
Informed Prefetching in Distributed Multi-Level Storage Systems

by

Maen Mahmoud Al Assaf

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 12, 2011

Keywords: informed prefetching, pipelining, parallel storage systems, multi-level storage
system, distributed storage systems

Copyright 2011 by Maen Mahmoud Al Assaf

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
David Umphress, Associate Professor of Computer Science and Software Engineering

Wei-Shinn Ku, Assistant Professor of Computer Science and Software Engineering



Abstract

In this dissertation, we present pipelined prefetching mechanisms that use application-

disclosed access patterns to prefetch hinted blocks in multi-level storage systems. The fun-

damental concept in our approach is to split an informed prefetching process into a set of

independent prefetching steps among multiple storage levels (e.g., main memory, solid state

disks, and hard disk drives). In the first part of this study, we show that a prefetching pipeline

across multiple storage levels is an viable and effective technique for allocating file buffers at

the multiple-level storage devices. Our approaches (a.k.a., iPipe and IPO) extends previous

ideas of informed prefetching in two ways: (1) our approach reduces applications’ I/O stalls

by keeping hinted data in caches residing in the main memory, solid state disks, and hard

drives; (2) we propose a pipelined prefetching scheme in which multiple informed prefetching

mechanisms semi-dependently work to fetch blocks from low-level (slow) to high-level (fast)

storage devices. Our iPipe and IPO strategies integrated with the pipelining mechanism

significantly reduce overall I/O access time in multiple-level storage systems. Next, we pro-

pose a third prefetching scheme called IPODS that aims to maximize the benefit of informed

prefetches as well as to hide network latencies in a distributed storage systems. Finally,

we develop a simulator to evaluate the performance of the proposed informed prefetching

schemes in the context of multiple-level storage systems. We implement a prototype to

validate the accuracy of the simulator. Our results show that our iPipe improves system

performance by 56% in most informed prefetching cases, IPO and IPODS improve system

performance by 56% and 6% respectively in informed prefetching critical cases across a wide

range of real-world I/O traces.

ii



Acknowledgments

I owe my gratitude to all the people who have made this work possible and who sup-

ported me during my stay at Auburn University.

I would like to express my deepest gratitude to my advisor, Dr. Xiao Qin. I was

indeed fortunate to be his student. He educated me and gave me support, experience,

encouragement, and guidance. He taught me good research methodologies, team work, and

writing skills. He also did his best to help me when I face obstacles. Without his help and

support, this work would not have been possible. I really hope to be a good advisor like Dr.

Qin for my future students.

I am grateful and thankful for Dr. David Umphress who reviewed my proposal and

dissertation. He alerted me to many important points concerning good writing skills and

research. I am pleased to be his student.

I would like to express my sincere thanks for Dr. Wei-shinn Ku for reviewing my proposal

and dissertation. Dr. Ku indeed supported me in my research and guided me on the right

track. I am really grateful and thankful for him.

I would also like to acknowledge Dr. Guofu Niu from the Department of Electrical and

Computer Engineering at Auburn University for reviewing my dissertation and supporting

my research. I really thank him very much.

This work was discussed with my colleagues in Dr. Xiao Qin’s research group. I would

like to mention in particular Xiaojun Ruan, Shu Yin, Yun Tian, Zhiyang Ding, James Majors

, Jiong Xie, Yixian Yang, Ji Zhang, Joshua Lewis,and Jianguo Lu. I really thank them very

much.

iii



I am indebted to the University of Jordan who sponsored me during my stay in the

United States. In particular, I would like to thank my colleagues in King Abdullah II School

of IT for their support and advise.

Most importantly, I thank my family who encouraged me to continue my Ph.D educa-

tion. Without their patience and love, this work would not have been possible. I dedicate

this dissertation to them.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Informed Prefetching for Multiple-Level Storage Systems . . . . . . . 2

1.1.2 Prefetching in Multi-Level Storage Systems with Limited I/O Bandwidth 3

1.1.3 Informed Prefetching for Distributed Multi-level Storage Systems . . 3

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Motivation 1: the growing needs of multi-level storage systems. . . . 4

1.2.2 Motivation 2: the I/O access hints offered by applications. . . . . . . 4

1.2.3 Motivation 3: multiple prefetching mechanisms perform in parallel. . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Review & Current Work . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Storage systems current work . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Multi-level storage systems . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Solid State Disks and Hard Drives . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Parallel Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Distributed Storage Systems . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Two Types of Prefetching . . . . . . . . . . . . . . . . . . . . . . . . 13

v



2.2.2 Informed Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Predictive Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Prefetching in multi-level storage systems . . . . . . . . . . . . . . . . 16

2.2.5 Prefetching in Distributed and Parallel Storage Systems . . . . . . . . 17

2.3 Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Assumptions and Parameters Validations . . . . . . . . . . . . . . . . . . . . . . 20

3.1 System Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Demand Misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Informed Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Bandwidth Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 I/O Bandwidth Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Life Time of Solid State Disk (SSD) . . . . . . . . . . . . . . . . . . . 23

3.2 Assumptions on Prefetching and Pipelining . . . . . . . . . . . . . . . . . . . 23

3.2.1 Initial Data Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 A Pipeline for Data Transfers . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Writes and Data Consistency . . . . . . . . . . . . . . . . . . . . . . 25

3.2.4 Pipelining Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.5 Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.6 LASR Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Proof of the Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.4 Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.5 Model Tcpu + Thit + Tdriver . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.6 System Parameters validation . . . . . . . . . . . . . . . . . . . . . . 35

3.3.7 Limited Parallel I/O Bandwidth . . . . . . . . . . . . . . . . . . . . . 36

vi



3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 iPipe: An Pipelined and Informed Prefetching for Multi-Level Storage Systems . 41

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Design Issues in iPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Architecture of iPipe . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 The iPipe Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Stalls and Disk Read Latencies . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Prefetching Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 The Pstart and Pdepth Algorithms . . . . . . . . . . . . . . . . . . . 48

4.4.4 Stalls, Elapsed Time, Prefetching Horizon, and Prefetching Benefit . 53

4.4.5 The iPipe Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.3 Validated Performance Evaluation . . . . . . . . . . . . . . . . . . . . 67

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 IPO: Informed Prefetching Optimization in Multi-level Storage Systems . . . . . 74

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Design Issues in IPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Architecture of IPO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 The IPO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 The Pstart and Pnext Algorithms . . . . . . . . . . . . . . . . . . . . 81

vii



5.4.3 The IPO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.2 Elapsed Time Improvement . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.3 Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.4 Increasing the MaxBW Value . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 IPODS: Informed Prefetching in Distributed Multi-level Storage Systems . . . . 94

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 IPODS Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1 The IPODS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 The IPODS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.2 The IPODS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5.2 Improving Elapsed Time . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Prototype Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.0.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.0.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.0.3 Design Issues of the Prototypes . . . . . . . . . . . . . . . . . . . . . 106

7.0.4 Validation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.1 The iPipe Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



7.1.2 The IPO Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.3 The IPODS Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1.1 iPipe: An Pipelined and Informed Prefetching . . . . . . . . . . . . . 124

8.1.2 IPO: Informed Prefetching Optimization . . . . . . . . . . . . . . . . 125

8.1.3 IPODS: Pipelined Prefetching in Distributed/Parallel Storage Systems 126

8.1.4 Prototypes for iPipe, IPO, and IPODS . . . . . . . . . . . . . . . . . 126

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 Data Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.2.2 The Cost-Benefit Model . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.3 Write Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.2.4 Most Recently Used Policy . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.5 Extending Storage Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.6 Caching and Benchmarking . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.7 Various Solid State Disks . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.8 Block Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2.9 Fast Networks for Distributed Storage Systems . . . . . . . . . . . . . 131

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ix



List of Figures

2.1 Multi-level storage system that consists of different storage devices with various
speed performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Read Latency of HDDs and SDDs. When block size is 10 MB, SSD has better
read performance than HDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Read Latency of accessing a remote HDD and SDD through the LAN network
connection. In this distributed system setting, SSD has better read performance
than HDD when block size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 (Tcpu) + (Thit) + (Tdriver) values range from 0.037- 0.104 seconds. We will
consider the smallest value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 10 MB: Estimated Thdd−ss is 0.122 seconds. . . . . . . . . . . . . . . . . . . . . 36

3.5 10 MB: Estimated Thdd−cache is 0.12 seconds. . . . . . . . . . . . . . . . . . . . . 37

3.6 10 MB: Estimated Tss−cache is 0.052 seconds. . . . . . . . . . . . . . . . . . . . . 37

3.7 200 MB: Estimated Thdd−ss is 4.5 seconds. . . . . . . . . . . . . . . . . . . . . . 38

3.8 200 MB: Estimated Thdd−cache is 2.3 seconds. . . . . . . . . . . . . . . . . . . . . 38

3.9 200 MB: Estimated Tss−cache is 1.5 seconds. . . . . . . . . . . . . . . . . . . . . 39

3.10 Limited Parallel I/O Bandwidth. Concurrent read requests are noticeably af-
fected by the limited parallel I/O bandwidth. . . . . . . . . . . . . . . . . . . . 40

4.1 iPipe system hardware architecture. Consists of an array of multi-level disks. . . 43

4.2 High-level design of the iPipe software architecture for a multi-level storage sys-
tem. The multi-level storage system consists of two levels - SSDs and HDDs. . . 44

4.3 Detailed design of the iPipe software architecture for a three-level storage system.
An application provides hints to both TIP and iPipe. The system performance
parameters are passed to iPipe to calculate the pipelining starting block and
depth. iPipe keeps fetching hinted data blocks to the highest level. Since the
storage system’s bandwidth is high enough, iPipe is able to fetch most of the
hinted blocks. TIP uses a cost benefit model to determine the number of prefetch
buffers. Hinted data blocks are fetched from the storage system to the buffer cache. 45

x



4.4 Average stall when using iPipe and a fixed number of buffers for pipelined
prefetching. Thdd−cache = 5, Thdd−ss = 8, Tss−cache = 4, Xcache = 3. The first
stall is 5 time units. Before the first hinted block is fetched from HDD into SSD,
the application stalls for Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu + Thit + Tdriver)
= 2 time units every 3 accesses. When hinted blocks are retrieved in the SSD,
the application stalls for Tstall−ss(Xcache) = Thdd−cache - 3(Tcpu + Thit + Tdriver) =
1 every 3 accesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Average stall when using a fixed number of buffers for pipelined prefetching.
Thdd−cache = 5, Xcache = 3. The first stall is for 5 time units, because all data
blocks are read from the HDD. The application stalls for Tstall−hdd(Xcache) =
Thdd−cache - 3(Tcpu + Thit + Tdriver) = 2 time units every 3 accesses. . . . . . . . 56

4.6 Total elapsed time when the number of prefetching buffers is set from 1 to 11.
iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Total elapsed time when the number of prefetching buffers is set from 13 to 26.
iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Total informed prefetching read latency. iPipe reduces the read latency. . . . . . 62

4.9 Total stall time when the number of prefetching buffers is set from 1 to 9. iPipe
reduces the stall time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Total stall time when the number of prefetching buffers is set from 11 to 19. iPipe
reduces the stall time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Total elapsed time when the number of prefetching buffers is set from 1 to 5.
iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed
time is less when Intel X25-E SSD is tested because it is faster than Nova-V64
SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Total elapsed time when the number of prefetching buffers is set from 7 to 11.
iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed
time is less when Intel X25-E SSD is tested because it is faster than Nova-V64
SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Total elapsed time when the number of prefetching buffers is set from 13 to 26.
iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed
time is less when Intel X25-E SSD is tested because it is faster than Nova-V64
SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Block size = 10 MB. Total elapsed time when the number of buffers is set from
1 to 9. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . . 69

4.15 Block size = 10 MB. Total elapsed time when the number of buffers is set from
11 to 25. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . 69

xi



4.16 Block size = 10 MB. Total elapsed time when the number of buffers is set from
35 to 63. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . 70

4.17 Block size = 200 MB. Total elapsed time when the number of buffers is set from
1 to 9. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . . 70

4.18 Block size = 200 MB. Total elapsed time when the number of buffers is set from
11 to 25. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . 71

4.19 Block size = 200 MB. Total elapsed time when the number of buffers is set from
35 to 63. iPipe reduces the elapsed time. . . . . . . . . . . . . . . . . . . . . . . 71

5.1 High-level design of IPO software architecture. The multi-level storage system
consists of an array of two levels of SSDs and HDDs with limited bandwidth and
scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Detailed design of IPO software architecture for a three-level storage system.
The application provides hints on future I/O accesses. IPO determines the ap-
propriate hinted blocks to be fetched. IPO keeps prefetching a particular number
(depends on available bandwidth) of hinted blocks to the uppermost level. The
upper-level prefetcher (i.e., TIP) uses the cost/benefit model to determine the
number of prefetching buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Average stalls when using IPO and a fixed number of buffers for parallel prefetch-
ing in the buffer cache. The maximum number (MaxBW ) of read requests is 5.
Informed prefetching buffers = 2, and the rest 3 spaces of the bandwidth are used
for pipelined prefetching. Thdd−cache = 5, Thdd−ss = 8, Tss−cache = 4, and Xcache =
2. The first accesses stall for 5 time units. Before IPO fetches hinted blocks from
HDD to SSD, the application stalls for Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu +
Thit + Tdriver) = 2 time units every 3 accesses. IPO continues to fetch 3 hinted
blocks each time from HDD. When a prefetched block is consumed from SSD, a
new pipelined prefetching request is initiated by IPO. When IPO is employed,
stalls time becomes 40 and elapsed time is 76 time units. . . . . . . . . . . . . . 84

5.4 Continue Figure 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Average stalls when using a fixed number of buffers for parallel prefetching in
buffer cache. Thdd−cache = 5, and Xcache = 2. The first accesses stall for 5 time
units. All data is read from HDD. The application stalls for Tstall−hdd(Xcache)
= Thdd−cache - 3(Tcpu + Thit + Tdriver) = 2 time units every 3 accesses. In the
non-IPO case, stalls time is 45 and elapsed time is 81. . . . . . . . . . . . . . . 86

5.6 Continue Figure 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 IPO reduces application elapsed time. 10 MB block size. Total elapsed time
when using 1 to 15 prefetching buffers. MaxBW = 15. . . . . . . . . . . . . . . . 89

xii



5.8 IPO reduces application elapsed time. 200 MB block size. Total elapsed time
when using 1 to 7 prefetching buffers. MaxBW = 15. . . . . . . . . . . . . . . . 90

5.9 IPO reduces application elapsed time. 200 MB block size. Total elapsed time
when using 9 to 15 prefetching buffers. MaxBW = 15. . . . . . . . . . . . . . . . 90

5.10 Bandwidth utilization when Xcahce is varied from 1 to 15 in both IPO and non-
IPO cases. IPO fully utilizes the bandwidth. . . . . . . . . . . . . . . . . . . . . 91

5.11 IPO reduces the elapsed time. Total elapsed time when the Xcahce value is in-
creased from 1 to 63. MaxBW is set to 154. . . . . . . . . . . . . . . . . . . . . 92

6.1 The architecture of a distributed parallel storage system. Several distributed
clients and storage nodes are connected by a network. T.Madhyastha; G. Gibson;
C. Faloutsos: Informed prefetching of collective input/output requests, Proceed-
ings of the 1999 ACM/IEEE conference on Supercomputing (CDROM), Portland,
Oregon, 1999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 [71] Another architecture of a distributed parallel storage system. Several dis-
tributed clients and storage nodes are connected by a network. Luis Cabrera
, Darrell D.E. Long: SWIFT: USING DISTRIBUTED DISK STRIPING TO
PROVIDE HIGH I/O DATA RATES, University of California at Santa Cruz,
Santa Cruz, CA, 1991. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Distributed/Parallel Multi-level Storage System: The system shows several dis-
tributed storage nodes and clients connected by a network. Each I/O stor-
age node consists of a two-level storage device containing both SSD and HDD.
T.Madhyastha; G. Gibson; C. Faloutsos: Informed prefetching of collective in-
put/output requests, Proceedings of the 1999 ACM/IEEE conference on Super-
computing (CDROM), Portland, Oregon, 1999. . . . . . . . . . . . . . . . . . . 98

6.4 Total elapsed time when the number of prefetching buffers is varied from 1 to 15.
MaxBW = 15. IPODS reduces the elapsed time. . . . . . . . . . . . . . . . . . . 104

xiii



List of Tables

3.1 I/O bandwidth measured using the Ramspeed benchmark. . . . . . . . . . . . . 33

4.1 The number of informed prefetching requests issued to HDDs when the LASR1
and LASR2 traces are evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Service time is reduced when one extra buffer is added for prefetching. . . . . . 61

4.3 Prefetching Horizon P(Tcpu) equals 26 data blocks distance while iPipe is not
used. P(Tcpu) drops to 20 data blocks distance when iPipe is used. . . . . . . . 63

4.4 Total stall time when the number of prefetching buffers is set from 21 to 26. iPipe
reduces the stall time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Data block size = 10 MB. The position of the first data block to be prefetched. 72

4.6 Data block size = 10 MB. The depth of the pipelined prefetching when using dif-
ferent Xcahce values. Small depth is needed when few Xcahce buffers are used. The
maximum depth = 91. iPipe needs to assign the maximum depth for pipelined
prefetching starting from Xcahce = 35, because the reading stalls from SSD at
that point = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Data block size = 200 MB. The position of the first data block to be prefetched. 73

4.8 Data block size = 200 MB. The depth of the pipelined prefetching when using
different Xcahce values. Small depth is needed when few Xcahce buffers are used.
The maximum depth = 163. iPipe needs to assign the maximum depth for
pipelined prefetching starting from Xcahce = 45, because the reading stalls from
SSD at that point = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Total elapsed time measured in seconds when the iPipe prototype is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is
10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Total elapsed time measured in seconds when the LASR traces are replayed by
the iPipe prototype. The number of prefetching buffers is set to a range between
1 to 63. The block size is 10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 Total elapsed time measured in seconds when the iPipe simulator is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is
10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xiv



7.4 Comparison between iPipe’s simulation results and the prototyping results. Total
elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 10 MB. . . . . . . . . . . . . . . . . 112

7.5 Total elapsed time measured in seconds when the iPipe prototype is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is
200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.6 Total elapsed time measured in seconds when the LASR traces are replayed by
the iPipe prototype. The number of prefetching buffers is set to a range between
1 to 63. The block size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.7 Total elapsed time measured in seconds when the iPipe simulator is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is
200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.8 Comparison between iPipe’s simulation results and the prototyping results. Total
elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 200 MB. . . . . . . . . . . . . . . . . 114

7.9 Total elapsed time measured in seconds when the IPO prototype is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is
10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.10 Total elapsed time measured in seconds when the LASR traces are replayed by
the IPO prototype. The number of prefetching buffers is set to a range between
1 to 15. The block size is 10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.11 Total elapsed time measured in seconds when the IPO simulator is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is
10 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.12 Comparison between IPO’s simulation results and the prototyping results. Total
elapsed time measured in seconds when the LASR traces are replayed by the
iPipe simulator and prototype. The block size is 10 MB. . . . . . . . . . . . . . 117

7.13 Total elapsed time measured in seconds when the IPO prototype is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is
200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.14 Total elapsed time measured in seconds when the LASR traces are replayed by
the IPO prototype. The number of prefetching buffers is set to a range between
1 to 15. The block size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.15 Total elapsed time measured in seconds when the IPO simulator is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is
200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xv



7.16 Comparison between IPO’s simulation results and the prototyping results. Total
elapsed time measured in seconds when the LASR traces are replayed by the
iPipe simulator and prototype. The block size is 200 MB. . . . . . . . . . . . . 118

7.17 Total elapsed time measured in seconds when the IPODS prototype is tested.
The number of prefetching buffers is set to a range between 1 to 15. The block
size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.18 Total elapsed time measured in seconds when the LASR traces are replayed by the
IPODS prototype. The number of prefetching buffers is set to a range between
1 to 15. The block size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.19 Total elapsed time measured in seconds when the LASR traces are replayed by
the IPODS simulator. The number of prefetching buffers is set to a range between
1 to 15. The block size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.20 Total elapsed time measured in seconds when the IPODS simulator is tested.
The number of prefetching buffers is set to a range between 1 to 15. The block
size is 200 MB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xvi



Chapter 1

Introduction

To solve the I/O bottleneck problem (see [81]) in large-scale computing systems, re-

searchers have proposed a wide range of prefetching techniques for preloading data from

disks into the main memory prior to the data accesses. Existing prefetching techniques can

be categorized into two camps - predictive prefetching and informed prefetching. Predictive

prefetching schemes predict future I/O access patterns based on historical I/O accesses of

applications [2], whereas informed prefetching techniques make preloading decisions based

on applications’ future access hints [1]. In this dissertation study, we will focus on informed

prefetching schemes and investigate performance impact of informed prefetching on multi-

ple level storage systems. Well-known predictive prefetching solutions are summarized in

Section 2.2.

The chapter is organized as follows. The first section describes the problem statement

of this dissertation study. In the second section, we illustrate the important motivations for

our new proposed informed prefetching approaches. Next, the second section outlines the

main contributions of this study. Finally, the last section specifies the organization of the

dissertation.

1.1 Problem Statement

As the performance gap between processors and I/O subsystems increases rapidly, disk

performance becomes a serious bottleneck for large-scale computing systems supporting data-

intensive applications [32]. Recent studies show that informed prefetching can bridge the

performance gap between the CPU and I/O; for example, an informed prefetching algorithm

called TIP proposed by Patterson et al. aims to improve performance of I/O-intensive

1



applications by applying cost-benefit analysis to allocate buffers for both prefetching and

caching [1]. TIP’s cost-benefit analysis is possible, because TIP estimates the impact of

alternative buffer allocations on application execution time.

This dissertation research is inspired by the TIP approach [1]. Follows are three main

challenges to be addressed our study:

1. informed prefetching for multiple-level storage systems,

2. prefetching in multi-level storage systems with limited I/O bandwidth, and

3. informed prefetching for distributed multi-level storage systems.

1.1.1 Informed Prefetching for Multiple-Level Storage Systems

When disk arrays are employed, the TIP algorithm improves the quality of parallel

prefetching through accurately eliminating I/O stalls. In Patterson’s approach, the informed

caching and prefetching algorithm assigns a portion of buffer space used for demand caching

(LRU) and the rest of the buffer to store hinted blocks prefetched from disks [1]. This buffer

allocation process is guided by a cost-benefit model. When data accessing time increases

due to high disk load, I/O stall time goes up and creates an increasing benefit of assign-

ing additional buffers for hinted blocks. When parallel disk subsystems are extended into

multiple-level storage systems [52] [23], a hierarchy of multiple storage devices increases data

access latency if the data are residing in a lower level of the systems. To shorten long data

transfer latency, popular data or future accessed data may be stored in the upper level of

the storage systems.

Traditional informed prefetching schemes can hide the latency of accessing storage sys-

tems by invoking disk I/O parallelisms and fetching data based on application-disclosed

hints. We will show that building an informed prefetching pipeline can significantly improve

the I/O performance of multi-level storage systems. We will illustrate how to use appli-

cation hints to initiate prefetching among multiple storage levels like main memory, solid

2



state disks, and hard disk drives. The centerpiece of our approach is a pipeline in which

we split the informed prefetching process into a set of independent prefetching steps among

the multiple storage levels. In particular, we will demonstrate how to integrate this pipeline

with informed prefetching and caching to manage file buffers at various storage levels.

1.1.2 Prefetching in Multi-Level Storage Systems with Limited I/O Bandwidth

I/O-intensive applications can disclose hints about their future I/O accesses and these

hints can be used to guide prefetching mechanisms in making accurate prefetching decisions.

