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Abstract 

 

 

This dissertation presents a methodology for generating artificial terrains for simulation 

of off-road vehicles. Furthermore it develops and evaluates methods for characterizing the terrain 

for the control of unmanned ground vehicles. The terrain is the principle source of chassis 

excitation in off-road vehicles and the control of the vehicle is dependent on effectively 

characterizing the terrain slope, roughness, and surface condition. The previous work in this area 

is presented and the areas for improvement are identified. The literature is vast and is categorized 

into works which have addressed various parts of the problems. It is advantageous for the 

development of autonomous vehicle systems to simulate the vehicle response over various 

terrains; this requires generating artificial terrains which are similar to real terrains. Two methods 

for generating terrains based on the Weierstrass-Mandelbrot (W-M) fractal function are 

presented. The generated surfaces are evaluated using the root mean squared elevation (RMSE) 

and power spectral density (PSD). A seven degree of freedom (7-DOF) suspension model is 

developed for the purpose of evaluating the response of the vehicle on the generated terrains. The 

vehicle response is used to introduce motion based metrics for characterizing the roughness of 

the terrain. The root mean squared (RMS) vertical acceleration, RMS roll rate, and RMS pitch 

rate are introduced as potential motion base metrics. Additionally the phase plane of various 

vehicle states is investigated as a means for understanding the vehicle state combined with the 

terrain roughness.  
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A system for generating three dimensional point cloud maps of terrains is presented. 

Using a loosely coupled architecture Global Positioning System (GPS) and inertial navigation 

system (INS) are blended to provide estimates of the vehicle state. The system is implemented on 

the experimental vehicle to map various terrains. The terrain maps are characterized using 

RMSE, PSD, root mean squared slope (RMSS), and amplitude to wavelength ratio. Additionally, 

a feature extraction algorithm based on the wavelet transform is introduced. The response of the 

experimental vehicle on the terrains is analyzed using the RMS vertical acceleration, RMS roll 

rate, RMS pitch rate, and RMS suspension deflections. The 7-DOF suspension model of the 

experimental vehicle is then used to compare the simulated vehicle response to the experimental 

vehicle response. The model is then used to evaluate the effectiveness of the W-M function for 

generating artificial terrains. The response of the simulated vehicle on the experimental and 

generated terrains is then compared. 

It is determined that an artificial surface can be generated which will result in a similar 

vehicle response as the experimentally measured surface. The method does however have 

difficulty capturing the nuances of experimentally measured terrains. Additionally it is shown 

that the roughness of the terrain can be characterized by analyzing the surface with the RMSE, 

PSD, RMSS, or wavelength to amplitude ratio. The roughness can also be characterized by the 

RMS vertical acceleration, RMS roll rate, RMS pitch rate, or RMS suspension deflection. These 

methods are compared and their strengths and weaknesses are highlighted.  
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Chapter 1: Introduction 
1.1 Motivation 

There is a strong push in the Army to move towards autonomous and semi-autonomous 

vehicles to perform tasks which may be too cumbersome or dangerous for human driven vehicles 

to perform. Unmanned ground vehicles (UGVs) can potentially be used to find and disarm 

improvised explosive devices (IEDs) without risking the lives of soldiers.  Autonomous vehicles 

in convoys can free soldiers to focus on other tasks such as identifying potential threats. 

Additionally autonomous vehicles are far superior to humans at performing repetitive tasks 

without fatigue. 

The development of UGV systems requires a thorough understanding of interaction 

between the vehicle and the terrain on which it is operating. The terrain is the principle input into 

the suspension and causes the vehicle to roll and pitch. In a manned vehicle, the driver makes 

decisions on how to control the vehicle based on the roughness of the terrain. For example if the 

terrain is too bumpy the driver will slow up in order to minimize the loads on the vehicle. 

Another advantage a human driver has is the ability to determine the best path to take based on 

the perceived terrain. Mimicking the human driver’s decision making abilities on an unmanned 

vehicle system is a challenging task. Many of the metrics natural for humans to use in describing 

the roughness of a terrain are qualitative. One driver may describe a certain terrain as bumpy or 

another terrain as rocky. These descriptions may change for a different driver or the same driver 

in a different vehicle. The very nature of the terrain characterization process is situation 

dependent and highly subjective. In order to effectively control the vehicle, one must determine 
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methods of describing the terrain quantitatively. In this way one terrain can be compared to 

another, and the unmanned vehicle can make decisions based on a metric it can understand. This 

allows the vehicle control laws to be altered to account for the dynamics which are caused by the 

terrain. 

Designing a controller to effectively control a UGV over off-road terrains is a non-trivial 

task. The appropriate course of action for the vehicle is not always the intuitive solution. Under 

certain situations, such as resonance, the vehicle can speed to reduce the vehicle oscillations. Of 

course speeding up can improve the efficiency of the mission completion, but increasing the 

speed also comes with other issues such as increased roll over propensity. Thus, it becomes 

important to conduct experiments and simulations on off-road terrains to better understand how 

the vehicle will behave under varying conditions.  Unfortunately, experimental testing of off 

road vehicle dynamic maneuvers can prove to be problematic for various reasons. It is difficult to 

find testing locations which accurately represent the terrain on which the vehicle will be required 

to operate.  Additionally, off-road vehicle dynamic experiments can be more dangerous than 

their on-road counterparts.  Developing these methodologies in simulation allows one to cover a 

wider range of scenarios while avoiding the danger and expense of running numerous vehicle 

tests. 

Currently, advanced UGV simulation environments are being developed in industry and 

being used for analysis of robotic systems [1].  One such system is the Robotics Interactive 

Visualization and Experimental Toolbox (RIVET) which was developed under the Army 

Research Laboratory’s Robotics Collaborative Technology Alliance. These environments allow 

algorithms to be tested in a safe and efficient manner.  However, as the vehicle path planning and 

control algorithms become more sophisticated, they require the simulated vehicle to behave more 
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like the real vehicle.  Occasionally it is observed that the real vehicle exhibits behaviors that are 

not seen in simulation. Capturing these behaviors in simulation requires effectively modeling the 

vehicle’s interactions with its environment.  Typically more advanced UGV’s include various 

vision sensors such as cameras, and LiDARs.  Many path planning and obstacle avoidance 

algorithms are based on the measurements from these sensors.  In service, noise will be added to 

the measurements from these sensors based on the motion of the vehicle, caused by the vehicle’s 

interaction with the terrain. Thus, it is important to the development of the simulation 

environment to accurately model the terrain-vehicle interaction. 

1.2 Contributions 

 

One of traits that make this dissertation unique from previous works in this area is the 

combination of simulation and experimental studies. Most works have focused either on 

experimental studies or developing methodologies for simulation of ground vehicles. It is 

beneficial to validate the simulation methods with experimental data to increase their application 

to the actual system. Additionally, here the problem of terrain characterization is approached 

from the perspective of vehicle controller design rather than simply understanding the terrain. 

There are several key contributions that this dissertation provides: 

 An experimentally validated methodology for generating artificial terrains for the 

simulation of ground vehicles using the Weierstrass-Mandelbrot fractal function. It is also 

shown that the response of a vehicle simulated on the generated surfaces closely matches 

the response of the vehicle simulated on the actual terrains.  

 A statistical analysis regarding the linearity, Gaussianity, and stationarity of the surfaces 

generated with the Weierstrass-Mandelbrot fractal function. 
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 An experimentally validated 7-DOF suspension model is developed of the experimental 

vehicle for comparing measured terrains and fractal terrain models. 

 A comparison of various surface based and motion based terrain roughness metrics based 

on experimentally measured terrains is provided. 

 The problem of state estimation in the presence of unknown inputs for estimating the 

terrain profiles from measured vehicle states is discussed.  

1.3 Dissertation Organization 

This section discusses the organization of the remainder of the dissertation. Chapter 2 

presents the relevant literature to the problem this dissertation seeks to solve. The literature is 

vast and is categorized into works which have addressed various parts of the problems. Chapter 3 

focuses on the modeling and simulation of ground vehicles on rough terrains. Methods for 

generating terrain models are presented and those methods are analyzed. The last section of 

chapter three introduces the vehicle model which is used to evaluate the terrain modeling 

methods. The response of the model simulated on the terrains is then evaluated. Chapter 4 

presents the methods used to experimentally measure and evaluate various rough terrains. The 

experimental hardware is introduced and the methodology for mapping terrains is presented. The 

maps are then analyzed using various methodologies. Chapter 5 is primarily focused on 

understanding the vehicle response over the experimentally measured terrains. The terrains are 

further evaluated using metrics based on the motion of the vehicle. The last section of the chapter 

compares the measured terrains to artificially generated terrains using a vehicle model. Chapter 6 

summarizes the conclusions which were determined from the previous chapters. Additionally, 

the application of the methods to a vehicle controller is framed. Appendix A introduces a model 
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based estimator which can be used to estimate the terrain profile using a vehicle model. 

Appendix B presents photographs and descriptions of locations where data was collected.  
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Chapter 2: Literature Review 
Presented in this chapter is summary of the relevant work which has been conducted in 

areas related to the problem of terrain characterization and roughness estimation for ground 

vehicles. Section 2.1 describes the work which has addressed the broad issue of terrain 

characterization. The work which investigates modeling and simulation of terrain profiles is 

presented in Section 2.2. Section 2.3 introduces the terrain mapping problem and the associated 

literature. 

2.1 Terrain Characterization 

 

The study of terrain vehicle interaction has been a topic which has been researched for 

quite some time [2,3]. There is a vast amount of literature addressing various aspects of 

modeling the interface between the tire (or track) and the terrain. The term terrain 

characterization has been used rather loosely in the literature. Researchers have used it to refer to 

understanding the mechanical properties of the terrain called terramechanics. Determining how 

the terrain properties affect a vehicle’s ability to traverse it, which has also been referred to as 

trafficability. It has also been used to describe the process of classifying the type of terrain (i.e. 

sand, dirt, gravel). One will also see the term terrain characterization used for larger scales than 

relevant for vehicle dynamic studies, such as in geological surveys or aerial vehicle mapping. 

Many of these works use digital elevation models (DEM) to represent the terrain. The focus of 

this section will be to present the literature as it relates to the development and testing of ground 

vehicle systems. Thus, the literature presented here will include terrain characterization as it 

relates to mechanical properties, small ground robots, and larger ground vehicles.  
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Terramechanics is an incredibly broad and well developed field. Researchers are largely 

concerned with understanding and modeling the mechanical behavior of the terrain surfaces. As 

one might expect this type of work has numerous applications, one of which is in the interaction 

of wheeled and tracked vehicles with the terrain surface. Experimental testing of various surface 

properties has occurred for well over 60 years. The work in this area has been led by various 

Army research labs. There are three primary tests which are used to analyze the properties of a 

surface [4]. The penetration resistance test is one which uses a device called a penetrometer. The 

penetrometer is pressed into the ground and the force required for a given depth of penetration is 

measured.  Another test which is performed is called the plate sinkage test, which is used to 

determine the pressure-sinkage relationship. This is essentially testing the flotation 

characteristics of the soil. In this test, a plate approximately the size of the tire contact is pressed 

onto the soil to test the load the soil can support. The last test that is commonly used to measure 

the mechanical properties of soil is a shear strength test. Shear strength tests are important for the 

terrain vehicle interaction since they give information regarding the tractive properties of the 

soil.  There are several devices which have been developed to measure the shear strength in 

various ways, such as the shear vane, the Cohorn sheargraph, and the annular shear ring. 

Additionally, a device called the bevameter can perform shear and plate tests simultaneously. 

The bevameter can be either mounted to a vehicle [5,6] or smaller handheld versions can be used 

[7]. Much of the work in this area is based on empirical data and it would be beneficial to 

develop more model based approaches. 

The NASA Jet Propulsion Lab has been directly or indirectly associated with much of the 

work done in the field of terrain classification for navigation of small ground robots, developing 

and sponsoring significant work in the field. Manduchi et al. developed a method for terrain 
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classification using a stereo vision system and single axis LiDAR mounted to a wheeled robot 

[8]. Using a color classification method they were able to develop an obstacle detection method 

which can operate successfully in areas with high vegetation. Iagnemma et al. has developed 

methods of classifying the terrain based on sinkage and wheel torque measurements 

[9,10,11,12,13]. Based on the mechanics of the wheel terrain contact, parameters relating to the 

deformation and stresses in the surface can be estimated [10,11]. The sinkage of the wheel in the 

soil was determined using a camera. It was also shown in this work that these parameters could 

be estimated on-line. The application for this work was in the development of technologies for 

the Mars rover. Ojeda et al. showed that the terrain can be classified based on the motor current 

required for the wheeled robot to perform certain simple maneuvers [14]. Using this method they 

were able to distinguish whether the robot was driving on gravel, dirt, or sand. Another work 

which has applied terrain characterization to small mobile robots, has implemented a terrain 

based velocity controller to a two wheeled Segway platform [15]. The robot was equipped with a 

LiDAR scanning the ground in front of the robot, and based on the transverse roughness of the 

ground in front of the vehicle the longitudinal velocity is adjusted. The metrics used to 

characterize the roughness used were based on various root mean squared (RMS) calculations for 

the transverse profile obtained. 

 The behavior of larger ground vehicles is often fundamentally different from small 

ground robots. Many small ground robots are skid steer while large ground vehicles are 

Ackerman steer. Larger ground vehicles typically have suspensions and higher center of 

gravities, which require accounting for dynamics not present in small ground robots. Also 

generally speaking larger vehicles are more capable than small vehicles; terrains which small 

robots need to avoid a larger vehicle can cross. Thus, it is important to understand how the 
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terrain vehicle interaction will affect the dynamics of the vehicle. Various Army agencies are 

interested in this problem for vehicle testing, although the techniques developed can be applied 

to autonomous vehicle development and control.    

The Army has traditionally used root mean squared elevation (RMSE) as a means for 

terrain characterization [16,17,18]. RMSE is effective at providing a simple metric which is 

computationally efficient and indicative of the general roughness of the terrain. More recently, 

the RMSE has been paired with the power spectral density (PSD) to provide a more complex 

terrain characterization [19,20,21]. The PSD characterization takes into consideration the spatial 

frequency content of the terrain which allows it to capture trends in the terrain which cannot be 

captured by RMSE. Unfortunately both of these methods require some strong statistical 

assumptions in order to obtain an accurate characterization. The profiles must be statistically 

Stationary, Gaussian, and linear. Chaika et al. summarized the statistical tests for these traits of a 

terrain profile [22]. Unfortunately, off-road terrain profiles are typically non-stationary and non-

Gaussian making these metrics not ideal for off-road profile characterization, yet they are still 

effective and frequently used a basis for comparison to other methods. 

Li and Sandu modeled stationary road profiles with auto-regressive moving average 

(ARMA) models [23]. They related this characterization to the values given by the International 

Roughness Index (IRI). Kern and Ferris showed that using the auto-regressive integrated moving 

average (ARIMA) is an effective way to characterize a non-stationary 2-D profile [24,25]. They 

applied these techniques for modeling general road profiles. Wagner and Ferris extended this 

method to reduce the order of the model required by using singular value decomposition [26]. 

One characterization method which has been widely adopted for use in characterizing the 

roughness of road profiles is the international roughness index (IRI). IRI is the standard for all 
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state departments of transportation. Based on the motion of a quarter car model simulated over a 

road profile, the IRI value is calculated [27,28,29]. This allows any profiling method to be used 

to determine the geometry of the profile. Howe et al. have developed a method called the speed 

roughness index (SRI) which modifies the IRI to incorporate speed into the metric [17].   

2.2 Terrain Modeling and Simulation 

It is important to conduct experiments and simulations on off-road terrains to better 

understand how the vehicle will behave under varying conditions.  Unfortunately, experimental 

testing of off road vehicle dynamic maneuvers can prove to be problematic for various reasons. It 

is difficult to find testing locations which accurately represent the terrain on which the vehicle 

will be required to operate.  Additionally, off-road vehicle dynamic experiments can be more 

dangerous than their on-road counterparts.  Developing these methodologies in simulation allows 

one to cover a wider range of scenarios while avoiding the danger and expense of running 

numerous vehicle tests. Thus, it is desirable to develop methods for generating artificial terrains 

for the purpose of vehicle dynamic simulation. There are inconsistencies in the literature 

regarding the terminology for terrain modeling. Some researchers have referred to profiles and 

surfaces as 1-D and 2-D respectively, while other researchers have referred to them as 2-D and 

3-D respectively. This work will refer to profiles as 2-D and surfaces as 3-D.  

There have been several works which have generated 2-D terrain profiles for the purpose 

of vehicle modeling. Li and Sandu have developed methods of modeling profiles using 

polynomial chaos methods [30] and using ARMA models [23], both of which are effective in 

generating profiles which can be used for simulation. A work by Lee and Sandu used stochastic 

partial differential equations to model profiles [31].  The ARIMA models used by Kern and 

Ferris can also be used to generate rough terrain profiles [25]. Howe et al. have generated 2-D 
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profiles using fractal Brownian motion, implemented with the midpoint displacement method 

[17].  

