

A Cognitive Model and Gaze-Based Evaluation
of Multiple Representation use during

Program Comprehension and Debugging

Prateek Hejmady

A Thesis Submitted to the Graduate Faculty of
Auburn University

in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Auburn, Alabama
December 12, 2011

Keywords: cognitive modeling, eye-tracking, program
comprehension, program debugging, psychology of programming,

visualizations

Copyright 2011 by Prateek Hejmady

Approved by

N. Hari Narayanan, Chair, Professor, Computer Science and Software Engineering
James H. Cross, Professor, Computer Science and Software Engineering

Dean T. Hendrix, Associate Professor, Computer Science and Software Engineering
Margaret E. Ross, Professor, Department of Educational Foundations,

Leadership, and Technology

ii

ABSTRACT

Integrated Development Environments (IDE) for software development offer a wide

variety of software visualization tools, which facilitate navigation and analysis, and

generate multiple graphical presentations of program code. Co-ordination of these

representations during program comprehension can be a complex task for a novice

programmer, and at times be detrimental to debugging performance. This thesis develops

a cognitive model of how multiple representations including visualizations are used by

programmers to comprehend and debug a program in an IDE for object oriented

programming. The model, based on literature review and analyses of the shortcomings of

existing research, is more detailed than any model of program comprehension and

debugging hitherto offered in the literature. The model was evaluated empirically with

two debugging studies during which visual attention of participants was tracked with an

eye-tracker. The first study found that a mental model created by static visualizations is

not as extensive as the mental model created by dynamic visualizations. Mental model

strength of programming constructs like data structure and function was consistently

higher for dynamic visualizations, whereas strength of control flow and data flow was

consistently stronger for static visualizations. On analyzing visual attention patterns

during the second study, we found that program code and dynamic representations

(viewer, variable watch and output) attracted the most attention. Static representations

like UML and Control Structure diagrams saw significantly lesser usage. Gaze patterns

were analyzed by breaking down the debugging sessions into segments of three, five and

fifteen minute intervals, and classifying gaze durations as short and long gazes.

iii

Data mining techniques were used to detect high frequency patterns from eye tracking

data of participants. A significant pattern difference was found among the participants

based on programming experience, familiarity with the IDE and debugging performance.

These results are consistent with the proposed cognitive model and open up many more

intriguing questions for future research.

iv

ACKNOWLEDGEMENTS

There are many key individuals who have been instrumental in bringing this work to

fruition. First of all, I would like to thank my advisor Dr. Hari Narayanan, for letting me chose

my own path of research and most importantly guiding and mentoring me along the way. It has

been a wonderful experience working with him and learning the ways of academia and academic

research. Wonder what I would have done, without Dr. Dean Hendrix. My go to guy for advice

ranging from composing strategic emails, applying for jobs to research guidance. I’m privileged to

have him on my committee. I owe much gratitude to Dr. James Cross II and Dr. Margaret Ross

for agreeing to be part of my thesis advisory committee and for giving me valuable advice during

the course of this research.

Heartfelt thanks to Dr. Francisco (Pako) Arcediano, for his valuable advice ranging from

nitty-gritty to convoluted matters of eye-tracking. Without his generous gesture of letting me use

his state of the art eye-tracker for my experiments, this thesis would have been hard to come by.

A special thanks to all my friends who have made life worth living by sharing both

remorse and joy. Harish, Gautham, Puneet & Vasavi, I sincerely appreciate your patience with me

not returning your calls! I can only dread the feeling of not having your consistent encouragement

and backing of my endeavors.

Most of all I would like to thank my parents, Poornima C. and Chandrashekar P. and

brother Prakhyat, who have always afforded me the freedom to follow my own path. I know that

they miss me a lot and would rather have me home, but they still encourage me to do what I

want. Love you guys!

v

I dedicate this work to my grandfather, Sundar Hejmady who taught me that scientific
knowledge is best used in the pursuit of a better world.

vi

TABLE OF CONTENTS

ABSTRACT ..ii
ACKNOWLEDGEMENTS ..iv
LIST OF FIGURES ...viii
LIST OF TABLES ...x

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1 COGNITIVE MODELING ... 4

2.1.1 Text Comprehension .. 5
2.1.2 Picture and Text Comprehension .. 9
2.1.3 Multimedia Comprehension .. 13
2.1.4 Program Comprehension .. 14

2.2 PROGRAM DEBUGGING .. 20

2.2.1 Strategies Employed .. 20
2.2.2 Knowledge Aids .. 22

2.3 PROGRAM VISUALIZATIONS .. 23

2.4 VISUAL ATTENTION AND EYE TRACKING METHODOLOGY .. 25

2.4.1 Eye-tracking in HCI .. 26
2.4.2 Types of Eye Trackers ... 27
2.4.3 Eye-tracking Measures ... 29
2.4.4 Visual Attention in studies of Programming .. 31

3. PROBLEM STATEMENT .. 35

4. PROPOSED COGNITIVE MODEL ... 37

4.1 FOUNDATION .. 37

4.1.1 Text Comprehension .. 37
4.1.2 Text and Diagram Comprehension .. 39
4.1.3 Graph Comprehension ... 41

vii

4.2 PROPOSED COGNITIVE MODEL .. 42

4.2.1 Cognitive Aids .. 44
4.2.2 Mental Representations ... 51
4.2.3 Cognitive Process Flow .. 56

5. SCOPE OF RESEARCH ... 64

6. EXPERIMENTAL DESIGN AND PROCEDURE .. 71

6.1 METHOD ... 71

6.1.1 Participants .. 71
6.1.2 Materials and Apparatus .. 72
6.1.3 Procedure and Design .. 73

7. RESULTS .. 78

8. CONCLUSIONS ... 104

CUMULATIVE BIBLIOGRAPHY ... 107

APPENDIX A Demographic Data ... 114

APPENDIX B Experiment Programs .. 115

APPENDIX C Mental Model Questionnaire .. 123

APPENDIX D Interview Questions ... 125

APPENDIX E Debugging Performance ... 126

APPENDIX F Heat Maps and Fixation Plots ... 132

viii

 LIST OF FIGURES

Figure 1. Construction-integration model ... 8
Figure 2. Two representational channels in text and picture comprehension 11
Figure 3. Integrated model of text and picture comprehension 12
Figure 4. Cognitive theory of multimedia learning ... 14
Figure 5. Shneiderman and Mayer program comprehension model 15
Figure 6. Pennington program comprehension model .. 16
Figure 7. Soloway, Adelson and Ehrlich’s program comprehension model 17
Figure 8. Letovsky program comprehension model .. 18
Figure 9. SOI Model ... 38
Figure 10. Cognitive model of diagram and text comprehension 39
Figure 11. Cognitive model of multi representational program comprehension 46
Figure 12. Cognitive model of multi representational program debugging 60
Figure 13. AOI’s defined for Experiment 1 with Static Visualizations 75
Figure 14. AOI’s for Experiment 1 (no Visualization in use) ... 76
Figure 15. AOI’s for Experiment 1 (dynamic visualizations in use) 76
Figure 16. AOI’s for Experiment 2 (dynamic viewer, CSD & variable watch in use) 77
Figure 17. Mean mental model strength ... 79
Figure 18. Mean Value of mental model strength (N = 19) ... 80
Figure 19. Average mental model strength - Function ... 81
Figure 20. Average mental model strength – Data Structure ... 82
Figure 21. Average mental model strength – Control Flow .. 83
Figure 22. Average mental model strength - Structure .. 84
Figure 23. Average mental model strength – Data Flow .. 85
Figure 24. Average Dwell Time per minute .. 86
Figure 25. Average Fixation Count per minute .. 87
Figure 26. Mean Fixation Counts per Minute .. 88

ix

Figure 27. Mean Dwell Time per Minute .. 89
Figure 28. Mean Visit Count per Minute ... 90
Figure 29. Mean Fixation Count (4 AOI’s) .. 91
Figure 30. Mean Dwell Time (4 AOI’s) .. 91
Figure 31. Mean Visit Count (4 AOI’s) .. 92
Figure 32. Mean Frequency Count of Visual Patterns (4 AOI’s) 94
Figure 33. Mean frequency of Visual Patterns (6 AOI’s) ... 95
Figure 34. Timeline of 3 prominent visual patterns .. 96
Figure 35. Timeline of 3 prominent visual patterns - Novice Programmers 99
Figure 36. Timeline of 3 prominent visual patterns - Experienced Programmers 99
Figure 37. Timeline of 3 prominent visual patterns - Experience with jGRASP 101
Figure 38. Timeline of 3 prominent visual patterns - No or minimal experience with

jGRASP .. 101
Figure 39. Timeline of 3 prominent visual patterns - Poor Performance 103
Figure 40. Timeline of 3 prominent visual patterns - Better Performance 103

x

LIST OF TABLES

Table 2.1. Three Assumptions About How The Mind Works .. 10

Table 2.2 Influences On Program Comprehension Strategies ... 20

Table 5.1 Debugging Performance Measurement Scale .. 65

Table 5.2 AOI Categories .. 68

Table 5.3 Independent Variable Categorization .. 69

Table 5.4 Gaze Duration Based AOI Categorization .. 70

Table 6.1 Segment Wise Break up for Each Participant .. 76

Table 7.1 Visual Pattern Sorted by Frequency of Appearance (4 AOI’s) 93

Table 7.2 Visual Pattern Sorted by Frequency of Appearance (6 AOI’s) 95

Table 7.3 Visual Pattern Sorted by Frequency of Appearance (8 AOI’s) 96

Table 7.4 Time Based Means of Pattern Frequencies – Programming Experience 97

Table 7.5 Time Based Means of Pattern Frequencies – Experience With jGRASP 100

Table 7.6 Time Based Means of Pattern Frequencies – Based on Performance 102

1

CHAPTER 1

INTRODUCTION

Most of the programming today is accomplished on sophisticated software

applications called Integrated Development Environments (IDE). IDEs are extremely

popular among programmers; primarily due to the increase in productivity when used for

software development. These assist a programmer by providing a plethora of

functionalities like source code editor, compiler/interpreter, build tools, debugger, version

control system, etc. Several of these functionalities present multiple perspectives of the

same program under development. These representations, also known as program

visualizations, enable programmers to treat programs not just as code text, but as

program entities produced when executed under different conditions. Program

visualizations presented by IDEs range from either graphical to mostly textual and

present different types of information about the program. A good example would be

simultaneous use of both UML (Unified Modeling Language) diagram and control flow

diagram by a programmer to grasp different perspectives of the same software project. A

programmer uses these visualizations when appropriate to comprehend or debug a

program and build up a mental model of the program. Usage of these functionalities

differs from one programmer to another based on factors like programming language

expertise, acquaintance with the IDE and personal preference.

Although these tools are designed to facilitate programming activities, they tend to

be overwhelming and at times detrimental to a programmers’ performance. Thus, effective

2

usage of these visualizations require a programmer to be skilled in: a) generating and

testing hypotheses from the evidence in a program’s output and visualizations, and; b)

combining this strategic knowledge with his/her knowledge of coordinating appropriate

visualizations and functionalities of the IDE. Novice programmers using IDEs face the

additional challenge of having to learn abstract concepts of programming as well as these

IDE usage skills. It is therefore beneficial to develop insights into the underlying

processes at work during program comprehension/debugging in a rich software

development environment, in order to help us better understand the effectiveness of

existing IDEs and design better IDE interfaces in future.

Program comprehension, the ability to understand programs written by others, is

widely recognized as central to programming. Previous research in the domain has

established a solid body of knowledge about comprehension models and strategies

employed in comprehension, expert novice differences, and comprehension outcome

analysis. Majority of the research has however focused on using potentially intrusive

verbal protocols to capture thought processing instead of applying a non invasive

methodology like eye-tracking. Recently though, visual attention tracking is increasingly

used by researchers, especially those studying the psychology of programmers. This

methodology was first employed to investigate how programmers read program code.

Other recent studies investigated program comprehension or debugging employing either a

visual attention tracking tool called Restricted Focus Viewer (RFV) or an eye-tracker.

The present research involves the most recent eye-tracking study of programmers.

The core of this thesis is an investigation, from theoretical and empirical

perspectives, of the underlying cognitive processes active during programming tasks. We

first develop a theoretical cognitive model of program comprehension and debugging by

synthesizing existing research in the areas of text comprehension, comprehension of

3

picture and diagrams, graph comprehension and program comprehension. Then an

empirical study of programmers was designed and carried out to explore processes of

program comprehension and debugging, and to answer some of the research questions

arising out of the proposed theoretical model. In chapter 2, we discuss relevant literature

in areas pertaining to our research. Chapter 3 summarizes the problem statement of this

research. The overall research and its results are presented in chapters 4, 5 and 6. A

summary of research contributions and future work are presented in Chapter 7 and 8

respectively.

4

CHAPTER 2

BACKGROUND

This chapter presents the background material and related work relevant to this

thesis. It specifically addresses the motivation behind our research, and the history and

current state of the topics pertaining to our research: cognitive modeling – text, picture,

multimedia and program comprehension, program debugging, program visualization and

eye-tracking.

2.1 Cognitive Modeling

Cognitive science is concerned with understanding the processes that the human

brain uses to accomplish complex tasks including perceiving, learning, remembering,

thinking, predicting, inference, problem solving, decision making, planning, and moving

around the environment. The goal of a cognitive model is to scientifically explain one or

more of these basic cognitive processes, or explain how these processes interact

(Busemeyer & Diederich, 2010). They help reveal information pertaining to cognitive and

perceptual constraints on human performance. These models now appear in many fields

that deal with cognition, ranging from perception to problem solving and decision making.

Descriptions of cognitive models take various forms such as narrations of steps required in

completion of a task and computer based simulations embodying cognitive architectures.

5

Cognitive models often incorporate mental models, which according to Johnson-

Laird's theory (Johnson-Laird, 1983), is the basic structure of cognition: "It is now

plausible to suppose that mental models play a central and unifying role in representing

objects, states of affairs, sequences of events, the way the world is, and the social and

psychological actions of daily life". Mental models are simplified versions of a complex

scenario created in the working memory, which are much easier to conceive, interpret and

help predict actions. Mental models can be constructed based on perception,

comprehension, or imagination. These models help researchers evaluate how decisions are

made, how deductive reasoning problems are solved and measure behavior in diverse

environments.

We will now discuss some of the cognitive models proposed and studied in the

areas of text comprehension, graph and picture comprehension, program comprehension

and Human Computer Interaction (HCI).

2.1.1 Text Comprehension

Work on text comprehension is relevant to our research because reading and

understanding code is an important activity in program comprehension. For many decades

now, text comprehension has been one of the most researched areas in cognitive

psychology. It is a complex interactive cognitive process that involves construction of

logical representations and inferences at several levels of text and context within the

limits of working memory. In general, comprehension is supported by cognitive resources

such as working memory (Just & Carpenter, 1992) and inhibitory control (Gernsbacher,

Varner, & Faust, 1990). Working memory serves as a mental workspace where

information retrieved from memory (either world knowledge or previously read text) is

available for integration with incoming text or contributes to updating and revision of the

6

mental representation of the unfolding text or discourse. Problems can arise because

working memory resources are limited or become overloaded if suppression or inhibitory

controls are lacking, preventing accurate and efficient integration.

Of late, researchers' focus has shifted from lower levels of comprehension (like

lexical processing, interpretation of text, semantics and syntactic parsing) to higher levels

of comprehension (involving pragmatics, knowledge-based inferences, world knowledge and

problem solving). Of particular interest to us is the process involved during problem

solving. There has been an emergence of sophisticated theoretical cognitive models in

problem solving with empirical support. We will now discuss few of the relevant models.

In their early work, Kintsch & Van Dijk (1975) proposed that readers generate a

variety of knowledge-based inferences when they comprehend stories. Since then, many

studies have empirically found that “multiple levels of representation are involved in

making meaning” of text (Van Oostendorp & Goldman, 1998). Knowledge-based

inferences are constructed whenever knowledge structures from long-term memory are

activated and incorporated into the meaning representation of the text. The meaning

representation consists of the text base and the referential situation model of the text.

The text base represents the meaning of the text, that is, the semantic structure of the

text, and it “consists of those elements and relations that are directly derived from the

text itself [...] without adding anything that is not explicitly specified in the text” (Van

Oostendorp & Goldman, 1998). Whereas, the referential situation model is a life like

mental representation of the people, setting, actions, goals and events that are either

explicitly mentioned or inferentially suggested by the text. In later research (Graesser et

al. 1997 and Kintsch, 1998), additional levels of representation like surface component,

communication level and genre level have been established. Surface representation

includes the detailed linguistic information, such as specific phrases, words and syntactic

7

structures but not their meaning. The communication level represents the pragmatic level

of communication between reader and writer. The genre level represents the knowledge of

the class of text and its corresponding text function.

The model of Trabasso & Van den Broek (1985) took a different stance and

assumes that text comprehension is a problem solving process. According to the model,

the meaning of a narrative text is represented in long-term memory as a network. The

nodes of this network represent the individual clauses of the text, whereas the links

represent causal and enabling relations among those clauses. A reader’s ability to discover

the causal connections is related with comprehension. Understanding an individual clause

requires that the reader discovers its causal antecedents and consequences. Understanding

the text as a whole requires that the reader finds a causal path that links its opening to

its final outcome.

 It is worth mentioning the Construction-Integration Model (Kintsch, 1988) here as

it holds significant relevance in explaining the role of knowledge in overall comprehension

process. The Construction-Integration Model (CI) emphasizes bottom-up, data-driven

comprehension processes over more rigid top-down search strategies, common in the area

of discourse comprehension. The CI Model is comprised of two ordered steps: knowledge

Construction and knowledge Integration. During the Construction step relying on

Linguistic Representation, a larger set of mental elements is generated when compared to

the traditional methods. The result of this Construction step is a Propositional Network.

If this network is influenced by the comprehender's own knowledge bases during the

Construction step, due to past experience, then in effect what is produced is an

Elaborated Propositional Network.

8

Figure 1. Construction-Integration model

At this point, we have a crude mental representation of the discourse in the form

of an associative network of propositional nodes. During the integration stage the other

possible meanings of the given sentence are constrained, which do not fit in with the

context and strengthens the meanings that do. The overall result is a Final Text

Representation which can then be interpreted and evaluated. The intended scope of the

CI Model is somewhat limited. It does not concern itself with all problems within

discourse comprehension. For instance, it does not concern itself with any specific

strategies (or rules) for proposition construction. Rather, it is assumed that a text parser

could be designed to do the necessary analyses and then added as a front-end for the CI

Final Text Representation

Elaborated Propositional Network

(Experience)

Propositional Network

(Production System
for initial generation
of Network)

Linguistic Representation

INTEGRATION

C
O
N
S
T
R
U
C
T
I
O
N

Word

9

Model. Similarly, the model neglects the perceptual aspects of reading a text (or

listening), as well as the issue of how the semantic representation of a text is constructed.

In sum, the emphasis of the CI Model is on finding a coherent representation and using it,

not on how the needed information is generated.

Learning strategy refers to learner’s activity during learning aimed at improving

learning outcomes. In 1996, an interesting model was proposed for learning strategies in

text comprehension by Mayer (1996). This model talked about cognitive process like

selecting, organizing and integration; it is known as the SOI model. This model will be

elaborated in chapter 4, where it is of higher relevance. We will now discuss relevant work

in the area of Picture and Text comprehension.

2.1.2 Picture and Text Comprehension

In a multi-visualization programming environment, a programmer is presented

with many static visualizations of the program code along with descriptions. For example,

a UML diagram represents the relationships among classes along with text descriptions of

these relationships. It is hence of importance to understand the cognitive processes active

during picture and text comprehension. While text comprehension has seen intense

research over the past three decades, research on comprehension of visual displays has

attracted much lesser attention. Earlier research in the area looked at the function of

pictures with text. It was found that text supplemented with illustrations led to better

retentions than text without illustrations (Levie & Lentz, 1982). Further work in the area

also found that carefully constructed pictures as visual text adjuncts also facilitated

representation, organization, interpretation and mnemonic encoding (Carney & Levin,

2002). Like text comprehension, during picture comprehension too an individual

constructs several mental representations. These include surface structure representation,

10

a mental model, a propositional representation as well as a communication level and genre

level representation. Before we discuss some of the proposed models in the area, it is of

utmost importance to understand some of the assumptions (summarized in Table 2.1)

about how the human mind works based on research in cognitive science. The first

assumption is that the human information processing system consists of two separate

channels. This is known as the dual channel assumption. The visual/pictorial channel

processes visual input and pictorial representations whereas the auditory/verbal channel

processes auditory input and verbal representations. The second assumption is that the

information processing channel has a limited cognitive processing capacity. This is known

as the cognitive load theory or working memory theory. Hence, only a limited amount of

processing takes place in each of the channels. The third assumption is that meaningful

learning requires substantial amount of cognitive processing in visual and verbal channels.

These assumptions hold ground in not just picture and text comprehension but also in

multimedia learning.

Assumption Definition

Dual Channel Humans possess separate information processing
channels for verbal and visual material.

Limited Capacity There is only a limited amount of processing capacity
available in the verbal and visual channels.

Active Processing Learning requires substantial cognitive processing in the
verbal and visual channels.

Table 2.1. Three assumptions about how the mind works (Mayer & Moreno, 2003)

11

Figure 2. Two representational channels in text and picture comprehension

Mayer (1997) proposed a model (see Figure 2) where verbal and pictorial information

are processed in different cognitive subsystems leading to parallel construction of two

different mental models, which are finally mapped onto each other. According to this

model, while comprehending text with picture, an individual first selects relevant words,

constructs a text base, and then organizes the selected verbal information into a verbal

based mental model. Likewise, relevant images are selected to form an image base

followed by organization of this selected pictorial information into a visual mental model

of the picture. During the final stage, one to one mappings are established between the

verbal and the visual model. Integration takes place when both verbal and visual models

are present in the working memory.