Existing informed prefetching algorithms rely on the assumption that parallel disks offer

enough I/O bandwidth for prefetching without encountering I/O congestion. Under such an

assumption, an informed prefetching mechanism can prefetch a large number of data blocks

in parallel; Unfortunately, our preliminary results show that real-world storage systems may

not have unlimited I/O bandwidth; this observation is especially true for small-scale storage

systems. We addressed this issue by developing an informed prefetching algorithm (see

Chapter 5) in a multiple-level storage system where disk devices offer limited I/O bandwidth.

Our informed prefetching solution is practical, because it does not rely on the assumption

that storage systems provide unlimited I/O bandwidth.

1.1.3 Informed Prefetching for Distributed Multi-level Storage Systems

To further extend our prefetching approaches (see Chapters 4 and 5), we developed an

informed prefetching algorithm (see Chapter 6) tailored for distributed multi-level storage

systems, each of which consists of a group of multi-level storage servers. In a distributed

storage system, large disk access latency due to network delays can be hidden by informed

prefetching. We will demonstrate that a pipeline mechanism can be used to efficiently

prefetch data blocks from a low-level storage device to a up-level storage device before

moving the data blocks to the clients.

3



1.2 Motivations

The following key factors motivated us to investigate pipelined informed prefetching:

1. the growing needs of multi-level storage systems,

2. the I/O access hints offered by applications, and

3. the possibility of multiple prefetching mechanisms working in parallel.

1.2.1 Motivation 1: the growing needs of multi-level storage systems.

Multi-level storage systems have been widely employed in data centers supporting

service-based applications such as multimedia streaming and scientific computing. For ex-

ample, popular data are fetched and cached in an upper-level server while massive amounts

of unpopular data are placed in lower-level storage servers. Overall performance of I/O-

intensive applications can be improved by increasing the I/O performance of multi-level

storage systems. Existing studies (see, for example, [19] and [9]) suggest that new prefetch-

ing and caching techniques are needed to boost the I/O performance of multi-level storage

systems. Since prefetching must be performed at each storage level to hide I/O latencies,

prefetching mechanisms at multi-level need to coordinate in order to achieve high prefetching

efficiency.

1.2.2 Motivation 2: the I/O access hints offered by applications.

The second factor motivating our informed prefetching for multi-level storage systems

is that largely predictable I/O access patterns can be disclosed by applications as hints. I/O

access hints are used by prefetching mechanisms to invoke asynchronous I/O accesses to

fetch data to upper-level storage like the main memory and solid state disks.

Informed prefetching in multi-level storage systems is challenging for two main reasons.

First, hints must be processed at different storage levels in different manners. For example, an

4



upper-level prefetching mechanism takes hints and makes conservative prefetching decisions

for upper-level storage with small capacity; a lower-level prefetching mechanism is aggressive

in order to effectively use large lower-level storage as a staging area. Second, at each storage

level, an informed prefetching manager must balance cache space against prefetching space.

Informed prefetching mechanisms at multiple levels should coordinate to manage caches

across multiple levels of storage devices.

Prefetching and caching issues in multi-level storage systems have been investigated

in existing studies [19] [9]. However, to our best knowledge no research has incorporated

informed prefetching mechanisms into a multi-level storage system.

1.2.3 Motivation 3: multiple prefetching mechanisms perform in parallel.

Multiple informed prefetching mechanisms can independently fetch blocks from lower-

level to upper-level storage devices. These prefetching mechanisms can work in parallel,

because multiple prefetching operations can be simultaneously processed by the upper-level

and lower-level prefetching mechanisms. Such storage parallelisms make it possible to im-

plement a prefetching pipeline, where the informed prefetching processes are separated into

a set of distinct prefetching steps among multiple storage levels.

When data blocks have to be cached in all of the storage levels, significant I/O delays are

incurred by prefetching data from the lowest-level to the highest-level of storage. We show

that a pipelined prefetching approach can increase prefetching throughput, which is defined

as the number of blocks prefetched from the lowest storage level to the highest storage level.

We will focus on read-intensive applications, because read performance of applications

is poor when the data to be accessed are residing in the lower-level storage subsystems.

Write performance in multi-level storage systems is not as critical as read performance, since

applications can write data to upper-level storage devices (e.g., write-behind buffer) before

moving data from the upper-level to the lower-level storage.

5



1.3 Contributions

The following list summarizes the major research contributions made in this dissertation

study:

� To reduce I/O delays in multi-level storage systems, we propose new informed prefetch-

ing approaches to coordinating multiple prefetching mechanisms in the form of a

pipeline. The three informed prefetching algorithms developed in this study are called

iPipe (see Chapter 4), IPO (see Chapter 5), and IPODS (see Chapter 6). We show that

with our prefetching pipeline in place, multiple prefetching operations can be processed

in parallel by both upper-level and lower-level prefetching mechanisms.

� We apply a novel cost-benefit model to estimate the value of prefetching or caching a

block at a specific storage level in a multi-level storage system. The cost-benefit model

is used by prefetching mechanisms deployed in multiple storage levels to improve buffer

usage at all storage levels. We describe how we employed the model in our prefetching

algorithms in Chapters 4-6.

� We developed a simulated multiple-level storage system, in which the three prefetching

algorithms are implemented. Simulation results show that our prefetching mechanism

powered by a data fetching pipeline reduces applications’ stall and execution times.

Simulation results also indicate that our approaches can reduce prefetching distance

(a.k.a., prefetching horizon).

� We implemented a prototype to validate our simulator for multi-level storage systems.

Like the simulator, the prototype contains the implementation of all the three proposed

informed prefetching algorithms. We conducted an experiment using the prototype,

showing that our prefetching solutions can reduce disk read latency in distributed

multi-level storage system, an environment in which data are stored in different nodes

that are connected by a network. Prefetching time will increase because of network

6



and server latencies. Pipelining can only reduce the disk read latency as a part of the

total prefetching time.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows:

Chapter 2 describes the cutting-edge-research in multi-level storage systems as well as

informed and predictive prefetching techniques.

Chapter 3 explains the assumptions made in this dissertation, shows the proof of con-

cept, and validates system parameters used throughout this dissertation.

Chapter 4 , outlines the system architecture, algorithm Design, and performance eval-

uation for our iPipe solution that assumes enough storage system’s bandwidth.

Chapter 5, outlines our IPO solution that performs pipelining in a limited bandwidth

storage system. The chapter discusses the system architecture, algorithm Design, and the

performance evaluation.

Chapter 6 outlines IPODS solution which implements IPO in distributed multi-levels

storage systems.

Chapter 7 discuss our solutions’ prototyping results.

Finally, Chapter 8 provides a summary of this dissertation study with a list of directions

for future research.

7



Chapter 2

Literature Review & Current Work

Previous researchers have suggested that application-disclosed hints can be used by

prefetching mechanisms to dramatically improve I/O performance. To our best knowledge,

however, ours is the first study to focus on informed prefetching in multi-level storage sys-

tems, the first to consider how to apply the cost-benefit model in a multi-level prefetching

system, the first to construct a pipeline to coordinate multiple prefetching mechanisms in

a multi-level storage system, and the first to offer a systematic performance evaluation of

informed prefetching in multi-level hybrid storage systems.

In this Chapter, we will discuss closely related work in both storage systems in general

and prefetching in particular.

2.1 Storage systems current work

We will begin this subsection by describing multiple-level storage systems (see Section

2.1.1). Then, we will compare solid state disks with traditional hard disk drives (see Section

2.1.2). Next, we introduce new techniques in parallel storage systems (see Section 2.1.3).

Finally, we will discuss related work in distributed storage systems (see Section 2.2).

2.1.1 Multi-level storage systems

A multi-level storage system consists of a hierarchy of heterogeneous storage devices that

differ in their hardware, speed, size, and other specifications [87]. Multilevel storage systems

provides cost-effective solutions for large-scale data centers without significantly affecting

I/O response times. The I/O performance of a multi-level storage system depends on data

placement of the system. Ideally, a high-level storage device should store two types of data:

8



Figure 2.1: Multi-level storage system that consists of different storage devices with various
speed performance.

(1) popular data that are frequently accessed and (2) data that are likely to be access in the

not-too-distant future.

Typical storage devices in a modern multi-level storage system include main memory,

solid state disks, hard disks, and magnetic tape subsystems (see, for example, [23]). Fig-

ure 2.1 shows a 4-level storage system, which is a straightforward extension of a traditional

2-level storage system with main memory and hard drives.

Multi-level storage systems and caches share similar advantages. A multi-level cache

system contains a hierarchy of more cache levels [33]. Previous studies show that there is

a maximum benefit of having a single level cache [21] [22]. Making tradeoff between cache

latency and hit rate is a challenge, because large caches inevitably have high hit rates with

long latency. To achieve a good tradeoff between hit rate and latency, researchers proposed

multiple-level caches, where small, fast caches (i.e., upper level caches) are backed up by

large, slow caches (lower level caches).

Similar to multi-level caches, multi-level storage systems [18] [19] [20] first check their

upper-level storage devices. If data items are not in the upper level storage, the next storage

level is checked. This process is repeated until the required information is retrieved.

In a multi-level storage system, data can be moved from one particular level to another

by data migration processes. The decision of migrating data blocks from one level to another

9



is based on the data’s metadata (e.g., popularity and pass access patterns). Data migration

based on popularity or predictions is a good example of the important metadata used by

data migration modules [38], [34], [36]. When a multi-level storage system migrates data

to upper levels based on popularity or predicted access patterns, the migrated data will be

accessed by clients in a fast way thanks to reduced access delays [37].

2.1.2 Solid State Disks and Hard Drives

Compared to traditional hard drives (HDD), solid state disks (SSD) show better data

read performance. Tuma provides comparisons between a wide range of SSDs and HDDs;

detailed comparisons can be found in [85]. Tuma’s results show that SSDs have better

random read-performance than HDDs. For example, reading 4- KB blocks from a seagate

HDD achieves a throughput of 0.70 MB/s; whereas reading the same data blocks from M-

systems Model FDD 3.5” Flash SSD can obtain a throughput of 4.3 MB/s. Rizvi and Chung

compares SLC with MLC-flash SSDs with HDDs; the findings show that SSDs offer better

I/O throughput than HDDs [86]. Therefore, solid state disks are becoming increasingly

popular in the support of large-scale multimedia systems requiring high I/O bandwidth.

Researchers can obtain the specifications of various HDD and SDD products from vendors

(e.g., [94] [93] [92] [90]). The product data sheets clearly indicate that SDDs outperform

HDDs in term of reads. For example, WD Caviar Green has approximately a maximum

read bandwidth of 190 MB/s, assuming that the WD’s SSDs are connected with SATA 1.5

Gb/s (1.5 Gb/s is approximately equal to 190 MB/s). On the other hand, Nova Series V64

solid-state drive can achieve a high read bandwidth of 215 MB/s, which is higher than that

of WD’s SSDs. Different SSD products vary in their I/O performance. For example, Intel’s

X25-E Extreme SATA SSDs - with a read bandwidth of 250 MB/s - is better than Nova

Series V64 SSDs. Many SSD and HDD products distinguish themselves from each other in

terms of I/O performance, size, cost, and other aspects. In general, SDDs have good I/O

performance and a high price whereas HDDs offer high storage capacity at low cost. As such,

10



J. No built a hybrid file system using both SSDs and HDDs, thereby taking the advantages

of two different types of storage devices [56].

2.1.3 Parallel Storage Systems

Parallel storage systems are commonly deployed in supercomputers [1] [23] [63]. A

parallel storage system consist of redundant storage devices offering high I/O performance

and bandwidth [51] [60]. Disk arrays are important components in parallel storage systems.

Scalable parallel storage systems (see, for example, [23] [63] [49]) provide I/O paral-

lelisms through the stripping technique, in which each large data block is stripped among

an entire disk array [64]. When a particular data block is requested, the request will be

directed to the entire disk array, where multiple disk controlled by a disk controller can

coordinate and respond to the request in parallel. Generally speaking, it is very expensive to

build large-scale parallel storage systems; therefore, researchers have proposed various ways

to reduce the cost of scalable parallel storage systems (see, for example, [57]). Cluster stor-

age systems - a new high-performance computing storage resource, is one of a few effective

ways to develop cost-effective parallel storage systems, because cluster storage systems use

entirely off-the-shelf components from data storage vendors.

Parallel storage systems can be very reliable, thanks to the fault tolerance features

offered by data redundancy [59] [58]. In the event of a disk or a storage device fails, users

are not aware of such a failure. Thus, all requests issued to a fault-tolerant storage system

can be processed, even in the presence of disk failures. Data stored on failed disks can be

recovered or reconstructed from data stored in other disks in the system.

A recent study shows that informed prefetching mechanisms can rely on disk parallelisms

to quickly prefetch data in parallel [1]. Applications with parallel I/O access patterns benefit

greatly from parallel storage systems that make parallel informed prefetching possible [50]

[53] [54]. In this dissertation study, we focus on the issue of informed prefetching in the

context of storage system in general and multiple-level storage systems in particular.

11



2.1.4 Distributed Storage Systems

A distributed storage system consists of multiple storage servers or sites that communi-

cate through a network. Data files stored in distributed storage systems may be stripped or

replicated among the storage servers [72] [83] [68] [82]. Clients access data on a distributed

system through computer networks connecting all the storage servers in the system. Modern

distributed systems achieve high I/O performance, bandwidth, and scalability [67] [69] [66].

A previous study addressed mismatches among applications, storage devices, and intercon-

nection medium requirements in distributed storage systems [71]. Tierney et al. designed

an architecture of a distributed storage system that uses a high speed ATM network to im-

prove system performance [84]. I/O workload characteristics in the context of distributed

systems were investigated by researchers [70], because understanding the I/O workloads of

applications in distributed systems is the first step toward improving the applications’ I/O

performance.

Numerous distributed storage systems exhibit high reliability through data replication

mechanisms, where each data item in a storage server has one or two backup copies in other

servers. Because there are three copies of a set of data, If a particular storage server fails,

the data on it can still be accessed from the backup servers [61] [62] [80].

Distributed file systems are file systems that allow file accesses from multiple storage

servers or nodes through a computer network. Good examples of these systems include

Google file system (GFS), Andrew file system (AFS), Hadoop distributed file system (HDFS),

Ceph, Frangipani, Deceit,ITC, Coda, wide area AEF, and Sprite, to name just a few [73] [74]

[76] [77] [78] [79] [39] [40] [42] [45]. Access transparency - an important feature of modern

distributed file systems - allows users and applications to store and retrieve files over the

network as if the files were on local disks [75].

Recently, Hadoop distributed file system (HDFS) emerged as an efficient distributed file

system supporting the Hadoop software framework for data-intensive distributed applications

[43] [44] [45] [46] [47] [48]. Hadoop is an open-source implementation of Google’s MapReduce

12



programming model designed to deal with thousands of computing nodes and Petabytes

of data. HDFS in the Hadoop framework is a portable and scalable file system widely

deployed in numerous large-scale cluster computing systems. Hadoop, with the support

from HDFS, relies on location awareness to run Hadoop applications on computing nodes

in which processed data is located. To improve reliability of Hadoop, HDFS maintains

multiple copies of each file and keeps the different copies on different computing nodes. Like

MapReduce applications, Hadoop programs comprise two types of operations: 1) a Map

operation that outputs a key-value pair used for generating a set of intermediate key-value

pairs and 2) a Reduce operation that merges all the intermediate values associated with the

same intermediate key.

Scalability is a critical issue in the development of large-scale distributed file systems.

Scalability issues must be addressed along with consistency, availability, and synchronization.

For example, Srinivas and Janakiram built a generic scalability model for distributed file

systems. Their model characterizes scalability as a factor related to workload and faultload

[41]. This model was used to compare several well-known distributed file systems in terms

of availability, synchronization, and consistency.

2.2 Prefetching

In this section, we focus on various issues related to prefetching. We will start this section

by classifying prefetching approaches into two group. Then, we will outline the state-of-the-

art research in informed prefetching. Next, research progress on predictive prefetching will

be reported. Finally, we will summarize a few studies on prefetching mechanisms in multiple-

level storage systems and distributed systems.

2.2.1 Two Types of Prefetching

Due to the large performance gap between CPU and disks, I/O becomes a significant per-

formance bottleneck in large-scale computing systems [81]. To hide I/O latencies, prefetching

13



can preload data from disks into the main memory prior to data accesses. Prefetching tech-

niques can be classified into two categories: informed and predictive approaches. Informed

prefetching relies on applications to provide future access hints [1]; predictive prefetching in-

volves algorithms that predict future access patterns of applications based on their historical

access patterns [2]. In the next two subsections, we will review previous studies on informed

prefetching and follow with an overview of existing predictive prefetching strategies.

2.2.2 Informed Prefetching

A study conducted by Patterson et al. [1] [12] [11] [16] [26] inspired us to concentrate on

informed prefetching issues. Patterson et. al suggested that informed prefetching algorithms

- invoking storage parallelisms - can take advantage of application-disclosed I/O access hints

to eliminate I/O stalls through aggressive prefetching [26][1][12]. Performance benefits of

informed prefetching were confirmed by other studies undertaken by Huizinga et al. [10] and

Chen et al. [30].

When it comes to disk arrays, parallel informed prefetching aims to leverage parallel

I/O to improve prefetching performance. Parallel informed prefetching is made possible,

because data blocks are striped across an array of disks [25][51]. Parallel informed prefetching

eliminates I/O stalls by placing hinted data in the cache before the data are requested

by applications. To improve cache usage for both prefetching and caching, Patterson et

al. proposed a cost-benefit model, which assists their prefetching mechanism to balance

cache/buffer space shared between the LRU (least-recently-used) cache and the prefetching

buffer [1]. The model decides the benefit of using more buffers for prefetching and the cost

of ejecting a LRU block or a prefetched block.

A informed prefetching mechanism makes prefetching decisions based on access hints

and access patterns being given a priority. Researchers have investigated various ways of

collecting information to offer accurate access hints for informed prefetching mechanisms.

14



Without appropriate hints, the prefetching mechanisms are unable to make accurate deci-

sions. Chang and Gibson proposed an application speculative execution scheme that pre-

executes applications to record the applications future accesses [13]. Future access patterns

recorded by Chang and Gibson’s scheme can be used to guide informed prefetching algo-

rithms to preload data that are likely to be accessed. Byna et al. studied a solution that

combines post-execution and runtime analysis to reduce future I/O reads prediction over-

head [35]. Byna’s study is one step toward improving the performance of existing informed

prefetching mechanisms. Our informed prefetching algorithms presented in this dissertation

are orthogonal to the above research in the sense that integrating our solutions with these

techniques of collecting hints can significantly improve the overall performance of informed

prefetching mechanisms for multiple-level storage systems.

Prefetch horizon is an important concept in informed prefetching. A prefetch horizon

is an upper bound on prefetch depth; evidence shows that there is no performance benefit

from prefetching further ahead than the prefetch horizon. Much attention has been paid to

the impact of prefetch horizon on prefetching performance (see, for example, [1][12]. In this

dissertation study, we will also evaluate the performance impact of prefetch horizon on our

informed prefetching mechanisms in parallel and distributed storage systems.

2.2.3 Predictive Prefetching

Predictive Prefetching (a.k.a., automatic prefetching) relies on past I/O accesses to

predict future access and to prefetch predicted future required data [2] [31]. Griffioen and

Appleton developed a model for encoding past access patterns and future access probabilities

[2]. In Griffioen and Appleton’s model, directed weighted graphs are employed to estimate

access probabilities [2]. Please refer to [2] for details on the predictive prefetching model

where directed weighted graphs are used.

The Markov predictor is another model used by existing predictive prefetching algo-

rithms [5] [88] [4] [6] [55]. It uses prediction by partial match to find recurring sequences of

15



I/O events. The Markov predictor has been widely applied in web prefetching, because web

accesses of the Internet have a hypertextual nature [7] [8][88].

Recently, we developed an automatic prefetching and caching system called APACS [31].

Three unique techniques integrated into APACS include (1) dynamic cache partitioning, (2)

prefetch pipelining, and (3) prefetch buffer management. APACS dynamically partitions

the buffer cache memory, used for prefetched and cached blocks, by automatically changing

buffer/cache sizes in accordance to global I/O performance.

The aforementioned studies focused on predictive prefetching, whereas our solutions

performs informed prefetching. Since informed-prefetching and predictive-prefetching algo-

rithms supplement one another, our solutions can seamlessly work together with a variety

of predictive prefetching algorithms.

2.2.4 Prefetching in multi-level storage systems

Prefetching in multi-level storage systems is technically challenging due to the following

dilemma - aggressive prefetching is required to efficiently reduce I/O latency [3], whereas

overaggressive prefetching may waste I/O bandwidth by transferring useless data from lower-

level to upper-level storage devices.

Previous studies showed that a single-level cache offers I/O performance improvements [21][22].

Empirical evidence indicates that a multi-level storage system can extend the benefits of a

single-level cache by augmenting storage systems with multi-level caches [19][18][20]. Re-

cently, Nijim proposed a multi-layer prefetching algorithm that can speculatively prefetch

data from tapes to hard drives and preload data from hard drives to solid state disks [23]

[24]. The experimental results show that one can leverage prefetching techniques to enhance

I/O performance of multiple-level storage systems.

A recent study conducted by Zhang et al. suggests that prefetching algorithms de-

signed for single-level storage systems are inadequate for multi-level systems [9]. Rather

than proposing a new prefetching algorithm for multi-level storage systems, Zhang et al.

16



developed a hierarchy-aware optimization scheme called PFC [9]. Their PFC coordinator

is applicable to any existing prefetching algorithm, because PFC’s aim is to coordinate

prefetching aggressiveness across multiple levels of caches.

Kraiss and Weikum developed an integrated approach to migrating data in multiple-level

storage systems [34]. In particular, Kraiss and Weikum focused on prefetching data between

the tertiary, secondary, and primary storage, thereby masking high latency of the tertiary

storage [34]. In their study, replacement policies and the interaction of prefetching/caching

policies were also considered. It is worth noting that Kraiss and Weikum’s prefetching

mechanism relies on Markov-chain predictions to make prefetching decisions [34].

Our solutions differ from the existing prefetching and caching techniques for multi-level

storage systems in the sense that they manage multi-level caches based on application-

disclosed access patterns.

2.2.5 Prefetching in Distributed and Parallel Storage Systems

Apart from multiple-level storage systems, parallel and distributed storage systems can

benefit from prefetching schemes. For example, Patterson et al. proposed and implemented

an informed prefetching model in a distributed storage system where data are allocated in

remote nodes [1]. Unlike multi-level storage systems, distributed storage systems have to

face the challenge of reducing latencies of accessing remote storage nodes through networks.

To address this challenge, Rochberg and Gibson extended a network file system by integrat-

ing an informed prefetching mechanism [17]. Rochberg and Gibson’s approach hides disk

latency while exposing storage parallelism. Their experimental results show that informed

prefetching over network reduces application’s execution time by anywhere from 17% to 69%

[17].

Performance of parallel storage systems can be improved through collective input/output

(I/O). A collective application programming interface (API) is necessary to obtain good I/O

performance. Collective APIs, however, require applications to disclose their entire access

17



patterns to fully reorder I/O requests. To solve this problem, Gibson and Faloutsos investi-

gated an approach to optimizing collective I/O access patterns through informed prefetching

[65]. Gibson and Faloutsos’s idea was to make use of informed prefetching to exploit any

amount of available memory to overlap I/O with computation [65]. After comparing their

approach to disk directed I/O, Gibson and Faloutsos showed that under certain conditions,

a per-processor prefetch depth equal to the number of drives is able to guarantee sequential

disk accesses for collectively accessed files in a parallel storage system. Gibson and Falout-

sos also conducted experiments to indicate that a prefetch horizon of one to two times the

number of disks per processor is good enough to match disk-directed I/O’s performance for

sequentially allocated files.

Distributed and parallel storage systems are widely adopted to support high-performance

Web servers; therefore, in the context of the Web, it is critical to improve I/O performance

of distributed and parallel systems. Nanopoulos et al. investigated interesting predictive

prefetching issues in the Web, where a predictive Web prefetching mechanism aims at de-

ducing forthcoming page accesses of a client based on its past accesses [88]. The prefetching

algorithms developed by Nanopoulos and his team are referred to as Markov predictors.