The literature on methods for generating 3-D terrain surfaces for vehicle simulation is not 

as well developed as for 2-D profiles. However, some of the 2-D methods can be extended quite 

nicely to 3-D. Li and Sandu extended the ARMA model to create 3-D terrain surfaces [23]. They 

simulated quarter car suspension models on the terrains for validation with the IRI. Additionally 

Wang et al. developed methods of generating 3-D fractal terrains using Brownian motion for 

vehicle testing in simulation, but the implications on the vehicle simulation aspect was not 

thoroughly discussed [32]. There is a gap in the literature for a thorough discussion of the 

behavior of complex vehicle models on fully 3-D terrain surface. This dissertation seeks to 

provide a more in-depth analysis of a complex vehicle model on simulated and experimentally 

measured terrains. The response of the model is validated and compared against the experimental 

vehicle’s dynamics response under varying terrain conditions. 

2.3 Terrain Mapping and Terrain Measurement Systems 

The literature on systems which use LiDAR and cameras for terrain mapping for robotics 

is vast. The combination of LiDAR and stereo camera has been used for small mobile robots and 

autonomous ground vehicles. LiDARs pointed in various directions around the vehicle can create 

3-D point clouds of the environment surrounding the vehicle [33]. Most often the purpose of 

these types of systems is for obstacle detection, high speed navigation, or surveying [33,34,35]. 

There are a couple of works which have developed terrain measurement systems (TMS) 

specifically for 2-D/3-D profiling and characterizing the terrain roughness.  The typical TMS 

uses LiDAR or other laser scanning device coupled with GPS and IMU blended in a Kalman 

filter. Two works [36,37] developed and experimentally tested a TMS which is based on this 
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general principal. The system which was mounted to an SUV provides high resolution 3-D 

mapping and appears to work well on road. However, no off-road data was presented to validate 

its performance in off-road scenarios. Dembski et al. developed a system specifically for 

measuring off-road terrain [38]. Using three laser scanners along the front of an ATV they were 

able to accurately measure 2-D road profiles along the longitudinal path of the vehicle. 

This dissertation develops a LiDAR based mapping system and demonstrates its 

performance in an off-road environment. There are also several practical issues which are 

encountered when performing LiDAR based terrain measurements in off-road scenarios. These 

issues are presented and their effect on the terrain roughness characterization is addressed.   
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Chapter 3: Terrain Modeling and Vehicle Simulation 
This chapter focuses on the development and validation of methods for generating 

terrains for vehicle simulation. Section 3.1 introduces a method for generating 2-D terrain 

profiles. The created 2-D profile can be used for simulation of simple vehicle suspension models 

such as a quarter car model, or a planar pitch vehicle model. Additionally they can be used for 

longitudinal vehicle simulations with full suspension models under the assumption that the left 

and right wheels travel over the same profile. Section 3.2 extends the method presented in 

Section 3.1 to 3-D terrain surfaces. 3-D surfaces can be used in more complex vehicle 

simulations of full suspension models, accounting for vehicle heave, pitch, and roll. These 

surfaces are analyzed using various terrain roughness characterization methods. Section 3.3 

shows the results from vehicle simulations conducted on 3-D terrain surfaces and introduces 

vehicle motion based terrain metrics.  

3.1 Two Dimensional Terrain Profile Generation 

For the purposes of developing and testing terrain characterization methods, it is 

beneficial to be able to generate random profiles that match terrains with varying degrees of 

roughness.  This allows vehicle simulations to be run on various terrains with less empirical data 

necessary. A fractal surface is one which has the property of self-similarity, which is to say that 

smaller scales are a reduced size copy of the whole [39]. Although strictly speaking terrain 

profiles are not self-similar, fractals can be found in many places in nature and for this reason it 

has become a rather common method of modeling terrain profiles. There are several methods of 

generating a fractal profile two of which are midpoint displacement and fractional Brownian 
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motion. A terrain profile can be represented as self-similar fractal surface if the PSD of that 

profile exhibits a power law behavior with increasing frequency.  There are several works which 

have modeled terrain profiles as fractals for the purposes of terrain characterization 

[17,18,40,32]. An ideal fractal surface will have a PSD of the following form 

          (3.1) 

where R is the roughness amplitude constant, ω is the wave number (spatial frequency) in 

cycles/m, and k is the slope of the wave number spectrum.  This form can be fit to the PSD of a 

terrain profile to determine the constants R and k. As with any fit, this will average out the effects 

of certain features which may be important from a vehicle dynamics standpoint.  However, this 

does allow a profile which will capture the general trend of the terrain roughness to be generated.   

These parameters must be related to a function which can generate a fractal profile.  A 

two-dimensional fractal surface profile     , can be represented by a Weierstrass–Mandelbrot 

(W-M) function that satisfies the properties of continuity, nondifferentiabilty and self-affinity. 

The W-M function classifies a rough surface based on two fractal parameters. In this dissertation 

the following version has been used for dimensional consistency [41] 
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where   and   are the fractal roughness parameter and fractal dimension of the surface profile 

respectively. The parameter   is an integer that represents a frequency level of the surface,   is a 

parameter that determines the relative phase difference between fractal modes, and   is a random 

phase shift for each frequency level of the surface.  In this dissertation,          and L is the 

length of the profile generated.    is a uniformly distributed random value for each frequency 

level such that       .  
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Additionally, the continuous power spectrum for a fractal surface is given by [42]  

  ̅    
       

    

 

       
 (3.3) 

    

The fractal parameters   and   can be determined for a given   and   by setting Equations (3.1) 

and (3.3) equal to each other resulting in the following expressions   
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     (3.5) 

 

After determining the fractal parameters a surface can be generated using Equation (3.2) . 

By randomly selecting the phase shift, the profiles generated will be significantly different even 

though they were generated from the same fractal parameters. Figure 3.1 shows two profiles 

which were generated using the W-M function with different fractal parameters, resulting in two 

surfaces with different roughness. To validate the generated fractal profile, the PSD extracted 

from the generated surface is plotted against the ideal PSD line used to fit the fractal parameters. 

It can be seen from Figure 3.2 that the PSD of the generated profile matches the trend of the ideal 

line.   
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Figure 3.1 – Randomly generated 2-D terrain profiles with varying scaling parameters   for the 

same fractal dimension  . 

 

Figure 3.2 - PSD of generated fractal surface compared to ideal PSD fractal line. 
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3.2 Three Dimensional Terrain Surface Generation 

The 2-D Weierstrass-Mandelbrot function presented in Section 3.1, can be extended to 3-

D to create fractal surfaces. The 3-D W-M function is given by Equation (3.6). Like the 2-D 

version the surface is built from stacking sinusoids of increasing frequencies up to a maximum 

frequency level. This is a multivariate function which is a function of the position in two 

perpendicular directions. The key difference between the 2-D and 3-D versions of the W-M 

function is the use of superimposed ridges upon which the surface is built.  More details about 

the W-M function can be found in a paper by Ausloos and Berman [43].  
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As in the 2-D version, the roughness of the surface is governed by the parameters   

and  , the fractal dimension and scaling coefficients respectively.   is a measure of the 

amplitude roughness which effectively scales the surface, and   is the transverse width of the 

profile. The parameter   controls the density of frequencies in the surface. M is the number of 

superimposed ridges used to reconstruct the surface profile and the parameter   is a frequency 

index with      being some upper cutoff frequency.      are random phases among the 

sinusoids which create the surface. 

Since in this dissertation only terrains along a vehicle path are being considered, it is 

assumed the path is much longer than it is wide. Thus, the transverse width of the profile is used 

rather than the length so as not to improperly scale the surface. For a 3-D surface       , 

and in general the surface will appear more flat when   is close to 2 and become jagged as   
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approaches 3. Typically the values of these parameters will be in the middle of the range, not 

near the extremes. The overall roughness of the surface is defined by the combination of 

  and  . Additionally by randomly selecting the phase shift, unique surfaces can be created 

using the same fractal parameters. This can be beneficial for simulating a vehicle on multiple 

scenarios with the same statistical roughness. Note as the frequencies in the surface increase, the 

amplitude decreases. Thus, at a certain frequency level the changes in the surface will no longer 

affect the dynamics of the vehicle.   

Figure 3.3 shows four surfaces which were generated using this method, two surfaces 

with        and two with      . Each surface has a different G value. It can be seen that 

surfaces with a large range of roughness can be generated using this method. In general as   is 

increased the surface will become rougher for a given  . However, the particular magnitude of   

required to yield a desired roughness can change significantly based on the current  . This 

relationship can be seen by examining Equation (3.7) which describes the overall scaling of the 

surface. When   is closer to 2 the exponent is closer to zero making the quantity less sensitive to 

variations in  . As   approaches 3 the scaling factor becomes more dependent on  . The effect 

of this on generating a desired terrain surface is that it requires the correct combination of   and 

  to be selected in order to yield the desired roughness. It should be noted that the roughness of 

the surfaces created using the W-M function are not strictly isotropic, although any variations in 

roughness along different directions are negligible from a vehicle dynamics standpoint. In 

general the fractal dimension   can be determined from the power spectral density of an 

experimental surface. However, the accuracy of   determined from this method will be 

dependent on the self-affinity of the surface. The self-affinity assumption breaks down for most 

experimentally measured terrains. This process is discussed further in Chapter 5.  
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Figure 3.3 – Examples of surfaces generate using Weierstrass-Mandelbrot function with various 

values of D & G. 

3.2.1. 3-D Surface RMS Analysis  

The root mean squared elevation (RMSE) is a common method of describing the 

roughness of any type of surface, thus it is a popular way to characterize terrain profiles as well. 

The RMSE can be calculated with the following expression, 

       √
 

 
∑  

 

 

   

 (3.8) 

 

where   is the profile height in meters and   is the number of samples. One of the drawbacks to 

this method is that in order for it to accurately represent the profile’s roughness the profile must 

be stationary. That is to say, the statistics do not change over the length of the profile. If one 

considers a profile for which the first half is smooth and the last half is rough, the RMSE for the 

entire profile will be an average of the two, which does not accurately represent the true profile. 
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Since the profiles being tested here are non-stationary the RMSE can vary for subsections of the 

profiles. The RMSE will be more accurate for shorter profile lengths. 

Figure 3.4 shows the RMSE as a function of scaling coefficient G for each of the terrain 

surfaces generated.  The data points are the calculated RMSE values for each of the surfaces. 

Since there is an exponentially increasing trend in RMSE as G is increased, an exponential 

equation was fit to each set of data. It is interesting to observe that there are several combinations 

of G and D that will yield a surface with the same RMSE. This figure also shows how the range 

of G values can change based on D. It should be noted that the RMSE will vary based on the 

length of the profile and the parameter    . The equations shown here were determined assuming 

the length of the profile is 100m and      . Figure 3.5 shows the RMSE data points for the 

left, middle, and right profiles plotted on top of the fit curve. This gives an indication of the 

variation of the RMSE of profiles in different transverse locations of the surface. It can be seen 

that as the surface increases in roughness there is more variation in the RMSE of individual 

profiles taken from the surface.  
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Figure 3.4 – Exponential relationship between RMS Elevation and Scaling parameter, for various 

fractal dimensions D.  

 

Figure 3.5 – RMS of left, middle, and right 2-D longitudinal profiles taken from 3-D surface 

compared with analytical fit for various fractal dimensions and scaling parameters.  
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3.2.2. Power Spectral Density Analysis 

The power spectral density (PSD) has been shown to be an effective way to characterize 

off road terrain profiles [19,20,21].  The PSD of an off road terrain will have a decreasing trend 

with increasing wave number (spatial frequency). In this dissertation the Welch’s method was 

used to calculate the PSD, which can be implemented in Matlab using the command ‘pwelch’. 

The PSD can also be calculated by taking the Fourier transform of the autocorrelation of the 

profile, with similar results. Figure 3.6 shows the PSD of a longitudinal profile taken from the 

fractal terrain surface. It is often beneficial to inspect the PSD to understand the frequency 

content in the profile. For example in Figure 3.6 it can be seen that for certain windows of wave 

numbers there is more energy present than in the general downward trend of the data. The dip in 

magnitude at the lower wavenumbers (less than 0.1) is caused by the fractal surface not including 

any road grade. As previously mentioned, it is common to fit a line to the PSD data which 

captures the trend of the data. The parameters that define the line are then used to classify the 

roughness of the terrain.  Recall, the linear fit of a PSD will have the form  

          (3.9) 

where       is the PSD ,   is the wave number , and where   and   are constants which relate 

to the scaling and the slope of the fit line respectively. It should be noted that one of the 

drawbacks to this method is that taking a line fit on the PSD data can lose important information 

about a surface. As seen in Figure 3.6, a line fit cannot capture the existence of increased energy 

in higher frequency content of a profile, which can be important especially considering the effect 

of this frequency on the vehicle response.  Additionally, like the RMSE the PSD inherently 

makes the assumption that the profile is statistically stationary. Thus for the profiles tested there 

could be variations in the PSD for shorter or longer profile lengths. 
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Figure 3.6 – Example of a PSD of a longitudinal profile taken from a 3-D fractal surface 

 

Table 3.1 shows the PSD fit parameters for terrain surfaces which were generated using 

various values of   and  . Each of the values represents the average of left, middle, and right 

longitudinal profiles taken from the surface. It can be seen that   is negative for all of the terrains 

generated, indicating that the PSD has a negative slope. The magnitude of   will thus indicate 

how quickly the energy of the surface decreases as the wave number increases.   is related to the 

overall energy of the surface. It can be seen that   is proportional to   for a given fractal 

dimension  . Figure 3.7 shows fit lines for a longitudinal profile taken from a surface generated 

with        for increasing scaling parameter  . From this plot it can be seen that he slope of 

the fit line remains constant while the overall amplitude of the fit line scales with  . This is to be 

expected since the slope of the PSD is proportional to the fractal dimension of the surface. 
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Table 3.1– PSD exponential fit constants for profiles taken from surfaces generated with various 

values of fractal dimension     and scaling parameter    . 

D = 2.25 D = 2.35 D = 2.5 

G R k G  R k G R k 
                  -3.80                  -3.74                  -3.71 

                  -3.80                  -3.83                  -3.83 

                 -3.73                  -3.85                  -3.83 

                 -3.77                  -3.74                  -3.79 

                 -3.74                  -3.76                  -3.76 

                 -3.87                  -3.73                  -3.69 

 

 

Figure 3.7 – PSD fit exponential fit lines for a profile taken from surfaces generated with fractal 

dimension        for various values of scaling parameter  . 

 

3.2.3. Statistical Tests for Terrain Profiles 

To gain a more complete understanding of the surfaces generated by the (W-M) method, 

various statistical tests can be performed on the profiles. The three tests which will be considered 

are the statistical tests for linearity, Gaussianity, and stationarity. These tests have been used by 

researchers to analyze experimental terrain profiles and have become accepted by the field as 
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important properties of terrains [22,30]. Each of these tests can provide different a perspective on 

the behavior of the terrain profiles. Applying  the tests to the surfaces generated by the W-M 

function provides another basis for comparison between this method and other commonly used 

methods.   

One method for assessing the linearity of a time (or spatial) domain sequence is to 

analyze the residuals of a linear regression to the signal. Loosely speaking if the residuals of the 

linear regression show a non-linear trend, it can be said that the surface is non-linear. 

Alternatively, if the residuals of the linear regression are near zero it indicates the signal is linear. 

Figure 3.8 shows the linear regression residuals for profiles taken from surfaces with        

and various   values. It can be seen that the residuals are non-linear, however if magnitude of 

these residuals decrease it can begin to appear more linear. Since the surfaces generated are 

randomly generated, some profiles may be linear and other non-linear for the same fractal 

parameters.   
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Figure 3.8 – Linear regression residuals for a profile taken from surfaces generated with fractal 

dimension        and (top)         (middle)      9 (bottom)       

 

Two approaches were used to test the Gaussianity of the profiles which have been 

generated. The first method is a qualitative check comparing the empirical density function of 

the profile to the analytical probability density function based on the mean and standard 

deviation of the surface. The second is the Kolmogorov-Smirnov (K-S) test which was used as a 

means to obtain a quantitative measure of the Gaussianity of the surfaces [44]. Figure 3.9 shows 

the empirical density function (blue histogram) of the profile compared to the analytical 

probability density function of the surface. From the plots it can be determined that the empirical 

density function is non-Gaussian, although it does loosely resemble a Gaussian distribution. The 

K-S test for each of these surfaces confirms the qualitative assessment rejecting the null 

hypothesis of a Gaussian distribution.   
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(a) 
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(b) 

 
(c) 

Figure 3.9 – Empirical distribution function compared with analytical Gaussian probability 

density function of profiles taken from surface with fractal dimension        and (a)   
      (b)      9 (c)       .  
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The stationarity of a time series is the property which means that the statistics of the 

signal do not change as a function of time. In order to assess the stationarity of the profiles taken 

from the generated fractal surface, the windowed standard deviation of the profile was taken. 

Figure 3.10 shows the windowed standard deviation for profiles for surfaces where        for 

increasing values of G. The window size in this case was 10m which is 10% of the total profile 

length. Figures 3.11 and 3.12 show the Allan deviation for the same profiles on a linear scale and 

log-log scale respectively. The Allan deviation can be particularly helpful since it shows mean 

standard deviation of the windows of data for an increasing window size. This is important since 

the profiles may be stationary for small regions of their length even if the profile as a whole is 

non-stationary. If the signal is stationary the standard deviation of the signal should not change 

significantly over the length of the signal. From these figures it is clear that the standard 

deviations of the profile change over its length. Thus it can be concluded from this data that the 

profiles generated here by using the W-M function are non-stationary.  
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Figure 3.10 – Windowed standard deviation over the length of a profile taken from a surface 

generated with          and (top)         , (middle)     9 , (bottom)       . 

