential disaster relief activities is Barbarosoğlu and Arda [6], who address inventory and

distribution decisions on an existing humanitarian logistics network. In particular, Bar-

barosoğlu and Arda [6] formulate a two-stage stochastic programming model where the first

stage represents a multi-commodity, multi-modal network flow problem in which commodi-

ties are transported from a given set of supply nodes to a set of potential demand nodes

with uncertain requirements. During the second stage, demand locations and requirements

become known. Then, redistribution during the second stage based on known demand in-

formation and the pre-positioning arrangement generated in the first stage is optimized by

solving another multi-commodity, multi-modal network flow problem. The model also ac-

counts for vulnerability of supply and demand nodes as well as uncertain arc capacities, both

of which become known in the second stage. The objective function of the stochastic pro-

gramming model minimizes first stage transportation cost and the expected transportation

and inventory costs of the second stage. Commercial software was used to solve a numerical

example based on data from an August 1999 earthquake that occurred in Turkey.

Balçik and Beamon [5] and Campbell and Jones [12] consider both humanitarian relief

chain design and inventory decisions. Balçik and Beamon [5] develop a variation of the max-

imal covering problem in which the number of distribution centers (DCs) and their locations

are chosen such that the total expected demand covered by the distribution centers across

a set of probabilistic scenarios is maximized. Similar to Barbarosoğlu and Arda [6], Balçik

and Beamon [5] illustrate their model by generating data sets that correspond to historical

earthquake scenarios and use commercial software to conduct computational experiments.

On the other hand, Campbell and Jones [12] introduce the first scenario-free pre-positioning

study. They develop an analytic framework with newsboy results and sensitivity analyses

for a network with one supply node and one demand node, where the supply node faces
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the possibility of being destroyed. Using results from their single supply / single demand

node model, Campbell and Jones [12] also describes a procedure for optimally selecting a

supply location from among a set of potential locations. In addition, a heuristic approach to

locating multiple supply points for multiple demand locations is also described and explored

in a computational experiment.

Chang et al. [14], Rawls and Turnquist [53], Salmerón and Apte [56], and Mete and

Zabinsky [38] incorporate all three aspects of pre-positioning into their models. Chang et

al. [14] seems to be the first study that location, inventory, and distribution decisions are con-

sidered explicitly. In addition, the two-stage stochastic programming model is predicated

on a preliminary stochastic model with chance constraints that partitions a multi-group,

multi-echelon supply chain network into zones. The solution approach is a multi-step pro-

cedure that entails sample average approximations of the stochastic problems. Rawls and

Turnquist [53] also integrate network design, inventory, and distribution decisions for dis-

aster relief purposes. In Rawls and Turnquist [53], a two-stage stochastic mixed integer

programming model is presented in which DC locations, DC capacities, and inventory levels

are determined during the first stage based on probabilistic information concerning demand

locations and requirements. The second stage decision concerns the distribution of com-

modities from the DC locations established during the first stage to disaster areas which

are revealed at the beginning of the second stage. Rawls and Turnquist [53] also design a

heuristic solution approach called the Lagrangian L-shaped method intended for large-scale

problem instances, which is then illustrated in terms of a case study where disaster scenar-

ios are generated based on historical hurricane data. Further details of the aforementioned

case study are discussed in Section 4.5 of this paper. Moreover, the focus of Salmerón and

Apte [56] is more on people as opposed to facilities and commodities, which is unlike other

pre-positioning studies. The two-stage stochastic programming formulation is actually a

hierarchical bi-objective model that minimizes casualties within the critical and stay-back

populations, and minimizes unmet demand for the transfer population. Lastly, Mete and
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Zabinsky [38] investigate location, inventory, and distribution decisions within the context

of pre-positioning medical supplies. In the first stage of their two-stage stochastic program-

ming methodology, warehouse locations are determined. Then, after demands throughout

a network of hospitals are revealed, medical supplies are transported from warehouses to

hospitals. The second stage distribution problem is a mixed integer programming (MIP)

model that represents a pseudo vehicle routing problem in which vehicles are assigned to

predetermined routes. To illustrate the model, a case study based on earthquake scenarios

in the Seattle Washington area is presented. For this case problem, the integrated stochastic

programming / MIP models are solved using commercial software.

It is evident from this review that the research literature has produced several frame-

works that could be useful to government and relief organizations in a variety of real-world

disaster relief environments. However, none of the existing studies specifically address the

manufacturer’s pre-positioning problem introduced in Section 4.2. For instance, since the

manufacturer’s pre-positioning problem involves an existing network of retailers, there is no

need to consider facility location decisions as in references [14], [38], [53], [56], [5], and [12].

From this perspective, our paper is similar to Barbarosoğlu and Arda [6], who also address

inventory and distribution decisions on an existing network. Similar to Barbarosoğlu and

Arda [6], the two-stage stochastic programming methodology described in Section 4.4 of

this paper considers the transportation costs of pre-positioning commodities during the first

stage and the expected cost of transportation, inventory shortages, and excess inventory dur-

ing the second stage. But in addition to the transportation and inventory costs considered

in Barbarosoğlu and Arda [6], the model described in Section 4.4 also takes into account

the production costs incurred by the manufacturing facility during both the first and sec-

ond stages. Another difference is that the underlying model in Barbarosoğlu and Arda [6]

is a multi-commodity, multi-modal network flow problem, whereas the underlying model

presented in this paper is a transportation problem with possible transshipments among
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retailers. Finally, the case study data applied to the model in this paper is derived from the

hurricane scenarios generated by Rawls and Turnquist [53].

4.4 Methodology

4.4.1 Stochastic Programming Model

This section describes a two-stage stochastic programming model for the manufacturer’s

inventory pre-positioning problem introduced in Section 4.2. The fundamental logic of the

two-stage stochastic programming methodology entails a first stage decision ~x ∈ Rn in the

presence of uncertain parameters ~D ∈ Rn, followed by a second stage (or recourse) decision

~y ∈ Rn after the realization ~ξ ∈ Rn of ~D has occurred (a complete list of notations is shown

in Table 4.4.1). The general form of a two-stage stochastic program can be expressed as

follows (e.g., [10]):

Minimize: ~c T~x+ E
[
Q
(
~x, ~D

)]
(4.4.1)

Subject to: A~x = ~b (4.4.2)

~x ≥ ~0, (4.4.3)

where the recourse function is given by

E
[
Q
(
~x, ~D

)]
= min

{
~q T~y | W~y = h− T~x, ~y ≥ ~0

}
. (4.4.4)

The objective function (4.4.1) minimizes the cost of the first stage decision (~c ∈ Rn

represents objective function coefficients or unit costs, and ~c T is the transpose of ~c ) plus

the expected cost of the second stage decision, which is the recourse function. The recourse

decision ~y is optimized based on both the first-stage decision ~x and the observations ~ξ. W

represents the fixed recourse matrix, and T represents the technology matrix while h refers

to the right-hand side in the second stage constraints. T and h become known when ~ξ is
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realized. Decisions at each stage have their respective constraints, (4.4.2) and (4.4.3) for the

first stage and (4.4.4) for the second.

Stage 1

Applying this framework to the manufacturer’s pre-positioning problem, the first stage

decision ~x = (x1, x2, . . . , xn) represents the quantity of supplies that the manufacturer should

pre-position across the network of retailers. That is, xi is the amount of inventory sent to

retailer i prior to the landfall of an observed storm, where the demand at each retailer is a

random variable Di ∈ ~D. The demands, Di, are interpreted as additional demand at each

retailer i that emerge because of the storm’s presence. It is assumed that ci = c for each

ci ∈ ~c and i = 1, 2, . . . , n, where c is the cost attributed to producing and preparing one unit

of inventory for shipment. The first stage decision also incurs the transportation cost cvdixi

for each retailer location i = 1, 2, . . . , n, where cv is the unit cost of transportation ($ per

mile) and di is the distance (in miles) between the manufacturer and retailer i. Therefore,

the total first stage cost is

Production cost + pre-storm transportation cost =
n∑
i=1

cxi +
n∑
i=1

cvdixi. (4.4.5)

Stage 2

The second stage cost is comprised of holding costs due to excess inventory at certain

retailer locations, shortage costs due to inventory shortages (backorders) at other retailer

locations, and the cost of redistributing inventories throughout the supply chain network.

More precisely, the recourse function optimizes the recourse decision ~y in terms of the ex-

pected costs due to excess inventory, shortages, and redistribution. In general, the stochastic

programming methodology handles the uncertain parameters ~D = (D1, D2, . . . , Dn) using

scenarios as opposed to assuming a conventional probability distribution for each Di. In

particular, suppose there are k scenarios such that ~D = ~ξt under scenario t ∈ {1, 2, . . . , k},
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Category Symbol Description

Decision variables xi Quantity shipped to retailer i before hurricane
ylmt Quantity transshipped from retailer l to retailer m

in scenario t
yθmt Quantity transshipped from manufacturer

to retailer m in scenario t

Random variable Di Demand at retailer i

Costs c Unit production cost
cv Pre-hurricane transportation cost/mile
cw Post-hurricane transportation cost/mile
h Unit holding cost
s Unit shortage cost

ÊPP (Benefit) Expected benefit of PDSA solution
E∗PP (Benefit) Expected benefit of optimal pre-positioning strategy

ÊCPP Expected cost of PDSA solution
EC∗PP Expected cost of optimal pre-positioning strategy
ECWS Expected cost of wait-and-see strategy

Other notations i Retailer locations, i = 1, ..., n
t Scenarios, t = 1, ..., k
ξit Observed demand at retailer i if scenario t occurs
I+ Set of retailers with excess inventory
l Retailers with excess inventory, l ∈ I+

I− Set of retailers with an inventory shortage
m Retailers with an inventory shortage, m ∈ I−
θ Manufacturer location index
Θ Manufacturer location
di Distance between manufacturer and retailer i
dlm Distance between retailer l and retailer m
dθm Distance between manufacturer and shortage location
Pt Probability of scenario t occurring

Table 4.4.1: Summary of notations for stochastic programming model.
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where scenario t occurs with probability Pt. That is, ξit represents the actual demand for

retailer i if scenario t occurs. Then the scenario-based probability distribution for demand

at retailer i is Pr{Di = ξit} = Pt for each i = 1, 2, . . . , n and t = 1, 2, . . . , k.

