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ABSTRACT 

 
Integrated Development Environments (IDE) for software development offer a wide 

variety of software visualization tools, which facilitate navigation and analysis, and 

generate multiple graphical presentations of program code. Co-ordination of these 

representations during program comprehension can be a complex task for a novice 

programmer, and at times be detrimental to debugging performance. This thesis develops 

a cognitive model of how multiple representations including visualizations are used by 

programmers to comprehend and debug a program in an IDE for object oriented 

programming. The model, based on literature review and analyses of the shortcomings of 

existing research, is more detailed than any model of program comprehension and 

debugging hitherto offered in the literature. The model was evaluated empirically with 

two debugging studies during which visual attention of participants was tracked with an 

eye-tracker. The first study found that a mental model created by static visualizations is 

not as extensive as the mental model created by dynamic visualizations. Mental model 

strength of programming constructs like data structure and function was consistently 

higher for dynamic visualizations, whereas strength of control flow and data flow was 

consistently stronger for static visualizations. On analyzing visual attention patterns 

during the second study, we found that program code and dynamic representations 

(viewer, variable watch and output) attracted the most attention. Static representations 

like UML and Control Structure diagrams saw significantly lesser usage. Gaze patterns 

were analyzed by breaking down the debugging sessions into segments of three, five and 

fifteen minute intervals, and classifying gaze durations as short and long gazes.
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Data mining techniques were used to detect high frequency patterns from eye tracking 

data of participants. A significant pattern difference was found among the participants 

based on programming experience, familiarity with the IDE and debugging performance. 

These results are consistent with the proposed cognitive model and open up many more 

intriguing questions for future research.
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CHAPTER 1 

INTRODUCTION 

Most of the programming today is accomplished on sophisticated software 

applications called Integrated Development Environments (IDE). IDEs are extremely 

popular among programmers; primarily due to the increase in productivity when used for 

software development. These assist a programmer by providing a plethora of 

functionalities like source code editor, compiler/interpreter, build tools, debugger, version 

control system, etc. Several of these functionalities present multiple perspectives of the 

same program under development. These representations, also known as program 

visualizations, enable programmers to treat programs not just as code text, but as 

program entities produced when executed under different conditions. Program 

visualizations presented by IDEs range from either graphical to mostly textual and 

present different types of information about the program. A good example would be 

simultaneous use of both UML (Unified Modeling Language) diagram and control flow 

diagram by a programmer to grasp different perspectives of the same software project. A 

programmer uses these visualizations when appropriate to comprehend or debug a 

program and build up a mental model of the program. Usage of these functionalities 

differs from one programmer to another based on factors like programming language 

expertise, acquaintance with the IDE and personal preference. 

Although these tools are designed to facilitate programming activities, they tend to 

be overwhelming and at times detrimental to a programmers’ performance. Thus, effective 
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usage of these visualizations require a programmer to be skilled in: a) generating and 

testing hypotheses from the evidence in a program’s output and visualizations, and; b) 

combining this strategic knowledge with his/her knowledge of coordinating appropriate 

visualizations and functionalities of the IDE. Novice programmers using IDEs face the 

additional challenge of having to learn abstract concepts of programming as well as these 

IDE usage skills. It is therefore beneficial  to develop insights into the underlying 

processes at work during program comprehension/debugging in a rich software 

development environment, in order to help us better understand the effectiveness of 

existing IDEs and design better IDE interfaces in future.  

Program comprehension, the ability to understand programs written by others, is 

widely recognized as central to programming. Previous research in the domain has 

established a solid body of knowledge about comprehension models and strategies 

employed in comprehension, expert novice differences, and comprehension outcome 

analysis. Majority of the research has however focused on using potentially intrusive 

verbal protocols to capture thought processing instead of applying a non invasive 

methodology like eye-tracking. Recently though, visual attention tracking is increasingly 

used by researchers, especially those studying the psychology of programmers. This 

methodology was first employed to investigate how programmers read program code. 

Other recent studies investigated program comprehension or debugging employing either a 

visual attention tracking tool called Restricted Focus Viewer (RFV) or an eye-tracker. 

The present research involves the most recent eye-tracking study of programmers. 

The core of this thesis is an investigation, from theoretical and empirical 

perspectives, of the underlying cognitive processes active during programming tasks. We 

first develop a theoretical cognitive model of program comprehension and debugging by 

synthesizing existing research in the areas of text comprehension, comprehension of 
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picture and diagrams, graph comprehension and program comprehension. Then an 

empirical study of programmers was designed and carried out to explore processes of 

program comprehension and debugging, and to answer some of the research questions 

arising out of the proposed theoretical model. In chapter 2, we discuss relevant literature 

in areas pertaining to our research. Chapter 3 summarizes the problem statement of this 

research. The overall research and its results are presented in chapters 4, 5 and 6. A 

summary of research contributions and future work are presented in Chapter 7 and 8 

respectively. 
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CHAPTER 2 

BACKGROUND 

This chapter presents the background material and related work relevant to this 

thesis. It specifically addresses the motivation behind our research, and the history and 

current state of the topics pertaining to our research: cognitive modeling – text, picture, 

multimedia and program comprehension, program debugging, program visualization and 

eye-tracking.  

 

2.1 Cognitive Modeling 

Cognitive science is concerned with understanding the processes that the human 

brain uses to accomplish complex tasks including perceiving, learning, remembering, 

thinking, predicting, inference, problem solving, decision making, planning, and moving 

around the environment. The goal of a cognitive model is to scientifically explain one or 

more of these basic cognitive processes, or explain how these processes interact 

(Busemeyer & Diederich, 2010). They help reveal information pertaining to cognitive and 

perceptual constraints on human performance. These models now appear in many fields 

that deal with cognition, ranging from perception to problem solving and decision making. 

Descriptions of cognitive models take various forms such as narrations of steps required in 

completion of a task and computer based simulations embodying cognitive architectures.
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Cognitive models often incorporate mental models, which according to Johnson-

Laird's theory (Johnson-Laird, 1983), is the basic structure of cognition: "It is now 

plausible to suppose that mental models play a central and unifying role in representing 

objects, states of affairs, sequences of events, the way the world is, and the social and 

psychological actions of daily life". Mental models are simplified versions of a complex 

scenario created in the working memory, which are much easier to conceive, interpret and 

help predict actions. Mental models can be constructed based on perception, 

comprehension, or imagination. These models help researchers evaluate how decisions are 

made, how deductive reasoning problems are solved and measure behavior in diverse 

environments.  

We will now discuss some of the cognitive models proposed and studied in the 

areas of text comprehension, graph and picture comprehension, program comprehension 

and Human Computer Interaction (HCI). 

 

2.1.1 Text Comprehension 

Work on text comprehension is relevant to our research because reading and 

understanding code is an important activity in program comprehension. For many decades 

now, text comprehension has been one of the most researched areas in cognitive 

psychology. It is a complex interactive cognitive process that involves construction of 

logical representations and inferences at several levels of text and context within the 

limits of working memory. In general, comprehension is supported by cognitive resources 

such as working memory (Just & Carpenter, 1992) and inhibitory control (Gernsbacher, 

Varner, & Faust, 1990). Working memory serves as a mental workspace where 

information retrieved from memory (either world knowledge or previously read text) is 

available for integration with incoming text or contributes to updating and revision of the 
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mental representation of the unfolding text or discourse. Problems can arise because 

working memory resources are limited or become overloaded if suppression or inhibitory 

controls are lacking, preventing accurate and efficient integration. 

Of late, researchers' focus has shifted from lower levels of comprehension (like 

lexical processing, interpretation of text, semantics and syntactic parsing) to higher levels 

of comprehension (involving pragmatics, knowledge-based inferences, world knowledge and 

problem solving). Of particular interest to us is the process involved during problem 

solving. There has been an emergence of sophisticated theoretical cognitive models in 

problem solving with empirical support. We will now discuss few of the relevant models.  

In their early work, Kintsch & Van Dijk (1975) proposed that readers generate a 

variety of knowledge-based inferences when they comprehend stories. Since then, many 

studies have empirically found that “multiple levels of representation are involved in 

making meaning” of text (Van Oostendorp & Goldman, 1998). Knowledge-based 

inferences are constructed whenever knowledge structures from long-term memory are 

activated and incorporated into the meaning representation of the text. The meaning 

representation consists of the text base and the referential situation model of the text. 

The text base represents the meaning of the text, that is, the semantic structure of the 

text, and it “consists of those elements and relations that are directly derived from the 

text itself [...] without adding anything that is not explicitly specified in the text” (Van 

Oostendorp & Goldman, 1998). Whereas, the referential situation model is a life like 

mental representation of the people, setting, actions, goals and events that are either 

explicitly mentioned or inferentially suggested by the text. In later research (Graesser et 

al. 1997 and Kintsch, 1998), additional levels of representation like surface component, 

communication level and genre level have been established. Surface representation 

includes the detailed linguistic information, such as specific phrases, words and syntactic 
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structures but not their meaning. The communication level represents the pragmatic level 

of communication between reader and writer. The genre level represents the knowledge of 

the class of text and its corresponding text function. 

The model of Trabasso & Van den Broek (1985) took a different stance and 

assumes that text comprehension is a problem solving process. According to the model, 

the meaning of a narrative text is represented in long-term memory as a network. The 

nodes of this network represent the individual clauses of the text, whereas the links 

represent causal and enabling relations among those clauses. A reader’s ability to discover 

the causal connections is related with comprehension. Understanding an individual clause 

requires that the reader discovers its causal antecedents and consequences. Understanding 

the text as a whole requires that the reader finds a causal path that links its opening to 

its final outcome. 

 It is worth mentioning the Construction-Integration Model (Kintsch, 1988) here as 

it holds significant relevance in explaining the role of knowledge in overall comprehension 

process. The Construction-Integration Model (CI) emphasizes bottom-up, data-driven 

comprehension processes over more rigid top-down search strategies, common in the area 

of discourse comprehension. The CI Model is comprised of two ordered steps: knowledge 

Construction and knowledge Integration. During the Construction step relying on 

Linguistic Representation, a larger set of mental elements is generated when compared to 

the traditional methods. The result of this Construction step is a Propositional Network. 

If this network is influenced by the comprehender's own knowledge bases during the 

Construction step, due to past experience, then in effect what is produced is an 

Elaborated Propositional Network. 
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possible meanings of the given sentence are constrained, which do not fit in with the 

context and strengthens the meanings that do. The overall result is a Final Text 

Representation which can then be interpreted and evaluated. The intended scope of the 

CI Model is somewhat limited. It does not concern itself with all problems within 
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Model. Similarly, the model neglects the perceptual aspects of reading a text (or 

listening), as well as the issue of how the semantic representation of a text is constructed. 

In sum, the emphasis of the CI Model is on finding a coherent representation and using it, 

not on how the needed information is generated. 

Learning strategy refers to learner’s activity during learning aimed at improving 

learning outcomes. In 1996, an interesting model was proposed for learning strategies in 

text comprehension by Mayer (1996). This model talked about cognitive process like 

selecting, organizing and integration; it is known as the SOI model. This model will be 

elaborated in chapter 4, where it is of higher relevance. We will now discuss relevant work 

in the area of Picture and Text comprehension. 

 

2.1.2 Picture and Text Comprehension 

In a multi-visualization programming environment, a programmer is presented 

with many static visualizations of the program code along with descriptions. For example, 

a UML diagram represents the relationships among classes along with text descriptions of 

these relationships. It is hence of importance to understand the cognitive processes active 

during picture and text comprehension. While text comprehension has seen intense 

research over the past three decades, research on comprehension of visual displays has 

attracted much lesser attention. Earlier research in the area looked at the function of 

pictures with text. It was found that text supplemented with illustrations led to better 

retentions than text without illustrations (Levie & Lentz, 1982). Further work in the area 

also found that carefully constructed pictures as visual text adjuncts also facilitated 

representation, organization, interpretation and mnemonic encoding (Carney & Levin, 

2002). Like text comprehension, during picture comprehension too an individual 

constructs several mental representations. These include surface structure representation, 
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a mental model, a propositional representation as well as a communication level and genre 

level representation. Before we discuss some of the proposed models in the area, it is of 

utmost importance to understand some of the assumptions (summarized in Table 2.1) 

about how the human mind works based on research in cognitive science. The first 

assumption is that the human information processing system consists of two separate 

channels. This is known as the dual channel assumption. The visual/pictorial channel 

processes visual input and pictorial representations whereas the auditory/verbal channel 

processes auditory input and verbal representations. The second assumption is that the 

information processing channel has a limited cognitive processing capacity. This is known 

as the cognitive load theory or working memory theory. Hence, only a limited amount of 

processing takes place in each of the channels. The third assumption is that meaningful 

learning requires substantial amount of cognitive processing in visual and verbal channels. 

These assumptions hold ground in not just picture and text comprehension but also in 

multimedia learning. 

 

Assumption Definition 

Dual Channel Humans possess separate information processing 
channels for verbal and visual material. 

Limited Capacity There is only a limited amount of processing capacity 
available in the verbal and visual channels. 

Active Processing Learning requires substantial cognitive processing in the 
verbal and visual channels. 

 

Table 2.1. Three assumptions about how the mind works (Mayer & Moreno, 2003) 
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Figure 2. Two representational channels in text and picture comprehension 

Mayer (1997) proposed a model (see Figure 2) where verbal and pictorial information 

are processed in different cognitive subsystems leading to parallel construction of two 

different mental models, which are finally mapped onto each other. According to this 

model, while comprehending text with picture, an individual first selects relevant words, 

constructs a text base, and then organizes the selected verbal information into a verbal 

based mental model. Likewise, relevant images are selected to form an image base 

followed by organization of this selected pictorial information into a visual mental model 

of the picture. During the final stage, one to one mappings are established between the 

verbal and the visual model. Integration takes place when both verbal and visual models 

are present in the working memory. 

With an emphasis on representational principles, Schnotz and Bannert (2003), 

proposed an integrated model of text and picture comprehension (Figure 3). This model 

comprises two branches, with the left representing text comprehension and the right 

representing picture comprehension. Text comprehension components interact among 

themselves based on symbol processing. The text comprehension components consist of 

text as input, mental representation of text’s surface structure and the propositional 

representation of text’s semantic content. Text information is processed with regard 
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Figure 3. Integrated model of text and picture comprehension 

to morphologic and syntactic aspects by verbal organization processes that lead to a 

mental representation of the text surface structure. This text surface structure in turn 

triggers conceptual organization processes that result in a structured propositional 

representation and eventually a mental model. The components for picture comprehension 

are the external picture, visual perception of the image and a mental model of the picture 

presented. During picture comprehension, the individual first creates through perceptual 

processing a visual mental representation of the picture’s graphic display. Then, the 
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individual constructs through semantic processing a mental model and a propositional 

representation of the subject matter shown in the picture. When a mental model has been 

constructed, new information can be read from the model through a process of model 

inspection. There is a continuous interaction between the propositional representation and 

the mental model. Besides this interaction, there may also be an interaction between the 

text surface representation and the mental model, and between the perceptual 

representation of the picture and the propositional representation. We will now discuss in 

detail multimedia comprehension, which is related to and derives from picture and text 

comprehension research. 

2.1.3 Multimedia Comprehension 

It is of importance to us to understand the cognitive process active during 

multimedia comprehension, as IDEs present dynamic visualizations that are highly 

graphical and animations, as well as static graphics (e.g., UML diagrams, Control 

Structure Diagrams, etc.) and program code in the form of text.  

Multimedia can be defined in multiple ways depending on the perspective. In terms 

of presentation, it means the use of different formats of text and pictures. From a sensory 

modality perspective, it refers to the use of eye and ear to retrieve information. In order 

to better understand learning from pictures and words (both auditory and printed text), 

Mayer (2001) proposed a cognitive model of multimedia learning (see Figure 4). In this 

model, the five columns represent modes of representations. The columns from left to 

right portray physical representations, sensory representations, shallow working memory 

representations, deep working memory representations and long-term memory 

representations. The two rows represent two information processing channels, with the 

auditory channel at the top and the visual channel below it. 
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Figure 4. Cognitive theory of multimedia learning 

There is virtually no restriction on the capacity for presenting physical 

representations and long term memory, but the capacity is limited for working memory to 

process words and images. The arrows from words to eyes and ears represent printed text 

registered in the eyes; and auditory text registered in the ears. The learner selects some of 

the incoming auditory sensations and likewise selects (pays attention to) some of the 

visual sensations coming in from his eyes. Following this, the learner constructs a coherent 

verbal and pictorial model during organization. Finally, this verbal model, pictorial model 

and relevant prior knowledge are merged to during integration. Prior knowledge can aid 

both the selecting and guiding processes in the working memory. Hence, in multimedia 

learning, active processing that places a high demand on cognitive capacity requires five 

cognitive processes: selecting images, selecting words, organizing images, organizing words, 

and integrating. 

 

2.1.4 Program Comprehension 

 Many models of program comprehension have been proposed by researchers over 

the past 25 years. In the context of program comprehension, a mental model represents a 

programmer’s mental representation of the program to be understood, and the cognitive 
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model describes the cognitive processes and information structures involved in the 

formation of this mental model. Most of the models in the literature consider program 

comprehension as either bottom-up, top-down or knowledge based understanding. Some 

models suggest systematic and as-needed strategies. Bottom up theories propose that 

program knowledge is built by reading the source code and then mentally chunking or 

grouping these statements into higher level abstractions. Higher order understanding of 

the program is then constructed by combining these abstractions (Shneiderman & Mayer, 

1979). Shneiderman and Mayer (1979) proposed a cognitive framework (Figure 5) 

incorporating semantic and syntactic knowledge of programs. The internal semantic 

representation is created by chunking the program in short term memory.  

 

Figure 5. Shneiderman and Mayer program comprehension model 

This representation is language independent and is built in progressive layers 

consisting of high level concepts like program goals at the top and low level details like 

algorithms used at the bottom. The semantic representation in long term memory assists 
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the creation of internal semantics. The syntactic knowledge represents the statements and 

basic units of the program and hence is language dependent. The final mental model is 

created by chunking and aggregation of other semantic components and syntactic 

fragments of text. This framework took a bottom-up approach to program comprehension. 

Pennington (1987b) also took a bottom up approach and proposed a model (Figure 

6) with two different mental representations: a program model and a situation model. She 

found that when programmers are completely new to a program, the first mental model 

they build is an abstraction of control flow capturing the sequence of operations taking 

place in the program. This model, known as the program model, is built via chunking of 

micro structures like statements and control constructs into macro structures like test 

structure abstractions or chunks and via cross referencing. 