Nanopoulos et al. studied factors affecting the performance of their Web prefetching algo-

rithms that are based on data mining schemes [88]. The experimental results show that the

new data-mining-based prefetching algorithm can provide performance improvements over

previously proposed Web prefetching algorithms.

Our informed prefetching strategies are quite different from the aforementioned ap-

proaches, because ours leverage a prefetching pipeline to efficiently migrate hinted data to

upper-level storage devices, thereby significantly reducing data access times.

2.3 Summery

In this Chapter we discussed related work in both storage systems and prefetching

techniques. First, we described recent studies on multiple-level storage systems, solid state

18



disks, and parallel and distributed storage systems. Then, we summarized research progress

on both informed and predictive prefetching schemes.

In particular, we conducted a literature review to investigate novel prefetching algo-

rithms and mechanisms designed for multiple-level storage systems and distributed/parallel

storage systems. We also described the major differences between our proposed informed

prefetching approaches and existing prefetching solutions reported in the literature.

19



Chapter 3

Assumptions and Parameters Validations

In this chapter, let us first discuss assumptions used in this dissertation research. Sec-

tions 3.1-3.2 explain and justify research assumptions related to caching, initial data allo-

cations, bandwidth limitations, and I/O writes. Then, we describe in Section 3.3 system

parameters validated by empirical studies. These validated system parameters will be used

in the subsequent chapters.

3.1 System Assumptions

In this subsection, we illustrate assumptions on data storage systems as well as software

environments.

3.1.1 Demand Misses

In this study, we intend to efficiently manage I/O buffers to balance caching against

prefetching. A caching algorithm manages all demand misses. For example, when a demand

miss of an application occurs, the application stalls until the miss is satisfied for a complete

disk read latency period. The application is not able to consume the prefetched data and

to invoke a new prefetching request. When a demand miss takes place, caching buffer size

should be increased at the cost of reduced prefetching buffer size. In doing so, storage

systems can boost I/O bandwidth to quickly respond demand miss requests.

In addition, we assume that only one demand miss request can take place at a given time

period. Our pipelining mechanism is synchronized with an informed prefetching scheme.

Thus, when a new informed prefetching request takes place, a new pipelining request is

20



initiated. This synchronization means that the pipelining mechanism also stalls with demand

misses.

3.1.2 Informed Caching

Caching prefetches is an effective technique for improving the performance of I/O inten-

sive applications [14] [15]. In addition to the prefetching process, informed caching removes

the need to fetch data again, which in turn reduces the application’s stall time. The most re-

cently used policy (MRU) can be used in an informed caching mechanism, thereby improving

I/O performance of the system when there are many repeated access patterns.

In our dissertation study, we do not investigate informed caching due to the following

two reasons:

� In the worst case, informed caching does not show any performance optimization. The

preliminary results show that several benchmarks are unable to benefit from informed

caching.

� Informed caching is a technique for optimizing the informed prefetching process. The

performance optimization gained by employing informed caching does not necessarily

represent the advantages of our solutions.

Rather than informed caching, the pipelining mechanism is at the heart of our system

design. The pipelining aims to optimize informed caching by reducing the overhead of

prefetching. With the pipelining mechanism in place, storage systems need less caching

space.

Unfortunately, it is difficult, if not impossible, to predict whether a particular hinted

data block will be cached. In one of our future studies, we will integrate the informed caching

algorithm with our pipelining algorithms in order to determine if a hinted access needs to

be pipelined. Please refer to Chapter 8 for details on this future research direction.

21



3.1.3 Bandwidth Limitations

We assume that the maximum I/O bandwidth offered by a parallel storage system

equals the maximum number of concurrent read requests that may take place in the storage

system without causing any congestion. Thus, the maximum I/O bandwidth depends on

the scalability of the storage system. A similar assumption can be find in the literature (see,

for example, [1]). In the first part of our research (see Chapter 4), we assume that parallel

storage systems have enough I/O bandwidth with no congestion.

This assumption, of course, is relaxed in our solution described in Chapter 5, which

proposes a pipelined prefetching solution for parallel storage systems with limited bandwidth.

3.1.4 I/O Bandwidth Sharing

I/O bandwidth can be shared among solid state disks (i.e., SSDs) and hard drive disks

(i.e., HDDs). In other words, a multiple-level storage system can access its SSDs and HDDs in

parallel. For example, let us consider a multi-level disk array consists of 5 disks. When there

are two concurrent read requests taking place, at the same time three concurrent data blocks

can be written from HDDs to the SSDs. We conducted empirical experiments to validate the

correctness of this assumption, showing that fetching data from SSDs to main memory and

moving data from HDDs to SDDs can be carried out in parallel. This observation indicates

that it is feasible for us to implement a pipelined prefetching mechanism.

We only focus on reads in this dissertation study; our goal is to improve I/O performance

of read-intensive applications. Thus, write-intensive applications can not benefits a whole

lot from our solution, because writes cause informed prefetching latency and the prefetching

pipeline can be delayed by demand misses. Other studies show that writes are less critical

than reads because applications handles writes in an asynchronous way - applications do

not wait until new data blocks are written. Writes are governed by the write-behind policy;

log-structured file systems can significantly improve I/O performance for write-intensive

22



applications. Please refer to [27] [28] [29] for details on the write-behind policy and the

log-structured file systems.

In the event that a storage system encounters bandwidth shortage (because of pipelining,

writes behind, power availability, or other reasons), informed prefetching requests may not

be honored in a timely manner. This problem can be solved by shrinking the pipelining

depth, meaning that the pipelined prefetching mechanism does not aggressively load data

blocks from lower-levels of the storage devices.

3.1.5 Life Time of Solid State Disk (SSD)

Because the life time of SSD’s storage cells is limited. The pipelining process may have

negative impact on the life time of the SSDs. The purpose of our research is to build a generic

solution for informed and pipelined prefetching that optimizes prefetching performance in

multi-level storage systems. Although our solutions inevitably affect SSD’s life time, other

types of storage devices (e.g. HDD and Tapes) used in a multi-levels storage system will not

be affected by our solution at all.

Many techniques are proposed to improve reliability of SSDs. Quantifying the impacts

of our pipelined prefetching on reliability of SSDs is out the scope of our research. In the

future, we plan to implement a scheme that distributes the pipelining writes among the

SSD’s cells. Hence, this future solution will provide load balancing and improve the SSD’s

life time.

3.2 Assumptions on Prefetching and Pipelining

In this section, we illustrate the assumptions on our pipelined prefetching algorithms.

3.2.1 Initial Data Allocation

Let us consider a simple multi-level storage system, where there are two-level disk arrays

composed of an SSD (top) and an HDD (bottom). All of the data can initially be distributed

23



between the two levels. In our simulation studies, we assume that all the informed prefetched

blocks are initially located in the HDDs (bottom level). This assumption is reasonable

because of the following five reasons.

� Normally, HDDs have larger storage capacity than SSDs and; therefore, the probably

of finding data in the HDDs is greater than that of finding it in the SSDs.

� Research of prefetching in multi-level storage systems (see previous studies conducted

by Nijim and Zhang et al.) assumes that the bottom level contains less important data

[23] [9]. Consequently, prefetching techniques move data likely to be accessed in the

future to the upper-level storage devices. Thus, the probability of finding hinted data

blocks in the HDDs is increased.

� The worse case scenario is that all data are initially allocated in the lowest level (e.g.,

HDDs in our study). If some data were initially allocated in the upmost level (e.g.,

SSDs)of the system, the number of pipelined prefetching requests would be reduced.

� Having data partially or totally allocated in SSDs does not properly show the perfor-

mance improvement offered by our solutions. For this reason, we consider a conserva-

tive case - the worst-case scenario - in which all the data are initially allocated to the

lowest level.

� If a hinted data block is already available in an SSD, the corresponding informed

prefetching request will be discarded.

3.2.2 A Pipeline for Data Transfers

We build a pipeline to transfer data among multiple storage levels in parallel. For

example, we design two prefetching modules: the first one fetches data from HDDs and stores

the data to SSDs; the second one prefetches data from SSDs to I/O buffers in main memory.

These two prefetching modules can perform in parallel to form a prefetching pipeline. In

24



our design, the lowest-level storage devices always achieve original copies of prefetched data.

Our motivations behind this design are:

� Keeping original copies in lower-level storage devices can save storage space in higher-

level storage devices, which are more expensive than the lower-level counterparts.

� In case we have to migrate entire data blocks from HDDs to SSDs (see Chapter 8 for

details on data migrations), we need to keep moving the data back and forth among

multiple-level storage, which consumes I/O bandwidth.

� Keeping the original copies at the lowest level can save I/O bandwidth, which in turn

improve the overall I/O performance of multi-level storage systems.

3.2.3 Writes and Data Consistency

Writes may create a updated version of a data block that has been prefetched or is

currently being prefetched. This leads to inconsistency between the new version stored in an

upper-level storage and the original copy in the lower-level storage. To counter this problem,

we adopt the write-back policy. Thus, our pipelined prefetching mechanism keeps track of

writes. When data blocks are evicted from upper-levels, updated data will be forced to

written down to the lowest level. In doing so, we can guarantee that data copies in upper

levels are consistent with copies stored in lower levels.

If the writing and updating process cause any I/O latency for informed prefetching, the

prefetching pipeline will have to wait until the updating process is done. This is because the

prefetching process must be synchronized with the writing and updating process.

Recall that our focus is read-intensive applications where writes are considered rare.

Applications with few writes do not experience any significant I/O delays introduced by our

mechanism.

25



3.2.4 Pipelining Depth

Our pipelined prefetching algorithms reserve space (called pipelining depth) in the

upper-level storage devices for the concurrent prefetching processes at multiple levels. This

space depends on (1) the number of concurrent prefetching requests that our schemes can

handle and (2) the available I/O bandwidth. As we will discuss later, the pipelining depth

is small and the storage consumed by hinted blocks is insignificant compared with the entire

storage system’s capacity.

In Chapters 4 and 5, we will provide a mathematical model that calculates the pipelining

depth, which is used to indicate reserved buffer space for pipelined prefetching.

3.2.5 Block Size

Using SSDs and HDDs installed in the servers in our laboratory, we observed that an

SSD does not provide better performance than an HDD for small data blocks; SSDs are faster

than HDDs when the block size is at least 10MB. In our distributed system implementation,

our empirical results show that in order to benefit from high speed SSDs, a data block size

must be at least 200MB.

Many file systems pack data into large blocks to improve I/O performance. For example,

the data block size in HDFS (Hadoop Distributed File System) is 64 MB [43] [44]. In reference

[45], HDFS block size is increased to improve system performance. Hadoop achieves (HAR)

tool used to pack several small files into a large one [89], can be used to create large data

blocks out of small ones.

3.2.6 LASR Traces

Our develop trace-driven simulators to evaluate performance of our prefetching mecha-

nisms under I/O-intensive workload. Traces used in our experiments represent applications

that have small CPU processing time between each two subsequent I/O reading requests.

All data blocks in the tested traces have identical block size. More specifically, we use the

26



machine01 trace (called LASR1) [97] and the machine06 trace (called LASR2) [98] in our

simulation studies.

We assume that all the requested data blocks have the same blocks size. For example,

block size is set to 10MB in single-node systems and 200MB in the distributed system tested

in our studies. We also assume that time between each two sequential I/O reading requests

(i.e. arrival rate or processing time) is the smallest possible value (later: (Tcpu + Thit +

Tdriver)). This setting allow us to evaluate I/O-intensive cases. Simulation results of the

two traces share the same trend but differ in elapsed time due to the variation between the

number of I/O reading requests that appears in both of them.

In our future work (see Chapter 8), we will collect traces from real-world benchmarks.

Then, we will use new traces to further evaluate our solutions. Our major obstacle is that we

need to implement these benchmarks to represent a wide range of real-world I/O-intensive

applications.

3.3 Validations

3.3.1 Overview

In this section, we provide the proof of concept that lays a solid foundation for proposed

solutions described in the subsequent chapters. Next, we validate system parameters of our

simulators using data collected from real-world storage systems. Finally, we discuss the I/O

bandwidth limitation issue of parallel storage systems.

We need to find the block size for which SSD’s read performance is better than that of

HDD. We also validate SSD and HDD read latencies (i.e., Tss−cache, Thdd−cache) for a single

data block. We also validate the Thdd−ss latency which is the time spent in reading a data

block from an SSD and write the block back to the SSD. Next, we validate SSD and HDD

read latencies of accessing a remote storage node through a network (i.e., Tss−network−cache,

Thdd−network−cache respectively). Finally, we validate the time needed for the application to

consume a single prefetched data block (i.e., (Tcpu + Thit + Tdriver)).

27



The following list summarizes the validated system parameters:

� Data block size.

� Tcpu: CPU time to process a data block.

� Thit: Time to read a single data block from an I/O buffer.

� [31] Tdriver Time to allocate a single buffer in the buffer cache.

� Thdd−ss: Time to fetch a single data block from HDD and to store the block in SSD.

� Thdd−cache: Time to fetch a single data block from HDD and to store the block in the

buffer cache.

� Tss−cache: Time to fetch a single data block from SSD and to store the block the buffer

cache.

� Thdd−network−cache: Time to fetch a single data block over a network from a remote

node’s HDD.

� Tss−network−cache: Time to fetch a single data block over a network from a remote node’s

SSD.

3.3.2 System Setup

The following are storage and network devices tested in our laboratory:

� Memory: Samsung 3GB RAM Main Memory.

� HDD : Western Digital 500GB SATA 16 MB Cache WD5000AAKS.

� SSD: Intel 2Gb/s SATA SSD 80G sV 1A.

� Network Switch: [96] Network Dell Power Connect 2824.

28



3.3.3 Proof of the Concept

As discussed in our research motivations, multi-level storage systems consist of several

levels that vary in disk read performance (e.g., upper levels are faster than lower levels). Our

proposed solutions aim to optimize informed prefetching when it is implemented in a parallel

multi-levels storage system by prefetching multiple blocks in a pipelining manner to reduce

disk read latency. Pipelined prefetching aims to reduce applications’ stalls and elapsed time.

Hiding disk read latencies is the main approach used in our prefetching designs. Multiple

prefetching modules are deployed at different storage levels. For example, one module handles

the prefetching process between HDDs and SSDs; another module takes care of the preteching

process between SSDs and main memory. These two prefetching modules can fetch hinted

blocks in parallel to form a two-stage prefetching pipeline.

The goal of the pipelining approach is to hide long read latencies by moving data from

HDDs to SSDs at the background. With our pipeline in place, many hinted blocks are

residing in SSDs rather than in HDDs. Fetching hinted data from SSDs, of course, is faster

than fetching the data from HDDs.

When it comes to a distributed multi-level storage system, the long read latency problem

is even worse - read latencies include network and server latencies. Our pipelining mechanism

can hide the long read latencies by fetching hinted block from remote storage nodes to local

SSDs. time that we cannot change (their optimization is beyond our research’s scope).

Hiding disk read latencies improves the I/O throughput of both local multi-level storage

systems and distributed multi-level storage systems.

Our preliminary results show that SSDs have better performance than HDDs when block

size exceeds a particular threshold. Figure 3.1 and 3.2 validate this statement where read

latency of SSD is less than that of HDD. We performed this experiment using read requests.

We conduct experiments on real-world storage devices in our laboratory, showing that the

performance difference between HDDs and SSDs begins at 10 MB per data block in a local

storage system and 200 MB per block in a distributed system.

29



Figure 3.1: Read Latency of HDDs and SDDs. When block size is 10 MB, SSD has better
read performance than HDD.

Figure 3.2: Read Latency of accessing a remote HDD and SDD through the LAN network
connection. In this distributed system setting, SSD has better read performance than HDD
when block size is 200 MB.

30



3.3.4 Block Size

Our preliminary results based on our storage devices indicate that an SSD is guaranteed

to exhibit better performance than HDD when the data block size is 10 MB for a local

system and 200 MB for a distributed system. Figures 3.1 and 3.2 validate this argument.

We perform a comparison between the highest read latency of SSD with the lowest of HDD,

observing that for small data blocks (e.g., 1 MB), SSD is not superior to HDD. When block

size reaches 5 MB, SSD begins to improve performance over HDD. We choose to use 10 MB

as the next point where SSD shows noticeably better performance than HDD. For the case

of distributed systems, we observe that an SDD starts to exhibit better performance than an

HDD when the block size is 200 MB. Because of these preliminary results, in the subsequent

chapters we consider the block size equal to 10 MB for local systems (see our iPipe and IPO

schemes) and 200 MB for distributed system (see the IPODS scheme).

3.3.5 Model Tcpu + Thit + Tdriver

We denote (Tcpu + Thit + Tdriver) as the time that an application takes to consume a

prefetched data block from I/O buffers. This is considered the single step time to which the

entire prefetching system is synchronized. It is also the time interval between two sequential

I/O reading requests. We discover from our experiments that this single step time has three

components: Tcpu, Thit, and Tdriver, which have a positive relation with data block size.

While calculating (Tcpu + Thit + Tdriver), values of the three components are varying.

Therefore, it is difficult to assign a constant value to each of these three factors. A recent

study (see the TIP model) considers (Tcpu + Thit + Tdriver) to be a constant value. We

take a similar approach by modeling this single-step time as a constant. We consider the

worst case scenario. Please note that when (Tcpu + Thit + Tdriver) is small, the application

consumes prefetching buffers faster.

Estimate Tcpu + Thit + Tdriver when block size is 1KB.. In our first pipelined

informed prefetching scheme or iPipe, we assume that the data block size equals to 1KB. In

31



other prefetching research (e.g., TIP), the data block size is 8KB. Thus, we decide to use a

small data block to make fair comparison with the existing solution. Now, let us estimate

Tcpu + Thit + Tdriver for when data size is 1KB. In this small-data-block case, Tcpu equals 4

nanosecond, Thit equals 0.15 microsecond, and Tdriver equals 0.06 microsecond.

The (Tcpu) value was derived from a trivial application that measures the time needed

to perform simple computations (i.e., a loop on each byte without doing any computing) on

1KB data. We consider that the CPU always does computations on the 1KB data. The (Thit)

value is derived from the 1KB main memory read latency specification (see [90] for details).

Tdriver is derived from a trivial application that measures the time needed to allocate 2000

unique 8 KB data blocks (see similar application in the TIP research). In the worst-case

case, Tcpu + Thit + Tdriver) becomes at least 0.2 microsecond. We use this worst-case-value

in our subsequent simulation studies.

Estimate Tcpu + Thit + Tdriver when block size is 200MB. In order to validate

the value of Tcpu + Thit + Tdriver when block size is 200MB in our simulation studies, we

need to individually validate each factor in this expression. As we mentioned earlier, 200MB

is a large block size. Tcpu in particular varies each time depending on applications’ data

processing time. For the value of Tcpu + Thit + Tdriver, we must first determine the best

and worst cases. Then, in our simulations, we may randomly choose a value between the

best-case and the worst-case values.

• Validate Thit: We used RamSpeed cache and memory benchmarking tool [99] to

validate the Thit value when block size is set to 200MB. Table 3.1 shows the I/O bandwidth

measured when we run the RamSpeed benchmark in our testbed.

It is clear from the benchmark testing that the I/O bandwidth achieved for 200MB block

size is at least 5304.49 MB/s. We take the lowest possible approximation for the Thit value

to make applications more I/O than CPU intensive. We also observe that I/O bandwidth

for block size larger than 4096KB share similar trend. Using this testing information, we

estimate that the Thit value of a 200MB data block is approximately equal to 0.037 second.

32



Table 3.1: I/O bandwidth measured using the Ramspeed benchmark.

INTEGER & READING 1 Kb block: 10586.42 MB/s

INTEGER & READING 2 Kb block: 10624.48 MB/s

INTEGER & READING 4 Kb block: 10626.43 MB/s

INTEGER & READING 8 Kb block: 10627.82 MB/s

INTEGER & READING 16 Kb block: 10618.71 MB/s

INTEGER & READING 32 Kb block: 10386.05 MB/s

INTEGER & READING 64 Kb block: 9010.96 MB/s

INTEGER & READING 128 Kb block: 9016.90 MB/s

INTEGER & READING 256 Kb block: 9020.86 MB/s

INTEGER & READING 512 Kb block: 9021.48 MB/s

INTEGER & READING 1024 Kb block: 9012.64 MB/s

INTEGER & READING 2048 Kb block: 8110.29 MB/s

INTEGER & READING 4096 Kb block: 5870.99 MB/s

INTEGER & READING 8192 Kb block: 5193.41 MB/s

INTEGER & READING 16384 Kb block: 5221.85 MB/s

INTEGER & READING 32768 Kb block: 5222.84 MB/s

INTEGER & READING 65536 Kb block: 5359.69 MB/s

INTEGER & READING 131072 Kb block: 5272.53 MB/s

INTEGER & READING 262144 Kb block: 5354.08 MB/s

INTEGER & READING 524288 Kb block: 5342.72 MB/s

INTEGER & READING 1048576 Kb block: 5304.49 MB/s

• Validate Tcpu: In order to calculate Tcpu, we implement a trivial application that

measures the time spent in performing simple computations (i.e., a loop on each byte without

any computation) on a 200MB data block residing in the main memory. We measure that

the application takes at least 0.067000 seconds to complete the loop. This Tcpu value, of

course, can increase when massive numerical computations are involved. The (Tcpu) value is

zero if no computations take place while its maximum value is at least 0.067000 seconds. The

measured Tcpu is relatively noticeable when comparable with the measured I/O latencies; this

seemly small Tcpu makes the application be more CPU bounded than I/O. Because informed

prefetching aims to improve I/O performance of I/O-intensive applications, we intend to use

small Tcpu values to make our benchmarks I/O intensive. We also consider the worst case

where Tcpu is set to zero.

• Validate Tdriver): In the 1KB case, we use dynamic memory allocation to test the

time needed to allocate 1KB in the memory. We tried using the same method for a 200MB

33



block size, but we were unable to find a reasonable value for (Tdriver) - all the measured results

are too large to represent any real-world case. Consequently, we choose to use static memory

allocation for 200MB blocks; we implement a trivial application to statically allocate 200MB

blocks in the main memory. Our measurements show that Tdriver in the static memory

allocation cases is negligible.

• Put it all together - Validate Tcpu + Thit + Tdriver: As mentioned previously, the

worst case value of Tcpu + Thit + Tdriver is very small. The purpose of this validation process

is to find the lowest possible approximation for this small value, which causes our benchmarks

to be more I/O bounded and enables us to investigate performance improvement offered by

our prefetching solutions. Applying the (Tcpu) + (Thit) + (Tdriver) value in our simulation

studies described in the subsequent Chapters is to estimate reasonable and practical CPU and

I/O processing overheads. In reality, of course, this estimated value is application dependent

and may be large.

Figure 3.3 shows the range of the (Tcpu) + (Thit) + (Tdriver) value. In our experiments,

we use the minimum value 0.037 seconds, indicating that Thit is the most critical factor that

must be recorded each time. As seen in the TIP research, the value of Tcpu + Thit) + Tdriver

is always constant and; therefore, we also make a similar assumption that this value used in

our simulation studies is a constant.

Estimate Tcpu + Thit + Tdriver when block size is 10MB. When the block size

is large, the worst-case value of Tcpu) + Thit + Tdriver is the minimum value of Thit, which

dominate performance for I/O-intensive applications. Table 3.1 allows us to derive Thit

when block size is 10MB. Thit for the 10MB-block-size case approximately equals to 0.00192

seconds; the value of Tcpu + Thit + Tdriver when the block size is 10MB is around 0.00192

seconds.

34



Figure 3.3: (Tcpu) + (Thit) + (Tdriver) values range from 0.037- 0.104 seconds. We will
consider the smallest value.