Now if xi− ξit > 0 for a particular scenario t, then retailer i has excess inventory under

scenario t. Similarly, xj − ξjt < 0 suggests that a shortage has occurred at retailer j under

scenario t. Clearly, two disjoint sets of retailers emerge for each scenario t for a given first-

stage pre-positioning arrangement: the set of retailers with excess inventory, denoted I+,

and the set of retailers with inventory shortages, denoted I−. Let h be the unit holding

cost associated with excess inventory and s the unit cost of an inventory shortage, both

of which are presumed to be homogeneous among the retailers. Since scenario t occurs

with probability Pt, the expected cost due to inventory overages and shortages from the

manufacturer’s perspective is

Expected cost (holding + shortage) =
k∑
t=1

Pt

[ ∑
l∈I+

h(xl − ξlt) +
∑
m∈I−

s(ξmt − xm)

]
.

(4.4.6)

Note that it is convenient to think of s as the unit cost associated with the loss of

customer goodwill. In general, the components of shortage costs when backorders are con-

sidered include the cost of processing one or more additional orders (possibly at an increased

rate) and the loss of customer goodwill (e.g., [44]). In this paper, the redistribution costs

described above can be interpreted as the former component of the conventional shortage

cost, and s represents the latter.

In addition to the expected holding and shortage costs shown in Eq. (4.4.6), second

stage costs are also incurred for post-storm transportation and production activities. The

transportation cost between a location l ∈ I+ with excess inventory and a location m ∈ I−

with inventory shortages is given by cwdlmylmt. Here, cw > cv is the unit cost of trans-

portation during the post-storm redistribution stage, dlm is the distance between retailers l

and m, and ylmt is the quantity of supplies transhipped from retailer l to retailer m if the
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observed post-storm demand scenario is t. Note that the inequality cw > cv is assumed in

order to reflect the scarcity of 3PLs available for post-storm redistribution relative to pre-

storm pre-positioning as described in Section 4.2. Also note that ylmt for all l ∈ I+, m ∈ I−,

and t = 1, 2, . . . , k represent the recourse decision variables, which are optimized for each

scenario t subject to the pre-positioned quantities xi and observed demands ξit.

So far, we have assumed that all shortages (i.e., backorders) can be resolved through

transshipments using excess inventory from the retailers l ∈ I+. However, direct shipments

from the manufacturer for the purpose of backorder replenishments will be necessary if the

total network shortage associated with retailers m ∈ I− exceeds the total amount of excess

inventory across the retailers l ∈ I+. Furthermore, direct shipments from the manufacturer

may sometimes be more cost effective than transshipments from retailers. In order to account

for direct replenishments from the manufacturer, let dθm denote the distance between the

manufacturer and shortage location m ∈ I− and yθmt represent the quantity shipped from

the manufacturer directly to retailer m ∈ I− under scenario t. Then the expected cost of

transportation during the second stage, which includes both transshipments from retailers

and direct shipments from the manufacturer, is given by

Expected cost (transportation) =
k∑
t=1

Pt

[ ∑
l∈I+∪Θ

∑
m∈I−

cwdlmylmt

]
. (4.4.7)

Finally, all products shipped directly from the manufacturer to shortage locations m ∈ I−

during the transshipment stage incur production costs in addition to the transportation cost

shown in Eq. (4.4.7). Assuming the unit cost of production, c, is preserved between the first

and second stages, the expected cost due to production during the second stage is given by

Expected cost (production) =
k∑
t=1

Pt

[ ∑
m∈I−

cyθmt

]
. (4.4.8)
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Model Formulation

Equations (4.4.5), (4.4.6), (4.4.7), and (4.4.8) will be combined to formulate the objective

function of the stochastic programming model. In addition, constraints related to overages

and shortages will also be incorporated. The resulting stochastic programming model is as

follows:

Minimize
n∑
i=1

cxi +
n∑
i=1

cvdixi + E
[
Q
(
~x, ~D

)]
(4.4.9)

where, E
[
Q
(
~x, ~D

)]
= min

ylmt

{
k∑
t=1

Pt

[ ∑
l∈I+

h(xl − ξlt) (4.4.10)

+
∑
m∈I−

s(ξmt − xm) +
∑

l∈I+∪Θ

∑
m∈I−

cwdlmylmt +
∑
m∈I−

cyθmt

] }

Subject to: xi ≥ 0 ∀ i (4.4.11)

xl − ξlt ≥
∑
m∈I−

ylmt, ∀ l ∈ I+ (4.4.12)

ξmt − xm =
∑

l∈I+∪Θ

ylmt, ∀ m ∈ I− (4.4.13)

xl − ξlt, ξmt − xm, ylmt ≥ 0 ∀ l ∈ I+,m ∈ I−, and t = 1, .., k.(4.4.14)

Constraints (4.4.11) and (4.4.14) are non-negativity constraints. Specifically, constraints

(4.4.11) are non-negativity constraints for pre-positioned quantities during the first stage,

and constraints (4.4.14) ensure that overage, shortage, and transshipment quantities for the

second stage are non-negative. Constraints (4.4.12) reflect the fact that it is impossible for

any retailer with excess inventory to transship more than her surplus to other retailers during

the post-storm redistribution stage. Lastly, constraints (4.4.13) ensure that all shortages

in the network are replenished during the second stage either from retailers with excess

inventory or directly from the manufacturing facility.
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4.4.2 PDSA Solution Approach

The computational effort associated with solving the stochastic programming model

defined by equations (4.4.9) - (4.4.14) may become prohibitive for large scale problems, which

turned out to be the case for the sensitivity analysis experiments presented in Section 4.5.4.

In particular, computation times of over 30 hours were reported for problem instances solved

used the commercial software What’s Best�. In order to address this issue, we introduce an

efficient solution approach that reduces the stochastic programming model to the well-known

transportation problem (e.g., [66]), which can solve each scenario in seconds using Excel

Solver. For the remainder of the paper, we refer to this solution approach as the Percentage

of Demand Scenarios solution Approach or PDSA. The proposed approach entails two stages.

In the first stage, the pre-positioning quantities xi are determined. After demand realizations

occur, the second stage is simply a deterministic transportation problem in which supply

nodes are retailers with excess inventory as well as the manufacturer, and demand nodes are

retailers with inventory shortages.

The rationale behind the first stage of PDSA is as follows. If the expected unit cost

of excess inventory for no-demand scenarios is greater than the expected unit shortage cost

for demand scenarios, then the pre-positioning strategy should be conservative. In this

case, there is more risk associated with excess inventory compared to inventory shortages.

Therefore, excess inventory should be avoided, which can be achieved by pre-positioning

small quantities. Similarly, a more aggressive pre-positioning strategy would be appropriate

if the expected unit cost of excess inventory for no-demand scenarios is less than the expected

unit shortage cost of demand scenarios.

In order to develop expressions for the expected unit cost of excess inventory for no-

demand scenarios described above as well as the expected unit shortage cost for non-zero

demand scenarios, it is necessary to partition the set of scenarios S = {1, 2, . . . k} into two

mutually exclusive and collectively exhaustive sets for each retailer. Let Ni ⊂ S denote the

non-zero demand scenarios for retailer i, and Zi ⊂ S the scenarios in which retailer i has
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Symbol Description

S = {1, . . . , k}: Set of demand scenarios.
Ni ⊂ S: Non-zero demand scenarios for retailer i.
Zi ⊂ S: Scenarios with zero demand for retailer i.
Di = {ξi1, ξi2, . . . ξik}: Demand values for retailer i for each scenario t ∈ S.
Di ⊂ Di: Non-zero demand values for retailer i over all scenarios.
ξmin
i = inf Di: Minimum value (infimum) of the set Di.
tmin: Scenario that corresponds to ξmin

i .
Nmin
i = {tmin}: The set that contains tmin.

Table 4.4.2: Notations for PDSA.

zero demand, where Ni ∪ Zi = S (note that additional notations used for PDSA are shown

in Table 4.4.2). Then

E (Holding Cost | Zero Demand Scenarios) =
∑
t∈Zi

hPt (4.4.15)

E (Shortage Cost | Non-Zero Demand Scenarios) =
∑
t∈Ni

sPt, (4.4.16)

where
∑

t∈Zi Pt and
∑

t∈Ni Pt are the percentage of zero-demand and non-zero demand sce-

narios for retailer i, respectively.

PDSA will also utilize the minimum non-zero demand value and its corresponding sce-

nario to determine the actual pre-positioning quantities. Let Di = {ξi1, ξi2, . . . ξik} denote

the demand values for retailer i under each scenario t ∈ S, and Di ⊂ Di denote the non-zero

demand values for retailer i. Then the minimum non-zero demand value is inf Di, denoted

ξmin
i . Define tmin as the scenario that corresponds to ξmin

i and Nmin
i = {tmin} as the set that

contains tmin. Then PDSA calculates the pre-positioning quantities xi as follows:

Case 1:
∑
t∈Zi

hPt >
∑
t∈Ni

sPt.