 

Figure 6. Pennington program comprehension model 
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On complete construction of this model, the situation model is developed that 

creates a dataflow/functional abstraction. Data flow abstraction refers to changes in 

meaning or values of program objects; functional abstraction refers to the program goal 

hierarchy. Knowledge of real world application domain is required to construct this model. 

This model too is built via cross referencing and chunking. Based on the program model, 

hypothesized higher order plans are constructed. The situation model is completed once 

the program goal has been reached. 

Brooks (1983) proposed that programmers comprehended a program by 

reconstructing the domain knowledge used by the initial developer and mapping that to 

the actual code. This is a top-down approach to program comprehension. It involves 

creating a mental model based on an initial hypothesis about the global function of the 

program, which is then refined by forming auxiliary hypotheses. These are iteratively 

refined, based on the presence or absence of beacons, which are a set of features that 

match a hypothesized structure or operation.  

 

Figure 7. Soloway, Adelson and Ehrlich’s program comprehension model 
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Soloway, Adelson and Ehrlich (1988) also supported the top down approach in 

cases where code or type of code is familiar to the programmer. They proposed that the 

mental model is developed top down by forming a hierarchy of goals and programming 

plans to achieve higher level goals. Their model involves usage of two types of 

programming knowledge represented by triangles in Figure 7. 

• Programming plans are generic fragments of code that represent typical scenarios 

in programming. For example, a search algorithm which uses an index to iterate 

through each element in the list. 

• Rules of programming discourse capture the conventions of programming, such as 

algorithm implementations and coding standards. 

The rectangles represent the internal or external representations. The understanding 

process (represented by diamond) matches the external representations to programming 

plans using rules of discourse to select plans. On establishing a match, the internal 

representation is updated based on the gathered knowledge. 

 

 

 

 

 

Figure 8. Letovsky program comprehension model 

Letovsky (1986) proposed a high-level comprehension model with three main 

components: knowledge base, mental model, and an assimilation process. Programmer’s 
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prior knowledge and expertise put together form the knowledge base. The mental model 

consists of three layers as shown in figure 8. The topmost layer - specifications - 

characterizes program goals. The implementation level layer contains the lowest level of 

abstraction, with data structures and functions as entities. The annotation layer links the 

goals in the specifications layer to the implementation layer. There could be some 

incomplete links, which are represented by the dangling purpose unit. In this model, there 

can be either top down or bottom up assimilation based on prior knowledge. Assimilation 

describes how the mental model evolves using programmer’s knowledge with the program 

source code and documentation. 

Littman et al. (1987) and Soloway et al. (1988) took a different approach and 

suggested that program comprehension strategy could be systematic and as-needed. 

Littman and colleagues observed that programmers either read the program 

systematically by tracing the control flow and data flow, or took an as needed approach 

by focusing only on code which is related to a particular task at hand. Soloway et al. 

proposed a model by merging concepts of systematic strategies, as needed strategies and 

inquiry episodes. 

We see that there is some disparity among the models discussed. However, all 

models agree that programmers use existing knowledge during comprehension. The 

disparity arises due to characteristics of the programmer, goals and the program 

comprehended, which has been observed by many researchers and acknowledged. Table 

2.2 summarizes the factors influencing comprehension strategies as found by Storey et 

al. (1999). 
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Maintainer 
characteristics 

Program 
characteristics 

Task 
characteristics 

• Application domain 
knowledge 

• Programming domain 
knowledge 

• Maintainer expertise, 
creativity 

• Familiarity with 
program 

• Support tools expertise 

• Application domain 
• Programming domain 
• Program size, 

complexity, quality 
• Documentation 

availability 
• Support tool 

availability 

• Task type, purpose 
• Task size and 

complexity 
• Time and cost 

constraints 
• Environmental 

Factors 

Table 2.2 Influences on program comprehension strategies (Storey, Fracchia, & Müller, 
1999) 

2.2 Program Debugging 

Numerous investigations of debugging practices have been conducted since the 

mid 70’s and cover a broad range of topics. Despite the wealth of knowledge, 

programming still remains both intricate for programmers to learn and taxing for 

educators to teach. Majority of the studies focus on two main components (McCauley, 

et al., 2008) : 1) types of knowledge critical for successful debugging and 2) strategies 

employed while debugging a program. We will now take a look at some of the relevant 

studies that looked at debugging strategies, followed by knowledge aids. 

2.2.1 Strategies Employed 

In one of the early studies, Gould (1975) investigated the debugging practices of 

experts. During the study it was observed that programmers began by either reading 

the code until something suspicious was detected, or by analyzing the output. Bugs that 

were considered easier to locate, such as index errors in loops or array references, were 

first looked at. This was followed by spending time to understand the program to find 

more subtle errors like bugs in assignment statements. 
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Vessey (1985) studied both expert and novice debuggers. Experts were more 

likely to take a breadth-first approach, trying to understand a program, whereas novices 

took a depth-first approach, focusing on finding and fixing an error without regard to 

the overall program. Furthermore, she suggested a hierarchy of debugging goals, similar 

to the process used by experts observed in (Gould, 1975): 1) discover the problem by 

comparing correct and incorrect output; 2) become familiar with the intended function 

of the program and how it is structured; 3) examine the flow of control; 4) form a 

hypothesis about the source of the error; and 5) fix the bug. Ducassé and Emde (1988) 

described four categories of debugging strategies focused on bug location: 1) using 

mental and paper tracing of programs and other means of dissecting and executing code; 

2) comparing the intended program against the actual program for computational 

equivalence; 3) looking for language consistency and recognizing well-formed programs 

and algorithms; and 4) detecting stereotypical errors. 

Katz and Anderson (1988) conducted multiple studies of students debugging 

programs and observed the tactics implemented to troubleshoot the program. They 

found two predominant strategies used in locating bugs. With the first strategy known 

as forward-reasoning, programmers start searching the bug from the program code. Two 

variants of this are program-order (programmer simulated the program’s execution) and 

serial-order (programmer read the code in the order in which the lines appear). 

Forward-reasoning includes strategies like program comprehension, where a bug is 

located while creating a mental representation of the program, and hand simulation 

where the programmer evaluates the code like a computer to understand the program 

more closely. The second strategy known as backward reasoning involves starting from 

the erroneous behavior of the program and working backwards to the source of error in 

code. It includes strategies like simple mapping, where the program’s output directs to 



22 
 

the erroneous line of code, and casual reasoning where beginning from the incorrect 

output, the programmer works backwards to the program code that caused the bug. 

Katz and Anderson also found that students typically used forward reasoning when 

debugging others’ code, but backward reasoning when debugging their own. Students 

trained in a specific technique tended to reuse that technique. Their study also revealed 

that errors made by more experienced programmers are generally not repeated and 

easily fixed when found. This suggests that for many students, the difficulty of 

debugging is not in repairing the error, but rather in troubleshooting—understanding 

the program, testing the program, and locating the error. 

2.2.2 Knowledge Aids 

Ducasse´ and Emde (1988) based their work on Gould’s framework and conducted a 

review of debugging systems and cognitive studies. They identified seven knowledge 

types that are utilized during debugging. It is not necessary that all knowledge types be 

known for every debugging task. They also stated that the wide range of knowledge 

made it difficult to incorporate them in one single debugging environment. The 

knowledge types were summarized as: 

• knowledge of the intended program (program I/O, behavior, implementation); 
• knowledge of the actual program (program I/O, behavior, implementation); 
• an understanding of the implementation language; 
• general programming expertise; 
• knowledge of the application domain; 
• knowledge of bugs; and 
• knowledge of debugging methods. 

 

The studies discussed in this section did not employ a development environment 

similar to the IDE’s that are professionally used. Professional IDE’s typically let 
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programmers use multiple visualizations of the same code to facilitate program 

understanding and debugging. Although few studies have used IDE’s with dynamic 

visualizations for debugging studies (discussed in section 2.4.4), the IDES used were not 

professional IDEs. In our research, we investigated debugging with a professional IDE 

that provides a plethora of representations to the programmer. We will now look at 

some of the popular program visualizations available with IDE’s. 

 

2.3 Program Visualizations 

 In order to support programming activities like debugging and code 

comprehension, IDE’s provide multiple visualizations that present the underlying code 

base in diverse abstract forms, such as animated views of program executions. Program 

visualization connotes a connection with the program at a lower level (e.g. data 

structures) rather than at the higher level of algorithms (Stasko et al., 1998). Both 

novice and expert programmers benefit from using appropriate visualizations while 

comprehending program code. The strategies employed in their usage may differ based 

on a programmer’s expertise, familiarity with the IDE, experience with the 

visualizations and the current stage of program understanding. The object oriented 

programming paradigm specifically utilizes several graphical representations to describe 

program structure, given the nature of underlying program code. 

According to Romero et al. (2003a), two important attributes of a representation 

is its information modality and the programming perspective highlighted by it. 

Information modality of a representation refers to the format in which the underlying 

data is presented. The modality could range from simple text (propositional) to highly 

graphic (diagrammatic), where both propositional and diagrammatic could be 

considered as two extremes of a scale containing representations with different degrees 
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of ‘graphicality’  (Cheng, Lowe, & Scaife, 2001). Program code, for example, is not 

purely propositional as there generally is a line per instruction format and is indented at 

varying degrees. In terms of taxonomy of graphic languages, it can be termed as a 

hybrid category of text between a list and a linear branching configuration (Romero et 

al., 2003a). A UML diagram on the other hand is more of a graphical representation 

even though it contains textual components. Programming perspective of a 

representation refers to the information structure highlighted by the representation. 

These information structures represent different types of information pertaining to 

program code. Programmers, when comprehending code, generate a mental model that 

consists of these different information structures representing different perspectives of 

the same program (Pennington, 1987b). Research has shown that these different 

perspectives are important: function, structure, operations, data-flow and control-flow. 

We will discuss these perspectives in detail in chapter 5. Some of the common 

visualizations bundled with a development environment and in widespread usage are 

UML Diagrams, variable watch windows, dynamic visualizations, output windows and 

expression watch windows. Again, these will be discussed in detail in chapter 5. Also see 

(Romero et al. 2003a) for a survey of external representations employed in object 

oriented programming environments. 

Although there is evidence that these visualizations aid programmers in 

accomplishing programming tasks and pose no cognitive load individually, there might 

be issues with a programmer having to coordinate multiple visualizations and program 

code. Studies have been conducted on coordination of representations in other fields 

such as arithmetic (Ainsworth, Wood, & O'Malley, 1998b), first order logic (Oberlander, 

Stenning, & Cox, 1999), physics (Sime, 1996), and general problem solving (Cox & 

Brna, 1995). These studies have highlighted the difficulty in coordination faced by 
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learners, especially novices. This difficulty has not been researched a lot in the area of 

programming environment design and computer programming in general. Some recent 

studies (Romero et al. 2002b, Navalainen et al. 2004, Bednarik et al. 2005) investigated 

this issue. But there are several intriguing questions that have not been answered yet. 

Some of these questions will be addressed in our research. We will now look at visual 

attention tracking and how it can aid us understand the underlying processes active 

during programming activities. 

2.4 Visual Attention and Eye Tracking Methodology 

In order to visually perceive the world around us, our eye projects an image of 

the object onto the foveal region of the retina. Once an image is stabilized on the retina, 

information is extracted. This high concentration foveal region is small and gauges 

objects in a two- degree visual span and hence multiple fixations are required to process 

a visual scene. Tracking these movements of the eye can give insights into the visual 

attention of a person completing a task. Also, knowing which objects were looked at, 

their order and perspective can help one understand the underlying cognitive processes 

in action and provide clues on how that scene was perceived. 

In eye-tracking research, the principle that visual attention links to eye gaze is 

called an eye-mind assumption (Just and Carpenter, 1980). Duchowski (2007) 

acknowledges that even though in eye-tracking we assume that attention is linked to 

foveal gaze direction, it may not always be true. He suggests that at times parafoveal or 

peripheral processing can be used to extract information. Nevertheless, this assumption 

between focus of visual attention and gaze direction is valid in a complex information 

processing task (Rayner, 1998). Debugging is a highly complex and task driven process, 

hence this thesis relies on the eye-mind assumption. 
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2.4.1 Eye-tracking in HCI 

Eye-tracking has been explored in academia for over 40 years. Investigations in 

cognitive sciences, language and advertising extensively employed eye-tracking in the 

1960s and 1970s (Jacob & Karn, 2003). It has increasingly been adopted in human 

computer studies over the past two decades. We will now present a brief history of 

research employing eye tracking in HCI. 

Eye-tracking has been primarily used for two tasks, one as a form of input to 

computer and the other as a source of non-intrusive data for studying human computer 

interactions (Jacob & Karn, 2003). Some of the studies which have used eye-tracking as 

assistive technology for those with motor disabilities explored possibilities of replacing or 

supplementing input devices (Barreto, Gao, & Adjouadi, 2008). Gaze was used to 

control pointing and selection of objects as a complement to mice input (Biej, 2009) or 

used to completely replace them (Kumar, Paepcke, & Winograd, 2007). Majority of 

studies though have employed eye-tracking to study user behavior during their 

interaction with interfaces. Studies of navigation and web browsing have been 

particularly popular. These studies looked at placement of links in target links, patterns 

in eye movements while browsing, feature detection etc. (Cutrell & Guan, 2007). Menu 

selection tasks were also studied, where a significant difference was found between 

selection of menu items compared to reading the menu items (Aaltonen, Hyrskykari, & 

Räihä, 1998). Other studies have looked at use of gaze in immersive collaborative 

environments (Steptoe, et al., 2008), building document summaries based on focus of 

user attention (Xu, Jiang, & Lau, 2009) and visualization of hierarchical structures. 

Although eye tracking has been used to evaluate both top down and hypothesis 

driven experiments, there is still a dearth of research incorporating eye tracking in HCI 
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studies. High-cost of eye-trackers and challenges in data interpretation are two major 

hurdles. Regardless of the fact that eye-trackers are now much more easily accessible 

both financially and technically, their use is still constrained by the complexities of 

processing and interpreting complex data. Commercial eye tracking companies are 

making a conscious effort to simplify data analysis by bundling software packages that 

present the raw data collected in a much more intuitive and easily comprehensible 

format. With these advancements, it has been observed that over the past decade eye-

tracking has become more widely used in the commercial market, especially in studies of 

web usability. We will now look at the evolution of eye-trackers and the different types 

used by researchers and usability professionals. 

2.4.2 Types of Eye Trackers 

Advancement in technology has made eye trackers less complex, more usable and 

more affordable than in the past. Earlier trackers were cumbersome for participants to 

use as sensitivity to head motion meant that restraints like chin rests and bite bars had 

to be used to reduce head movements. Eye trackers nowadays are more tolerant of head 

movements and can easily address issues of stabilization.  

In general, there are two types of eye tracking techniques: those that measure the 

position of the eye relative to the head, and those that measure the orientation of the 

eye in space (Young & Sheena, 1975). The first approach employs techniques like 

electrical oculography, where the potential differences of skin around the eyes are 

measured; scleral contact lens/search coil, where a device is mounted on the eye using 

contact lenses and photo-oculography, where features of the eye (such as the apparent 

shape of the pupil) is measured when it is in different positions (Duchowski, 2007).  The 

second technique used for point of regard measurement requires that either the position 



28 
 

of the head must be fixed or multiple ocular features be measured. Corneal reflection 

and pupil center are examples of such features. These are measured by capturing infra-

red reflections of the eye with a video camera and image processing. The infra-red rays 

are invisible and non intrusive. Furthermore, two approaches are used to determine the 

gaze location. The bright pupil technique results in a dramatic contrast between the 

pupil and the iris, making the pupil easily distinguishable and therefore easier to track. 

There is little interference from eyelashes and shadows because the image-processing 

algorithm recognizes a white elliptical region as the pupil. Creating a pronounced bright 

pupil effect, however, is highly dependent on pupil size, which is affected by several 

external factors like age, emotional response to stimuli, and lighting sources. This 

method tends to work better in a dark environment and on children and people with 

blue or light eyes. The dark pupil method detects the dark ellipse of the pupil within 

the iris. This methods works well in bright environments and outside in natural lighting 

conditions, but there are issues with eyelashes and shadows causing false positives 

during pupil detection. Dark colored eyes work best because the IR light reflection off 

the iris makes the dark color of the iris appear light in the digital image, thus making 

the pupil more easily discernible. Image processing algorithms use this image of the 

pupil combined with the reflection from cornea, also known as Purkinje image (Crane, 

1994), to calculate gaze location. This location is then superimposed on the scene under 

evaluation either for real time calculations or recorded for delayed analysis. 

Commercially available apparatus for eye tracking can be broadly categorized as 

high speed eye tracker, remote eye tracker or head mounted eye tracker. Remote eye 

trackers with no physical contact are more popular in usability studies, as wearing 

helmets and miniature cameras required by head mounted trackers are likely to be 

distracting for subjects (Jakob & Karn, 2003). Most of these eye trackers employ video 
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based corneal reflection tracking technique with infra-red light emitters. These eye 

trackers can track eyes with accuracies of less than 0.4 degree and sampling rates 

ranging between 60-1500 Hz. 

2.4.3 Eye-tracking Measures 

There are over 100 measures of eye-tracking reported in the literature and 

application of these measures is experiment dependent. These measures are selected 

while creating a study design, and derives from the research question. It might also be 

the case that none of the existing measure may fit a new experiment. However, there are 

some measures that can be used in most every eye tracking based experiments. 

Two types of eye movements are tracked by eye-trackers, saccades followed by 

fixations. Saccades are rapid eye movements that allow the fovea to view a different 

portion of the display. During a saccade, vision is suppressed and does not become 

active until its destination has been reached. Often, a saccade is followed by one or 

more fixations when objects on the scene are viewed. Then small eye movements are 

made within a general viewing area for about 200-600ms. We define a gaze as one or 

more successive fixations on a particular object or area of a visual scene. In order to 

reduce the amount of data produced by eye-tracking, it is a common practice to 

separate a visual scene into ‘Areas of Interest’ (AOI), also known as ‘Regions of 

Interest’ to support aggregation of fixations. While assessing the quality of interfaces, 

Goldberg and Kotval (1998, 1999) assessed the validity of various eye tracking 

measures. They proposed a set of eye tracking measures that supported automation. 