With an emphasis on representational principles, Schnotz and Bannert (2003),

proposed an integrated model of text and picture comprehension (Figure 3). This model

comprises two branches, with the left representing text comprehension and the right

representing picture comprehension. Text comprehension components interact among

themselves based on symbol processing. The text comprehension components consist of

text as input, mental representation of text’s surface structure and the propositional

representation of text’s semantic content. Text information is processed with regard

12

Figure 3. Integrated model of text and picture comprehension

to morphologic and syntactic aspects by verbal organization processes that lead to a

mental representation of the text surface structure. This text surface structure in turn

triggers conceptual organization processes that result in a structured propositional

representation and eventually a mental model. The components for picture comprehension

are the external picture, visual perception of the image and a mental model of the picture

presented. During picture comprehension, the individual first creates through perceptual

processing a visual mental representation of the picture’s graphic display. Then, the

13

individual constructs through semantic processing a mental model and a propositional

representation of the subject matter shown in the picture. When a mental model has been

constructed, new information can be read from the model through a process of model

inspection. There is a continuous interaction between the propositional representation and

the mental model. Besides this interaction, there may also be an interaction between the

text surface representation and the mental model, and between the perceptual

representation of the picture and the propositional representation. We will now discuss in

detail multimedia comprehension, which is related to and derives from picture and text

comprehension research.

2.1.3 Multimedia Comprehension

It is of importance to us to understand the cognitive process active during

multimedia comprehension, as IDEs present dynamic visualizations that are highly

graphical and animations, as well as static graphics (e.g., UML diagrams, Control

Structure Diagrams, etc.) and program code in the form of text.

Multimedia can be defined in multiple ways depending on the perspective. In terms

of presentation, it means the use of different formats of text and pictures. From a sensory

modality perspective, it refers to the use of eye and ear to retrieve information. In order

to better understand learning from pictures and words (both auditory and printed text),

Mayer (2001) proposed a cognitive model of multimedia learning (see Figure 4). In this

model, the five columns represent modes of representations. The columns from left to

right portray physical representations, sensory representations, shallow working memory

representations, deep working memory representations and long-term memory

representations. The two rows represent two information processing channels, with the

auditory channel at the top and the visual channel below it.

14

Figure 4. Cognitive theory of multimedia learning

There is virtually no restriction on the capacity for presenting physical

representations and long term memory, but the capacity is limited for working memory to

process words and images. The arrows from words to eyes and ears represent printed text

registered in the eyes; and auditory text registered in the ears. The learner selects some of

the incoming auditory sensations and likewise selects (pays attention to) some of the

visual sensations coming in from his eyes. Following this, the learner constructs a coherent

verbal and pictorial model during organization. Finally, this verbal model, pictorial model

and relevant prior knowledge are merged to during integration. Prior knowledge can aid

both the selecting and guiding processes in the working memory. Hence, in multimedia

learning, active processing that places a high demand on cognitive capacity requires five

cognitive processes: selecting images, selecting words, organizing images, organizing words,

and integrating.

2.1.4 Program Comprehension

 Many models of program comprehension have been proposed by researchers over

the past 25 years. In the context of program comprehension, a mental model represents a

programmer’s mental representation of the program to be understood, and the cognitive

15

model describes the cognitive processes and information structures involved in the

formation of this mental model. Most of the models in the literature consider program

comprehension as either bottom-up, top-down or knowledge based understanding. Some

models suggest systematic and as-needed strategies. Bottom up theories propose that

program knowledge is built by reading the source code and then mentally chunking or

grouping these statements into higher level abstractions. Higher order understanding of

the program is then constructed by combining these abstractions (Shneiderman & Mayer,

1979). Shneiderman and Mayer (1979) proposed a cognitive framework (Figure 5)

incorporating semantic and syntactic knowledge of programs. The internal semantic

representation is created by chunking the program in short term memory.

Figure 5. Shneiderman and Mayer program comprehension model

This representation is language independent and is built in progressive layers

consisting of high level concepts like program goals at the top and low level details like

algorithms used at the bottom. The semantic representation in long term memory assists

16

the creation of internal semantics. The syntactic knowledge represents the statements and

basic units of the program and hence is language dependent. The final mental model is

created by chunking and aggregation of other semantic components and syntactic

fragments of text. This framework took a bottom-up approach to program comprehension.

Pennington (1987b) also took a bottom up approach and proposed a model (Figure

6) with two different mental representations: a program model and a situation model. She

found that when programmers are completely new to a program, the first mental model

they build is an abstraction of control flow capturing the sequence of operations taking

place in the program. This model, known as the program model, is built via chunking of

micro structures like statements and control constructs into macro structures like test

structure abstractions or chunks and via cross referencing.

Figure 6. Pennington program comprehension model

17

On complete construction of this model, the situation model is developed that

creates a dataflow/functional abstraction. Data flow abstraction refers to changes in

meaning or values of program objects; functional abstraction refers to the program goal

hierarchy. Knowledge of real world application domain is required to construct this model.

This model too is built via cross referencing and chunking. Based on the program model,

hypothesized higher order plans are constructed. The situation model is completed once

the program goal has been reached.

Brooks (1983) proposed that programmers comprehended a program by

reconstructing the domain knowledge used by the initial developer and mapping that to

the actual code. This is a top-down approach to program comprehension. It involves

creating a mental model based on an initial hypothesis about the global function of the

program, which is then refined by forming auxiliary hypotheses. These are iteratively

refined, based on the presence or absence of beacons, which are a set of features that

match a hypothesized structure or operation.

Figure 7. Soloway, Adelson and Ehrlich’s program comprehension model

18

Soloway, Adelson and Ehrlich (1988) also supported the top down approach in

cases where code or type of code is familiar to the programmer. They proposed that the

mental model is developed top down by forming a hierarchy of goals and programming

plans to achieve higher level goals. Their model involves usage of two types of

programming knowledge represented by triangles in Figure 7.

• Programming plans are generic fragments of code that represent typical scenarios

in programming. For example, a search algorithm which uses an index to iterate

through each element in the list.

• Rules of programming discourse capture the conventions of programming, such as

algorithm implementations and coding standards.

The rectangles represent the internal or external representations. The understanding

process (represented by diamond) matches the external representations to programming

plans using rules of discourse to select plans. On establishing a match, the internal

representation is updated based on the gathered knowledge.

Figure 8. Letovsky program comprehension model

Letovsky (1986) proposed a high-level comprehension model with three main

components: knowledge base, mental model, and an assimilation process. Programmer’s

19

prior knowledge and expertise put together form the knowledge base. The mental model

consists of three layers as shown in figure 8. The topmost layer - specifications -

characterizes program goals. The implementation level layer contains the lowest level of

abstraction, with data structures and functions as entities. The annotation layer links the

goals in the specifications layer to the implementation layer. There could be some

incomplete links, which are represented by the dangling purpose unit. In this model, there

can be either top down or bottom up assimilation based on prior knowledge. Assimilation

describes how the mental model evolves using programmer’s knowledge with the program

source code and documentation.

Littman et al. (1987) and Soloway et al. (1988) took a different approach and

suggested that program comprehension strategy could be systematic and as-needed.

Littman and colleagues observed that programmers either read the program

systematically by tracing the control flow and data flow, or took an as needed approach

by focusing only on code which is related to a particular task at hand. Soloway et al.

proposed a model by merging concepts of systematic strategies, as needed strategies and

inquiry episodes.

We see that there is some disparity among the models discussed. However, all

models agree that programmers use existing knowledge during comprehension. The

disparity arises due to characteristics of the programmer, goals and the program

comprehended, which has been observed by many researchers and acknowledged. Table

2.2 summarizes the factors influencing comprehension strategies as found by Storey et

al. (1999).

20

Maintainer
characteristics

Program
characteristics

Task
characteristics

• Application domain
knowledge

• Programming domain
knowledge

• Maintainer expertise,
creativity

• Familiarity with
program

• Support tools expertise

• Application domain
• Programming domain
• Program size,

complexity, quality
• Documentation

availability
• Support tool

availability

• Task type, purpose
• Task size and

complexity
• Time and cost

constraints
• Environmental

Factors

Table 2.2 Influences on program comprehension strategies (Storey, Fracchia, & Müller,
1999)

2.2 Program Debugging

Numerous investigations of debugging practices have been conducted since the

mid 70’s and cover a broad range of topics. Despite the wealth of knowledge,

programming still remains both intricate for programmers to learn and taxing for

educators to teach. Majority of the studies focus on two main components (McCauley,

et al., 2008) : 1) types of knowledge critical for successful debugging and 2) strategies

employed while debugging a program. We will now take a look at some of the relevant

studies that looked at debugging strategies, followed by knowledge aids.

2.2.1 Strategies Employed

In one of the early studies, Gould (1975) investigated the debugging practices of

experts. During the study it was observed that programmers began by either reading

the code until something suspicious was detected, or by analyzing the output. Bugs that

were considered easier to locate, such as index errors in loops or array references, were

first looked at. This was followed by spending time to understand the program to find

more subtle errors like bugs in assignment statements.

21

Vessey (1985) studied both expert and novice debuggers. Experts were more

likely to take a breadth-first approach, trying to understand a program, whereas novices

took a depth-first approach, focusing on finding and fixing an error without regard to

the overall program. Furthermore, she suggested a hierarchy of debugging goals, similar

to the process used by experts observed in (Gould, 1975): 1) discover the problem by

comparing correct and incorrect output; 2) become familiar with the intended function

of the program and how it is structured; 3) examine the flow of control; 4) form a

hypothesis about the source of the error; and 5) fix the bug. Ducassé and Emde (1988)

described four categories of debugging strategies focused on bug location: 1) using

mental and paper tracing of programs and other means of dissecting and executing code;

2) comparing the intended program against the actual program for computational

equivalence; 3) looking for language consistency and recognizing well-formed programs

and algorithms; and 4) detecting stereotypical errors.

Katz and Anderson (1988) conducted multiple studies of students debugging

programs and observed the tactics implemented to troubleshoot the program. They

found two predominant strategies used in locating bugs. With the first strategy known

as forward-reasoning, programmers start searching the bug from the program code. Two

variants of this are program-order (programmer simulated the program’s execution) and

serial-order (programmer read the code in the order in which the lines appear).

Forward-reasoning includes strategies like program comprehension, where a bug is

located while creating a mental representation of the program, and hand simulation

where the programmer evaluates the code like a computer to understand the program

more closely. The second strategy known as backward reasoning involves starting from

the erroneous behavior of the program and working backwards to the source of error in

code. It includes strategies like simple mapping, where the program’s output directs to

22

the erroneous line of code, and casual reasoning where beginning from the incorrect

output, the programmer works backwards to the program code that caused the bug.

Katz and Anderson also found that students typically used forward reasoning when

debugging others’ code, but backward reasoning when debugging their own. Students

trained in a specific technique tended to reuse that technique. Their study also revealed

that errors made by more experienced programmers are generally not repeated and

easily fixed when found. This suggests that for many students, the difficulty of

debugging is not in repairing the error, but rather in troubleshooting—understanding

the program, testing the program, and locating the error.

2.2.2 Knowledge Aids

Ducasse´ and Emde (1988) based their work on Gould’s framework and conducted a

review of debugging systems and cognitive studies. They identified seven knowledge

types that are utilized during debugging. It is not necessary that all knowledge types be

known for every debugging task. They also stated that the wide range of knowledge

made it difficult to incorporate them in one single debugging environment. The

knowledge types were summarized as:

• knowledge of the intended program (program I/O, behavior, implementation);
• knowledge of the actual program (program I/O, behavior, implementation);
• an understanding of the implementation language;
• general programming expertise;
• knowledge of the application domain;
• knowledge of bugs; and
• knowledge of debugging methods.

The studies discussed in this section did not employ a development environment

similar to the IDE’s that are professionally used. Professional IDE’s typically let

23

programmers use multiple visualizations of the same code to facilitate program

understanding and debugging. Although few studies have used IDE’s with dynamic

visualizations for debugging studies (discussed in section 2.4.4), the IDES used were not

professional IDEs. In our research, we investigated debugging with a professional IDE

that provides a plethora of representations to the programmer. We will now look at

some of the popular program visualizations available with IDE’s.

2.3 Program Visualizations

 In order to support programming activities like debugging and code

comprehension, IDE’s provide multiple visualizations that present the underlying code

base in diverse abstract forms, such as animated views of program executions. Program

visualization connotes a connection with the program at a lower level (e.g. data

structures) rather than at the higher level of algorithms (Stasko et al., 1998). Both

novice and expert programmers benefit from using appropriate visualizations while

comprehending program code. The strategies employed in their usage may differ based

on a programmer’s expertise, familiarity with the IDE, experience with the

visualizations and the current stage of program understanding. The object oriented

programming paradigm specifically utilizes several graphical representations to describe

program structure, given the nature of underlying program code.

According to Romero et al. (2003a), two important attributes of a representation

is its information modality and the programming perspective highlighted by it.

Information modality of a representation refers to the format in which the underlying

data is presented. The modality could range from simple text (propositional) to highly

graphic (diagrammatic), where both propositional and diagrammatic could be

considered as two extremes of a scale containing representations with different degrees

24

of ‘graphicality’ (Cheng, Lowe, & Scaife, 2001). Program code, for example, is not

purely propositional as there generally is a line per instruction format and is indented at

varying degrees. In terms of taxonomy of graphic languages, it can be termed as a

hybrid category of text between a list and a linear branching configuration (Romero et

al., 2003a). A UML diagram on the other hand is more of a graphical representation

even though it contains textual components. Programming perspective of a

representation refers to the information structure highlighted by the representation.

These information structures represent different types of information pertaining to

program code. Programmers, when comprehending code, generate a mental model that

consists of these different information structures representing different perspectives of

the same program (Pennington, 1987b). Research has shown that these different

perspectives are important: function, structure, operations, data-flow and control-flow.

We will discuss these perspectives in detail in chapter 5. Some of the common

visualizations bundled with a development environment and in widespread usage are

UML Diagrams, variable watch windows, dynamic visualizations, output windows and

expression watch windows. Again, these will be discussed in detail in chapter 5. Also see

(Romero et al. 2003a) for a survey of external representations employed in object

oriented programming environments.

Although there is evidence that these visualizations aid programmers in

accomplishing programming tasks and pose no cognitive load individually, there might

be issues with a programmer having to coordinate multiple visualizations and program

code. Studies have been conducted on coordination of representations in other fields

such as arithmetic (Ainsworth, Wood, & O'Malley, 1998b), first order logic (Oberlander,

Stenning, & Cox, 1999), physics (Sime, 1996), and general problem solving (Cox &

Brna, 1995). These studies have highlighted the difficulty in coordination faced by

25

learners, especially novices. This difficulty has not been researched a lot in the area of

programming environment design and computer programming in general. Some recent

studies (Romero et al. 2002b, Navalainen et al. 2004, Bednarik et al. 2005) investigated

this issue. But there are several intriguing questions that have not been answered yet.

Some of these questions will be addressed in our research. We will now look at visual

attention tracking and how it can aid us understand the underlying processes active

during programming activities.

2.4 Visual Attention and Eye Tracking Methodology

In order to visually perceive the world around us, our eye projects an image of

the object onto the foveal region of the retina. Once an image is stabilized on the retina,

information is extracted. This high concentration foveal region is small and gauges

objects in a two- degree visual span and hence multiple fixations are required to process

a visual scene. Tracking these movements of the eye can give insights into the visual

attention of a person completing a task. Also, knowing which objects were looked at,

their order and perspective can help one understand the underlying cognitive processes

in action and provide clues on how that scene was perceived.

In eye-tracking research, the principle that visual attention links to eye gaze is

called an eye-mind assumption (Just and Carpenter, 1980). Duchowski (2007)

acknowledges that even though in eye-tracking we assume that attention is linked to

foveal gaze direction, it may not always be true. He suggests that at times parafoveal or

peripheral processing can be used to extract information. Nevertheless, this assumption

between focus of visual attention and gaze direction is valid in a complex information

processing task (Rayner, 1998). Debugging is a highly complex and task driven process,

hence this thesis relies on the eye-mind assumption.

26

2.4.1 Eye-tracking in HCI

Eye-tracking has been explored in academia for over 40 years. Investigations in

cognitive sciences, language and advertising extensively employed eye-tracking in the

1960s and 1970s (Jacob & Karn, 2003). It has increasingly been adopted in human

computer studies over the past two decades. We will now present a brief history of

research employing eye tracking in HCI.

Eye-tracking has been primarily used for two tasks, one as a form of input to

computer and the other as a source of non-intrusive data for studying human computer

interactions (Jacob & Karn, 2003). Some of the studies which have used eye-tracking as

assistive technology for those with motor disabilities explored possibilities of replacing or

supplementing input devices (Barreto, Gao, & Adjouadi, 2008). Gaze was used to

control pointing and selection of objects as a complement to mice input (Biej, 2009) or

used to completely replace them (Kumar, Paepcke, & Winograd, 2007). Majority of

studies though have employed eye-tracking to study user behavior during their

interaction with interfaces. Studies of navigation and web browsing have been

particularly popular. These studies looked at placement of links in target links, patterns

in eye movements while browsing, feature detection etc. (Cutrell & Guan, 2007). Menu

selection tasks were also studied, where a significant difference was found between

selection of menu items compared to reading the menu items (Aaltonen, Hyrskykari, &

Räihä, 1998). Other studies have looked at use of gaze in immersive collaborative

environments (Steptoe, et al., 2008), building document summaries based on focus of

user attention (Xu, Jiang, & Lau, 2009) and visualization of hierarchical structures.

Although eye tracking has been used to evaluate both top down and hypothesis

driven experiments, there is still a dearth of research incorporating eye tracking in HCI

27

studies. High-cost of eye-trackers and challenges in data interpretation are two major

hurdles. Regardless of the fact that eye-trackers are now much more easily accessible

both financially and technically, their use is still constrained by the complexities of

processing and interpreting complex data. Commercial eye tracking companies are

making a conscious effort to simplify data analysis by bundling software packages that

present the raw data collected in a much more intuitive and easily comprehensible

format. With these advancements, it has been observed that over the past decade eye-

tracking has become more widely used in the commercial market, especially in studies of

web usability. We will now look at the evolution of eye-trackers and the different types

used by researchers and usability professionals.

2.4.2 Types of Eye Trackers

Advancement in technology has made eye trackers less complex, more usable and

more affordable than in the past. Earlier trackers were cumbersome for participants to

use as sensitivity to head motion meant that restraints like chin rests and bite bars had

to be used to reduce head movements. Eye trackers nowadays are more tolerant of head

movements and can easily address issues of stabilization.

In general, there are two types of eye tracking techniques: those that measure the

position of the eye relative to the head, and those that measure the orientation of the

eye in space (Young & Sheena, 1975). The first approach employs techniques like

electrical oculography, where the potential differences of skin around the eyes are

measured; scleral contact lens/search coil, where a device is mounted on the eye using

contact lenses and photo-oculography, where features of the eye (such as the apparent

shape of the pupil) is measured when it is in different positions (Duchowski, 2007). The

second technique used for point of regard measurement requires that either the position

28

of the head must be fixed or multiple ocular features be measured. Corneal reflection

and pupil center are examples of such features. These are measured by capturing infra-

red reflections of the eye with a video camera and image processing. The infra-red rays

are invisible and non intrusive. Furthermore, two approaches are used to determine the

gaze location. The bright pupil technique results in a dramatic contrast between the

pupil and the iris, making the pupil easily distinguishable and therefore easier to track.

There is little interference from eyelashes and shadows because the image-processing

algorithm recognizes a white elliptical region as the pupil. Creating a pronounced bright

pupil effect, however, is highly dependent on pupil size, which is affected by several

external factors like age, emotional response to stimuli, and lighting sources. This

method tends to work better in a dark environment and on children and people with

blue or light eyes. The dark pupil method detects the dark ellipse of the pupil within

the iris. This methods works well in bright environments and outside in natural lighting

conditions, but there are issues with eyelashes and shadows causing false positives

during pupil detection. Dark colored eyes work best because the IR light reflection off

the iris makes the dark color of the iris appear light in the digital image, thus making

the pupil more easily discernible. Image processing algorithms use this image of the

pupil combined with the reflection from cornea, also known as Purkinje image (Crane,

1994), to calculate gaze location. This location is then superimposed on the scene under

evaluation either for real time calculations or recorded for delayed analysis.

Commercially available apparatus for eye tracking can be broadly categorized as

high speed eye tracker, remote eye tracker or head mounted eye tracker. Remote eye

trackers with no physical contact are more popular in usability studies, as wearing

helmets and miniature cameras required by head mounted trackers are likely to be

distracting for subjects (Jakob & Karn, 2003). Most of these eye trackers employ video

29

based corneal reflection tracking technique with infra-red light emitters. These eye

trackers can track eyes with accuracies of less than 0.4 degree and sampling rates

ranging between 60-1500 Hz.

2.4.3 Eye-tracking Measures

There are over 100 measures of eye-tracking reported in the literature and

application of these measures is experiment dependent. These measures are selected

while creating a study design, and derives from the research question. It might also be

the case that none of the existing measure may fit a new experiment. However, there are

some measures that can be used in most every eye tracking based experiments.

Two types of eye movements are tracked by eye-trackers, saccades followed by

fixations. Saccades are rapid eye movements that allow the fovea to view a different

portion of the display. During a saccade, vision is suppressed and does not become

active until its destination has been reached. Often, a saccade is followed by one or

more fixations when objects on the scene are viewed. Then small eye movements are

made within a general viewing area for about 200-600ms. We define a gaze as one or

more successive fixations on a particular object or area of a visual scene. In order to

reduce the amount of data produced by eye-tracking, it is a common practice to

separate a visual scene into ‘Areas of Interest’ (AOI), also known as ‘Regions of

Interest’ to support aggregation of fixations. While assessing the quality of interfaces,

Goldberg and Kotval (1998, 1999) assessed the validity of various eye tracking

measures. They proposed a set of eye tracking measures that supported automation.