Case 1 corresponds to the case in which the expected unit cost of excess inventory

for no demand scenarios is greater than the expected unit shortage cost of non-zero demand

scenarios (see Equations 4.4.15 and 4.4.16). For this case, a conservative strategy is warranted

and the PDSA pre-positioning quantities are given by
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xi =


ξmin
i = inf Di, if

∑
t∈Zi

Pt <
∑
t∈Ni

Pt

0, if
∑
t∈Zi

Pt ≥
∑
t∈Ni

Pt.

(4.4.17)

If the total probability associated with non-zero demand scenarios is greater than the

total probability of zero-demand scenarios, then Equation (4.4.17) pre-positions the mini-

mum non-zero demand for that retailer. Otherwise, the PDSA pre-positioning quantity is

zero. Case 1 is further divided to consider the total probability of non-zero and no-demand

scenarios, which is why the minimum amount demanded is the recommended amount when

it accounts for a larger percentage of the demand scenarios. In Case 1, the expected unit

holding cost is more expensive, therefore, the manufacturer would only want to pre-position

the minimum amount of items if any at all.

Case 2:
∑
t∈Zi

hPt ≤
∑
t∈Ni

sPt.

Case 2 corresponds to the case in which the expected unit cost of excess inventory

for zero-demand scenarios is less than the expected unit shortage cost of non-zero demand

scenarios, which warrants a more aggressive pre-positioning strategy relative to Case 1. For

this case, the PDSA pre-positioning quantities are determined by

xi =



∑
t∈Ni/Nmin

i

ξitPt, if
∑
t∈Nmin

i

Pt <
∑

t∈Ni/Nmin
i

Pt

ξmin
i = inf Di, if

∑
t∈Nmin

i

Pt ≥
∑

t∈Ni/Nmin
i

Pt.

(4.4.18)

The quantity
∑

t∈Ni/Nmin
i
ξitPt in Equation (4.4.18) represents the expected demand for

retailer i with respect to non-zero demand scenarios, but excluding the minimum non-zero

demand scenario, tmin. This value is the PDSA pre-positioning quantity if total probability
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associated with non-zero demand scenarios (not including tmin) is larger than the probability

that scenario tmin occurs. Otherwise, the PDSA pre-positioning quantity is the minimum

non-zero demand, ξmin
i . The non-zero demand scenarios are only considered for Case 2

because it is more expensive to incur shortages according to the calculated expected unit

costs. As a result, the manufacturer should pre-position a non-zero quantity at the retailer

location. Case 2 is further divided to consider the total probability of the smallest non-zero

demand. For this reason, the recommended amount is the smallest non-zero demand when

it accounts for a majority of the non-zero demand scenarios.

4.4.3 Numerical Example

In this section, a numerical example is introduced to illustrate the stochastic program-

ming formulation given by Eqs. (4.4.9) through (4.4.14) as well as the solution approach,

PDSA, presented in Section 4.4.2. Hypothetical input data for a supply chain network con-

sisting of n = 5 retailers and k = 3 possible demand scenarios is shown in tables 4.4.3 and

4.4.4. Observe that each scenario is assumed to be equally likely for this example. Also note

that demands are interpreted as requests for additional emergency supplies caused by an

observed storm’s presence. Therefore, a zero in Table 4.4.4 indicates that location i is not

affected by the storm under scenario t.

Factor Notation Value Distance θ 1 2 3 4 5

Unit trans. cost (pre-storm) cv 2 θ 0 8 9 5 7 11
Unit trans. cost (post-storm) cw 4 1 8 0 6 9 19 14
Unit holding cost h 4 2 9 6 0 6 12 15
Unit shortage cost s 5 3 5 9 6 0 6 5
Unit production/handling cost c 6 4 7 19 12 6 0 7

5 11 14 15 5 7 0

Table 4.4.3: Input data for numerical example.
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Scenario Probability Retailer

t Pt 1 2 3 4 5

1 1/3 15 150 200 0 0
2 1/3 0 150 200 50 0
3 1/3 0 0 200 50 90

Table 4.4.4: Example demand scenarios.

Retailer 1 2 3 4 5

xi 0 150 200 50 0

Table 4.4.5: Optimal pre-positioning strategy for numerical example.

Optimal Solution using Commercial Software

The solution to the example problem that corresponds to the data shown in Table

4.4.3 and Table 4.4.4 was generated using the stochastic programming option of the com-

mercial software program, What’s Best�. According to Table 4.4.5, the optimal strategy

pre-positions enough inventory to cover retailers 2, 3, and 4 for all three demand surge sce-

narios. Consequently, the second-stage redistribution quantities among retailers 2, 3, and

4 are zero for all three scenarios. That is, the recourse decision variables are ylmt = 0 for

l = θ, 2, 3, 4; m = 2, 3, 4; and t = 1, 2, 3. However, retailer 1 would experience an inventory

shortage of 15 units if scenario t = 1 occurs (see tables 4.4.4 and 4.4.5) and would require

a post-storm replenishment. Similarly, a shortage of 90 units would occur at retailer 5 if

scenario t = 3 occurs, which would also warrant a post-storm replenishment. Thus the only

nonzero recourse quantities in the optimal solution are yθ11 = 15 and yθ53 = 90. Note that

the post-storm replenishments for retailers 1 and 5 under scenarios 1 and 3, respectively,

would be direct shipments from the manufacturer. All other recourse variables ylmt for re-

tailers l,m = 1, 2, 3, 4, 5, the manufacturer l = θ, and scenarios t = 1, 2, 3 are zero in the

optimal solution.

The optimal solution also leads to excess inventory under scenarios 1 and 3. Specifically,

retailer 4 will have 50 units of excess inventory if scenario 1 occurs and retailer 2 will have

150 units of excess inventory if scenario 3 occurs. Using our notational convention, we have
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I+ = {4} and I− = {1} if scenario t = 1 occurs, I+ = I− = ∅ if scenario t = 2 occurs, and

I+ = {2} and I− = {5} if scenario t = 3 occurs.

The above information can be used to compute the expected cost of inventory overages

and shortages. Recalling from Table 4.4.3 that the unit costs for overages and shortages are

h = 4 and s = 5, respectively, and that each scenario is equally likely according to Table

4.4.4, the expected cost due to excess and shortage inventories is

1

3
· [($5)(15) + ($4)(50)] +

1

3
· 0 +

1

3
· [($4)(150) + ($5)(90)] = $441.67. (4.4.19)

Using Eq. (4.4.7), the expected transportation cost associated with post-storm redistribution

is

Expected cost (transportation) =
1

3
· cwdθ1yθ11 +

1

3
· cwdθ5yθ53

=
1

3
· ($4)(8)(15) +

1

3
· ($4)(11)(90)

= $1, 480. (4.4.20)

From Eq. (4.4.8), the expected production cost for direct shipments from the manufacturer

during post-storm redistribution is

Expected cost (production) =
1

3
· cyθ11 +

1

3
· cyθ53 =

($6)(15)

3
+

($6)(90)

3
= $210.(4.4.21)

The sum of Eq. (4.4.19), Eq. (4.4.20), and Eq. (4.4.21) is the expected cost of the recourse

function:

E
[
Q
(
~x, ~D

)]
= $441.76 + $1, 480 + $210 = $2, 131.67. (4.4.22)
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From Eq. (4.4.5), Table 4.4.3 and Table 4.4.5, the actual cost of pre-storm pre-positioning

can be computed as

c(0 + 150 + 200 + 50 + 0) + cv

[
0 + (9)(150) + (5)(200) + (7)(50) + 0

]
= ($6)(400) + ($2)(2700) = $7, 800. (4.4.23)

The sum of Eq. (4.4.22) and Eq. (4.4.23) gives the expected cost of optimal pre-positioning:

Expected cost (pre-positioning strategy) = $2, 131.67 + $7, 800 = $9, 931.67. (4.4.24)

The Expected Benefit of Pre-Positioning

The solution to the two-stage stochastic programming model given by equations (4.4.9)

through (4.4.14) in Section 4.4.1 and then illustrated via the numerical example presented

in Section 4.4.3 answers the first of two research questions introduced in Section 4.2. The

focus of this section is the second of those two questions, which investigates the value of the

proposed pre-positioning strategy relative to the reactive wait-and-see approach currently

used in practice. First, an expression for the expected cost associated with the reactive wait-

and-see approach is developed. Then the expected cost of the reactive strategy is calculated

for the numerical example shown in Section 4.4.3. The expected benefit of pre-positioning

is the difference between these two expected costs, which will be positive if pre-positioning

is beneficial and negative (or zero) otherwise.

If no inventory has been pre-positioned prior to the observed storm, then all post-storm

requests for emergency supplies will be direct shipments from the manufacturer to the af-

fected retailers. Consequently, all shipments will incur both production and post-storm

transportation costs. Also recall that the ξit’s are interpreted as additional demands neces-

sarily induced by the storm, which suggests that ξit also represents the amount of inventory

shortage at retailer i under scenario t whenever no inventory has been pre-positioned. The
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expected cost of the wait-and-see strategy can then be expressed as

Expected cost (prod, shortage, trans) =
k∑
t=1

Pt

[
n∑
i=1

(c+ s) ξit +
n∑
i=1

cwdiξit

]
. (4.4.25)

From the example data in Table 4.4.3, we have c = 6, cw = 4, s = 5, and the distances

di for i = 1, 2, . . . , 5 are (8, 9, 5, 7, 11). The total demands
∑
ξit for each scenario t = 1, 2, 3

can be obtained by summing across the rows of Table 4.4.4 to obtain (365, 400, 340). Incor-

porating these values, the demands in Table 4.4.4, and Pt = 1/3 for each t into Eq. (4.4.25)

leads to

Expected cost (reactive) = $4, 631.67 + $5, 066.67 + $4, 366.67 = $14, 065.(4.4.26)

The difference between Eq. (4.4.26) and Eq. (4.4.24) yields the value of pre-positioning:

Expected benefit of pre-positioning = $14, 065− $9, 931.67 = $4, 133.33. (4.4.27)

Since the quantity in Eq. (4.4.27) is greater than zero, it would be in the manufacturer’s

best interest to implement the proposed pre-positioning strategy as opposed to the current

reactive strategy. Specifically, the manufacturer is $4, 133.33 better off with pre-positioning

relative to the wait-and-see approach. In general, the expected benefit of pre-positioning can

be obtained by subtracting Eq. (4.4.9) from Eq. (4.4.25).