 

Figure 3.11 – Allan Deviation for profile taken from generated surface with fractal dimension 

       and various values of scaling parameter   plotted on linear scale. 
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Figure 3.12 – Allan Deviation for profile taken from generated surface with fractal dimension 

       and various values of scaling parameter   plotted on log-log scale. 

3.3 Vehicle Simulation 

The most important aspect of generating terrains for vehicle simulation is that the 

response of the vehicle when simulated on these terrains matches that of a vehicle on the real 

terrains. To this end it is desired to develop vehicle models which can accurately capture the 

vibrations which a vehicle will undergo while driving on rough terrains. As with any modeling 

there is a trade-off between model complexity and fidelity. This section investigates the use of 

vehicle models to analyze the effectiveness of the methodology for generating terrains. 

3.3.1. Vehicle Suspension Models 

There are several suspension models which are used to simulate vehicle motions caused 

by the terrain roughness. The quarter car model, shown in Figure 3.13, is the simplest 

representation of the vehicle suspension. This model consists of a sprung mass and an un-sprung 
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mass connected by a spring and damper. This is a two degree of freedom model which models 

the vertical motion (heave) of the sprung mass and the motion of the un-sprung mass. A more 

complex representation of the suspension can be obtained by using a half car model shown in 

Figure 3.14. This suspension model has four degrees of freedom: the heave of the sprung mass, 

the angle of sprung mass, and the motion of the two un-sprung masses. There are two methods of 

implementing this model. The model can represent the vehicle front to rear in which case the 

angle representing the pitch, or the model can represent the left to right of the vehicle in which 

case the angle represents the roll of the vehicle. 

 

Figure 3.13 – 2 Degree of freedom quarter car model.  
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Figure 3.14 – 4 Degree of freedom half car model. 

 

In this work, it is desired to obtain a high fidelity suspension model which models not 

only the vehicle heave, but also the roll and pitch motion. Thus, the seven degree of freedom (7-

DOF) full suspension model is implemented to most accurately capture the motion. Shown in 

Figure 3.15, the 7-DOF model has a sprung mass connected to an un-sprung mass at each corner 

by a spring and damper. In this implementation the tires are represented by a linear spring, 

although some researchers add a damper to model the hysteresis in the tires. There are four 

inputs, one at each corner representing the terrain displacement on the tires. 

The origin of the model is located at the center of gravity (CG) relative to the wheelbase 

by parameters   and  . The location of the CG is related to the track width given by the 

parameters    and   . The sprung mass is represented by  , and the un-sprung mass is 

represented by    . The index    refers to the left or right side of the vehicle and the index   can 

be 1 or 2 referring to front or rear axle of the vehicle. The spring and damping coefficients are 

given by    and     respectively. The heave motion, roll motion and pitch motion are represented 

by  ,    and    respectively. The motion of each un-sprung is represented by    . The equations 
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of motion for the heave, roll, pitch, and un-sprung mass motions, are given by Equations (3.10) 

to (3.16).   

 

Figure 3.15 – 7 Degree of Freedom Full Suspension Model. 

 

 

Heave Equation of Motion 
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Roll Equation of Motion 
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Pitch Equation of Motion 
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Front Left Un-sprung mass Equation of Motion 

    ̈            ̇                 ̇              ̇                    ̇  

         
(3.13) 

 

Front Right Un-sprung mass Equation of Motion 

    ̈            ̇                 ̇              ̇               

     ̇           
(3.14) 

       

 Rear Left Un-sprung mass Equation of Motion 

    ̈            ̇                 ̇              ̇                    ̇  

         
(3.15) 

      

Rear Right Un-sprung mass Equation of Motion  

    ̈             ̇                ̇              ̇               

     ̇           
(3.16) 

 

 Since the model is used to simulate the vehicle motions caused by the terrain, the 

frequency content of the motion of the vehicle is related to the spatial frequency content of the 

terrain based on the vehicle velocity.  Thus the gain portion of the Bode plot can be analyzed to 

determine how the frequencies in the terrain will propagate to the motion of the body. When 

studying the motion of the vehicle it is desirable to analyze states which can be measured 

directly. Direct measurements of the roll rate and pitch rate can be obtained by using an inertial 

measurement unit (IMU). It is not uncommon to find IMUs with sample rates of 100 Hz or 

higher. The heave position and velocity can be measured directly by GPS however the sample 

rate (1-10 Hz) is too slow to capture the vibration dynamics. In order to increase the update rate 

of these estimates the GPS can be blended with the IMU to provide estimates of these states at 

the sample rate of the IMU. This process is discussed in detail in Chapter 4. Figures 3.16 – 3.20 

show the gain of Bode plots for the transfer function from the inputs     to the heave position, 
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velocity, roll rate, pitch rate, and suspension deflection respectively. It can be seen from these 

plots that there are certain ranges of frequencies for which the system will undergo resonance. 

These plots can also give an indication of the bandwidth frequencies for each of the variables of 

interest.  

   

 
 

Figure 3.16 – Gain magnitude vs. frequency from wheel inputs (   ) to vehicle heave    . 
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Figure 3.17 – Gain magnitude vs. frequency from wheel inputs (   ) to heave rate   ̇ . 

 

Figure 3.18 – Gain magnitude vs. frequency from wheel input (   )  to roll rate     ̇ . 
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Figure 3.19 – Gain magnitude vs. frequency from wheel input (   )  to pitch rate (  )
̇ . 

 

Figure 3.20 – Gain magnitude vs. frequency from wheel input (   )  to suspension 

deflection (   
′     ). 
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These figures describe the frequency dynamics of the system to a displacement input; 

however it is desired to relate the input frequencies to the spatial frequency content of the terrain. 

The relationship between terrain spatial frequency and input frequency is given by the following, 

    
 

  
 

 

   
 (3.17) 

where    is the  spatial frequency (        ),    is the wavelength in ( ) ,   is the velocity of 

the vehicle in (     , and   is the oscillatory frequency in        .  Equation (3.17) can be 

used to determine the specific terrain wavelengths for which a given vehicle state will be 

sensitive. Consider the gain of the roll rate shown in Figure 3.18 where there is a resonant peak 

at approximately 15      . Therefore, at a typical off road driving speed of 4.5      10     , 

the terrain wavelengths near 1.8   will cause the system to resonate. Figure 3.21 shows how the 

terrain wavelengths relate to the gain of the roll rate for various speeds. It can be seen that the 

response shifts with increasing speed. As expected the faster the vehicle is traveling longer 

wavelengths will cause resonance. A similar methodology can be carried out for the rest of the 

vehicle states of interest to determine the terrain frequency content for which the vehicle will be 

sensitive. Considering the application to autonomous ground vehicles, a vehicle which is 

traveling at a certain speed can look for terrain wavelengths in the range based on its current 

speed. 
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Figure 3.21 – Roll rate gain vs. terrain wavelength for various vehicle speeds 

 

3.3.2. Simulation Comparison 

Perhaps the most important aspect of generating terrains for vehicle simulation is that the 

response of the vehicle matches that of the actual vehicle. In order to do this, several vehicle 

simulations were conducted to evaluate the dynamics of a vehicle traveling over the surface. For 

these simulations the 7-DOF suspension model introduced in the previous section was 

implemented in MATLAB. The simulations were also run in the software Carsim [45] to validate 

the 7-DOF model. Carsim provides high fidelity vehicle models which are accepted by industry 

as being accurately representative of vehicle dynamics.  The simulation consists of a straight 

drive on the rough terrain with no additional inputs but the terrain. To simplify the analysis of the 

W-M function for generating terrains surfaces, no road bank or road grade considered in this 

here. Thus the large scale elevation of the terrain does not change significantly over the length of 

the run.  
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The MATLAB implementation of the 7-DOF suspension model required the 

development of the state space model for the equations of motions (3.10) – (3.16). The state 

vector for these equations can thus be defined as 

   [    ̇       ̇         ̇       ̇          ̇          ̇         ̇  ]
 
 (3.18) 

 

where  ,   , and    are the heave, roll and pitch respectively, and     are the wheel positions. 

The system model matrix is given by the following 
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  (3.19) 

 

where for brevity certain elements of the matrix are defined by:      
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The input model for the system can be defined by 
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 (3.20) 

 

Depending on the sensors which are being used various output models can be used. Here it is 

assumed that the heave position and velocity, the roll rate, pitch rate, as well as the positions of 

the un-sprung masses are measured directly. As such the measurement model is defined   
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(3.21) 

To simulate the system presented in Equations (3.19 – 3.21) the discretized form of these 

matrices must be determined. The state transition matrix for the system can be determined by 

calculating the matrix exponential as 
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        (3.22) 

The discretized input matrix can be calculated by  

    ∫  𝑨   
  

 

  (3.23) 

The model can then be simulated in a ‘for’ loop using the following discretized model form  

               (3.24) 

where    is the input vector at time step k.  

 Using this method the 7-DOF model was simulated in MATLAB and the states were 

compared to the simulated output from the CarSim model. For model validation the vehicle was 

simulated at 10mph (4.47    ) on a terrain which was generated with fractal parameters 

       and        . These values were chosen to represent reasonable off road conditions 

on a relatively benign terrain. The terrain was 100m long and no road grade or road bank was 

included in the simulation. It should be noted that all of the figures in this section are 10 second 

windows of the entire simulation. The initial conditions of the CarSim model were used as the 

initial conditions of the 7-DOF model. Also the road heights for each wheel are available from 

the CarSim variable list, and these road heights were used as the inputs to the 7-DOF model. The 

vehicle parameters which were used for CarSim model were also used for the 7-DOF model. 

Figure 3.22 shows the heave position (top) and heave velocity (bottom) comparing the 7-DOF 

model to the CarSim model. It can be seen that there is an offset in the heave position which can 

be attributed to the kinematics in the CarSim model which are not present in the 7-DOF model. 
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(a) 

 
(b) 

Figure 3.22 – Heave motion for vehicle simulations of 7 DOF model and CarSim (a) comparison 

(b) error. 
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The roll motions and pitch motions of the CarSim model and 7-DOF model along with 

their errors are shown in Figures 3.23 and 3.24 respectively. It can be seen that both the angles 

and angular rates match well for these plots. There is however a slight offset between the pitch 

angles for the two different simulations. This is caused by the static ride angle created by the rear 

weighting of the vehicle. The CarSim model takes into account this static ride angle while the 7-

DOF model does not have that level of sophistication. Figures 3.25 and 3.26 show the motions of 

the front and rear un-sprung mass motions respectively. The error is shown in part (b) of these 

figures.  It can be seen that the positions and velocities have the same shape which some offset in 

the positions which can be attributed to suspension preloading and kinematics which are 

included in the CarSim model. 
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(a) 

 
(b) 

Figure 3.23 – Roll motion for vehicle simulations of 7 DOF model and CarSim (a) comparison 

(b) error. 
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(a) 

 
(b) 

Figure 3.24 – Pitch motion for vehicle simulations of 7 DOF model and CarSim (a) comparison 

(b) error 
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(a) 

 
(b) 

Figure 3.25 – Front un-sprung mass motion motion (a) comparison (b) error between 7-DOF 

model and CarSim  
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(a) 

 
(b) 

Figure 3.26 – Rear un-sprung mass motion (a) comparison (b) error between 7-DOF model and 

CarSim. 
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3.3.3. Vehicle Motion Based Metrics 

In order to develop terrain based control algorithms for the vehicle, it is required to 

develop metrics which can evaluate the terrain roughness based on metrics calculated from the 

vehicle motion. Since the vehicle motion is highly oscillatory when driving over a rough terrain, 

scalar metrics need to be used to represent the variation of the signal. One method for 

accomplishing this is to calculate a root mean square of the signal by using the equation 

       √
 

 
∑  

 

 

   

 (3.25) 

where   is the state of interest and   is the number of samples. To test the effectiveness of these 

metrics simulations were run on fractal surfaces generated with fractal dimension        and 

scaling parameter ranging from           , to         . The vehicle was simulated on 

each of the terrains at speeds of 5, 10, 15, 20, and 25 mph (2.23, 4.47. 6.71, 8.94, and 11.18   

 ). These were chosen as reasonable speeds for an off road vehicle on rough terrain. Figures 3.27 

to 3.29 show the RMS vertical acceleration, roll rate and pitch rate respectively for the various 

simulations runs. It can be seen that the RMS vertical acceleration exhibits an increasing trend 

with speed and surface roughness. The RMS roll rate generally increases with surface roughness 

however for a given roughness the trend does not necessarily increase with speed as evidenced 

by the simulation on the surface where          (red line). The RMS roll rate decreases as 

the speed goes from 5 to 15 mph but increases as the speed continues to increase. The RMS pitch 

rate tends to increase and then decrease with increased speed. It is important to note that the 

specific pattern of increase or decrease depends on the spatial frequency content of the terrain as 

it relates to the frequency response of the vehicle. 
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Figure 3.27 – RMS vertical acceleration vs. speed for vehicle simulated on surfaces with varying 

scaling parameter G 

 

Figure 3.28 – RMS roll rate vs. speed for vehicle simulated on surfaces with varying scaling 

parameter G 
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Figure 3.29 – RMS pitch rate vs. speed for vehicle simulated on surfaces with varying scaling 

parameter G 

 

As previously mentioned it is beneficial to analyze states which are directly affected by 

the terrain roughness and can be measured directly such as the pitch rate, roll rate and vertical 

acceleration. However other states of interest can be estimated by employing a GPS/INS filter as 

described in Chapter 4. Using the GPS/INS filter the roll angle, pitch angle, vertical velocity, and 

vertical position can be estimated at the sample rate of the IMU. This allows alternative methods 

of analyzing the roughness to be implemented. One rather obvious metric is to calculate the 

kinetic energy in the roll, pitch, and vertical motions. This can be accomplished by using the 

following equation 

      
 

 
   

  
 

 
𝐼   

  
 

 
𝐼   

  (3.26) 

where    is the vertical velocity,    is the roll rate, and    is the pitch rate. The mass, roll inertia 

and pitch inertia are given by  , 𝐼 , and 𝐼  respectively. Figure 3.30 shows the kinetic energy of 
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the simulated vehicle for the various runs. It should be noted that the vertical axis on this plot is 

logarithmic. It can be seen that the overall kinetic energy experienced by the vehicle scales with 

the roughness of the terrain, more so than with vehicle speed, yet there is an increase in kinetic 

energy between 5 to 10 mph for most of the terrains. It is interesting to note that the kinetic 

energy of the body does not change significantly above 10 mph.  

 

Figure 3.30 – Kinetic Energy vs. speed for vehicle simulated on surfaces with varying scaling 

parameter G 

 

Another method of evaluating the roughness of the surface based on the vehicle motions 

is to use the phase plane of various states of the vehicle. This can be beneficial for determining 

the relationship between vehicle states while operating on a rough terrain. In some cases the 

roughness of the terrain may cause motion primarily in one mode or another. The phase plane 

allows the distribution of the motion between the modes of motion to be analyzed. The roll rate 
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and pitch rate can be measured directly from an IMU making them an intuitive combination to 

analyze on the phase plane.  If a GPS/INS system is used to determine the attitude states of the 

vehicle, the phase plane for the roll and roll rate or the pitch and pitch rate can also be used to 

analyze the vehicle motion.  Figure 3.31 shows the phase plane plot for the pitch rate and roll 

rate. Figures 3.32 and 3.33 show the phase plane plots for the angle and angular rate for the roll 

and pitch respectively. These plots are shown for a simulation on each of the rough surfaces at 

10mph. It can be seen that the as the roughness of the surface increases the points on the phase 

plane plots become more scattered. For each of these scatter plots an ellipse can be fit to the data, 

and the parameters of the ellipse, such as area, can be used to determine the roughness of the 

terrain. This process is outlined in more detail in Section 5.1. 

 

 

Figure 3.31 – Phase plane plots of pitch rate vs. roll rate of vehicle simulated on terrains of 

various roughness at 10 MPH. 
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Figure 3.32 – Phase plane plots of roll rate vs. roll angle for simulated vehicle simulated on 

terrains of various roughness at 10 MPH. 

 

 

Figure 3.33 – Phase plane of pitch rate vs. pitch angle vehicle simulated on terrains of various 

roughness at 10 MPH. 
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Chapter 4: Terrain Measurement and Statistical Analysis 

In Chapter 3, methods were discussed to generate artificial terrains using fractals for the 

purpose of vehicle simulation. These methods were analyzed using common terrain roughness 

analysis metrics. Additionally it was shown that the surfaces generated using these methods were 

non-Gaussian and non-stationary, two traits the literature has found to be true for off-road 

terrains. The results of Chapter 3 suggest that the Weierstrass-Mandelbrot function could be an 

effective method for generating off road terrains which will match the behavior of actual terrains.  

This chapter seeks to investigate the properties of real off road terrains as a means of comparison 

to the terrain generation methodology presented in Chapter 3. Therefore in this chapter a terrain 

measurement system using a LiDAR mounted to the experimental vehicle is introduced for 

accurately mapping the terrains. Various analyses are performed on the measured terrains to 

compare with the terrain models. The analyses presented in this chapter seek to assess the 

roughness of the measured terrains. Additionally, a method is presented for identifying unique 

features on the terrain.  