3.3.6 System Parameters validation

Our goal is to validate important system parameters used in simulation studies presented

in the subsequent chapters. These critical system parameters include I/O access latencies

like Thdd−ss, Thdd−cache, and Tss−cache when block size is 10MB and 200 MB, respectively. The

other parameter validated in this part of study are Thdd−network−cache and Tss−network−cache

for the 200MB-block-size cases.

Figures 3.4, 3.5, and 3.6 validate that Thdd−ss approximately equals to 0.122 seconds,

Thdd−cache is about 0.12 seconds , and Tss−cache is in the neighbourhood of 0.052 seconds

when block size is 10 MB.

Figures 3.7, 3.8, and 3.9 show that Thdd−ss is around 4.5 seconds, Thdd−cache is estimated

to be 2.3 seconds, and Tss−cache is measured to be 1.5 seconds when data block is set to 200

MB. Please note that in Chapters 4 and 5, we will evaluate two of our prefetching solutions

- iPipe and IPO - using 200MB-block-size cases.

35



Figure 3.4: 10 MB: Estimated Thdd−ss is 0.122 seconds.

To validate Thdd−network−cache and Tss−network−cache, we calculate average read latencies

using a network storage system in our laboratory at Auburn. In our testbed, we use SCP

(i.e., Secure copy) to read data from a remote node’s HDD and SSD. The read latencies of

accessing a 200MB block from a remote HDD (Thdd−network−cache) and from a remote SSD

(Tss−network−cache) are estimated as 4.43 and 4.158 seconds, respectively. For distributed

storage systems (see Chapter 6), we will use these validated system parameters in addition

to parameter Thdd−ss that equals approximately 4.5 seconds.

For our iPipe solution (see Chapter 4), we test 1KB-block-size cases and provide pre-

liminary experimental results. We validate various I/O bandwidth of HDDs and SSDs by

using their specifications data released by the vendors.

3.3.7 Limited Parallel I/O Bandwidth

One may assume that parallel storage systems have enough I/O parallelism and band-

width (see, for example, [1]). This assumption implies that there is no I/O congestion during

36



Figure 3.5: 10 MB: Estimated Thdd−cache is 0.12 seconds.

Figure 3.6: 10 MB: Estimated Tss−cache is 0.052 seconds.

37



Figure 3.7: 200 MB: Estimated Thdd−ss is 4.5 seconds.

Figure 3.8: 200 MB: Estimated Thdd−cache is 2.3 seconds.

38



Figure 3.9: 200 MB: Estimated Tss−cache is 1.5 seconds.

data prefetching processes when a parallel storage system scales up. When the parallel stor-

age system is not scalable due to limited parallel I/O bandwidth, the above assumption may

become invalid. In other words, limited I/O bandwidth make the parallel storage system

liable to I/O congestions (e.g. I/O queuing). This problem is more pronounced if the con-

current number of read requests exceeds a threshold. While designing the iPipe scheme, we

relies on the above assumption, which is relaxed in the development of our IPO and IPODS

prefetching mechanisms. Figure 3.10 shows concurrent read requests to the same disk are

noticeably affected by the limited parallel I/O bandwidth.

3.4 Summary

We started this Chapter by justifying a number of important research assumptions

related to caching, initial data allocations, bandwidth limitations, and I/O writes. Before

present our pipelined prefetching solutions in the subsequent Chapters, we validated critical

system parameters used in our simulation studies. The validate processes described in this

Chapter ensure that parameters used in our simulations represent real-world storage systems,

39



Figure 3.10: Limited Parallel I/O Bandwidth. Concurrent read requests are noticeably
affected by the limited parallel I/O bandwidth.

because the parameters showed in this Chapter were estimated using the storage systems in

our laboratory at Auburn.

40



Chapter 4

iPipe: An Pipelined and Informed Prefetching for Multi-Level Storage Systems

4.1 Overview

The informed prefetching algorithm - TIP (see [1] for details) - reduces applications’

stalls and elapsed time. TIP makes use of applications’ hints of future I/O accesses. In this

Chapter, we extend the informed prefetching technique by creating a pipeline in which we

split the informed prefetching process into a set of independent prefetching steps among the

multiple storage levels. In Chapter, we show that how multiple prefetching mechanisms can

coordinate to prefetch hinted blocks in parallel.

We call our new informed prefetching technique powered by a pipeline as iPipe. Because

iPipe is the first step toward building a prefetching pipeline, we assume that parallel storage

systems have scalable I/O bandwidth and parallelism. This assumption implies that there

is no I/O congestion. This assumption of scalable I/O enables a prefetching mechanism to

issue a large number of concurrent read requests without introducing long I/O queues. In

the first Section of this Chapter, we explain the motivations and objective of iPipe. Then, we

describe the design and implementation issues of the iPipe prefetching mechanism. Finally,

the performance of iPipe is quantitatively evaluated.

4.2 Motivations and Objectives

The iPipe prefetching technique is motivated by the following three observation:

� There are growing needs of applying multi-level storage systems in data centers. Multi-

level storage systems consist of multiple-level storage devices, where the uppermost

level - the most expensive device in the storage systems - has the best I/O performance.

41



� The informed prefetching technique can utilize I/O access hints offered by applications

to boost I/O performance. However, informed prefetcing has not yet been incorporated

in multi-level storage systems.

� Multiple-level storage devices can be accessed in parallel. Such I/O parallelisms among

multiple storage levels allows hinted blocks to be simultaneously fetches from the mul-

tiple storage levels to reduce prefetching times.

The overall objectives of the iPipe scheme are summarized as follows:

� To minimized time spent in prefetching data from storage systems by moving hinted

blocks to upper-levels of storage devices in multi-level storage systems.

� To reduce application stalls and execution times.

� To decrease prefetching horizon (i.e., prefetching distance that leads to zero stalls).

� To balance prefetching and caching and to distribute I/O buffers between the prefetch-

ing and caching mechanisms.

4.3 Design Issues in iPipe

A study [1] shows that long disk latency and low I/O bandwidth increase applications’

stalls. Aggressive prefetching data blocks may inevitably pollute cache buffers. To address

this problem, in this section we describe design issues of a pipelined prefetching mechanism

- iPipe - for hinted blocks in multi-level storage systems.

Compared with existing prefetching schemes, iPipe introduces a set of salient features:

support application-disclosed I/O access hints, multiple informed prefetching mechanisms,

incorporate the cost-benefit model in multi-level storage systems, and support a prefetching

pipeline across multiple storage devices. Before presenting the iPipe implementation details,

we first outline a high-level overview of iPipe’s hardware and software architectures.

42



4.3.1 Architecture of iPipe

Hardware Architecture of iPipe

The system consists of an application (user) that can provide hints of its future accesses.

The hierarchy from top to bottom consists of a prefetching buffer cache and an array of two

levels of storage devices (Solid State Drive (SSD) and Hard Disk Drive (HDD)) as shown in

figure 4.1. As we descend in the hierarchy, the disk read latency increases.

Figure 4.1: iPipe system hardware architecture. Consists of an array of multi-level disks.

Software Architecture of iPipe

Figure 4.2 depicts a high-level iPipe software architecture. The software architecture

contains software modules that (1) implement the informed prefetching algorithm (see, for

example, [1]), (2) control buffer cache, and (3) perform informed prefetching. In a multi-

level storage system, an informed prefetching request is first issued to a solid state disk

(SSD). If the hinted block is not residing in SSD, the block will be fetched from a hard disk

(HDD). In the software architecture, there is a module that manages the SSD and HDD. The

43



iPipe mechanism take applications’ future accesses hints as input and performs prefetching

pipelining in the multiple levels of storage.

Figure 4.2: High-level design of the iPipe software architecture for a multi-level storage
system. The multi-level storage system consists of two levels - SSDs and HDDs.

44



Figure 4.3: Detailed design of the iPipe software architecture for a three-level storage
system. An application provides hints to both TIP and iPipe. The system performance
parameters are passed to iPipe to calculate the pipelining starting block and depth. iPipe
keeps fetching hinted data blocks to the highest level. Since the storage system’s
bandwidth is high enough, iPipe is able to fetch most of the hinted blocks. TIP uses a cost
benefit model to determine the number of prefetch buffers. Hinted data blocks are fetched
from the storage system to the buffer cache.

Figure 4.3 details the design of the iPipe software architecture for a three-level storage

system. Figure 4.3 shows that an application provides hints to both TIP and iPipe. The

system performance parameters are passed to iPipe to calculate the pipelining starting block

and depth. iPipe keeps fetching hinted data blocks to the highest level. Since the storage

system’s bandwidth is high enough, iPipe is able to fetch most of the hinted blocks. TIP

uses a cost benefit model to determine the number of prefetch buffers. Hinted data blocks

are fetched from the storage system to the buffer cache.

4.3.2 Assumptions

In chapter 3, we discussed our research’s assumptions in details. In this subsection, let

us highlight the most important assumptions related to iPipe.

45



We assume that prefetching I/O requests can be processed in parallel. Further, storage

devices have sufficient I/O bandwidth and enough I/O parallelism, meaning that there is

no I/O congestions. Similar assumptions can be found in the TIP study [1]. We assume

that there is storage systems can be well scale up to accommodate a large number of I/O

requests being fetched in parallel [23]. Therefore, we conclude that if a list of hinted data

blocks are requested at the same time, the blocks can be fetched without incurring excessive

I/O congestion.

As a conservative assumption, hinted data blocks are initially allocated to HDDs thanks

to the large capacity of the HDDs. It is noteworthy that I/O performance of multi-level

storage systems can be improved if hinted blocks are initially placed in SSDs rather than

HDDs.

In a multiple level storage system, a small portion of SSD space is reserved for retaining

copies of the prefetched data. Instead of migrating data from HDDs to SSDs, iPipe keeps

original copies at the SSD level while fetching duplicated copies to SSDs. In addition, iPipe

adjust SSD space reserved for prefetching.

4.4 The iPipe Algorithm

In this section, we first present a mathematical model for iPipe. Then, we describe

the concept of prefetching horizon. Next, the iPipe algorithm is proposed. Finally, we

demonstrate the usage of iPipe through a concrete example.

4.4.1 Stalls and Disk Read Latencies

When an application starts, the informed prefetching module (i.e., TIP [1]) in iPipe

assigns a number of buffers for prefetching hinted blocks based on the cost-benefit model

(see [1] for details on the cost-benefit model).

Let (Xcache) be the number of prefetching buffers in the buffer cache, TIP initiates (xcache)

prefetching requests. Assuming the storage system provides sufficient I/O bandwidth and

46



parallelism, multiple hinted data blocks can be fetched in parallel without incurring I/O

congestion. Let Tdisk denote disk read latency (i.e., time spent in fetching a block from a

disk to a buffer cache). The application initially stalls for Tdisk until the hinted blocks arrive

at the buffer cache.

After the hinted blocks are ready in the buffer, the application begins consuming these

blocks. When each hinted blocks is consumed in the buffer, a new prefetching request is

issued. In the case of few buffers being used for prefetching to be consumed in Tdisk time

period, newly requested blocks will cause the application to stall every Xcache accesses for

the time calculated by equation 4.1. Patterson et al. an example [1] where a system has

three buffers for prefetching, the disk read latency is five, and the time that the application

needs to consume a single buffer was one. This example shows that a stall of two time units

will arise for every three accesses.

Tstall(Xcache) = Tdisk−Xcache(Tcpu+Thit+Tdriver)

Xcache
(4.1)

where;

Tstall(Xcache)
1: average stall of prefetching

Tcpu: computational time

Thit: time to read a data block from the buffer cache

Tdriver: time to allocate a buffer in the buffer cache

We denote Tcpu + Thit + Tdriver as a single time unit spent in consuming one buffer in

the buffer cache. This single time unit is also the time between each two subsequent I/O

read requests.

1R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka: Informed prefetching and caching, In
Proceedings of the 15th ACM Symposium on Operating System Principles, pages 79-95, CO, USA, 1995.

47



In a multi-level storage system, we consider two types of Tdisk - Thdd−cache and Tss−cache.

Thdd−cache is the time spent fetching a block from HDD; Tss−cache is the time interval for

loading a block from SSD. We define Thdd−ss as the time spent copying a block from an HDD

to an SSD. Our empirical results show i.e., Tss−cache is smaller than Thdd−cache, indicating

that loading data from SSD is much faster than from HDD.

4.4.2 Prefetching Horizon

Prefetching Horizon is a distance by which informed prefetching leads an application

to experience zero stall time [1]. Equation 4.2 represents a way of calculating prefetching

horizon. In the previous example, P(Tcpu) equals five time units because Tdisk equals five

and Tcpu + Thit + Tdriver equals one. Consequently, if the prefetching mechanism assigns

five buffers for prefetching, stalls time will drop down to zero.

P(T cpu)= Tdisk

(Tcpu+Thit+Tdriver)
(4.2)

where;

P (Tcpu) 1 : prefetching horizon

4.4.3 The Pstart and Pdepth Algorithms

Two important modules in the iPipe architecture are (1) a module to determine the

starting block to be prefetched and (2) a module to compute the prefetching depth. The

what follows, we describe the algorithms implemented in these two modules.

1R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka: Informed prefetching and caching, In
Proceedings of the 15th ACM Symposium on Operating System Principles, pages 79-95, CO, USA, 1995.

48



When the first informed prefetching request is initiated, iPipe begins fetching hinted

blocks from HDD to SSD. iPipe relies on the following algorithm called Pstart - to decide

which hinted blocks in the first block to be loaded.

The Pstart Algorithm:

xcachecounter = 0
accesstime = - (Tcpu + Thit + Tdriver)
for blockcounter = 1 to Thdd−ss / (Tcpu + Thit + Tdriver) do

xcachecounter ++
accesstime += (Tcpu + Thit + Tdriver)
if accesstime ≥ Thdd−ss then

Pstart = blockcounter
return Pstart

end if
if xcachecounter = Xcache then

if Tstall−hdd(Xcache) > 0 then
accesstime += Tstall−hdd(Xcache)

end if
if accesstime ≥ Thdd−ss then

Pstart = blockcounter + 1
return Pstart

end if
xcachecounter = 0

end if
end for
Algorithm 1. returns the future hinted access position that iPipe starts pipelining from.
It depends on the Thdd−ss value and (Tstall−hdd(Xcache)) stalls that takes place from the
HDD to the buffer cache during the beginning of the informed prefetching process . The
algorithm calculates the position of the future hinted access that will be accessed far
enough in the future for it to be read from the HDD to the SSD (see equation 4.3).

The above Pstart algorithm is very important, because loading hinted blocks so earlier

can pollute I/O buffers and fetching hinted blocks at a late stage can increase applications

stall time.

The Pstart algorithm determines the first hinted block to be prefetched given a future

access pattern. Pstart depends on the Thdd−ss value and (Tstall−hdd(Xcache)) stalls that takes

place from HDD to buffer cache during the beginning of the informed prefetching process.

The Pstart algorithm calculates the position in the future access list. Thus, Pstart needs

49



to decide which hinted blocks in the list should be fetched in advance from HDD to SSD to

reduce application stall times. The Pstart algorithm is guided by Equation 4.3 to pick the

most appropriate hinted blocks to fetch from HDD.

While the iPipe mechanism is utilizing the TIP technique [1] to prefetch hinted blocks

from SSDs to main memory, iPipe manges to fetch hinted blocks from HDDs to SDDs.

Prefetching hinted blocks by two parallel prefetchers in a pipelining manner can increase

chances of retrieving hinted blocks in SSDs rather than in HDDs.

The application begins consuming the arrived data and new prefetching requests may

take place before the iPipe brings hinted blocks from HDDs to SSDs. The new informed

prefetching requests may also cause stalls until the requests are honored, especially when

Xcache is smaller than the prefetching horizon. If Tstall−hdd(Xcache) is the average stall time

of fetching blocks from HDDs, iPipe starts loading hinted blocks from HDDs within or after

time Thdd−ss minus the stall time.

iP ipestart =
Thdd−ss

(Tcpu + Thit + Tdriver)
− (

Thdd−ss
(Tcpu+Thit+Tdriver)

Xcache
× Tstall−hdd(Xcache)

(Tcpu + Thit + Tdriver)
)(4.3)

where;

iPipestart: iPipe pipelining start

Algorithm 2: Prefetching pipelining depth

totaltime = Thdd−ss + Tconsume−ss

xcachecounter = 0
accesstime = 0
for blockcounter = 1 to totaltime / (Tcpu + Thit + Tdriver) do

xcachecounter ++
accesstime += (Tcpu + Thit + Tdriver)
if accesstime ≥ totaltime then

Pdepth = Pstart + blockcounter - 1
return Pdepth

50



end if
if xcachecounter = Xcache then

if Tstall−ss(Xcache) > 0 then
accesstime += Tstall−ss(Xcache)

end if
if accesstime ≥ totaltime then

Pdepth = Pstart + blockcounter -1
return Pdepth

end if
xcachecounter = 0

end if
end for
Algorithm 2. returns the depth of iPipe’s pipeline that is needed to maintain the pipelin-
ing process working smoothly. Starting from Pstart, iPipe initially pipelines a number of
hinted future accesses that equals the prefetching horizon of the disk read latency from
HDD to SSD plus additional blocks to cover a single SSD block’s consuming time (see equa-
tion 4.5). Tconsume−ss is the time needed to consume a block in the SSD. Tstall−ss(Xcache)
represents the application’s stalls when the the data is prefetched from the SSD to the
buffer cache. These stalls reduce the pipelining depth.

The above Pdepth algorithm chooses pipelined prefteching depth, which is defined as

the number of hinted block to be fetched from HDDs to SSDs. The goal of the Pdepth

algorithm is to prefetch as many hinted blocks as possible without polluting buffer caches in

SSDs.

After performing the Pstart and Pdepth algorithms, the iPipe mechanism have a full

list of the most appropriate blocks to be prefetched from HDDs to SSDs. The number of

hinted blocks to be fetched largely depends on two factors: (1) prefetching horizon of the

disk read latency from HDD to SSD, and (2) the time spent consuming a single SSD block

in the buffer cache (see equation 4.5). Let Tconsume−ss be the time needed to consume a

block in SSD and Tstall−ss(Xcache) be an application’s stalls when the the data is prefetched

from the SSD to the buffer cache. These stalls reduce the number of hinted blocks to be

prefetched from HDDs to SSDs.

When it comes to the decision of how many hinted blocks to be loaded from HDDs to

SSDs, iPipe initially fetches the number of hinted blocks that equal the prefetching horizon

plus additional blocks to cover the time needed to consume a single block in the SSD. We

51



assume that (Tconsume−ss) equals the latency of a SSD read to the buffer cache (Tss−cache).

The hinted blocks residing in the SSDs may cause stalls until the blocks become available in

buffer caches in main memory. This takes place when Xcache is smaller than the prefetching

horizon of reading data from SSDs to buffers in the main memory. Tstall−ss(Xcache) is the aver-

age stall time of prefetching from the SSD, and these stalls reduce the pipelined prefetching

depth. Equation 4.4 calculates the maximum number of concurrent prefetching requests

that may take place when using iPipe. Equation 4.5 shows the calculation of the maximum

iPipe’s pipelined prefetching depth. This occurs when TIP is assigning Xcache buffers that

equal the prefetching horizon of reading data from HDD to buffer cache; no stalls can take

place during the pipelined prefetching process.

Our experimental results show that pipelined prefetching depth is a small value, indi-

cating that iPiple does not need to reserve a large buffers in SSDs for pipelined prefetching

requests.

iP ipemaxreads =
Thdd−cache + Thdd−ss + Tconsume−ss

(Tcpu + Thit + Tdriver)
(4.4)

where;

iPipemaxreads: iPipe’s maximum number of concurrent reading requests

Thdd−cache: Latency of reading a single data block from HDD to the cache

Thdd−ss: Latency of reading a single data block from HDD to SSD

Tconsume−ss : The time that TIP takes to consume a single data block from the SSD

iP ipedepth =
Thdd−ss + Tconsume−ss

(Tcpu + Thit + Tdriver)
(4.5)

where;

iPipedepth: iPipe’s pipelining depth

Thdd−ss: Latency of reading a single data block from HDD to SSD

52



Tconsume−ss : The time that TIP takes to consume a single data block from the SSD

4.4.4 Stalls, Elapsed Time, Prefetching Horizon, and Prefetching Benefit

In the example shown earlier, we assume that Thdd−ss, Tconsume−ss, and Thdd−cache equal

eight, four, and five time units, respectively. iPipe initially issue a pipelined prefetching

request for a hinted data block with position number seven through position number fifteen

(inclusive). Giving sufficient I/O bandwidth and parallelism, informed prefetching requests

as well as pipelined prefetching requests will be completed (i.e., arrive at buffer caches in the

main memory and SSDs, respectively) within Thdd−cache) and Thdd − ss, respectively. The

application stalls at the beginning of Thdd−cache, which is five time units.

Tpf (Xcahce) =


Xcache=0 −(Tcpu + Thit + Tdriver)

Xcache < P (Tcpu) −Tdisk

Xcache(Xcache+1)

Xcache ≥P(Tcpu) 0

(4.6)

Where;

Tpf (Xcahce)
1: reduction in service time

The application then begins to consume the prefetched blocks in the buffer cache residing

in the main memory. Every time when a buffer is consumed, an informed prefetching request

is issued for the next hinted block. When a hinted block has been preloaded from HDDs to

SDDs, iPipe can quickly fetches the hinted block from SSDs into the main memory without

1R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka: Informed prefetching and caching, In
Proceedings of the 15th ACM Symposium on Operating System Principles, pages 79-95, CO, USA, 1995.

53



making a trip to HDDs. After a hinted block is consumed in the SSDs in Tconsume−ss time,

iPipe triggers the next pipelined prefetching request.

Disk accessing time - Tdisk - from the perspective of informed prefetching becomes

Tss−cache, which is less than Thdd−cache. Hinted blocks are fetched from HDDs to SSDs prior

to being accessed by the prefetching module fetching the blocks from SSDs into main mem-

ory. Prefetching hinted blocks from HDDs and keeping the hinted blocks in SSDs reduce the

number of application stalls (see Equation 4.1).

Figure 4.4 builds on the previous example and shows the average stall time when a fixed

number of buffers are used with pipelined prefetching. In contrast, Figure 4.5 reveals average

stall when using a fixed number of buffers in the buffer cache for pipelined prefetching (the

regular case in which no pipelining is used). When iPipe is employed, the stall time and

elapsed time are 9 and 39 time units, respectively. When it comes to the same storage system

without iPipe, the stall time and elapsed time are 16 and 46 time units, respectively. In this

example, iPiple reduce the application’s elapsed time by 15.2%.

The TIP study [1] offers a cost-benefit model to calculating benefits (e.g., reduction in

I/O service time) of assigning one additional buffer for prefetching. The benefit is that the

stall time is reduced from Tstall(Xcache) to Tstall(Xcache+1). The benefit calculation makes use of

the prefetching horizon, which changes with the Tdisk value. In the case that Xcache is smaller

than the prefetching horizon P(Tcpu), the benefit of adding an extra buffer is calculated by

Equation 4.6.

It takes Thdd−cache time to fetch the first hinted block from an HDD to a buffer cache

in the main memory. When subsequent hinted blocks are fetched from HDDs to SSDs

in a pipelining manner, the prefetching time drops from Thdd−cache to Tss−cache). Pipelined

prefetching reduces the prefetching horizon and stalls. As a result, iPipe increase the benefits

of using an additional buffer for informed prefetching.

54



Figure 4.4: Average stall when using iPipe and a fixed number of buffers for pipelined
prefetching. Thdd−cache = 5, Thdd−ss = 8, Tss−cache = 4, Xcache = 3. The first stall is 5 time
units. Before the first hinted block is fetched from HDD into SSD, the application stalls for
Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu + Thit + Tdriver) = 2 time units every 3 accesses.
When hinted blocks are retrieved in the SSD, the application stalls for Tstall−ss(Xcache) =
Thdd−cache - 3(Tcpu + Thit + Tdriver) = 1 every 3 accesses.