PDSA Solution

Based on the example data shown in tables 4.4.3 and 4.4.4, PDSA generated the op-

timal solution shown in Table 4.4.5. Therefore, the expected cost and benefit will not be

reproduced in this section. However, for illustration, PDSA calculations for determining the

pre-positioning quantity for Retailer 2 will be summarized. First, the scenarios are parti-

tioned as N2 = {1, 2} and Z2 = {3}. Since each scenario occurs with probability 1/3 as
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shown in Table 4.4.4, we have

∑
t∈Z2

hPt = 4
3∑
t=3

1

3
=

4

3∑
t∈N2

sPt = 5
2∑
t=1

Pt = 5

(
1

3
+

1

3

)
=

10

3
.

The above calculations show that Case 2 of PDSA applies, which implies that the PDSA

pre-positioning quantities are determined according to Equation (4.4.18). The minimum

non-zero demand is ξmin
2 = 150 with tmin = 1 or 2. Without loss of generality, let tmin = 1

so that Nmin
2 = {1}. Then

∑
t∈Nmin

2
Pt = P1 = 1/3 and

∑
t∈N2/Nmin

2
Pt = P2 = 1/3. Thus

x2 = ξmin
2 = 150, which is consistent with the optimal solution. PDSA pre-positioning

quantity calculations for the other retailers are similar.

4.5 Case Study

This section examines the proposed pre-positioning strategy in a more realistic setting

than the illustrative example presented in Section 4.4.3 by considering more representa-

tive hurricane information, a larger number of scenarios, and a more extensive network of

retailers. The scenario data is derived from the case study introduced in Rawls and Turn-

quist [53], and 30 retailers are assumed to be situated according to the network depicted in

Figure 4.5.1. Specifically, a macro level view of the manufacturer’s pre-positioning problem

is assumed where each city in the network represents a retailer location or collection of local

retailers.

In order to reflect the necessary input data for the stochastic programming model pre-

sented in Section 4.4.1, the case study data in [53] is modified as follows. First, observe

that the network shown in Figure 4.5.1 represents potential DC locations in [53]. However,

this study interprets each node in the network as a retailer location, where exactly one of

the nodes is assumed to be the location of the manufacturing facility. Next, recall that the
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Figure 4.5.1: Source: Rawls and Turnquist [53]. Network in southeast United States used
for case study.

model in [53] accommodates multiple commodity types (i.e., water, food, and medical kits)

whereas our model assumes a single commodity type. Therefore, this paper considers one of

the product types (water) from [53] for the case study. Moreover, consider that the scenarios

generated in [53] include demand locations and quantities as well as nodes and arcs that are

destroyed by a hurricane or tropical storm. Since the pre-positioning model presented in this

paper does not consider network reliability, all scenario information presented in [53] related

to unusable nodes and arcs is ignored for the purposes of this study. Finally, the model in

[53] does not include production costs or inflated post-storm transportation costs. Hence,

this case study introduces hypothetical values for these costs to accompany the illustrative

cost data described in [53]. A summary of the cost data used in this study is shown in Table

4.5.1. Note that one unit corresponds to 1,000 gallons of water, which explains the high cost

of production and inventory shortages. Also, the post-storm transportation cost is assumed

to be twice the pre-storm transportation cost.
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Notation Description Value

c Production cost $323.85 / unit
cv Pre-hurricane transportation cost $0.30 / mile
cw Post-hurricane transportation cost $0.60 / mile
h Holding cost for excess inventory $161.93 / unit
s Shortage cost $6,477 / unit

Table 4.5.1: Cost data for case study.

4.5.1 Demand Scenarios

The case study in [53] uses 15 historical hurricanes that have impacted the southeastern

United States to create scenarios. For each of these 15 recorded hurricanes, aggregate de-

mands for three commodities (water, food, and medical kits), affected cities, and damaged

roadways are documented in Table 3 of [53]. Since the stochastic programming model intro-

duced in Section 4.4.1 is based on a single product type as mentioned previously, only the

aggregate demands for water shown in Table 4.5.21 are considered for the purposes of this

study.

Rawls and Turnquist [53] generated 50 scenarios using the 15 hurricanes shown in Ta-

ble 4.5.2 and combinations of these hurricanes. An additional scenario in which none of the

nodes experience demand surge is also accounted for so that the total number of scenarios

is actually 51. The probabilities associated with each scenario are “. . . based on approxi-

mately matching aggregate historical characteristics of hurricanes in the region, but should

be treated as simply illustrative values” [53]. For scenarios that represent a combination

of two hurricanes, it is assumed that the hurricanes strike within a short time frame. Sce-

narios based on one hurricane have a combined probability of 75% and the scenarios with

a combination of two hurricanes account for the other 25%. Table 4 in [53] lists the ag-

gregate demands for each commodity for each of the 51 scenarios along with the associated

probabilities.

1A “-” in the landfall node column of Table 4.5.2 indicates no actual landfall for the observed hurricane.
However, the referenced storm still managed to induce demand surge.
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Hurricane Category Landfall Node Water Demand (1000 gallons)

1 3 5 350
2 5 14 560
3 2 22 861
4 2 22 9000
5 4 11,29 7500
6 3 15 1000
7 2 21 600
8 1 11 1500
9 5 13,29 1040
10 2 - 2250
11 3 21 5000
12 3 - 18000
13 3 - 2818
14 4 14,30 2239
15 4 22 4400

Table 4.5.2: Demand information for each sample hurricane, adapted from [53].

4.5.2 Case Study Results

The optimal pre-positioning strategy for the network shown in Figure 4.5.1, the cost

data shown in Table 4.5.1, and the 51 demand scenarios derived in [53] was determined using

the stochastic programming model presented in Section 4.4.1 and the stochastic program-

ming solver of the commercial software package What’s Best�. In addition, the PDSA was

applied to the pre-positioning problem and compared to the optimal solution. For illustrative

purposes, it was assumed that the location of the manufacturing facility was Birmingham

Alabama.

Manufacturer Location in Birmingham, Alabama

Within the 51 scenarios, demand for water was reported at 26 of the 30 nodes shown in

Figure 4.5.1. The optimal strategy pre-positioned inventories at all but one of these nodes

(Brownsville, Texas). This is likely explained by the large distance between Birmingham and

Brownsville relative to the other cities in the network. In addition, the expected demand

for water in Brownsville across all scenarios is comparatively small. On the other hand, the
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PDSA pre-positioned items at every location. The exorbitant shortage cost caused the PDSA

to classify all of the locations as Case 2, meaning all of the locations will hold inventory.

In some cases, pre-positioned quantities were sufficient in terms of satisfying storm de-

mands (more detailed results related to service level are discussed in Section 4.5.2) when the

optimal solution was applied. However, most scenarios required post-storm transshipments.

For example, the scenario that represents Hurricane Emily created demand for water in

Wilmington NC that exceeded the pre-positioned quantity. Consequently, transshipments

from Charlotte NC, Charleston SC, and Columbia SC were necessary to fulfill the unmet

demand. As another example, consider Hurricane Fran which generated a demand surge

for water in North Carolina (Charlotte and Wilmington), South Carolina (Charleston and

Columbia), and Savannah GA. For this scenario, shortages materialized in Charleston and

Savannah based on the optimal pre-positioning strategy. Transshipments from Wilmington

NC and Orlando FL were used to replenish inventory in Charleston while the unfulfilled

demand in Savannah was replenished with a transshipment from Orlando. Similar results

were found when the PDSA was applied to the problem, but about 1,000 less items were

transshipped considering all 51 scenarios. This can be explained by the larger quantity of to-

tal pre-positioned items computed by the PDSA relative to the optimal solution. The PDSA

focuses on the holding and shortage costs without regard to the cost of transportation, which

most likely explains the difference between the amount pre-positioned and transshipped. In

Section 4.5.3, the PDSA solution is compared to the optimal solution based on expected

costs.

Expected Benefit of Pre-positioning

The benefit of pre-positioning relative to the reactive wait-and-see approach currently

used in practice was quite dramatic. The expected cost of the reactive policy with no pre-

positioning was $28.0 million and the expected cost of the pre-positioning optimal strategy

was $16.5 million while the expected cost of the PDSA solution was $17.1 million. Thus the
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corresponding expected benefit was approximately $11.5 million and $10.9 million, which was

the average benefit of the optimal pre-positioning and PDSA strategies over all 51 scenarios.

However, the wait-and-see approach was actually more cost effective for about half of the

scenarios considering the optimal solution. The scenarios that seemed conducive to the wait-

and-see approach were characterized by a small number of retailers with nonzero demand.

At the other extreme, the cost increase for not pre-positioning when a major storm impacts

many large cities was astronomical, especially for the scenarios that represent two landfall

hurricanes within a short period of time. In some cases, the benefit was more than $50

million. When the PDSA approach is compared to the wait-and-see approach, it is more

cost effective for approximately 88% of the 51 scenarios and the associated probabilities. This

can be attributed to lower shortage costs incurred by the PDSA approach. In comparison to

the optimal solution, the maximum benefit was $30 million less ($20 million). The decrease

in expected benefit is associated with the additional holding costs incurred by the PDSA.