4.1 Terrain Measurement System 

The first step in analyzing terrains is to develop a system to accurately map the terrains 

using sensors aboard the vehicle. In this dissertation a Light Detection and Ranging (LiDAR) 

sensor is used to map the terrain. This sensor uses a scanning laser beam to measure ranges to 

objects at which the sensor is pointed. However, since the LiDAR is mounted to the vehicle, the 

motion of the vehicle will vastly effect the measurements taken by the sensor. One of the key 
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challenges in accurately mapping the terrain is to estimate the states of the vehicle in order to 

account for the change in the LiDAR position and orientation. Additionally, the state estimates 

must be smooth so they do not cause jumps in the terrain map which are not present in the 

terrain.  

4.1.1. Experimental Hardware and Instrumentation 

The experimental vehicle, which is shown in Figure 4.1, is an ATV Corps Prowler. The 

Prowler is a light tactical all-terrain vehicle which has been instrumented with a plethora of 

sensors to measure accelerations, rotation rates, velocities, positions, suspension deflections, and 

steer angles. The Prowler has also been automated with actuation on the steering, throttle, and 

brakes. An Advantech ruggedized PC is used to handle data logging and other computational 

processing. The hardware primarily used for the terrain measurement system is shown in Figure 

4.2. For measuring vehicle positions and velocities a Novatel ProPak v3 GPS receiver was used. 

This unit provides measurements at rates up to 20Hz and is capable of receiving real time 

kinematic (RTK) corrections to centimeter level accurate measurements of position. The 

Crossbow 440 is a 6 DOF inertial measurement unit (IMU) which can measure accelerations and 

rotation rates on three axes at sample rates up to 100Hz. Suspension deflections are measured 

using Celesco linear potentiometers. The potentiometers are mounted parallel to the axis of the 

struts and are sampled at 100 Hz. The Sick LMS-291 is a two dimensional LiDAR, which can 

measure the range, reflectivity, and angle to objects within its 180 degree field of view. The 

LMS-291 is capable of collecting data at 75Hz. Figure 4.3 shows how the LiDAR is mounted to 

the front of the vehicle. 
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Figure 4.1 – Prowler ATV Experimental Test Bed 

 

 

Figure 4.2 – Primary sensors used in mapping system (left) Novatel Propak v3 GPS Receiver 

(middle) Sick LMS 291 LiDAR (right) Crossbow 440 Inertial Measurement Unit 
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Figure 4.3 – Mounting of LiDAR on front of Prowler ATV 

 

The data was collected to the PC using open source software called Mission Oriented 

Operating Suite (MOOS) [46]. This software runs a database on the computer to which all of the 

data from the various sensors are posted. The data present in the database can then be logged 

allowing the data to be collected in an efficient manner. One of the benefits of MOOS is it allows 

the data to be played back as if it were running real time, allowing the development of real-time 

algorithms without testing in real-time. For a more complete description of the sensor hardware 

and software specifications see Appendix C. 
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4.1.2. GPS/INS Loosely Couple Extended Kalman Filter 

The GPS/INS Extended Kalman Filter (EKF) is a commonly used method to blend 

measurements from inertial sensors with GPS measurements. As previously mentioned, inertial 

sensors are desirable because of their high sample rates up to 100Hz which can capture a wide 

range of dynamics. However it is well understood that when using inertial navigation sensors 

(INS) to obtain a navigation solution (position, velocity, attitude), the solution can drift quite 

drastically depending on the quality of the inertial sensors being used. If for example the 

accelerometers have constant biases the integration of those biases over time results in a linear 

trend in velocity, and quadratic trend in position. Incorporating GPS with the inertial sensors has 

several benefits over a purely INS solution. Depending on the circumstances GPS can yield an 

unbiased and highly accurate measurement of positions and especially of vehicle velocities. 

Unfortunately the GPS sample rates typically range from 1-20Hz, which is too slow to be used 

for capturing vehicle dynamics. By blending the GPS solution with the INS, estimates of the 

vehicle states can be obtained in between the GPS measurements. This takes advantage of the 

high update rate of the INS while limiting the effects of the INS drift over time. The blended 

solution also allows the accelerometer and gyroscope biases to be estimated and accounted for to 

improve the quality of the INS solution.  Two excellent resources on this topic are by Gleason 

and Gebre-Egziabher [47], and Groves [48]. 

The implementation of the GPS/INS navigation filter with a loosely coupled architecture 

is characterized by a time update and measurement update as with any EKF. The time update can 

be thought of as the INS estimate of the navigation solution at the rate of the IMU. The 

accelerometers and gyroscopes are integrated over time to obtain estimates of the position, 

velocity, and attitude of the vehicle. The navigation state vector for the system is as follows 
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   *                   
  (  )

 
+
 

 (4.1) 

where   and   are vectors of the respective north, east, and down positions and velocities. The 

attitude states (roll, pitch, and yaw) are denoted by 

   [   ]  (4.2) 

The last two elements in Equation (4.1) represent the three axis accelerometer and gyroscope 

biases respectively. The state vector can also be written in terms of error states which will be 

used in the measurement update as shown in Equation (4.3).  

    *                      
  (  )

 
+
 

 (4.3) 

The first step of the time update is to update the attitude states. This is accomplished by 

taking the measurements from the gyroscopes subtracting off the estimated bias and rotating 

them into the vehicle frame, a process called mechanization. Lastly the states are updates using 

trapezoidal integration.  These steps are given by Equations (4.4 – 4.6). 
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The next step of the process is to update the velocity vector using the accelerometer 

measurements. First a rotation matrix is defined to transform the accelerometer measurements 

which are taken in the vehicle body frame to the navigation frame (north east down). The 

estimated accelerometer biases (    are subtracted from the measurements    
   and multiplied 

by the rotation matrix from the body frame to navigation frame. The local gravity vector in the 

navigation frame must then be subtracted from the accelerometer measurements to yield the 
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change in velocity in the navigation frame. The change in velocity can then be integrated to 

update the estimate of velocity. This process is shown in Equations (4.7 – 4.9).  
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] (4.7) 
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Since in this implementation the positions are referenced in the same coordinate frame as the 

velocities, the change in the positions are simply the velocities in navigation frame. It should be 

noted that in some implementations the positions are referenced in a different coordinate frame 

than the velocities and must be transformed into the appropriate frame prior to integration. The 

velocities can then be integrated to yield the position estimates as shown by Equations (4.10) and 

(4.11). 

  ̇     (4.10) 
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(4.11) 

 

To complete the time update for a given time step, the covariance matrix must be propagated 

forward using the system model. The GPS/INS system model which describes the kinematic 

relationships between the measurements is non-linear and time variant. Thus in order to 

propagate the covariance forward the Jacobian of the system model must be defined as shown in 

Equation (4.12). 
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 (4.12) 

 

Here the matrix each element of the matrix is a 3x3 block where    is a matrix of zeros and 𝐼  is 

an identity matrix.    and   are the time constants for the Markoff process which models the 

bias drift for the accelerometers and gyroscopes respectively. The state transition matrix for the 

system can now be determined by 

         (4.13) 

and the covariance for the next step can be calculated by using the equation 

            
     (4.14) 

where    is the discretized process noise matrix.  

The time update steps described here iterate at the rate of the IMU until a new 

measurement from the GPS receiver is available. When a GPS measurement is available the 

steps for the measurement update are executed. As previously mentioned, the EKF used is an 

error state filter, where the states are the difference between the GPS measured states and the 

INS estimated states. The measurement equation based on the error state vector (Equation (4.3)) 

can be given by  

                (4.15) 

where the measurement matrix implies measurements of the positions and velocities and is 

written 

   [       9] (4.16) 
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The Kalman gain can then be calculated using current covariance matrix     
   from the time 

update propagation and the measurement covariance matrix    

 

          
               

     
       (4.17) 

 

              (4.18) 

 

For all of the states with the exception of the attitude states, Equation (4.19) can be used to 

update the true states with the calculated error states. 

               (4.19) 

 

The attitude states must be extracted from the rotation matrix. The residuals calculated for the 

attitude states are put into their skew symmetric matrix form and summed with the identity 

matrix of appropriate size and multiplied by the previous rotation matrix to obtain the updated 

rotation matrix. The Euler angles can then be extracted from the rotation matrix. This process is 

shown by Equations (4.20 – 4.23). 
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Finally the measurement update can be completed by updating the covariance matrix using the 

equation  

     
               

  (4.24) 



65 

 

 

To test the effectiveness the GPS/INS filter for estimating the states required to develop a 

map of the terrain, data was collected while driving around a parking lot with the experimental 

vehicle. Figure 4.4 shows the path of the vehicle during the test, comparing the GPS position 

with RTK corrections to the GPS/INS estimate of the position. Figures 4.5 to 4.7 show the 

positions, velocities, and attitudes respectively. The errors between the GPS/INS solution and the 

respective references are shown in part (b) of these figures. It can be seen that the positions 

match the reference GPS positions well on the straights but deviate during the turns. One of the 

characteristics of the GPS/INS filter is that the solutions tend to jump during the measurement 

update. To minimize these effects the GPS/INS filter can be tuned to smooth the jumps in the 

solution. However, this tuning decreases the bandwidth of the filter keeping it from tracking the 

faster dynamics. The vehicle attitudes shown in Figure 4.7 are referenced to the measurements 

taken from a Septentrio PolaRx attitude system. The PolaRx uses three GPS antennas mounted to 

the vehicle to determine the absolute vehicle orientation. It can be seen that all of the attitude 

states follow the same trend as the reference although the solutions deviate in certain areas. In 

general, the attitude states are the most difficult to accurately determine since there is no direct 

measurement of these states. The some of the errors on the solutions for the attitudes can be 

attributed to mounting misalignment between the GPS antennas and the IMU.   
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Figure 4.4 – Path driven during survey comparison of GPS data and GPS/INS  
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(a) 

 
(b) 

Figure 4.5 – Comparison of positions using RTK GPS (blue) and GPS/INS (red)  
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(a) 

 
(b) 

Figure 4.6 – Vehicle velocities comparing GPS (blue) to GPS/INS (red) 
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(a) 

 
(b) 

Figure 4.7 – Attitude measurements for (a) comparison of GPS/INS estimate and Septentrio (b) 

errors between GPS/INS and Septentrio  



70 

 

 

Table 4.1 shows the mean, RMS, and maximum errors for each of the vehicle states of 

interest. The maximum position errors occur during the turns where the solution deviates for the 

reasons mentioned previously.  Additionally, the position and velocity errors are near zero mean, 

while the attitude errors have some biases. It should be noted that the Septentrio attitude system 

has errors which can be significant (        –         depending on the operating conditions) 

and should not be thought of as a truth measurement but merely as a reference.  

Table 4.1 – Summary of errors in GPS/INS solution  

 Mean Error RMS Error Max Error 

                        

                       

                      

                        

                        

                        

                          

                          

                         

 

The performance of the GPS/INS filter can vary greatly based on a variety of factors. 

Perhaps the most important of these is appropriately selecting the values for the process noise 

covariance matrix   and the measurement noise covariance matrix  . Ideally these values would 

come directly from sensor specifications, although they typically need to be manipulated to 

account for un-modeled dynamics in the system. Also much care must be taken in selecting the 

initial estimate of the covariance matrix  . Since the GPS/INS filter is highly non-linear, the 

covariance can find local minima or instability points based on the current states. Another 

consideration in determining the performance of the filter is the quality of the bias estimates on 

the accelerometers and gyroscopes. If the biases are incorrectly estimated the velocity and 
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attitude states are directly affected. The attitudes states in particular are important because the 

rotation matrix and mechanization matrix are computed from them, so any error in these states is 

propagated through the rest of the states. Another observation on the performance of the 

GPS/INS implementation is that it decreases when driving off-road at higher speeds (greater than 

15mph). It is hypothesized that during off-road driving at higher speeds the process noise varies 

from the process noise at slower speeds. Thus, the filter would need to be retuned at the higher 

speeds to optimize the performance. For more details on the issues related to GPS/INS 

performance consult works by Ryan [49] or Gleason and Gebre-Egziabher [47]. 

4.1.3. LiDAR Terrain Mapping   

Using the estimated states from the GPS/INS filter and the LiDAR measurements, the 

terrain mapping system can be developed. The mapping algorithm was designed to allow the 

system to be implemented in real-time. The system executes time updates at the rate of the IMU 

estimating the vehicle states. When a new LiDAR scan is available the current vehicle states are 

passed into an algorithm which orients the LiDAR scans based on the vehicle position and 

orientation. The LiDAR positions are then saved into a point cloud of Cartesian coordinate data. 

When a new GPS measurement is available the GPS/INS measurement is executed and the 

estimates of the states and biases are updated. Since the state estimates tend to jump during the 

GPS/INS it is helpful to run a smoothing filter while building the maps. A simple 

implementation for this is to take a moving average of the previous state estimates. This allows 

the terrain map to be created without any artificial artifacts created by the filtered solution. A 

block diagram of the terrain mapping system is shown in Figure 4.8. 
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Figure 4.8 – Block diagram for sensor fusion of GPS, IMU, and LiDAR for terrain mapping 

system 

 

This method allows 3-D Cartesian coordinate point clouds of the terrain to be generated 

which can be used for several purposes. Figure 4.9 shows the map of a lap around the parking lot 

at the National Center for Asphalt Technology (NCAT) test track.  This data was collected on the 

prowler ATV driving the same loop around the parking lot at speeds between 6 and 8 mph. 

Multiple laps around the loop were driven to ensure the GPS/INS filter was able to accurately 

identify the accelerometer and gyroscope biases. For the purpose of plotting the data only a 300 

meter longitudinal path was considered resulting in a map of just over one lap around the parking 

lot. A similar process was used for mapping of all the terrains which were analyzed. In these 

maps the red points are those of highest elevation and the blue points are those of the lowest 

elevation.  It can be seen that the map has enough detail to locate not only the curbs on the inside 

of the loop but also the grassy areas on the outside of the loop. It can also be seen that the scan 

density is lower longitudinally in some areas. These are areas where the vehicle pitched causing 

the scans to be further forward or behind the normal scan location, resulting in more scan density 

in some areas and less scan density in others. 
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Figure 4.9 – Point cloud map of parking lot in east north up coordinate frame 

 

Rather than resolve the terrain cloud map into a global east north up coordinate frame, it 

can be beneficial to keep the point clouds in path coordinates. This allows the terrain to be 

analyzed relative to the path the vehicle is driving. Additionally, the points from the scans which 

are outside of a range 5 meters on either side of the vehicle are removed. One reason for this is 

that the portion of the terrain outside this range is less relevant to where the vehicle is traveling. 

Another reason is that since the density of the scans is based on angular resolution, the scans are 

much less dense as they get further from the center. Put another way, small errors in the roll 

estimate of the vehicle result in much larger errors at the extremes of the scan width.  

When using a longitudinal terrain map for analyzing the terrain roughness, it can be 

helpful to define the height of the map relative to the vehicle rather than the global elevation. 

This method can be thought of as flattening the terrain and can be implemented quite simply by 

not accounting for the absolute elevation of the vehicle as measured by the GPS/INS system. 

Large elevation changes will affect the roughness metrics despite not usually being considered 
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roughness themselves. For this reason the effects of terrain grade and elevation changes are 

primarily neglected in the analysis performed in this chapter. The maps created for the analysis 

in this will be less accurate globally, but it will track the local roughness in the terrain much 

more accurately.  

 Figure 4.10 is the map of a wooded area with brush on either side of a dirt trail that exits 

to an asphalt lot.  Figure 4.10(a) shows the map in a global path coordinate frame and Figure 

4.10(b) shows the map in a local coordinate frame. This example shows how the elevation 

change can be removed to account for the local roughness. Figure 4.11 shows the point cloud in 

the path coordinates a terrain with high grass.  The grass can greatly affect the accuracy of the 

terrain map since the laser reflects off of the grass and not the ground. In both of these figures the 

path can be identified which suggests these maps can be used for path planning algorithms for 

the vehicles. 
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(a) 

 
(b) 

Figure 4.10 – Point cloud map of dirt path leading to open rough asphalt area in (a) global path 

coordinates (b) path coordinates relative to the vehicle (flattened) 
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Figure 4.11 – Point cloud map of high grassy terrain in path coordinate frame relative to the 

vehicle 

 

4.2 Terrain Surface Analysis 

Six different terrains were mapped which will be analyzed in this section. Pictures and 

descriptions of the terrains are shown in Appendix B. The first will be identified as ‘smooth 

asphalt’ where the data was collected in a parking lot. The second was an asphalt lot with patches 

of varying asphalt and many small rocks scattered throughout. This area will be denoted as 

‘rough asphalt’. A gravel lot was also used for data collection where the gravel was packed 

down. This region will be referred to as ‘packed gravel’. The fourth area for data collection was 

a gravel lot which was more loose and rutted. This area is identified by the term ‘loose gravel’. A 

more traditional off-road terrain was selected as well with mostly dirt and rocks. This area is 

identified as ‘dirt off-road’. The last data collection site was an off-road trail with tall grass in 

some areas, a dirt path, which finally transitioned onto the rough asphalt lot. The tall grass area is 



77 

 

referred to by the term ‘grassy off-road’ and the transitioning area is referred to by the term 

‘transition’. Since the terrain mapping methodology is dependent on GPS, the selection of the 

data collection sites was governed largely by the availability of GPS. The data collection was 

conducted at the National Center for Asphalt Technology (NCAT) test track located in Opelika 

Alabama. There were many areas at the NCAT test facility which would have been interesting to 

analyze but the proximity to trees and foliage made the GPS measurements too inaccurate to map 

the terrain. It is advantageous to collect data in long data runs and ideally the experiment would 

be conducted along a straight path. However, none of the data collection sites were long enough 

to collect the desired data length without driving on a closed loop. Thus the data was collected in 

a closed path in each of the areas. 