These measures were either dependent or independent of the AOI’s. They also proposed

a classification of the eye tracking measures, according to which, if a measure describes

a time based property of a scanpath, it was termed as temporal. Fixation duration

30

would be a temporal measure. If the measure described the spread and coverage of a

scanpath, it was termed as spatial. Number of saccades is an example of a spatial

measure. Jacob and Karn (2003) put together a set of eye tracking measures based on

their analysis of usability studies. These measures include:

• Number of fixations, overall: The number of fixations overall is thought to be
negatively correlated with search efficiency.

• Gaze % (proportion of time) on each area of interest: The proportion of time
looking at a particular display element could reflect the importance of that
element.

• Fixation duration mean, overall: Longer fixations (and perhaps even more so,
longer gazes) are generally believed to be an indication of a participant’s
difficulty extracting information from a display.

• Number of fixations on each area of interest: The number of fixations on a
particular display element should reflect the importance of that element. More
important display elements will be fixated more (frequently).

• Gaze duration mean, on each area of interest: gazes on a specific display element
would be longer if the participant experiences difficulty extracting or interpreting
information from that display element.

Using these measures can significantly reduce the data gathered and make

analysis more efficient. There has also been a shift from using raw gaze data to more

sophisticated measures involving scanpath analysis based on context. For example, if

the expected eye pattern for efficient usage was a straight line to a target, inefficient

usage might show longer paths. Yoon and Narayanan (2004) investigated the order of

fixations to measure how systematically a user attends to casually related areas of

interest. Analysis of scan paths based on string editing of fixation sequences is also

popular.

31

2.4.4 Visual attention in studies of programming

Most of the studies investigating cognitive and behavioral aspects of

programming employed verbal utterances of participants. It has been argued that

verbalizing thoughts interfere with a participants natural processing, by adding an

extraneous cognitive load. The results could be biased as this load can also hinder the

problem solving strategies of participants, especially novices. Users may also skip

critical utterances due to different causes such as not being aware of some aspects of

behavior or being less vocal by nature. As eye-tracking is non-intrusive, it has been

suggested as a strong alternative to verbal protocols in capturing the cognitive processes

involved in programming. Researchers have successfully employed this technique in

studies of programming to better understand the underlying cognitive processes.

Crosby and Stelovsky (1989) studied the visual patterns of programmers while

reading a binary search algorithm. Attributes like fixation times and number of fixations

were captured by an eye tracker. They found that more experienced users paid attention

to meaningful areas of source code and complex statements. Novice students paid more

attention to comments and comparisons. Least attention was paid by both groups to

keywords, and they did not exhibit any methodical differences in code reading

strategies. Crosby and Stelovsky evaluated fixation durations and number of fixations

with both qualitative approaches and parametric tests. The only representation

available to participants was the program code. This study did not employ any static or

dynamic visualization of the code.

Not many studies looked at visual attention following this early work, until 2002

when several experiments were conducted by Romero et al. (2002a, 2002b, 2003b). They

evaluated co-ordination strategies of programmers while debugging in an environment

32

that provided multiple visualizations. Code, output and a static visualization of the

program was available for comprehension. It was found that programmers frequently

combined both forward and backward reasoning to debug a program. Frequent switches

were made between code and output or code and graphical visualization of code.

Balanced switching behavior was found among those with more programming

experience. Statistical tests were used to analyze the visual data collected. The data

analyzed was an aggregated average from the beginning to the end of a debugging

session for each participant. Visual attention during the experiment was tracked by a

Restricted Focus Viewer (RFV) (Blackwell, Jansen, & Marriott, 2000) where the

programming environment was presented in a blurred format with a clear window at the

location of the mouse cursor that the programmer could control. This way the RFV

restricted the amount of stimulus shown to the user and facilitated the tracking of the

visual attention of the programmer.

Nevalainen and Sajaniemi (2005) investigated the effect of graphical

visualizations in the visual patterns of novice programmers. They implemented a within

subject design where subjects used two different tools; a)a traditional text based

environment and b) an environment that provided multiple graphical visualizations.

Differences in visual pattern were found between these two tools. Usage of any of the

tools led to a significant amount of time spent away from the source code or

visualization itself. However, no significant effect of the tools was found on the mental

model created. The visual attributes used in analysis were fixation duration and

proportion of these durations over three different AOI’s. Here again, the data analyzed

was an aggregated average from the beginning to the end of a debugging session for

each participant.

33

They followed up this study with another study to better understand program

comprehension. They used the PlanAni program animator with two modes supporting

either static or dynamic visualization of the program code. Between subject design was

used with one group assigned as a static group and the other an animation group based

on pre-test scores. It was found that most of the time was spent reading the program

code irrespective of the group. The data analysis methodology was similar to the

previous experiment. In addition, qualitative analysis of short segments of video

protocols with gaze overlay was conducted.

A predominantly qualitative approach was taken by Umano et al. (2006) to

analyze visual patterns among intermediate programmers. They studied six short source

code review tasks while debugging. Based on the study, they identified a particular

pattern, called scan, in the subjects' eye movements. It was found that reviewers who

did not spend enough time for the scan tended to take more time for finding defects.

Betnarik et al. (2005 & 2006) conducted studies to investigate the effects of

experience on debugging strategies in a multi representation dynamic environment. It

was found that fixation counts and attention switching between representations (like

code and graphical representation of execution) did not differ based on experience. An

effect of experience was found, however, on overall strategies adopted to comprehend

programs and on fixation durations. In these studies, data was analyzed with averaged

data read from the entire session. In order to characterize and analyze cognitive

processes, Bednarik and Tukiannen (2006) proposed a new methodological approach and

conducted more detailed analyses. They subdivided the comprehension process into

meaningful pieces and analyzed gradual changes in related eye-movement patterns.

Instead of using a repeated measures analysis, binomial trials were conducted. All the

experiments conducted by Bednarik used the Jeliot IDE. Even though Jeliot supports

34

dynamic representations, it was not reflective of the IDE features that are available in

professional IDE’s, and is primarily aimed at academic instruction. Bednarik et al.

(2007b) later conducted a comparative study of program comprehension, evaluating

RFV against an eye tracker, to investigate whether the blurring of the screen by RFV

affected strategies. On analysis of the frequency of attention switching, they found that

there was an effect of blurring on strategies. In terms of performance though, no effect

of blurring was found.

35

CHAPTER 3

PROBLEM STATEMENT

Although multiple studies have investigated the different strategies and

approaches involved with program comprehension and debugging, knowledge about how

programmers build a mental model of a program based on multiple representations is

still obscure.

Studies that investigated debugging strategies with multi visualization IDE’s

restricted the use of representations to a select few during experiments. These

experiments did not replicate a more realistic program debugging environment

comprising tools/visualizations used by professionals. Participants were devoid of access

to all the visualizations restricted by either the limitations of the IDE or the conditions

set by the experimenter. As a result of this, controlled experiment results in the

literature may not be a clear or realistic representation of the actual behavior exhibited

by programmers. We will overcome this by utilizing an IDE (jGRASP) that offers a

plethora of visualizations, that is used both academically and professionally, and which

gives programmers unrestricted access to multiple static and dynamic visualization aids

along with program code.

Several important questions related to visual attention and its role during

programming within these environments can be raised. A general question about what

information sources programmers attend to when working with a

36

development environment leads one to first ask about how to record visual attention in

programming. Whether and how the cognitive processes involved in programming are

reflected in visual attention patterns, however, is not completely understood. Are there

general patterns of visual attention with which programmers attend to the source code

and the other representations while comprehending a program? What are the

programmers’ visual strategies and how can they be identified from eye-movement data?

Does the focus of visual attention correlate with other information about the

comprehension process? Is it possible to distinguish between good and poor

comprehension based on information about visual attention? The lack of knowledge

about these and related aspects of visual attention during programming motivates the

research presented in this thesis. Eye-tracking technology seems to be a suitable tool to

increase our understanding of the role of visual attention in programming and, therefore,

the possibilities and limitations of it and the associated techniques need to be studied

and understood.

The purpose of this research is two-fold: (1) to understand the underlying

processes which are active during a program debugging activity and (2) to use eye

tracking methodology to develop new analysis paradigms for program comprehension/

debugging studies.

37

CHAPTER 4

PROPOSED COGNITIVE MODEL

4.1 Foundation

In the following section, we discuss a cognitive model of debugging that we have

developed in this research. It incorporates various static and dynamic representations a

programmer uses while comprehending, and then debugging, a program. This model has

been derived by synthesizing and extending some of the significant work in the area of

text comprehension, comprehension of text and diagrams, graph comprehension and

program comprehension. We first discuss this relevant literature, and then present our

model.

4.1.1 Text Comprehension

While investigating the learning strategies used by students during explanative

text comprehension, Mayer (1996) explored the various cognitive processes involved in

knowledge construction. He proposed that the key to meaningful learning were three

cognitive processes, namely selecting, organizing and integrating. The model derived

from this was called the SOI (Selection-Organization-Integration) model of the

architecture of human learning. It consists of sensory memory, short term memory and

long term memory, as shown in Figure 9. The first process involved in comprehending

an expository text is the reader

38

determining what is important by focusing conscious attention on relevant pieces of

information. This information is then added to the working memory. Mayer termed this

process as selecting; it is also known as selective coding. The next process involved in

comprehending an expository text is organizing key pieces of information selected in the

previous step and forming a coherent structure. The reader builds an internal

connection between all the encoded information to form an integrated whole. This is

represented in the model by the recursive arrow from the short term memory back to

itself, and is called organizing or selective combination.

Figure 9. SOI Model

During the final process, the new knowledge constructed in the short term

memory is related by building external connections with the analogous knowledge from

long term memory. This essentially means that the reader relates his prior knowledge

to the information presented. This final process is known as integrating or selective

comparison, and is represented by the arrows between short term memory and long

term memory.

39

4.1.2 Text and Diagram Comprehension

These cognitive strategies and the resulting mental representations have a

bearing on effective comprehension from text and supporting multimedia. Narayanan

and Hegarty (1998) proposed guidelines for interface design of hypermedia presentation

systems, based on user’s mental models and comprehension strategies. Comprehension

was postulated as a constructive process during which an individual uses his/her domain

knowledge, information presented in the external media and reasoning skills, to build a

mental model of the presented material.

Figure 10. Cognitive model of diagram and text comprehension

(Narayanan and Hegarty, 1998).

40

Their model was an extension of text comprehension models, which view

comprehension as a construction of mental model representative of the text. For

example, the process of comprehension of the description and depiction of a simple

machine by an individual was segregated into multiple stages as shown in Figure 10.

During stage one, the basic elements of the machine are identified from its

diagrammatic representation. This consists of breaking down the connected diagram

into elementary units that correspond to objects. In the next stage, a static mental

model is constructed by making two types of connections. First, the user establishes

connections between the diagrammatic elements identified in Stage 1 and their real

world referents, identified from his/her prior knowledge. Following this, the user tries to

comprehend spatial relations between different machine components by building

connections between internal representations of these components. These spatial

relations help determine how components affect and constrain other components, and

further guides the reasoning about casual relations.

During Stage three, the user further builds on his/her static mental model by

making referential connections between the text and the diagrammatic units that depict

their referents. As this stage is critical in constructing an integrated representation of

text and diagram in memory, failure here could lead to only a surface level

interpretation of the text or a surface level interpretation of the diagram. Making

referential connections is also a necessary process when users have to integrate

information in two different pictorial displays of the same machine. In the next stage,

potential causal chains of events in the operation of the machine are established.

Determining these lines of action in a machine in advance reduces the computations

required for predicting system behavior. In the fifth and final stage, the user constructs

a dynamic model of the machine by inferring and integrating the dynamic behaviors of

41

individual components. This process is termed as mental animation. Mental animation is

an iterative process wherein the user considers the components or sub-systems

individually, assesses the influences acting on each, infers the resulting behavior of each,

and then proceeds to consider how this behavior affects the next component or

subsystem in the causal chain. Narayanan & Hegarty empirically validated this model

by conducting experiments in two different domains of mechanics and computer

algorithms (Narayanan & Hegarty, 2002).

4.1.3 Graph Comprehension

Research on graph comprehension has a long history (Carpenter & Shah, 1998;

Lohse, 1993; Shah, Mayer, & Hegarty, 1999), and has yielded several useful theories of

graph comprehension (e.g. Lewandowsky & Behrens, 1999; Shah & Hoeffner, 2002). To

gain insight into how cognitive aids can help students understand scientific graphs,

Mautone adopted the extended SOI model proposed by Mayer (2003) in their study

(Mautone & Mayer, 2007). This study measured the effectiveness of scaffolding

techniques in graph comprehension and empirically validated the proposed model. In

graph comprehension, the cognitive process of organizing corresponds to mentally

building a relation between the multiple variables shown on graphs. The construction of

a relation between a variable on the x-axis to a variable on the y-axis would be an

example of organizing. The cognitive process of integrating corresponds to combining

new knowledge with existing knowledge.

Mautone also adapted cognitive aids like signaling, concrete graphic organizers

and structural graphic organizers, originally proposed for text comprehension, for graph

comprehension. In text comprehension, signaling refers to cues and aids that expose the

prominence in the structure of text without adding new information. It helps highlight

42

key information and makes the relationships among various information items more

visible. Various studies (Loman & Mayer, 1983; Rickards, Fajen, Sullivan, & Gillespie,

1997) have validated the effectiveness of signaling during the process of organizing, by

helping learners form a coherent representation from the selected information. Signals

include the use of highlighting, headings, summaries, outlines, and pointer words.

Advance organizers refer to material presented prior to a text passage, such as a brief

analogy or diagram showing the components of a to-be-explained system, and are

intended to prime or provide prior knowledge of some of the more difficult subject

matter content of the passage. These have been shown to be effective in helping

students comprehend expository text under some conditions. Another type of graphic

organizer, which Mautone referred to as structural graphic organizers, highlights the key

structural relationships shown in the graph, independent of the content. As mentioned

above, in text passages, advance organizers often involve presenting a brief analogous

example prior to presenting the actual text passage. For example, in one study, prior to

reading a passage about how radar works, participants were presented with a brief

diagram depicting how radar waves might be compared to a rubber ball bouncing off of

objects (Mayer R. E., 1983). Structural graphic organizers, such as signaling, are

intended to guide the cognitive process of organizing. They help learners attend to and

interpret important patterns and relationships, which, in turn, help them in

constructing a meaningful understanding of the functional relationships among key

variables in the graphs.

4.2 Proposed Cognitive Model

Based on our literature review and analysis of the shortcomings of existing

research on program debugging, we propose a cognitive model of how multiple

43

representations are used by programmers to comprehend and debug a program within

an IDE for object oriented programming. We co-opted ideas from text and graph

comprehension literature (signaling, advance graphic organizers, organizing and

integrating from the SOI model), the program comprehension literature (notions of

program slice, data structure, function, data and control flow), cognitive processes from

the text and diagram comprehension literature, and representations provided by typical

IDEs (program code, CSDs, UML diagrams, visualizations and dynamic windows) and

integrated these to develop this comprehensive and cohesive model. It is more detailed

than any model of program comprehension and debugging hitherto offered in the

literature. The rest of this section describes components and processes of this model.

There are three main components of the model, as illustrated in Figure 11, are

the following. (a) The type of cognitive aids/ representations used while debugging.

These aids have been categorized on the basis of their information modality,

programming perspective (Romero et al., 2003a) and the cognitive dimensions they

highlight (Green, 1989). (b) The cognitive processes, each of which is either primed by a

cognitive aid or a process that is inherently evoked. (c) The mental representations

derived from the cognitive processes and cognitive aids. The programmer constructs and

manipulates his/her mental representations over the course of interacting with the

programming environment and understanding the information presented. Mautone and

Mayer (2007) took a similar approach in categorizing three components in their graph

comprehension model.

Although in the proposed model the cognitive processes are described in

sequence, we do not believe that the cognitive processes and internal representations

depicted in Figure 11 will always occur in a specific, fixed sequence. The order will differ

based on an individual’s experience in programming, prior knowledge and reasoning.

44

According to Katz and Anderson (1988), a programmer could take two types of

approaches in locating bugs. With forward reasoning, comprehension in particular, we

postulate that the flow of cognitive processes will be as depicted in the model. The

programmer first creates a static mental model based on the static visualizations

presented by the IDE, followed by construction of a dynamic mental model. When the

reasoning is bottom up, also called backward reasoning, bug location commences from

the incorrect behavior of the program, typically from the output, and is traced back to

the origin of the problem. Because this approach requires only partial/opportunistic

program comprehension, the flow of cognitive processes is not predictable. Our research

focuses on debugging strategies when the program is written by someone else, and hence

models explicit program comprehension as well as debugging. We will first discuss the

comprehension model (Figure 11), followed by a variant of this model for debugging

(Figure 12). We view program comprehension as a constructive process, where prior

domain knowledge, information from representations and reasoning skills contribute to

assembling a mental model of the program. What follows is a detailed description of the

various components of our cognitive model.

4.2.1 Cognitive Aids

Different representations help a programmer visualize the program through

different perspectives or information types. For example, some perspectives highlight the

transformations which data elements undergo as they are processed, while others show

the sequence of actions that will occur when the program is executed. Visualizations can

be presented in formats that range from textual to graphical (Romero et al., 2003a).

Two important aspects of a representation are its information modality and

programming perspectives. The first aspect refers to the characteristics, advantages and

45

disadvantages of representations that are propositional and those that are

diagrammatic. The diagrammatic degree of the representation can range from

propositional to purely graphical. This is known as degree of ‘graphicality’ (Cheng,

Lowe, & Scaife, 2001). For example, diagrams, unlike propositional representations,

exploit perceptual processes by grouping relevant information together and therefore

make the search and recognition of information easier. Propositional representations

permit the expression of abstraction or indeterminacy, while diagrams compel the

representation of specific information. On an IDE, program code cannot be considered

as fully propositional because it uses formatting conventions to enhance its

comprehension. Multi-modal external representations are common in IDEs that support

complementary processes. Even though some representations highlight some information

type, it does not mean that other information types are not present or cannot be

derived from it.

The second aspect of a representation is the programming perspective highlighted

by it. Computer programs are information structures that comprise different types of

information, and programming notations usually highlight some of these perspectives at

the cost of obscuring others. It has been established that programs can be looked at

from different perspectives (Pennington, 1987b), and programmers when comprehending

code are able to develop a mental representation that comprises these different

perspectives or information types as well as rich mappings between them (Pennington,

1987a). We propose that multiple external representations provided by IDEs can be

grouped under five categories of cognitive aids: signaling, textual representation,

structural visualization, dynamic visualization and dynamic windows. These cognitive

aids are illustrated on the left side of Figure 11.

46

Figure 11. Cognitive model of multi representational program comprehension

47

Signaling refers to any technique that makes the structure of text more pertinent

by highlighting key information and relationships among segments of text, without

adding new information (Mautone and Mayer, 2001). It includes indentation,

highlighting, formatting (bold, italic, etc.), and the use of color on code or a graphical

representation associated with code. Signaling is intended to help guide the cognitive

process of organizing, during which learners organize selected information into a

coherent representation. Control Structure Diagrams (Figure 11a), which automatically

highlights the structure of code and indents it with graphical notations, is an example of

signaling. It improves the comprehensibility of source code by clearly depicting control

constructs, control paths, and the overall structure of each program unit (Cross II et al.,

1998).

Textual Representation: Source Code – According to (Grubb & Takang, 2003),

“Source code can be divided into program code (which consists of machine-translatable

instructions); and comments (which include human-readable notes and other kinds of

annotations in support of the program code)”. Program code is a sequence of

instructions written to perform a specified task. Although it can be considered as plain

text, there is a degree of graphicality involved in its representation in almost all the

higher level programming languages. It is formatted by extensive tabbing and grouped

as constructs with special characters. This formatting improves the comprehensibility of

code. Studies have shown that program formatting is used in comprehension (Katz &

Anderson, 1987). Comments on the other hand are embedded with program code as

annotations to aid a programmer in understanding the source code.

Textual Representation: Program Output – This refers to the information

produced by the program. This information could be an output in the form of explicit

display on a console, processed data files or influences on the behavior of a dependent

48

program. Early research by (Gould, 1975; Gould & Drogowski, 1974) established that

program output was used by programmers to establish hypothesis of a bug. The

importance of output was further confirmed by Katz and Anderson (1987) and Romero

et al. (2003b) who investigated programmers’ usage of program output on console.

 Structural Visualization is a diagrammatic representation that highlights key

structural relationships independent of content. These help learners attend to and

interpret important patterns and relationships, which, in turn, help them in

constructing a meaningful understanding of the functional relationships among classes in

a project’s architecture. Structural visualizations are intended to guide the cognitive

process of organizing (Mautone and Mayer, 2001). For example, in one study, prior to

reading a passage about how radar works, participants were presented with a brief

diagram depicting how radar waves might be compared to a rubber ball bouncing off of

objects (Mayer R. E., 1983). Radar waves and rubber balls do not share the same

surface features, but the two do share the same structural features: Both bounce off

objects and return, more or less, to the point of origin in a given amount of time.

Unified Modeling Language (UML) class diagrams (Figure 11b) highlight the

relationships between multiple classes in an object oriented programming project by

employing visual modeling. These diagrams visualize a system’s architecture using

design elements such as classes, packages and objects. They also display relationships

such as containment, inheritance, associations and others (Booch et al., 1999). Sequence

diagrams that illustrate the control flow within classes would be another example of a

structural visualization for program comprehension and debugging.

49

Figure 11a UML Diagram Figure 11b Control Structure

Figure 11c Dynamic Data Structure Viewers

Figure 11d Variable Watch

50

Dynamic Visualization is a graphical representation that shows change, e.g., a

diagrammatic representation that shows how underlying data structures are updated as

a programmer steps through a program. With the assistance of such representations, a

programmer can establish relationships between known data structures and the program

under execution, and thus accomplish the cognitive process of integration. Many studies

have conducted research validating the application and effectiveness of dynamic data

structures (Myers, 1983; Baker et al., 1999; Shimomura and Isoda, 1991). An example of

a dynamic visualization is the object viewer (Figure 11c) in jGRASP that provides

structural views of java collections, classes and arrays during debugging (Cross II et al.,

2007). When a class has more than one type of view associated with it, the programmer

can open multiple viewers in order to compare different aspects of the data structure.