55



Figure 4.5: Average stall when using a fixed number of buffers for pipelined prefetching.
Thdd−cache = 5, Xcache = 3. The first stall is for 5 time units, because all data blocks are
read from the HDD. The application stalls for Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu + Thit

+ Tdriver) = 2 time units every 3 accesses.

56



4.4.5 The iPipe Algorithm

The pseudo code of the iPipe algorithm is presented below. First, the iPipe algorithm

invokes the Pstart and Pdepth algorithms (see the earlier sections of this Chapter) to deter-

mines the most appropriate hinted blocks to be fetched from HDDs to SDDs. Second, iPiple

initiates prefetching requests to HDDs. When a hinted block is consumed from SSD (i.e., the

hinted block is fetched from SSD to main memory), iPipe starts fetching subsequent blocks

from HDDs to SSDs. Due to limited I/O bandwidth, hinted blocks may not be fetched to

the main memory before the blocks are consumed. In this case, iPipe shrinks its pipelined

prefetching depth each time by 1 (i.e., reducing the number of hinted blocks fetched from

HDDs to SSDs). Before prefetching any hinted block directly from HDD, the iPipe algorithm

checks if a hinted block has been fetched to SDD or is being fetched to SDD. If the block is

residing in SSD, the pipelined prefetching request will be discarded.

The iPipe Algorithm

Pstart = call prefetching start block
Pdepth = call prefetching depth
while informed prefetching do

if bandwidth shortage then
shrink the pipelining depth by 1

end if
if pipelined data block is altered then

discard the pipelined data block
end if
if is the first prefetching then

for block = Pstart To block = Pdepth do
pipeline block to SSD

end for
else if SSD buffer is consumed then

if the following data block is not already in the SSD then
pipeline the following data block to SSD

end if
end if

end while
Algorithm 3. iPipe algorithm. It calls prefetching start and depth algorithms to calculate
Pstart and Pdepth values. Then, it initiates a pipelining request from the HDD to the SSD
for the data blocks from Pstart to Pdepth. Every time a pipelined block is consumed from
the SSD by the informed prefetching, iPipe pipelines the next one to the SSD. Bandwidth

57



shortage means that TIP is not able to receive its prefetching requests on time (from any
level). This may be caused by the pipelining process, writes, power problems, or many
other reasons. In that case, iPipe shrinks its pipelining depth each time by 1 until the
shortage is released. The algorithm checks if a data block that has been pipelined or is in
the pipelining process is changed (written) before it is requested by TIP. In this case, the
pipelined copy will be discarded to maintain consistency. The algorithm also checks if the
data is already in the SSD. In this case, its pipelining request is discarded.

4.5 Performance Evaluation

We implement the iPipe algorithm in a trace-driven simulator written in C++. The

metrics evaluated in the simulated two-level (i.e., SSD and HDD) storage system (see Fig-

ure 4.1) include elapsed time, prefetching stall time, prefetching horizon, as well as the benefit

of adding an additional buffer for informed prefetching. These metrics are evaluated by vary-

ing the numbers of prefetching buffers in the buffer cache. We compare an iPipe-enabled

prefetching mechanism against the same system without deploying iPipe. Data blocks are

initially placed in HDD stores the data. The iPipe mechanism coordinates two prefeching

modules: the first one fetches hinted blocks from HDDs to SSDs, the second one uses TIP [1]

to further fetch hinted blocks from SSDs to main memory.

4.5.1 System Setup

In our simulation studies, we use two LASR traces: machine01 (LASR1) and machine06

(LASR2) [97][98], which consist of 11686 and 51206 I/O read system calls, respectively.

Without loss of generality, we assume that each I/O read system call requests an entire data

block. As a conservative assumption, the average I/O arrival interval is Tcpu + Thit + Tdriver,

representing the worst case. If the interval is larger than Tcpu + Thit + Tdriver, iPipe can

achieve even better I/O improvement.

We choose to focus on a two-level storage system containing a set of SSDs and HDDs.

Our preliminary results prove that reading 1-KB block from SSD is faster than from HDD.

We configure the simulated two-level storage system using the devices’ specifications provided

58



by the disk vendors. To fetching blocks in an efficient way, we use a log file system to store

hinted blocks sequentially. In this way, a list of hinted blocks can be retrieved from the

log file system without incurring any disk rotational delay. This is practical to apply the

log file system to support the iPipe mechanism, because target I/O-intensive applications of

iPipe are read-intensive applications where most data blocks are read only. It is natural and

straightforward to place all the read-only blocks sequentially using the log file system.

All the system parameters used in our simulator are validated by the testbed in our

laboratory at Auburn. Please refer to Chapter 3 for details on the validation process.

4.5.2 Preliminary Results

The simulated two-level storage system is connect to a host computer with a 2GHz core

2 duo processor. The simulated host computer uses Kingston’s RAM (800MHz) [90] as buffer

caches. The data bus is 64- bit; the buffer caches offer I/O throughput at the rate of 6400

MB/s. The two-level storage system is comprised of Intel’s X25-E Extreme SATA solid-state

drive [91], which has a read throughput of 250 MB/s and WD Caviar Green HDD offering

a read throughput of 190 MB/s assuming [94]. The validation of the above parameters can

be found in Chapter 3.

The system parameters Tcpu, Thit, Tdriver are set to 4 nanosecond, 0.15 ms, and 0.06

us, respectively. The Tcpu value is derived from a trivial application that measures the time

needed to perform simple computations on (1 KB) of data. Thit is derived from the memory

read latency specification for 1KB data [90]. Tdriver - derived from a trivial application - is

the time needed to allocate 2000 unique 8 KB data blocks in the main memory. Combining

these values, it takes Tcpu + Thit + Tdriver time (i.e., 0.2 ms) for the application to consume

a buffer in the main memory.

Data is initially stripped in the HDD layer. The read latencies of 1KB data blocks from

SSDs and HDDs are 4 and 5.2 microseconds, respectively. The write latency of 1KB blocks

to SSDs is 5.8 microseconds. When reading blocks from HDDs to SDDs, reading from HDDs

59



Table 4.1: The number of informed prefetching requests issued to HDDs when the LASR1
and LASR2 traces are evaluated.

Xcahce 1 3 5 7 9 11 13

LASR1 With iPipe 2 6 9 11 13 15 17

LASR1 Without iPipe 11676 11676 11676 11676 11676 11676 11676

LASR2 With iPipe 2 6 9 11 13 15 17

LASR2 Without iPipe 51206 51206 51206 51206 51206 51206 51206

Xcahce 15 17 19 21 23 26

LASR1 With iPipe 19 21 23 25 27 30

LASR1 Without iPipe 11676 11676 11676 11676 11676 11676

LASR2 With iPipe 19 21 23 25 27 30

LASR2 Without iPipe 51206 51206 51206 51206 51206 51206

and writing to SSDs are interleaved. Thus, the total time latency Thdd−ss of fetching 1KB

block from HDD and caching the block in SSD equals to 5.8 microseconds. There is no write

latency to the buffer cache in main memory (see, for example, [1]).

Because hinted blocks are fetched from both SSDs and HDDs concurrently, Equation

4.4 calculates the maximum number of prefetching requests issued to HDDs. Equation 4.4

indicates that the largest possible number of prefetching requests for both SSDs and HDDs

at a given time is 75 data blocks. To guarantee serving this maximum number of requests

from the HDD to the buffer cache and the SSD, we assume there is sufficient I/O bandwidth

and parallelism [1]. Equation 4.2 determines the prefetching horizon of reading data from

HDDs to the buffer cache is 26 if all data blocks are prefetched from HDD without employing

iPipe. Using the above system information, we evaluate the performance of iPipe by varying

the number of buffers for informed prefetching from 1 to 26.

Our simulation results show the impact of number of buffers on the total elapsed time

(i.e., application’s execution time) and read latency time. Figures 4.6 and 4.7 show the total

elapsed time of the two traces. The experimental results reveals that iPipe reduces elapsed

time by up to 23% compared with the non-iPipe case. Figure 4.8 shows the average informed

prefetching read latency of the two evaluated I/O traces. iPipe significantly improve I/O

performance of the two-level storage system, because only a few hinted blocks are fetched

directly from HDDs whereas most hinted blocks are prefetched and cached in SSDs.

60



Table 4.2: Service time is reduced when one extra buffer is added for prefetching.

Xcahce 1 3 5 7 9 11 13

LASR1 With iPipe 21041 3895.92 1559.44 835.51 519.56 354.83 256.4

LASR1 Without iPipe 28044.8 5063.6 2027.63 1086.04 675.58 461.57 333.19

LASR2 With iPipe 102292.3 17064.3 6826.5 3656.7 2276.5 1551.14 1124.65

LASR2 Without iPipe 133165 22208.3 8871.8 4760.3 2959 2017.9 1462.04

Xcahce 15 17 19 21 23 26

LASR1 With iPipe 195.004 152.605 122.999 0.2 0.2 0

LASR1 Without iPipe 253.79 198.21 160.201 131.202 110.403 0

LASR2 With iPipe 852.92 669.52 539.015 0.2 0.2 0

LASR2 Without iPipe 1108.84 871 700.98 576.36 482.355 0

Figure 4.6: Total elapsed time when the number of prefetching buffers is set from 1 to 11.
iPipe reduces the elapsed time.

Table 4.1 shows the number of data blocks prefetched from HDDs at the beginning of

the simulation. When iPipe is deployed, we observe that very few hinted blocks are directly

fetched from HDDs because most hinted blocks are prefetched and cached in SSDs for fast

accesses. The prefetching horizon in our simulations is initially 26 data blocks, but drops

to 20 data blocks. In the non-iPipe case, all informed prefetching requests must bring data

directly from HDDs; the prefetching horizon always equals 26 data blocks.

When using iPipe, the first few informed prefetching requests are read directly from

HDDs due to a cold start (i.e., hinted blocks have not been preloaded in SSDs). The rest

61



Figure 4.7: Total elapsed time when the number of prefetching buffers is set from 13 to 26.
iPipe reduces the elapsed time.

Figure 4.8: Total informed prefetching read latency. iPipe reduces the read latency.

62



Table 4.3: Prefetching Horizon P(Tcpu) equals 26 data blocks distance while iPipe is not
used. P(Tcpu) drops to 20 data blocks distance when iPipe is used.

Xcahce P(Tcpu)

iPipe 20

non - iPipe 26

hinted blocks are retrieved from SSDs thanks to the pipelined prefetching mechanism that

preloads the blocks from HDDs to SSDs. Since (Tss−cache) is smaller than (Thdd−cache), the

prefetching horizon P(Tcpu) drops. Our simulation studies (see Table 4.3) show that when

reading from the HDDs and the SSDs, P(Tcpu) equals 26 and 20 data blocks distance re-

spectively. Table 4.1 shows the number of hinted blocks that are prefetched directly from

the HDDs.

iPipe reduces informed prefetching disk read latency, which in turn leads to fewer ap-

plication stalls during the prefetching processes. iPipe also reduces the benefit of adding

an additional buffer for prefetching. Figures 4.9 and 4.10 show that the total stall time

measured in microseconds is approximately the same for both traces. In all cases, the stalls

decrease as the (Xcache) increases. However, iPipe shows fewer stalls when using a certain

number of (Xcache). If the value of (Xcache) is larger than 20 data blocks, the stall time become

zero because the number of informed prefetching requests exceed P(Tcpu) (as Table 4.4).

As the disk read latency, prefetching horizon, and stalls decrease, the reduction in ser-

vice time (benefit) from using additional buffers for prefetching also decreases. Table 4.2

illustrates the decrease in service time for each (Xcache) value, that is when adding addi-

tional buffer used for prefetching. In all cases, the prefetching benefit decreases with the

increase of (Xcache). iPipe shows less need for more buffers, however, when (Xcache) is larger

than 20, which makes the reduction in service time become zero. In other words, there is

no benefit from using more buffers than P(Tcpu). This conclusion is consistent with that

reported in the TIP study [1].

63



Figure 4.9: Total stall time when the number of prefetching buffers is set from 1 to 9. iPipe
reduces the stall time.

Figure 4.10: Total stall time when the number of prefetching buffers is set from 11 to 19.
iPipe reduces the stall time.

64



Table 4.4: Total stall time when the number of prefetching buffers is set from 21 to 26.
iPipe reduces the stall time.

Xcahce 21 23 26

LASR1 With iPipe 1 0.6 0

LASR1 Without iPipe 556 304.802 0

LASR2 with iPipe 1 0.6 0

LASR2 Without iPipe 2438 1335.57 0

Figure 4.11: Total elapsed time when the number of prefetching buffers is set from 1 to 5.
iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed time is
less when Intel X25-E SSD is tested because it is faster than Nova-V64 SSD.

65



Figure 4.12: Total elapsed time when the number of prefetching buffers is set from 7 to 11.
iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed time is
less when Intel X25-E SSD is tested because it is faster than Nova-V64 SSD.

Figure 4.13: Total elapsed time when the number of prefetching buffers is set from 13 to
26. iPipe reduces the elapsed time in both Nova-V64 and Intel X25-E SSDs. Elapsed time
is less when Intel X25-E SSD is tested because it is faster than Nova-V64 SSD.

66



Previous results indicate that iPipe’s performance depends on both read and write

performances of SSDs. Reading performance reduces the disk read latency for informed

prefetching while writing performance effects the efficiency of the pipelined prefetching pro-

cess. Because of this, performance varies when using different SSDs with different read

performances. We simulate iPipe using various SSDs and compared the performance in

terms of stalls and elapsed times. Figures 4.11, 4.12, and 4.13 compare of both two LASR

traces when using [92] the Nova Series V64 Solid-State Hard Drive and Intel X25-E Extreme

SATA Solid-State Drive. The Nova V64 SSD has a reading throughput of 215 MB/s and

writing throughput of 130 MB/s. The latency of reading a (1KB) data block from it is 4.6

microseconds; the latency of writing a (1KB) block to the SSD equals 7.6 microseconds.

When reading from the HDD to the SDD, we assumed that both reading from the HDD and

writing to the SSD are interleaved making the total time latency for reading a (1KB) block

from the HDD and having it available in the SSD (Thdd−ss) equal to 7.6 microseconds.

4.5.3 Validated Performance Evaluation

We configure our simulator using the validated system parameters reported in Chapter

3. For the LASR 1 and LASR 2 traces, we assume that each exclusive access system call

record represents a single 10 MB data block stored in the simulated storage system. In

addition to 10-MB blocks, 200- MB data blocks are also test. In doing so, we can evaluate

the impact of block size on iPipe performance. We assume that the sequence of the I/O

reading system calls represents parallel I/O prefetching requests for the data. We also

assume that each buffer can accommodate one data block.

When block sizes equals to 10 MB and 200 MB, (Tcpu + Thit + Tdriver) is at least

0.00192 and 0.037 seconds, respectively (see also Chapter 3). Data is initially stripped in the

HDD layer of the two-level storage system. Reading a 10 MB data block from the SSD and

the HDD takes 0.052 and 0.12 seconds, respectively. The total time spent reading a 10 MB

block from the HDD and placing it in the SSD (Thdd−ss) equals to 0.122 seconds. When it

67



comes to a 200 MB block, it takes 1.5 and 2.3 seconds to read the block from the SSD and

the HDD, respectively. The total time spent reading a 200 MB block from the HDD and

having it available in the SSD (Thdd−ss) is 4.5 seconds. Time spent accessing buffer cache in

the main memory is negligible (see [1] for a similar assumption).

Since two prefetching modules in iPipe work concurrently at two storage levels, the

maximum number of read I/O requests issued to the HDD is calculated by Equation 4.4.

According to this equation, the largest possible number of concurrent read requests from

both prefetching modules in iPipe is 154 in the case of 10 MB data blocks and 225 in the

case of 200 MB ones. This is because 200 MB blocks increase I/O latencies. Our results show

that system parameters are the main factor affecting iPipe’s behaviour and requirements.

To guarantee maintaining this maximum number of reading requests, we assume enough

I/O bandwidth and parallelism (i.e., no I/O congestion). A similar assumption is justified

in [1]. According to Equation 4.2, the prefetching horizon of reading data from HDD to

the buffer cache equals 63 for both 10 MB and 200 MB data blocks; therefore, we vary the

number of buffers from 1 to 63 for both the 10 MB and the 200 MB cases.

The simulation results show that the total elapsed time (a.k.a., application execution

time) when using fixed numbers (Xcahce) of prefetching buffers is reduced by up to 56% in

the 10 MB case and 34% in the 200 MB case. Our results show that SSD exhibits better

performance compared to the non-iPipe system when the block size is 10 MB. Figures 4.14,

4.15, and 4.16 show the total elapsed time when the LASR traces are tested for the 10-MB-

block-size case. Figures 4.17, 4.18, and 4.19 show the same test for the 200 MB block size.

As the number of Xcahce buffers increases, the performance gap between iPipe and non-iPipe

cases diminishes because the prefetching module (i.e., TIP) in the upper level becomes more

efficient and able to reduce the application stalls. iPipe shows the most benefit when the

upper-level prefetching module is using small Xcahce; (e.g. 1) this is considered the most

critical situation for informed prefetching. iPipe allows the upper-level prefetcher find only

a few of its reads in HDDs and the rest in SSDs.

68



Figure 4.14: Block size = 10 MB. Total elapsed time when the number of buffers is set
from 1 to 9. iPipe reduces the elapsed time.

Figure 4.15: Block size = 10 MB. Total elapsed time when the number of buffers is set
from 11 to 25. iPipe reduces the elapsed time.

69



Figure 4.16: Block size = 10 MB. Total elapsed time when the number of buffers is set
from 35 to 63. iPipe reduces the elapsed time.

Figure 4.17: Block size = 200 MB. Total elapsed time when the number of buffers is set
from 1 to 9. iPipe reduces the elapsed time.

70



Figure 4.18: Block size = 200 MB. Total elapsed time when the number of buffers is set
from 11 to 25. iPipe reduces the elapsed time.

Figure 4.19: Block size = 200 MB. Total elapsed time when the number of buffers is set
from 35 to 63. iPipe reduces the elapsed time.

71



Table 4.5: Data block size = 10 MB. The position of the first data block to be prefetched.

Xcahce 1 3 5 7 9 11 13 15

Depth 3 7 11 15 19 23 27 31

Xcahce 17 19 25 35 45 55 63

Depth 35 39 51 64 65 65 65

Table 4.6: Data block size = 10 MB. The depth of the pipelined prefetching when using
different Xcahce values. Small depth is needed when few Xcahce buffers are used. The
maximum depth = 91. iPipe needs to assign the maximum depth for pipelined prefetching
starting from Xcahce = 35, because the reading stalls from SSD at that point = 0

Xcahce 1 3 5 7 9 11 13 15

Depth 4 12 20 28 36 43 49 55

Xcahce 17 19 25 35 45 55 63

Depth 61 66 85 91 91 91 91

It is clear that iPipe offers better performance improvement to the 10 MB case than to

the 200 MB case. Small blocks benefit better from iPipe, because SSD’s I/O performance

is notably better than HDD when the block size is small. The time needed to read a single

data block from the HDD to the SSD becomes very large in the 200 MB case.

iPipe can utilize multiple prefetching modules at different storage levels to load hinted

blocks without needing a large pipelining depth, especially when few prefetching buffers

Xcahce are assigned (e.g. 1). If Xcahce is closer to the prefetching horizon, iPipe needs a

larger depth in the SSD for its pipelined prefetching process. If that depth is not available,

iPipe should only be used when the Xcahce value is small (the case where TIP shows very

poor performance). Tables 4.5 and 4.6 show the the first data block to be pipelined and

the pipeline depth when using different Xcahce values for a block size of 10 MB. Tables 4.7

and 4.8 show the same performance trend for 200 MB data blocks. iPipe assumes enough

bandwidth, implying that storage systems are sufficiently scaled and have redundant storage

resources. Because of this assumption, the pipelined prefetching depth does not need to be

large. Maximum pipelined prefetching space is 910 MB in the 10-MB-block-size case and

32600 MB (32.6 GB) in the 200-MB-block-size case.

72



Table 4.7: Data block size = 200 MB. The position of the first data block to be prefetched.

Xcahce 1 3 5 7 9 11 13 15

Depth 4 10 16 22 28 34 40 46

Xcahce 17 19 25 35 45 55 63

Depth 52 58 76 106 123 123 123

Table 4.8: Data block size = 200 MB. The depth of the pipelined prefetching when using
different Xcahce values. Small depth is needed when few Xcahce buffers are used. The
maximum depth = 163. iPipe needs to assign the maximum depth for pipelined prefetching
starting from Xcahce = 45, because the reading stalls from SSD at that point = 0

Xcahce 1 3 5 7 9 11 13 15

Depth 4 12 20 28 36 44 52 60

Xcahce 17 19 25 35 45 55 63

Depth 68 76 100 140 163 163 163

4.6 Summary

Informed prefetching reduces application I/O stalls and elapsed times. Disk read I/O

latencies effect the performance of iPipe. For example, when the I/O latencies increase,

applications encounter more stalls. Multi-level storage systems’ uppermost level show better

performance than the lower levels. iPipe has multiple informed prefetching modules running

in parallel in a pipeline manner. The prefetchers in lower-level storage devices help in

reducing I/O latencies of the prefetchers in upper-levels. Consequently, iPipe reduces stall

times, application elapsed times, the prefetching horizon. iPipe also improves the benefit

of using more buffers for prefetching. One weakness of iPipe proposed in this Chapter is

the assumption that storage systems have sufficient I/O bandwidth and scalability. This

assumption will be relaxed in the proposed prefetching solutions described in the next two

Chapters.

73



Chapter 5

IPO: Informed Prefetching Optimization in Multi-level Storage Systems

5.1 Overview

In the previous chapter, we discussed the importance of informed prefetching for re-

ducing an application’s stalls and elapsed time. We also pointed out the motivation of a

pipelined prefetching mechanism aiming to reduce the overhead of prefetching.

The study presented in the previous chapter assumes that multi-level storage systems

have sufficient I/O bandwidth; however, our empirical experiments indicate that parallel

storage systems may have I/O congestion (see Figure 3.10 in Chapter 3). Evidence shows

that there is a maximum number of read requests being concurrently processed in a parallel

storage system. In the event that an upper-level prefetching mechanism does not fully

utilize available I/O bandwidth, unused I/O bandwidth can be allocated for lower-level

prefetching mechanisms to bring hinted blocks from lower-level to upper-level storage in a

pipeline manner. This observation suggests that the pipelining process largely depends on

available I/O bandwidth for lower-level prefetchers.

The remaining parts of this chapter is organized as follows. First, we highlight the

motivation and objective of a pipelined informed prefetching scheme called IPO. Second, we

describe the design issues of the IPO mechanism. Third, we present a core algorithm in IPO.

Last, the performance of IPO is systematically evaluated.

5.2 Motivations and Objectives

The motivations behind the design of IPO are very similar to those of iPipe (See Chap-

ter 4.2 for details on the motivations of the iPipe study). In addition to the motivations listed

74



in Chapter 4.2, limited I/O bandwidth of parallel storage systems motivate of to propose

the IPO solution.

I/O bandwidth of a storage system, of course, is limited. This reality means that when

I/O load is high, the storage system can exhibits I/O congestions (e.g. long I/O queuing

times). In particular, I/O congestion takes place if the storage resources are limited and not

scalable. When it comes to a small-scale parallel storage system, only a few I/O requests can

be processed in parallel. This limitation motivates us to extend the iPipe design into IPO by

considering the impact of limited I/O bandwidth on our pipelined prefetching mechanisms.

The objective of this part of the study is to address the issue of limited I/O bandwidth

and investigate the negative impacts of low I/O bandwidth on pipelined informed prefetching.