These measures were either dependent or independent of the AOI’s. They also proposed 

a classification of the eye tracking measures, according to which, if a measure describes 

a time based property of a scanpath, it was termed as temporal. Fixation duration 
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would be a temporal measure. If the measure described the spread and coverage of a 

scanpath, it was termed as spatial. Number of saccades is an example of a spatial 

measure. Jacob and Karn (2003) put together a set of eye tracking measures based on 

their analysis of usability studies. These measures include: 

• Number of fixations, overall: The number of fixations overall is thought to be 
negatively correlated with search efficiency. 

• Gaze % (proportion of time) on each area of interest: The proportion of time 
looking at a particular display element could reflect the importance of that 
element. 

• Fixation duration mean, overall: Longer fixations (and perhaps even more so, 
longer gazes) are generally believed to be an indication of a participant’s 
difficulty extracting information from a display. 

• Number of fixations on each area of interest: The number of fixations on a 
particular display element should reflect the importance of that element. More 
important display elements will be fixated more (frequently). 

• Gaze duration mean, on each area of interest: gazes on a specific display element 
would be longer if the participant experiences difficulty extracting or interpreting 
information from that display element.  
 
Using these measures can significantly reduce the data gathered and make 

analysis more efficient. There has also been a shift from using raw gaze data to more 

sophisticated measures involving scanpath analysis based on context. For example, if 

the expected eye pattern for efficient usage was a straight line to a target, inefficient 

usage might show longer paths. Yoon and Narayanan (2004) investigated the order of 

fixations to measure how systematically a user attends to casually related areas of 

interest. Analysis of scan paths based on string editing of fixation sequences is also 

popular.  
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2.4.4 Visual attention in studies of programming 

Most of the studies investigating cognitive and behavioral aspects of 

programming employed verbal utterances of participants. It has been argued that 

verbalizing thoughts interfere with a participants natural processing, by adding an 

extraneous cognitive load. The results could be biased as this load can also hinder the 

problem solving strategies of participants, especially novices.  Users may also skip 

critical utterances due to different causes such as not being aware of some aspects of 

behavior or being less vocal by nature. As eye-tracking is non-intrusive, it has been 

suggested as a strong alternative to verbal protocols in capturing the cognitive processes 

involved in programming. Researchers have successfully employed this technique in 

studies of programming to better understand the underlying cognitive processes. 

Crosby and Stelovsky (1989) studied the visual patterns of programmers while 

reading a binary search algorithm. Attributes like fixation times and number of fixations 

were captured by an eye tracker. They found that more experienced users paid attention 

to meaningful areas of source code and complex statements. Novice students paid more 

attention to comments and comparisons. Least attention was paid by both groups to 

keywords, and they did not exhibit any methodical differences in code reading 

strategies. Crosby and Stelovsky evaluated fixation durations and number of fixations 

with both qualitative approaches and parametric tests. The only representation 

available to participants was the program code. This study did not employ any static or 

dynamic visualization of the code. 

Not many studies looked at visual attention following this early work, until 2002 

when several experiments were conducted by Romero et al. (2002a, 2002b, 2003b). They 

evaluated co-ordination strategies of programmers while debugging in an environment 
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that provided multiple visualizations. Code, output and a static visualization of the 

program was available for comprehension. It was found that programmers frequently 

combined both forward and backward reasoning to debug a program. Frequent switches 

were made between code and output or code and graphical visualization of code. 

Balanced switching behavior was found among those with more programming 

experience. Statistical tests were used to analyze the visual data collected. The data 

analyzed was an aggregated average from the beginning to the end of a debugging 

session for each participant. Visual attention during the experiment was tracked by a 

Restricted Focus Viewer (RFV) (Blackwell, Jansen, & Marriott, 2000) where the 

programming environment was presented in a blurred format with a clear window at the 

location of the mouse cursor that the programmer could control. This way the RFV 

restricted the amount of stimulus shown to the user and facilitated the tracking of the 

visual attention of the programmer.  

Nevalainen and Sajaniemi (2005) investigated the effect of graphical 

visualizations in the visual patterns of novice programmers. They implemented a within 

subject design where subjects used two different tools; a)a traditional text based 

environment and b) an environment that provided multiple graphical visualizations. 

Differences in visual pattern were found between these two tools. Usage of any of the 

tools led to a significant amount of time spent away from the source code or 

visualization itself. However, no significant effect of the tools was found on the mental 

model created. The visual attributes used in analysis were fixation duration and 

proportion of these durations over three different AOI’s. Here again, the data analyzed 

was an aggregated average from the beginning to the end of a debugging session for 

each participant. 
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They followed up this study with another study to better understand program 

comprehension. They used the PlanAni program animator with two modes supporting 

either static or dynamic visualization of the program code. Between subject design was 

used with one group assigned as a static group and the other an animation group based 

on pre-test scores. It was found that most of the time was spent reading the program 

code irrespective of the group. The data analysis methodology was similar to the 

previous experiment. In addition, qualitative analysis of short segments of video 

protocols with gaze overlay was conducted. 

A predominantly qualitative approach was taken by Umano et al. (2006) to 

analyze visual patterns among intermediate programmers. They studied six short source 

code review tasks while debugging. Based on the study, they identified a particular 

pattern, called scan, in the subjects' eye movements. It was found that reviewers who 

did not spend enough time for the scan tended to take more time for finding defects. 

Betnarik et al. (2005 & 2006) conducted studies to investigate the effects of 

experience on debugging strategies in a multi representation dynamic environment. It 

was found that fixation counts and attention switching between representations (like 

code and graphical representation of execution) did not differ based on experience. An 

effect of experience was found, however, on overall strategies adopted to comprehend 

programs and on fixation durations. In these studies, data was analyzed with averaged 

data read from the entire session. In order to characterize and analyze cognitive 

processes, Bednarik and Tukiannen (2006) proposed a new methodological approach and 

conducted more detailed analyses. They subdivided the comprehension process into 

meaningful pieces and analyzed gradual changes in related eye-movement patterns. 

Instead of using a repeated measures analysis, binomial trials were conducted. All the 

experiments conducted by Bednarik used the Jeliot IDE. Even though Jeliot supports 
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dynamic representations, it was not reflective of the IDE features that are available in 

professional IDE’s, and is primarily aimed at academic instruction. Bednarik et al. 

(2007b) later conducted a comparative study of program comprehension, evaluating 

RFV against an eye tracker, to investigate whether the blurring of the screen by RFV 

affected strategies. On analysis of the frequency of attention switching, they found that 

there was an effect of blurring on strategies. In terms of performance though, no effect 

of blurring was found.
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CHAPTER 3 

PROBLEM STATEMENT 

 

Although multiple studies have investigated the different strategies and 

approaches involved with program comprehension and debugging, knowledge about how 

programmers build a mental model of a program based on multiple representations is 

still obscure. 

Studies that investigated debugging strategies with multi visualization IDE’s 

restricted the use of representations to a select few during experiments. These 

experiments did not replicate a more realistic program debugging environment 

comprising tools/visualizations used by professionals. Participants were devoid of access 

to all the visualizations restricted by either the limitations of the IDE or the conditions 

set by the experimenter. As a result of this, controlled experiment results in the 

literature may not be a clear or realistic representation of the actual behavior exhibited 

by programmers. We will overcome this by utilizing an IDE (jGRASP) that offers a 

plethora of visualizations, that is used both academically and professionally, and which 

gives programmers unrestricted access to multiple static and dynamic visualization aids 

along with program code. 

Several important questions related to visual attention and its role during 

programming within these environments can be raised. A general question about what 

information sources programmers attend to when working with a 
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development environment leads one to first ask about how to record visual attention in 

programming. Whether and how the cognitive processes involved in programming are 

reflected in visual attention patterns, however, is not completely understood. Are there 

general patterns of visual attention with which programmers attend to the source code 

and the other representations while comprehending a program? What are the 

programmers’ visual strategies and how can they be identified from eye-movement data? 

Does the focus of visual attention correlate with other information about the 

comprehension process? Is it possible to distinguish between good and poor 

comprehension based on information about visual attention? The lack of knowledge 

about these and related aspects of visual attention during programming motivates the 

research presented in this thesis. Eye-tracking technology seems to be a suitable tool to 

increase our understanding of the role of visual attention in programming and, therefore, 

the possibilities and limitations of it and the associated techniques need to be studied 

and understood. 

The purpose of this research is two-fold: (1) to understand the underlying 

processes which are active during a program debugging activity and (2) to use eye 

tracking methodology to develop new analysis paradigms for program comprehension/ 

debugging studies.
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CHAPTER 4 

PROPOSED COGNITIVE MODEL 

4.1 Foundation 

In the following section, we discuss a cognitive model of debugging that we have 

developed in this research. It incorporates various static and dynamic representations a 

programmer uses while comprehending, and then debugging, a program. This model has 

been derived by synthesizing and extending some of the significant work in the area of 

text comprehension, comprehension of text and diagrams, graph comprehension and 

program comprehension. We first discuss this relevant literature, and then present our 

model. 

 

4.1.1 Text Comprehension  

While investigating the learning strategies used by students during explanative 

text comprehension, Mayer (1996) explored the various cognitive processes involved in 

knowledge construction. He proposed that the key to meaningful learning were three 

cognitive processes, namely selecting, organizing and integrating. The model derived 

from this was called the SOI (Selection-Organization-Integration) model of the 

architecture of human learning. It consists of sensory memory, short term memory and 

long term memory, as shown in Figure 9. The first process involved in comprehending 

an expository text is the reader
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determining what is important by focusing conscious attention on relevant pieces of 

information. This information is then added to the working memory. Mayer termed this 

process as selecting; it is also known as selective coding. The next process involved in 

comprehending an expository text is organizing key pieces of information selected in the 

previous step and forming a coherent structure. The reader builds an internal 

connection between all the encoded information to form an integrated whole. This is 

represented in the model by the recursive arrow from the short term memory back to 

itself, and is called organizing or selective combination. 

 

 

 

 

 

 

 

Figure 9. SOI Model 

During the final process, the new knowledge constructed in the short term 

memory is related by building external connections with the analogous knowledge from 

long term memory.  This essentially means that the reader relates his prior knowledge 

to the information presented. This final process is known as integrating or selective 

comparison, and is represented by the arrows between short term memory and long 

term memory.   
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4.1.2 Text and Diagram Comprehension 

These cognitive strategies and the resulting mental representations have a 

bearing on effective comprehension from text and supporting multimedia. Narayanan 

and Hegarty (1998) proposed guidelines for interface design of hypermedia presentation 

systems, based on user’s mental models and comprehension strategies. Comprehension 

was postulated as a constructive process during which an individual uses his/her domain 

knowledge, information presented in the external media and reasoning skills, to build a 

mental model of the presented material.  

  

Figure 10.  Cognitive model of diagram and text comprehension 

(Narayanan and Hegarty, 1998). 
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Their model was an extension of text comprehension models, which view 

comprehension as a construction of mental model representative of the text. For 

example, the process of comprehension of the description and depiction of a simple 

machine by an individual was segregated into multiple stages as shown in Figure 10. 

During stage one, the basic elements of the machine are identified from its 

diagrammatic representation. This consists of breaking down the connected diagram 

into elementary units that correspond to objects. In the next stage, a static mental 

model is constructed by making two types of connections. First, the user establishes 

connections between the diagrammatic elements identified in Stage 1 and their real 

world referents, identified from his/her prior knowledge. Following this, the user tries to 

comprehend spatial relations between different machine components by building 

connections between internal representations of these components. These spatial 

relations help determine how components affect and constrain other components, and 

further guides the reasoning about casual relations. 

During Stage three, the user further builds on his/her static mental model by 

making referential connections between the text and the diagrammatic units that depict 

their referents. As this stage is critical in constructing an integrated representation of 

text and diagram in memory, failure here could lead to only a surface level 

interpretation of the text or a surface level interpretation of the diagram. Making 

referential connections is also a necessary process when users have to integrate 

information in two different pictorial displays of the same machine. In the next stage, 

potential causal chains of events in the operation of the machine are established. 

Determining these lines of action in a machine in advance reduces the computations 

required for predicting system behavior. In the fifth and final stage, the user constructs 

a dynamic model of the machine by inferring and integrating the dynamic behaviors of 
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individual components. This process is termed as mental animation. Mental animation is 

an iterative process wherein the user considers the components or sub-systems 

individually, assesses the influences acting on each, infers the resulting behavior of each, 

and then proceeds to consider how this behavior affects the next component or 

subsystem in the causal chain. Narayanan & Hegarty empirically validated this model 

by conducting experiments in two different domains of mechanics and computer 

algorithms (Narayanan & Hegarty, 2002). 

   

4.1.3 Graph Comprehension  

Research on graph comprehension has a long history (Carpenter & Shah, 1998; 

Lohse, 1993; Shah, Mayer, & Hegarty, 1999), and has yielded several useful theories of 

graph comprehension (e.g. Lewandowsky & Behrens, 1999; Shah & Hoeffner, 2002). To 

gain insight into how cognitive aids can help students understand scientific graphs, 

Mautone adopted the extended SOI model proposed by Mayer (2003) in their study 

(Mautone & Mayer, 2007). This study measured the effectiveness of scaffolding 

techniques in graph comprehension and empirically validated the proposed model. In 

graph comprehension, the cognitive process of organizing corresponds to mentally 

building a relation between the multiple variables shown on graphs. The construction of 

a relation between a variable on the x-axis to a variable on the y-axis would be an 

example of organizing. The cognitive process of integrating corresponds to combining 

new knowledge with existing knowledge.  

Mautone also adapted cognitive aids like signaling, concrete graphic organizers 

and structural graphic organizers, originally proposed for text comprehension, for graph 

comprehension. In text comprehension, signaling refers to cues and aids that expose the 

prominence in the structure of text without adding new information. It helps highlight 
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key information and makes the relationships among various information items more 

visible. Various studies (Loman & Mayer, 1983; Rickards, Fajen, Sullivan, & Gillespie, 

1997) have validated the effectiveness of signaling during the process of organizing, by 

helping learners form a coherent representation from the selected information. Signals 

include the use of highlighting, headings, summaries, outlines, and pointer words. 

Advance organizers refer to material presented prior to a text passage, such as a brief 

analogy or diagram showing the components of a to-be-explained system, and are 

intended to prime or provide prior knowledge of some of the more difficult subject 

matter content of the passage. These have been shown to be effective in helping 

students comprehend expository text under some conditions. Another type of graphic 

organizer, which Mautone referred to as structural graphic organizers, highlights the key 

structural relationships shown in the graph, independent of the content. As mentioned 

above, in text passages, advance organizers often involve presenting a brief analogous 

example prior to presenting the actual text passage. For example, in one study, prior to 

reading a passage about how radar works, participants were presented with a brief 

diagram depicting how radar waves might be compared to a rubber ball bouncing off of 

objects (Mayer R. E., 1983). Structural graphic organizers, such as signaling, are 

intended to guide the cognitive process of organizing. They help learners attend to and 

interpret important patterns and relationships, which, in turn, help them in 

constructing a meaningful understanding of the functional relationships among key 

variables in the graphs. 

 

4.2 Proposed Cognitive Model 

Based on our literature review and analysis of the shortcomings of existing 

research on program debugging, we propose a cognitive model of how multiple 
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representations are used by programmers to comprehend and debug a program within 

an IDE for object oriented programming. We co-opted ideas from text and graph 

comprehension literature (signaling, advance graphic organizers, organizing and 

integrating from the SOI model), the program comprehension literature (notions of 

program slice, data structure, function, data and control flow), cognitive processes from 

the text and diagram comprehension literature, and representations provided by typical 

IDEs (program code, CSDs, UML diagrams, visualizations and dynamic windows) and 

integrated these to develop this comprehensive and cohesive model. It is more detailed 

than any model of program comprehension and debugging hitherto offered in the 

literature. The rest of this section describes components and processes of this model. 

There are three main components of the model, as illustrated in Figure 11, are 

the following. (a) The type of cognitive aids/ representations used while debugging.  

These aids have been categorized on the basis of their information modality, 

programming perspective (Romero et al., 2003a) and the cognitive dimensions they 

highlight (Green, 1989). (b) The cognitive processes, each of which is either primed by a 

cognitive aid or a process that is inherently evoked. (c) The mental representations 

derived from the cognitive processes and cognitive aids. The programmer constructs and 

manipulates his/her mental representations over the course of interacting with the 

programming environment and understanding the information presented. Mautone and 

Mayer (2007) took a similar approach in categorizing three components in their graph 

comprehension model. 

Although in the proposed model the cognitive processes are described in 

sequence, we do not believe that the cognitive processes and internal representations 

depicted in Figure 11 will always occur in a specific, fixed sequence. The order will differ 

based on an individual’s experience in programming, prior knowledge and reasoning. 
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According to Katz and Anderson (1988), a programmer could take two types of 

approaches in locating bugs. With forward reasoning, comprehension in particular, we 

postulate that the flow of cognitive processes will be as depicted in the model. The 

programmer first creates a static mental model based on the static visualizations 

presented by the IDE, followed by construction of a dynamic mental model. When the 

reasoning is bottom up, also called backward reasoning, bug location commences from 

the incorrect behavior of the program, typically from the output, and is traced back to 

the origin of the problem. Because this approach requires only partial/opportunistic 

program comprehension, the flow of cognitive processes is not predictable. Our research 

focuses on debugging strategies when the program is written by someone else, and hence 

models explicit program comprehension as well as debugging. We will first discuss the 

comprehension model (Figure 11), followed by a variant of this model for debugging 

(Figure 12). We view program comprehension as a constructive process, where prior 

domain knowledge, information from representations and reasoning skills contribute to 

assembling a mental model of the program. What follows is a detailed description of the 

various components of our cognitive model. 

 

4.2.1 Cognitive Aids 

Different representations help a programmer visualize the program through 

different perspectives or information types. For example, some perspectives highlight the 

transformations which data elements undergo as they are processed, while others show 

the sequence of actions that will occur when the program is executed. Visualizations can 

be presented in formats that range from textual to graphical (Romero et al., 2003a).  

Two important aspects of a representation are its information modality and 

programming perspectives. The first aspect refers to the characteristics, advantages and 
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disadvantages of representations that are propositional and those that are 

diagrammatic. The diagrammatic degree of the representation can range from 

propositional to purely graphical. This is known as degree of ‘graphicality’ (Cheng, 

Lowe, & Scaife, 2001). For example, diagrams, unlike propositional representations, 

exploit perceptual processes by grouping relevant information together and therefore 

make the search and recognition of information easier. Propositional representations 

permit the expression of abstraction or indeterminacy, while diagrams compel the 

representation of specific information. On an IDE, program code cannot be considered 

as fully propositional because it uses formatting conventions to enhance its 

comprehension. Multi-modal external representations are common in IDEs that support 

complementary processes. Even though some representations highlight some information 

type, it does not mean that other information types are not present or cannot be 

derived from it. 