Dynamic Windows are representations that highlight the status of various

attributes of a program during execution. The information modality of these

representations is predominantly propositional, but can also be graphical (e.g., table or

histogram). These help a programmer establish a relation between the pre existing

structural representation of a program in short term memory and its current execution

by highlighting control flow and data flow, and hence help the process of integration.

Variable windows, output windows and call stack windows are some examples of

dynamic windows (Romero et al., 2002a). The dynamic window shows a measure of

execution activity and memory for threads, packages, classes, methods or objects. In

Figure 11d, a variable window is shown, which displays the variable state during

program execution. Here, every variable visible at current program state is displayed in

different lines, and if they are complex structures they can be expanded to show their

components. When they expand, their components are shown with an indentation to

51

denote this hierarchical relation. These components, if complex, can in turn be

expanded in a recursive fashion displaying a hierarchical tree.

4.2.2 Mental Representations

During program comprehension, programmers build their own mental

representation of the program to be understood; a mental model. They start by reading

code statements and group these statements until a high-level mental representation of

the program is constructed. Pennington (1987a, b) describes two program abstractions

that are formed by the programmer during comprehension of a structural program: the

program model, which is a low-level abstraction, and the domain model, which is a high

level abstraction. She also describes four basic categories of program information making

up the programmer’s mental representation: elementary operations in the code, control

flow, data flow and program goals. Burkhardt et al. (1997) further extended this model

to account for object oriented programs. They added information about objects as well

as the relationships among objects to the situational/domain model. Information about

objects and goals represents the static aspects of the program, whereas information

about data-flow and class dependence represents more dynamic aspects of the program.

The proposed model postulates that there are two categories of mental models

constructed by the programmer during comprehension, namely static and dynamic

models. Each of these include further sub constructs of mental representations that

correspond to program specific information. The sub constructs are either primed by

the cognitive aids or are generated from the problem statement during the cognitive

process of organizing. The usage of these sub constructs is completely dependent on a

programmer’s expertise, the task and the development of understanding over time

52

(Burkhardt et al., 1997). Also, some of these information types might dominate the

mental representations (Pennington, 1987b).

According to our cognitive model, during program comprehension, programmers

build a static mental model of the program from the program code and problem

statement, and any signaling and static visualizations that may be provided by the IDE

they are using, through the cognitive process of organizing. The static model represents

the static aspects of a program and consists of the following sub constructs.

Static Slice of a program consists of all statements that may directly or indirectly

affect the value of a variable at some point in the program (Weiser, 1984). Building a

static slice requires finding all statements that could influence the value of the variable

for any input, not just the statements that did affect its value for the current input

(this is the Dynamic Slice as explained later). Static slices are identified by finding

consecutive sets of indirectly relevant statements, according to data and control

dependencies. Signaling can prime static slices by emphasizing program control

structures and constructs (e.g., CSDs, see Cross II et al., 1998).

Static Data Structure is a data structure that does not change within the scope of

the program (Guzdial and Ericson, 2010). Examples are class hierarchies of a software

project and array structures. These data structures are easily identifiable using cognitive

aids like a structural visualization.

Control Flow refers to the order in which the individual statements, instructions,

or function calls of a program are executed or evaluated. Signaling aids, as mentioned

earlier, clearly depict control constructs, control paths, and the overall structure of each

program unit. This knowledge of control would be local to the program for an object

oriented program (Corritone and Wiedenbeck, 1998) and be limited to sequence,

branching and iteration. Hence, a programmer’s view of control flow in his static mental

53

model is fragmentary, as dynamic aspects (data structure transformations,

function/method calls, etc.) are not depicted by signaling aids and not represented in

the static mental model. This view becomes cohesive when dynamic information is also

incorporated into the programmer's internal representation of control flow during the

building of the dynamic mental model. This is explained later.

Data Flow represents transformations that data elements undergo as they are

executed in a program (Pennington, 1987b). Data flow analysis does not imply

execution of the program under analysis (incorporation of information about program

execution into the programmer's internal representation of data flow is explained later).

Instead, the program is scanned in a systematic way and information about the use of

variables is collected so that certain inferences can be made about the effect of these at

other points of the program. This is often a difficult task because of data

transformations which occur in delocalized plans (Soloway et al., 1988), i.e. plans whose

elements are not physically contiguous but rather spread throughout the program text.

Partial data flow is detected by the programmer through static analysis of the text of a

program. Corritore and Wiedenbeck (1999) extended this knowledge of data flow to

object oriented programming by including cases where (1) effects of one variable on

another occurring either in the same program module or across module boundaries, and

(2) how complex data structures are modified.

Control Structure represents the control constructs, control paths, and the overall

structure of each program unit in a programming language. Modern programming

languages examples of a control structure would be sequence, selection, iteration, exits

and exception handling.

According to our cognitive model, during program comprehension, programmers

build a dynamic mental model of the program from the program logic that they inferred

54

during the building of the static mental model, and any dynamic visualizations and

dynamic windows that may be available in the IDE they are using, through the

cognitive process of integrating. The dynamic model represents the communication

between object instances at a high level of granularity and the communication between

variables at a fine level of granularity. These relationships trace the delocalized plans

and the local plans involved in the problem solution as implemented by the program.

This model is generated by inferring and integrating the dynamic behaviors of

individual program constructs. The generation of the dynamic model is aided by

dynamic visualizations and/or dynamic windows. It consists of the following sub

constructs.

Function refers to what the program does and is an important information

paradigm in object oriented programming (Wiedenbeck & Ramalingam, 1999; Corritore

& Wiedenbeck, 1999). Program execution is the main source of information about

function. This is not fine grained enough for programmers to understand/debug

programs. The required fine granularity is offered by debugging tools that allow line by

line execution in synchrony with dynamic windows like output window or variable

window. Output window, for example, displays error messages and exceptions in textual

form during a program’s step by step execution.

Dynamic Data Structure is a data structure that changes within the scope of the

program. In an object-oriented program, it is a representation of the way objects

execute their methods, representing the dynamic aspects of program execution (Guzdial

and Ericson, 2010). In an object oriented environment, graphical representations are

often used to display the data structure information. For instance, viewers in jGRASP

present structural views of java collections classes. Some IDE’s provide a propositional

55

representation of dynamic data structure, by displaying variable watch windows. If the

variables are complex structures, they could be expanded to show their elements.

Dynamic Slice is a representation that contains all statements that actually affect

the value of a variable at a program point for a particular execution of the program

(Agrawal & Horgan, 1990). This is in contrast to all statements that could potentially

affect the value of a variable at a program point for any arbitrary execution of the

program (this is the Static Slice as explained earlier). This information for a variable

can be extracted through step by step execution of the program and viewing the results

synchronously in a dynamic window like the variable watch window. Agrawal and

Horgan (1990) suggested that while debugging a program we try to find the dynamic

slice of the program.

Control Flow concerns the sequence of actions that will occur when the program

is executed, and the transformations that data elements undergo as they are processed

(Pennington, 1987b). One common representation of control flow that most IDEs

provide is the call stack browser. For example, the IDE VBCCE has a locals window

with call stack browser along with other extensive debugging facilities. These windows

present a list of threads/methods that, similar to the complex variables in the watch

window, can be expanded to show the associated methods. In some IDE’s this

information is presented as a tree whose nodes are the methods executed and the

parent-child hierarchical relation is determined by the program’s calling sequence.

Through the use of dynamic visualizations and windows provided by an IDE, the

programmer’s fragmentary view of control flow in his static mental model becomes

cohesive with the inclusion of dynamic aspects.

Data Flow focuses on the dynamic aspect of threading data objects through the

execution of the program (Pennington, 1987b). The internal data flow representation

56

built as part of the static model is enriched with the incorporation of information about

program execution gleaned from dynamic visualizations and windows. Some dynamic

windows show the path that data objects traverse as the program executes by showing

lines joining variables within nested methods, e.g, Prograph (Matwin and Pietrzykowski,

1984).

4.2.3 Cognitive Process Flow

The Problem Statement is regarded as text from which the programmer must

glean propositional and situational information and make critical inferences (Nathan,

Kintsch, & Young, 1992). In programming, this statement is the specification of the

program, i.e., what it is intended to accomplish. This need not be textual but can also

be either verbal or pictorial, or a combination of both. The expected behavior of the

program is derived based on the problem statement. When designing and coding, all the

information is derived from problem statement, whereas when debugging or

comprehending code written by someone else, equal information is derived from program

code and problem statement (Gilmore, 1991).

Organization - When presented with a problem statement and program code, the

programmer analyzes the code by identifying basic components of the program such as

smaller chunks of code called static slices (Weiser, 1984), static data structures, and

data and control flow of the program, and builds a static mental model. This process is

facilitated by cognitive aids such as source code, structural visualizations, and signaling.

This is analogous to the cognitive process of diagram decomposition (Narayanan &

Hegarty, 1998). Mayer’s (2003) selecting-organizing-integrating (SOI) model of text

comprehension includes a similar process called organizing, in which relevant surface

level information is combined into a coherent structure in working memory.

57

Determination of logic and data flow dependencies. During the building of the

static mental model, two types of representational connections are established.

(a) Connections to prior knowledge. Narayanan & Hegarty (1998) proposed that

during diagram comprehension a viewer identifies the components of the depicted

machine and establishes relationships with his/her real world knowledge in the domain.

For example, the viewer might represent that a circle in the diagram denotes a wheel

and associate this with his/her prior knowledge about wheels. In the context of our

model, structural visualizations like UML diagrams that depict the relationships and

dependencies among classes aid in establishing connections to prior knowledge that the

programmer has. For example, if a program is specific to a book repository, then the

class diagram helps establish connections to real world knowledge about organizing

books.

(b) Connections to representations of other program segments. Second, the user

must represent the logical relations (i.e., relations regarding data and control flow)

among different program components by building mental connections that encode these

logical relationships among his/her internal representations of multiple program modules

or classes. Cognitive aids help programmers establish such connections. For instance,

CSD, a signaling aid, helps establish this by providing explicit visual information about

control constructs and control paths to allow the programmer to establish relationships

among different components of the same program. This corresponds to the step of

establishing connections that encode spatial relations among components of a machine

in the cognitive model of Narayanan & Hegarty (1998).

For machine diagram comprehension, this encoded knowledge of spatial relations

aids in guiding the viewer's reasoning process along the chain of causality (called "lines

of action") in the operation of the machine (Hegarty, 1992; Narayanan & Hegarty,

58

1998). Similarly, we postulate that the encoded knowledge of logical relations among

program components resulting from the above step facilitates a reasoning process for

logic flow and data dependence, through which the programmer determines the "logical

lines of action" in the code. This reasoning process of the programmer is termed

"determination of logic flow and data dependence in program code" in Figure 11. It

helps reduce the mental computation required for predicting a program’s behavior while

creating the dynamic mental model. For example, the programmer might predict the

change in attribute values of an object during the execution of a method.

Integration - Based on the static mental representation and determination of logic

flow, the programmer now creates a dynamic mental model. This last and final step,

termed integrating (Mautone et. al., 2007), involves constructing a dynamic mental

model of the program by inferring and integrating the dynamic behaviors of individual

program components. Narayanan and Hegarty’s cognitive model of text and diagram

comprehension (1998) includes a similar stage. Program perspectives like function,

dynamic data structure, data flow and dynamic slice emerge during this incremental

process. It involves constant restructuring of the mental representations by

hypothesizing a module’s logic and validating its operation, leading up to an integrated

representation of the dynamic aspects of program execution. During this iterative

process, relationships between the existing static model and internal dynamic

representations are established by stepping through the program execution with the

assistance of cognitive aids like dynamic visualizations and windows. Narayanan and

Hegarty (1998) argued that referential connections are crucial, during text and diagram

comprehension, to constructing an integrated internal representation of the common

referent of text and diagram in memory as opposed to separate representations of the

text and diagram. This applies to program comprehension as well, given that multiple

59

representations (e.g., a snippet of code and data structure visualization) could represent

the same entity and hence their internal coordination is vital. Thus, we propose that

program comprehension results in a dynamic mental model of program execution.

Building on this model of program comprehension, we now propose a cognitive

model for program debugging with forward reasoning (Figure 12). This extended

cognitive model introduces a new mental model called Posit Dynamic Mental Model and

a cognitive process called Hypothesis Testing.

Posit Dynamic Mental Model – The program comprehension process described

above produces a dynamic mental model that captures the dynamic aspects of program

execution. If the program executes correctly, this mental model, which is in part derived

from external dynamic representations of program execution such as dynamic

visualizations and windows, correctly captures both static and dynamic aspects of the

program that is comprehended. However, if the program is buggy, the execution data it

produces will be erroneous. Therefore, the dynamic mental model created through the

process of integration would be that of an erroneous program. Therefore, we postulate

that the programmer generates two dynamic mental models if he/she is engaged in

debugging as opposed to just program comprehension. One is the dynamic mental model

described previously, which encodes the erroneous execution of the program. In

addition, the programmer would generate a second dynamic mental model of the

expected (correct) behavior of the program from his/her static mental model and

determination of logic flow and data dependencies. This dynamic model, which we call

the posit dynamic mental model, would not be based on the external representations of

buggy program execution such as dynamic visualizations or windows. The posit model is

similar to the dynamic mental model in terms of the sub constructs that constitute this

model, but these constructs are predicted or inferred from their counterparts in the

60

static mental model, as opposed to verified from external representations. This model is

later used by the programmer to compare with the dynamic mental model produced

from actual (and buggy) program behavior based on the programmer’s debugging

hypothesis (Hypothesis Testing).

Figure 12. Cognitive model of multi representational program debugging

61

Hypothesis Testing - Hypotheses are key drivers in program understanding and

influence the direction program understanding can take (Mayrhauser and Vans, 1997).

A hypothesis about the program component or behavior causing the bug or error helps

detect the difference between the desired behavior from specification and the behavior

performed by the program. According to Araki et al. (1991), in locating the errors and

grasping their causes, programmers develop hypotheses about the errors and their

causes, and verify or refute these hypotheses by examining the program. During

dynamic analysis, a programmer executes the program with appropriate input data and

examines its behavior and output (Gould and Drongowski, 1974). Many consider

correction of errors found through dynamic analysis to be debugging, and often use

debugging tools to execute dynamic analysis. We propose that during hypothesis

testing, the posit dynamic mental model is compared with the mental model created

from actual program behavior and this leads to either no action or acceptance or

rejection of the hypothesis.

Hypothesis testing would produce several external behaviors, such as stepping

through the program, inspecting dynamic visualizations or windows, etc. The

programmer may also modify the code to achieve the desired program behavior, and

test it by executing it. We expect that the dynamic mental representations will change

after the programmers have made significant modifications to the program over time. In

particular, we expect a convergence between the dynamic mental model and the posit

dynamic mental model. This is similar to a cross referenced or mixed representation

(Pennington, 1987a, b).

Though our model of program comprehension and debugging is derived from

extant research on text, diagram and graph comprehension as well as program

comprehension, its constructs and processes need empirical validation. It is not yet clear

62

how constructs of the different mental representations we have proposed influence the

debugging performance. We also suspect that co-ordination of these multiple

representations is an important expert skill in debugging, and could be a potential

problem for novice programmers. More theoretical and empirical knowledge about the

way these representational systems influence the comprehension and debugging of

computer programs is therefore needed. This leads to a variety of research questions,

only some of which (as explained in the next chapter) are addressed by the present

research:

• Do cognitive aids lead to constructs other than the ones represented in the static

and dynamic models?

• Are all visualizations preferred/used equally by the programmer or is any

visualization preferred more than the others?

• Does the modality and perspective of a representation in the cognitive aids

influence its effectiveness or preference?

• How does the depth and/or accuracy of posit dynamic model affect debugging

performance?

• Are there any particular patterns in representation use, which leads to superior

debugging performance?

• To what extent do programmers use each type of representation?

• Under what circumstances do programmers switch between representations?

• Are graphical representations more helpful to Java programmers (because of the

OO paradigm) than textual ones?

• Are representations that highlight data structures more useful than those that

highlight control-flow for Java debugging?

63

• Do graphical visualizations promote a more judicious representation use than

textual ones for program debugging in a multi-representational IDE?

• Do representation characteristics such as the information type highlighted or its

format (graphical or textual) affect representation use and debugging strategy

employed?

• Is there a relationship between programmers’ cognitive characteristics such as

visual vs. verbal, their level of familiarity with representation formalisms, format

preference and programming experience and their debugging behavior?

• Does higher interactivity with the IDE lead to a better debugging performance ?

• Do participants with a high level of debugging skill interact less with the

visualizations?

• What is the extent to which novices and experts exhibit forward reasoning vs.

backward reasoning in their debugging strategies?.

• How effective are individual IDE representations (e.g. the CSD of jGRASP) in

aiding debugging?

• Is there a difference between the step by step comprehension and debugging

activities of novices and experts? If so, how can our model account for the

differences?

64

CHAPTER 5

SCOPE OF RESEARCH

The cognitive models of program comprehension and debugging pose several

intriguing questions as discussed in the previous chapter. We selected a few of these

questions for experimental investigation using the jGRASP IDE. In this chapter, we

discuss each selected research question and our approach toward data collection and

analysis for answering the question.

Research Question 1: How does the depth of the mental model affect

debugging performance?

According to our cognitive model, while debugging, students first construct a

static mental model of the program, and then during program comprehension stage

derive a dynamic mental model of its execution called the posit dynamic model. This is

followed by the construction of a third mental model representing the buggy program,

which is constructed while interacting with various IDE visualizations. A comparison

between this buggy model and the posit model of expected program behavior allows a

programmer to locate the bugs in a program. The key to a programmer’s performance

while debugging is the depth or strength of the mental models they create. This research

question delves more into establishing a relationship between strength of the mental

model to debugging performance. The independent variable here is the depth of the

model and the dependent variable is the debugging performance. As there is no direct

and complete measure of a programmer’s mental model, questionnaires will be used

65

to measure the depth of knowledge regarding programming constructs (mental

representations) of the program being debugged. For example, the question “what does

node ‘p’ refer to after 3 iterations in the ‘move’ method of the List class?” addresses

knowledge of data flow in the programmer’s dynamic model (see Appendix D for the

complete set of questions). Each response will be scored as either correct or incorrect.

Each correct response will add one point to the total score. In order to measure the

debugging performance of a participant, we will use a scale shown in the Table 5.1.

Time to completion No of Bugs found Performance scale

Before the end of 15 minutes 4 4

End of 15 minutes 3 3

End of 15 minutes 2 2

End of 15 minutes 1 1

End of 15 minutes 0 0

Table 5.1 Debugging performance measurement scale

Pearson correlation (or Spearman correlation) will be used to establish the

correlation between the mental model strength and the debugging performance.

Research Question 2: How is the depth of the mental model built from static

visualizations different from that resulting from the dynamic visualizations?

Expanding further on the previous research question, we will investigate how the

depth of the mental model is affected by availability/use of either dynamic or static

visualizations. This will be achieved by creating two groups of participants, one will be

allowed to use only static visualizations while debugging whereas the other will be

allowed to use only dynamic visualizations. The mental model strength of programmers

66

will be measured at fixed intervals using questions as discussed above. Here,

‘visualization type’ will be the independent variable and mental model strength will be

the dependent variable. A repeated measure ANOVA will be conducted on mental

model strength for the time intervals to answer this question.

Research Question 3: How do the components of the mental model (in terms

of various internal representations/constructs) built from static visualizations

differ from those resulting from dynamic visualizations?

The proposed cognitive model postulates that static visualizations lead to mental

representations or internal constructs static slice, static data structure, control

structure, minimalist control flow and minimalist data flow, and dynamic visualizations

lead to the internal constructs dynamic slice, dynamic data structure, function, control

flow and data flow. In order to answer this question, we have to look at the relationship

between type of cognitive aid and the mental model strength for each mental

representation. The independent variables here are the visualization type and the

internal constructs. The dependent variable is the mental model strength, which will be

measured by the questionnaire discussed earlier. A two-way ANOVA with repeated

measure on one factor will be conducted to determine whether there is a statistically

significant difference between the two visualization types (static and dynamic) in

influencing mental model strength of different internal constructs.

Research Question 4: Is there a difference in the programmers’ usage of static

and the dynamic visualizations? Does this usage difference lead to a

performance difference?

 In order to answer this question, the usage of static and dynamic cognitive aids

(i.e., representations provided by the IDE) by the programmer in the course of

67

debugging has to be measured. We will use eye tracking data for this purpose. Each

type of representation will be marked as an Area-of-Interest (AOI). Dwell time on each

AOI will be a measure of representation usage. A simple independent samples t-test

between two groups with access restricted to either only static or only dynamic

visualizations will be performed. This will be performed for each representation type,

Program Code, Visualization and Output. Further we will look at the difference

between mean fixation duration for each AOI between the two groups. As longer

fixation signifies difficulty in interpretation, this will give us an insight into programmer

behavior in the two groups. Again, a simple independent samples t-test between two

groups for the three AOI’s will be conducted. A t-test comparing the debugging

performance (based on Table 5.1) of the two groups will help answer the second part of

this question.

Research Question 5: Is any representation (cognitive aid) preferred more

than the others?

To answer this question, experiment participants will be given unrestricted access

to all the representations available with the IDE. The question can then be answered in

part by analyzing the visual attention of participants and in part by evaluating

participant’s interview responses. Each visualization will be defined as an AOI. The

visual attention attributes (dependent variable) considered here will be average dwell

time, average fixation count, and visit count for each available representation

(independent variable). Analysis can get fairly complex with multiple AOI’s in question.