5.3 Design Issues in IPO

Our preliminary results (see Chapter 3) show that the bandwidth of a storage system

is limited based on the available resources. Our overall goal in this part of the study is to

optimize informed prefetching in a multi-level storage system with limited I/O bandwidth.

The iPipe study (see the previous Chapter) offers initial evidence that a prefetching pipeline

is a good approach to utilizing multiple prefetchers to preload hinted blocks in parallel among

multiple storage levels. The prefetching pipeline substantially reduces time spent loading

hinted blocks from the up-most storage level.

Before the designing phase of IPO, we realize that the number of pipelined prefetching

requests that may be handled concurrently is limited depending on available I/O bandwidth

and the size of prefetching buffers managed by the upper-level prefetchers (e.g., TIP is the

upper-level prefetcher in our studies). Recall that multi-level storage systems considered

in this dissertation study consist of two levels: the uppermost one uses solid state drives

(SSD); the lowest one uses Hard Drives (HDD). The IPO mechanism gets hints of future

I/O accesses from applications and aggressively prefetches hinted blocks from HDDs up to

SDDs in a pipeline manner.

75



The most challenging design issue is how to efficiently utilized limited available I/O

bandwidth for the prefetching module that preloads hinted blocks from HDDs to SDDs. A

second design challenge is how to allow two prefetching modules to share I/O bandwidth of

SSDs, which are accessed by both upper-level and lower-level prefetchers.

In our design, we address the above challenges as follows. Recall that lower-level

prefetcher and upper-level prefetchers handles informed prefetching requests in parallel. The

lower-level prefetcher trigger a informed prefetching request when the following conditions

are met. First, the upper level SDDs have sufficient available I/O bandwidth. The lower-level

prefetcher aims to improve the utilization of SSDs by preloading data from HDDs to SSDs

when the I/O load of SSD is median or low. This design policy is important because a very

aggressive lower-level prefetcher can slow down the performance of its upper-level prefetch-

ing counterpart. Second, fetching hinted blocks from HDDs to SSDs will not saturate the

I/O bandwidth of SSDs and HDDs. We believe that the main concern is SSDs’ bandwidth,

because the SSDs are accessed by two prefetching modules. Compared with HDDs, SSDs

are more likely to have their I/O bandwidth saturated.

5.3.1 Architecture of IPO

Before presenting the implementation details of IPO, let us first outline a high-level

overview of IPO’s hardware and software architectures.

Hardware Architecture of IPO

IPO shares iPipe’s hardware architecture as shown in Figure 4.1. As we discussed in

Chapter 4, an application accessing a storage system provides hints of future I/O accesses

for IPO, which manages two prefetching modules - the upper module (e.g., TIP) prefetches

hinted blocks from SSDs to buffers in main memory; the lower module prefetches hinted

blocks from HDDs to SSDs. Both prefetching modules work concurrently in a pipelines

manner.

76



Parallel storage systems investigated in our studies contain prefetching buffers as well

as an array of two-level storage devices - SSDs and HDDs. Recall that the storage systems

have limited I/O bandwidth and scalability.

Software Architecture of IPO

Figures 5.1 and 5.2 show IPO’s software architecture. One of the core components

in the IPO mechanism is the upper-level informed prefetching module or TIP that receives

hints from data-intensive applications, controls buffers in the main memory, and performs

informed prefetching from SDDs. When the IPO system receives an informed prefetching

request, IPO uses the meta-data to decide if the hinted block is residing in an SSD before

accessing a low-level HDD. If the hinted block is not available in one of the SSDs, the block

must be fetched directly from a HDD. In case that the hinted block has been fetched by the

low-level prefetcher from the HDD to SSD, the hinted block will be quickly loaded from SSD

into the main-memory buffer.

At the heart of the IPO mechanism is a lower-level informed prefetching module that

fetches hinted blocks from HDDs to SSDs. When the lower-level prefetcher triggers an

informed prefetching request, the prefetcher checks if the hinted block has been cached in

one of the SSDs. If the hinted block is not available in SSDs, the block is fetched from the

HDD and placed in an SSD.

In addition, the IPO system gains control of both SSDs and HDDs in order to perform

pipelined prefetching based on the hints offered by the applications.

77



Figure 5.1: High-level design of IPO software architecture. The multi-level storage system
consists of an array of two levels of SSDs and HDDs with limited bandwidth and scalability.

Figure 5.2: Detailed design of IPO software architecture for a three-level storage system.
The application provides hints on future I/O accesses. IPO determines the appropriate
hinted blocks to be fetched. IPO keeps prefetching a particular number (depends on
available bandwidth) of hinted blocks to the uppermost level. The upper-level prefetcher
(i.e., TIP) uses the cost/benefit model to determine the number of prefetching buffers.

78



5.3.2 Assumptions

In Chapter 3, we discussed our research’s assumptions in details; in this section, we

simply highlight the most important assumptions related to IPO.

We assume that data blocks are initially placed in HDDs. Our motivation behind this

assumption is that HDDs have much larger capacity than that of SSDs. In addition, HDDs

are much cheaper than SDDs. Other prefetching studies in the realm of multi-level storage

systems have similar assumption that data blocks are initially stored in the lower-level of

the storage hierarchy [23].

IPO reserves a small portion determined by Equation 5.1 to retain copies of prefetched

data. Instead of migrating the data blocks from HDDs to SSDs, the prefetching process

only move copies of the original data. This strategy works very well for read-intensive

applications, because read-only data cached in upper-level storage can be quickly discarded

without being moving back to a lower-level storage device. Replicas across multi-levels allow

storage system to conserve bandwidth when cached blocks are evicted from I/O buffers in

SSDs.

5.4 The IPO Algorithm

This section presents an algorithm that guides us in implementing the IPO mechanism

for multi-level storage systems. We also give examples to demonstrate that IPO improve

I/O performance of storage systems by reducing application stalls and elapsed time.

5.4.1 Definitions

IPO handles the informed prefetching process between SSDs and HDDs. When an ap-

plication starts its execution, the TIP module assigns a number of buffers for prefetching

(Xcache) based on the cost benefit model. This means that the informed prefetching module

79



continues to issue a number of concurrent read requests that equals to (Xcache). The concur-

rent reads utilize either a part or all of the parallel storage system’s bandwidth. Based on

the non-utilized portion of the I/O bandwidth, IPO assigns its pipelined prefetching depth.

Let MaxBW be the maximum number of read requests that may take place concurrently

in the parallel storage system. In the event that TIP is assigning Xcache buffers for prefetching,

the difference between Xcache and MaxBW is the the pipelined prefetching depth of IPO. The

pipelined prefetching depth is determined by Equation 5.1; this number represents the

maximum space that needs to be reserved for pipelined prefetching in the uppermost level

(i.e, SSDs). As we will see in the performance evaluation section, pipelined prefetching depth

dose not consume the SSD storage space.

Pdepth = MaxBW −Xcache (5.1)

where;

Pdepth: IPO pipelined prefetching depth

MaxBW : Maximum bandwidth

Xcache : Number of prefetching buffers

The TIP module continues prefetching Xcache hinted data blocks concurrently. At the

same time, IPO keeps fetching Pdepth hinted data blocks from HDDs in a pipeline manner

with TIP. IPO consists of two algorithms determining what the first hinted block to be

fetched from HDDs and the number of subsequent blocks to be fetched. Initially, most of

TIP’s prefetching requests are found in the lowest level (i.e., HDDs) until the hinted data

blocks arrive in the uppermost ones (i.e., SSDs). At this point, TIP fetches hinted blocks

from one of the two storage levels. As more I/O bandwidth becomes available for IPO

to fetch hinted blocks in a pipeline manner, more prefetching requests are handled in the

uppermost level. Every time a data block is prefetched by TIP, it will be consumed from

80



the SSD’s pipelined prefetching buffer and a new pipelined prefetching request is initiated.

As more I/O bandwidth becomes available for pipelining, application stalls and elapsed time

will be reduced (see Equation 4.1).

Recall that Tcpu + Thit + Tdriver represents the system’s single time unit needed for an

application to consume a prefetched data block. In addition, our multi-level storage system

consists of an HDD and an SSD. Thdd−cache is the disk read latency from HDD to buffer cache

in the main memory, Thdd−ss is the disk read latency from HDD to SSD, and Tss−cache is the

disk read latency from SSD to buffer cache. Tss−cache should be less than Thdd−cache.

5.4.2 The Pstart and Pnext Algorithms

IPO pipelines the prefetching processes. When informed prefetching initiates its first

prefetching requests, IPO begins fetching requests from HDDs to SSDs. The first block to be

fetched from HDD by IPO is calculated by the Pstart algorithm. The pipelined prefetching

depth spans until a number of data blocks is calculated by Equation 5.1. When a data block

is requested by TIP, the block will be consumed from the pipelining buffer in SSD after

the block is fully fetched from SSD to the main memory. At this time, IPO issues a new

pipelined prefetching request for another hinted data block. The position of that access’s

data block is calculated by algorithm (5). Tconsume−ss represents the time needed to consume

a single pipelined preftching block from SSD (i.e. Tconsume−ss = Tss−cache).

The Pstart Algorithm: Determine the first block fetched from HDD

xcachecounter = 0
accesstime = - (Tcpu + Thit + Tdriver)
for blockcounter = 1 to Thdd−ss / (Tcpu + Thit + Tdriver) do

xcachecounter ++
accesstime += (Tcpu + Thit + Tdriver)
if accesstime ≥ Thdd−ss then

Pstart = blockcounter
return Pstart

end if
if xcachecounter = Xcache then

81



if Tstall−ss(Xcache) > 0 then
accesstime += Tstall−ss(Xcache)

end if
if accesstime ≥ Thdd−ss then

Pstart = blockcounter + 1
return Pstart

end if
xcachecounter = 0

end if
end for
Algorithm 4. returns the hinted block position for which IPO begins pipelining. The first
hinted block to be fetched from HDD depends on the Thdd−ss and Tstall−ss(Xcache) values
that may take place during the beginning of informed prefetching, assuming that all data
is already in the SSD. The algorithm calculates the hinted data block’s position that will
be accessed after enough time to have it read from HDD to SSD.

The Pnext Algorithm:

totaltime = Thdd−ss + Tconsume−ss

xcachecounter = 0
accesstime = - (Tcpu + Thit + Tdriver)
for blockcounter = 1 to totaltime / (Tcpu + Thit + Tdriver) do

xcachecounter ++
accesstime += (Tcpu + Thit + Tdriver)
if accesstime ≥ totaltime then

Pnext = Pstart + blockcounter - 1
return Pnext

end if
if xcachecounter = Xcache then

if Tstall−ss(Xcache) > 0 then
accesstime += Tstall−ss(Xcache)

end if
if accesstime ≥ totaltime then

Pnext = Pstart + blockcounter
return Pnext

end if
xcachecounter = 0

end if
end for
Algorithm 5. returns the next hinted data block that IPO should fetched from HDD to
SDD when a previously pipelined data block is consumed from buffer in SDD. Tconsume−ss

is the time to consume a block in SSD. The application stalls for at least Tstall−ss(Xcache).
These stalls reduce the prefetching depth.

82



Equations 5.2 and 5.1 are used in the above two algorithms to determine (1) the first

blocks to be fetched from HDD to SDD and (2) the number of the subsequent blocks to be

fetched from HDD to SDD.

IPOstart =
Thdd−ss

(Tcpu + Thit + Tdriver)
− (

Thdd−ss
(Tcpu+Thit+Tdriver)

Xcache
× Tstall−ss(Xcache)

(Tcpu + Thit + Tdriver)
)(5.2)

where;

IPOstart: The first block to be fetched by IPO from HDD.

Figures 5.3 and 5.4 illustrate an example of IPO working with the TIP module. MaxBW

is equals 5 and Xcache equals 2. IPO uses the remaining 3 slots for pipelined prefetching.

Figures 5.5 and 5.6 show the non-IPO case. In the IPO case, the stalls and elapsed time of

the application are reduced.

5.4.3 The IPO Algorithm

Algorithm 3: IPO

Pstart = call pipelining start block
MaxBW = Maximum number of concurrent reading requests
Pdepth = Pstart + (MaxBW - Xcache) - 1
while informed prefetching do

if bandwidth shortage then
shrink the pipelining depth by 1

end if
if pipelined data block is altered then

discard the pipelined data block
end if
if is the first prefetching then

for block = Pstart To block = Pdepth do
pipeline block to SSD

end for
else if SSD buffer is consumed then

Pnext = call (Next to Prefetch) for the consumed block
if the Pnext data block is not already in the SSD then

pipeline Pnext to the SSD
end if

end if

83



Figure 5.3: Average stalls when using IPO and a fixed number of buffers for parallel
prefetching in the buffer cache. The maximum number (MaxBW ) of read requests is 5.
Informed prefetching buffers = 2, and the rest 3 spaces of the bandwidth are used for
pipelined prefetching. Thdd−cache = 5, Thdd−ss = 8, Tss−cache = 4, and Xcache = 2. The first
accesses stall for 5 time units. Before IPO fetches hinted blocks from HDD to SSD, the
application stalls for Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu + Thit + Tdriver) = 2 time units
every 3 accesses. IPO continues to fetch 3 hinted blocks each time from HDD. When a
prefetched block is consumed from SSD, a new pipelined prefetching request is initiated by
IPO. When IPO is employed, stalls time becomes 40 and elapsed time is 76 time units.

84



Figure 5.4: Continue Figure 5.3

85



Figure 5.5: Average stalls when using a fixed number of buffers for parallel prefetching in
buffer cache. Thdd−cache = 5, and Xcache = 2. The first accesses stall for 5 time units. All
data is read from HDD. The application stalls for Tstall−hdd(Xcache) = Thdd−cache - 3(Tcpu +
Thit + Tdriver) = 2 time units every 3 accesses. In the non-IPO case, stalls time is 45 and
elapsed time is 81.

86



Figure 5.6: Continue Figure 5.5

end while
The IPO algorithm calls the Pstart algorithm to determine the first hinted block to be
fetched from HDD. Next IPO calculates the pipelined prefetching depth (i.e., Pdepth),
which is affected by the available I/O bandwidth. Then, IPO initiates a prefetching
request to fetch hinted blocks from HDD to SSD. Every time a cached block is consumed
from SSD by the TIP module, IPO starts prefetching the next hinted block from HDD
to SSD. Bandwidth shortage means TIP is unable to complete its prefetching requests on
time from any level. This may be caused by the pipelined prefetching process and limited
I/O bandwidth. In the event of bandwidth shortage, IPO reduces its pipelined prefetching
depth by one until the shortage is eliminated. The IPO algorithm checks if a data block
to be fetched has been modified before the block is requested by TIP. In this case, the
prefetched copy will be discarded to preserve consistency. If the data is cached in the SSD.
the pipelined prefetching request will be discarded by IPO.

87



5.5 Performance Evaluation

This section evaluates IPO’s performance through extensive simulations. After pre-

senting the simulation environment, we discuss the impact of IPO on application elapsed

times.

5.5.1 Simulation Environment

IPO shares the same simulation environment of iPipe in terms of architecture, traces,

assumption, and parameters all of which were validated in Chapter 3.

Since both TIP and IPO work concurrently, the maximum number of read requests

issued to HDDs is MaxBW . According to Equation 4.2, the prefetching horizon of reading

data from the HDD to the buffer cache equals 63 in case 10 MB or 200 MB data blocks are

being used. In this simulation, we simulate IPO and record its performance when MaxBW

value is set to 15. Note that this value is 15 in the TIP study [1]. Assuming that each single

read request needs one disk to not face any congestions, MaxBW in this case equals 15.

The IPO pipelined prefetching depth does not consume the SSD space. If TIP is as-

signing (Xcahce) = 1, pipelined prefetching depth becomes 14. In this case, IPO needs 140

MB in the 10MB-block-size case and 2.8 GB) in the 200-MB-block-size case. The buffers are

stripped through the entire disk array of 15 disks.

5.5.2 Elapsed Time Improvement

The simulation results show that when TIP is using very few prefetching buffers (e.g.

Xcahce = 1), IPO reduces the total elapsed time by approximately 56% when using 10 MB

data blocks and 34% when using 200 MB blocks. Figure 5.7 shows the total elapsed time

when MaxBW equals 15 in the event of 10 MB data blocks. Figures 5.8 and 5.9 show the

total elapsed time when MaxBW equals 15 and 200 MB data blocks are being used. As

the number of Xcahce increases, the difference between IPO and non-IPO cases decreases.

This is because TIP’s prefetching process becomes more efficient at hiding the application’s

88



Figure 5.7: IPO reduces application elapsed time. 10 MB block size. Total elapsed time
when using 1 to 15 prefetching buffers. MaxBW = 15.

stalls. At the same time, IPO’s pipelined prefetching process shows the most performance

improvement during TIP’s most critical situation (i.e., TIP uses very few Xcahce buffers -

e.g., 1). Also, due to pipelining limitations, IPO does not exhibits a significant performance

improvement when Xcahce is larger than 9, especially as MaxBW becomes smaller; however,

the 10-MB-block-size case shows better performance improvement because SSD performs

better than HDD when block size is 10MB.

It is clear that the 200-MB-block-size case shows significantly larger elapsed time values,

because both SSD and HDD have longer read latencies to access blocks whose size is 200MB.

Another reason is that SSD is much faster than HDD when it comes to the case of accessing

large (e.g., 200MB) data blocks.

Performance improvement offered by IPO becomes more pronounced when I/O band-

width of the parallel storage system increases. This is a result IPO being able to issue more

pipelined prefetching requests to HDDs and bring more data to the uppermost level.

89



Figure 5.8: IPO reduces application elapsed time. 200 MB block size. Total elapsed time
when using 1 to 7 prefetching buffers. MaxBW = 15.

Figure 5.9: IPO reduces application elapsed time. 200 MB block size. Total elapsed time
when using 9 to 15 prefetching buffers. MaxBW = 15.

90



Figure 5.10: Bandwidth utilization when Xcahce is varied from 1 to 15 in both IPO and
non-IPO cases. IPO fully utilizes the bandwidth.

5.5.3 Bandwidth Utilization

Recall that IPO utilizes unused I/O bandwidth in parallel storage systems. When the

TIP module is using few buffers for prefetching, the rest of the I/O bandwidth is used by

IPO. Again, in this experiment, the block size is set to 10 MB and 200 MB, respectively.

Figure 5.10 shows the bandwidth utilization when using different values of Xcahce between 1

and 15 for both IPO and non-IPO cases.

5.5.4 Increasing the MaxBW Value

We observed that IPO’s performance improvement is not as significant as that of iPipe

because of the limited I/O bandwidth. When available I/O bandwidth MaxBW increases,

IPO tends to perform like iPipe. This is because the storage system’s I/O bandwidth becomes

high enough. When the block size is 10 MB, IPO can improve the system performance

similarly like iPipe when the MaxBW equals to 154 (see Equation 4.4).

91



Figure 5.11: IPO reduces the elapsed time. Total elapsed time when the Xcahce value is
increased from 1 to 63. MaxBW is set to 154.

Figure 5.11 shows application elapsed time when the Xcahce value is increased from 1

to 63 and MaxBW is 154. The LASR1 trace is used in this simulation study. IPO shows

similar results to those of iPipe using LASR1 (see also Figures 4.14, 4.15, and 4.16).

5.6 Summary

IPO is an extension of the iPipe mechanism presented in the previous chapter. IPO

differs from iPipe in that it can fully support multi-level storage systems with limited I/O

bandwidth. IPO decides the number of concurrent prefetching requests issued to HDDs in

accordance with available I/O bandwidth offered by both SDDs and HDDs. IPO ensures

that the pipelined prefetching scheme does not make SDDs overly loaded. On average, per-

formance improvements provided by IPO are not as significant as those offered by iPipe due

to the limited I/O bandwidth. It reduces the application elapsed time by approximately 56%

when the Xcahce is set to 1. As the Xcahce value increases, IPO’s performance improvement

is decreasing. Experimental results show that increasing the MaxBW value helps in making

92



IPO performance improvement more noticeable. The results reported in this chapter indi-

cate that our proposed pipelined prefetching solutions are very beneficial to parallel storage

systems offering sufficient I/O bandwidth.

93



Chapter 6

IPODS: Informed Prefetching in Distributed Multi-level Storage Systems

6.1 Overview

In the previous two chapters, we proposed informed prefetching algorithms (i.e., iPipe

and IPO) that aim to hide I/O latency by invoking I/O parallelisms and prefetching hinted

accesses in multi-level storage systems. I/O access hints are provided by applications so

that hinted blocks can be prefetched prior to their accesses. In this Chapter, we extend

the iPipe and IPO schemes to meet the needs of distributed multi-level storage systems,

where massive amounts of data are allocated to a set of storage servers built with multi-level

storage devices.

A distributed storage system consists of several storage servers among which data are

stripped and stored [72] [83] [68] [82]. Clients can store and retrieve data to and from the

storage servers through networks. Distributed storage systems aim at offering high I/O

performance, high bandwidth, and scalability [67] [69] [66]. Apart from storage devices in

distributed systems, network and server latencies raise major I/O performance issues, which

can be addressed by prefetching techniques.

Several architectures of distributed storage systems were proposed in previous studies.

For example, Figures 6.1 and 6.2 show two existing architectures designed in prior research

projects [65] and [71]. In both architectures, there are several distributed storage nodes

and multiple clients. Data blocks are stripped among the storage nodes, all of which are

connected by a network.

In this Chapter, we focus on a way of extending the IPO mechanism in the realm of

distributed multi-level storage systems. Note that the terms servers, nodes, and sites are

used exchangeable throughout this Chapter. In a distributed storage system, each storage

94



Figure 6.1: The architecture of a distributed parallel storage system. Several distributed
clients and storage nodes are connected by a network.
T.Madhyastha; G. Gibson; C. Faloutsos: Informed prefetching of collective input/output
requests, Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM),
Portland, Oregon, 1999.

server consists of multi-level storage devices (see the previous two Chapters for details on

multi-level storage systems) and data blocks are stripped among multiple storage servers.

We decide to extend the IPO scheme rather than its earlier iPipe version, because IPO does

not rely on an unreasonable assumption that storage systems offer unlimited I/O bandwidth.

In this part of study, we consider limited number of storage nodes with limited aggregated

I/O bandwidth. The goal of this study is to reduce disk read latency, which is a part of the

total prefetching time latencies. Since each storage server consists of a multi-levels storage

devices, the IPO mechanism in each server enables TIP to locate prefetching requests in the

uppermost storage level of the server. The IPODS helps in reducing application stalls and

elapsed time in distributed and parallel storage systems.

6.2 Motivations and Objectives

The motivation of the IPODS study is four-fold. First, little attention has been paid to

informed prefetching in distributed/parallel multi-level storage systems. Please refer to the

related work chapter for a summary of research projects related to distributed and parallel

storage systems. Second, distributed and parallel storage systems have high scalability,

because massive amounts of data can be striped and distributed across a large number of

95



Figure 6.2: [71] Another architecture of a distributed parallel storage system. Several
distributed clients and storage nodes are connected by a network.
Luis Cabrera , Darrell D.E. Long: SWIFT: USING DISTRIBUTED DISK STRIPING TO
PROVIDE HIGH I/O DATA RATES, University of California at Santa Cruz, Santa Cruz,
CA, 1991.

storage nodes and servers. Third, each storage node and server in distributed and parallel

system can be built with multi-level storage devices, where hot data blocks are stored and

cached in upper-level storage for quick accesses. Prefetching techniques can be employed to

preload hinted data blocks to the upper-level storage to shorten disk read latencies, because

upper-level storage shows good I/O performance in terms of read latency.

There are the following two research objectives in this part of study:

� To incorporate informed prefetching in distributed/parallel multi-level storage systems.

� To reduce prefetching overhead by leveraging multiple prefetchers working in parallel.

� To evaluate the performance of the proposed IPODS scheme by measuring applications’

stalls and elapsed time.