The second aspect of a representation is the programming perspective highlighted 

by it. Computer programs are information structures that comprise different types of 

information, and programming notations usually highlight some of these perspectives at 

the cost of obscuring others. It has been established that programs can be looked at 

from different perspectives (Pennington, 1987b), and programmers when comprehending 

code are able to develop a mental representation that comprises these different 

perspectives or information types as well as rich mappings between them (Pennington, 

1987a). We propose that multiple external representations provided by IDEs can be 

grouped under five categories of cognitive aids: signaling, textual representation, 

structural visualization, dynamic visualization and dynamic windows. These cognitive 

aids are illustrated on the left side of Figure 11. 
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Figure 11. Cognitive model of multi representational program comprehension 
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Signaling refers to any technique that makes the structure of text more pertinent 

by highlighting key information and relationships among segments of text, without 

adding new information (Mautone and Mayer, 2001). It includes indentation, 

highlighting, formatting (bold, italic, etc.), and the use of color on code or a graphical 

representation associated with code. Signaling is intended to help guide the cognitive 

process of organizing, during which learners organize selected information into a 

coherent representation. Control Structure Diagrams (Figure 11a), which automatically 

highlights the structure of code and indents it with graphical notations, is an example of 

signaling. It improves the comprehensibility of source code by clearly depicting control 

constructs, control paths, and the overall structure of each program unit (Cross II et al., 

1998). 

Textual Representation: Source Code – According to (Grubb & Takang, 2003), 

“Source code can be divided into program code (which consists of machine-translatable 

instructions); and comments (which include human-readable notes and other kinds of 

annotations in support of the program code)”. Program code is a sequence of 

instructions written to perform a specified task. Although it can be considered as plain 

text, there is a degree of graphicality involved in its representation in almost all the 

higher level programming languages. It is formatted by extensive tabbing and grouped 

as constructs with special characters. This formatting improves the comprehensibility of 

code. Studies have shown that program formatting is used in comprehension (Katz & 

Anderson, 1987). Comments on the other hand are embedded with program code as 

annotations to aid a programmer in understanding the source code.  

Textual Representation: Program Output – This refers to the information 

produced by the program. This information could be an output in the form of explicit 

display on a console, processed data files or influences on the behavior of a dependent 
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program. Early research by (Gould, 1975; Gould & Drogowski, 1974) established that 

program output was used by programmers to establish hypothesis of a bug. The 

importance of output was further confirmed by Katz and Anderson (1987) and Romero 

et al. (2003b) who investigated programmers’ usage of program output on console.  

 Structural Visualization is a diagrammatic representation that highlights key 

structural relationships independent of content. These help learners attend to and 

interpret important patterns and relationships, which, in turn, help them in 

constructing a meaningful understanding of the functional relationships among classes in 

a project’s architecture. Structural visualizations are intended to guide the cognitive 

process of organizing (Mautone and Mayer, 2001). For example, in one study, prior to 

reading a passage about how radar works, participants were presented with a brief 

diagram depicting how radar waves might be compared to a rubber ball bouncing off of 

objects (Mayer R. E., 1983). Radar waves and rubber balls do not share the same 

surface features, but the two do share the same structural features: Both bounce off 

objects and return, more or less, to the point of origin in a given amount of time. 

Unified Modeling Language (UML) class diagrams (Figure 11b) highlight the 

relationships between multiple classes in an object oriented programming project by 

employing visual modeling. These diagrams visualize a system’s architecture using 

design elements such as classes, packages and objects. They also display relationships 

such as containment, inheritance, associations and others (Booch et al., 1999). Sequence 

diagrams that illustrate the control flow within classes would be another example of a 

structural visualization for program comprehension and debugging. 
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Dynamic Visualization is a graphical representation that shows change, e.g., a 

diagrammatic representation that shows how underlying data structures are updated as 

a programmer steps through a program. With the assistance of such representations, a 

programmer can establish relationships between known data structures and the program 

under execution, and thus accomplish the cognitive process of integration. Many studies 

have conducted research validating the application and effectiveness of dynamic data 

structures (Myers, 1983; Baker et al., 1999; Shimomura and Isoda, 1991). An example of 

a dynamic visualization is the object viewer (Figure 11c) in jGRASP that provides 

structural views of java collections, classes and arrays during debugging (Cross II et al., 

2007). When a class has more than one type of view associated with it, the programmer 

can open multiple viewers in order to compare different aspects of the data structure.  

Dynamic Windows are representations that highlight the status of various 

attributes of a program during execution. The information modality of these 

representations is predominantly propositional, but can also be graphical (e.g., table or 

histogram). These help a programmer establish a relation between the pre existing 

structural representation of a program in short term memory and its current execution 

by highlighting control flow and data flow, and hence help the process of integration. 

Variable windows, output windows and call stack windows are some examples of 

dynamic windows (Romero et al., 2002a). The dynamic window shows a measure of 

execution activity and memory for threads, packages, classes, methods or objects. In 

Figure 11d, a variable window is shown, which displays the variable state during 

program execution. Here, every variable visible at current program state is displayed in 

different lines, and if they are complex structures they can be expanded to show their 

components. When they expand, their components are shown with an indentation to 
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denote this hierarchical relation. These components, if complex, can in turn be 

expanded in a recursive fashion displaying a hierarchical tree.  

 

4.2.2 Mental Representations 

During program comprehension, programmers build their own mental 

representation of the program to be understood; a mental model. They start by reading 

code statements and group these statements until a high-level mental representation of 

the program is constructed. Pennington (1987a, b) describes two program abstractions 

that are formed by the programmer during comprehension of a structural program: the 

program model, which is a low-level abstraction, and the domain model, which is a high 

level abstraction. She also describes four basic categories of program information making 

up the programmer’s mental representation: elementary operations in the code, control 

flow, data flow and program goals. Burkhardt et al. (1997) further extended this model 

to account for object oriented programs. They added information about objects as well 

as the relationships among objects to the situational/domain model. Information about 

objects and goals represents the static aspects of the program, whereas information 

about data-flow and class dependence represents more dynamic aspects of the program. 

The proposed model postulates that there are two categories of mental models 

constructed by the programmer during comprehension, namely static and dynamic 

models. Each of these include further sub constructs of mental representations that 

correspond to program specific information.  The sub constructs are either primed by 

the cognitive aids or are generated from the problem statement during the cognitive 

process of organizing. The usage of these sub constructs is completely dependent on a 

programmer’s expertise, the task and the development of understanding over time 
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(Burkhardt et al., 1997). Also, some of these information types might dominate the 

mental representations (Pennington, 1987b). 

According to our cognitive model, during program comprehension, programmers 

build a static mental model of the program from the program code and problem 

statement, and any signaling and static visualizations that may be provided by the IDE 

they are using, through the cognitive process of organizing. The static model represents 

the static aspects of a program and consists of the following sub constructs.  

Static Slice of a program consists of all statements that may directly or indirectly 

affect the value of a variable at some point in the program (Weiser, 1984). Building a 

static slice requires finding all statements that could influence the value of the variable 

for any input, not just the statements that did affect its value for the current input 

(this is the Dynamic Slice as explained later). Static slices are identified by finding 

consecutive sets of indirectly relevant statements, according to data and control 

dependencies. Signaling can prime static slices by emphasizing program control 

structures and constructs (e.g., CSDs, see Cross II et al., 1998). 

Static Data Structure is a data structure that does not change within the scope of 

the program (Guzdial and Ericson, 2010). Examples are class hierarchies of a software 

project and array structures. These data structures are easily identifiable using cognitive 

aids like a structural visualization.  

Control Flow refers to the order in which the individual statements, instructions, 

or function calls of a program are executed or evaluated. Signaling aids, as mentioned 

earlier, clearly depict control constructs, control paths, and the overall structure of each 

program unit. This knowledge of control would be local to the program for an object 

oriented program (Corritone and Wiedenbeck, 1998) and be limited to sequence, 

branching and iteration. Hence, a programmer’s view of control flow in his static mental 
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model is fragmentary, as dynamic aspects (data structure transformations, 

function/method calls, etc.) are not depicted by signaling aids and not represented in 

the static mental model. This view becomes cohesive when dynamic information is also 

incorporated into the programmer's internal representation of control flow during the 

building of the dynamic mental model. This is explained later. 

Data Flow represents transformations that data elements undergo as they are 

executed in a program (Pennington, 1987b). Data flow analysis does not imply 

execution of the program under analysis (incorporation of information about program 

execution into the programmer's internal representation of data flow is explained later). 

Instead, the program is scanned in a systematic way and information about the use of 

variables is collected so that certain inferences can be made about the effect of these at 

other points of the program. This is often a difficult task because of data 

transformations which occur in delocalized plans (Soloway et al., 1988), i.e. plans whose 

elements are not physically contiguous but rather spread throughout the program text. 

Partial data flow is detected by the programmer through static analysis of the text of a 

program. Corritore and Wiedenbeck (1999) extended this knowledge of data flow to 

object oriented programming by including cases where (1) effects of one variable on 

another occurring either in the same program module or across module boundaries, and 

(2) how complex data structures are modified. 

Control Structure represents the control constructs, control paths, and the overall 

structure of each program unit in a programming language. Modern programming 

languages examples of a control structure would be sequence, selection, iteration, exits 

and exception handling.   

According to our cognitive model, during program comprehension, programmers 

build a dynamic mental model of the program from the program logic that they inferred 
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during the building of the static mental model, and any dynamic visualizations and 

dynamic windows that may be available in the IDE they are using, through the 

cognitive process of integrating. The dynamic model represents the communication 

between object instances at a high level of granularity and the communication between 

variables at a fine level of granularity. These relationships trace the delocalized plans 

and the local plans involved in the problem solution as implemented by the program. 

This model is generated by inferring and integrating the dynamic behaviors of 

individual program constructs. The generation of the dynamic model is aided by 

dynamic visualizations and/or dynamic windows. It consists of the following sub 

constructs. 

Function refers to what the program does and is an important information 

paradigm in object oriented programming (Wiedenbeck & Ramalingam, 1999; Corritore 

& Wiedenbeck, 1999). Program execution is the main source of information about 

function. This is not fine grained enough for programmers to understand/debug 

programs. The required fine granularity is offered by debugging tools that allow line by 

line execution in synchrony with dynamic windows like output window or variable 

window. Output window, for example, displays error messages and exceptions in textual 

form during a program’s step by step execution. 

Dynamic Data Structure is a data structure that changes within the scope of the 

program. In an object-oriented program, it is a representation of the way objects 

execute their methods, representing the dynamic aspects of program execution (Guzdial 

and Ericson, 2010). In an object oriented environment, graphical representations are 

often used to display the data structure information. For instance, viewers in jGRASP 

present structural views of java collections classes. Some IDE’s provide a propositional 
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representation of dynamic data structure, by displaying variable watch windows. If the 

variables are complex structures, they could be expanded to show their elements. 

Dynamic Slice is a representation that contains all statements that actually affect 

the value of a variable at a program point for a particular execution of the program 

(Agrawal & Horgan, 1990). This is in contrast to all statements that could potentially 

affect the value of a variable at a program point for any arbitrary execution of the 

program (this is the Static Slice as explained earlier). This information for a variable 

can be extracted through step by step execution of the program and viewing the results 

synchronously in a dynamic window like the variable watch window. Agrawal and 

Horgan (1990) suggested that while debugging a program we try to find the dynamic 

slice of the program. 

Control Flow concerns the sequence of actions that will occur when the program 

is executed, and the transformations that data elements undergo as they are processed 

(Pennington, 1987b). One common representation of control flow that most IDEs 

provide is the call stack browser. For example, the IDE VBCCE has a locals window 

with call stack browser along with other extensive debugging facilities. These windows 

present a list of threads/methods that, similar to the complex variables in the watch 

window, can be expanded to show the associated methods. In some IDE’s this 

information is presented as a tree whose nodes are the methods executed and the 

parent-child hierarchical relation is determined by the program’s calling sequence. 

Through the use of dynamic visualizations and windows provided by an IDE, the 

programmer’s fragmentary view of control flow in his static mental model becomes 

cohesive with the inclusion of dynamic aspects. 

Data Flow focuses on the dynamic aspect of threading data objects through the 

execution of the program (Pennington, 1987b). The internal data flow representation 
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built as part of the static model is enriched with the incorporation of information about 

program execution gleaned from dynamic visualizations and windows. Some dynamic 

windows show the path that data objects traverse as the program executes by showing 

lines joining variables within nested methods, e.g, Prograph (Matwin and Pietrzykowski, 

1984).  

4.2.3 Cognitive Process Flow 

The Problem Statement is regarded as text from which the programmer must 

glean propositional and situational information and make critical inferences (Nathan, 

Kintsch, & Young, 1992). In programming, this statement is the specification of the 

program, i.e., what it is intended to accomplish. This need not be textual but can also 

be either verbal or pictorial, or a combination of both. The expected behavior of the 

program is derived based on the problem statement. When designing and coding, all the 

information is derived from problem statement, whereas when debugging or 

comprehending code written by someone else, equal information is derived from program 

code and problem statement (Gilmore, 1991). 

Organization - When presented with a problem statement and program code, the 

programmer analyzes the code by identifying basic components of the program such as 

smaller chunks of code called static slices (Weiser, 1984), static data structures, and 

data and control flow of the program, and builds a static mental model. This process is 

facilitated by cognitive aids such as source code, structural visualizations, and signaling. 

This is analogous to the cognitive process of diagram decomposition (Narayanan & 

Hegarty, 1998). Mayer’s (2003) selecting-organizing-integrating (SOI) model of text 

comprehension includes a similar process called organizing, in which relevant surface 

level information is combined into a coherent structure in working memory.  
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Determination of logic and data flow dependencies. During the building of the 

static mental model, two types of representational connections are established.  

(a) Connections to prior knowledge. Narayanan & Hegarty (1998) proposed that 

during diagram comprehension a viewer identifies the components of the depicted 

machine and establishes relationships with his/her real world knowledge in the domain. 

For example, the viewer might represent that a circle in the diagram denotes a wheel 

and associate this with his/her prior knowledge about wheels. In the context of our 

model, structural visualizations like UML diagrams that depict the relationships and 

dependencies among classes aid in establishing connections to prior knowledge that the 

programmer has. For example, if a program is specific to a book repository, then the 

class diagram helps establish connections to real world knowledge about organizing 

books. 

(b) Connections to representations of other program segments. Second, the user 

must represent the logical relations (i.e., relations regarding data and control flow) 

among different program components by building mental connections that encode these 

logical relationships among his/her internal representations of multiple program modules 

or classes. Cognitive aids help programmers establish such connections. For instance, 

CSD, a signaling aid, helps establish this by providing explicit visual information about 

control constructs and control paths to allow the programmer to establish relationships 

among different components of the same program. This corresponds to the step of 

establishing connections that encode spatial relations among components of a machine 

in the cognitive model of Narayanan & Hegarty (1998).  

For machine diagram comprehension, this encoded knowledge of spatial relations 

aids in guiding the viewer's reasoning process along the chain of causality (called "lines 

of action") in the operation of the machine (Hegarty, 1992; Narayanan & Hegarty, 
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1998). Similarly, we postulate that the encoded knowledge of logical relations among 

program components resulting from the above step facilitates a reasoning process for 

logic flow and data dependence, through which the programmer determines the "logical 

lines of action" in the code. This reasoning process of the programmer is termed 

"determination of logic flow and data dependence in program code" in Figure 11. It 

helps reduce the mental computation required for predicting a program’s behavior while 

creating the dynamic mental model. For example, the programmer might predict the 

change in attribute values of an object during the execution of a method. 

Integration - Based on the static mental representation and determination of logic 

flow, the programmer now creates a dynamic mental model. This last and final step, 

termed integrating (Mautone et. al., 2007), involves constructing a dynamic mental 

model of the program by inferring and integrating the dynamic behaviors of individual 

program components. Narayanan and Hegarty’s cognitive model of text and diagram 

comprehension (1998) includes a similar stage. Program perspectives like function, 

dynamic data structure, data flow and dynamic slice emerge during this incremental 

process. It involves constant restructuring of the mental representations by 

hypothesizing a module’s logic and validating its operation, leading up to an integrated 

representation of the dynamic aspects of program execution.   During this iterative 

process, relationships between the existing static model and internal dynamic 

representations are established by stepping through the program execution with the 

assistance of cognitive aids like dynamic visualizations and windows. Narayanan and 

Hegarty (1998) argued that referential connections are crucial, during text and diagram 

comprehension, to constructing an integrated internal representation of the common 

referent of text and diagram in memory as opposed to separate representations of the 

text and diagram. This applies to program comprehension as well, given that multiple 
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representations (e.g., a snippet of code and data structure visualization) could represent 

the same entity and hence their internal coordination is vital. Thus, we propose that 

program comprehension results in a dynamic mental model of program execution. 

Building on this model of program comprehension, we now propose a cognitive 

model for program debugging with forward reasoning (Figure 12). This extended 

cognitive model introduces a new mental model called Posit Dynamic Mental Model and 

a cognitive process called Hypothesis Testing. 

Posit Dynamic Mental Model – The program comprehension process described 

above produces a dynamic mental model that captures the dynamic aspects of program 

execution. If the program executes correctly, this mental model, which is in part derived 

from external dynamic representations of program execution such as dynamic 

visualizations and windows, correctly captures both static and dynamic aspects of the 

program that is comprehended. However, if the program is buggy, the execution data it 

produces will be erroneous. Therefore, the dynamic mental model created through the 

process of integration would be that of an erroneous program. Therefore, we postulate 

that the programmer generates two dynamic mental models if he/she is engaged in 

debugging as opposed to just program comprehension. One is the dynamic mental model 

described previously, which encodes the erroneous execution of the program. In 

addition, the programmer would generate a second dynamic mental model of the 

expected (correct) behavior of the program from his/her static mental model and 

determination of logic flow and data dependencies. This dynamic model, which we call 

the posit dynamic mental model, would not be based on the external representations of 

buggy program execution such as dynamic visualizations or windows. The posit model is 

similar to the dynamic mental model in terms of the sub constructs that constitute this 

model, but these constructs are predicted or inferred from their counterparts in the 
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static mental model, as opposed to verified from external representations.  This model is 

later used by the programmer to compare with the dynamic mental model produced 

from actual (and buggy) program behavior based on the programmer’s debugging 

hypothesis (Hypothesis Testing).  