Hence, we will be using the table below (Table 5.2) for grouping similar AOI’s into four

categories.

68

AOI Categories Consisting of

Code All classes of the program

Static
Visualization

CSD, UML

Dynamic
Visualization

jGRASP Viewer, Variable Watch
Window, Expression Evaluation Window

Output All textual representations of program
results

Table 5.2 AOI Categories

For each visual attention attribute, we will conduct an ANOVA resulting in

three ANOVA analyses. As a fallback back strategy in case of sparse data where all the

representations are not attended to, we will switch to binomial analysis as observed in

earlier research (Bednarik, 2005).

In addition, qualitative results from interview responses can provide good insight

into representation usage, further substantiating the results. The questions for each

individual participant will be framed based on the strategy employed by him/her during

the debugging session. For example, if a participant was seen to have used jGRASP

viewers a lot, questions on that, such as the following examples, will be asked. Why was

the Viewer used? Why did you think it was appropriate? Was it helpful in the end?

Does the fact that jGRASP viewer shows you real time manipulations help you? Why

did you not use the UML diagram? Why did you choose to use viewer over the variable

window to debug? (See Appendix D1 for the semi-structured interview questions.)

69

Research Question 6: How do programming experience, familiarity with the

IDE and debugging performance influence the strategies employed in

representation use during debugging?

The independent variable here are programming experience, familiarity with IDE and

debugging performance. We will categorize experiment participants under these based

on the criteria summarized in Table 5.3

Independent Variable Categories Criteria

Programming Experience
Novice

Less than 12 months of programming
experience in Java

Expert
More than or equal to 12 months of
programming experience in Java

jGRASP experience
Low

Less than 6 months of experience with
jGRASP IDE

High
Greater than or equal to 6 months of
experience with jGRASP IDE

Debugging Performance
Bad

The programmer was not able to debug
all 3 bugs from the assigned task

Good
The programmer successfully debugged
all 3 bugs from the assigned task

Table 5.3 Independent variable categorization

In order to better understand the strategies of participant programmers, the

dependent variable, the visual patterns of each participant will be coded as character

strings that represent short or long gaze durations on the previously discussed four

categories of AOIs (see Table 5.4).

Character
Representation

Gaze Duration
on AOI (Short)

Character
Representation

Gaze Duration
on AOI (Long)

A Code B Code

70

C Static
Visualization

D Static
Visualization

E Dynamic
Visualization

F Dynamic
Visualization

G Output H Output

Table 5.4 Gaze duration based AOI categorization

Attention on each AOI will be categorized as a short duration gaze if the

duration of each visit to an AOI is lower than a certain threshold value (in ms), it will

otherwise be categorized as a long duration gaze. Thus, we will have eight categories of

visual attention. For example, a string AFG translates to a programmer spending a

short duration of time on code followed by a long duration on a dynamic representation,

further followed by a short duration on output. The string AEAEAEAE…. represents

frequent switching between code and dynamic visualization with short gazes on the two

AOI’s. In order to separate short and long durations, we will use the threshold value of

500ms, since it is known that at least 200 ms are needed for a fixation and more than

one fixation is needed for cognition. Recurring patterns from these sequences will be

algorithmically analyzed to understand the underlying strategies and to answer this

research question.

71

CHAPTER 6

EXPERIMENTAL DESIGN AND PROCEDURE

To test the hypotheses arising out of our research questions, we conducted an

experiment using a remote eye tracker to record the gaze behavior of participants

during a program debugging task aided by multiple representations that the jGRASP

IDE presents. Their gaze behavior and other data provided us with specific knowledge

of how explicit areas of the jGRASP IDE were used by different programmers and how

it influenced their mental model construction and debugging performance.

6.1 METHOD

6.1.1 Participants

The participants in the experiment were graduate and undergraduate students

from the department of Computer Science & Software Engineering at Auburn

University who had a minimum of 6 months programming experience in Java. All

participants were volunteers and received $10 for each hour of their participation. We

recruited 19 participants, 2 female and 17 male, all with normal or corrected vision.

None of them had previously participated in an eye tracking study. Their level of

programming experience varied, ranging from a sophomore in computer science having

taken or currently enrolled in a data structures class to graduate students who had

substantial programming experience, with some who had professional experience in

building enterprise applications in Java. The median and mode of general programming

experience was 1 to 2 years. The median for Java programming experience was 1 to 2

72

years, and the mode was 6 to 12 months. Four of the participants had never worked

with jGRASP before and of those who had prior experience with jGRASP, all but one

participant had used jGRASP for a minimum period ranging 6 - 12 months.

Demographic details of the participants are listed in Appendix A.

6.1.2 Materials and Apparatus

Two short Java programs – string reversal using stacks (program 1) and binary search

on a doubly linked list (program 2) were developed. Program 1 was seeded with 4 bugs

and 3 bugs were introduced in program 2. The errors can be classified as control flow,

data flow, data structure and functional errors. Details of the two programs and bugs

are provided in Appendix B. Participants were notified that there were no syntactical

errors in the program. On execution, the program was designed to display the expected

output and the current output. In addition, a warm up program was used to familiarize

participants with the IDE and the visualizations available with it. The names of the

methods, variables and class names were altered so that recognition of a program and

the underlying data structure based on surface features would be difficult. These

programs were debugged by the participants using the jGRASP IDE, during which their

eye movements were tracked. We used a Tobii T60 XL, a remote and unobtrusive eye

tracker with sampling rate set to 60Hz. This eye tracker was set up in a sound proof

laboratory with consistent fluorescent illumination. Participants were seated

comfortably in an ordinary office chair, facing a twenty four inch TFT widescreen

monitor and maintained a viewing distance of 55-65cm. The screen resolution was set to

1920 x 1200. Tobii Studio™ 2.1 was used for setting up the experiment. The stimuli

sequence was created by combining all the debugging tasks into one jGRASP project.

Tobii Studio™ was also employed to create a holistic view of user behavior during

debugging by integrating data captured from the recording of eye tracking data with

73

user video, screen capture, sound, keystrokes and mouse clicks. During the experiment,

user actions were supervised on a remote computer using Tobii Studio Logger™, which

displayed the test screen with real time gaze data overlay.

6.1.3 Procedure and Design

After becoming familiar with the experiment and signing a consent form, the

participants were given 10 minutes to understand the functionalities of jGRASP IDE.

This was cut short if a participant had prior experience with jGRASP. Following this,

two debugging sessions of 15 minutes each were administered. Prior to each debugging

session, the participant had to pass an automatic eye tracking calibration routine, which

consisted of tracking their eyes as they followed nine points on the computer screen.

This process was repeated if necessary, to achieve good accuracy and precision. Each

session was split into two sections for each of the two programs. Each section consisted

of two phases; first a description of the program to be debugged was presented. Next

the participants were asked to locate the bugs in the code and fix them within a time

limit of 15 minutes.

While debugging the first program, subjects were allowed to use only static or

only dynamic visualizations depending on their grouping. Participants were assigned

program 1 (string reversal using stacks) for debugging. This section of the experiment

was designed to help us answer Research Questions 1, 2 and 3. During this session, a

participant’s mental model strength was measured at regular intervals with a

questionnaire on his/her knowledge of the program constructs. The questionnaire

consisted of 23 questions (see Appendix C) pertaining to program constructs: function,

control flow, program structure, static slice/dynamic slice and control structure. The

questions were objective with the response scored as either correct or incorrect except

for one question on static/dynamic slice that was subjective. The questionnaire was

74

administered after every 5 minutes, leading to 3 measurements after 5 minutes, 10

minutes and either at the end of session or after 15 minutes, whichever came earlier.

The verbal response of a participant to each question was audio-taped and later scored

and tabulated by the researcher. The order of questions was randomized for every

interval to counter learning from the ordering of questions. If a participant fixed all the

bugs within 10 minutes, he/she was administered only two questionnaires.

The same procedure was followed for the second program. First a description of

the program (binary search on a doubly linked list) to be debugged was presented.

Next, the participants were asked to locate the bugs in the code and fix them. For this

program, they were allowed to use any of the visualizations available with the IDE,

which included the dynamic representations and the dynamic windows. The

questionnaire was not administered for this experiment, and students were given 15

continuous minutes to debug the program. On completion of the debugging sessions,

each participant was interviewed based on a semi structured interview protocol (see

Appendix D). In order to counter confounding factors like fatigue, learnability etc., half

of the participants were assigned program 1 first and the other half program 2 first. A

pilot study was first conducted with three volunteers. Minor issues were unearthed

based on volunteer feedback and researcher’s observations. These issues were fixed

before the actual experiment.

For performing gaze analysis, Areas of Interests (AOIs) were defined

corresponding to different visualizations, menu bar, file browser and animation controls

of jGRASP. With the first program, all of the program code was visible to participants

on the screen. Participants who were given only static visualizations did not have to

move any windows and hence the screen AOI’s remained constant throughout (Figure

13).

75

Figure 13. AOI’s defined for Experiment 1 with Static Visualizations

However, for the dynamic visualization group, the AOI’s changed over time due

to the movement of windows by programmers and hence the complete debugging session

was broken down into multiple segments for each participant (see Table 6.1). Each

segment represented a single scene in which all the windows were positioned at fixed

locations on screen. For each instance of a window moved and positioned at a new

location on screen, a new segment was created. Figures 14 and 15 are snapshots of

continuous scenes extracted from one of the debugging sessions for program one and

figure 16 for program two. Gaze data from each of the segments were later combined.

The same approach was taken for debugging program 2 as the windows were moved

around the screen during a session. There were 11 possible AOI’s of interest; Animation

Control, Client Code, Client CSD, Data Structure CSD, Data Structure Code, Dynamic

Window, Eval Window, File Browser, File Menu, Output, and Variable Watch.

76

Table 6.1 Segment wise break up for each participant

Figure 14. AOI’s for Experiment 1 (no Visualization in use)

Figure 15. AOI’s for Experiment 1 (dynamic visualizations in use)

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19
No. of
Segments 7 10 7 5 5 7 7 4 8 2 4 9 11 2 8 11 10 7 11

77

Figure 16. AOI’s for Experiment 2 (dynamic viewer, CSD & variable

watch in use)

For the experiment with program 1, we used a mixed design with one between-subjects

factor (representations available for debugging) and four dependent variables (number

of errors spotted, accumulated fixation time, mean fixation duration, and switching

frequency, as measured by the eye tracker). Specifically, the within subject factor was

static visualizations for one group, and dynamic visualizations for the second group. The

accumulated fixation time is the total time a participant spent during a session fixating

on an area of interest (AOI). For an AOI, all of the fixation durations were added, and

the number was divided by the total fixation count throughout the debugging session,

giving the mean fixation duration. Most of the results were analyzed by performing

either ANOVAs and/or planned paired t-tests. These data analyses and their results are

presented in the next chapter.

78

CHAPTER 7

RESULTS

We now discuss the results of our analyses based on data collected from the

experiments described in Chapter 6.

Research Question 1: How does the depth of the mental model affect

debugging performance?

For this analysis, we tabulated participant scores based on their responses to the

questionnaire at the end of the debugging session, along with their corresponding

performance score (based on table 5.1). Pearson correlation and Spearman correlation

were used to establish the correlation between the mental model strength and the

debugging performance. We first looked at the data collected from all 19 participants.

According to Pearson’s correlation, there was a positive correlation between the two

variables, r(17) = .56, p <.05 with R2 = .31.

Based on Pearson’s correlation, it can be concluded that there was a moderate

correlation between mental model strength and debugging performance. As the depth of

the mental model increased, the debugging performance too increased. The percent of

variability is relatively low with only 31% of debugging performance related to mental

model strength, 69% remains unexplained. We further evaluated the correlation among

these variables for the static and dynamic visualization groups separately. This

correlation between mental model strength and performance was stronger for the

79

dynamic visualization group (r(8) = .66, p <.05) and was statistically significant. The

static visualization group showed a weaker correlation that was not statistically

significant (r(7) = .48, p =.19).

Research Question 2: How is the depth of the mental model built from static

visualizations different from that resulting from the dynamic visualizations?

To evaluate this research question we continue using data from debugging

program 1. As discussed in Chapter 5, the mental model strength was measured at 3

intervals. A repeated measures ANOVA on the difference in mental model strength for

the 3 data collection points (after 5, 10 and 15 minutes) was statistically significant

(F0.05(2,26)=64.52, p<0.001).

Figure 17. Mean mental model strength

The effect size was large, with η2=0.89 and the observed power 1.00. Statistically

significant differences (p<.05) were found between all three pair-wise comparisons of

mental model strength. The interaction between the visualization type (static or

dynamic) and mental model strength was not statistically significant (F0.05(2,26)=6.99,

0

5

10

15

20

25

After 5
minutes

After 1 0
minutes

Final
Measure

M
ea

n
M

en
ta

l
M

od
el

St

re
ng

th

Static

Dynamic

80

ns). For this analysis N=15, as 4 participants completed debugging within 10 minutes

and hence their data was not included in the analysis.

Next, the final mental model strength of all the participants was evaluated.

Although the mean value of mental model strength was higher for the dynamic

visualization group (M=18.6, SD=2.41, N=10) when compared to static visualization

group (M=17.33, SD=2.29, N=9), there was no statistically significant difference in the

mean values t(17)=-1.17, ns).

Research Question 3: How do the components of the mental model (in terms

of various internal representations/constructs) built from static visualizations

differ from those resulting from the dynamic visualizations?

We first computed the mean values for each programming construct at the 3

stages of mental model measurements. As expected the mental model strength increased

for each programming construct as summarized in figure 18.

Figure 18. Mean Value of mental model strength (N = 19)

0

0.2

0.4

0.6

0.8

1

1.2

Function Data
Structure

Control
Flow

Structure Data Flow

5 minutes 10 minutes Final Model

81

This was followed by focusing on individual constructs, leading to 5 different

analyses. A two-way ANOVA with repeated measure on one factor was conducted to

determine whether there was a statistically significant difference between the two

different types of visualizations (static and dynamic visualization) for influencing mental

model strength. This analysis was performed for each of the five programming

constructs that was measured. The independent variable included a between-subjects

variable, the visualization type, and within-subject variable, repeated measures of time.

The dependent variable was the strength of mental model for a programming construct.

An alpha level of .05 was utilized for these analyses.

Figure 19. Average mental model strength - Function

Function – The result of main effect of three measurements of mental model for

function was statistically significant (Wilk’s Lambda), F0.05 (2, 12)=10.4, p<0.05, η2 =.63

and power = 0.96. A large effect size was evident. There was no statistically significant

interaction in the strength of mental model between the visualization type and the

measurement time, F0.05 (2, 12)=2.47, p=.127, η2 =.291 and power = 0.4. Although, there

0

0.2

0.4

0.6

0.8

1

1.2

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l
M

od
el

St

re
ng

th

Static

Dynamic

82

is no statistically significant in mental model strength at these different stages, we

suspect that there is a possibility of reaching statistical significance if N is increased.

This can be derived from the fact that the power is low and Partial Eta Square is

strong. Perhaps, ceiling effect is also a factor in the final stage, as the measurement

reached the maximum in the second measurement for the dynamic visualization group

and remained at that level through the final stage. Although the mean value of the

measurement for the dynamic group was higher than the static group at all three

stages, there was no statistically significant main effect in the visualization type either,

F0.05 (1, 13)=1.93, p=.129, η2 =.13 and power = 0.25, which was indicative of a moderate

to large effect size.

Figure 20. Average mental model strength – Data Structure

Data Structure – Here again the result of main effect of three measurements of mental

model for function was statistically significant (based on Wilk’s Lambda), F0.05 (2,

12)=28.35, p<0.001, η2 =.83 and power = 1.0. A large effect size was evident. There was

no statistically significant interaction in the strength of mental model between the

0

0.2

0.4

0.6

0.8

1

1.2

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l
M

od
el

St

re
ng

th

Static

Dynamic

83

visualization type and the measurement time, F0.05 (2, 12)=1.98, p=.18, η2 =.25 and power

= 0.33. Here again, there is no statistically significant difference in mental model

strength at these different stages, and we suspect that there is a possibility of reaching

statistical significance if N is increased, given that the power is low and Partial Eta

Square is strong. There was no statistically significant main effect in the visualization

type either, F0.05 (1, 13)=2.8, p=.12, η2 =.18 and power = 0.34, which was indicative of a

moderate to large effect size, but it was found that the mean score for mental model

strength of dynamic group was consistently higher than static group at all three stages.

Figure 21. Average mental model strength – Control Flow

Control Flow – Here again the result of main effect of three measurements of mental

model for function was statistically significant (based on Wilk’s Lambda), F0.05 (2,

12)=15.85, p<0.001, η2 =.73 and power = 0.99. A large effect size was evident. There

was no statistically significant interaction in the strength of mental model between the

visualization type and the measurement time, F0.05 (2, 12)=.361, p=0.7, η2 =.05 and power

= 0.1. The mental model strength for static group was consistently higher than dynamic

group at all three stages, but there was no statistically significant main effect in the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l
M

od
el

St

re
ng

th

Static

Dynamic

84

visualization type either, F0.05 (1, 13)=.32, p=.58, η2 =.02 and power = 0.08, which was

indicative of a small effect size.

Figure 22. Average mental model strength - Structure

Structure – Here again the result of main effect of three measurements of mental model

for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 12)=14.93,

p<0.05, η2 =.71 and power = 0.99. A large effect size was evident. There was no

statistically significant interaction in the strength of mental model between the

visualization type and the measurement time, F0.05 (2, 12)=.5, p=0.62, η2 =.08 and power

= 0.11. There was no statistically significant main effect in the visualization type either,

F0.05 (1, 13)=.06, p=.81, η2 =.004 and power = 0.06. The mental model strength for the

two groups fluctuated and no consistency was found.

0

0.2

0.4

0.6

0.8

1

1.2

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l
M

od
el

St

re
ng

th

Static

Dynamic

85

Figure 23. Average mental model strength – Data Flow

Data Flow – Here again the result of main effect of three measurements of mental model

for function was statistically significant (based on Wilk’s Lambda), F0.05 (2, 12)=11.6,

p<0.05, η2 =.66 and power = 0.97. A large effect size was evident. There was no

statistically significant interaction in the strength of mental model between the

visualization type and the measurement time, F0.05 (2, 12)=.01, p=0.99, η2 =.002 and power

= 0.05. Although the mental model for static group was consistently higher than the

dynamic group at all three stages, there was no statistically significant main effect in

the visualization type either, F0.05 (1, 13)=.38, p=.55, η2 =.03 and power = 0.09, which was

indicative of a small effect size.

Research Question 4: Is there a difference in the programmers’ usage of static
and the dynamic visualizations? Does this usage difference lead to a
performance difference?

An independent-samples t-test was conducted to compare Dwell Time under

static and dynamic conditions. This was performed for three different AOIs: code,

visualization and output. There was no statistically significant difference in the dwell

0

0.2

0.4

0.6

0.8

1

1.2

After 5 minutes After 10 minutes Final

A
ve

ra
ge

 M
en

ta
l
M

od
el

St

re
ng

th

Static

Dynamic

86

time for code between Static Visualization (M=51.32, SD=2.82) and Dynamic

visualization (M=50.13, SD=5.87) conditions; t(17)=.55, p = 0.59. Likewise no

statistically significant difference was found for output between Static Visualization

(M=3.70, SD=1.63) and Dynamic visualization (M=4.28, SD=1.63) conditions; t(17)=-

0.75, p = 0.46.

Figure 24. Average Dwell Time per minute

There was a statistically significant difference in the dwell time for visualization

between Static Visualization (M=1.41, SD=.57) and Dynamic visualization (M=6.24,

SD=3.02) conditions; t(17)=-4.72, p <.001.

An independent-samples t-test was conducted to compare Fixation counts under

the static and dynamic conditions. This was performed for the same three AOIs. There

was no statistically significant difference in the average fixation count for code between

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Program Code Visualization Output

A
ve

ra
ge

 D
w

el
l T

im
e

pe
r

M
in

ut
e

Dynamic Visualization Static Visualization

87

Static Visualization (M=121.04, SD=9.75) and Dynamic visualization (M=122.49,

SD=17.3) conditions; t(17)=-0.22, p = 0.83. Likewise no statistically significant

difference was found for output between Static Visualization (M=9.83, SD=5.46) and

Dynamic visualization (M=11.97, SD=3.92) conditions; t(17)=-0.96, p = 0.35.

Figure 25. Average Fixation Count per minute

There was a statistically significant difference in the dwell time for visualization

between Static Visualization (M=4.45, SD=1.39) and Dynamic visualization (M=14.68,

SD=7.75) conditions; t(17)=-3.90, p <.05.

A t-test found that there was no statistically significant difference in debugging

performance between Static Visualization (M=2.56, SD=1.67) and Dynamic

visualization (M=2.80, SD=1.31) conditions; t(17)=-.357, p =.726.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

Program Code Visualization Output

A
ve

ra
ge

 F
ix

at
io

n
C

ou
nt

 p
er

 M
in

ut
e

Dynamic Visualization Static Visualization

88

Research Question 5: Is any representation (cognitive aid) preferred more
than the others?

Data collected from debugging Program 2 was used for analysis here. Of the 11 AOIs

possible in this experiment, 8 were of interest here as each of these 8 denoted a different

kind of representation. Analysis was performed for representation use with three

different visual attributes, Fixation Count, Dwell Time and Visit Count.

Figure 26. Mean Fixation Counts per Minute

Fixation Count

Mean fixation count per minute for each of the eight representations in use was used for

analysis. The one-way ANOVA revealed that the difference in preference of

representations was statistically significant across the eight AOI’s, F0.05 (7, 144)= 107.95,

p<.001.