In addition, smaller quantities were pre-positioned at high impact retailers, in particular,

Charleston and Columbia. Since the expected benefits of pre-positioning for both strategies

are positive for the case data, the pre-positioning strategy is recommended in lieu of the

wait-and-see strategy if the manufacturer is located in Birmingham AL.

Other Manufacturer Locations

The expected benefit of pre-positioning also turned out to be positive if the manufacturer

was situated in a city other than Birmingham. This claim is based on solving nine variations

of the case problem in which the manufacturer location was a different city for each problem

instance.

The PDSA approach pre-positioned the same amount of items regardless of manufac-

turer location because shortage and holding costs are only considered to determine the

amounts, so it will not be discussed in this section. However, it should be mentioned that
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shortages were met by overages at other retailers first, and then, the manufacturer. This

finding was consistent with all manufacturer locations.

Pre-positioning and transshipment policies were quite different depending on the man-

ufacturer’s location in the network for the optimal solution. For example, a manufacturer

located in San Antonio TX, which is far removed from the majority of the other nodes in

the network, would pre-position small quantities. Consequently, the majority of shortages

replenished during the second stage would be direct shipments from the manufacturer as op-

posed to transshipments from other retailers. At the other extreme, a manufacturer located

in Tallahassee FL would pre-position larger quantities with few post-storm direct shipments.

These somewhat counterintuitive findings can be explained as follows. If the manufacturer

is in close proximity to high impact cities, then the definitive upfront cost of pre-positioning

is low in comparison to the expected shortage and redistribution costs. On the other hand,

a manufacturer far removed from high impact cities would be subjected to a prohibitive and

certain pre-positioning expense compared to an excessive but uncertain shortage and direct

shipment expense. In summary, the location of the manufacturer does not affect the deci-

sion of whether or not a pre-positioning strategy should be used, but it does affect decisions

related to pre-storm pre-positioning quantities and post-storm transshipment policies.

Service Level

In addition to expected costs and benefits, service level is also an important performance

metric for inventory systems, particularly within the context of disaster relief activities. In

this paper, service level refers to the percentage of demand that is filled on time from pre-

positioned quantities. Shortages replenished during post-storm transshipments from other

retailers or direct shipments from the manufacturer are considered late, and consequently

incur shortage penalty costs. This section reports the service level performance associated

with our numerical experimentation.
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The optimal pre-positioning strategies associated with 10 variations of the case problem,

each of which corresponds to a distinct manufacturer location, induced service levels of at

least 80%. Specifically, for any given scenario, less than 20% of retailers required post storm

replenishment even when other manufacturer locations were considered. This result can

most likely be attributed to the exorbitant shortage costs shown in Table 4.5.1. The PDSA

solution approach produced a slightly higher service level of 83% compared to the optimal

solution. However, at most 35% of locations required post storm shipments for a given

scenario, which can be explained by the smaller pre-positioned amounts at high demand

retailer locations in Charleston and Columbia.

The proposed pre-positioning strategy also represents an improvement in service level

compared to the wait-and-see strategy. This observation is a direct consequence of interpret-

ing retailer demands as the additional inventory requests due to the presence of a threatening

storm (see the beginning of Section 4.4.3). From this perspective, the wait-and-see service

level is 0%. Therefore, any pre-positioning effort would be an improvement.

4.5.3 PDSA Results

On average, PDSA (Section 4.4.2) produced results that were within 3.6% of the optimal

solution as shown in Table 4.5.3. The maximum deviation was less than 5% (Charleston SC)

and the minimum was just under 3% (Mobile AL). The performance of PDSA appears to be

influenced by the location of the manufacturer relative to high impact retailers. In particular,

smaller deviations from optimality seemed to occur whenever the manufacturer was situated

in close proximity to high impact retailers (e.g., manufacturer in Mobile AL). On the other

hand, differences between optimal and PDSA solutions were slightly more pronounced for

larger distances between the manufacturer and high impact retailers (e.g., manufacturer in

Charleston SC). Deviations between the PDSA and optimal solutions were most likely due

to the fact that the first stage of PDSA does not account for transportation costs. Thus, the

performance of PDSA will deteriorate as the manufacturer’s distance from other retailers
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increases. Computation times for PDSA were essentially negligible. The methodology for

determining PDSA pre-positioning quantities outlined in Section 4.4.2 was instantaneous

using a spreadsheet. Similarly, the resulting transportation problems associated with post-

storm redistribution were solved instantaneously using Excel Solver�. Computation times

for obtaining optimal solutions are discussed in the next section.

Manufacturer Location % Increase in Expected Cost

Atlanta 3.71%
Baton Rouge 3.28%
Birmingham 3.31%
Charleston 4.71%
Jackson 3.20%
Little Rock 3.41%
Mobile 2.97%
Nashville 3.62%
San Antonio 4.39%
Tallahassee 3.53%

AVERAGE 3.61%

Table 4.5.3: PDSA performance relative to the optimal solution for each problem instance.

4.5.4 Sensitivity Analysis

This section further investigates Question 2 (see Section 4.2) by examining the effects

that various cost parameters have on the expected benefit of pre-positioning determined by

the optimal solution and the PDSA. The solution approaches were also compared in terms

of the expected benefit with respect to the wait-and-see strategy.

Regarding the optimal solution, the commercial software What’s Best� generated glob-

ally optimal solutions within 2 to 15 minutes for a majority of the computational experi-

ments. However, for some problem instances in which shortage cost was varied, the solver

was manually interrupted before finding an optimal solution after several hours of compu-

tation, sometimes as many as 30 hours. In these cases, What’s Best� managed to find a

feasible solution, which we used as a proxy for the optimal solution in our sensitivity analysis

experiments. On the other hand, the PDSA was able to provide a solution for the instances
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that resulted in a prolonged computation time. All results presented in this section assume

that the manufacturer location is Birmingham, Alabama.

The cost parameters that were reflected in the sensitivity analysis include (i) the unit

cost of production, (ii) the post-storm unit cost of transportation, and (iii) the unit cost

for inventory shortages (the notations for these parameters are c, cw, and s, respectively).

Two of the cost parameters actually had no effect on ECWS. In particular, ECWS was not

influenced by changes in the pre-storm transportation cost cv since there is no pre-storm

transportation process associated with the wait-and-see approach. Additionally, the wait-

and-see strategy does not produce any excess pre-positioned inventory after landfall, which

suggests that h also does not affect ECWS. Therefore, cv and h will not be included in

the sensitivity analysis experiments. The forthcoming analyses will examine the following

measures with respect to changes in c, cw, and s: (i) the expected cost of the optimal pre-

positioning solution, ECPP ; (ii) the expected cost of the wait-and-see strategy, ECWS; (iii)

the expected cost of the PDSA solution, ECPD; (iv) the expected benefit of pre-positioning,

E(Benefit), for both solution approaches; and (v) the percentage increase in expected cost

associated with the wait-and-see solution relative to the optimal pre-positioning and PDSA

solutions.

Observation 1 E(Benefit) decreases as c increases.

Table 4.5.4 and Figure 4.5.2 illustrate the effects of increasing production costs. In Figure

4.5.2, ECWS and ÊCPP increase linearly while EC∗PP appears to be a concave function.

However, as c increases, the slopes of EC∗PP and ÊCPP are greater than the slope of ECWS,

which results in a decrease in E(Benefit) for both strategies. Table 4.5.4 also shows that the

expected benefit of pre-positioning for the optimal solution (E∗PP (Benefit)) is extraordinarily

significant for smaller production costs: over $13 million if the nominal production cost is cut

in half and over $15 million if production is free, which represent 94% and 148% increases,

respectively. The PDSA produces an expected benefit of $12.5 million if the production cost

is cut in half and $14 million if the production is free, representing an increase of 85% and
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116%, respectively. It should also be noted that as c increases, the performance of the PDSA

improves until c is equal to the hypothetical production value in the Case Study.

The findings associated with Observation 1 are a result of the fact that the manufac-

turer’s total production quantity associated with pre-positioning is usually larger than the

production quantity associated with wait-and-see. In particular, the production quantity

for pre-positioning is determined based on probabilistic demand information, which often

leads to the production of additional inventory for the purpose of avoiding expensive short-

age costs. On the other hand, the wait-and-see production quantity corresponds to exact

demand requirements and zero safety stock. Thus, as c increases, EC∗PP and ÊCPP increase

faster than ECWS because of the corresponding production quantities.

c E∗
PP (Benefit) ÊPP (Benefit) Diff in E(Benefit) % Cost Inc. Opt. % Cost Inc. PDSA

$0.00 $15,962,733 $14,345,336 $1,617,397 148.31% 115.87%
$161.93 $13,254,631 $12,595,650 $658,981 93.92% 85.27%
$323.85 $11,438,729 $10,890,449 $548,280 69.04% 63.62%
$485.78 $9,941,756 $9,190,852 $750,904 53.15% 47.24%
$647.70 $8,713,214 $7,491,403 $1,221,812 42.35% 34.37%

Table 4.5.4: The effect of the unit production cost, c.

Observation 2 E(Benefit) increases as cw increases.