 

Figure 12.  Cognitive model of multi representational program debugging 
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Hypothesis Testing - Hypotheses are key drivers in program understanding and 

influence the direction program understanding can take (Mayrhauser and Vans, 1997). 

A hypothesis about the program component or behavior causing the bug or error helps 

detect the difference between the desired behavior from specification and the behavior 

performed by the program.  According to Araki et al. (1991), in locating the errors and 

grasping their causes, programmers develop hypotheses about the errors and their 

causes, and verify or refute these hypotheses by examining the program. During 

dynamic analysis, a programmer executes the program with appropriate input data and 

examines its behavior and output (Gould and Drongowski, 1974). Many consider 

correction of errors found through dynamic analysis to be debugging, and often use 

debugging tools to execute dynamic analysis. We propose that during hypothesis 

testing, the posit dynamic mental model is compared with the mental model created 

from actual program behavior and this leads to either no action or acceptance or 

rejection of the hypothesis.  

Hypothesis testing would produce several external behaviors, such as stepping 

through the program, inspecting dynamic visualizations or windows, etc. The 

programmer may also modify the code to achieve the desired program behavior, and 

test it by executing it. We expect that the dynamic mental representations will change 

after the programmers have made significant modifications to the program over time. In 

particular, we expect a convergence between the dynamic mental model and the posit 

dynamic mental model. This is similar to a cross referenced or mixed representation 

(Pennington, 1987a, b).  

Though our model of program comprehension and debugging is derived from 

extant research on text, diagram and graph comprehension as well as program 

comprehension, its constructs and processes need empirical validation. It is not yet clear 
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how constructs of the different mental representations we have proposed influence the 

debugging performance. We also suspect that co-ordination of these multiple 

representations is an important expert skill in debugging, and could be a potential 

problem for novice programmers. More theoretical and empirical knowledge about the 

way these representational systems influence the comprehension and debugging of 

computer programs is therefore needed. This leads to a variety of research questions, 

only some of which (as explained in the next chapter) are addressed by the present 

research: 

• Do cognitive aids lead to constructs other than the ones represented in the static 

and dynamic models? 

• Are all visualizations preferred/used equally by the programmer or is any 

visualization preferred more than the others?  

• Does the modality and perspective of a representation in the cognitive aids 

influence its effectiveness or preference? 

• How does the depth and/or accuracy of posit dynamic model affect debugging 

performance? 

• Are there any particular patterns in representation use, which leads to superior 

debugging performance? 

• To what extent do programmers use each type of representation?  

• Under what circumstances do programmers switch between representations? 

• Are graphical representations more helpful to Java programmers (because of the 

OO paradigm) than textual ones? 

• Are representations that highlight data structures more useful than those that 

highlight control-flow for Java debugging?  
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• Do graphical visualizations promote a more judicious representation use than 

textual ones for program debugging in a multi-representational IDE? 

• Do representation characteristics such as the information type highlighted or its 

format (graphical or textual) affect representation use and debugging strategy 

employed? 

• Is there a relationship between programmers’ cognitive characteristics such as 

visual vs. verbal, their level of familiarity with representation formalisms, format 

preference and programming experience and their debugging behavior?  

• Does higher interactivity with the IDE lead to a better debugging performance ? 

• Do participants with a high level of debugging skill interact less with the 

visualizations? 

• What is the extent to which novices and experts exhibit forward reasoning vs. 

backward reasoning in their debugging strategies?. 

• How effective are individual IDE representations (e.g. the CSD of jGRASP) in 

aiding debugging?  

• Is there a difference between the step by step comprehension and debugging 

activities of novices and experts? If so, how can our model account for the 

differences?
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CHAPTER 5 

SCOPE OF RESEARCH 

The cognitive models of program comprehension and debugging pose several 

intriguing questions as discussed in the previous chapter. We selected a few of these 

questions for experimental investigation using the jGRASP IDE. In this chapter, we 

discuss each selected research question and our approach toward data collection and 

analysis for answering the question. 

Research Question 1: How does the depth of the mental model affect 

debugging performance? 

According to our cognitive model, while debugging, students first construct a 

static mental model of the program, and then during program comprehension stage 

derive a dynamic mental model of its execution called the posit dynamic model. This is 

followed by the construction of a third mental model representing the buggy program, 

which is constructed while interacting with various IDE visualizations. A comparison 

between this buggy model and the posit model of expected program behavior allows a 

programmer to locate the bugs in a program. The key to a programmer’s performance 

while debugging is the depth or strength of the mental models they create. This research 

question delves more into establishing a relationship between strength of the mental 

model to debugging performance. The independent variable here is the depth of the 

model and the dependent variable is the debugging performance. As there is no direct 

and complete measure of a programmer’s mental model, questionnaires will be used
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to measure the depth of knowledge regarding programming constructs (mental 

representations) of the program being debugged. For example, the question “what does 

node ‘p’ refer to after 3 iterations in the ‘move’ method of the List class?” addresses 

knowledge of data flow in the programmer’s dynamic model (see Appendix D for the 

complete set of questions). Each response will be scored as either correct or incorrect. 

Each correct response will add one point to the total score. In order to measure the 

debugging performance of a participant, we will use a scale shown in the Table 5.1. 

Time to completion No of Bugs found Performance scale 

Before the end of 15 minutes 4 4 

End of 15 minutes 3 3 

End of 15 minutes 2 2 

End of 15 minutes 1 1 

End of 15 minutes 0 0 

Table 5.1 Debugging performance measurement scale 

Pearson correlation (or Spearman correlation) will be used to establish the 

correlation between the mental model strength and the debugging performance.  

Research Question 2: How is the depth of the mental model built from static 

visualizations different from that resulting from the dynamic visualizations? 

Expanding further on the previous research question, we will investigate how the 

depth of the mental model is affected by availability/use of either dynamic or static 

visualizations. This will be achieved by creating two groups of participants, one will be 

allowed to use only static visualizations while debugging whereas the other will be 

allowed to use only dynamic visualizations. The mental model strength of programmers 
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will be measured at fixed intervals using questions as discussed above. Here, 

‘visualization type’ will be the independent variable and mental model strength will be 

the dependent variable. A repeated measure ANOVA will be conducted on mental 

model strength for the time intervals to answer this question.  

Research Question 3: How do the components of the mental model (in terms 

of various internal representations/constructs) built from static visualizations 

differ from those resulting from dynamic visualizations? 

The proposed cognitive model postulates that static visualizations lead to mental 

representations or internal constructs static slice, static data structure, control 

structure, minimalist control flow and minimalist data flow, and dynamic visualizations 

lead to the internal constructs dynamic slice, dynamic data structure, function, control 

flow and data flow. In order to answer this question, we have to look at the relationship 

between type of cognitive aid and the mental model strength for each mental 

representation. The independent variables here are the visualization type and the 

internal constructs. The dependent variable is the mental model strength, which will be 

measured by the questionnaire discussed earlier. A two-way ANOVA with repeated 

measure on one factor will be conducted to determine whether there is a statistically 

significant difference between the two visualization types (static and dynamic) in 

influencing mental model strength of different internal constructs.  

Research Question 4: Is there a difference in the programmers’ usage of static 

and the dynamic visualizations? Does this usage difference lead to a 

performance difference? 

 In order to answer this question, the usage of static and dynamic cognitive aids 

(i.e., representations provided by the IDE) by the programmer in the course of 
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debugging has to be measured. We will use eye tracking data for this purpose. Each 

type of representation will be marked as an Area-of-Interest (AOI). Dwell time on each 

AOI will be a measure of representation usage. A simple independent samples t-test 

between two groups with access restricted to either only static or only dynamic 

visualizations will be performed. This will be performed for each representation type, 

Program Code, Visualization and Output. Further we will look at the difference 

between mean fixation duration for each AOI between the two groups. As longer 

fixation signifies difficulty in interpretation, this will give us an insight into programmer 

behavior in the two groups. Again, a simple independent samples t-test between two 

groups for the three AOI’s will be conducted. A t-test comparing the debugging 

performance (based on Table 5.1) of the two groups will help answer the second part of 

this question. 

Research Question 5: Is any representation (cognitive aid) preferred more 

than the others? 

To answer this question, experiment participants will be given unrestricted access 

to all the representations available with the IDE. The question can then be answered in 

part by analyzing the visual attention of participants and in part by evaluating 

participant’s interview responses. Each visualization will be defined as an AOI. The 

visual attention attributes (dependent variable) considered here will be average dwell 

time, average fixation count, and visit count for each available representation 

(independent variable). Analysis can get fairly complex with multiple AOI’s in question. 

Hence, we will be using the table below (Table 5.2) for grouping similar AOI’s into four 

categories.  

 



68 
 

AOI Categories Consisting of 

Code All classes of the program 

Static 
Visualization 

CSD, UML 

Dynamic 
Visualization 

jGRASP Viewer, Variable Watch 
Window, Expression Evaluation Window 

Output All textual representations of program 
results 

Table 5.2 AOI Categories 

For each visual attention attribute, we will conduct an ANOVA resulting in 

three ANOVA analyses. As a fallback back strategy in case of sparse data where all the 

representations are not attended to, we will switch to binomial analysis as observed in 

earlier research (Bednarik, 2005). 

In addition, qualitative results from interview responses can provide good insight 

into representation usage, further substantiating the results. The questions for each 

individual participant will be framed based on the strategy employed by him/her during 

the debugging session. For example, if a participant was seen to have used jGRASP 

viewers a lot, questions on that, such as the following examples, will be asked. Why was 

the Viewer used? Why did you think it was appropriate? Was it helpful in the end? 

Does the fact that jGRASP viewer shows you real time manipulations help you? Why 

did you not use the UML diagram? Why did you choose to use viewer over the variable 

window to debug? (See Appendix D1 for the semi-structured interview questions.) 
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Research Question 6: How do programming experience, familiarity with the 

IDE and debugging performance influence the strategies employed in 

representation use during debugging? 

The independent variable here are programming experience, familiarity with IDE and 

debugging performance. We will categorize experiment participants under these based 

on the criteria summarized in Table 5.3  

Independent Variable Categories Criteria 

Programming Experience 
Novice 

Less than 12 months of programming 
experience in Java 

Expert 
More than or equal to 12 months of 
programming experience in Java 

jGRASP experience 
Low 

Less than 6 months of experience with 
jGRASP IDE 

High 
Greater than or equal to 6 months of 
experience with jGRASP IDE 

Debugging Performance 
Bad 

The programmer was not able to debug 
all 3 bugs from the assigned task 

Good 
The programmer successfully debugged 
all 3 bugs from the assigned task 

Table 5.3 Independent variable categorization 

In order to better understand the strategies of participant programmers, the 

dependent variable, the visual patterns of each participant will be coded as character 

strings that represent short or long gaze durations on the previously discussed four 

categories of AOIs (see Table 5.4).  

Character 
Representation 

Gaze Duration 
on AOI (Short) 

Character 
Representation 

Gaze Duration 
on AOI (Long) 

A Code  B Code 
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C Static 
Visualization 

D Static 
Visualization 

E Dynamic 
Visualization 

F Dynamic 
Visualization 

G Output H Output 

Table 5.4 Gaze duration based AOI categorization 

Attention on each AOI will be categorized as a short duration gaze if the 

duration of each visit to an AOI is lower than a certain threshold value (in ms), it will 

otherwise be categorized as a long duration gaze. Thus, we will have eight categories of 

visual attention. For example, a string AFG translates to a programmer spending a 

short duration of time on code followed by a long duration on a dynamic representation, 

further followed by a short duration on output. The string AEAEAEAE…. represents 

frequent switching between code and dynamic visualization with short gazes on the two 

AOI’s. In order to separate short and long durations, we will use the threshold value of 

500ms, since it is known that at least 200 ms are needed for a fixation and more than 

one fixation is needed for cognition. Recurring patterns from these sequences will be 

algorithmically analyzed to understand the underlying strategies and to answer this 

research question. 
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CHAPTER 6 

EXPERIMENTAL DESIGN AND PROCEDURE 

To test the hypotheses arising out of our research questions, we conducted an 

experiment using a remote eye tracker to record the gaze behavior of participants 

during a program debugging task aided by multiple representations that the jGRASP 

IDE presents. Their gaze behavior and other data provided us with specific knowledge 

of how explicit areas of the jGRASP IDE were used by different programmers and how 

it influenced their mental model construction and debugging performance.  

6.1 METHOD 

6.1.1 Participants 

The participants in the experiment were graduate and undergraduate students 

from the department of Computer Science & Software Engineering at Auburn 

University who had a minimum of 6 months programming experience in Java. All 

participants were volunteers and received $10 for each hour of their participation. We 

recruited 19 participants, 2 female and 17 male, all with normal or corrected vision. 

None of them had previously participated in an eye tracking study. Their level of 

programming experience varied, ranging from a sophomore in computer science having 

taken or currently enrolled in a data structures class to graduate students who had 

substantial programming experience, with some who had professional experience in 

building enterprise applications in Java. The median and mode of general programming 

experience was 1 to 2 years. The median for Java programming experience was 1 to 2 
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years, and the mode was 6 to 12 months. Four of the participants had never worked 

with jGRASP before and of those who had prior experience with jGRASP, all but one 

participant had used jGRASP for a minimum period ranging 6 - 12 months. 

Demographic details of the participants are listed in Appendix A. 

6.1.2 Materials and Apparatus 

Two short Java programs – string reversal using stacks (program 1) and binary search 

on a doubly linked list (program 2) were developed. Program 1 was seeded with 4 bugs 

and 3 bugs were introduced in program 2. The errors can be classified as control flow, 

data flow, data structure and functional errors. Details of the two programs and bugs 

are provided in Appendix B. Participants were notified that there were no syntactical 

errors in the program. On execution, the program was designed to display the expected 

output and the current output. In addition, a warm up program was used to familiarize 

participants with the IDE and the visualizations available with it. The names of the 

methods, variables and class names were altered so that recognition of a program and 

the underlying data structure based on surface features would be difficult. These 

programs were debugged by the participants using the jGRASP IDE, during which their 

eye movements were tracked. We used a Tobii T60 XL, a remote and unobtrusive eye 

tracker with sampling rate set to 60Hz. This eye tracker was set up in a sound proof 

laboratory with consistent fluorescent illumination. Participants were seated 

comfortably in an ordinary office chair, facing a twenty four inch TFT widescreen 

monitor and maintained a viewing distance of 55-65cm. The screen resolution was set to 

1920 x 1200. Tobii Studio™ 2.1 was used for setting up the experiment. The stimuli 

sequence was created by combining all the debugging tasks into one jGRASP project. 

Tobii Studio™ was also employed to create a holistic view of user behavior during 

debugging by integrating data captured from the recording of eye tracking data with 
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user video, screen capture, sound, keystrokes and mouse clicks. During the experiment, 

user actions were supervised on a remote computer using Tobii Studio Logger™, which 

displayed the test screen with real time gaze data overlay. 

6.1.3 Procedure and Design 

After becoming familiar with the experiment and signing a consent form, the 

participants were given 10 minutes to understand the functionalities of jGRASP IDE. 

This was cut short if a participant had prior experience with jGRASP. Following this, 

two debugging sessions of 15 minutes each were administered. Prior to each debugging 

session, the participant had to pass an automatic eye tracking calibration routine, which 

consisted of tracking their eyes as they followed nine points on the computer screen. 

This process was repeated if necessary, to achieve good accuracy and precision. Each 

session was split into two sections for each of the two programs. Each section consisted 

of two phases; first a description of the program to be debugged was presented. Next 

the participants were asked to locate the bugs in the code and fix them within a time 

limit of 15 minutes.  

While debugging the first program, subjects were allowed to use only static or 

only dynamic visualizations depending on their grouping. Participants were assigned 

program 1 (string reversal using stacks) for debugging. This section of the experiment 

was designed to help us answer Research Questions 1, 2 and 3. During this session, a 

participant’s mental model strength was measured at regular intervals with a 

questionnaire on his/her knowledge of the program constructs. The questionnaire 

consisted of 23 questions (see Appendix C) pertaining to program constructs:  function, 

control flow, program structure, static slice/dynamic slice and control structure. The 

questions were objective with the response scored as either correct or incorrect except 

for one question on static/dynamic slice that was subjective. The questionnaire was 
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administered after every 5 minutes, leading to 3 measurements after 5 minutes, 10 

minutes and either at the end of session or after 15 minutes, whichever came earlier. 

The verbal response of a participant to each question was audio-taped and later scored 

and tabulated by the researcher. The order of questions was randomized for every 

interval to counter learning from the ordering of questions. If a participant fixed all the 

bugs within 10 minutes, he/she was administered only two questionnaires.  

The same procedure was followed for the second program. First a description of 

the program (binary search on a doubly linked list) to be debugged was presented. 

Next, the participants were asked to locate the bugs in the code and fix them. For this 

program, they were allowed to use any of the visualizations available with the IDE, 

which included the dynamic representations and the dynamic windows. The 

questionnaire was not administered for this experiment, and students were given 15 

continuous minutes to debug the program. On completion of the debugging sessions, 

each participant was interviewed based on a semi structured interview protocol (see 

Appendix D). In order to counter confounding factors like fatigue, learnability etc., half 

of the participants were assigned program 1 first and the other half program 2 first. A 

pilot study was first conducted with three volunteers. Minor issues were unearthed 

based on volunteer feedback and researcher’s observations. These issues were fixed 

before the actual experiment. 

For performing gaze analysis, Areas of Interests (AOIs) were defined 

corresponding to different visualizations, menu bar, file browser and animation controls 

of jGRASP. With the first program, all of the program code was visible to participants 

on the screen. Participants who were given only static visualizations did not have to 

move any windows and hence the screen AOI’s remained constant throughout (Figure 

13). 
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Figure 13.  AOI’s defined for Experiment 1 with Static Visualizations 

However, for the dynamic visualization group, the AOI’s changed over time due 

to the movement of windows by programmers and hence the complete debugging session 

was broken down into multiple segments for each participant (see Table 6.1). Each 

segment represented a single scene in which all the windows were positioned at fixed 

locations on screen. For each instance of a window moved and positioned at a new 

location on screen, a new segment was created. Figures 14 and 15 are snapshots of 

continuous scenes extracted from one of the debugging sessions for program one and 

figure 16 for program two. Gaze data from each of the segments were later combined. 