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code (M =

71.92, SD=11.3, 95% CI [66.45, 77.38]) received significantly higher preference ratings

-20
-10

0
10
20
30
40
50
60
70
80
90

M
ea

n
F
ix

at
io

n
C

ou
nt

pe
r

m
in

ut
e

89

than the data structure code (M = 32.47, SD=18.1, 95% CI [23.73, 41.22]), followed by

dynamic viewer (M = 21.46, SD=14.14, 95% CI [14.65, 28.28]), program output (M =

17.41, SD=9.59, 95% CI [12.79, 22.04]) and the other 4 representations.

Figure 27. Mean Dwell Time per Minute

Dwell Time

Mean Dwell Time per minute for each of the eight representations in use was used for

analysis. One-way ANOVA revealed that the difference in preference of representations

was statistically significant across the eight AOI’s, F0.05 (7, 144)= 114.93, p<.001.

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code

(M = 44.51, SD=6.34, 95% CI [41.45, 47.56]) received significantly higher preference

ratings than the data structure code (M = 21.6, SD=11.19, 95% CI [16.24, 27.02]),

followed by dynamic viewer (M = 13.63, SD=8.72, 95% CI [9.42, 17.8]), program

output (M = 9.05, SD=4.7, 95% CI [6.78, 11.31]) and the other 4 representations. Pair

-5

0

5

10

15

20

25

30

35

M
ea

n
D

w
el

l
T

im
e

pe
r

m
in

ut
e

90

wise comparison for data structure code too, was significantly different with all other

representations.

Figure 28. Mean Visit Count per Minute

Visit Count

Mean fixation count per minute for each of the eight representations in use was used for

analysis. One-way ANOVA revealed that the difference in preference of representations

was statistically significant across the eight AOI’s, F0.05 (7, 144)= 43.55, p<.001.

Scheffe’s post-hoc comparisons of the eight groups indicate that the client code (M =

8.8, SD=2.15, 95% CI [7.84, 9.92]) received significantly higher preference ratings than

the data structure code (M = 4.67, SD=2.56, 95% CI [3.44, 5.91]), followed by dynamic

viewer (M = 4.41, SD=2.71, 95% CI [3.1, 5.72]), variable watch (M = 3.26, SD=1.91,

95% CI [2.33, 4.19]) and the other 4 representations.

-2

0

2

4

6

8

10

12
M

ea
n

V
is

it
 C

ou
nt

 p
er

 m
in

ut
e

91

In order to simplify the analysis, we combined the AOI’s into four main

categories (see table 5.4), ignoring the miscellaneous category. We then conducted a one

way ANOVA on the four groups and found the difference to be statistically significant

for all three visual attributes; fixation count(F0.05 (3, 72)= 184.1, p<.001), dwell time(F0.05 (3,

72)= 316.5, p<.001) and visit count(F0.05 (3, 72)= 69.81, p<.001). Scheffe’s post hoc pair

wise comparison test too resulted in a statistically significant difference (with p<.05)

between all four groups for each of the three visual attributes. The only exception was

the difference in Visit Count between Static Visualization and Output with p=0.617.

Figure 29. Mean Fixation Count (4 AOI’s)

Figure 30. Mean Dwell Time (4 AOI’s)

Code
Static

Visualiza
tion

Dynamic
Visualiza

tion
Output

Fixation Count 104.38839711.66592264632.6255186117.41380371

-50

0

50

100

150

F
ix

at
io

n
C

ou
nt

Code
Static

Visualizat
ion

Dynamic
Visualizat

ion
Output

Dwell Time 39.68177019 0.597653129 12.73444275 5.427425718

-20
-10

0
10
20
30
40
50
60

T
im

e
(i

n
m

ill
is

ec
on

ds
)

92

Figure 31. Mean Visit Count (4 AOI’s)

Research Question 6: How do programming experience, familiarity with IDE
and debugging performance influence the strategies employed in visualization
use during debugging?

A utility program was developed to process the raw data collected from our

experiments, and based on the desired attributes (such as gaze duration, AOI

dimensions etc) the program generated a visual pattern sequence representing attention

switches from one AOI to another. Once the visual pattern for all 19 participants was

known, Sequential PAttern Mining (SPAM) algorithm (Ayres et al., 2002) was applied

on these patterns to mine the frequently occurring visual pattern sequences. This was of

importance as there are many different combinations of possible switches between the

AOI’s. SPAM, developed at Cornell, can be used for finding all frequent sequences

within a transactional database. The algorithm is especially efficient when the sequential

patterns in the database are very long. A depth-first search strategy is used to generate

candidate sequences, and various pruning mechanisms are implemented to reduce the

search space. The visual pattern of each participant was converted to a representation

resembling a transactional database record. This format was created as a text file and

Code
Static

Visualizat
ion

Dynamic
Visualizat

ion
Output

Visit Count 13.55813415 1.393688811 8.137703689 2.660128098

-5
0
5

10
15
20

V
is

it
 C

ou
nt

93

then processed by SPAM to generate recurring patterns from this data set. As the

SPAM algorithm produces only the recurring patterns and not their frequency, the

utility program was used to perform a frequency count for these patterns for each

participant’s pattern. This operation was performed for multiple configurations of AOIs

that we were interested in.

In the first approach, the string based visual pattern (discussed in Chapter 5)

consisting of 4 AOI’s of our interest (Code, Static Visualization, Dynamic Visualization

and Output) was generated. Based on the results generated from SPAM and follow up

frequency count, the visual patterns listed in Table 7.1 and shown in Figure 32 were

prominent. The table lists the visual patterns sorted by their frequency of appearance,

with Visual Pattern 1 being the most frequently occurring pattern.

Visual Pattern 1 Visual attention to Code followed by Dynamic Visualization

Visual Pattern 2 Visual attention to Code followed by Output

Visual Pattern 3 Visual attention to Code followed by Static Visualization

Visual Pattern 4 Visual attention to Dynamic Visualization followed by Output

Visual Pattern 5
Visual attention to Code followed by Dynamic Visualization
followed by Output

Visual Pattern 6
Visual attention to Static Visualization followed by Dynamic
Visualization

Table 7.1 Visual Pattern sorted by frequency of appearance (4 AOI’s)

94

Figure 32. Mean Frequency Count of Visual Patterns (4 AOI’s)

We further separated the grouped visualizations into individual AOIs, which lead

to 6 AOI’s of interest (Code, CSD, Variable Watch, Dynamic Viewer, Evaluation

Window and Output). Static visualization was equivalent to just CSD as none of the

participants used any other static visualization while debugging program two. The same

procedure as the previous step was followed to generate all possible visual patterns and

their frequencies. Based on the results, the visual patterns listed in Table 7.2 and

illustrated in Figure 33 were prominent. The table lists out the visual patterns sorted by

their frequency of appearance, with Visual Pattern 1 being the most frequently

occurring pattern.

Visual Pattern 1 Visual attention to Code followed by Variable Watch

Visual Pattern 2 Visual attention to Code followed by Dynamic Window

Visual Pattern 3 Visual attention to Code followed by Output

0

10

20

30

40

50

60

70

80

 Code - Static
Visualization

Code -
Dynamic

Visualization

Code -
Dynamic

Visualization
- Output

Code -
Output

Static
Visualization
- Dynamic

Visualization

Dynamic
Visualization

- Output

M
ea

n
F
rq

ue
nc

y
C

ou
nt

95

Visual Pattern 4 Visual attention to Code followed by CSD

Visual Pattern 5 Visual attention to Variable Watch followed by Dynamic Window

Visual Pattern 6 Visual attention to Variable Watch followed by Output

Visual Pattern 7 Visual attention to Code followed by Evaluation Window

Visual Pattern 8
Visual attention to Code followed by Variable Watch followed by
Dynamic Window

Visual Pattern 9 Visual attention to Output followed by Dynamic Window

Table 7.2 Visual Pattern sorted by frequency of appearance (6 AOI’s)

Figure 33. Mean frequency of Visual Patterns (6 AOI’s)

Visual Pattern 1 Short Gaze on Code followed by Short Gaze on Static Visualization

Visual Pattern 2
Short Gaze on Code followed by Short Gaze on Static Visualization
and then Short Gaze on Dynamic Visualization

Visual Pattern 3
Short Gaze on Code followed by Short Gaze on Dynamic
Visualization

Visual Pattern 4
Short Gaze on Code followed by Short Gaze on Dynamic
Visualization and then Short Gaze on Output

Visual Pattern 5 Short Gaze on Code followed by Short Gaze on Output

0
5

10
15
20
25
30
35
40
45
50

P
at

te
rn

 F
re

qu
en

cy

96

Visual Pattern 6
Long Gaze on Code followed by Short Gaze on Dynamic
Visualization

Visual Pattern 7 Long Gaze on Code followed by Short Gaze on Output

Visual Pattern 8
Short Gaze on Static Visualization followed by Short Gaze on
Dynamic Visualization

Visual Pattern 9
Short Gaze on Dynamic Visualization followed by Short Gaze on
Output

Table 7.3 Visual Pattern sorted by frequency of appearance (8 AOI’s)

This was followed by a finer analysis of patterns based on their gaze durations as

discussed in Chapter 5. See Table 5.1 for more details. Patterns which emerged from

this analysis were sorted by frequency and are listed in Table 7.3.

A frequency count of the patterns was performed and plotted against time. This

is summarized in Appendix E 2.5. Outlined in Figure 6.6 is a representation mean

frequency of three prominent patterns (Visual Pattern 1, 2 & 3) observed among all the

participants over the period of the complete experiment. The vertical axis represents the

frequency count of the pattern and the horizontal axis represents the time, with each

data point representing a 15 second interval.

Figure 34. Timeline of 3 prominent visual patterns

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Short Code followed by Short Static Vizualization

Short Code followed by Short Dynamic Vizualization

Short Code followed by Short Output

97

In addition to this, we investigated differences in visual strategies of participants

based on three Independent Variables, namely programming experience, familiarity with

jGRASP and debugging performance.

Based on Programming Experience

15
Minute
Interval

Pattern Novice Programmer Expert Programmer

13

15.11 10.80

15

59.67 71.80

17

22.11 15.10

25

4.00 6.20

27

5.33 4.40

57

7.67 6.20
 Novice Programmer Expert Programmer

5
Minute
Interval

Int.1 Int.2 Int.3 Int.1 Int.2 Int.3

13

7.33 4.89 3.556 6.3 1.9 2.9

15

13.6 20 24.11 15.8 26.5 29.5

157

0.67 1.11 0.667 0.4 0.9 1.1

17

10.9 6.89 5 5 3.8 7.5

27

0.78 1.67 0.778 0.9 1 0.8

57

1.78 4.44 1.556 1 1.7 3.7
 Novice Programmer Expert Programmer

3
Minute
Interval

Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5

13 5.11 3.33 2.78 2.22 2.22 5.30 1.60 0.90 1.60 1.70

15 5.44 10.00 12.22 17.11 12.67 6.40 12.50 19.10 14.00 19.70

17 7.44 5.78 2.78 4.11 2.67 3.90 2.10 1.90 4.70 3.80

27 0.22 1.00 0.89 1.00 0.22 0.50 0.50 0.40 1.00 0.20

57 1.22 1.67 2.11 2.11 0.67 0.40 0.60 0.80 2.40 2.20

Table 7.4 Time based means of pattern frequencies – Programming Experience

The pattern frequencies were calculated for multiple time intervals (5 minute

intervals and 3 minute intervals) and evaluated at the end of the experiment. A t-test

98

was performed to compare the mean frequency of patterns among the two groups. For

the complete course of experiment, there was no statistically significant difference for

any of the visual patterns. Although the visual pattern Short Code followed by Short

Output (t(17) = 2.02 , p=.059) was close to statistical significance, rest of the patterns

were either not statistically significant or had small frequency values.

When we looked at patterns in 5 minute intervals, there was a statistically

significant difference for the visual pattern Short Code followed by Short Output (t(17)

= 2.59 , p<.05) during the first interval. The difference for rest of the patterns were

either not statistically significant different or had small frequency values. On analyzing

the 10 minute intervals, the same visual pattern Short Code followed by Short Output

showed statistically significant difference for both interval one (t(17) = 2.254 , p<.05)

and interval two (t(17) = 2.795, p<.05). Rest of the patterns were either not

statistically significantly different or had small frequency values. A frequency count of

the patterns for each group was performed and plotted against time. Figure 6.6 is a

representation of mean frequency of three prominent patterns (Visual Pattern 1, 2 & 3)

observed among all the participants over the period of the complete experiment. The

vertical axis represents the average frequency count of the pattern and the horizontal

axis represents the time, with each data point representing a 15 second interval.

99

Figure 35. Timeline of 3 prominent visual patterns - Novice Programmers

Figure 36. Timeline of 3 prominent visual patterns - Experienced Programmers

Based on familiarity with jGRASP

For the complete duration of the experiment, a statistically significant difference

was found for the visual pattern Short Code followed by Short Output (t(17) = -3.24,

p<.05). Statistically significant difference was also found for the visual pattern Short

Code followed by Short Dynamic Visualization (t(17) = 2.88, p<.05).

When broken down to 5 minute intervals, there was statistically significant difference

for all 3 intervals for the visual pattern Short Code followed by Short Output. Rest of

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Short Gaze on Code followed by Short Gaze on Static Vizualization

Short Gaze on Code followed by Short Gaze on Dynamic Vizualization

Short Gaze on Code followed by Short Gaze on Output

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Short Gaze on Code followed by Short Gaze on Static Vizualization

Short Gaze on Code followed by Short Gaze on Dynamic Vizualization

Short Gaze on Code followed by Short Gaze on Output

100

the patterns were either not statistically significant or had small frequency values. A

frequency count of the patterns for each group was performed and plotted against time.

Figure 6.6 is a representation of mean frequency of three prominent patterns (Visual

Pattern 1, 2 & 3) observed among all the participants over the period of the complete

experiment. The vertical axis represents the average frequency count of the pattern and

the horizontal axis represents the time, with each data point representing a 15 second

interval.

15
Minute
Interval

Pattern Little or No jGRASP Experience Experienced jGRASP user

13

5.2 15.6

15

96.4 55.2

17

10.2 21.4

25

4.2 5.5

27

4.4 5.0

57

4.4 7.8

 Little or No jGRASP Experience Experienced jGRASP user

5
Minute
Interval

Int.1 Int.2 Int.3 Int.1 Int.2 Int.3

13

1.7 3.7 1.7 7.8 3.3 3.7

15

8.3 37.7 51.7 15.9 20.8 23.8

17

9.7 4.7 2.7 7.4 5.4 7.5

25

0.7 0.3 2.0 0.5 0.8 0.9

27

1.3 0.3 0.7 0.8 1.5 0.9

57

0.3 2.0 1.7 1.6 3.2 3.1

 Little or No jGRASP Experience Experienced jGRASP user

3
Minute
Interval

Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5

13 1.33 1.7 2.0 1.0 1.0 5.94 2.6 1.9 2.2 2.4

15 2.67 8.3 31.0 22.3 33.3 6.56 11.9 13.9 15.1 15.1

17 5.67 6.0 1.0 3.0 1.3 5.56 3.4 2.7 5.0 4.1

27 0.67 0.0 0.3 0.3 1.7 0.06 0.6 0.5 0.5 0.7

57 0.33 0.0 1.3 0.7 1.7 0.88 1.3 1.5 2.7 1.6

Table 7.5 Time based means of pattern frequencies – Experience with jGRASP

101

Figure 37. Timeline of 3 prominent visual patterns - Experience with

jGRASP

Figure 38. Timeline of 3 prominent visual patterns - No or minimal

experience with jGRASP

Based on Debugging Performance

There was no statistically significant difference in the patterns between the two

groups for the complete duration of the experiment. When broken down to 5 minute

intervals, there was a statistically significant difference for the visual pattern Short

Code followed by Short Dynamic Visualization at interval three (t(16) = 3.14, p<.05).

0

1

2

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Short Code followed by Short Static Vizualization

Short Code followed by Short Dynamic Vizualization

Short Code followed by Short Output

0

2

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Short Code followed by Short Static Vizualization

Short Code followed by Short Dynamic Vizualization

Short Code followed by Short Output

102

It was close to statistical significance at interval two (t(17) = 1.96, p=.066). Rest of the

patterns were either not statistically significant or had small frequency values. Likewise

when broken down to 3 minute intervals, there was a statistically significant difference

for the same visual pattern at interval three (t(16) = 3.12, p<.05) and interval five

(t(15) = 2.73, p<.05).

15
Minute
Interval

Pattern Poor Performance Good Performance

13

7.3 13.9

15

99.3 59.8

17

16.0 18.9

25

7.7 4.7

27

4.0 5.0

57

4.0 7.4

 Poor Performance Good Performance

5
Minute
Interval

Int.1 Int.2 Int.3 Int.1 Int.2 Int.3

13

1.7 3.7 1.7 7.8 3.3 3.7

15

8.3 37.7 51.7 15.9 20.8 23.8

17

9.7 4.7 2.7 7.4 5.4 7.5

25

0.7 0.3 2.0 0.5 0.8 0.9

27

1.3 0.3 0.7 0.8 1.5 0.9

57

0.3 2.0 1.7 1.6 3.2 3.1
 Poor Performance Good Performance

3
Minute
Interval

Int.1 Int.2 Int.3 Int.4 Int.5 Int.1 Int.2 Int.3 Int.4 Int.5

13 1.33 1.7 2.0 1.0 1.0 5.94 2.6 1.9 2.2 2.4

15 2.67 8.3 31.0 22.3 33.3 6.56 11.9 13.9 15.1 15.1

17 5.67 6.0 1.0 3.0 1.3 5.56 3.4 2.7 5.0 4.1

25 0.67 0.0 0.3 0.3 1.7 0.06 0.6 0.5 0.5 0.7

57 0.33 0.0 1.3 0.7 1.7 0.88 1.3 1.5 2.7 1.6

Table 7.6 Time based means of pattern frequencies – Based on performance

103

Figure 39. Timeline of 3 prominent visual patterns - Poor Performance

Figure 40. Timeline of 3 prominent visual patterns - Better Performance

A frequency count of the patterns for each group was performed and plotted against
time. Figure 6.6 is a representation of the mean frequency of three prominent patterns
(Visual Pattern 1, 2 & 3) observed among all the participants over the period of the
complete experiment. The vertical axis represents the average frequency count of the
pattern and the horizontal axis represents the time, with each data point representing a
15 second interval.

0

0.5

1

1.5

2

2.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Short Code followed by Short Static Vizualization

Short Code followed by Short Dynamic Vizualization

Short Code followed by Short Output

0

2

4

6

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Short Code followed by Short Static Vizualization

Short Code followed by Short Dynamic Vizualization

Short Code followed by Short Output

104

CHAPTER 8

CONCLUSIONS

The goal of experiment one (to debug program one) was to compare the differences

in the usage pattern of static vs. dynamic visualizations, and to evaluate the differences in

construction of mental model representation of the program between these two

visualization groups. Students were provided codes with multiple logical errors and their

task consisted of locating and correcting the errors using the jGRASP IDE. It was

observed that the group using dynamic visualizations found more bugs on average, but

the difference was not statistically significant when compared to the static visualization

group. Perhaps the smaller number of subjects may have led to this result as similar

studies (Cross et. al. 2009) in the past have found significant performance difference with

much larger number of subjects. The final strength of the mental model for the static

group was weaker than the dynamic group. Although not a statistically significant

difference, this provides evidence in support of our postulate in the proposed cognitive

model that the mental model created by static visualizations is not as extensive as the one

created with support of dynamic visualization. There was also a strong correlation

between the mental model strength and debugging performance for the dynamic

visualization group, which was statistically significant when compared to static group that

showed a weaker correlation and was not statistically significant. The static group used

minimal visualizations and primarily depended on the program code and output, whereas

105

the dynamic group used a significantly higher proportion of dynamic visualization, along

with program output and program code.

On further analysis pertaining to five programming constructs of program one, we

found that the mental strength for Function was stronger for the group with access to

dynamic visualizations when compared to static visualizations. The mean difference was

not statistically significant and perhaps ceiling effect was a cause. Dynamic Data structure

too was consistently higher for the dynamic visualization group at all three stages. On the

contrary, strength of mental model for both control flow and data flow was consistently

stronger for the static group. The comparative growth of program structure was uneven

between the two groups.

The second experiment (debugging program two) gave us new insights into the

visual strategies of programmers. The representations on the IDE received different dwell

times and fixation counts. Consistent with previous studies (Bednarik, et. al., 2006 and

Romero, et. al., 2002a), it was found that source code received the highest attention

followed by dynamic viewer, output and variable watch. This order was slightly different

with respect to visit counts, with variable watch receiving more visits compared to the

output window. In terms of visual patterns, we found that the most common pattern was

the switch between code and variable watch window, followed by code to dynamic viewer,

code to static output and code to CSD.

Novice programmers tended to look at the program output more frequently than

expert programmers. It was also observed that novice programmers used static

visualizations more often in the first 6-9 minutes of their task. Participants with lesser

experience with the jGRASP IDE looked more often at the dynamic visualizations and

less at the program output when compared to participants with more experience in using

jGRASP. Participants who performed better in debugging activity did not perform

106

frequent switches with the dynamic visualizations towards the third part of the session

when compared to poor performers. Poor performers switched more between the dynamic

visualizations and code when compared to participants with good performance. It is

evident here that more usage of dynamic representations did not essentially lead to better

performance. And, excessive usage could actually have been detrimental to the

performance. However, based on the analysis performed it is not clear as to what could be

an optimal usage threshold of dynamic representations for better performance at

debugging.

This thesis hints at several directions that future research might take. The

proposed cognitive model poses some intriguing questions, like how is the posit mental

model compared to the dynamic mental model. Or, how does the strength of each

individual mental model construct influence debugging performance. Some of the results

arising out of this research have direct implication on the design of IDE interfaces. IDE

interfaces should be designed with usability as a prime goal. In the current design of

IDE’s for novice programmers, all the debugging tools are not readily visible. Moreover,

utility and functionality of each component is not evident at the interface. The IDE

should be able to make such functionalities readily available and encourage students to

employ them during program comprehension. IDEs should promote static tools in the

beginning of a programming session to prime structure based knowledge, followed by

promotion of dynamic visualizations in later phases to promote better comprehension.