6.3 IPODS Design Issues

When a client accesses data blocks from a multi-level storage server via network con-

nections, the IPODS mechanism brings hinted blocks to the upper-level storage. Although

96



IPODS is unable to reduce network latency that is out the scope of this dissertation, IPODS

is capable of shortening long I/O read latencies.

The first design issue is to enable multiple prefetchers to collaborate in a pipelining

manner. Similar to iPipe and IPO, IPODS have several prefetching modules residing in

each storage server. The number of prefetchers in a storage server depends on the number

of storage levels. An N-level storage server requires N-1 prefetchers. For example, one

prefetcher fetches data blocks from tape to hard drives, whereas another prefetcher loads

data from hard drives to solid state disks (SSDs). Unlike iPipe and IPO, IPODS should

incorporate a prefetcher to bring data from remote storage servers to a client’s local I/O

buffers.

A second design issue in IPODS is a coordination mechanism between a pair of client

local I/O buffer and buffers in SSDs (i.e., upper-level device) of a remote storage server.

The prefetching module fetches data from remote storage servers to local buffers contains

both client and server portions. The client portion of the prefetching module takes hints

from applications at the client. Then, the client portion needs to check if the hinted blocks

have been cached in the local buffer. If the hinted blocks are not available in the local

buffer, a request will be sent to the server portion to have the hinted blocks fetched from the

remote server. The prefetching module handling the client and server portions are working

in parallel with the other prefetching modules residing in remote storage servers.

6.3.1 The IPODS Architecture

Before presenting the IPODS implementation details, let us describe the hardware and

software architectures of the IPODS prefetching mechanism.

Hardware Architecture of IPODS

Figure 6.3 illustrates the hardware architecture of IPODS. The system consists of

client nodes and distributed storage nodes. Each client node maintains a local buffer caches;

97



applications running on clients nodes retrieve data from remote storage nodes. Applications

disclose their future access hints to client nodes, which prefetch data from remote storage

nodes to local buffers. Each storage node built with N-level storage devices consists of

N-1 prefetching modules. There is one prefetcher between ith and (i+1)th levels. In this

dissertation study, we configure each storage node as a two-level storage device - the upper

level is a solid state disk and the lower level is a hard drive. A large data block are stripped

and stored across multiple storage nodes. Data blocks are transferred Client and I/O storage

nodes through networks. Unlike iPipe, IPODS are designed for distributed/parallel storage

systems with limited I/O bandwidth.

Figure 6.3: Distributed/Parallel Multi-level Storage System: The system shows several
distributed storage nodes and clients connected by a network. Each I/O storage node
consists of a two-level storage device containing both SSD and HDD.
T.Madhyastha; G. Gibson; C. Faloutsos: Informed prefetching of collective input/output
requests, Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM),
Portland, Oregon, 1999.

Software Architecture of IPODS

Figures 5.1 and 5.2 represent the software architecture of IPO. IPODS and IPO share a

similar software architecture. IPODS relies on the TIP module [1] to process hints disclosed

98



by applications. IPODS is in charge of controlling buffers in all the storage levels while per-

forming informed prefetching process. When IPODS receives a prefetching request, it checks

local buffer first before searching SSDs and HDDs in remote storage nodes. IPODS incor-

porates IPO to control the distributed storage nodes and to perform pipelined prefetching

process based on the application hints.

6.3.2 Assumptions

We assume that data blocks are initially placed in HDDs in remote storage nodes. Like

IPO, IPODS reserves a small portion in the SSD for the pipelined prefetching process. This

portion - defined as prefetching depth - is represented by Equation 5.1.

The maximum I/O bandwidth represents that maximum number of concurrent read

requests that may take place in a distributed system without any I/O congestions or delays.

We assume that the maximum I/O bandwidth scales up with the number of the nodes

[65]. In addition to disk I/O bandwidth, network bandwidth affect the performance of

distributed/parallel storage systems. In this dissertation study, we only focus on the disk

I/O issues and the network I/O problems are out scope of this research.

6.4 The IPODS Algorithm

6.4.1 Definitions

IPODS incorporates IPO to deal with the informed prefetching process in each remote

storage nodes. When an application starts its execution on a client node, the TIP mod-

ule [1] assigns Xcache number of buffers for prefetching based on the cost-benefit model.

In other words, TIP keeps requesting (Xcache) concurrent prefetching requests from the re-

mote storage nodes. Concurrently fetching a number of blocks utilizes either a part or

all of the distributed/parallel storage system’s I/O bandwidth. Recall that IPO assigns

its pipelined prefetching depth based on the non-utilized portion of the disk bandwidth.

MaxBW is the maximum number of data blocks that may be requested concurrently in the

99



distributed/parallel storage system. The value of MaxBW depends on the number of nodes

and the available aggregated I/O bandwidth. The IPO’s pipelined prefetching depth is de-

termined by Equation 5.1. The pipelined prefetching depth represents the maximum space

needed to be reserved in the SSD to cache hinted data blocks fetched from HDDs.

Since a hinted block must be fetched from a remote storage node to a local buffer, the

time spent fetching the block includes network transfer time and server latency as well as

the disk I/O access time. Equation 6.1 calculates the time spent fetching a hinted block

from a remote storage node.

RemoteRead = TDisk + TNetwork + TServer (6.1)

where;

RemoteRead
1: Time spent in fetching a hinted block from a remote node.

TDisk: Disk I/O access time.

TNetwork: Network transfer time.

TServer: Server processing time.

Recall that (Tcpu + Thit + Tdriver) represents the time needed for an application to con-

sume a single block in the buffer cache. In addition, a distributed multi-level storage system

consists of several storage nodes where each one has an HDD and an SSD. Thdd−network−cache

is the time spent in retrieving a single data block over a network from a remote storage

node’s HDD. Tss−network−cache is the time needed to fetch a single data block over a net-

work from a remote node’s SSD. Thdd−ss is the disk read latency from the HDD to SSD of

a remote node. Tss−network−cache is less than Thdd−network−cache, because the performance of

SSD is higher than that of HDD. If the network bandwidth is very low, the performance

1R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka: Informed prefetching and caching, In
Proceedings of the 15th ACM Symposium on Operating System Principles, pages 79-95, CO, USA, 1995.

100



gap between Tss−network−cache and Thdd−network−cache is diminished. This is because the net-

work rather than hard drives becomes a serious performance bottleneck. In our research, we

assume that the overhead introduced by servers can be ignored (i.e., TServer = 0), because

storage servers simply fetch data rather than processing data.

The IPO pipelined prefetching process enables TIP to find more hinted blocks in SSDs.

IPO consists of two algorithms that determine the first appropriate hinted blocks to be

fetched and the total number of prefetched blocks. The pipelined prefetching process reduces

time spent in fetching data from remote storage nodes. IPODS extends IPO to meet the needs

of distributed/parallel multi-level storage systems and reduces elapsed times of applications

running on client nodes.

6.4.2 The IPODS Algorithm

IPODS employs the IPO scheme to perform pipelined prefetching in distributed multi-

level storage systems. We implement the Pstart and Pnext algorithms in IPODS, because

these two algorithms are the core of the IPO scheme. IPODS is different from IPO in the

sense that IPODS has to manage local buffers in client nodes. In addition, IPODS must

consider network transfer time as well as storage node latencies as parts of the prefetching

time.

In a single storage node system, moving a data block from HDD or SSD to the buffer

cache is faster than moving the same data block from HDD to SSD (Thdd−ss). In a distributed

system, however, Thdd−ss is expected to be less than (Thdd−network−cache) and (Tss−network−cache).

This is because both SSD and HDD are in the same node, moving data blocks from HDD to

SSD within a node is faster than moving data from a remote storage node to a client through

networks. This results in more application and TIP stalls which consequently opens more

room than in a single node system for IPODS to prefetch data blocks in a pipeline manner.

This is due to the fact here, IPODS can guarantee the prefetched data will arrive in SSDs

and local buffer before being requested by TIP.

101



6.5 Performance Evaluation

In what follows, we evaluate the performance of IPODS through simulation studies. Let

us first illustrates the simulation environment.

6.5.1 Simulation Environment

The simulation environment for IPODS is the similar to that for IPO, because IPODS

is an extension of IPO to feed the needs of a distributed/parallel storage systems containing

several storage nodes.

We built a simulator using C++ programming language to simulate a distributed storage

system in which IPODS is implemented. Again, we use the elapsed time as a key performance

evaluation metric. For comparison purpose, we also simulator the same distributed system

where IPODS is not employed. We evaluate the impact of buffer size on system performance.

The simulated distributed system consists of a client node offering local buffers and a

set of remote storage nodes built with two-level storage devices (i.e., a SSD level and a HDD

level). The client and all the storage nodes are connected by a network. Figure 6.3 shows

the architecture of the simulated distributed storage system. Data is initially stored in the

HDDs whereas prefetched blocks are stored in buffers in SSDs in storage nodes and local

buffers in the client. The TIP module manages the buffer cache and IPODS controls buffers

in all the storage nodes.

Again, we use the LASR traces (i.e., machine01 or LASR1; machine06 or LASR2)

that consist respectively of 11686 and 51206 I/O read requests [97] [98]. According to our

validation results presented in Chapter 3, data block size must be larger than 200 MB to

ensure that SSDs offer better I/O performance than HDDs. For data blocks that are smaller

than 200 MB, there is no significant difference between reading data from a remote SSD

and reading data from a remote HDD, since the network becomes a performance bottleneck

rather than HDDs.

102



In the simulated distributed storage system, we configure the system parameters using

the data validated in Chapter 3. For LASR1 and LASR2, we assume that each exclusive

I/O read system call represents a single request for a 200 MB data block. The trace’s I/O

reading requests sequence represents the future access hints. In addition, each cache buffer

in both client and storage servers are large enough to accommodate a large data block.

According to our validation chapter 3, the system parameters used in our simulation

study are: block size equals 200 MB, and (Tcpu + Thit + Tdriver) equals 0.02 seconds. Data is

located in the HDDs. The average latency of reading a 200MB data block from a remote SSD

and HDD to the buffer cache over a LAN network is 4.158 and 4.43 seconds, respectively.

The time spent reading a 200MB block from the HDD to the SSD Thdd−ss equals 4.5 seconds.

There is no write latency to the buffer cache; similar assumption can be found in [1].

Since both TIP and IPODS work concurrently, the maximum number of read requests

to HDDs is set to MaxBW . Based on Equation 4.2, the prefetching horizon of reading data

from HDDs to buffer cache is 222 data blocks. Similar to the IPO simulation study, we

simulate IPODS by setting MaxBW to 15 concurrent read requests. We choose 15 because

in the TIP study, 15 disks were tested in the performance evaluation [1]. In the IPODS

simulator, each storage node’s disks can individually handle a single read request without

I/O congestion.

6.5.2 Improving Elapsed Time

The simulation results show that IPODS reduces the total elapsed time by about 6%

when the TIP module is using very few buffers for prefetching (e.g., Xcahce is set to 1, 2, and

3). Figure 6.4 shows the total elapsed time for varying numbers of prefetching buffers when

MaxBW equals 15. As the number of Xcahce increases, the performance difference between

the IPODS and non-IPODS cases decreases because TIP becomes more efficient in reducing

the application’s stalls.

103



Figure 6.4: Total elapsed time when the number of prefetching buffers is varied from 1 to
15. MaxBW = 15. IPODS reduces the elapsed time.

Importantly, the IPODS pipelined prefetching process shows its best performance im-

provement when TIP uses few Xcahce buffers (e.g. Xcahce = 1). The experimental results

suggest that IPODS can enhance I/O performance of distributed and parallel storage sys-

tems where the TIP module has limited or no cache buffer to utilize. On the other hand,

when Xcahce is greater than or equal to 9 especially when (MaxBW ) is limited, IPODS can

not exhibit any performance improvement.

6.6 Summary

In this chapter, we describe the IPODS prefetching scheme - an extension of an earlier

IPO version. IPODS are designed to meet the needs of distributed/parallel multi-levels

storage systems, where networks introduce significant overhead to the entire prefetching

process. Like iPipe and IPO, IPODS reduces I/O access time by hiding the long I/O time

through prefetching. Our results show that IPODS can judiciously reduce the elapsed times

of applications by approximately 6% when the cache buffer is small (e.g., Xcahce = 1). When

Xcahce increases, the improvement offered by IPODS start diminishing.

104



Chapter 7

Prototype Development

In this chapter, we describe our prototypes for the informed prefetching schemes pro-

posed in the previous three chapters. Because we are unable to test our design in a large

scale distributed system, we develop our prototypes using a computing cluster in the storage

systems research laboratory at Auburn University. The laboratory is located in Room 2104

of the Shelby Building. We replay real-world traces to evaluation the performance of the

prototypes. Then, we compare experimental results obtained from the prototypes with those

obtained from the simulators to validate the correctness of our simulators.

We only replay a portion (i.e., 10%)of the two traces used to drive our simulators,

because it takes a couple of days to replay an entire trace. The results generated by our

prototypes can be used to evaluate the performance of our proposed pipelined prefetching

schemes in a real-world storage system.

7.0.1 Objectives

Developing the prototypes helps us to achieve the following three objectives:

� To build real-world storage systems that implements our pipelined prefetching solu-

tions.

� To evaluate performance of our prefetching schemes in a real-world storage system.

� To validate the correctness of our simulators by comparing simulation results with the

prototyping results.

105



7.0.2 System Setup

We summarize the testbed (including hardware and software) used to develop our pro-

totypes as follows.

� Memory: Samsung 3GB RAM Main Memory.

� HDD: Westren Digital 500GB SATA 16 MB Cache WD5000AAKS.

� SSD: Intel 2Gb/s SATA SSD 80G sV 1A.

� LAN Network Switch: [96] Network Dell Power Connect 2824.

� Scripting Language: c-shell, c++.

� Input Parameter: set of informed prefetching requests.

� Performance Metric: Elapsed time measured in Second.

7.0.3 Design Issues of the Prototypes

In the process of developing our prototypes, we need to determine the first prefetched

blocks and the total number of the blocks to be prefetched in a pipeline manner. Thdd−ss -

time spent in moving a block from hard drive to solid state disk - is an important system

parameter used to determine the first block and the number of blocks to be prefetched. To

guarantee the correctness of Thdd−ss, we validate this parameter in a real-world testbed in our

laboratory by recording the highest value of Thdd−ss (see Chapter 3 for validation details).

Because the prototypes are developed in a small scale storage system using our testbed, we

set this parameter as a constant. Specifically, Thdd−ss is set to 0.122 seconds and 4.5 seconds

when block size is 10 MB and 200 MB, respectively.

The iPipe scheme differs from IPO in that iPipe takes Tstall−hdd(Xcache) to determine the

first block to be prefetched and Tstall−ss(Xcache) to determine the prefetch depth (i.e., the total

number of blocks to be prefetched). On the other hand, IPO always takes Tstall−ss(Xcache) to

106



determine the first block and the total number of blocks to be fetched in a pipeline manner.

In our simulation studies, these values are constants. However, we are unable to predict these

values in the prototypes. Therefore, we use the best case (i.e., lowest values) of Thdd−cache,

which is 0.07 seconds in the case of 10 MB data block size and 1.6 seconds in the case of 200

MB block size as shown in Figures 3.5 and 3.8. We also set Tss−cache to 0.044 seconds in

the case of a 10 MB data block size and 0.96 second in the case of a 200 MB block size as

shown in Figures 3.6 and 3.9. These values are used to determine the minimal stall values

that help our algorithms decide the proper prefetching depth and avoid incorrect results.

For the TIP module in the prototypes, we set Tcpu) + Thit + Tdriver to 0.00192 seconds

when block size is 10 MB and to 0.037 seconds when block size is 200 MB. These settings

are validated in Chapter 3. When it comes to Tcpu, we consider the worst case where our

prototype does not perform any computational overheads, meaning that applications are

very I/O intensive and consuming prefetched data very quickly. Note that this assumption

is conservative in the sense that our pipelined prefetching schemes can achieve better I/O

performance when Tcpu is a large value and applications are CPU intensive.

7.0.4 Validation Process

In order to validate our simulations results, we have to check if there is a similar trend

and little variation between the simulation results and prototyping results. Recall that

our prototypes implement the pipelined prefetching schemes proposed in the previous three

Chapters. The prototypes also reply 1000 I/O read requests from the two real-world I/O

traces. Although we only reply 1000 requests in the prototypes, the prototypes can handle

hundreds of thousands of requests. We simply reply 1000 requests from the two traces,

because it takes a couple of days to fully replay the entire trace. We conduct one experiment

to show that performance trend of replaying 1000 requests is the same as that of replaying the

entire I/O traces; the disk access time for pipelined prefetching and non-pipelined prefetching

are bounded by a particular range. We set Tcpu + Thit + Tdriver in the prototypes to a

107



constant, which represents the worst case (i.e., smallest value). This enables us to notice

the system performance trend (with and without our solutions) and to expect the results in

terms of elapsed time when am I/O trace is replayed. Equation 7.1 calculates the expected

elapsed time for a real world application, whose I/O access pattern is represented as a trace

replayed in our prototypes.

ProtElapsed =

(
Trace#ofReads

1000
) × PrototypingElapsedT ime(7.1)

where;

ProtElapsed : Expected prototyping elapsed time of a given trace

7.1 Prototypes

In this section, we discuss our prototypes developed for the iPipe, IPO, and IPODS

prefetching schemes. We also show results obtained from the prototypes and compare pro-

totyping results with earlier simulation results to validate the correctness of our simulators.

7.1.1 The iPipe Prototype

In this subsection, we present a prototype for the iPipe pipelined prefetching solution.

When using iPipe, the first few hinted blocks are fetched from the HDDs (i.e., the lowest

storage level) and the rest hinted blocks are fetched from the SSDs (i.e., the uppermost

storage level) if the hinted blocks are cached in the SSDs. We measure the prototyping

results in terms of elapsed time with and without iPipe that handles 1000 read requests. In

the iPipe simulator, the TIP module uses the number of buffers anywhere from 1 to 63 and

the block size is either 10 MB or 200 MB. Then, we collect prototyping results by replaying

a portion of the LASR1 or LASR2 traces. Finally, we compare the variation ratio between

the iPipe simulation results and the iPipe prototyping results.

108



Tables 7.1 and 7.5 show the prototyping results in terms of elapsed time in seconds

for the 10 MB and 200 MB cases, respectively. The prototyping results show that iPipe

improves the system performance by approximately 51% when the block size is 10 MB and

25% when the block size is 200 MB. The performance improvement offered by iPipe is

more pronounced when the TIP module is using few prefetching buffers. As the number of

prefetching buffers increases, the performance difference between iPipe and the non-iPipe

counterpart is decreasing.

When the block size is 10 MB, the prototyping results are close to the simulation results.

For example, the difference between the simulation results and the prototyping results is only

about 9%. The iPipe simulator is more accurate when the block size is large (e.e., 200 MB).

For example, the difference between the simulation and prototyping results is as low as 5%.

The simulator is more accurate for large block size, because the simulator always uses the

worst case of input parameters.

In the iPipe prototype, we implemented an application whose access pattern is the same

as the LASR traces machine01 (LASR1) and machine06 (LASR2), which consist of 11686

and 51206 I/O reading requests, respectively. Tables 7.2 and 7.6 show the prototyping

results in term of elapsed time measured in seconds when the application is running in the

iPipe prototype. Both the iPipe simulator and prototype share the same performance trend

in term of improvement over the non-iPipe counterpart.

Tables 7.3 and 7.7 show the iPipe simulation results illustrated in the iPipe chapter.

Tables 7.4 and 7.8 show a comparison between the improvement ratio of the simulation

results and the prototyping results. When we compare each case’s simulation and prototyping

results for different numbers of prefetching buffers, we notice that they are close to each other.

The simulation results show higher values by about 3-18%, because the iPipe simulator uses

the highest (worst case) recorded disk read latency. In the 10 MB case, prototyping results

show higher values than the simulation results by about 3-18% when Xcache is larger than

or equal to 11. We observe that during the prototyping experiments, several read requests

109



experience higher disk I/O time than those requests in the simulator. We refer these read

requests with high I/O access time as extreme disk requests. This variation ratio is very

low, because we use the highest validated disk read latency in our iPipe simulator.

To clarify the effect of these extreme disk requests recorded during our prototyping

experiments, let us consider the following motivational example. Suppose that Tcpu + Thit

+ Tdriver equals 1 time unit, Thdd−cache in simulation equals 5 time units, and Thdd−cache in

prototyping does not exceeds 4 time units but sometimes records some extreme values equal

to 6 time units. According to Equation 4.2, the prefetching horizon in the iPipe simulator

equals 5. We compare both simulation and prototyping stalls when Xcache equals 1 and 4,

which are considered small and large values, respectively. In addition, we assume that the

application issues 8 I/O read requests in both simulator and prototyping. In the simulation

case, the requests’ read latencies is (5,5,5,5,5,5,5,5) while in the prototyping case we assume

that the accesses are read in disk read latencies of (6,4,4,4,6,4,4,4). When Xcache is set to 1,

the application stalls for 5,4, and 3 time units when Thdd−cache equals 6,5, and 4, respectively

(see Equation 4.1). When Xcache is 4, the application stalls for 2,1, and 0 time units when

Thdd−cache equals 6,5, and 4, respectively. When applying these stall values to the given

stream of I/O read requests, we observe the following facts:

� In the simulation case, when Xcache is set to 1, the application stalls for 32 time units.

� In the prototype case, when Xcache is set to 1, the application stalls for 28 time units.

� In the simulation case, when Xcache is set to 4, the application stalls for 2 time units.

� In the prototype case, when Xcache is set to 4, the application stalls for 4 time units.

The above motivational example indicates that the iPipe prototype produces more stalls

than its simulator when the value of Xcache increases.

110



Table 7.1: Total elapsed time measured in seconds when the iPipe prototype is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is 10 MB.

Xcache 1 3 5 7 9

With iPipe 47.88 16.2851 10.0297 7.40379 5.81344

Without iPipe 99.5 34.9642 22.1658 15.9048 12.9741

Xcache 11 13 15 17 19

With iPipe 4.90562 4.24443 3.79232 3.39027 3.08462

Without iPipe 11.338 10.0755 9.79321 7.99748 7.35371

Xcache 25 35 45 55 63

With iPipe 2.54144 2.44104 2.34504 2.13651 2.07306

Without iPipe 6.79856 5.4483 5.05102 3.34087 3.16796

Table 7.2: Total elapsed time measured in seconds when the LASR traces are replayed by
the iPipe prototype. The number of prefetching buffers is set to a range between 1 to 63.
The block size is 10 MB.

Xcache 1 3 5 7 9

LASR1 With iPipe 559.6273482 190.3076786 117.2070742 86.52068994 67.93585984

LASR1 Without iPipe 1161.996241 408.5916412 259.0295388 185.8634928 151.6153326

LASR2 With iPipe 2452.188772 833.8948306 513.5808182 379.1184707 297.6830086

LASR2 Without iPipe 5091.663489 1790.376825 1135.021955 814.4211888 664.3517646

Xcache 11 13 15 17 19

LASR1 With iPipe 57.32707532 49.60040898 44.31705152 39.61869522 36.04686932

LASR1 Without iPipe 132.495868 117.742293 114.4434521 93.45855128 85.93545506

LASR2 With iPipe 251.1971777 217.3402826 194.1895379 173.6021656 157.9510517

LASR2 Without iPipe 580.573628 515.926053 501.4711113 409.5189609 376.5540743

Xcache 25 35 45 55 63

LASR1 With iPipe 29.69926784 28.52599344 27.40413744 24.96725586 24.22577916

LASR1 Without iPipe 79.44797216 63.6688338 59.02621972 39.04140682 37.02078056

LASR2 With iPipe 130.1369766 124.9958942 120.0801182 109.4021311 106.1531104

LASR2 Without iPipe 348.1270634 278.9856498 258.6425301 171.0725892 162.2185598

111



Table 7.3: Total elapsed time measured in seconds when the iPipe simulator is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is 10 MB.