Some of the tools which will be used to analyze the terrains are implemented on 2-D 

longitudinal profiles rather than the full 3-D surface. For example the power spectral density 

(PSD) of a surface is a more abstract concept and is generally described as the PSD in two 

separate directions.  Thus it is desirable to extract 2-D longitudinal profiles from the terrain maps 

which are generated. This is accomplished by finding the values which are within a narrow range 

             of a desired lateral position. If the value for this range is too large, the profiles 

will have increased noise from the neighboring points laterally. If the value is too small the 

profile will have gaps where no points exist within the tolerance. Three profiles were extracted 

from each of terrain maps. Two of the profiles are from the left and right wheel paths and one is 

from center of the vehicle. It should be noted that the further away from the center of the vehicle 

the profiles are taken the more error which will be present from lack of resolution and the 

increased effects of roll dynamics. Longitudinally the profiles have a resolution of approximately 

5 cm although this will change based on vehicle velocity. Figures 4.12 – 4.17 show the 
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longitudinal profiles for each of the terrains that were measured. The terms ‘left’, ‘middle’, and 

‘right’ in the legends of these plots refer to these respective profiles from the surface. From these 

plots it can be seen that the data elevation of the profiles stays primarily between -0.2 and 0.2  , 

yet the apparent roughness can vary significantly. Consider the smooth asphalt and packed gravel 

data in show in Figures 4.12 and 4.13. The undulations in the profiles are similar in order of 

magnitude. However, the more local roughness is much higher on the packed gravel surface. In 

Figure 4.17 the transition from the dirt path to the asphalt can be seen. Qualitatively the 

roughness of the asphalt (after approximately 650 m) is significantly lower than the off road 

section. When the profiles are plotted on the same scale it is quite easy to qualitatively determine 

which profiles are rougher than others. 

 

Figure 4.12 – Longitudinal terrain profiles taken from smooth asphalt terrain map 
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Figure 4.13 – Longitudinal terrain profiles taken from packed gravel 

 

Figure 4.14 – Longitudinal terrain profiles taken from rough asphalt 
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Figure 4.15 – Longitudinal terrain profiles taken from loose gravel 

 

Figure 4.16 – Longitudinal terrain profiles taken from dirt off road path 
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Figure 4.17 – Longitudinal terrain profiles taken from dirt path transitioning to rough asphalt 

 

After the data for the terrain maps was collected, the data analyses in the following 

subsections were conducted post processed. However the algorithms were developed with a real-

time implementation in mind. The application of these algorithms in a real-time implementation 

is discussed in Chapter 6. 

4.2.1. Root Mean Squared 

It is now desired to use a quantitative method to determine the roughness of each of the 

mapped terrains. Each of the profiles was analyzed using a sliding root mean squared calculation. 

A 100   window size was used which provides a means to determine the gradual changing 

roughness over the length of the profile. Shorter window sizes can be used to analyze more local 

effects of the roughness. The sliding windowed RMSE for the various profiles are shown in 

Figures 4.18 to 4.23. In legend of the figures ‘left’, ‘right’, and ‘middle’ refer to the calculations 

for the respective profiles. The trends of the RMSE are similar for each of the roughness profiles, 
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indicating the roughness tends to change together even if there are variations from left to right 

profile. It can be seen that the RMSE can vary quite significantly from the left wheel profile to 

the right profile. Observing the RMSE of the smooth asphalt (Figure 4.18) and comparing it to 

the packed gravel surface (Figure 4.19), it can be seen that the RMSE is higher in areas on the 

smooth asphalt surface than the packed gravel. This disagrees with the observations of the terrain 

profiles in which it is clear that the packed gravel is rougher than the smooth asphalt. This 

discrepancy is caused by one of the short-comings of the RMSE for evaluating surface 

roughness. Large changes in elevations over long length scales such as general road grade, can 

significantly affect the RMSE since the elevation is changing. This does not however indicate 

roughness as it is generally considered.  

 

Figure 4.18 – RMS elevation of 2-D longitudinal road profiles from smooth asphalt 
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Figure 4.19 – RMS elevation of 2-D longitudinal road profiles from packed gravel 

 

Figure 4.20 – RMS elevation of 2-D longitudinal road profiles from rough asphalt  
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Figure 4.21 – RMS elevation of 2-D longitudinal road profiles from loose gravel 

 

Figure 4.22 – RMS elevation of 2-D longitudinal road profiles from dirt off-road 
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Figure 4.23 – RMS elevation of 2-D longitudinal road profiles from dirt path transitioning to 

rough asphalt  

 

To address the weakness of the RMSE in capturing the roughness of the terrain, the RMS 

slope can be considered. In this way only the local changes in elevation are being considered 

rather than the overall change in elevation. This method is a more appropriate metric for 

describing the roughness of a terrain profile. Figures 4.24 and 4.25 show the RMS slope of the 

smooth asphalt and packed gravel terrains respectively. It can be seen here that when using the 

RMS slope as the metric, the packed gravel surface is rougher than the smooth asphalt which 

agrees with the qualitative evaluation. One caution when using the RMS slope rather than 

elevation is that erroneous data and noise in the profile can greatly amplify the magnitude of the 

RMS slope. An example can be seen by examining magnitude of the middle profile (green line) 

for the smooth asphalt in Figure 4.24.  The elevated RMS slope is caused by including a local 

spike in the data near the 355m mark which can be seen in the terrain profile for this data set 
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shown in Figure 4.12. It is thus helpful to filter the data to diminish some of these effects. For 

this analysis a ten sample moving average filter was applied to the profile prior to performing the 

calculations. The data shown in Figures 4.24 and 4.25 includes this moving average filter. 

 

Figure 4.24 – RMS slope of 2-D longitudinal road profiles for smooth asphalt 
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Figure 4.25 – RMS slope of 2-D longitudinal road profiles for packed gravel 

 

4.2.2. Power Spectral Density 

The PSD of the profiles taken from the terrain maps for the various surfaces can be 

computed to better understand the frequency content. As mentioned in Section 3.2.2 a qualitative 

inspection of the PSD can be helpful but often a curve is fit to the PSD data is used to provide a 

quantitative measure of the frequency content of the terrain. There are however, some practical 

issues which must be addressed when performing such a curve fit. Recall that the PSD fit will 

have some slope ( ) which will generally be negative for a terrain profile and scaling ( ). First, 

the scale over which the data is fit can alter the slope of the line quite significantly. If the spatial 

frequency lower bound is too low, the grade of the terrain profile will affect the scaling of the 

PSD. Near the upper bound of the spatial frequency range the noise in the data begins negatively 
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impacting the line fit. In this work 0.02          (50   wavelength) was chosen as the lower 

bound and 3          (0.33   wavelength) was chosen as the upper bound.  

In Figures 4.26 to 4.31, the PSDs for the terrain profiles for the various terrains are 

shown along with the mean PSD curve fit. It can be seen that the PSD trends downward with 

increasing spatial frequency which is as expected from the terrain profile since generally 

speaking the higher frequencies will have smaller amplitudes resulting in lower PSD. It can be 

seen that the smooth pavement surface (Figure 4.26) does not have any particular range where 

the PSD deviates from the trend. For the rougher surfaces however, there is a range of 

frequencies (around 0.1         ) where the PSD of the profile is elevated. This elevated range 

is responsible for the apparent roughness of the surface. The further this range shifts to higher 

frequencies the rougher the surface will feel. Recall that the plot shown in Figure 4.31 is for the 

transition from the off-road dirt path on to the rough asphalt. Thus it is expected that the 

roughness resulting PSD to be a combination of the two surfaces. The increased PSD towards the 

highest range of each of these plots can be attributed to noise in the data, as evidenced by the 

very similar shape. 
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Figure 4.26 – PSD of longitudinal profiles taken from smooth asphalt map shown with mean 

curve fit 

 

Figure 4.27 – PSD of longitudinal profiles taken from packed gravel map shown with mean 

curve fit 
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Figure 4.28 – PSD of longitudinal profiles taken from rough asphalt map shown with mean curve 

fit 

 

Figure 4.29 – PSD of longitudinal profiles taken from loose gravel map shown with mean curve 

fit 
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Figure 4.30 – PSD of longitudinal profiles taken from off-road dirt map shown with mean curve   

 

 

Figure 4.31 –  PSD of longitudinal profiles taken from dirt path transitioning to rough asphalt 

map shown with mean curve fit 
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The results of the parameter fit PSD analysis for the terrain profiles being analyzed is 

summarized in Table 4.2. The fractal parameters determined from the PSD parameters assuming 

      are shown in the middle two columns. The RMS elevation and slope are also shown as a 

reference to the roughness of the surface. One observation that can be made is that the magnitude 

of the slope of the PSD fit line relates to the roughness of the surface. The larger the magnitude 

of the slope of the PSD fit the rougher the surface appears. Since the apparent roughness of the 

surface is largely characterized by the elevated PSD magnitude in frequency in the range of 0.08 

– 0.15         , it agrees with intuition that the PSD fit line would have a more negative slope 

for these cases. The overall magnitude of the PSD, characterized by parameter  , appears to be 

related to the slope although there is not enough data here to draw a definitive conclusion on 

these relationships. The available data collection locations are not sufficiently diverse to 

generalize for all terrains. Ultimately the overall roughness will be dependent on the combination 

of these parameters.  One should note that the low frequency content of the profiles is primarily 

based on road grade and total elevation changes. 

 

Table 4.2 – Parameters fit to PSD for the measured longitudinal profiles 

 PSD Fit Parameters Fractal Parameters Root Mean Squared 

-----------         Elev. (m) Slope 

Smooth Asphalt                                          

Rough Asphalt                                          

Packed Gravel                                          

Loose Gravel                                0.04 0.08 

Dirt Off Road                                0.07 0.10 

Transition                                          
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4.2.3. Amplitude to Wavelength 

Another potential metric for analyzing the roughness of terrain profiles is to use the ratio 

of the amplitude to the wavelength. This method is introduced by Jackson as a method for 

analyzing rough surfaces [50]. Like the PSD this can be helpful for better understanding the 

frequency content in the profile. This can be determined in practice by taking the Fourier 

transform of the profile to obtain the amplitude and dividing by the corresponding wavelength as 

given by the expression 

   
 

 
  (4.25) 

 

where   is the amplitude of a given frequency level and   is the wavelength associated with that 

frequency. Figure 4.32 shows the amplitude ratio for the profiles taken from the smooth asphalt 

and Figure 4.33 shows the amplitude ratio for profile taken from the off-road dirt surface.  It can 

be seen that for the smooth asphalt surface   is fairly flat. For the dirt off-road surface the 

magnitude of   is higher than for the smooth asphalt. The ratio also decreases towards the higher 

wavelengths. To further characterize the roughness based on this method the average or 

maximum values can be analyzed. The values of   for the various surfaces tested are shown in 

Table 4.3. From the results, the average and maximum   both scale with increasing surface 

roughness. These results suggest that the amplitude to wavelength ratio can be an effective 

method for characterizing terrain roughness. 
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Figure 4.32 – Amplitude to wavelength ratio for smooth asphalt surface 

 

Figure 4.33 – Amplitude to wavelength ratio for off-road dirt 
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Table 4.3 – Average and maximum amplitude ratios for the various terrain profiles measured. 

           

Smooth Asphalt               
Rough Asphalt               
Packed Gravel               
Loose Gravel               
Dirt Off Road               

Transition               
 

4.2.4. Wavelet Based Feature Extraction  

In this section a methodology to identify features on the terrain is developed. The goal of 

feature extraction is to determine areas on the point cloud which are in some way identifiable. 

When viewing a point cloud it is easy to determine features which are highly distinguishable. 

This is demonstrated by Figure 4.34 which shows a point cloud of the smooth asphalt with four 

objects scattered along the path of the vehicle.  However, quantitatively making this distinction is 

a more difficult task. Feature extraction is an issue which has been addressed in various ways by 

the ground vehicle and robotics community.  In this work, the wavelet transform is considered 

for the purpose of determining unique features in the generated terrain maps.  
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Figure 4.34 – Point cloud of smooth asphalt with objects scattered along vehicle path 

 

Wavelets are functions that decompose a signal into different frequency components. A 

trait of the wavelet transform is that each frequency level is transformed using a resolution 

matched to the scale being analyzed [51].  The wavelet transform is based on the same premise 

as the Fourier transform. However instead of representing the signal as a superposition of sine 

and cosine functions it represents the signal as a superposition of a function called a mother 

wavelet. There are several mother wavelet functions which can be used to perform an analysis, a 

few examples are shown in Figure 4.35.  For a mother wavelet   in the continuous domain, the 

scaling and translation are described by,  

         
 

√ 
 (

   

 
) (4.26) 
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where the parameters   and   relate to the scaling and translation of mother wavelet respectively. 

The coefficients of the wavelet can then be determined using the following expression, 

 
        ∫              

 

  

 

 

(4.27) 

These equations are written for a two dimensional time signal.  Performing this transformation 

on surface requires analyzing the data matrix along different dimensions. The matrix is analyzed 

across the horizontal, vertical, and diagonals of the matrix.  More details on wavelet theory can 

be found in a paper by Garps [51].  

 

Figure 4.35 – Examples of various mother wavelet functions 

 

The implementation of the wavelet transform in this work was done using the discrete 

wavelet transform (‘dwt2’) command in Matlab. The ‘Haar’ mother wavelet was chosen since it 

is effectively a step change, thus the algorithm is attempting to identify step changes in the 

terrain. It was found that varying the type of mother wavelet does not have a large effect on the 
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results. The function returns the coefficient matrices for the horizontal, vertical, and diagonal 

orientations of the matrix for the surface being analyzed. The standard deviation of the 

coefficients is determined, and the coordinates of coefficients with a value higher than some 

scaling of the standard deviation are marked as points of interests. If the scaling of the standard 

deviation is increased, the point filtering will be more selective resulting in fewer points of 

interest. The optimal selection of the threshold will be dependent on the features which are being 

targeted.  

The wavelet transform can greatly reduce the number of required points to maintain 

information about the features on the terrain, yet it is more efficient for the points of interest 

close to each other to be marked as a feature as opposed to each individual point being regarded 

as a feature. To group the points of interest as features a clustering algorithm can be 

implemented. K-means clustering is one such algorithm which can be used to group the points of 

interest into features. This algorithm requires the user to select the number of desired clusters in 

a data set. The algorithm attempts to group the points into the desired number of clusters by 

minimizing the distance between the point and the nearest cluster mean. The algorithm is iterated 

until an optimal configuration is reached. The implementation of this function was performed 

using the MATLAB function ‘kmeans’, which takes as an input the data points and returns the 

center location of the cluster.  

The data was analyzed in blocks over the length of the vehicle path. Each block of data 

was a ten meter square along the path. The points in each block are interpolated to a 5cm grid on 

the area before the data wavelet transform is taken.   This addresses the possibility of the nature 

of the features changing over the length of the vehicle path and also allows the most relevant 

data to be analyzed at any given time step. For example, if the entire data set were analyzed at 
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once, large amounts of variation in one area of the terrain would affect the sensitivity of the 

algorithm in detecting changes in an area with lower variations. In a real time implementation 

this would also allow the blocks of data to be analyzed as they are collected. Figures 4.36 – 4.38 

show the results for running the feature extraction algorithm on the data collected on the smooth 

asphalt, packed gravel, and rough asphalt surfaces respectively. Plot (a) in each of these figures 

shows the vehicle trajectory along with the points of interested identified by the wavelet 

transform with the threshold set at ten times the standard deviation of the coefficients. Plot (b) in 

these figures shows the vehicle trajectory along with the extracted features using the k-means 

clustering algorithm with three clusters per block of data. 
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(a) 

 
(b) 

Figure 4.36 – Smooth asphalt terrain loops showing (a) points of interest (b) extracted features.  
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(a) 

 
(b) 

Figure 4.37 – Packed gravel terrain loops showing (a) points of interest (b) extracted features. 
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(a) 

 
(b) 

Figure 4.38 – Rough asphalt terrain loops showing (a) points of interest (b) extracted features. 
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Most of the features which are extracted on the smooth asphalt terrain (Figure 4.36b) are 

along curbs in the parking lot or areas where the pavement meets grass. This is primarily what 

could be expected since those areas of the terrain are significantly different from the surrounding 

areas. For this case most of the features which are extracted are towards the sides of the path, but 

it can be seen that there are also some features which are identified along the path. In these areas 

the features being extracted by the algorithm might not be identified as being unique to an 

observer since the parking lot where the data was collected is nominally smooth. This is further 

exemplified by the data collected on the packed gravel shown in Figure 4.37. Although, 

subjectively the gravel lot where the data was collected has a reasonably high roughness, it is 

difficult to identify features which could be described as unique. The feature extraction algorithm 

presented here, however, identifies several features on the terrain. One key benefit this type of 

algorithm can have is in the development of navigation algorithms for areas where the terrain is 

generally non-distinctive. For example, simultaneous localization and mapping (SLAM) is a 

technique which relies on identifying and mapping features and using those features to calculate 

a navigation solution. This of course is more effective when there are many features to map. The 

algorithm presented here could potentially be used in SLAM algorithms to improve the 

performance when the environment is not what would traditionally be described as feature rich.  
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Chapter 5: Vehicle Experimental Response 

Chapter 4 presented several methods for evaluating the roughness of the experimental 

terrains.  These can be helpful for the control of the vehicle by using the LiDAR to scan the 

terrain ahead of the vehicle and analyzing the roughness. These techniques have the potential to 

allow the vehicle to proactively adjust for the upcoming terrain. However, as discussed Section 

3.3, the terrain roughness can also be analyzed by the motion of the vehicle. To this end it is 

important that the techniques developed in the previous chapters are validated and compared 

against the true vehicle responses. In this chapter the vehicle response based on the experimental 

data collection is examined. The same data which was used for mapping the terrains was also 

used for analyzing the vehicle dynamic response. In Section 5.1 the metrics which were 

developed in Chapter 3 are applied to the data collected with the Prowler ATV. Section 5.2 

develops a 7-DOF suspension model based on the Prowler ATV. The response of the model is 

compared to the experimental vehicle response. Section 5.3 addresses the process of generating 

terrain models based on the measured terrains. These methods are verified using the 7-DOF 

suspension model. 