There is also a potential for designing an intelligent tutoring system for novices that

works in conjunction with a gaze-tracking IDE, which could assist students during

program debugging or comprehension by proposing intelligent suggestions on visualization

use. These are avenues for future research.

107

CUMULATIVE BIBLIOGRAPHY

1. Aaltonen, A., Hyrskykari, A., & Räihä, K.-J. (1998). 101 spots, or how do users read
menus? ACM conference on Human factors in computing systems, (pp. 132-13). New
York, NY, USA.

2. Ainsworth, S. E., Wood, D. J., & O'Malley, C. (1998b). There's more than one way to
solve a problem: Evaluating a learning environment to support the development of
children's multiplication skills. Learning and Instruction , 8 (2), 141-157.

3. Barreto, A., Gao, Y., & Adjouadi, M. (2008). Pupil diameter measurements: untapped
potential to enhance computer interaction for eye tracker users? ACM SIGACCESS
conference on Computers and accessibility, (pp. 269-270). New York, NY, USA.

4. Bednarik, R., & Tukiainen, M. (2006). An eye-tracking methodology for characterizing
Program Comprehension processes. 2006 symposium on Eye tracking research &
applications, (pp. 125-132). New York, NY, USA.

5. Bednarik, R., & Tukiainen, M. (2007b). Validating the restricted focus viewer: A study
using eye-movement tracking. Behavior Research Methods , 39 (2), Behavior Research
Methods.

6. Bednarik, R., Myller, N., Sutinen, E., & Tukiainen, M. (2006). Analyzing Individual
Differences in Program Comprehension. Technology, Instruction, Cognition and Learning ,
3 (3-4), 205-232.

7. Bednarik, R., Myller, N., Sutinen, E., & Tukiainen, M. (2005). Effects of experience on
gaze behaviour during program animation. 17th Annual Psychology of Programming
Interest Group Workshop, (pp. 49-61). Brighton, UK.

8. Biej, H.-J. (2009). Gaze-augmented manual interaction. ACM conference on Human
Factors in Computing Systems, (pp. 3121-3124).

108

9. Blackwell, A., Jansen, A., & Marriott, K. (2000). Restricted Focus Viewer: A Tool for
Tracking Visual Attention. In M. Anderson, P. Cheng, & V. Haarslev, Theory and
Application of Diagrams (pp. 575-588).

10. Brooks, R. (1983). Towards a Theory of the Comprehension of Computer Programs.
International Journal Man-Machine Studies , 18, 543-554.

11. Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Los Angeles: Sage.

12. Carney, R., & Levin, J. (2002). Pictorial Illustrations Still Improve Students' Learning
from Text. Educational Psychology Review , 14 (1), 5-26.

13. Cheng, P.-H., Lowe, R. K., & Scaife, M. (2001). Cognitive Science Approaches to
Understanding Diagrammatic Representations. Artificial Intelligence Rev. , 15, 79-94.

14. Cox, R., & Brna, P. (1995). Analytical reasoning with external representations: Supporting
the stages of selection, construction and use. Journal of Artificail Intelligence in Education
, 6 (2/3), 239-302.

15. Crane, H. D. (1994). The Purkinje image eyetracker, image stabilization, and related forms
of stimulus manipulation. Visual science and engineering: Models and applications , 15-89.

16. Cross, J. H., Hendrix, D., Umphress, D., Barowski, L., Jain, J., & Montgomery, L. (2009).
Robust Generation of Dynamic Data Structure Visualizations with Multiple Interaction
Approaches. ACM Transactions on Computing Education , 9 (2).

17. Cutrell, E., & Guan, Z. (2007). What are you looking for?: an eye-tracking study of
information usage in web search. ACM conference on Human factors in computing
systems, (pp. 407-416). New York, NY, USA.

18. Ducassé, M., & Emde, A. -M. (1988). A review of automated debugging systems:
Knowledge, strategies and techniques. International Conference of Software Engineering,
(pp. 162–171). Singapore.

19. Duchowski, A. (2007). Eye tracking methodology: Theory and practice (Second ed.).
Springer.

20. Gentner, D. (1989). The mechanisms of analogical learning. In S. Vosniadou, & A. Ortony,
Similarity and Analogical Reasoning (pp. 197-241). Cambridge: Cambridge University
Press, England.

109

21. Gernsbacher, M. A., Varner, K. R., & Faust, M. (1990). Investigating differences in
general comprehension skill. Journal of Experimental Psychology: Learning, Memory, and
Cognition (16), 430-445.

22. Gilmore, D. J. (1991). Models of debugging. Acta Psychologica , 78 (1-3), 151-172.

23. Goldberg, H. J., & Kotval, X. P. (1999). Computer interface evaluation using eye
movements: Methods and constructs. International Journal of Industrial Ergonomics , 24,
631-645.

24. Goldberg, J. H., & Kotval, X. P. (1998). Eye-movement based evaluation of the computer
interface. Advances in Occupational Ergonomics and Safety , 529-532.

25. Gould, J. (1975). Some psychological evidence on how people debug computer programs.
International Journal of Man-Machine Studies , 7 (1), 151-182.

26. Graesser, A. C., Millis, K. K., & Zwaan, R. A. (1997). Discourse comprehension. Annu.
Rev.Psychol. (48), 163–189.

27. Green, T. R. (1989). Cognitive dimensions of notations. People and Computers .

28. Grubb, P., & Takang, A. (2003). Software Maintenance: Concepts and Practice.
Singapore: World Scientific Publishing.

29. Jacob, R. J., & Karn, K. S. (2003). Eye tracking in Human-Computer Interaction and
usability research: Ready to deliver the promises. The mind's eye: Cognitive and applied
aspects of eye movement research , 573-605.

30. Johnson-Laird, P. N. (1983). Mental Models: towards a cognitive science of language,
inferences and consciousness. Cambridge: Cambridge University Press.

31. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension:.
Psychological Review (98), 122–149.

32. Katz, I., & Anderson, J. (1987). Debugging: An analysis of bug location strategies.
Human- Computer Interaction , 3 (4), 351–399.

33. Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge: Cambridge
University Press, UK.

34. Kintsch, W. (1988). The Role of Knowledge in Discourse Comprehension: A Construction-
Integration Model. Psychological Review (95), 163-182.

110

35. Kintsch, W., & Van Dijk, T. A. (1975). Comment on se rappelle et on resume des
histoires,. In Langage (40), 98-116.

36. Kumar, M., Paepcke, A., & Winograd, T. (2007). EyePoint: practical pointing and
selection using gaze and keyboard. ACM conference on Human factors in computing
systems, (pp. 421-430). New York, NY, USA.

37. Letovsky, S. (1986). Cognitive Processes in Program Comprehension. Proc. First
Workshop Empirical Studies of Programmers , 58-79.

38. Levie, H. W., & Lentz, R. (1982). Effects of text illustrations: A review of research.
Educ.Commun. Technol. J (30), 195–232.

39. Lewandowsky, S., & Behrens, J. T. (1999). Statistical graphs and maps. Handbook of
applied cognition , 513-549.

40. Littman, D., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental models and software
maintenance. Jouranal of Systems and Software , 7 (4), 341-355.

41. Loman, N. L., & Mayer, R. E. (1983). Signaling techniques that increase the
understandability of expository prose. Journal of Educational Psychology , 75, 402-412.

42. M., C., & J., S. (1989). Subject Differences in the Reading of Computer Algorithms.
Designing and Using Human-Computer Interfaces and Knowledge-Based Systems , 137-
144.

43. Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension.
Journal of Educational Psychology , 99 (3), 640-652.

44. Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI
model for guiding three cognitive processes in knowledge construction. Educational
Psychology Review (8), 357-371.

45. Mayer, R. E. (2001). Multi-media Learning. Cambridge, UK: Cambridge University Press.

46. Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Education
Psychology (32), 1-19.

47. Mayer, R. E. (1983). The elusive search for teachable aspects of problem solving. (J. A.
Glover, & R. R. Ronning, Eds.) Historical foundations of educational psychology , 327–348.

48. Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia
learning. Educational Psychologist (38), 43–52.

111

49. McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., et al.
(2008). Debugging: A review of the literature from an educational perspective. Computer
Science Education , 18 (2), 67-92.

50. Narayanan, H., & Hegarty, M. (1998). On designing comprehensible interactive
hypermedia manuals. International Journal of Human Computer Studies , 48 (2).

51. Narayanan, N. H., & Hegarty, M. (2002). Multimedia design for communication of
dynamic information. International Journal of Human Computer Studies. , 57, 279-315.

52. Nathan, M. J., Kintsch, W., & Young, E. (1992). A Theory of Algebra-Word-Problem
Comprehension and Its Implications for the Design of Learning Environments. Cognition
& Instruction , 9 (4), 329.

53. Nevalainen, S., & Sajaniemi, J. (2004). Comparison of three eye tracking devices in
psychology of programming research. 6th Annual Psychology of Programming Interest
Group, (pp. 170-184). Carlow, Ireland.

54. Nevalainen, S., & Sajaniemi, J. (2005). Short-term effects of graphical versus textual
visualisation of variables on program perception. 17th Annual Psychology of Programming
Interest Group Worskhop, (pp. 77-91).

55. Oberlander, J., Stenning, K., & Cox, R. (1999). Hyperproof: Abstraction, Visual preference
and Modality. Logic, Language and Computation , II, 222-236.

56. Pennington, N. (1987a). Comprehension strategies in programming. Comprehension
strategies in programming , 100-113.

57. Pennington, N. (1987b). Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology , 19, 295-341.

58. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin , 124, 372-422.

59. Rickards, J. P., Fajen, B. R., Sullivan, J. F., & Gillespie, G. (1997). Signaling, notetaking,
and field independence-dependence in text comprehension and recall. Journal of
Educational Psychology , 89 (3), 508-517.

60. Romero, P., Cox, R., du Boulay, B., & Lutz, R. (2003a). A survey of representations
employed in object-oriented programming environments. Journal of Visual Languages and
Computing , 14 (5), 387-419.

112

61. Romero, P., Cox, R., du Boulay, B., & Lutz, R. (2002a). Visual attention and
representation switching during Java program debugging: a study using the Restricted
Focus Viewer. Diagrammatic Representation and Inference : Second International
Conference, Diagrams (pp. 221-235). Callaway Gardens, GA, USA: Springer Verlag.

62. Romero, P., du Boulay, B., Cox, R., & Lutz, R. (2003b). Java debugging strategies in
multirepresentational environments. 15th Annual Workshop of the Psychology of
Programming Interest Group (PPIG). Keele University, UK.

63. Romero, P., Lutz, R., Cox, R., & Du Boulay, B. (2002b). Co-ordination of multiple
external representations during Java program debugging. Empirical Studies of
Programmers symposium of the IEEE Human Centric Computing Languages and
Environments Symposia. Arlington, VA.

64. Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from
multiple representation. Learning and Instruction. (13), 141–156.

65. Schnotz, W., & Bannert, M. (1999). Support and interference effects in learning from
multiple representations. European Conference on Cognitive Science , 447-452.

66. Shah, P., & Carpenter, P. (1995). Conceptual limitations in comprehending line graphs.
Journal of Experimental Psychology , 124, 337-370.

67. Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for
instruction. Educational Psychology Review , 14 (1), 47-69.

68. Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction.
Journal of Educational Psychology , 91, 690-702.

69. Shneiderman, B., & Mayer, R. (1979). Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results. International Journal of Computer and
Information Sciences , 8 (3), 219-238.

70. Sime, J. (1996). An investigation into teaching and assesment of qualitative knowledge in
engineering. European Conference on Artificial Intelligence on Education , 240-246.

71. Soloway, E., Adelson, B., & Ehrlich, K. (1988). Knowledge and Processes in the
Comprehension of Computer Programs. The Nature of Expertise , 129-152.

72. Soloway, E., Lampert, R., Letovsky, S., Littman, D., & Pinto, J. (1988, November 31).
Designing documentation to compensate for delocalized plans. Communications ACM , pp.
1259-1267.

113

73. Stasko, J. T., Domingue, J. B., Brown, M. H., & Price, B. A. (1998). Software
Visualization. MIT Press.

74. Steptoe, W., Wolff, R., Murgia, A., Guimaraes, E., Rae, J., Sharkey, P., et al. (2008). Eye-
tracking for avatar eye-gaze and interactional analysis in immersive collaborative virtual
environments. ACM conference on Computer supported cooperative work, (pp. 197-200).
New York, NY, USA.

75. Storey, M.-A. D., Fracchia, F. D., & Müller, H. A. (1999). Cognitive design elements to
support the construction of a mental model during software exploration. Journal of System
Software , 44 (3), 171-185.

76. Trabasso, T., & Van den Broek, P. (1985). Causal Thinking and the Representation of
Narrative Events. Journal of Memory and Language (24), 612-630.

77. Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. (2006). Analyzing individual
performance of source code review. Eye tracking research & applications, (pp. 133-140).
San Diego, California.

78. Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. (2006). Analyzing individual
performance of source code review using reviewers’ eye movement. 2006 symposium on Eye
tracking research & applications, (pp. 133–140). New York, NY, USA.

79. Van Oostendorp, H., & Goldman, S. R. (1998). The Construction of Mental
Representations During Reading. Mahwah, N.J.: L. Erlbaum Associates.

80. Vessey, I. (1985). Expertise in debugging computer programs: A process analysis.
International Journal of Man–Machine Studies , 23, 459–494.

81. Xu, S., Jiang, H., & Lau, F. (2009). User-oriented document summarization through
vision-based eye-tracking. ACM conference on Intelligent user interfaces, (pp. 7-16). New
York, NY, USA.

82. Young, L. R., & Sheena, D. (1975). Survey of eye movement recording methods. Behavior
Research Methods , 397-429.

114

APPENDIX A

DEMOGRAPHIC DATA

Gender Level

Programming
Experience

Java
Experience

Prior
experience

with
jGRASP

Experience
with

jGRASP
Group

P01 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV

P02 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV

P03 Male Undergraduate 2 - 5 years 1 - 2 years Yes 1 - 2 years SV

P04 Female Undergraduate 6 -12 months 6 - 12 months Yes 6 - 12 months SV

P05 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV

P06 Male Undergraduate 6 - 12 months 6 - 12 months Yes 6 - 12 months SV

P07 Male Undergraduate 5 + years 2 - 5 years Yes 2 + years SV

P08 Male Undergraduate 2 - 5 years 2 - 5 years No NA DV

P09 Male Undergraduate 5 + years 2 - 5 years No NA SV

P10 Male Graduate 5 + years 5 + years Yes 0 - 6 months DV

P11 Male Undergraduate 6 - 12 months 6 - 12 months Yes 6 - 12 months DV

P12 Male Undergraduate 2 - 5 years 2 - 5 years Yes 2 + years DV

P13 Female Graduate 5 + years 2 - 5 years No NA DV

P14 Male Undergraduate 2 - 5 years 6 - 12 months Yes 6 - 12 months DV

P15 Male Undergraduate 1 - 2 years 1 - 2 years Yes 1 - 2 years DV

P16 Male Graduate 1 - 2 years 1 - 2 years Yes 1 - 2 years DV

P17 Male Graduate 5 + years 2 - 5 years No NA DV

P18 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months DV

P19 Male Undergraduate 1 - 2 years 6 - 12 months Yes 6 - 12 months SV

115

APPENDIX B

EXPERIMENT PROGRAMS

B1. EXPERIMENT 1

This Program consisted of 3 Java Classes and an Interface. The total lines of code
in this programwas 134.

Client Class

public class DebuggingAssignmentClient1 {

ÏÏ§
ÏÏ§ÏÞßàpublic static void main(String[] args) {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹íÏString input = new String("a.b.c.d.e.f");
ÏÏ§
ÏÏ§ÏÏ¨¹íÏDataStructure<String> s1 = new DataStructure<String>();
ÏÏ§
ÏÏ§ÏÏ¨¹¹±for (int i=1; i<input.length() ; i++) {
ÏÏ§ÏÏ§ÏÏ7¹³´if(i%2 == 0 && i%5 != 0) {
ÏÏ§ÏÏ§ÏÏ5Ï6¾¹¹Ïs1.insert(input.substring(i,i+1) +" ");
ÏÏ§ÏÏ§ÏÏ5Ï6Ï}
ÏÏ§ÏÏ§ÏÏ5Ïö´else {
ÏÏ§ÏÏ§ÏÏ5Ï¸¾¹¹Ïs1.insert(" ");
ÏÏ§ÏÏ§ÏÏ5ÏÈÏ}
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§
ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("Expected Output : f e d c b a");
ÏÏ§ÏÏ¨¹¹ÏSystem.out.print("Actual Output : ");
ÏÏ§ÏÏ¨¹¹±while (!s1.isEmpty()) {
ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.print(s1.remove());
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§ÏÏ©}
ÏÏ©}

DSFrame Interface

ÏØÓìpublic interface DSFrame<T> {
ÏÏ§
ÏÏ§ÏÛÜÝpublic void insert(T item);

116

ÏÏ§ÏÛÜÝpublic T remove();
ÏÏ§ÏÛÜÝpublic boolean isEmpty();
ÏÏ§ÏÛÜÝpublic int size();
ÏÏ§ÏÛÜÝpublic String toString();
ÏÏ§
ÏÏ©}

DataStructure Class

public class DataStructure<T> implements DSFrame<T>{

ÏÏ§
ÏÏ§ÏíÏprivate int n;
ÏÏ§ÏíÏprivate Unit first;
ÏÏ§
ÏÏ§ÏÞßàpublic DataStructure() {
ÏÏ§ÏÏ¨¹¹Ïfirst = null;
ÏÏ§ÏÏ¨¹¹Ïn = 0;
ÏÏ§ÏÏ©}
ÏÏ§ÏÞßà@SuppressWarnings("unchecked")
ÏÏ§ÏÏ§Ï
ÏÏ§ÏÏ§Ïpublic void insert(T item) {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹íÏUnit oldfirst = first;
ÏÏ§ÏÏ¨¹¹Ïfirst = new Unit();
ÏÏ§ÏÏ¨¹¹Ïfirst.setValue(item);
ÏÏ§ÏÏ¨¹¹Ïfirst.setNext(oldfirst);
ÏÏ§ÏÏ¨¹¹Ïn++;
ÏÏ§ÏÏ©}

ÏÏ§ÏÞßà@SuppressWarnings("unchecked")
ÏÏ§ÏÏ§Ï
ÏÏ§ÏÏ§Ïpublic T remove() {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹³´if (isEmpty())
ÏÏ§ÏÏ§Ï¶¾êîìthrow new RuntimeException("Data underflow");
ÏÏ§
ÏÏ§ÏÏ¨¹íÏT item = (T) first.getValue();
ÏÏ§ÏÏ¨¹¹Ïfirst = first.getNext();
ÏÏ§ÏÏ¨¹¹Ïn--;
ÏÏ§Â¹Ä¹¹Ïreturn item;
ÏÏ§ÏÏ©}

117

ÏÏ§ÏÞßàpublic boolean isEmpty() {
ÏÏ§Â¹Ä¹¹Ïreturn first == null;
ÏÏ§ÏÏ©}

ÏÏ§ÏÞßàpublic int size() {
ÏÏ§Â¹Ä¹¹Ïreturn n;
ÏÏ§ÏÏ©}
ÏÏ§
// string representation

ÏÏ§ÏÞßàpublic String toString() {
ÏÏ§ÏÏ¨¹íÏString s = "";
ÏÏ§
ÏÏ§ÏÏ¨¹¹±for (Unit x = first; x != null; x = x.getNext()) {
ÏÏ§ÏÏ§ÏÏ7¹¹Ïs += x.getValue() + ", ";
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§Â¹Ä¹¹Ïreturn "[" + s + "]";
ÏÏ§ÏÏ©}

ÏÏ©}

Unit Class

public class Unit<T>

ÏÏ§{
ÏÏ§ÏíÏprivate T element;
ÏÏ§ÏíÏprivate Unit<T> next;

ÏÏ§//Constructors
ÏÏ§ÏÞßàpublic Unit() {
ÏÏ§ÏÏ¨¹¹Ïnext = null;
ÏÏ§ÏÏ¨¹¹Ïelement = null;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic Unit(T elem) {
ÏÏ§ÏÏ¨¹¹Ïnext = null;
ÏÏ§ÏÏ¨¹¹Ïelement = elem;
ÏÏ§ÏÏ©}

ÏÏ§ÏÞßàpublic Unit(T elem, Unit<T> unit) {
ÏÏ§ÏÏ¨¹¹Ïnext = unit;
ÏÏ§ÏÏ¨¹¹Ïelement = elem;
ÏÏ§ÏÏ©}

118

ÏÏ§//Getters and Setters
ÏÏ§
ÏÏ§ÏÞßàpublic Unit<T> getNext() {
ÏÏ§
ÏÏ§Â¹Ä¹¹Ïreturn next;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic void setNext(Unit<T> unit) {
ÏÏ§ÏÏ¨¹¹Ïnext = unit;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic T getValue() {
ÏÏ§
ÏÏ§Â¹Ä¹¹Ïreturn element;
ÏÏ§ÏÏ©}

ÏÏ§ÏÞßàpublic void setValue(T elem) {
ÏÏ§
ÏÏ§ÏÏ¨¹¹Ïelement = elem;
ÏÏ§ÏÏ©}
ÏÏ©}

119

B3. EXPERIMENT 2

This Program consisted of 2 Java classes; a client class and a datastructure class.