The benefit of pre-positioning increases as post-storm transportation costs increase. In this

case, it becomes more cost effective to avoid post-storm transportation as cw increases, which

can be accomplished by more aggressive pre-positioning. Table 4.5.5 and Figure 4.5.3 also

show that the effect of cw is not as dramatic as the effect of c. In particular, E(Benefit) and

the corresponding percentage cost increases do not fluctuate as much for changing values of

cw as they do for changing values of c. When the optimal solution and PDSA solution are

compared, it is evident that the PDSA performance remains consistent in relation to the

optimal solution. The PDSA is based solely on the expected unit shortage and expected

unit holding costs, so its performance should not be greatly affected by changes in cw.
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Figure 4.5.2: The effect of the unit production cost, c.

cw E∗
PP (Benefit) ÊPP (Benefit) Diff in E(Benefit) % Cost Inc. Opt. % Cost Inc. PDSA

$0.30 $11,031,237 $10,398,386 $632,850 67.15% 60.95%
$0.45 $11,234,743 $10,604,436 $630,306 68.10% 61.91%
$0.60 $11,438,729 $10,810,487 $628,242 69.04% 62.86%
$0.75 $11,643,005 $11,016,539 $626,466 69.97% 63.81%
$0.90 $11,848,971 $11,222,592 $626,379 70.92% 64.74%
$1.05 $12,059,257 $11,428,636 $630,621 71.90% 65.67%

Table 4.5.5: The effect of the post-hurricane transportation cost, cw.

Observation 3 E∗PP (Benefit) increases as s increases, and is most sensitive to s.

Pre-positioning reduces the risk of shortages relative to wait-and-see. In fact, all demands

incur shortage penalty costs based on the wait-and-see policy. In Figure 4.5.4, it can be

observed that ECWS increases linearly as s increases and that EC∗PP increases as s increases.

However, the rates of change in the increase of EC∗PP are decreasing (i.e., EC∗PP appears

concave in s) so that the distance between ECWS and the optimal pre-positioning strategy

increases in s.
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Figure 4.5.3: The effect of the post-hurricane transportation cost, cw.

Table 4.5.6 and Figure 4.5.4 also show that the benefit of pre-positioning is insignificant

for small values of s relative to the other values of s and the other cost parameters. In

particular, the smallest value of s in Table 4.5.6 represents the minimum expected benefit

for the optimal strategy (just over $1.2 million) and corresponding cost increase (14.39%)

for all cost parameters and problem instances considered in the case study. On the other

hand, E(Benefit) and the percentage cost increase rapidly as s increases, which is likely a

result of extremely large shortage cost values relative to the other cost parameters.

Observation 4 The performance of PDSA deteriorates as s decreases.

When the PDSA is compared to the wait-and-see approach, the ÊPP (Benefit) is negative

for small values of the shortage cost as shown in Table 4.5.6. The large amount of pre-

positioned items cause expensive holding costs resulting in ÊCPP > ECWS for these values.

However, when the shortage cost is increased, the PDSA provides a solution relatively close
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to the optimal as shown in Table 4.5.6. It should be noted that the optimal solution should

be employed when the value of s is similar to the purchase price. The PDSA provides a

negative expected benefit for these smaller values of s leading the decision maker to choose

the wait-and-see approach, which is contradictory to the optimal solution.

As mentioned at the beginning of this section, What’s Best� was unable to obtain glob-

ally optimal solutions for sensitivity analysis experiments that involved varying the shortage

cost, s. These problem instances resulted in prohibitive computation times of up to 30 hours

for reasons that are not apparent. For these problem instances, the solver was manually

interrupted and a feasible solution was used for the purposes of this analysis. Specifically, a

feasible solution was used as a proxy for the optimal solution in Table 4.5.6 and Figure 4.5.4

whenever s was 5 times c or less. If the actual optimal values for EC∗PP were available, then

a more dramatic increase in E∗PP (Benefit) and departure of the curves shown in Figure 4.5.4

would be observed. On the other hand, the PDSA was able to provide solutions for these

problem instances, and it should be noted that in practice, this is the advantage of using

PDSA instead of commercial software.

s E∗
PP (Benefit) ÊPP (Benefit) Diff in E(Benefit) % Cost Inc. Opt. % Cost Inc. PDSA

$323.85 $73,069 -$5,854,090 $5,927,159 2.04% -61.52%
$647.70 $208,743 -$4,977,007 $5,185,750 4.41% -50.17%
$1,295.40 $656,918 -$3,222,841 $3,879,759 9.59% -30.04%
$1,943.10 $1,266,876 -$1,468,674 $2,735,551 14.39% -12.73%
$2,590.80 $2,052,275 $285,492 $1,766,784 19.40% 2.31%
$3,238.50 $3,309,799 $2,039,658 $1,270,141 27.85% 15.51%
$3,886.20 $4,723,495 $3,793,824 $929,671 36.24% 27.17%
$4,533.90 $6,325,856 $5,547,990 $777,866 45.21% 37.56%
$5,181.60 $7,947,087 $7,302,156 $644,931 53.21% 46.87%
$5,829.30 $9,669,318 $9,056,322 $612,996 61.29% 55.26%
$6,477.00 $11,438,731 $10,810,488 $628,242 69.04% 62.86%

Table 4.5.6: The effect of the unit shortage cost, s.
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Figure 4.5.4: The effect of the unit shortage cost, s.

Observation 5 For all of the problem instances solved optimally, the expected benefit of

pre-positioning relative to the wait-and-see approach was quite significant.

For the optimal solution, the smallest expected benefit and corresponding percentage

cost increase were $73,069 and 2.04%, respectively, which corresponds to the problem in-

stance where the shortage cost and production cost were equal. On the other hand, the

largest benefit and percentage increase (excluding the case when production was free) were

$13.25 million and 93.92%, respectively. The largest benefit occurred for the problem in-

stance with the smallest production cost, c. The PDSA produced a negative benefit when

the shortage cost was small, but it performed well for all other problem instances with the

largest benefit, $12.5 million, occurring when the production cost was half of the tested pro-

duction cost. Overall, this study shows that the optimal pre-positioning always outperforms

the wait-and-see approach currently used in practice whenever probabilistic information re-

garding landfall of an observed hurricane is available.
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4.6 Summary and Future Directions

This paper is motivated by the problem that emerges when a commercial manufacturer

responds to orders for emergency supply items placed by retailers situated in the path of

an observed hurricane or tropical storm. In practice, retailers often postpone the decision

to initiate emergency orders from manufacturers until the demand requirements associated

with pre-storm demand surge or post-storm disaster relief activities are known with cer-

tainty. A typical consequence of this reactive “wait-and-see” policy is widespread stockout

of emergency supplies and equipment, which compromises the effectiveness of disaster relief

operations and proliferates lost sales for the commercial supply chain. In an effort to en-

courage higher service levels from the private sector in support of disaster relief efforts, this

paper proposes a proactive inventory pre-positioning strategy from the perspective of the

manufacturer. The proposed pre-positioning strategy is characterized by a single manufac-

turer that pushes inventory across a network of retailers prior to the landfall of an observed

storm, and assumes responsibility for the resulting costs and risks similar to vendor man-

aged inventory systems. The manufacturer’s pre-positioning problem is represented as a

two-stage stochastic programming model. During the first stage, supplies are distributed

from the manufacturer to selected retailer locations within the supply chain network. The

corresponding second stage is characterized by transshipment of inventories among retailers,

including possible direct shipments from the manufacturer, after demand information be-

comes known with certainty. To illustrate the model, the case study introduced in reference

[53] which is derived from historical hurricane data, was solved. Solutions were generated

using the stochastic programming capability of the commercial software program, What’s

Best�. In addition, a heuristic solution methodology (PDSA) was introduced for the pur-

pose of reducing the computational effort associated with solving large-scale problems. The

proposed approach produced solutions within 3% - 5% of optimality and was executed with

negligible computation time in a spreadsheet. Computational results and sensitivity analysis

based on the case study suggest that the optimal pre-positioning strategy is always more
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cost effective than the wait-and-see approach often used in practice whenever the landfall

locations and demand requirements associated with an observed storm are uncertain.

The stochastic programming model presented in this study can be extended in several

ways to reflect additional issues that may arise when commercial manufacturers attempt

pre-positioning strategies in practice. In fact, some of these issues have been addressed in

the pre-positioning literature based on the perspectives of government and non-government

organizations and humanitarian relief supply chains. For instance, network reliability in

which pre-positioned inventories and roadways are partially or completely destroyed could

be considered as in [53], [12], and [6]. Also, it would be useful from a practical standpoint

to expand the model to include multiple product types as in [14], [38], [53], [5], and [6].

There are also extensions which have not been considered in the literature that would

be particularly relevant to the commercial pre-positioning problem introduced in this study.

Before describing these extensions, first recall that one of the unique features of the pre-

positioning model developed in Section 4.4.1 is that it represents the manufacturer’s per-

spective and cost structure. However, a limitation of the model from a production standpoint

is that infinite production capacity is assumed and that only the variable cost of production

is considered. It would therefore be of interest to expand the model to include more details

regarding the manufacturer’s production process and cost measures. For example, a finite

production rate could be incorporated into the model as opposed to assuming that produc-

tion is instantaneous. Similarly, the model could also be extended such that production rate

is a decision variable and the corresponding production cost is a function of the selected rate.

Another useful extension would be a multiple product model as previously mentioned. This

would introduce opportunities for scheduling production to reduce the costs associated with

changeovers. Differentiating pre- and post-storm production costs might also be relevant to

the proposed pre-positioning strategy in practice. In a post-storm environment, constrained

resources may lead to overtime labor and other inflated costs pertaining to production. In
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terms of distribution, only the variable cost of transportation is considered. Therefore, it

would be interesting to examine the effect of fixed transportation costs in a future effort.