5.1 Analysis of Vehicle Motion Metrics 

In Section 3.3.3 motion metrics were introduced which can be used to evaluate the 

roughness of the terrain based on the dynamic response of the vehicle. These metrics are used to 

provide a scalar metric which can ultimately be used in the control of the vehicle. As previously 

mentioned it is advantageous to use vehicle states which can be directly measured when possible. 
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This avoids errors in the metrics caused by processing methods. The first method which is 

presented is the root mean squared (RMS) of signals which can be measured by the inertial 

measurement unit (IMU).  Evaluating this metric with experimental data it will be seen that the 

magnitude of this metric generally increases with the longitudinal speed of the vehicle. To 

account for the speed dependence of the RMS vertical acceleration, roll rate, and pitch rate, each 

respective signal can be divided by the instantaneous longitudinal velocity resulting in the 

velocity compensated form of the RMS as shown in Equation (5.1) 

         √
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 (5.1) 

 

Although the results in Section 3.3.3 suggest the increase is not strictly linear with 

increasing longitudinal velocity, the velocity compensation can reduce the dependence of the 

metric on the longitudinal velocity of the vehicle. Figure 5.1 shows the RMS vertical 

acceleration (  ), roll rate (  ), and pitch rate (  ) for the vehicle when driving on the packed 

gravel surface. A windowed RMS was used to allow the trend of the roughness over the length of 

the data run to be tracked. The RMS of the raw signals shown in part (a) and the RMS of the 

compensated signals are shown in part (b). During this experiment the path was driven at roughly 

6-7 mph, the speed was then increased to approximately 12 mph. It can be seen in part (a) that 

when the vehicle speed increases at the 150 second mark, the magnitude of the metrics increase 

as well. The velocity compensated RMS metrics are shown in Figure 5.1 (b). It should be noted 

that the increase in the RMS vertical acceleration (top of Figure 5.1(a)) starting at 100 seconds is 

caused by an increase in the roughness of the surface. This is verified by the increase occurring 

at the same location in the compensated data as well.  
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(a) 

 
(b) 

Figure 5.1 – Windowed RMS vertical acceleration, roll rate, and pitch rate for vehicle driving on 

packed asphalt (a) raw signal (b) velocity compensated signal 
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The velocity compensated RMS vertical acceleration, roll rate, and pitch rate for the 

experiments conducted on the smooth asphalt, rough asphalt, loose gravel, dirt off-road, and 

grassy off-road terrains are shown in Figures 5.2 – 5.6 respectively. Recall that the data on each 

of these terrains was collected by driving a closed loop. The vehicle was driven by a human 

during the test, so there was some variation in the lateral position along the loop as well. The 

periodic trend seen in several of these plots is a result of the data being collected in a loop. In an 

attempt to isolate the terrain roughness effects, the steer inputs were adjusted as gradually as 

possible to limit the lateral dynamic’s effect on the IMU signals. However, inevitably the lateral 

dynamics will cause an increase in the RMS of the metrics. For example, it is expected that the 

turn induced roll of the vehicle will cause an increase in the RMS roll rate which is not 

associated with the terrain roughness. 

 

Figure 5.2 – Compensated RMS vertical acceleration, roll rate, and pitch rate for the smooth 

asphalt 
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Figure 5.3 – Compensated RMS vertical acceleration, roll rate, and pitch rate rough asphalt  

 

Figure 5.4 – Compensated RMS vertical acceleration, roll rate, and pitch rate for loose gravel 
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Figure 5.5 – Compensated RMS vertical acceleration roll rate and pitch rate for dirt off-road  

 

Figure 5.6 – Compensated RMS vertical acceleration roll rate and pitch rate grassy off-road 

 

The results of these metrics for the data collected are summarized in Table 5.1. The trend 

for each of these metrics is similar. Based on the combination of the metrics it can be concluded 
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that the smooth asphalt is the least rough terrain and the grassy off-road terrain is the roughest. 

The rough asphalt and the packed gravel terrains have similar roughness. The RMS vertical 

acceleration does not change significantly for the less rough terrains. Based on the vertical 

acceleration the loose gravel appears to have same roughness as the packed gravel, however the 

roll rate and pitch rate indicate that the loose gravel terrain is rougher. It should be noted that the 

order of the roughness of the surfaces as determined by these metrics agrees with the qualitative 

assessment of the terrains during the experiments.  

 

 

Table 5.1 – RMS values for IMU signals for various surfaces 

 Root Mean Squared 

                                 

Smooth Asphalt                

Rough Asphalt                

Packed Gravel                

Loose Gravel                

Dirt Off-Road                

Grassy Off-road                

 

 

As shown by the data, the RMS metrics from the IMU correlate with the roughness of the 

terrains. This method is appropriate for analyzing the roughness of a terrain, since it accounts for 

the velocity effects.  When considering the use of these metrics for implementation in a 

controller there are a couple of desired properties. It is desired that the metric relate to the overall 

state of the vehicle as well as the terrain roughness. Thus the velocity compensation might not be 

advantageous since it reduces the coupling. Another consideration when using these metrics in a 

vehicle controller is that it may be beneficial to combine them into a single metric. One method 

for combining the effects of the pertinent IMU signals is to use the phase plane as presented in 

Section 3.3.3.  By itself, the phase plane can be used as a qualitative check for the roughness of 



111 

 

the terrain, yet it is desirable to obtain a scalar metric relating to the scatter of the phase plane. 

To this end least squares can be used to fit the scatter phase plane data to the equation of an 

ellipse. This is best accomplished using roll rate and pitch rate since they are expressed in the 

same units. The parameters of this ellipse can then be related to the terrain roughness and vehicle 

oscillatory state. The overall roughness of the terrain can be expressed by the area of the ellipse. 

Figure 5.7 shows the phase plane plot of the pitch rate and roll rate for the data collected 

on the off-road dirt terrain. The least squares best fit ellipse is plotted on top of the scattered data. 

Table 5.2 shows the area of the ellipse fit to the phase plane data for each of the terrains. It can 

be seen that the roughness of the terrains when evaluated by this metric agrees with the 

assessment using the RMS metrics. This is expected since both methods are based on the same 

signals. The near circular appearance of the ellipse is indicative of the evenly distributed 

roughness of the terrain.  

 

Figure 5.7 – Phase plane plot of pitch rate and roll rate with least squares fit ellipse of data 

plotted for off-road dirt terrain. 
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Table 5.2 – Area of least squares fit ellipse  

 
Elliptical Area (

    

  
) 

Smooth Asphalt       

Rough Asphalt       

Packed Gravel       

Loose Gravel       

Dirt Off-road       

Grassy Off-road       

 

There are some special cases for which this method can be particularly useful. Consider a 

scenario where the left and right wheel paths are in phase. In this situation it is possible that the 

roll rate is much lower than would be indicative of the overall roughness of the terrain.  Here it is 

expected that the ellipse would be eccentric with the major axis in the direction of the pitch rate. 

It should be noted that this would not only apply for the motion caused by terrain roughness but 

also the motion caused by lateral and longitudinal vehicle dynamics. Figure 5.8 shows the phase 

plane of roll rate and pitch rate along with the least squares best fit ellipse for data collected 

while performing a sine steer maneuver. It can be seen that in this case the ellipse has become 

more eccentric with the major axis in the direction of the roll rate. This indicates the vehicle is 

rolling more than it is pitching which agrees with the intuitive understanding of the maneuver. It 

is helpful that this behavior can be captured by the eccentricity of the ellipse resulting in a scalar 

metric relating to the relationship between roll rate and pitch rate. 
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Figure 5.8 – Phase plane plot of pitch rate and roll rate with least squares fit ellipse of data 

plotted for vehicle performing a sine steer maneuver on smooth pavement. 

 

The primary purpose of the suspension is to absorb variations in the terrain; therefore it is 

reasonable to assume the motion of the suspension will be directly related to the roughness of the 

terrain. Since the experimental vehicle is equipped with sensors to measure the suspension 

deflections, this assumption can be tested using the experimental data collected. Figure 5.9 

shows the measured suspension deflections for the front left and front right corners of the vehicle 

during a section of the data collection for the smooth asphalt (a) and the dirt off-road (b) terrains. 

It can be seen from these two plots that there is much more motion in the suspension when 

driving on the dirt off-road than on the smooth asphalt. It should also be noted that the roll 

dynamics of the vehicle can also affect these measurements quite significantly. This can be seen 
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in Figure 5.9 (a) between the 20 and 30 second marks. When the vehicle is turning the 

suspension will compress on one side and extend on the other side depending on the direction of 

the turn. The RMS of these signals can then be calculated to determine the roughness of the 

terrains based on the suspension with the caveat that some lateral and longitudinal dynamic 

related deflections will be captured as well. Table 5.3 shows the sum of the RMS deflections for 

each corner of the vehicle. The assessment of the terrain roughness using this method agrees with 

the other methods presented in this section.  

 
(a) 
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(b) 

Figure 5.9 – Suspension deflections of the front suspension for (a) smooth asphalt (b) dirt off-

road 

 

Table 5.3 – Total RMS suspension deflections for various terrains 

 Total RMS Deflection 

(cm) 

Smooth Asphalt      

Rough Asphalt      

Packed Gravel      

Loose Gravel      

Dirt Off-road      

Grassy Off-road      

 

5.2 Comparison of Simulated and Experimental Response 

One of the primary goals of this dissertation is to develop methods for generating terrain 

models which can accurately represent the dynamics experienced by a vehicle on an actual 

terrain. Based on the analysis of the experimental vehicle motion provided in Section 5.1, the 

response of the 7-DOF model introduced in Section 3.3 can be compared to the response of the 
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experimental vehicle when driving on the various terrains. The validation of the models to the 

experimental data provides the basis for comparing the generated terrain models to the 

experimental terrain maps. 

The parameters for the 7-DOF suspension model were determined from a combination of 

physical measurements, manufacturer component specifications, and approximations based on 

similar vehicles. The center of gravity of the vehicle is very nearly along the centerline of the 

vehicle. The track width and wheel base were measured directly. Half the track width was used 

as values for (  ) and (  ). The vehicle was placed on scales to measure vehicle weight and front 

to rear weight split. From this information the vehicle mass ( ) and longitudinal location of the 

center of gravity ( ) and ( ). The roll inertia (𝐼 ) and pitch inertia (𝐼 ) were approximated based 

on the geometry of the vehicle. The spring stiffness values for the four corners (   ) were 

determined from the manufacturers specifications. The damping coefficients (   ) were 

approximated based on the values typically associated with the spring stiffness for the vehicle. 

The experimental vehicle has several nuances which makes some of the standard methods for 

parameter determination more difficult. For passenger cars the tire stiffness is typically on the 

order of ten times stiffer than the spring stiffness. However the springs on the experimental 

vehicle are stiffer than the typical passenger vehicle and the tires are softer than the typical 

passenger vehicle. The tire spring stiffness (    
) were approximated based on typical values 

associated with an ATV tire. The parameters used in the 7-DOF model are shown in Table 5.4 
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Table 5.4 – Parameters used in 7-DOF model of experimental vehicle 

Parameter Value 

Sprung Mass ( )        

Un-sprung Mass (   )       

Roll Inertia (  )            

Pitch Inertia (  )            

Lateral CG Distance (  )        

Lateral CG Distance (  )        

Long. CG Distance ( )        

Long. CG Distance ( )        

Spring Constant (   )           

Damping Constant (   )      
   

 
 

Tire Spring Constant (    
)             

 

One consideration which must be made is the difference between the suspension 

kinematics of experimental vehicle as compared to the 7-DOF model. The 7-DOF model 

inherently makes the assumption that the springs and deflections of the suspension are in the 

vertical direction relative to the wheel. However, the actual deflection of the spring and damper 

on the experimental vehicle are offset to the inside of the vehicle and at an angle relative to the 

vertical. Thus, the deflection of the spring and damper is smaller than the effective deflection of 

the wheel relative to the body, this is known as the installation ratio. The deflection of the wheel 

relative to the body is the deflection used in the 7-DOF model. Therefore in order to relate the 

forces in the spring and damper to the effective forces required for the model, the geometry of 

the suspension must be considered. Figure 5.10 shows a diagram of the suspension geometry of 

the experimental vehicle.  
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Figure 5.10 – Diagram of suspension geometry of experimental vehicle 

 

It can be seen from the diagram that as the lower control arm travels through its arc the 

motion of the wheel     will be greater than vertical motion of the spring and damper    . Here 

it is assumed that the angle through which the control arm travels is small. Using the arc length 

formula for each of the motion of the shock and damper and the wheel and setting them equal 

using the control arm angle, the following relationship can be determined 

     
     

  
    (5.2) 

It should be noted that this expression is an approximation when relating the deflection along the 

spring and damper to the deflection of the wheel. It assumes that the deflection along the arc 

defined by    is equivalent to the deflection along the axial direction of the spring and damper. 

The same ratio can also be used to scale the forces along the spring and damper to the vertical 

direction of the wheel. This is important in determining the appropriate spring and damping 

constants to use in the model. Thus, the stiffness of the spring on the experimental vehicle is 

higher than the stiffness used in the model based on this ratio.  

The 7-DOF model can be simulated using the methodology presented in Section 3.3. The 

experimentally measured terrain profile is used as the input to the vehicle model. The model 
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response is then compared to the experimental vehicle response while the terrain was being 

measured.  The heave, heave rate, roll, and pitch from the model are compared to the GPS/INS 

solution. Since the IMU measures the roll rate and pitch rate of the vehicle directly, the model 

roll and pitch rates are compared to the signals measured from the IMU. On the experimental 

vehicle, the suspension deflections are measured from linear potentiometers mounted parallel to 

the axis of the spring and damper. The values measured from the linear potentiometer are scaled 

using Equation (5.2) and compared to the deflections of the model. The comparison between the 

experimental vehicle and model for the packed gravel surface is shown in Figures 5.11 – 5.14. It 

can be seen that there is agreement between the model and experiment for the heave and roll 

motions. The model response is smoother than the experimental data, which is to be expected 

based on noise in the experimental data. As a means for quantitative comparison between the 

model and experimental data, the standard deviations of the states were calculated and are shown 

in Table 5.5. For these cases the model is within the expected errors from the GPS/INS and IMU 

noise for the respective comparisons. 
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Figure 5.11 – Heave motion comparison of experiment (blue) and model (red) 

 

Figure 5.12 – Roll motion comparison of experiment (blue) and model (red) 
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Figure 5.13 – Pitch motion comparison of experimental (blue) and model (red) 

 

Figure 5.14 – Suspension deflection comparison of experimental (blue) and model (red) 
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Table 5.5 – Standard deviations of measured states for 7-DOF model and experimental data 

 Standard Deviation 

7-DOF Experimental 

Heave ( ) 0.33 0.34 
Heave Rate (   ) 0.07 0.09 

Roll (   ) 2.19 1.98 
Roll Rate (     ) 2.07 2.80 

Pitch (   ) 1.27 1.22 
Pitch Rate (     ) 4.41 3.58 

Susp. Def. L1 (  ) 0.6 0.5 
Susp. Def. R1 (  ) 0.6 0.6 
Susp. Def. L2 (  ) 0.7 0.5 
Susp. Def. R2 (  ) 0.7 0.5 

 

There is more relative difference between the model and experimental data for the pitch 

rate. One of the potential error sources for the pitch motion (Figure 5.13) is the longitudinal 

accelerations caused by increases in the throttle. Recall the 7-DOF model presented here does 

not account for the inertial effects of the center of gravity of the vehicle. This same error will be 

present for the roll motion of the vehicle for lateral dynamics, although the effects are diminished 

at lower speeds. The error in the roll rate can primarily be attributed to noise in the IMU relative 

to the dynamics in the roll motion. This has the effect of inflating the standard deviation of the 

roll rate as compared to the model. The increased dynamics in the pitch motion reduces the effect 

of the IMU noise on the standard deviation of the pitch rate of the experimental data. It is 

hypothesized that one of the primary error sources between the measured suspension deflections 

and the model suspension deflections is the non-linearity of the tires. Although the 7-DOF model 

represents the tires as a linear spring in actuality ATV tires can have non-linear behavior as well 

as significant damping. Additionally some of the error can be attributed to vehicle squat and 

oscillation during acceleration. It was determined during the testing that the experimental vehicle 
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has a tendency to oscillate under throttle particularly in the longitudinal direction at lower speeds 

(~5 mph). The oscillations decrease at speeds higher than approximately 8 mph.   