Client Class

public class DebuggingAssignment2Client {

ÏÏ§ÏÞßàpublic static void main(String[] args) {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹íÏString[] list = {"Nick Fairley", "Zac Etheridge", "Michael Dyer",
"Cameron Newton", "Darvin Adams", "Demond Washington", "Kodi Burns", "Wes
Byrum", "Onterio McCalebb", "Philip Lutzenkirchen",

ÏÏ§ÏÏ§ÏÏÏÏÏÏÏÏÏ"Lee Ziemba", "Terrell Zachery"};
ÏÏ§
ÏÏ§ÏÏ¨¹íÏDataStructure<String> playerList = new DataStructure <String>();
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i < 12; i++) {
ÏÏ§ÏÏ§ÏÏ7¹¹ÏplayerList.insert(list[i]);
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§
ÏÏ§ÏÏ¨¹¹±for(int i=0;i<playerList.size();i++) {
ÏÏ§ÏÏ§ÏÏ5
ÏÏ§ÏÏ§ÏÏ7¹¹±for (int y = playerList.size(); y>i; y--) {
ÏÏ§ÏÏ§ÏÏ5ÏÏ5
ÏÏ§ÏÏ§ÏÏ5ÏÏ7¹³´if(playerList.get(y-1).compareTo(playerList.get(y))>0) {
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï6¨¹íÏString temp = playerList.remove(y);
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï6¾¹¹ÏplayerList.insert(temp, y-1);
ÏÏ§ÏÏ§ÏÏ5ÏÏ5Ï¶Ï}
ÏÏ§ÏÏ§ÏÏ5ÏÏ°}
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§
ÏÏ§ÏÏ¨¹¹ÏSystem.out.println("Sorted List:");
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i<playerList.size(); i++) {
ÏÏ§ÏÏ§ÏÏ7¹¹ÏSystem.out.println(i+1+". "+playerList.get(i));
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§
ÏÏ§ÏÏ©}
ÏÏ©}

120

DataStructure Class

public class DataStructure<T> {

ÏÏ§ÏíÏprivate int size;
ÏÏ§ÏíÏprivate Unit head;
ÏÏ§ÏíÏprivate Unit last;
ÏÏ§ÏÞßàpublic DataStructure() {
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic void insert(T value) {
ÏÏ§ÏÏ¨¹íÏUnit node = new Unit(value);
ÏÏ§ÏÏ¨¹³´if (head != null) {
ÏÏ§ÏÏ§Ï6¨¹¹Ïnode.prev = head.prev;
ÏÏ§ÏÏ§Ï6¨¹¹Ïnode.next = head;
ÏÏ§ÏÏ§Ï6¨¹¹Ïhead.prev = node;
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast.next = node;
ÏÏ§ÏÏ§Ï6Ï}
ÏÏ§ÏÏ§Ïö´else {
ÏÏ§ÏÏ§Ï¸¨¹¹Ïnode.next = node;
ÏÏ§ÏÏ§Ï¸¨¹¹Ïnode.prev = node;
ÏÏ§ÏÏ§Ï¸¾¹¹Ïlast = node;
ÏÏ§ÏÏ§ÏÈÏ}
ÏÏ§ÏÏ¨¹¹Ïhead = node;
ÏÏ§ÏÏ¨¹¹Ïsize++;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§
ÏÏ§ÏÞßàpublic void insert(T value, int index) {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹³´if (index == 0) {
ÏÏ§ÏÏ§Ï6¨¹¹Ïinsert(value);
ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn;
ÏÏ§ÏÏ§Ï¶Ï}
ÏÏ§ÏÏ¨¹íÏUnit node = new Unit(value);
ÏÏ§ÏÏ§
ÏÏ§ÏÏ¨¹íÏUnit prev = head;
ÏÏ§
ÏÏ§ÏÏ¨¹¹±for (int i = 1; i < index; i++) {
ÏÏ§ÏÏ§ÏÏ7¹¹Ïprev = prev.next;
ÏÏ§ÏÏ§ÏÏ°}

121

ÏÏ§
ÏÏ§ÏÏ¨¹¹Ïnode.next = prev.next;
ÏÏ§ÏÏ¨¹¹Ïnode.prev = prev;
ÏÏ§ÏÏ¨¹¹Ïnode.next.prev = node;
ÏÏ§
ÏÏ§ÏÏ¨¹³´if (last == prev) {
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast = node;
ÏÏ§ÏÏ§Ï¶Ï}
ÏÏ§ÏÏ¨¹¹Ïprev.next = node;
ÏÏ§
ÏÏ§ÏÏ¨¹¹Ïsize++;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic T remove(int index) {
ÏÏ§ÏÏ¨¹³´if (index == 0) {
ÏÏ§ÏÏ§Ï6¨¹íÏUnit result = head;
ÏÏ§ÏÏ§Ï6¨¹¹Ïhead = head.next;
ÏÏ§ÏÏ§Ï6¨¹³´if (head == result) {
ÏÏ§ÏÏ§Ï6§Ï6¨¹¹Ïhead = null;
ÏÏ§ÏÏ§Ï6§Ï6¾¹¹Ïlast = null;
ÏÏ§ÏÏ§Ï6§Ï6Ï}
ÏÏ§ÏÏ§Ï6§Ïö´else {
ÏÏ§ÏÏ§Ï6§Ï¸¨¹¹Ïhead.prev = last;
ÏÏ§ÏÏ§Ï6§Ï¸¾¹¹Ïlast.next = head;
ÏÏ§ÏÏ§Ï6§ÏÈÏ}
ÏÏ§ÏÏ§Ï6¨¹¹Ïsize--;
ÏÏ§Â¹ÄÏ6¾¹¹Ïreturn (T)head.getValue();
ÏÏ§ÏÏ§Ï¶Ï}
ÏÏ§
ÏÏ§ÏÏ¨¹íÏUnit prev = head;
ÏÏ§ÏÏ¨¹¹±for (int i = 1; i < index; i++) {
ÏÏ§ÏÏ§ÏÏ7¹¹Ïprev = prev.next;
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§ÏÏ¨¹íÏUnit result = prev.next;
ÏÏ§ÏÏ¨¹¹Ïprev.next = prev.next.next;
ÏÏ§
ÏÏ§ÏÏ¨¹³´if (prev.next == last) {
ÏÏ§ÏÏ§Ï6¾¹¹Ïlast = prev;
ÏÏ§ÏÏ§Ï¶Ï}
ÏÏ§ÏÏ¨¹³´if (prev.next != null) {
ÏÏ§ÏÏ§Ï6¾¹¹Ïprev.next.prev = prev;

122

ÏÏ§ÏÏ§Ï¶Ï}
ÏÏ§ÏÏ¨¹¹Ïsize--;
ÏÏ§Â¹Ä¹¹Ïreturn (T)result.getValue();
ÏÏ§ÏÏ©}

ÏÏ§ÏÞßàpublic int size() {
ÏÏ§Â¹Ä¹¹Ïreturn size;
ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÞßàpublic T get(int index) {
ÏÏ§ÏÏ¨¹íÏUnit node = head;
ÏÏ§ÏÏ¨¹¹±for (int i = 0; i <= index; i++) {
ÏÏ§ÏÏ§ÏÏ7¹¹Ïnode = node.next;
ÏÏ§ÏÏ§ÏÏ°}
ÏÏ§Â¹Ä¹¹Ïreturn (T)node.value;
ÏÏ§ÏÏ©}

ÏÏ§private class Unit<T> {
ÏÏ§ÏÏ§
ÏÏ§ÏÏ§ÏíÏUnit next;
ÏÏ§ÏÏ§ÏíÏUnit prev;
ÏÏ§ÏÏ§ÏíÏT value;
ÏÏ§ÏÏ§
ÏÏ§ÏÏ§ÏÞßàpublic Unit() {
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§
ÏÏ§ÏÏ§ÏÞßàpublic Unit(T initValue) {
ÏÏ§ÏÏ§ÏÏ¨¹¹Ïvalue = initValue;
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§ÏÏ§
ÏÏ§ÏÏ§ÏÞßàpublic T getValue() {
ÏÏ§ÏÏ§Â¹Ä¹¹Ïreturn value;
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§ÏÏ§
ÏÏ§ÏÏ§ÏÞßàpublic void setValue(T newValue) {
ÏÏ§ÏÏ§ÏÏ¨¹¹Ïvalue = newValue;
ÏÏ§ÏÏ§ÏÏ©}
ÏÏ§ÏÏ©}
ÏÏ©}

123

APPENDIX C

MENTAL MODEL QUESTIONNAIRE

Function

• What is the function of the program?
• Can you briefly tell how does the program achieve this?

Static/Dynamic Slice

• The following code snippet was picked from the program,

 if(…………………………………) {
 s1.insert(input.substring(i,i+1) + " ");
 }
 else {
 s1.insert(" ");
 }

As the conditional statement currently stands in your program, do you think
instance variable ‘s1’ can be modified by both the statements?

Static/Dynamic Data Structure

• Which known data structure does the class ‘Datastructure’ represent?
• Is this data structure static or dynamic in nature?
• How many elements can an instance of the ‘Datastructure’ class hold?
• How many elements can character array ‘inputTest’ hold?

Control flow

• Which is the first method from DataStructure class that is invoked by the
Client?

124

• When is the toString() method of the ‘DataStructure’ class invoked?
1. Before remove() method
2. After remove() method
3. Never invoked

• In the program, when is the ‘Datastructure’ instance s1 checked for it being
empty?

1. Before invoking remove
2. After invoking remove
3. Both
4. Neither of the above

• Describe the order in which the four classes in this project are
invoked/processed?

• In what order are elements picked up from the ‘input’ String?

Structure

• How is the ‘Unit’ class related to the ‘DataStructure’ class?
• How is ‘DebuggingAssignment1Client’ class related to the ‘Unit’ class?
• Does the Client class create an instance of Unit class?
• How is the ‘DSFrame’ related to the ‘DataStructure’?
• How is ‘DebuggingAssignment1Client’ class related to ‘DataStructure’ class?

Data Flow

• How does the insert() method affect the functioning of the size() method in the
DataStructure Class?

• When the remove() method is invoked, which element is removed from the data
structure?

• When the insert() method is invoked, which position is the new element inserted
in the data structure?

• How does the remove() method affect the functioning of the size() method in the
DataStructure Class?

• In the Datastructure class, how does the insert() method affect the functioning of
the isEmpty() method?

125

APPENDIX D

INTERVIEW QUESTIONS

• What was your strategy while debugging the first program?

• How about the strategy with the second program?

• How did you overcome the challenges posed by the program?

• Which representation shown by the IDE was the most helpful?

• How would you rate you debugging experience with the IDE?

• How important were the following for your decision to use the representations?

- Visual appeal, data values, correlation to program execution

• In general, how often do you debug using a representation?

• What could be done to improve the IDE and its debugging experience?

• Why the Viewer was used, why did he/she think it was appropriate?

• Was it helpful in the end?

• Does the fact that jGRASP viewer shows you real time manipulations help you?

• Why did you (not) use the UML diagram? Did it help?

• Why did you choose to use jGRASP viewer over the variable window to debug?

126

APPENDIX E

DEBUGGING PERFORMANCE

E1.1 Program One

Bug Type

Time
Taken

index
value

loop
condition

remove
n--

remove
first Group*

Bugs
Fixed

P1 8:35 3:58 8:35 6:19 6:19 SV 4

P2 15:00 SV 0

P3 15:00 5:47 12:32 SV 2

P4 14:27 5:28 12:49 8:08 14:27 SV 4

P5 15:00 12:41 16:04 6:01 SV 3

P6 11:52 6:19 11:52 5:46 5:01 SV 4

P7 12:20 4:00 12:20 7:01 7:01 SV 4

P8 15:00 6:55 DV 1

P9 14:30 3:01 14:25 SV 2

P10 15:00 7:11 13:29 DV 2

P11 15:00 14:47 15:00 DV 2

P12 15:06 15:06 DV 1

P13 15:05 13:09 15:05 DV 2

P14 8:20 8:16 8:18 6:25 6:24 DV 4

P15 14:25 10:30 12:34 14:23 14:20 DV 4

P16 15:00 12:42 15:00 13:29 13:26 DV 4

P17 9:40 4:44 8:04 9:40 9:20 DV 4

P18 14:41 8:07 8:58 14:09 14:41 DV 4

P19 15:00 SV 0

* SV – Static Visualizations, DV – Dynamic Visualizations

127

E2.1 Program Two

Bug Type

Total
Time size

get()
method index

Bugs
Fixed

Participant1 15:00

13:05 1
Participant2 15:00

0

Participant3 14:53 11:09 5:26 14:53 3
Participant4 15:00 7:03

1

Participant5 15:00

5:31 1
Participant6 14:55 2:45 14:55

2

Participant7 5:49 2:16 4:46 5:49 3
Participant8 15:00

2:23 1

Participant9 15:00

0
Participant10 15:00 7:51

1

Participant11 15:00

12:13 1
Participant12 13:10

10:03 1

Participant13 15:00

0
Participant14 11:34 4:47 9:05 11:34 3
Participant15 15:00 6:26

4:20 2

Participant16 15:00 9:01 13:39

2
Participant17 15:00 15:00 5:56 9:15 3
Participant18 15:00 2:59

1:19 2

Participant19 14:55 14:55 12:01

2

128

E2.2 Debugging Experiment Two (Total Fixation Count)

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15
P16

P17
P18

P19

Anim
ation Control

20
8

17
2

13
11

13
6

11
53

1
9

19
1

2
6

41
2

43

Client Code
1201

1031
893

1080
1141

1106
402

767
901

1201
967

892
1103

844
1044

812
1237

903
901

CSD Client
35

32
73

47
40

14
33

0
0

0
0

44
0

0
0

0
0

24
0

CSD Data Structure
14

5
4

2
8

8
15

0
0

0
0

4
0

0
0

0
0

0
0

DataStructure Code
244

79
479

416
625

430
349

521
705

331
195

118
462

515
617

731
370

265
524

Dynam
ic W

indow
809

500
201

130
121

359
131

176
126

0
245

327
465

0
343

227
563

300
513

Eval W
indow

0
0

0
0

0
0

0
0

138
289

0
0

38
0

0
0

0
0

0

File Browser
3

3
10

1
2

1
0

3
8

8
0

9
1

6
18

0
19

5
4

File M
enu

32
54

7
8

20
82

51
32

53
23

20
15

36
10

23
56

54
69

33

O
utput

121
261

229
284

93
230

62
436

140
290

399
234

138
247

152
282

23
393

323

Variable W
atch

201
126

106
72

46
67

68
24

315
289

264
112

239
137

15
126

84
31

130

-200 0

200

400

600

800

1000

1200

1400

129

E2.3 Debugging Experiment Two (Total Dwell Time)

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15
P16

P17
P18

P19

A
nim

ation C
ontrol

7.39
2.65

7.93
0.85

6.53
3.76

4.01
4.42

3.98
13.47

0.15
4.8

4.2
0.1

0.33
0.18

19.08
0.43

11.9

C
lient C

ode
391

417.42
359.71

477.17
451.59

429.24
155.31

337.81
329.29

462.86
370.49

375.85
401.78

321.59
383.62

169.68
449.2

323.8
322.84

C
SD

 C
lient

10.03
13.07

31.7
15.67

14.94
3.79

11.3
0

0
0

0
16.96

0
0

0
0

0
5.13

0

C
SD

 D
ata Structure

2.25
2.5

0.58
0.23

1.65
3.13

8.81
0

0
0

0
0.78

0
0

0
0

0
0

0

D
ataStructure C

ode
90.06

30.94
221.59

216
286.99

165.34
137.44

264.85
290.5

109.11
57.85

48.75
161.17

207.96
271.64

231.9
171.5

85.04
195.68

D
ynam

ic W
indow

263.85
222.08

91.32
58.55

48.37
144.62

57.95
94.12

46.54
0

133.61
154.6

167.12
0

154.09
15.51

204.39
104.43

189.64

Eval W
indow

0
0

0
0

0
0

0
0

67.73
116.52

0
0

11.95
0

0
0

0
0

0

File B
row

ser
1.32

0.72
4.32

0.33
0.33

0.27
0

0.87
2.98

3.33
0

3.17
0.4

1.18
6.6

0
7.6

1.25
0.97

File M
enu

9.46
21.58

3.23
3.65

5.39
34.07

28.09
8.8

22.11
4.43

7.32
6.7

10.36
7.96

9.15
9.5

26.44
26.47

11.06

O
utput

33.18
93.73

85.64
105.46

29.07
76.72

22.55
162.57

41.52
88.34

116.31
74.75

42.79
71.85

48.08
61.3

6.46
109.46

105.44

V
ariable W

atch
58.68

65.43
65.04

31.51
21.66

31.05
33.76

9.72
145.88

116.52
143.83

44.35
74.27

59.14
5.07

11.25
35.89

11.29
55.03

-100 0

100

200

300

400

500

600

130

E2.4 Debugging Experiment Two (Total Visit Count)

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11
P12

P13
P14

P15
P16

P17
P18

P19

Animation Control
19

8
13

2
8

10
11

3
8

46
1

7
17

1
2

1
32

2
25

Client Code
183

158
142

128
107

159
70

64
105

126
97

124
167

85
147

42
137

112
150

CSD Client
28

24
59

37
37

13
25

0
0

0
0

36
0

0
0

0
0

22
0

CSD Data Structure
12

4
4

1
8

8
15

0
0

0
0

3
0

0
0

0
0

0
0

DataStructure Code
62

28
62

50
52

57
93

43
71

74
26

50
135

75
49

23
51

51
108

Dynamic W
indow

139
90

52
44

18
78

32
33

39
0

51
63

105
0

75
25

111
64

132

Eval W
indow

0
0

0
0

0
0

0
0

20
104

0
0

13
0

0
0

0
0

0

File Browser
2

1
3

1
2

1
0

2
4

6
0

2
1

3
10

0
6

3
1

File Menu
29

38
6

7
12

49
30

25
34

20
13

11
34

7
20

9
31

32
27

Output
26

46
38

45
23

43
9

45
26

64
42

29
29

29
33

32
9

62
47

Variable W
atch

103
42

53
36

21
39

29
11

57
104

43
50

98
39

8
14

46
11

47

-50 0 50

100

150

200

250

131

E2.5 Debugging Experiment Two (Visual Patterns)

0 5 10 15 20 25 30 35 40 45

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

Short Code followed by Short Static Vizualization
Short Code followed by Short Static Vizualization and then Short Dynam

ic Visualization

Short Code followed by Short Dynam
ic Vizualization

Short Code followed by Short Dynam
ic Vizualization and then Short Output

Short Code followed by Short Output
Long Code followed by Short Dynam

iz Visualization

Long Code followed by Short Output
Short Static Visualization followed by Short Dynam

ic Visualization

Short Dynam
ic Visualization followed by Short Output

132

APPENDIX F

HEAT MAPS AND GAZE PLOTS

Heatmap based on fixation duration for participant nine and account for a section
where dynamic representation was used

133

Heatmap based on fixation duration for participant three’s debugging session

	CHAPTER 1
	INTRODUCTION
	CHAPTER 2

	BACKGROUND
	2.1 Cognitive Modeling
	2.1.1 Text Comprehension
	2.1.2 Picture and Text Comprehension
	2.1.3 Multimedia Comprehension
	2.1.4 Program Comprehension

	2.2 Program Debugging
	2.2.1 Strategies Employed
	2.2.2 Knowledge Aids

	2.3 Program Visualizations
	2.4 Visual Attention and Eye Tracking Methodology
	2.4.1 Eye-tracking in HCI
	2.4.2 Types of Eye Trackers
	2.4.3 Eye-tracking Measures
	2.4.4 Visual attention in studies of programming
	CHAPTER 3

	PROBLEM STATEMENT
	CHAPTER 4

	PROPOSED COGNITIVE MODEL
	4.1 Foundation
	4.1.1 Text Comprehension
	4.1.2 Text and Diagram Comprehension
	4.1.3 Graph Comprehension

	4.2 Proposed Cognitive Model
	4.2.1 Cognitive Aids
	4.2.2 Mental Representations
	4.2.3 Cognitive Process Flow

	SCOPE OF RESEARCH
	EXPERIMENTAL DESIGN AND PROCEDURE
	6.1 METHOD
	6.1.1 Participants
	6.1.2 Materials and Apparatus
	6.1.3 Procedure and Design

	RESULTS
	CONCLUSIONS
	EXPERIMENT PROGRAMS
	MENTAL MODEL QUESTIONNAIRE
	Function
	 What is the function of the program?
	 Can you briefly tell how does the program achieve this?
	Static/Dynamic Slice
	 The following code snippet was picked from the program,
	if(…………………………………) { s1.insert(input.substring(i,i+1) + " "); } else { s1.insert(" "); }
	As the conditional statement currently stands in your program, do you think instance variable ‘s1’ can be modified by both the statements?
	Static/Dynamic Data Structure
	Control flow
	 Which is the first method from DataStructure class that is invoked by the Client?
	 When is the toString() method of the ‘DataStructure’ class invoked?
	1. Before remove() method
	2. After remove() method
	3. Never invoked

	 In the program, when is the ‘Datastructure’ instance s1 checked for it being empty?
	1. Before invoking remove
	2. After invoking remove
	3. Both
	4. Neither of the above

	Structure
	 How is the ‘Unit’ class related to the ‘DataStructure’ class?
	 How is ‘DebuggingAssignment1Client’ class related to the ‘Unit’ class?
	 Does the Client class create an instance of Unit class?
	 How is the ‘DSFrame’ related to the ‘DataStructure’?
	 How is ‘DebuggingAssignment1Client’ class related to ‘DataStructure’ class?
	Data Flow
	 How does the insert() method affect the functioning of the size() method in the DataStructure Class?
	 When the remove() method is invoked, which element is removed from the data structure?
	 When the insert() method is invoked, which position is the new element inserted in the data structure?
	 How does the remove() method affect the functioning of the size() method in the DataStructure Class?
	 In the Datastructure class, how does the insert() method affect the functioning of the isEmpty() method?

	DEBUGGING PERFORMANCE
	E1.1 Program One
	E2.1 Program Two
	E2.2 Debugging Experiment Two (Total Fixation Count)
	E2.3 Debugging Experiment Two (Total Dwell Time)
	E2.4 Debugging Experiment Two (Total Visit Count)