The same approach was taken for debugging program 2 as the windows were moved 

around the screen during a session. There were 11 possible AOI’s of interest; Animation 

Control, Client Code, Client CSD, Data Structure CSD, Data Structure Code, Dynamic 

Window, Eval Window, File Browser, File Menu, Output, and Variable Watch. 
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Table 6.1 Segment wise break up for each participant 

 

 

Figure 14.  AOI’s for Experiment 1 (no Visualization in use) 

 

Figure 15.  AOI’s for Experiment 1 (dynamic visualizations in use) 

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19
No. of 
Segments 7 10 7 5 5 7 7 4 8 2 4 9 11 2 8 11 10 7 11
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Figure 16.  AOI’s for Experiment 2 (dynamic viewer, CSD & variable 

watch in use) 

 

For the experiment with program 1, we used a mixed design with one between-subjects 

factor (representations available for debugging) and four dependent variables (number 

of errors spotted, accumulated fixation time, mean fixation duration, and switching 

frequency, as measured by the eye tracker). Specifically, the within subject factor was 

static visualizations for one group, and dynamic visualizations for the second group. The 

accumulated fixation time is the total time a participant spent during a session fixating 

on an area of interest (AOI). For an AOI, all of the fixation durations were added, and 

the number was divided by the total fixation count throughout the debugging session, 

giving the mean fixation duration. Most of the results were analyzed by performing 

either ANOVAs and/or planned paired t-tests. These data analyses and their results are 

presented in the next chapter.
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CHAPTER 7 

RESULTS 

We now discuss the results of our analyses based on data collected from the 

experiments described in Chapter 6. 

Research Question 1: How does the depth of the mental model affect 

debugging performance? 

For this analysis, we tabulated participant scores based on their responses to the 

questionnaire at the end of the debugging session, along with their corresponding 

performance score (based on table 5.1). Pearson correlation and Spearman correlation 

were used to establish the correlation between the mental model strength and the 

debugging performance. We first looked at the data collected from all 19 participants. 

According to Pearson’s correlation, there was a positive correlation between the two 

variables, r(17) = .56, p <.05 with R2 = .31.  

Based on Pearson’s correlation, it can be concluded that there was a moderate 

correlation between mental model strength and debugging performance. As the depth of 

the mental model increased, the debugging performance too increased. The percent of 

variability is relatively low with only 31% of debugging performance related to mental 

model strength, 69% remains unexplained. We further evaluated the correlation among 

these variables for the static and dynamic visualization groups separately. This 

correlation between mental model strength and performance was stronger for the 
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dynamic visualization group (r(8) = .66, p <.05) and was statistically significant. The 

static visualization group showed a weaker correlation that was not statistically 

significant (r(7) = .48, p =.19). 

Research Question 2: How is the depth of the mental model built from static 

visualizations different from that resulting from the dynamic visualizations? 

To evaluate this research question we continue using data from debugging 

program 1. As discussed in Chapter 5, the mental model strength was measured at 3 

intervals. A repeated measures ANOVA on the difference in mental model strength for 

the 3 data collection points (after 5, 10 and 15 minutes) was statistically significant 

(F0.05(2,26)=64.52, p<0.001).  

 

Figure 17.  Mean mental model strength 

The effect size was large, with η2=0.89 and the observed power 1.00. Statistically 

significant differences (p<.05) were found between all three pair-wise comparisons of 

mental model strength. The interaction between the visualization type (static or 

dynamic) and mental model strength was not statistically significant (F0.05(2,26)=6.99, 
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ns). For this analysis N=15, as 4 participants completed debugging within 10 minutes 

and hence their data was not included in the analysis. 

Next, the final mental model strength of all the participants was evaluated. 

Although the mean value of mental model strength was higher for the dynamic 

visualization group (M=18.6, SD=2.41, N=10) when compared to static visualization 

group (M=17.33, SD=2.29, N=9), there was no statistically significant difference in the 

mean values t(17)=-1.17, ns). 

Research Question 3: How do the components of the mental model (in terms 

of various internal representations/constructs) built from static visualizations 

differ from those resulting from the dynamic visualizations? 

We first computed the mean values for each programming construct at the 3 

stages of mental model measurements. As expected the mental model strength increased 

for each programming construct as summarized in figure 18. 

 

Figure 18.  Mean Value of mental model strength (N = 19) 
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This was followed by focusing on individual constructs, leading to 5 different 

analyses. A two-way ANOVA with repeated measure on one factor was conducted to 

determine whether there was a statistically significant difference between the two 

different types of visualizations (static and dynamic visualization) for influencing mental 

model strength. This analysis was performed for each of the five programming 

constructs that was measured. The independent variable included a between-subjects 

variable, the visualization type, and within-subject variable, repeated measures of time. 

The dependent variable was the strength of mental model for a programming construct. 

An alpha level of .05 was utilized for these analyses.  

 

Figure 19.  Average mental model strength - Function 

Function – The result of main effect of three measurements of mental model for 

function was statistically significant (Wilk’s Lambda), F0.05 (2, 12)=10.4, p<0.05, η2 =.63 

and power = 0.96. A large effect size was evident. There was no statistically significant 

interaction in the strength of mental model between the visualization type and the 

measurement time, F0.05 (2, 12)=2.47, p=.127, η2 =.291 and power = 0.4. Although, there 
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is no statistically significant in mental model strength at these different stages, we 

suspect that there is a possibility of reaching statistical significance if N is increased. 

This can be derived from the fact that the power is low and Partial Eta Square is 

strong. Perhaps, ceiling effect is also a factor in the final stage, as the measurement 

reached the maximum in the second measurement for the dynamic visualization group 

and remained at that level through the final stage. Although the mean value of the 

measurement for the dynamic group was  higher than the static group at all three 

stages, there was no statistically significant main effect in the visualization type either, 

F0.05 (1, 13)=1.93, p=.129, η2 =.13 and power = 0.25, which was indicative of a moderate 

to large effect size. 

 

 

Figure 20.  Average mental model strength – Data Structure 

Data Structure – Here again the result of main effect of three measurements of mental 

model for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 

12)=28.35, p<0.001, η2 =.83 and power = 1.0. A large effect size was evident. There was 

no statistically significant interaction in the strength of mental model between the 
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visualization type and the measurement time, F0.05 (2, 12)=1.98, p=.18, η2 =.25 and power 

= 0.33. Here again, there is no statistically significant difference in mental model 

strength at these different stages, and we suspect that there is a possibility of reaching 

statistical significance if N is increased, given that the power is low and Partial Eta 

Square is strong. There was no statistically significant main effect in the visualization 

type either, F0.05 (1, 13)=2.8, p=.12, η2 =.18 and power = 0.34, which was indicative of a 

moderate to large effect size, but it was found that the mean score for mental model 

strength of dynamic group was  consistently higher than static group at all three stages. 

 

Figure 21.  Average mental model strength – Control Flow 

Control Flow – Here again the result of main effect of three measurements of mental 

model for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 

12)=15.85, p<0.001, η2 =.73 and power = 0.99. A large effect size was evident. There 

was no statistically significant interaction in the strength of mental model between the 

visualization type and the measurement time, F0.05 (2, 12)=.361, p=0.7, η2 =.05 and power 

= 0.1. The mental model strength for static group was consistently higher than dynamic 

group at all three stages, but there was no statistically significant main effect in the 
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visualization type either, F0.05 (1, 13)=.32, p=.58, η2 =.02 and power = 0.08, which was 

indicative of a small effect size. 

 

Figure 22.  Average mental model strength - Structure 

Structure – Here again the result of main effect of three measurements of mental model 

for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 12)=14.93, 

p<0.05, η2 =.71 and power = 0.99. A large effect size was evident. There was no 

statistically significant interaction in the strength of mental model between the 

visualization type and the measurement time, F0.05 (2, 12)=.5, p=0.62, η2 =.08 and power 

= 0.11. There was no statistically significant main effect in the visualization type either, 

F0.05 (1, 13)=.06, p=.81, η2 =.004 and power = 0.06. The mental model strength for the 

two groups fluctuated and no consistency was found. 

0

0.2

0.4

0.6

0.8

1

1.2

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l 
M

od
el

 
St

re
ng

th
 

Static

Dynamic



85 
 
 

 

Figure 23.  Average mental model strength – Data Flow 

Data Flow – Here again the result of main effect of three measurements of mental model 

for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 12)=11.6, 

p<0.05, η2 =.66 and power = 0.97. A large effect size was evident. There was no 

statistically significant interaction in the strength of mental model between the 

visualization type and the measurement time, F0.05 (2, 12)=.01, p=0.99, η2 =.002 and power 

= 0.05. Although the mental model for static group was consistently higher than the 

dynamic group at all three stages, there was no statistically significant main effect in 

the visualization type either, F0.05 (1, 13)=.38, p=.55, η2 =.03 and power = 0.09, which was 

indicative of a small effect size. 

Research Question 4: Is there a difference in the programmers’ usage of static 
and the dynamic visualizations? Does this usage difference lead to a 
performance difference? 

An independent-samples t-test was conducted to compare Dwell Time under 

static and dynamic conditions. This was performed for three different AOIs: code, 

visualization and output. There was no statistically significant difference in the dwell 
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time for code between Static Visualization (M=51.32, SD=2.82) and Dynamic 

visualization (M=50.13, SD=5.87) conditions; t(17)=.55, p = 0.59. Likewise no 

statistically significant difference was found for output between Static Visualization 

(M=3.70, SD=1.63) and Dynamic visualization (M=4.28, SD=1.63) conditions; t(17)=-

0.75, p = 0.46. 

 

 

Figure 24.  Average Dwell Time per minute 

There was a statistically significant difference in the dwell time for visualization 

between Static Visualization (M=1.41, SD=.57) and Dynamic visualization (M=6.24, 

SD=3.02) conditions; t(17)=-4.72, p <.001. 

An independent-samples t-test was conducted to compare Fixation counts under 

the static and dynamic conditions. This was performed for the same three AOIs. There 

was no statistically significant difference in the average fixation count for code between 
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Static Visualization (M=121.04, SD=9.75) and Dynamic visualization (M=122.49, 

SD=17.3) conditions; t(17)=-0.22, p = 0.83. Likewise no statistically significant 

difference was found for output between Static Visualization (M=9.83, SD=5.46) and 

Dynamic visualization (M=11.97, SD=3.92) conditions; t(17)=-0.96, p = 0.35. 

 

Figure 25.  Average Fixation Count per minute 

There was a statistically significant difference in the dwell time for visualization 

between Static Visualization (M=4.45, SD=1.39) and Dynamic visualization (M=14.68, 

SD=7.75) conditions; t(17)=-3.90, p <.05. 

A t-test found that there was no statistically significant difference in debugging 

performance between Static Visualization (M=2.56, SD=1.67) and Dynamic 

visualization (M=2.80, SD=1.31) conditions; t(17)=-.357, p =.726. 
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Research Question 5: Is any representation (cognitive aid) preferred more 
than the others? 

Data collected from debugging Program 2 was used for analysis here. Of the 11 AOIs 

possible in this experiment, 8 were of interest here as each of these 8 denoted a different 

kind of representation. Analysis was performed for representation use with three 

different visual attributes, Fixation Count, Dwell Time and Visit Count. 

 

Figure 26.  Mean Fixation Counts per Minute 

Fixation Count 

Mean fixation count per minute for each of the eight representations in use was used for 

analysis. The one-way ANOVA revealed that the difference in preference of 

representations was statistically significant across the eight AOI’s, F0.05 (7, 144)= 107.95, 

p<.001. 

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code (M = 

71.92, SD=11.3, 95% CI [66.45, 77.38]) received significantly higher preference ratings 
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than the data structure code (M = 32.47, SD=18.1, 95% CI [23.73, 41.22]), followed by 

dynamic viewer (M = 21.46, SD=14.14, 95% CI [14.65, 28.28]),  program output (M = 

17.41, SD=9.59, 95% CI [12.79, 22.04]) and the other 4 representations. 

 

Figure 27.  Mean Dwell Time per Minute 

Dwell Time 

Mean Dwell Time per minute for each of the eight representations in use was used for 

analysis. One-way ANOVA revealed that the difference in preference of representations 

was statistically significant across the eight AOI’s, F0.05 (7, 144)= 114.93, p<.001. 

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code 

(M = 44.51, SD=6.34, 95% CI [41.45, 47.56]) received significantly higher preference 

ratings than the data structure code (M = 21.6, SD=11.19, 95% CI [16.24, 27.02]), 

followed by dynamic viewer (M = 13.63, SD=8.72, 95% CI [9.42, 17.8]),  program 

output (M = 9.05, SD=4.7, 95% CI [6.78, 11.31]) and the other 4 representations. Pair 
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wise comparison for data structure code too, was significantly different with all other 

representations. 

 

Figure 28.  Mean Visit Count per Minute 

Visit Count 

Mean fixation count per minute for each of the eight representations in use was used for 

analysis. One-way ANOVA revealed that the difference in preference of representations 

was statistically significant across the eight AOI’s, F0.05 (7, 144)= 43.55, p<.001. 

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code (M = 

8.8, SD=2.15, 95% CI [7.84, 9.92]) received significantly higher preference ratings than 

the data structure code (M = 4.67, SD=2.56, 95% CI [3.44, 5.91]), followed by dynamic 

viewer (M = 4.41, SD=2.71, 95% CI [3.1, 5.72]),  variable watch (M = 3.26, SD=1.91, 

95% CI [2.33, 4.19]) and the other 4 representations. 
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In order to simplify the analysis, we combined the AOI’s into four main 

categories (see table 5.4), ignoring the miscellaneous category. We then conducted a one 

way ANOVA on the four groups and found the difference to be statistically significant 

for all three visual attributes; fixation count(F0.05 (3, 72)= 184.1, p<.001), dwell time(F0.05 (3, 

72)= 316.5, p<.001) and visit count(F0.05 (3, 72)= 69.81, p<.001). Scheffe’s post hoc pair 

wise comparison test too resulted in a statistically significant difference (with p<.05) 

between all four groups for each of the three visual attributes. The only exception was 

the difference in Visit Count between Static Visualization and Output with p=0.617. 

 

Figure 29.  Mean Fixation Count (4 AOI’s)

 

Figure 30.  Mean Dwell Time (4 AOI’s) 
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Figure 31.  Mean Visit Count (4 AOI’s) 

Research Question 6: How do programming experience, familiarity with IDE 
and debugging performance influence the strategies employed in visualization 
use during debugging? 

A utility program was developed to process the raw data collected from our 

experiments, and based on the desired attributes (such as gaze duration, AOI 

dimensions etc) the program generated a visual pattern sequence representing attention 

switches from one AOI to another. Once the visual pattern for all 19 participants was 

known, Sequential PAttern Mining (SPAM) algorithm (Ayres et al., 2002) was applied 

on these patterns to mine the frequently occurring visual pattern sequences. This was of 

importance as there are many different combinations of possible switches between the 

AOI’s. SPAM, developed at Cornell, can be used for finding all frequent sequences 

within a transactional database. The algorithm is especially efficient when the sequential 

patterns in the database are very long. A depth-first search strategy is used to generate 

candidate sequences, and various pruning mechanisms are implemented to reduce the 

search space. The visual pattern of each participant was converted to a representation 

resembling a transactional database record. This format was created as a text file and 
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then processed by SPAM to generate recurring patterns from this data set. As the 

SPAM algorithm produces only the recurring patterns and not their frequency, the 

utility program was used to perform a frequency count for these patterns for each 

participant’s pattern. This operation was performed for multiple configurations of AOIs 

that we were interested in. 

In the first approach, the string based visual pattern (discussed in Chapter 5) 

consisting of 4 AOI’s of our interest (Code, Static Visualization, Dynamic Visualization 

and Output) was generated. Based on the results generated from SPAM and follow up 

frequency count, the visual patterns listed in Table 7.1 and shown in Figure 32 were 

prominent. The table lists the visual patterns sorted by their frequency of appearance, 

with Visual Pattern 1 being the most frequently occurring pattern. 

Visual Pattern 1 Visual attention to Code followed by Dynamic Visualization 

Visual Pattern 2 Visual attention to Code followed by Output 

Visual Pattern 3 Visual attention to Code followed by Static Visualization 

Visual Pattern 4 Visual attention to Dynamic Visualization followed by Output 

Visual Pattern 5 
Visual attention to Code followed by Dynamic Visualization 
followed by Output 

Visual Pattern 6 
Visual attention to Static Visualization followed by Dynamic 
Visualization  

Table 7.1 Visual Pattern sorted by frequency of appearance (4 AOI’s) 



94 
 
 

 

Figure 32.  Mean Frequency Count of Visual Patterns (4 AOI’s) 

We further separated the grouped visualizations into individual AOIs, which lead 

to 6 AOI’s of interest (Code, CSD, Variable Watch, Dynamic Viewer, Evaluation 

Window and Output). Static visualization was equivalent to just CSD as none of the 

participants used any other static visualization while debugging program two. The same 

procedure as the previous step was followed to generate all possible visual patterns and 

their frequencies. Based on the results, the visual patterns listed in Table 7.2 and 

illustrated in Figure 33 were prominent. The table lists out the visual patterns sorted by 

their frequency of appearance, with Visual Pattern 1 being the most frequently 

occurring pattern. 

Visual Pattern 1 Visual attention to Code followed by Variable Watch 

Visual Pattern 2 Visual attention to Code followed by Dynamic Window 

Visual Pattern 3 Visual attention to Code followed by Output 
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Visual Pattern 4 Visual attention to Code followed by CSD 

Visual Pattern 5 Visual attention to Variable Watch followed by Dynamic Window 

Visual Pattern 6 Visual attention to Variable Watch followed by Output  

Visual Pattern 7 Visual attention to Code followed by Evaluation Window 

Visual Pattern 8 
Visual attention to Code followed by Variable Watch followed by 
Dynamic Window 

Visual Pattern 9 Visual attention to Output followed by Dynamic Window 

Table 7.2 Visual Pattern sorted by frequency of appearance (6 AOI’s) 

 

Figure 33.  Mean frequency of Visual Patterns (6 AOI’s) 

Visual Pattern 1 Short Gaze on Code followed by Short Gaze on Static Visualization 

Visual Pattern 2 
Short Gaze on Code followed by Short Gaze on Static Visualization 
and then Short Gaze on Dynamic Visualization 

Visual Pattern 3 
Short Gaze on Code followed by Short Gaze on Dynamic 
Visualization 

Visual Pattern 4 
Short Gaze on Code followed by Short Gaze on Dynamic 
Visualization and then Short Gaze on Output 

Visual Pattern 5 Short Gaze on Code followed by Short Gaze on Output 
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Visual Pattern 6 
Long Gaze on Code followed by Short Gaze on Dynamic 
Visualization 

Visual Pattern 7 Long Gaze on Code followed by Short Gaze on Output 

Visual Pattern 8 
Short Gaze on Static Visualization followed by Short Gaze on 
Dynamic Visualization 

Visual Pattern 9 
Short Gaze on Dynamic Visualization followed by Short Gaze on 
Output 

Table 7.3 Visual Pattern sorted by frequency of appearance (8 AOI’s) 

This was followed by a finer analysis of patterns based on their gaze durations as 

discussed in Chapter 5. See Table 5.1 for more details. Patterns which emerged from 

this analysis were sorted by frequency and are listed in Table 7.3. 