The model introduced in this paper characterizes the role of the manufacturer in a

short-term pre-positioning environment. This basic model, along with the above-mentioned

extensions related to the manufacturer’s problem within the context of pre-positioning, rep-

resents a promising new direction for disaster relief research.
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Chapter 5

Summary

In closing, the proposed research exhibits the potential to provide meaningful strategies

that can be applied to the private sector with an emphasis on the retail industry when faced

with an uncertain disruption such as a hurricane. This dissertation stresses the importance

of considering the effects of disasters when retailers make decisions regarding how they will

approach inventory management for emergency supplies. The private sector can benefit from

employing the strategies discussed in this dissertation by providing better customer service

and minimizing costs. Additionally, the strategies presented can assist residents by ensuring

that they are able to obtain the necessary supplies before and after the storm.

5.1 Minimax EOQ Policies with Demand Surge, Lead-Time and Lost Sales

The model presented in Chapter 2 provides a solution for how retailers can determine

an ordering strategy when faced with an uncertain demand surge or demand disruption.

Retailers may select a reactive strategy meaning they will maintain their order quantity

until it is certain that the surge will occur, or they may select a proactive strategy, which

means they will modify the order quantity before it is certain that the surge will occur.

A closed form solution was found for the optimal order quantity during the disruption.

Minimax decision criterion was used to determine the best ordering strategy considering a

28 experimental design. In the numerical experiment, most of the tested cases constituted

selecting the proactive strategy, which is contrary to the approach employed by most retailers

when faced with a forecasted storm. On the other hand, minimax decision criterion supported

the reactive strategy despite lost sales when lead-time was short. The sensitivity analysis

revealed that the lead-time has a greater effect on the strategy selection than the lost sales
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cost. All of these findings illustrate that the retailer must strongly consider the lead-time

and the objectives (i.e., minimizing maximum costs) when selecting an inventory ordering

strategy for handling uncertain disruptions.

5.2 Minimax and Minimax Regret Inventory Control Policies Regarding De-

mand Disruptions and Damaged Inventory

The model presented in Chapter 3 is an extension of the model presented in Chapter 2

by considering a different time horizon with two disruptions and two sources of uncertainty.

The first disruption represents a possible period of no demand caused by a storm while

the second disruption symbolizes the surge in demand for emergency supplies after the

storm. The first source of uncertainty is whether the disruption, a period of no demand,

will occur while the second source is whether the inventory will be damaged if the first

disruption occurs. Minimax and minimax regret decision criteria were applied to the model to

determine the quantity that the retailer should hold during the first and second disruptions.

Minimax decision criterion did not support holding inventory during the first disruption

while minimax regret advocated holding inventory during 55% of the tested cases. However,

the order quantity for the second disruption was the same for both decision criteria. All in

all, the retailer should consider the decision criterion that best suits the cost objectives when

selecting a strategy for the time horizon during and after the storm.

5.3 Pre-Positioning Hurricane Supplies in a Commercial Supply Chain

Pre-positioning has not been considered in the literature from a profit-driven perspec-

tive, and Chapter 4 provides a model that minimizes the costs of the manufacturer when a

hurricane has been observed. A stochastic programming model was developed to determine

the quantity of emergency supplies that should be pre-positioned at each retailer as well as

the necessary transshipments and direct shipments from the manufacturer after the storm to

satisfy shortages. In addition, a solution methodology termed PDSA reduces the stochastic
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programming model to the transportation problem by employing a heuristic to solve the first

stage decisions (i.e., pre-positioned quantities). The commercial software package What’s

Best� was utilized to solve the stochastic programming model, and the optimal solution

revealed that it was best to pre-position supplies at most retailers regardless of the man-

ufacturer’s location. The manufacturer’s location did affect the amount pre-positioned at

each retailer meaning the retailers located closest to the manufacturer generally held larger

amounts of pre-positioned quantities. In most cases, at least 80% of the retailers’ demand for

emergency items was met by the pre-positioned amounts illustrating that the retailers did

not rely solely on post-storm shipments and the pre-positioning strategy is more cost effective

considering the numerical example and case study data from ([53]). The sensitivity analysis

indicated that the lost sales cost had the greatest effect on the decision to pre-position. In

addition, the PDSA methodology should not be applied to the problem if the shortage costs

are small in relation to the other parameters. Overall, the pre-positioning strategy is more

cost effective than the wait-and-see approach currently used in practice when the expected

cost is considered.

101



Bibliography

[1] Federal Emergency Management Agency. Hurricane preparedness for people with dis-
abilities, 2006. http://www.fema.gov/news/newsrelease.fema?id=24487.

[2] N. Agin. A min-max inventory model. Management Science, 12(7):517–529, 1966.

[3] Othman Ibraheem Alsalloum and Graham K. Rand. Extensions to emergency vehicle
location models. Computers & Operations Research, 33(9):2725 – 2743, 2006.
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Appendix A

Chapter 2

A.1 Derivation of Cost Equation

Figure A.1.1: Reactive Strategy with Disruption: Case 1 Appendix
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The number of orders given in Chapter 2 are m1 orders of qE and m2 orders of qR, which

can be found by dividing the total demand during the time period by the order quantity.

The m1 orders of qE are found using A1 and A2 while the m2 orders encompass the m2 orders

of qR. The total number of orders is given in Eq. A.1.1.

m1 +m2 =
λT1 + λD(t1R − T1)

qE
+
λD(T2 − T1 − L)

qR
(A.1.1)

The holding cost is determined by computing the average inventory level for A1, A2 and

A3. The average inventory level for A1 and A2 is found by Eq. (A.1.2) where the number of

orders of qE is multiplied by the area of A1 and A2.

I1 =

(
λT1

qE

)
∗
(
qE

2

λ

)
+

(
λD(t1R − T1)

qE

)
∗
(
qE

2

λD

)
=
qEt1R

2
(A.1.2)
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The average inventory level is computed in Eq. (A.1.3), which entails multiplying m2

by the area for A3.

I2 = m2 ∗ (Area of A3) =
λD(T2 − T1 − L)

qR
∗
(
qR

2

λD

)
=
qR(T2 − T1 − L)

2
(A.1.3)

The total number of lost sales is found by multiplying the demand rate by the time

horizon when the inventory level is zero. In the case considered here, Eq. (A.1.4) gives the

total number of lost sales (L).

L = λD(T1 + L− t1R) (A.1.4)

The cost equation presented in Eq. (2.3.3) is the sum of Eqs. (A.1.1)-(A.1.4) with each

part multiplied by its respective cost.

A.2 Reactive Strategy

Case 1

Consider the following assumptions: T2 ≥ T1 + L, T1 ≤ qE
λ
− L, L ≥ qE−λT1

λD
, and s ≥ qR

λD
.

TC1
R1

(qE, qR)− TC0
R(qE) ≥ 0

A

(
λT1

qE
+
λD(t1R − T1)

qE
+
λD(T2 − T1 − L)

qR

)
+ h

(
qEt1R

2
+
qR(T2 − T1 − L)

2

)
+sλD (T1 + L− t1R)− A

(
λT2

qE

)
− h

(
T2qE

2

)
≥ 0

Substitute t1R = qE−λT1
λD

+ T1, qE =
√

2Aλ
h

, qR =
√

2AλD
h

and simplify.

A

(
1 +

λ

λD

)
+
√

2hAλD(T2 − T1 − L)− T2

√
2hAλ+ T1

√
hAλ

2

(
1− λ

λD

)

+sλD

L−
√

2Aλ
h
− λT1

λD

 ≥ 0
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Substitute T2 = T1 + L and L =

√
2Aλ
h
−λT1

λD
.

A

(
1 +

λ

λD

)
−
√

2hAλ

T1 +

√
2Aλ
h
− λT1

λD

+ T1

√
hAλ

2

(
1− λ

λD

)
≥ 0

A

(
1 +

λ

λD

)
− T1

√
2hAλ

(
1− λ

λD

)
− 2A

(
λ

λD

)
+ T1

√
hAλ

2

(
1− λ

λD

)
≥ 0

A

(
1− λ

λD

)
− T1

√
hAλ

2

(
1− λ

λD

)
≥ 0

A ≥ T1

√
hAλ

2

√
2A

hλ
≥ T1

qE
λ
≥ T1

We can say that TC1
R1

(qE, qR)− TC0
R(qE) ≥ 0 because T1 ≤ qE

λ
.

Case 2

Consider the following assumptions: T2 ≥ t1R, T1 ≤ qE
λ

, and t1R = T1 + qE−λT1
λD

TC1
R2

(qE, qR)− TC0
R(qE) ≥ 0

A

(
λT1

qE
+
λD(t1R − T1)

qE
+
λD(T2 − t1R)

qR

)
+ h

(
qEt1R

2
+
qR(T2 − t1R)

2

)
−A

(
λT2

qE

)
− h

(
T2qE

2

)
≥ 0
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Substitute t1R = qE−λT1
λD

+ T1, qE =
√

2Aλ
h

, qR =
√

2AλD
h

and simplify.

A

(
1 +

λ

λD
− 2

√
λ

λD

)
+ T2

√
2hAλD + T1

√
hAλ

h

(
1− λ

λD

)
− T1

√
2hAλD

(
1− λ

λD

)
≥ 0

Substitute T2 = T1 + qE−λT1
λD

and qE =
√

2Aλ
h

.

A

(
1 +

λ

λD
− 2

√
λ

λD

)
+ T1

√
2hAλD

(
1− λ

λD

)
− T1

√
2hAλ

(
1− λ

λD

)

+2A

(√
λ

λD

)
− 2A

λ

λD
− T1

√
2hAλD

(
1− λ

λD

)
+ T1

√
2hAλ

(
1− λ

λD

)
≥ 0

A

(
1− λ

λD

)
− T1

(
√

2hAλ−
√
hAλ

2

)(
1− λ

λD

)
≥ 0

Substitute T1 = qE
λ

with qE =
√

2Aλ
h

.