 

5.3 Experimentally Based Terrain Generation  

The ultimate purpose of a terrain modeling method is to accurately represent the 

characteristics of an actual terrain. In this section the terrain model using the 3-D Weierstrass-

Mandelbrot (W-M) function is compared to the experimentally measured terrains. Recall that in 

order to generate a fractal terrain using the W-M function, determination of the appropriate 

combination of fractal parameters is required. It was shown in Section 3.1 that the fractal 

parameters   and   are related to the slope and scaling of the PSD. One potential method for 

relating the measured terrain profiles to the desired fractal parameters is to calculate the PSD of 

the terrain profiles. Equations (3.4) and (3.5) can then be used to determine the fractal 

parameters. The fractal parameters can then be used in the 2-D W-M function to generate a 

terrain profile. There are two main issues with this method. First as discussed in Section 3.3.2 

this method requires fitting a line to the PSD of the data. Noise in the experimental data or 

elevation changes can drastically affect the resulting line fit, which in turn will affect the fractal 

parameters.  The other issue which is perhaps more problematic is that this method inherently 

makes the assumption that the experimental terrain data being modeled is a self-similar fractal. 

While the fractal assumption fits the experimental terrain profiles reasonably for certain length 

scales, the assumption generally breaks down for the profile as a whole. This is particularly true 

for the large scale elevation changes of the terrain profiles. The effect this has on the generated 

fractal terrain profile is that it typically cannot capture the roughness for all scales. Depending on 

how the line fit is conducted on the PSD, the generated profile will have one of two traits. One 
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case is that the fractal terrain will capture the roughness of the high frequency content without 

capturing the low frequency content. The other case is that the high frequency content will be 

improperly scaled by the high amplitude low frequency content resulting in a profile which is too 

rough. Another way to say this is that the fractal profile, although scaled differently, will tend to 

look the same for a given number of frequency levels. In order for this method to work for 

modeling the entire length scale, it must be combined with some knowledge of the original 

profile. For instance the Fourier transform of the original terrain profile can be used to determine 

the amplitudes of the lower frequency content. This content can be isolated by setting the 

amplitudes of the higher frequency content equal to zero. Then the inverse Fourier transform can 

be taken resulting in a spatial domain base terrain profile. The W-M function can then be used 

with random phase shifts to generate the higher frequency content on top of the base profile. 

Figure 5.15 shows the comparison of the experimentally measured profiles taken from the loose 

gravel terrain map (top) and their regenerated terrain profiles using the described method.  This 

method has the advantage of being more closely tied to the original terrain profile. The quality of 

the regenerated terrain using this method will depend on appropriately determining the point at 

which to cut off the Fourier transform frequencies, along with how many frequency levels of the 

W-M function are considered. 
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Figure 5.15 – Comparison of experimental loose gravel terrain profile (top) with regenerated 

partial fractal terrain profile (bottom) 

 

The preferred method for regenerating a terrain profile based on an experimental profile 

is based on the analysis of the 3-D W-M function performed in Section 3.2.1. It was determined 

that for a given fractal dimension ( ) there is an exponential relationship between the RMSE of 

the longitudinal terrain profiles taken from a surface and the fractal scaling parameter   used to 

create it. This relationship was determined by analyzing generated surfaces and analyzing the 

RMSE of the profiles. Exponential equations were then fit to the data. These equations were 

shown on Figure 3.4. The equation determined for the relationship when        can be solved 

to yield an expression for   as a function of the profile RMSE as seen in Equation (5.3).  

   (
    

    
)

 
     

 (5.3) 

The RMSE of the measured terrain profile can be determined using the method presented in 

Section 4.2.1. The RMSE of the left and right wheel profiles were used to calculate two   values 
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which were averaged together for the value used in the 3-D W-M function. The left and right 

wheel path profiles were then extracted from artificial 3-D terrain surface and compared with the 

terrain profiles used to generate them. It is important to note that the flattened maps were used to 

reduce the effect of improperly scaling the RMSE of the terrain profiles. Recall that elevation 

changes not typically associated with terrain roughness will artificially inflate the RMSE metric. 

This will result in the regenerated terrain profiles being rougher than the experimental terrain 

profiles. 

The comparison of the experimental terrain profiles and regenerated fractal terrain 

profiles for the dirt off-road and loose gravel terrains are shown in Figures 5.16 and 5.17 

respectively. These two were chosen as test cases since the focus of this dissertation is 

developing methods for off-road terrains. Additionally, both of these terrain profiles had minimal 

large scale elevation changes. It can be seen for both of these cases that the generated fractal 

terrain profiles are on a very similar scale as the original terrain profile. Investigating the top part 

of Figure 5.16, it can be seen that there is a general elevation change in the right profile near the 

30m mark. The elevation change artificially inflates the RMSE causing   to be inflated. This 

increase is enough to cause the slightly higher overall roughness of the regenerated profiles. The 

key distinction between the experimental terrain profiles and the fractal profiles is that the former 

tends to have the phases of the right and left profiles more aligned. Since the fractal surface is 

randomly generated there is no guarantee that this trait will be captured for a given profile. In the 

bottom of Figure 5.17 it can be seen that for parts of the profile the left and right wheel paths are 

close to in phase.  
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Figure 5.16 – Dirt off-road longitudinal terrain profiles from terrain map (top) compared to 

longitudinal terrain profiles from randomly generated 3-D surface using Weierstrass-

Mandelbrot function with parameters determined from fractal parameter RMSE 

relationship (bottom). 

 

Figure 5.17 – Loose gravel longitudinal terrain profiles from terrain map (top) compared to 

longitudinal terrain profiles from randomly generated 3-D surface using Weierstrass-Mandelbrot 

function with parameters determined from fractal parameter RMSE relationship (bottom).  
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 To compare the frequency content of the experimentally measured and regenerated 

terrain profiles the power spectral densities for the profiles can be analyzed. Figures 5.18 and 

5.19 show the power spectral density for the right and left profiles taken from the experimentally 

measured terrain and the fractal regenerated terrain. The oscillations of the PSD in the fractal 

surface (black markers) are caused by the increasing aspect ratio of the fractal model at higher 

frequencies. It can be seen that the PSD of the experimental terrain profiles match the PSD of the 

fractal terrain profiles reasonably well for frequencies higher than 0.2 cycles/m. The magnitudes 

of the PSD for the fractal terrains are higher than their experimental counterparts for the 

frequency range of 0.02 – 0.1 cycles/m. As previously mentioned this range is particularly 

important in determining the roughness of the terrain profile. It can also be seen that the 

deviation in this range is higher for the loose gravel surface than the dirt off-road. 

 

Figure 5.18 – Power spectral densities for loose gravel experimental surface and regenerated 

fractal surface 
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Figure 5.19 – Power spectral densities for loose gravel experimental surface and regenerated 

fractal surface 

 

To determine the effectiveness of terrain profile regeneration method, 7-DOF model can 

be simulated on both the experimental and fractal terrains. Although the CarSim model has 

higher fidelity, the 7-DOF MATLAB model was chosen because it provides more control over 

the simulation of the vehicle terrain interaction. Since the same model was used both terrains the 

effects of the vehicle model error were reduced. This allows the response of the model to be 

analyzed to determine the similarity of the terrains with respect to the model dynamics. The 

heave, roll, and pitch from the simulated vehicle response on the experimental and regenerated 

loose gravel surfaces are shown in Figures 5.20 – 5.22. It can be seen that the heave and pitch 

motions have oscillations of similar magnitudes. However, the vehicle simulated on the fractal 

surface experiences much more roll motion than for the experimental surface. This is caused by 

the left and right wheel paths being out of phase resulting in more vehicle roll. The experimental 

profiles tend to be more similar laterally thus the vehicle on these profiles does not exhibit the 
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increased roll motion. Another observation is that the fractal surface results in a homogenous 

vehicle response as compared to the real surface. Due to the non-stationary nature of the 

experimentally measured terrain, there are bumps and discontinuities which cause dynamics to 

change over the length of the run. There is a peak in each of the signals at near the 32 second 

mark for the experimental terrain which was caused by a bump. 

 

 

Figure 5.20 – Heave motion comparison of 7-DOF model vehicle response on longitudinal 

profiles taken from experimental loose gravel profile and longitudinal profiles taken from 

regenerated fractal surface  
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Figure 5.21 – Roll motion comparison of 7-DOF model vehicle response on longitudinal profiles 

taken from experimental loose gravel profile and longitudinal profiles taken from regenerated 

fractal surface 

 

Figure 5.22 – Pitch motion comparison of 7-DOF model vehicle response on longitudinal 

profiles taken from experimental loose gravel profile and longitudinal profiles taken from 

regenerated fractal surface 
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As a measure of how similar the vehicle responses were, the experimental and fractal 

profiles the RMS of the various vehicle states was calculated. The results for the simulations on 

the experimental and fractal terrains at various speeds for the dirt off-road and loose gravel are 

summarized in Tables 5.6 and 5.7 respectively. For the loose gravel terrain the fractal generation 

provides good agreement with the experimental terrain except for in the roll motion for the 

reasons explained previously. The fractal generated surface for the dirt off-road terrain performs 

well, but the values are slightly elevated relative to their experimental counter parts. Again this is 

caused by the abrupt increase in the elevation of experimental profile resulting in and increased 

value of RMSE. 

 

Table 5.6 – Summary of RMS values for 7-DOF model simulated on longitudinal terrain profiles 

from dirt off-road  

 5 MPH 10 MPH 15 MPH 20 MPH 

 Exper. Fractal Exper. Fractal Exper. Fractal Exper. Fractal 

RMS heave 

    
                                        

RMS heave 

rate       
                                        

RMS roll 

      
                                        

RMS roll rate 

        
                                                

RMS pitch 

      
                                        

RMS pitch 

rate         
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Table 5.7 – Summary of RMS values for 7-DOF model simulated on longitudinal terrain profiles 

from loose gravel  

 5 MPH 10 MPH 15 MPH 20 MPH 

 Exper. Fractal Exper. Fractal Exper. Fractal Exper. Fractal 

RMS 

heave     
                                        

RMS 

heave rate 

      
                                        

RMS roll 

      
                                        

RMS roll 

rate 

        
                                                

RMS pitch 

      
                                        

RMS pitch 

rate 

        
                                        

 

Although this method provides a frame work for generating fractal terrains which 

resemble experimental terrains there are several areas which must be addressed to increase the 

realism of the terrains. First, as mentioned earlier in this chapter the fractal model is not effective 

in capturing large scale undulations while preserving the detail of the smaller scales. To more 

accurately represent real terrain profiles, this method needs to be combined with a methodology 

for generating large scale elevation changes. Additionally, the relationship used in the terrain 

generation methodology relies on the RMSE which was shown to not always be representative of 

the terrain roughness in Section 4.2.1. This method could be improved by using a similar 

methodology to relate the fractal parameters to the RMS slope which may be more appropriate. It 

was also observed in this analysis that the experimental terrain profiles tend to have similar 

phases for much of the data collected. To improve the terrain generation methodology it would 

be helpful to include more coupling between the lower frequency content of the W-M function. 

This could be potentially be implemented by defining the phase shifts of the surface for lower 



134 

 

frequencies while randomizing them for higher frequencies. Lastly, the experimental terrains 

have transients and discontinuities which cannot easily be modeled using the fractal model. 

Methods need to be developed which will better capture these events.  
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Chapter 6: Conclusions and Future Work 

6.1 Terrain Roughness Summary 

The roughness of the experimentally measured terrains can be classified by the surface 

based metrics discussed in Chapter 4 or the motion based metrics discussed in Chapter 5. The 

results of the various roughness metrics for the measured surfaces are summarized in Table 6.1. 

The roughness of the terrain can be characterized by a combination of these metrics. Care should 

be taken when fitting the slope of the PSD since noise in the profile data can negatively impact 

the parameters. The RMS elevation is an effective metric as long as there are no large elevation 

changes in the profile. The RMS slope was introduced as a method to reduce the effect of the 

elevation changes on the metric, but it can be negatively impacted by the presence of noise in the 

data. 

Table 6.1 – Surface and Motion based metrics for each of the terrains measured 

 

Surface Based Metrics Motion Based Metrics 

PSD 

  
PSD   

RMS 

Elev. 
    

RMS 

Slope 

RMS     
      

RMS     
        

RMS     

        

Area 
         

Smooth Asphalt                                                

Rough Asphalt                                                

Packed Gravel                                                

Loose Gravel                                                

Dirt Off-Road                                                

Grassy Off-

Road 
------ ---------- ------ ------                      
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The motion of the vehicle as measured by the inertial measurement unit or suspension 

deflection sensors can also be used to characterize the roughness of the terrain. The RMS vertical 

acceleration, roll rate, pitch rate, and suspension deflections show increasing trends with terrain 

roughness. These metrics can be calculated for windows of data to track the change of the 

roughness over the length of the surface. It was determined that the RMS roll rate and pitch rate 

can be impacted by the lateral and longitudinal dynamics of the vehicle. A method for combining 

the measured signals from the IMU into one metric based on the phase plane of the roll and pitch 

rates was presented. Using least squares, an ellipse can be fit to the scatter data of the phase 

plane. It is suggested that the parameters of this ellipse can be used as an input to a vehicle 

controller providing information about the terrain and current vehicle dynamic state. The area of 

the ellipse relates to the roughness of the terrain, while the eccentricity of the ellipse relates to 

increased motion in either the roll or pitch modes.  

6.2 Terrain Modeling 

The 2-D and 3-D Weierstrass-Mandelbrot fractal functions can be used to generate terrain 

profiles and terrain surfaces respectively for the simulation of vehicles. An analysis of the 

behavior of these functions for different parameters was conducted. Many of the techniques 

which can be used to evaluate the terrains are more applicable to profiles rather than surfaces. 

Thus, longitudinal profiles were extracted from the surface and analyzed. The root mean squared 

elevation of the modeled terrain profiles exhibited an exponential relationship with fractal 

scaling parameter ( ) for a given fractal dimension ( ). The power spectral density (PSD) of the 

profiles was also calculated. Additionally, the exponential relationship between RMSE and   as 

well as the PSD can be used to relate experimentally measured terrain profiles to the W-M 

function to generate terrains similar to experimentally measured terrains. The PSD based method 
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requires fitting a line to the PSD trend and extracting the fractal parameters from the line. 

However the fractal assumption breaks down over long scales of the terrain resulting in 

improperly scaled generated terrain profiles. A Fourier transform of the original terrain profile 

can be used to establish the low frequency content of the generated profile. The W-M function 

can then be used to generate the high frequency content of the profile. The preferred method for 

generating the terrain profiles is by using the exponential relationship between the fractal scaling 

and RMSE. This is a method can produce terrains which provide comparable results to the 

experimental terrain based on a vehicle simulation. However there are also nuances present in 

actual terrains which the W-M function fails to capture. It was suggested that methods could be 

developed to improve the realism of the terrains.  

6.3 Terrain Mapping 

A methodology was developed to fuse a LiDAR with Global Positioning System (GPS) 

and IMU to create 3-D point cloud maps of the terrain. The GPS and IMU are blended in a 

loosely coupled GPS/INS architecture to provide estimates of the positions, velocities, and 

attitudes. The state estimates are smoothed and used to resolve the frame of LiDAR into a global 

coordinate frame. The map can be resolved into an east north up coordinate frame or in a 

coordinate frame along the vehicle path. Either of these coordinate frames can be used depending 

on the desired analysis. In addition the vertical component of the maps can be expressed in an 

absolute frame by accounting for the vehicle elevation or in a relative frame by disregarding the 

elevation. The latter provides a flattened version which was shown to be more appropriate for 

determining the roughness the terrain. The elevation changes do not generally affect the 

perceived roughness although they can vastly affect the metrics used to evaluate terrain 

roughness.  
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6.4 Future Work 

This dissertation has provided various tools which can be used in the design and control 

of autonomous vehicles for off-road applications. In the development of these vehicle systems, 

mobility is an important issue. The terrain roughness is just one of the factors which affect the 

mobility of the vehicle. Additionally the road grade, road bank, and surface properties can vastly 

affect the operation of the vehicle. Future work should address the implementation of road bank 

and surface property estimation algorithms as part of the terrain characterization. This section 

presents suggestions for how these tools can be used in applications for the control of the 

autonomous ground vehicles. 

6.4.1. Real-time Analysis 

The analyses in this dissertation were performed on data which was collected and 

subsequently processed. In order for the metrics developed here to be useful for the operation of 

the vehicle rather than just the design, the methods must be implemented in real time. To this end 

many of the analyses were performed using windowed methods. Determining the metrics for 

shorter windows of data has some important benefits. Due to the non-stationary nature of 

terrains, the roughness of terrain over which the vehicle is traveling is subject to change. Using a 

windowed approach allows the metric to adjust to the altering terrain. The windowed approach 

also allows for improved processing time for algorithms which are more computationally 

intensive such as the wavelet based feature extraction. Another important consideration in the 

implementation of these methods in real-time is the processing of the LiDAR data which can be 

a considerable burden computationally. This is can be addressed by processing the point cloud 

data to the metrics and then erasing the point cloud.  
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All of the algorithms in this dissertation were developed and executed in MATLAB. In 

order for them to be executed in real-time they must be implemented in a compiled language 

such as C++. Another option for real-time implementation is a dSpace type system which 

compiles and runs MATLAB scripts in real-time. 