A frequency count of the patterns was performed and plotted against time. This 

is summarized in Appendix E 2.5. Outlined in Figure 6.6 is a representation mean 

frequency of three prominent patterns (Visual Pattern 1, 2 & 3) observed among all the 

participants over the period of the complete experiment. The vertical axis represents the 

frequency count of the pattern and the horizontal axis represents the time, with each 

data point representing a 15 second interval. 

 

Figure 34.  Timeline of 3 prominent visual patterns 
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In addition to this, we investigated differences in visual strategies of participants 

based on three Independent Variables, namely programming experience, familiarity with 

jGRASP and debugging performance. 

Based on Programming Experience 

15 
Minute 
Interval 

Pattern     Novice Programmer Expert Programmer     

13 
    

15.11 10.80 
   

  

15 
    

59.67 71.80 
   

  

17 
    

22.11 15.10 
   

  

25 
    

4.00 6.20 
   

  

27 
    

5.33 4.40 
   

  

57       
 

7.67 6.20         
        Novice Programmer Expert Programmer     

5 
Minute 
Interval 

   
Int.1 Int.2 Int.3 Int.1 Int.2 Int.3 

 
  

13 
  

7.33 4.89 3.556 6.3 1.9 2.9 
 

  

15 
  

13.6 20 24.11 15.8 26.5 29.5 
 

  

157 
  

0.67 1.11 0.667 0.4 0.9 1.1 
 

  

17 
  

10.9 6.89 5 5 3.8 7.5 
 

  

27 
  

0.78 1.67 0.778 0.9 1 0.8 
 

  

57   
 

1.78 4.44 1.556 1 1.7 3.7     
    Novice Programmer Expert Programmer 

3 
Minute 
Interval 

 
Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5 

13 5.11 3.33 2.78 2.22 2.22 5.30 1.60 0.90 1.60 1.70 

15 5.44 10.00 12.22 17.11 12.67 6.40 12.50 19.10 14.00 19.70 

17 7.44 5.78 2.78 4.11 2.67 3.90 2.10 1.90 4.70 3.80 

27 0.22 1.00 0.89 1.00 0.22 0.50 0.50 0.40 1.00 0.20 

57 1.22 1.67 2.11 2.11 0.67 0.40 0.60 0.80 2.40 2.20 

Table 7.4 Time based means of pattern frequencies – Programming Experience 

The pattern frequencies were calculated for multiple time intervals (5  minute 

intervals and 3 minute intervals) and evaluated at the end of the experiment. A t-test 
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was performed to compare the mean frequency of patterns among the two groups. For 

the complete course of experiment, there was no statistically significant difference for 

any of the visual patterns. Although the visual pattern Short Code followed by Short 

Output (t(17) = 2.02 , p=.059) was close to statistical significance, rest of the patterns 

were either not statistically significant or had small frequency values.  

When we looked at patterns in 5 minute intervals, there was a statistically 

significant difference for the visual pattern Short Code followed by Short Output (t(17) 

= 2.59 , p<.05) during the first interval. The difference for rest of the patterns were 

either not statistically significant different or had small frequency values. On analyzing 

the 10 minute intervals, the same visual pattern Short Code followed by Short Output 

showed statistically significant difference for both interval one (t(17) = 2.254 , p<.05) 

and interval two (t(17) = 2.795, p<.05). Rest of the patterns were either not 

statistically significantly different or had small frequency values. A frequency count of 

the patterns for each group was performed and plotted against time. Figure 6.6 is a 

representation of mean frequency of three prominent patterns (Visual Pattern 1, 2 & 3) 

observed among all the participants over the period of the complete experiment. The 

vertical axis represents the average frequency count of the pattern and the horizontal 

axis represents the time, with each data point representing a 15 second interval. 
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Figure 35. Timeline of 3 prominent visual patterns - Novice Programmers 

 

Figure 36. Timeline of 3 prominent visual patterns - Experienced Programmers 

Based on familiarity with jGRASP 

For the complete duration of the experiment, a statistically significant difference 

was found for the visual pattern Short Code followed by Short Output (t(17) = -3.24, 

p<.05). Statistically significant difference was also found for the visual pattern Short 

Code followed by Short Dynamic Visualization (t(17) = 2.88, p<.05). 

When broken down to 5 minute intervals, there was statistically significant difference 

for all 3 intervals for the visual pattern Short Code followed by Short Output. Rest of 
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the patterns were either not statistically significant or had small frequency values. A 

frequency count of the patterns for each group was performed and plotted against time. 

Figure 6.6 is a representation of mean frequency of three prominent patterns (Visual 

Pattern 1, 2 & 3) observed among all the participants over the period of the complete 

experiment. The vertical axis represents the average frequency count of the pattern and 

the horizontal axis represents the time, with each data point representing a 15 second 

interval. 

15 
Minute 
Interval 

Pattern Little or No jGRASP Experience Experienced jGRASP user 

13 
    

5.2 15.6 
   

  

15 
    

96.4 55.2 
   

  

17 
    

10.2 21.4 
   

  

25 
    

4.2 5.5 
   

  

27 
    

4.4 5.0 
   

  

57       
 

4.4 7.8         

    Little or No jGRASP Experience Experienced jGRASP user 

5 
Minute 
Interval 

   
Int.1 Int.2 Int.3 Int.1 Int.2 Int.3 

 
  

13 
  

1.7 3.7 1.7 7.8 3.3 3.7 
 

  

15 
  

8.3 37.7 51.7 15.9 20.8 23.8 
 

  

17 
  

9.7 4.7 2.7 7.4 5.4 7.5 
 

  

25 
  

0.7 0.3 2.0 0.5 0.8 0.9 
 

  

27 
  

1.3 0.3 0.7 0.8 1.5 0.9 
 

  

57   
 

0.3 2.0 1.7 1.6 3.2 3.1     

    Little or No jGRASP Experience Experienced jGRASP user 

3 
Minute 
Interval 

 
Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5 

13 1.33 1.7 2.0 1.0 1.0 5.94 2.6 1.9 2.2 2.4 

15 2.67 8.3 31.0 22.3 33.3 6.56 11.9 13.9 15.1 15.1 

17 5.67 6.0 1.0 3.0 1.3 5.56 3.4 2.7 5.0 4.1 

27 0.67 0.0 0.3 0.3 1.7 0.06 0.6 0.5 0.5 0.7 

57 0.33 0.0 1.3 0.7 1.7 0.88 1.3 1.5 2.7 1.6 

Table 7.5 Time based means of pattern frequencies – Experience with jGRASP 
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Figure 37.  Timeline of 3 prominent visual patterns - Experience with 

jGRASP 

 

Figure 38. Timeline of 3 prominent visual patterns - No or minimal 

experience with jGRASP 

Based on Debugging Performance 

There was no statistically significant difference in the patterns between the two 

groups for the complete duration of the experiment. When broken down to 5 minute 

intervals, there was a statistically significant difference for the visual pattern Short 

Code followed by Short Dynamic Visualization at interval three (t(16) = 3.14, p<.05). 
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It was close to statistical significance at interval two (t(17) = 1.96, p=.066). Rest of the 

patterns were either not statistically significant or had small frequency values. Likewise 

when broken down to 3 minute intervals, there was a statistically significant difference 

for the same visual pattern at interval three (t(16) = 3.12, p<.05) and interval five 

(t(15) = 2.73, p<.05). 

15 
Minute 
Interval 

Pattern   Poor Performance Good Performance     

13 
    

7.3 13.9 
   

  

15 
    

99.3 59.8 
   

  

17 
    

16.0 18.9 
   

  

25 
    

7.7 4.7 
   

  

27 
    

4.0 5.0 
   

  

57       
 

4.0 7.4         

      Poor Performance Good Performance     

5 
Minute 
Interval 

   
Int.1 Int.2 Int.3 Int.1 Int.2 Int.3 

 
  

13 
  

1.7 3.7 1.7 7.8 3.3 3.7 
 

  

15 
  

8.3 37.7 51.7 15.9 20.8 23.8 
 

  

17 
  

9.7 4.7 2.7 7.4 5.4 7.5 
 

  

25 
  

0.7 0.3 2.0 0.5 0.8 0.9 
 

  

27 
  

1.3 0.3 0.7 0.8 1.5 0.9 
 

  

57   
 

0.3 2.0 1.7 1.6 3.2 3.1     
    Poor Performance Good Performance 

3 
Minute 
Interval 

 
Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5 

13 1.33 1.7 2.0 1.0 1.0 5.94 2.6 1.9 2.2 2.4 

15 2.67 8.3 31.0 22.3 33.3 6.56 11.9 13.9 15.1 15.1 

17 5.67 6.0 1.0 3.0 1.3 5.56 3.4 2.7 5.0 4.1 

25 0.67 0.0 0.3 0.3 1.7 0.06 0.6 0.5 0.5 0.7 

57 0.33 0.0 1.3 0.7 1.7 0.88 1.3 1.5 2.7 1.6 

Table 7.6 Time based means of pattern frequencies – Based on performance 
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Figure 39. Timeline of 3 prominent visual patterns - Poor Performance 

 

Figure 40.  Timeline of 3 prominent visual patterns - Better Performance 
 
 

A frequency count of the patterns for each group was performed and plotted against 
time. Figure 6.6 is a representation of the mean frequency of three prominent patterns 
(Visual Pattern 1, 2 & 3) observed among all the participants over the period of the 
complete experiment. The vertical axis represents the average frequency count of the 
pattern and the horizontal axis represents the time, with each data point representing a 
15 second interval.
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CHAPTER 8 

CONCLUSIONS 

The goal of experiment one (to debug program one) was to compare the differences 

in the usage pattern of static vs. dynamic visualizations, and to evaluate the differences in 

construction of mental model representation of the program between these two 

visualization groups. Students were provided codes with multiple logical errors and their 

task consisted of locating and correcting the errors using the jGRASP IDE. It was 

observed that the group using dynamic visualizations found more bugs on average, but 

the difference was not statistically significant when compared to the static visualization 

group. Perhaps the smaller number of subjects may have led to this result as similar 

studies (Cross et. al. 2009) in the past have found significant performance difference with 

much larger number of subjects. The final strength of the mental model for the static 

group was weaker than the dynamic group. Although not a statistically significant 

difference, this provides evidence in support of our postulate in the proposed cognitive 

model that the mental model created by static visualizations is not as extensive as the one 

created with support of dynamic visualization. There was also a strong correlation 

between the mental model strength and debugging performance for the dynamic 

visualization group, which was statistically significant when compared to static group that 

showed a weaker correlation and was not statistically significant. The static group used 

minimal visualizations and primarily depended on the program code and output, whereas 
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the dynamic group used a significantly higher proportion of dynamic visualization, along 

with program output and program code. 

On further analysis pertaining to five programming constructs of program one, we 

found that the mental strength for Function was stronger for the group with access to 

dynamic visualizations when compared to static visualizations. The mean difference was 

not statistically significant and perhaps ceiling effect was a cause. Dynamic Data structure 

too was consistently higher for the dynamic visualization group at all three stages. On the 

contrary, strength of mental model for both control flow and data flow was consistently 

stronger for the static group. The comparative growth of program structure was uneven 

between the two groups.  

The second experiment (debugging program two) gave us new insights into the 

visual strategies of programmers. The representations on the IDE received different dwell 

times and fixation counts. Consistent with previous studies (Bednarik, et. al., 2006 and 

Romero, et. al., 2002a), it was found that source code received the highest attention 

followed by dynamic viewer, output and variable watch. This order was slightly different 

with respect to visit counts, with variable watch receiving more visits compared to the 

output window. In terms of visual patterns, we found that the most common pattern was 

the switch between code and variable watch window, followed by code to dynamic viewer, 

code to static output and code to CSD. 

Novice programmers tended to look at the program output more frequently than 

expert programmers. It was also observed that novice programmers used static 

visualizations more often in the first 6-9 minutes of their task. Participants with lesser 

experience with the jGRASP IDE looked more often at the dynamic visualizations and 

less at the program output when compared to participants with more experience in using 

jGRASP. Participants who performed better in debugging activity did not perform 
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frequent switches with the dynamic visualizations towards the third part of the session 

when compared to poor performers. Poor performers switched more between the dynamic 

visualizations and code when compared to participants with good performance. It is 

evident here that more usage of dynamic representations did not essentially lead to better 

performance. And, excessive usage could actually have been detrimental to the 

performance. However, based on the analysis performed it is not clear as to what could be 

an optimal usage threshold of dynamic representations for better performance at 

debugging. 

This thesis hints at several directions that future research might take. The 

proposed cognitive model poses some intriguing questions, like how is the posit mental 

model compared to the dynamic mental model. Or, how does the strength of each 

individual mental model construct influence debugging performance. Some of the results 

arising out of this research have direct implication on the design of IDE interfaces. IDE 

interfaces should be designed with usability as a prime goal. In the current design of 

IDE’s for novice programmers, all the debugging tools are not readily visible. Moreover, 

utility and functionality of each component is not evident at the interface. The IDE 

should be able to make such functionalities readily available and encourage students to 

employ them during program comprehension. IDEs should promote static tools in the 

beginning of a programming session to prime structure based knowledge, followed by 

promotion of dynamic visualizations in later phases to promote better comprehension. 

There is also a potential for designing an intelligent tutoring system for novices that 

works in conjunction with a gaze-tracking IDE, which could assist students during 

program debugging or comprehension by proposing intelligent suggestions on visualization 

use. These are avenues for future research.
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APPENDIX A 

DEMOGRAPHIC DATA 

 

 
Gender Level 

Programming 
Experience 

Java 
Experience 

Prior 
experience 

with 
jGRASP 

Experience 
with 

jGRASP 
Group 

P01 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV 

P02 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV 

P03 Male Undergraduate 2 - 5 years 1 - 2 years Yes 1 - 2 years SV 

P04 Female Undergraduate 6 -12 months 6 - 12 months Yes 6 - 12 months SV 

P05 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV 

P06 Male Undergraduate 6 - 12 months 6 - 12 months Yes 6 - 12 months SV 

P07 Male Undergraduate 5 + years 2 - 5 years Yes 2 + years SV 

P08 Male Undergraduate 2 - 5 years 2 - 5 years No NA DV 

P09 Male Undergraduate 5 + years 2 - 5 years No NA SV 

P10 Male Graduate 5 + years 5 + years Yes 0 - 6 months DV 

P11 Male Undergraduate 6 - 12 months 6 - 12 months Yes 6 - 12 months DV 

P12 Male Undergraduate 2 - 5 years 2 - 5 years Yes 2 + years DV 

P13 Female Graduate 5 + years 2 - 5 years No NA DV 

P14 Male Undergraduate 2 - 5 years 6 - 12 months Yes 6 - 12 months DV 

P15 Male Undergraduate 1 - 2 years 1 - 2 years Yes 1 - 2 years DV 

P16 Male Graduate 1 - 2 years 1 - 2 years Yes 1 - 2 years DV 

P17 Male Graduate 5 + years 2 - 5 years No NA DV 

P18 Male Undergraduate  1 - 2 years 6 - 12 months Yes 6 - 12 months DV 

P19 Male Undergraduate  1 - 2 years 6 - 12 months Yes 6 - 12 months  SV 
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APPENDIX B 

EXPERIMENT PROGRAMS 

B1. EXPERIMENT 1 

This Program consisted of 3 Java Classes and an Interface. The total lines of code 
in this programwas 134. 