A

(
1− λ

λD

)
−
√

2A

hλ

(
√

2hAλ−
√
hAλ

2

)(
1− λ

λD

)
≥ 0

A

(
1− λ

λD

)
− A

(
1− λ

λD

)
= 0

Since we substituted the smallest value for T2 and largest value for T1, the inequality should

be ≥ 0 thus proving that TC1
R2

(qE, qR)− TC0
R(qE) ≥ 0.

Case 3

Consider the following assumptions: T1 + L ≥ qE
λD

+ qE
λ

, T2 ≥ T1 + L.

TC1
R3

(qE, qR)− TC0
R(qE) ≥ 0
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A

(
λT1

qE
+
λD(t1R − T1)

qE
+ 1 +

λD(T2 − T1 − L)

qR

)
+ h

(
qEt1R

2
+
qE

2

2λD
+
qR(T2 − T1 − L)

2

)
+sλD

(
T1 + L− qE

λD
− t1R

)
− A

(
λT2

qE

)
− h

(
T2qE

2

)
≥ 0

Substitute t1R = qE−λT1
λD

+ T1, qE =
√

2Aλ
h

, qR =
√

2AλD
h

and simplify.

2A

(
1 +

λ

λD

)
+
√

2hAλD(T2 − T1 − L)− T2

√
2hAλ+ T1

√
hAλ

2

(
1− λ

λD

)
+sλD

(
L− 2qE − λT1

λD

)
≥ 0

Substitute T2 = T1 + L, T1 = qE
λ

+ qE
λD
− L, and M = L− 2qE−λT1

λD
and simplify.

2A

(
1 +

λ

λD

)
−
(
qE
λ

+
qE
λD

)√
2hAλ+

(
qE
λ

+
qE
λD
− L

)√
hAλ

2

(
1− λ

λD

)
+ sλDM ≥ 0

2A

(
1 +

λ

λD

)
− 2A

(
1 +

λ

λD

)
+

(
Aλ

λD
+ A− L

√
hAλ

2

)(
1− λ

λD

)
+ sλDM ≥ 0

(
Aλ

λD
+ A− L

√
hAλ

2

)(
1− λ

λD

)
+ sλDM ≥ 0.

This inequality holds because Aλ
λD

+ A− L
√

hAλ
2
≥ 0 and M ≥ 0.

Case 4

Consider the following assumptions: T2 ≥ qE
λD

+ qE
λ

and qE
λ
− T1 ≤ L ≤ qE

λD
+ qE

λ
− T1.

TC1
R4

(qE, qR)− TC0
R(qE) ≥ 0
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A

(
λT1 + λD(t1R − T1)

qE
+ 1 +

λD(T2 − qE
λD

+ qE
λ

)

qR

)
+ h

(
qEt1R

2
+
qE

2

2λD
+
qR( qE

λD
+ qE

λ
)

2

)

+sλD

(qE
λ
− t1R

)
− A

(
λT2

qE

)
− h

(
T2qE

2

)
≥ 0

Substitute t1R = qE−λT1
λD

+ T1, qE =
√

2Aλ
h

, qR =
√

2AλD
h

and simplify.

2A

(
1 +

λ

λD

)
− T2

√
2hAλ+

√
2hAλD

(
T2 −

√
2Aλ

hλD
2 −

√
2A

hλ

)
+ T1

√
hAλ

2

(
1− λ

λD

)

+sλD

(√
2A

hλ
− T1

(
1− λ

λD

)
−

√
2Aλ

hλD
2

)
≥ 0

Substitute T2 = qE
λD

+ qE
λ

.

2A

(
1 +

λ

λD

)
−
√

2hAλ

(√
2Aλ

hλD
2 +

√
2A

hλ

)

+
√

2hAλD

(√
2Aλ

hλD
2 +

√
2A

hλ
−

√
2Aλ

hλD
2 −

√
2A

hλ

)
+ T1

√
hAλ

2

(
1− λ

λD

)

+sλD

(√
2A

hλ
− T1

(
1− λ

λD

)
−

√
2Aλ

hλD
2

)
≥ 0

2A

(
1 +

λ

λD

)
−
√

2hAλ

(√
2Aλ

hλD
2 +

√
2A

hλ

)
+ T1

√
hAλ

2

(
1− λ

λD

)

+sλD

(√
2A

hλ
− T1

(
1− λ

λD

)
−

√
2Aλ

hλD
2

)
≥ 0

2A

(
1 +

λ

λD

)
− 2A

(
1 +

λ

λD

)
+ T1

√
hAλ

2

(
1− λ

λD

)
+sλD

(√
2A

hλ
− T1

(
1− λ

λD

)
−

√
2Aλ

hλD
2

)
≥ 0

T1

√
hAλ

2

(
1− λ

λD

)
+ sλD

(√
2A

hλ
− T1

(
1− λ

λD

)
−

√
2Aλ

hλD
2

)
≥ 0

112



We know that the lost sales are positive, so
(√

2A
hλ
− T1

(
1− λ

λD

)
−
√

2Aλ
hλD

2

)
≥ 0. Also,

T1

√
hAλ

2

(
1− λ

λD

)
≥ 0.

A.3 Proactive Strategy

Case 1

TC1
P (qP )− TC0

P1
(qP , qE) ≥ 0

A

(
DT

qP

)
+ h

(
T2qP

2

)
− A

(
2 +

λT2 − 2qP
qE

)
− h

(
qP

2

λ
+
qE
(
T2 − 2qP

λ

)
2

)
≥ 0

Substitute qE =
√

2Aλ
h

and qP =
√

2ADT
hT2

and simplify.

2A

(
2

√
DT

λT2

− 1− DT

λT2

)
+
√

2hA
(√

DTT2 − T2

√
λ
)
≥ 0

√
2hA

(√
DTT2 − T2

√
λ
)
− 2A

(√
DT

λT2

− 1

)2

≥ 0

√
2hA

(√
DTT2 − T2

√
λ
)
≥ 2A

(√
DT

λT2

− 1

)2

T2

√
2hAλ

(√
DT

λT2

− 1

)
≥ 2A

(√
DT

λT2

− 1

)2

T2

√
hλ

2A
≥

(√
DT

λT2

− 1

)

To simplify the inequality, change the left side of the inequality to
√

DT
λT2

because it is greater

than
(√

DT
λT2
− 1
)

.

λT2

√
hT2

2ADT

≥ 1

λT2

(
1

qP

)
≥ 1

T2 ≥
qP
λ
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We know that T2 ≥ qP
λ

because the assumption for this case is that T2 ≥ 2qP
λ

.

Case 2 and Case 4

TC1
P (qP )− TC0

P2
(qP , qE) ≥ 0

A

(
DT

qP

)
+ h

(
qPT2

2

)
− A

(
λT2

qP

)
− h

(
qPT2

2

)
≥ 0

AλD
qP

(T2 − T1)− Aλ

qP
(T2 − T1) ≥ 0

λD − λ ≥ 0

Because we know that λD ≥ λ, TC1
P (qP ) ≥ TC0

P2
(qP , qE). The same is true for Case 4.

Case 3

TC1
P (qP )− TC0

P3
(qP , qE) ≥ 0

The proof for Case 3 is very similar to the proof for Case 1 with the exception that only one

order of qP is placed. The inequality reduces to the following:

√
2hA

(√
DTT2 − T2

√
λ
)
− A

(√
DT

λT2

− 1

)2

≥ 0

T2

√
2hAλ

(√
DT

λT2

− 1

)
≥ A

(√
DT

λT2

− 1

)2

T2

√
2hλ

A
≥

(√
DT

λT2

− 1

)

114



To simplify the inequality, change the left side of the inequality to
√

DT
λT2

because it is greater

than
(√

DT
λT2
− 1
)

.

λT2

√
2hT2

ADT

≥ 1

λT2

(
2

qP

)
≥ 1

T2 ≥
qP
2λ

We know that T2 ≥ qP
2λ

because the assumption for this case is that T2 ≥ qP
λ

.
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Appendix B

Chapter 3

Consider the cost equation where q1 = qL, q2 = qS, ~D = (d1, 0), and ~S = (H, 0).

TC
(d1,0)
(H,0) (qL, qS) = A

1 +
λS

(
T4 − T3 − qL

λS

)
qS

+ hqLT3 +
hqL

2

2λS
+
hqS

(
T4 − T3 − qL

λS

)
2

Consider the cost equation where q1 = q2 = q∗, ~D = (d1, 0), ~S = (H, 0), and q∗ ≥ λSL.

TC
(d1,0)
(H,0) (q∗, q∗) = A

1 +
λS

(
T4 − T3 − q∗

λS

)
q∗

+ hq∗T3 +
hq∗2

2λS
+
hq∗

(
T4 − T3 − q∗

λS

)
2

Now, we will show the following:

TC
(d1,0)
(H,0) (q∗, qS) ≤ TC

(d1,0)
(H,0) (q∗, q∗)

For the proof, we will substitute q∗ = qL, which is the smallest value of q∗. If we simplify

the inequality using the cost equations, we have:

AλS
qS

+
hqS
2
≤ AλS

qL
+
hqL
2

h

2
(qS − qL) ≤ AλS

(
1

qL
− 1

qS

)
h

2
(qS − qL) ≤ AλS

(
qS − qL
qLqS

)
h

2
≤ AλS
qLqS

qLqS ≤
2AλS
h

qLqS ≤ qS
2
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We know this to be true because qS ≥ qL, and if this is true for the smallest value, then

it will be true for all values of q∗ because q∗ ≤ qS and q∗ ≥ qL.
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