6.4.2. Terrain Based Navigation and Control 

Ultimately it is desired to use the methodologies developed in this dissertation to aid in 

the control and navigation of unmanned ground vehicles. There are two general classes of terrain 

characterization metrics which were discussed in this dissertation. There are the surface based 

metrics, which rely on the map of the terrain generated by the LiDAR, and the motion based 

metrics which use the vehicle motion to characterize the terrain roughness. In regards to their use 

in the vehicle controller, the surface based metrics have the potential to be proactive since they 

are based on the LiDAR scans in front of the vehicle. Controllers using the motion based metrics 

will be reactive since the vehicle has to travel over the terrain in order to calculate them. The 

motion based metrics will however be more computationally efficient since they do not require 

point cloud processing. Ultimately the overall control strategy should use a combination of both 

types of terrain characterization metrics. These techniques can be applied to both tele-operated 

vehicles as well as autonomous vehicles. Presented below is an architecture for implementing the 

surface based and motion base terrain characterization metrics into the vehicle controller.  

Figure 6.1 shows a proposed architecture of the system for the terrain based vehicle 

control. The basis for the system will be the development of terrain based controller logic. This 

system can serve several purposes. Based on the current terrain, future terrain, weather factors, 

and the operator’s commanded input, the system can use model predictive control and reference 

scaling to send the appropriate input to the vehicle system.  Additionally, this system can adjust 
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the controller gains to optimize its behavior for the current scenario. It should be noted that the 

vehicle controller will require both a longitudinal and a lateral controller. The methodology will 

be similar although the specific methods used will differ based on the nature of each problem.  

There will be coupling between the lateral and longitudinal controllers and this should be 

accounted for in the overall system design. 

 

Figure 6.1 – Block diagram showing potential architecture for terrain based vehicle controller 

 

Implementing this controller will allow the vehicle to adjust for the changing terrain on 

which it is driving. Ultimately, this will enable the vehicle to complete missions off-road without 

getting stuck or rolling over. One of the benefits of this type of system is that it can be used for 

not only autonomous vehicles but also tele-operated vehicles. Incorporating estimates and 

measurements of the terrain roughness can provide the operator with additional information on 

how to control the vehicle. In this way the vehicle can avoid failures while aiding the operator. 
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Appendix A: Model Based Terrain Input Estimation 

Presented in this appendix is a methodology for estimating the terrain over which the 

vehicle is driving. The 7-DOF suspension model can be used in a model based estimator to 

estimate the inputs to the model. Since the only inputs considered in this study are from the 

terrain, estimating the inputs is effectively estimating the terrain profile over which the vehicle is 

driving. This is a problem which is referred to in the literature as state estimation in the presence 

of unknown inputs. There are several approaches to this problem such as augmenting the state 

vector with the unknown inputs. However this requires knowledge of the underlying model 

driving the unknown input which is often not known. Consider the linear discrete state model 

with unknown inputs given by the equations  

                 (A.1) 

and 

           (A.2) 

where       is the system state vector,       is the vector of unknown inputs, and       

is the measurement vector.    is the process noise and    is the measurement noise where both 

are zero-mean white noise sequences.  Note in this implementation there are no known inputs to 

the system, although the method could be modified to include them. To simultaneously estimate 

the unknown input and vehicle states, the two-stage Kalman filter (TSKF) is implemented as 

presented by Hsieh [52]. The state update and covariance update equations are given by 

  ̂     ̅         (A.3) 

and 
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  ̂   ̅   
        

  (A.4) 

As implied by the name the TSKF requires a two-step process to estimate the system states and 

unknown inputs. The first stage is an initial prediction of the state without assuming any 

knowledge of the input. The time update can thus be given by the following equations for the 

state vector and covariance matrix respectively 

  ̅   
′    ̂  (A.5) 

 

  ̅   
    ̂  

    (A.6) 

 

 

where   is the process noise covariance matrix. The measurement update is determined by the 

equation  

  ̅     ̅   
′   ̅       ̅   (A.7) 

 

where  ̅  is the Kalman gain which can be calculated as follows 

 

  ̅   ̅   
       (A.8) 

 

where   which can be thought of as the input covariance matrix is defined 

 

      
      (A.9) 

 

 

Finally, the covariance matrix (   can be updated using the equation 

 

  ̅   
   𝐼   ̅    ̅   

  (A.10) 

 

Equations (A.5) to (A.10) represent the first stage of the estimation process for a given time step. 

The result from using these equations is an initial estimate of the state vector and covariance. 

The second step of the process is to estimate the input which is accomplished by using the 

following 
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  ̂          ̅   (A.11) 

 

where the Kalman gain (    for the input can be calculated by the following  

      
   

       (A.12) 

 

   
                (A.13) 

 

Lastly, the input geometry matrix used in equations (A.3) and (A.4) is defined as follows 

 

       𝐼   ̅     (A.14) 

 

After each of the stages is complete for a given time step  , Equations (A.3) and (A.4) can be 

used to update the respective state vector and covariance at time step      . It should be noted 

that these are the discrete forms of the input and output models   and  . Additionally, this 

method makes some key assumptions about the model. First, here it is assumed that the system 

model is linear and time invariant, which is true for the 7-DOF model presented Section 3.3.1. 

One more subtle requirement is that the multiplication of the output and input matrices (    in 

Equation (A.13) must have intersection between the non-zero elements. Of course if there is no 

intersection in the non-zero elements the product will become zero and Equation (A.13) will 

become singular.  More formally it can be said that           , where           or the 

number of unknown inputs. Also it is required that            , which is to say the 

number of measurements must be greater than or equal to the number of unknown inputs. 

 In relation to the 7-DOF model estimating the terrain inputs requires measurements of the 

un-sprung mass positions (suspension deflections) in order to satisfy these conditions. Since the 

roll rate and pitch rate can be measured directly from the IMU, it is intuitive to use them as 

measurements to the estimator. However as previously mentioned measurements of the heave 

position and velocity can only come from GPS which does not sample fast enough to capture the 
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vertical dynamics of the vehicle. Thus estimates of these states must be used to obtain a higher 

update rate to be applied as measurements to the TSKF. If estimates of a GPS/INS filter are 

being used as measurements to the TSKF, there is more freedom in how the measurement model 

can be developed for the TSKF. Roll angles and Pitch angles can be used as measurements rather 

than just the rates. It was determined through various simulations that the input estimation is 

more robust when roll and pitch angles were used rather than the roll and pitch rates.  

 In order to test the validity of this method, the TSKF was implemented in MATLAB 

using the 7-DOF suspension model. The measurements for the TSKF were taken from the 

CarSim outputs. The measured variables were the heave, heave rate, roll, pitch, and each of the 

wheel positions. CarSim outputs the wheel positions directly, but in an experimental 

implementation they can be determined from the measured suspension deflections and the 

kinematic relationships discussed in Section 5.2. Figure A.1  shows the left (a) and right (b) 

estimates of the profiles from the TSKF compared to the actual input taken from the CarSim 

output variables. It can be seen that the estimated input matches the profile of the true input with 

the exception of a constant bias. This bias is caused from the bias which is present in the heave 

motion of the 7-DOF model relative to the CarSim model as seen in the simulations from Section 

3.3.2. This again can be attributed to suspension preloading and kinematics which are present in 

the CarSim model which are not accounted for in the 7-DOF model. 
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(a) 

 

(b) 

Figure A.1 – Estimation of road profile using 7DOF model based two-step Kalman filter (a) Left 

profile (b) Right profile 
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There are several anticipated issues with an experimental implementation of the TSKF as 

structured in the simulation used. First, the errors in the outputs of the GPS/INS filter are 

correlated, thus using them as inputs to the TSKF violates the Kalman filter’s assumptions 

resulting in suboptimal estimates. Another issue in an actual implementation is the varying 

sample rates between the measurements from the IMU and the suspension deflections. It was 

also determined that noise on the measurements will transfer directly through to the estimation of 

the input. Also, as with any model based estimation technique, the accuracy of the estimates is 

going to be dependent on the accuracy of the system model. Thus parameter identification for the 

model becomes extremely important. Yet this method has the potential to provide real-time 

estimates of the terrain profiles without the use of remote sensors.  
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Appendix B: Experimental Test Site Description 

This appendix provides images and descriptions of the locations where the experimental 

tests were conducted. These are given to provide a more complete understanding of the 

relationship of the quantitative measures presented in this dissertation to the appearance of the 

terrains. The experimental data was collected at the National Center for Asphalt Technology. 

There are a variety of terrains at this facility on which data was collected. Cut through the 

woods, there is an off-road vehicle course which provides a number of unique terrain types. 

Unfortunately the data collection in many areas of the course was limited by poor GPS coverage 

caused by trees and foliage. There are, however, a variety of other locations with GPS coverage 

that have some interesting terrain types. 

The smooth asphalt terrain was collected in the NCAT main parking lot. Figure B.1 

shows an image taken from the top of the parking lot. This location has a quite significant 

elevation change from its highest point to lowest point. This was chosen as a base line case for 

the roughness metrics. It was also used to develop and tune the GPS/INS extended Kalman filter 

and terrain mapping system. 
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Figure B.1 – Smooth Asphalt terrain from NCAT parking lot 

The rough asphalt terrain is shown Figures B.2 and B.3. This data was collected in an 

open lot which is used for storage of asphalt paving materials. This surface has patches of 

various asphalt types as well as rocks scattered throughout. There is a small elevation change 

from the highest to lowest point on the site. 

 

Figure B.2 – Rough Asphalt terrain  
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Figure B.3 – Rough Asphalt terrain  

 

Images of the packed gravel terrain are shown in Figures B.4 – B.6. This is a gravel lot 

which appears to have been steam rolled in the past. However, as vehicles have driven on it 

certain areas have been churned up. Like the smooth asphalt, this terrain has a fairly large 

elevation change from its highest point to its lowest point. There is also an intermediate scale of 

elevation changes which are captured as surface roughness.  
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Figure B.4 – Packed Gravel terrain  

 

Figure B.5 – Packed Gravel terrain  
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Figure B.6 – Packed Gravel terrain  

 

 

The loose gravel terrain is shown in Figures B.7 and B.8. This is a gravel lot which was 

previously used for asphalt mixing and production. As such there are a large number of rocks 

and asphalt chunks which are present here. This terrain is not intended to support vehicular 

traffic. This location was chosen since it was as a counter to the packed gravel surface. This 

allows the comparison between maintained gravel and unmaintained gravel to be drawn. 
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Figure B.7 – Loose Gravel terrain  

 

 
Figure B.8 – Loose Gravel terrain  

 

Figures B.9 and B.10 show images of the dirt off-road terrain where data was collected. 

This is a dirt road which makes a loop in an area with open sky. The road has significant 

undulations in certain areas and is most representative of an off-road terrain. This terrain is also 

nominally flat from the highest point to the lowest point.  
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Figure B.9 – Dirt Off-Road terrain 

 
Figure B.10 – Dirt Off-Road terrain 

 

Figures B.11 and B.12 show two perspectives of the transition from the dirt road to the 

rough asphalt lot. This location was used to provide a site where the roughness of the vehicle 

path changed significantly. The data collection here was brief since the trees limited the GPS 

coverage. 
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Figure B.11 – Transition from Dirt Path to Rough Asphalt 

 

 
Figure B.12 – Transition from Dirt Path to Rough Asphalt 
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Appendix C: Experimental Hardware and Software Specifications 

C.1  Experimental Vehicle Specifications 

Prowler II (Internally Transportable / Light Tactical All Terrain Vehicle) Specifications 

 

• Power Plant : 660 cc 4-Stroke Single, Liquid Cooled, Electric Start with Auxiliary Auto - 

Decompression Recoil Pull 

 

• Power Train : Fully Automatic Transmission with HI/Lo Range, Reverse and Park (Limited 

Slip 4WD, 4WD Diff Lock, 2WD) 

 

• Construction : Sealed Tubular Structure with Chrome-Moly Roll Cage and Cargo Racks 

 

• Operation : Standard Automotive Driver Controls with Sealed Rack and Pinion Steering, 

Console Mounted Dual Range Shifter and Parking Brake Lever 
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• Top Speed : 63 mph (4WD, Hi Range) 

 

• Suspension : 

– Front - Independent Double Wishbone, Adjustable Preload Reservoir Shock Absorbers, 

8” Travel 

 

– Rear - Independent Double Wishbone, Adjustable Preload Reservoir Shock Absorbers, 

9” Travel, Sway Bar 

 

• Braking : 

– Front - Dual Hydraulic Disc 

 

– Rear - Shaft Mounted Hydraulic Disc with 4 piston opposed Calipers, 

 

– Full Engine Braking on each of all 4 Drive wheels 

 

• Payload : 1000 lb (1+ : 1 payload to weight ratio exclusive of crew) 

 

• Towing Capacity : 2250 lb (terrain dependent) Winch : 3000 lb, with Wireless Remote Control 

 

• Tires / Wheels : EMT Run Flat / Double Reinforced Rims 

 

• Fuel Capacity : 16 gal. (with optional in line spare tank) 

 

• Ground Clearance : 12.5” (13.5” @ Approach and Departure) 

 

• Wheel Base : 75.25” Track Width : 46” front, 43” rear (center to center) 

 

• Overall Width : 54” Overall Length : 113” 

 

• Height : 69.5” 
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• Weight : (dry) 1100 lb 

 

• Ford Depth : 36” 

 

C.2  Sensor Specifications 

 

The Prowler was modified and fitted with a number of sensors for data collection and 

vehicle. Below is a list of the vehicle sensors which were used during the data collection and 

analysis for this dissertation.  

 

Sick LMS-291 LiDAR (Figure C.1) 

 

Figure C.1 – Sick LMS 291 LiDAR 

 

 Field of application : Outdoor 

 Light source : Infrared (905 nm) 

 Field of view : 90 ° 

 Scanning frequency : 75 Hz 

 Operating range : 0 m – 80 m 

 Max. range with 10 % reflectivity : 30 m 

 Angular resolution : 0.5 ° 
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 Heating : Optional via external heating plate 

 Fog correction : yes 

 MTBF : 50,000 h 

 Resolution : 1 mm 

 

Crossbow IMU 440 CC (Figure C.2) 

 

Figure C.2 – Crossbow 440 Inertial Measurement Unit 

 Update Rate 2-100 Hz 

 

 Gyroscopes  (yaw, pitch, roll) 

- Range: Roll, Pitch, Yaw Rates ± 200 ° 

- Bias: Roll, Pitch, Yaw Rates <± 0.75 °/sec 

- Scale Factor Accuracy < 1 % 

- Non-Linearity < 0.5 % FS 

- Resolution < 0.06 °/sec 

- Bandwidth > 25 Hz 

- Random Walk < 4.5 °/hr1/2 

 

 Accelerometers (x,y,z) 

- Range X/Y/Z ± 4 g 

- Bias: X/Y/Z <± 15 mg 

- Scale Factor Accuracy < 1 % 

- Non-Linearity < 1 %FS 
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- Resolution < 0.6 mg 

- Bandwidth > 25 Hz 

- Random Walk < 1.0 m/s/hr1/2 

 

 Communication Protocol  RS-232 

 

 Novatel GPS System (Figure C.3) 

 

 

 

Figure C.3 – (left) Novatel GPS antenna (right) Novatel ProPak v3 receiver 

 Input Voltage: 9-18 VDC 

 Com Ports 1x RS-232, 2x RS-232/422, 1x USB 1.1 

 Data Sampling at 20 Hz 

 Velocity Accuracy 0.03 m/s RMS 

 Standalone Horizontal Position Accuracy : 1.5 m 

 Standalone Elevation Position Accuracy :  
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Septentrio GPS System (Figure C.4) 

 

Figure C.4 – Sepentrio PolaRx2 multi-antenna GPS receiver  

 Standalone Horizontal position accuracy 1.1m 

 Standalone Vertical position accuracy 1.9 m 

 Data Sampling at 10 Hz 

 

Table C.1 – Septentrio attitude errors assuming a 1 Hz update rate 

Baseline 

Length ( ) 

Heading 

accuracy 

(   ) 

Pitch 

accuracy 

(   ) 

Roll accuracy 

(   ) 

*90     

Antenna  

separation 

Roll accuracy 

(   ) 

*60      

Antenna 

separation 

Roll accuracy 

(   ) 

*30      

Antenna 

separation 
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Celesco MLP-125 (Figure C.5)  

 

Figure C.5 – (left) Celesco MLP-125 linear potentiometer (right) mounting of potentiometer 

parallel to suspension coilovers. 

 

 Input Resistance 1.25K – 10K ohms 

 Full Stroke Range 0-125mm 

 Output Signal Voltage Divider (potentiometer)  

 Linearity : ± 0 .5 to 1 % full stroke 

 Recommended Maximum Input Voltage : 42 VDC 
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C.3  Computer System 

 

The computers and hardware were mounted in a case on the front of the vehicle. 

 

Advantech Compact Embedded Computer (Figure C.6) 

 

Figure C.6 – Advantech rugged PC 

 

 Linux operating system (Ubuntu) 

 

 x RS-232 ports and 5 x RS-232/422/485 ports 

 

 Vehicle Command Codes / interfacing written in C++ using MOOS (Mission Oriented 

Operating System) 