Client Class 

public class DebuggingAssignmentClient1 { 

ÏÏ§ 
ÏÏ§ÏÞßàpublic static void main(String[] args) { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹íÏString input = new String("a.b.c.d.e.f"); 
ÏÏ§   
ÏÏ§ÏÏ¨¹íÏDataStructure<String> s1 = new DataStructure<String>(); 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹±for (int i=1; i<input.length() ; i++) { 
ÏÏ§ÏÏ§ÏÏ7¹³´if(i%2 == 0 && i%5 != 0) { 
ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïs1.insert(input.substring(i,i+1) +" "); 
ÏÏ§ÏÏ§ÏÏ5Ï6Ï} 
ÏÏ§ÏÏ§ÏÏ5Ïö´else { 
ÏÏ§ÏÏ§ÏÏ5Ï¸¾¹¹Ïs1.insert(" "); 
ÏÏ§ÏÏ§ÏÏ5ÏÈÏ}   
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("Expected Output : f e d c b a"); 
ÏÏ§ÏÏ¨¹¹ÏSystem.out.print("Actual Output   : "); 
ÏÏ§ÏÏ¨¹¹±while (!s1.isEmpty()) { 
ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.print(s1.remove()); 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§ÏÏ©} 
ÏÏ©} 

DSFrame Interface 

ÏØÓìpublic interface DSFrame<T> { 
ÏÏ§ 
ÏÏ§ÏÛÜÝpublic void insert(T item); 
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ÏÏ§ÏÛÜÝpublic T remove(); 
ÏÏ§ÏÛÜÝpublic boolean isEmpty(); 
ÏÏ§ÏÛÜÝpublic int size(); 
ÏÏ§ÏÛÜÝpublic String toString(); 
ÏÏ§ 
ÏÏ©} 

DataStructure Class 

public class DataStructure<T> implements DSFrame<T>{ 

ÏÏ§ 
ÏÏ§ÏíÏprivate int n;           
ÏÏ§ÏíÏprivate Unit first;      
ÏÏ§ 
ÏÏ§ÏÞßàpublic DataStructure() { 
ÏÏ§ÏÏ¨¹¹Ïfirst = null; 
ÏÏ§ÏÏ¨¹¹Ïn = 0; 
ÏÏ§ÏÏ©} 
ÏÏ§ÏÞßà@SuppressWarnings("unchecked") 
ÏÏ§ÏÏ§Ï 
ÏÏ§ÏÏ§Ïpublic void insert(T item) { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹íÏUnit oldfirst = first; 
ÏÏ§ÏÏ¨¹¹Ïfirst = new Unit(); 
ÏÏ§ÏÏ¨¹¹Ïfirst.setValue(item); 
ÏÏ§ÏÏ¨¹¹Ïfirst.setNext(oldfirst); 
ÏÏ§ÏÏ¨¹¹Ïn++; 
ÏÏ§ÏÏ©} 
   

ÏÏ§ÏÞßà@SuppressWarnings("unchecked") 
ÏÏ§ÏÏ§Ï 
ÏÏ§ÏÏ§Ïpublic T remove() { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹³´if (isEmpty())  
ÏÏ§ÏÏ§Ï¶¾êîìthrow new RuntimeException("Data underflow"); 
ÏÏ§      
ÏÏ§ÏÏ¨¹íÏT item = (T) first.getValue();         
ÏÏ§ÏÏ¨¹¹Ïfirst = first.getNext();             
ÏÏ§ÏÏ¨¹¹Ïn--; 
ÏÏ§Â¹Ä¹¹Ïreturn item;                    
ÏÏ§ÏÏ©} 
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ÏÏ§ÏÞßàpublic boolean isEmpty() {  
ÏÏ§Â¹Ä¹¹Ïreturn first == null;  
ÏÏ§ÏÏ©} 
      

ÏÏ§ÏÞßàpublic int size() {  
ÏÏ§Â¹Ä¹¹Ïreturn n;              
ÏÏ§ÏÏ©} 
ÏÏ§ 
// string representation 

ÏÏ§ÏÞßàpublic String toString() { 
ÏÏ§ÏÏ¨¹íÏString s = ""; 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹±for (Unit x = first; x != null; x = x.getNext()) { 
ÏÏ§ÏÏ§ÏÏ7¹¹Ïs += x.getValue() + ", "; 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§Â¹Ä¹¹Ïreturn "[ " + s + "]"; 
ÏÏ§ÏÏ©} 
    

ÏÏ©} 

Unit Class 

public class Unit<T> 

ÏÏ§{ 
ÏÏ§ÏíÏprivate T element; 
ÏÏ§ÏíÏprivate Unit<T> next;  
     

ÏÏ§//Constructors 
ÏÏ§ÏÞßàpublic Unit() { 
ÏÏ§ÏÏ¨¹¹Ïnext = null; 
ÏÏ§ÏÏ¨¹¹Ïelement = null; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic Unit(T elem) { 
ÏÏ§ÏÏ¨¹¹Ïnext = null; 
ÏÏ§ÏÏ¨¹¹Ïelement = elem; 
ÏÏ§ÏÏ©} 
   

ÏÏ§ÏÞßàpublic Unit(T elem, Unit<T> unit) { 
ÏÏ§ÏÏ¨¹¹Ïnext = unit; 
ÏÏ§ÏÏ¨¹¹Ïelement = elem; 
ÏÏ§ÏÏ©} 
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ÏÏ§//Getters and Setters 
ÏÏ§ 
ÏÏ§ÏÞßàpublic Unit<T> getNext() { 
ÏÏ§   
ÏÏ§Â¹Ä¹¹Ïreturn next; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic void setNext(Unit<T> unit) { 
ÏÏ§ÏÏ¨¹¹Ïnext = unit; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic T getValue() { 
ÏÏ§   
ÏÏ§Â¹Ä¹¹Ïreturn element; 
ÏÏ§ÏÏ©} 
 

ÏÏ§ÏÞßàpublic void setValue(T elem) { 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹Ïelement = elem; 
ÏÏ§ÏÏ©} 
ÏÏ©} 
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B3. EXPERIMENT 2 

This Program consisted of 2 Java classes; a client class and a datastructure class. 

Client Class 

public class DebuggingAssignment2Client { 
 

ÏÏ§ÏÞßàpublic static void main(String[] args) { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹íÏString[] list = {"Nick Fairley", "Zac Etheridge", "Michael Dyer", 
"Cameron Newton", "Darvin Adams", "Demond Washington", "Kodi Burns", "Wes 
Byrum", "Onterio McCalebb", "Philip Lutzenkirchen",  

ÏÏ§ÏÏ§ÏÏÏÏÏÏÏÏÏ"Lee Ziemba", "Terrell Zachery"}; 
ÏÏ§  
ÏÏ§ÏÏ¨¹íÏDataStructure<String> playerList = new DataStructure <String>(); 
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i < 12; i++) { 
ÏÏ§ÏÏ§ÏÏ7¹¹ÏplayerList.insert(list[i]); 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹±for(int i=0;i<playerList.size();i++) { 
ÏÏ§ÏÏ§ÏÏ5 
ÏÏ§ÏÏ§ÏÏ7¹¹±for (int y = playerList.size(); y>i; y--) { 
ÏÏ§ÏÏ§ÏÏ5ÏÏ5    
ÏÏ§ÏÏ§ÏÏ5ÏÏ7¹³´if(playerList.get(y-1).compareTo(playerList.get(y))>0) { 
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï6¨¹íÏString temp = playerList.remove(y); 
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï6¾¹¹ÏplayerList.insert(temp, y-1); 
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï¶Ï} 
ÏÏ§ÏÏ§ÏÏ5ÏÏ°}    
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§      
ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("Sorted List:"); 
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i<playerList.size(); i++ ) { 
ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.println(i+1+". "+playerList.get(i)); 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§   
ÏÏ§ÏÏ©} 
ÏÏ©} 
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DataStructure Class 

 
public class DataStructure<T> { 
 

ÏÏ§ÏíÏprivate int size;  
ÏÏ§ÏíÏprivate Unit head; 
ÏÏ§ÏíÏprivate Unit last; 
ÏÏ§ÏÞßàpublic DataStructure() { 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic void insert(T value) { 
ÏÏ§ÏÏ¨¹íÏUnit node = new Unit(value); 
ÏÏ§ÏÏ¨¹³´if (head != null) { 
ÏÏ§ÏÏ§Ï6¨¹¹Ïnode.prev = head.prev; 
ÏÏ§ÏÏ§Ï6¨¹¹Ïnode.next = head; 
ÏÏ§ÏÏ§Ï6¨¹¹Ïhead.prev = node; 
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast.next = node; 
ÏÏ§ÏÏ§Ï6Ï} 
ÏÏ§ÏÏ§Ïö´else { 
ÏÏ§ÏÏ§Ï¸¨¹¹Ïnode.next = node; 
ÏÏ§ÏÏ§Ï¸¨¹¹Ïnode.prev = node; 
ÏÏ§ÏÏ§Ï¸¾¹¹Ïlast = node; 
ÏÏ§ÏÏ§ÏÈÏ} 
ÏÏ§ÏÏ¨¹¹Ïhead = node; 
ÏÏ§ÏÏ¨¹¹Ïsize++; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ 
ÏÏ§ÏÞßàpublic void insert(T value, int index) { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹³´if (index == 0) { 
ÏÏ§ÏÏ§Ï6¨¹¹Ïinsert(value); 
ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn; 
ÏÏ§ÏÏ§Ï¶Ï} 
ÏÏ§ÏÏ¨¹íÏUnit node = new Unit(value); 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ¨¹íÏUnit prev = head; 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹±for (int i = 1; i < index; i++) { 
ÏÏ§ÏÏ§ÏÏ7¹¹Ïprev = prev.next; 
ÏÏ§ÏÏ§ÏÏ°} 
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ÏÏ§   
ÏÏ§ÏÏ¨¹¹Ïnode.next = prev.next; 
ÏÏ§ÏÏ¨¹¹Ïnode.prev = prev; 
ÏÏ§ÏÏ¨¹¹Ïnode.next.prev = node; 
ÏÏ§   
ÏÏ§ÏÏ¨¹³´if (last == prev) { 
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast = node; 
ÏÏ§ÏÏ§Ï¶Ï} 
ÏÏ§ÏÏ¨¹¹Ïprev.next = node; 
ÏÏ§   
ÏÏ§ÏÏ¨¹¹Ïsize++; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic T remove(int index) { 
ÏÏ§ÏÏ¨¹³´if (index == 0) { 
ÏÏ§ÏÏ§Ï6¨¹íÏUnit result = head; 
ÏÏ§ÏÏ§Ï6¨¹¹Ïhead = head.next; 
ÏÏ§ÏÏ§Ï6¨¹³´if (head == result) { 
ÏÏ§ÏÏ§Ï6§Ï6¨¹¹Ïhead = null; 
ÏÏ§ÏÏ§Ï6§Ï6¾¹¹Ïlast = null; 
ÏÏ§ÏÏ§Ï6§Ï6Ï} 
ÏÏ§ÏÏ§Ï6§Ïö´else { 
ÏÏ§ÏÏ§Ï6§Ï¸¨¹¹Ïhead.prev = last; 
ÏÏ§ÏÏ§Ï6§Ï¸¾¹¹Ïlast.next = head; 
ÏÏ§ÏÏ§Ï6§ÏÈÏ} 
ÏÏ§ÏÏ§Ï6¨¹¹Ïsize--; 
ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn (T)head.getValue(); 
ÏÏ§ÏÏ§Ï¶Ï} 
ÏÏ§ 
ÏÏ§ÏÏ¨¹íÏUnit prev = head; 
ÏÏ§ÏÏ¨¹¹±for (int i = 1; i < index; i++) { 
ÏÏ§ÏÏ§ÏÏ7¹¹Ïprev = prev.next; 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§ÏÏ¨¹íÏUnit result = prev.next; 
ÏÏ§ÏÏ¨¹¹Ïprev.next = prev.next.next; 
ÏÏ§   
ÏÏ§ÏÏ¨¹³´if (prev.next == last) { 
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast = prev; 
ÏÏ§ÏÏ§Ï¶Ï} 
ÏÏ§ÏÏ¨¹³´if (prev.next != null) { 
ÏÏ§ÏÏ§Ï6¾¹¹Ïprev.next.prev = prev; 
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ÏÏ§ÏÏ§Ï¶Ï} 
ÏÏ§ÏÏ¨¹¹Ïsize--; 
ÏÏ§Â¹Ä¹¹Ïreturn (T)result.getValue(); 
ÏÏ§ÏÏ©} 
   

ÏÏ§ÏÞßàpublic int size() { 
ÏÏ§Â¹Ä¹¹Ïreturn size; 
ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÞßàpublic T get(int index) { 
ÏÏ§ÏÏ¨¹íÏUnit node = head; 
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i <= index; i++) { 
ÏÏ§ÏÏ§ÏÏ7¹¹Ïnode = node.next; 
ÏÏ§ÏÏ§ÏÏ°} 
ÏÏ§Â¹Ä¹¹Ïreturn (T)node.value; 
ÏÏ§ÏÏ©} 
   

ÏÏ§private class Unit<T> { 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ§ÏíÏUnit next; 
ÏÏ§ÏÏ§ÏíÏUnit prev; 
ÏÏ§ÏÏ§ÏíÏT value; 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ§ÏÞßàpublic Unit() { 
ÏÏ§ÏÏ§ÏÏ©} 
ÏÏ§ 
ÏÏ§ÏÏ§ÏÞßàpublic Unit(T initValue) { 
ÏÏ§ÏÏ§ÏÏ¨¹¹Ïvalue = initValue; 
ÏÏ§ÏÏ§ÏÏ©} 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ§ÏÞßàpublic T getValue() { 
ÏÏ§ÏÏ§Â¹Ä¹¹Ïreturn value; 
ÏÏ§ÏÏ§ÏÏ©} 
ÏÏ§ÏÏ§ 
ÏÏ§ÏÏ§ÏÞßàpublic void setValue(T newValue) { 
ÏÏ§ÏÏ§ÏÏ¨¹¹Ïvalue = newValue; 
ÏÏ§ÏÏ§ÏÏ©} 
ÏÏ§ÏÏ©} 
ÏÏ©} 
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APPENDIX C 

MENTAL MODEL QUESTIONNAIRE 

Function 

• What is the function of the program? 
• Can you briefly tell how does the program achieve this? 

Static/Dynamic Slice 

• The following code snippet was picked from the program, 

  if(…………………………………) { 
       s1.insert(input.substring(i,i+1) + " "); 
  } 
  else { 
       s1.insert(" "); 
  } 

As the conditional statement currently stands in your program, do you think 
instance variable ‘s1’ can be modified by both the statements? 

Static/Dynamic Data Structure 

• Which known data structure does the class ‘Datastructure’ represent? 
• Is this data structure static or dynamic in nature? 
• How many elements can an instance of the ‘Datastructure’ class hold? 
• How many elements can character array ‘inputTest’ hold? 

Control flow 

• Which is the first method from DataStructure class that is invoked by the 
Client? 
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• When is the toString() method of the ‘DataStructure’ class invoked? 
1. Before remove() method 
2. After remove() method 
3. Never invoked 

• In the program, when is the ‘Datastructure’ instance s1 checked for it being 
empty? 

1. Before invoking remove 
2. After invoking remove 
3. Both 
4. Neither of the above 

• Describe the order in which the four classes in this project are 
invoked/processed? 

• In what order are elements picked up from the ‘input’ String? 

Structure 

• How is the ‘Unit’ class related to the ‘DataStructure’ class? 
• How is ‘DebuggingAssignment1Client’ class related to the ‘Unit’ class? 
• Does the Client class create an instance of Unit class? 
• How is the ‘DSFrame’ related to the ‘DataStructure’? 
• How is ‘DebuggingAssignment1Client’ class related to ‘DataStructure’ class? 

Data Flow 

• How does the insert() method affect the functioning of the size() method in the 
DataStructure Class? 

• When the remove() method is invoked, which element is removed from the data 
structure? 

• When the insert() method is invoked, which position is the new element inserted 
in the data structure? 

• How does the remove() method affect the functioning of the size() method in the 
DataStructure Class? 

• In the Datastructure class, how does the insert() method affect the functioning of 
the isEmpty() method? 
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APPENDIX D 

INTERVIEW QUESTIONS 

 
• What was your strategy while debugging the first program? 

• How about the strategy with the second program? 

• How did you overcome the challenges posed by the program? 

• Which representation shown by the IDE was the most helpful? 

• How would you rate you debugging experience with the IDE? 

• How important were the following for your decision to use the representations? 

- Visual appeal, data values, correlation to program execution 

• In general, how often do you debug using a representation? 

• What could be done to improve the IDE and its debugging experience? 

• Why the Viewer was used, why did he/she think it was appropriate?  

• Was it helpful in the end?  

• Does the fact that jGRASP viewer shows you real time manipulations help you? 

• Why did you (not) use the UML diagram? Did it help? 

• Why did you choose to use jGRASP viewer over the variable window to debug? 
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APPENDIX E 

DEBUGGING PERFORMANCE 

E1.1 Program One 

  
Bug Type 

  

 

Time 
Taken 

index 
value 

loop 
condition 

remove 
n-- 

remove 
first Group* 

Bugs 
Fixed 

P1 8:35 3:58 8:35 6:19 6:19 SV 4 

P2 15:00         SV 0 

P3 15:00     5:47 12:32 SV 2 

P4 14:27 5:28 12:49 8:08 14:27 SV 4 

P5 15:00 12:41 16:04 6:01   SV 3 

P6 11:52 6:19 11:52 5:46 5:01 SV 4 

P7 12:20 4:00 12:20 7:01 7:01 SV 4 

P8 15:00 6:55       DV 1 

P9 14:30 3:01   14:25   SV 2 

P10 15:00 7:11 13:29     DV 2 

P11 15:00 14:47 15:00     DV 2 

P12 15:06       15:06 DV 1 

P13 15:05 13:09     15:05 DV 2 

P14 8:20 8:16 8:18 6:25 6:24 DV 4 

P15 14:25 10:30 12:34 14:23 14:20 DV 4 

P16 15:00 12:42 15:00 13:29 13:26 DV 4 

P17 9:40 4:44 8:04 9:40 9:20 DV 4 

P18 14:41 8:07 8:58 14:09 14:41 DV 4 

P19 15:00         SV 0 
 

* SV – Static Visualizations, DV – Dynamic Visualizations 
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E2.1 Program Two 

  
Bug Type 

 

 

Total 
Time size 

get() 
method index 

Bugs 
Fixed 

Participant1 15:00 
  

13:05 1 
Participant2 15:00 

   
0 

Participant3 14:53 11:09 5:26 14:53 3 
Participant4 15:00 7:03 

  
1 

Participant5 15:00 
  

5:31 1 
Participant6 14:55 2:45 14:55 

 
2 

Participant7 5:49 2:16 4:46 5:49 3 
Participant8 15:00 

  
2:23 1 

Participant9 15:00 
   

0 
Participant10 15:00 7:51 

  
1 

Participant11 15:00 
  

12:13 1 
Participant12 13:10 

  
10:03 1 

Participant13 15:00 
   

0 
Participant14 11:34 4:47 9:05 11:34 3 
Participant15 15:00 6:26 

 
4:20 2 

Participant16 15:00 9:01 13:39 
 

2 
Participant17 15:00 15:00 5:56 9:15 3 
Participant18 15:00 2:59 

 
1:19 2 

Participant19 14:55 14:55 12:01 
 

2 
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E2.2 Debugging Experiment Two (Total Fixation Count) 
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Anim
ation Control
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8
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2
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11
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6

11
53

1
9

19
1

2
6

41
2

43

Client Code
1201
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893
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901
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35

32
73
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0

0
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0

0
0

0
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0
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2
8
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0

0
0

4
0

0
0

0
0

0
0
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244
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479

416
625
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349

521
705
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195
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462
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617

731
370

265
524
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809

500
201

130
121

359
131

176
126

0
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327
465

0
343

227
563

300
513

Eval W
indow

0
0

0
0

0
0

0
0

138
289

0
0

38
0

0
0

0
0

0

File Browser
3

3
10

1
2

1
0

3
8

8
0

9
1

6
18

0
19

5
4

File M
enu

32
54

7
8

20
82

51
32

53
23

20
15

36
10

23
56

54
69

33

O
utput

121
261

229
284

93
230

62
436

140
290

399
234

138
247

152
282

23
393

323

Variable W
atch

201
126

106
72

46
67

68
24

315
289

264
112

239
137

15
126

84
31

130
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1400
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E2.3 Debugging Experiment Two (Total Dwell Time) 
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A
nim

ation C
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7.39
2.65

7.93
0.85

6.53
3.76

4.01
4.42

3.98
13.47

0.15
4.8

4.2
0.1

0.33
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0.43
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E2.4 Debugging Experiment Two (Total Visit Count) 
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E2.5 Debugging Experiment Two (Visual Patterns) 
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APPENDIX F 

HEAT MAPS AND GAZE PLOTS 

 

 

 

 

Heatmap based on fixation duration for participant nine and account for a section 
where dynamic representation was used 
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Heatmap based on fixation duration for participant three’s debugging session 
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