Xcache 1 3 5 7 9

LASR1 With iPipe 607.612 202.537 121.522 86.8018 67.5125

LASR1 Without iPipe 1402.32 467.44 280.464 200.331 155.813

LASR2 With iPipe 2662.65 887.551 532.53 380.379 295.85

LASR2 Without iPipe 6144.72 2048.24 1228.94 877.817 682.747

Xcache 11 13 15 17 19

LASR1 With iPipe 55.2375 46.7394 40.5075 35.7419 31.9796

LASR1 Without iPipe 127.484 107.871 93.488 82.4894 73.8063

LASR2 With iPipe 242.059 204.819 177.51 156.627 140.14

LASR2 Without iPipe 558.611 472.671 409.648 361.454 323.406

Xcache 25 35 45 55 63

LASR1 With iPipe 24.3045 22.4358 22.4365 22.4369 22.4371

LASR1 Without iPipe 56.0928 40.0663 31.1627 25.4967 22.4371

LASR2 With iPipe 106.506 98.3142 98.3149 98.3153 98.3155

LASR2 Without iPipe 245.789 175.563 136.549 111.722 98.3155

Table 7.4: Comparison between iPipe’s simulation results and the prototyping results.
Total elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 10 MB.

Xcache 1 3 5 7 9

LASR1 Simulation 0.566709453 0.566710166 0.566710879 0.566708098 0.566708169

LASR1 prototyping 0.51839143 0.534235018 0.54751464 0.53449336 0.551919594

LASR2 Simulation 0.566676757 0.566676268 0.566675346 0.566676198 0.566676968

LASR2 prototyping 0.51839143 0.534235018 0.54751464 0.53449336 0.551919594

Xcache 11 13 15 17 19

LASR1 Simulation 0.566710332 0.566710237 0.566709096 0.566709177 0.566709075

LASR1 prototyping 0.567329335 0.578737532 0.61276027 0.576082716 0.580535539

LASR2 Simulation 0.56667699 0.566677456 0.566676757 0.566675151 0.566674706

LASR2 prototyping 0.567329335 0.578737532 0.61276027 0.576082716 0.580535539

Xcache 25 35 45 55 63

LASR1 Simulation 0.566709096 0.440033145 0.280020666 0.120007687 0

LASR1 prototyping 0.626179662 0.551962998 0.535729417 0.360492925 0.345616738

LASR2 Simulation 0.566677109 0.440006152 0.280002783 0.120000537 0

LASR2 prototyping 0.626179662 0.551962998 0.535729417 0.360492925 0.345616738

112



Table 7.5: Total elapsed time measured in seconds when the iPipe prototype is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is 200 MB.

Xcache 1 3 5 7 9

With iPipe 1360.27 455.467 285.398 200.495 158.36

Without iPipe 1832.43 653.29 371.157 273.445 246.693

Xcache 11 13 15 17 19

With iPipe 130.818 112.293 97.3989 86.2939 80.076

Without iPipe 174.627 148.697 133.107 127.165 108.789

Xcache 25 35 45 55 63

With iPipe 60.3609 44.974 38.793 37.6105 37

Without iPipe 86.2886 63.5934 49.8966 40.6426 37.1776

Table 7.6: Total elapsed time measured in seconds when the LASR traces are replayed by
the iPipe prototype. The number of prefetching buffers is set to a range between 1 to 63.
The block size is 200 MB.

Xcache 1 3 5 7 9

LASR1 With iPipe 15896.11522 5322.587362 3335.161028 2342.98457 1850.59496

LASR1 Without iPipe 21413.77698 7634.34694 4337.340702 3195.47827 2882.854398

LASR2 With iPipe 69653.98562 23322.6432 14614.08999 10266.54697 8108.98216

LASR2 Without iPipe 93831.41058 33452.36774 19005.46534 14002.02467 12632.16176

Xcache 11 13 15 17 19

LASR1 With iPipe 1528.739148 1312.255998 1138.203545 1008.430515 935.768136

LASR1 Without iPipe 2040.691122 1737.673142 1555.488402 1486.05019 1271.308254

LASR2 With iPipe 6698.666508 5750.075358 4987.408073 4418.765443 4100.371656

LASR2 Without iPipe 8941.950162 7614.178582 6815.877042 6511.61099 5570.649534

Xcache 25 35 45 55 63

LASR1 With iPipe 705.3774774 525.566164 453.334998 439.516303 432.382

LASR1 Without iPipe 1008.36858 743.1524724 583.0916676 474.9494236 434.4574336

LASR2 With iPipe 3090.840245 2302.938644 1986.434358 1925.883263 1894.622

LASR2 Without iPipe 4418.494052 3256.36364 2555.0053 2081.144976 1903.716186

113



Table 7.7: Total elapsed time measured in seconds when the iPipe simulator is tested. The
number of prefetching buffers is set to a range between 1 to 63. The block size is 200 MB.

Xcache 1 3 5 7 9

LASR1 With iPipe 17531.8 5843.93 3506.36 2504.54 1947.98

LASR1 Without iPipe 26877.8 8959.27 5375.56 3839.69 2986.42

LASR2 With iPipe 76811.8 25603.9 15362.4 10973.1 8534.64

LASR2 Without iPipe 117774 39257.9 23554.8 16824.8 13086

Xcache 11 13 15 17 19

LASR1 With iPipe 1593.8 1348.65 1168.79 1031.28 922.726

LASR1 Without iPipe 2443.44 2247.31 1791.85 1581.05 1414.62

LASR2 With iPipe 6982.89 5908.6 5120.79 4518.34 4042.73

LASR2 Without iPipe 10706.7 9059.52 7851.59 6927.87 6198.62

Xcache 25 35 45 55 63

LASR1 With iPipe 701.272 500.909 432.431 432.399 432.382

LASR1 Without iPipe 1075.11 767.937 597.284 488.687 432.382

LASR2 With iPipe 3072.47 2194.62 1894.67 1894.64 1894.62

LASR2 Without iPipe 4710.95 3364.97 2617.2 2141.34 1894.62

Table 7.8: Comparison between iPipe’s simulation results and the prototyping results.
Total elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 200 MB.

Xcache 1 3 5 7 9

LASR1 Simulation 0.347721912 0.347722527 0.347721912 0.347723384 0.347720682

LASR1 prototyping 0.257668779 0.30281039 0.231058555 0.266781254 0.358068531

LASR2 Simulation 0.34780342 0.347802608 0.347801722 0.347802054 0.34780376

LASR2 prototyping 0.257668779 0.30281039 0.231058555 0.266781254 0.358068531

Xcache 11 13 15 17 19

LASR1 Simulation 0.347722882 0.347697728 0.347718838 0.347724613 0.34772165

LASR1 prototyping 0.250871858 0.244820003 0.268266132 0.321402115 0.263932934

LASR2 Simulation 0.347801844 0.347802091 0.347802165 0.347802427 0.347801607

LASR2 prototyping 0.250871858 0.244820003 0.268266132 0.321402115 0.263932934

Xcache 25 35 45 55 63

LASR1 Simulation 0.347720698 0.347721232 0.27600438 0.11518211 0

LASR1 prototyping 0.30047654 0.292788245 0.222532197 0.074603987 0.00477707

LASR2 Simulation 0.34780246 0.347803992 0.276069846 0.115208234 0

LASR2 prototyping 0.30047654 0.292788245 0.222532197 0.074603987 0.00477707

114



7.1.2 The IPO Prototype

In this subsection, we describe our performance evaluation using an IPO prototype.

Like the iPipe prototype, the IPO prototype simply replays 1000 read requests from the two

LASR traces. We measure the application’s elapsed time using the IPO prototype. Then,

we compare the results obtained from the IPO prototype with the simulation results.

Tables 7.9 and 7.13 show the lapsed time measured in the IPO prototype when block

size is set to 10 MB and 200 MB, respectively. The prototyping results confirm that the

IPO scheme improves the performance of multi-level storage systems by 51% when block

size is 10 MB and by 25% when the block size is 200 MB. We also observe that when the

number of prefetching buffers increases, the performance gap between IPO and its non-

IPO counterpart is diminishing. Given the same multi-level storage system, applications

issuing small requests (e.g., 10MB) gains more benefits from IPO than applications issuing

large requests (e.g., 200MB). Small blocks enjoy more benefits from IPO than large blocks,

because SSDs show better performance than HDDs in this case.

We implement an application in the IPO prototype to resemble real-world applications

whose access patterns are the same as the LASR traces. Tables 7.10 and 7.14 show elapsed

time measured from the IPO prototype when the application is tested. The results confirm

that both the IPO simulator and its prototype share the same performance trend in term of

performance improvement over the non-IPO case.

Table 7.11 reveals the IPO simulation results when the block size is 10 MB; Table 7.15

shows the results when the block size is as large as 200 MB.

Tables 7.12 and 7.16 illustrate the comparison between the simulation results and the

prototyping results. We observe that both the simulation and prototyping results share very

similar elapsed times. Like the iPipe prototype, the IPO prototype exhibits smaller elapsed

time than the IPO simulator when block size is small (e.g., 10MB) and Xcache is less than

11. The opposite is true when Xcache is larger than or equal to 11. The variation between

the simulation and the prototyping results is as small as 3% in all the IPO cases.

115



Table 7.9: Total elapsed time measured in seconds when the IPO prototype is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is 10 MB.

Xcache 1 3 5 7

With IPO 47.9343 20.2705 17.9612 14.5456

Without IPO 99.4349 34.9642 22.1658 15.9048

Xcache 9 11 13 15

With IPO 12.5878 11.2401 9.99 9.79321

Without IPO 12.9741 11.338 10.0755 9.79321

Table 7.10: Total elapsed time measured in seconds when the LASR traces are replayed by
the IPO prototype. The number of prefetching buffers is set to a range between 1 to 15.
The block size is 10 MB.

Xcache 1 3 5 7

LASR1 With IPO 560.1602298 236.881063 209.8945832 169.9798816

LASR1 Without IPO 1161.996241 408.5916412 259.0295388 185.8634928

LASR2 With IPO 2454.523766 1037.971223 919.7212072 744.8219936

LASR2 Without IPO 5091.663489 1790.376825 1135.021955 814.4211888

Xcache 9 11 13 15

LASR1 With IPO 147.1010308 131.3518086 116.74314 114.4434521

LASR1 Without IPO 151.6153326 132.495868 117.742293 114.4434521

LASR2 With IPO 644.5708868 575.5605606 511.54794 501.4711113

LASR2 Without IPO 664.3517646 580.573628 515.926053 501.4711113

Table 7.11: Total elapsed time measured in seconds when the IPO simulator is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is 10 MB.

Xcache 1 3 5 7

LASR1 With IPO 607.876 202.792 201.128 172.036

LASR1 Without IPO 1402.32 467.516 280.552 200.392

LASR2 With IPO 2662.92 887.79 880.872 753.498

LASR2 Without IPO 6144.72 2048.28 1229.03 877.908

Xcache 9 11 13 15

LASR1 With IPO 155.768 127.448 107.878 93.5731

LASR1 Without IPO 155.87 127.547 107.878 93.5731

LASR2 With IPO 682.69 558.602 472.678 409.672

LASR2 Without IPO 682.792 558.701 472.678 409.672

116



Table 7.12: Comparison between IPO’s simulation results and the prototyping results.
Total elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 10 MB.

Xcache 1 3 5 7
LASR1 Simulation 0.566521193 0.566235166 0.283099033 0.141502655
LASR1 prototyping 0.517932838 0.420249856 0.189688619 0.085458478
LASR2 Simulation 0.566632816 0.566568047 0.283278683 0.141711888
LASR2 prototyping 0.517932838 0.420249856 0.189688619 0.085458478

Xcache 9 11 13 15
LASR1 Simulation 0.000654391 0.000776184 0 0
LASR1 prototyping 0.029774705 0.00863468 0.008485931 0
LASR2 Simulation 0.000149387 0.000177197 0 0
LASR2 prototyping 0.029774705 0.00863468 0.008485931 0

Table 7.13: Total elapsed time measured in seconds when the IPO prototype is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is 200 MB.

Xcache 1 3 5 7

With IPO 1361.64 548.053 355.994 266.736

Without IPO 1832.43 653.29 371.157 273.445

Xcache 9 11 13 15

With IPO 239.318 174.533 148.564 133.107

Without IPO 246.693 174.627 148.697 133.107

Table 7.14: Total elapsed time measured in seconds when the LASR traces are replayed by
the IPO prototype. The number of prefetching buffers is set to a range between 1 to 15.
The block size is 200 MB.

Xcache 1 3 5 7

LASR1 With IPO 15912.12504 6404.547358 4160.145884 3117.076896

LASR1 Without IPO 21413.77698 7634.34694 4337.340702 3195.47827

LASR2 With IPO 69724.13784 28063.60192 18229.02876 13658.48362

LASR2 Without IPO 93831.41058 33452.36774 19005.46534 14002.02467

Xcache 9 11 13 15

LASR1 With IPO 2796.670148 2039.592638 1736.118904 1555.488402

LASR1 Without IPO 2882.854398 2040.691122 1737.673142 1555.488402

LASR2 With IPO 12254.51751 8937.136798 7607.368184 6815.877042

LASR2 Without IPO 12632.16176 8941.950162 7614.178582 6815.877042

117



Table 7.15: Total elapsed time measured in seconds when the IPO simulator is tested. The
number of prefetching buffers is set to a range between 1 to 15. The block size is 200 MB.

Xcache 1 3 5 7

LASR1 With IPO 17533 7181.56 4842.92 3650.45

LASR1 Without IPO 26877.8 8960.76 5377.32 3840.85

LASR2 With IPO 76813 31457.1 21215.7 15988.5

LASR2 Without IPO 117774 39258.7 23556.5 16826.6

Xcache 9 11 13 15

LASR1 With IPO 2900.08 2408.85 2059.59 1793.48

LASR1 Without IPO 2987.52 2444.64 2067.66 1793.48

LASR2 With IPO 12705.6 10552.5 9018.85 7852.05

LASR2 Without IPO 13086.9 10708.4 9059.66 7852.05

Table 7.16: Comparison between IPO’s simulation results and the prototyping results.
Total elapsed time measured in seconds when the LASR traces are replayed by the iPipe
simulator and prototype. The block size is 200 MB.

Xcache 1 3 5 7

LASR1 Simulation 0.347677265 0.198554587 0.09938036 0.04957236

LASR1 prototyping 0.256921138 0.161087725 0.040853332 0.024535098

LASR2 Simulation 0.347793231 0.198722831 0.099369601 0.049808042

LASR2 prototyping 0.256921138 0.161087725 0.040853332 0.024535098

Xcache 9 11 13 15

LASR1 Simulation 0.029268423 0.014640192 0.003902963 0

LASR1 prototyping 0.029895457 0.00053829 0.000894436 0

LASR2 Simulation 0.029136006 0.014558664 0.004504584 0

LASR2 prototyping 0.029895457 0.00053829 0.000894436 0

118



7.1.3 The IPODS Prototype

Now we are in a position to present prototyping results for the IPODS scheme. We

develop a prototype of a multi-level distributed storage system where the IPODS prefetching

scheme is implemented. The client and storage nodes in the prototype are connected by the

fast Ethernet. Like the iPipe and IPO prototypes, the IPODS prototype allow us to measure

elapsed time of an application issuing 1000 read requests to the multi-level storage system.

In the IPODS prototype, we set the block size to 200 MB and the maximum concurrent reads

to 15. Thus, the TIP module in the IPODS prototype can choose the number of informed

prefetching buffers anywhere between 1 and 15. We compare the IPODS prototyping results

with the simulation results.

Table 7.17 reveals the prototyping results in terms of elapsed time in seconds. As men-

tioned earlier, the IPODS prototype processes 1000 read requests issued by the application

that replay the two LASR traces. The IPODS prototype confirms that IPODS can reduced

the application’s elapsed time by approximately 6% when the number of prefetching buffers

is set to a small value (e.g., 1-3). With the increasing number of prefetching buffers, the

performance gaps is narrowing.

The application implemented in the IPODS prototype and simulator used the two LASR

traces machine01 (LASR1) or machine06 (LASR2), which contain 11686 and 51206 read

requests, respectively. Table 7.18 shows the prototyping results in terms of elapsed time

in seconds when the application is executed in the prototype. Table 7.18 indicates that

the IPODS prototype and simulator share the same performance trend in term of improving

system performance over the non-IPODS case.

Table 7.19 plots the the IPODS simulation results presented in the previous IPODS

chapter. Table 7.20 shows the comparison between the simulation and prototyping results.

We observe that both the simulator and prototype agree with each other when the number of

prefetching buffers is set from 1 to 9. When there are 11 to 15 buffers, both the simulator and

prototype show 0% improvement over the non-IPODS case due to the pipeline limitation.

119



Table 7.17: Total elapsed time measured in seconds when the IPODS prototype is tested.
The number of prefetching buffers is set to a range between 1 to 15. The block size is 200
MB.

Xcache 1 3 5 7

With IPODS 4158 1401.48 888.555 650.74

Without IPODS 4430 1520.81 916.11 667.74

Xcache 9 11 13 15

With IPODS 518.703 428.184 364.925 320.925

Without IPODS 526.37 429.777 365.925 320.925

Table 7.18: Total elapsed time measured in seconds when the LASR traces are replayed by
the IPODS prototype. The number of prefetching buffers is set to a range between 1 to 15.
The block size is 200 MB.

Xcache 1 3 5 7

LASR1 With IPODS 48590.388 16377.69528 10383.65373 7604.54764

LASR1 Without IPODS 51768.98 17772.18566 10705.66146 7803.20964

LASR2 With IPODS 212914.548 71764.18488 45499.34733 33321.79244

LASR2 Without IPODS 226842.58 77874.59686 46910.32866 34192.29444

Xcache 9 11 13 15

LASR1 With IPODS 6061.563258 5003.758224 4264.51355 3750.32955

LASR1 Without IPODS 6151.15982 5022.374022 4276.19955 3750.32955

LASR2 With IPODS 26560.70582 21925.5899 18686.34955 16433.28555

LASR2 Without IPODS 26953.30222 22007.16106 18737.55555 16433.28555

We use SCP (secure copy) to read data from the remote HDDs and SSDs; we take the average

of the disk access time measured during the parameter validation process. For this reason,

the IPODS simulation and prototyping results are very close when Xcache is set to 1. When

Xcache increases, the IPODS prototype’s elapsed time is slightly higher (about 1%-8%) than

those of the IPODS simulator.

7.2 Summary

The goal of this part of study is three-fold. First, we built real-world storage systems that

implements our pipelined prefetching solutions. Second, we evaluated the performance of

our informed prefetching solutions in a real-world system. Last, we validated the correctness

of our simulators presented in the previous chapters by comparing simulation results with

the prototyping results.

120



Table 7.19: Total elapsed time measured in seconds when the LASR traces are replayed by
the IPODS simulator. The number of prefetching buffers is set to a range between 1 to 15.
The block size is 200 MB.

Xcache 1 3 5 7

LASR1 With IPODS 48590.9 16200 9933.42 7246.72

LASR1 Without IPODS 51769 17259.2 10357.2 7397.95

LASR2 With IPODS 212915 70973.4 43515 31742.4

LASR2 Without IPODS 226843 75615.6 45371.9 32409.7

Xcache 9 11 13 15

LASR1 With IPODS 5750.29 4704.81 3982.53 3454.88

LASR1 Without IPODS 5754.39 4708.83 3982.53 3454.88

LASR2 With IPODS 25202.5 20621.7 17449.7 15123.9

LASR2 Without IPODS 25206.6 20625.7 17449.7 15123.9

Table 7.20: Total elapsed time measured in seconds when the IPODS simulator is tested.
The number of prefetching buffers is set to a range between 1 to 15. The block size is 200
MB.

Xcache 1 3 5 7

LASR1 Simulation 0.061390021 0.061370168 0.040916464 0.02044215

LASR1 prototyping 0.061399549 0.078464765 0.030078266 0.025459011

LASR2 Simulation 0.061399294 0.061392094 0.040926212 0.020589515

LASR2 prototyping 0.061399549 0.078464765 0.030078266 0.025459011

Xcache 9 11 13 15

LASR1 Simulation 0.0007125 0.000853715 0 0

LASR1 prototyping 0.0145658 0.003706573 0.0027328 0

LASR2 Simulation 0.000162656 0.000193933 0 0

LASR2 prototyping 0.0145658 0.003706573 0.0027328 0

121



The three prototypes replay real-world traces to evaluation the performance of the iPipe,

IPO, and IPODS prefetching schemes. After comparing the simulators with the prototypes,

we conclude that both our prototyping and simulations results share similar performance

trends. Specifically, for iPipe and IPO, the simulation and prototyping results vary by 3-

18%. For IPODS, the simulation and prototyping results vary by only 1-8%. The prototyping

results confirm that the simulator presented in the previous chapters can be used to evaluate

the performance of our proposed pipelined prefetching solutions.

122



Chapter 8

Conclusions & Future Work

This chapter first concludes this dissertation by summarizing our contributions to the

field of informed prefetching. Then, we outline future research directions.

8.1 Main Contributions

Transparent Informed prefetching or TIP aims to utilize storage bandwidth and prefetch

data blocks to the cache before they are accessed by applications. Traditional informed

prefetching schemes can hide the latency of accessing storage systems by invoking disk I/O

parallelisms and fetching data based on application-disclosed hints. Disk access time effects

the informed prefetching because long disk access time increases application stalls. When

disk speed is slow, informed prefetching needs more buffers at the expense of demand caching

(LRU) for prefetching.

A multi-level (a.k.a., hybrid) storage system consists of multiple types of storage devices

that differ in their specifications (hardware, speed, size, and the like) [87]. Upper levels

exhibit better speed performance. Multi-level storage systems offer cost-effective solutions

for large-scale data centers.

In this dissertation, we investigate approaches to incorporating the TIP module in multi-

level storage systems to leverage informed prefetching mechanisms to boost I/O performance

of storage systems. The goal of this research is to demonstrate that building an informed

prefetching pipeline can significantly improve the I/O performance of multi-level storage

systems.

To achieve the above goal, we proposed three solutions (iPipe, IPO, and IPODS) that

perform informed prefetching in a pipeline manner. We illustrate a way of using application

123



hints to initiate prefetching among multiple storage levels like main memory, solid state disks,

and hard disk drives. The centerpiece of the iPipe, IPO, and IPODS schemes is a pipeline in

which we split the informed prefetching process into a set of independent prefetching steps

among the multiple storage levels. We showed how to integrate this pipeline with informed

prefetching and caching to manage I/O buffers at various storage levels.

In the iPipe scheme, we assume that multi-level storage systems have sufficient I/O

bandwidth and enough I/O parallelism, meaning that there is no I/O congestions in the

storage systems. This assumption was relaxed when we extend iPipe into the IPO scheme.

Finally, we developed the IPODS scheme to meet the needs of distributed and parallel storage

systems. The next three subsections summarizes our main contributions.

8.1.1 iPipe: An Pipelined and Informed Prefetching

In the first phase of this dissertation research, we developed iPipe - a new informed

prefetching technique powered by a pipeline. We started this research by assuming that

multi-level storage storage systems have scalable I/O bandwidth and parallelism, meaning

that that there is no I/O congestion. This assumption of scalable I/O enables a prefetching

mechanism to issue a large number of concurrent read requests without introducing long I/O

queues.

iPipe aims to reduce application I/O stalls and elapsed times by preloading hinted data

blocks to multi-level storage systems’ uppermost level, which has better I/O performance

than lower levels. iPipe contains multiple informed prefetching modules running concurrently

in a pipeline manner. The number of prefetchers in a storage server depends on the number

of storage levels. An N-level storage server requires N-1 prefetchers. The prefetchers in

lower-level storage devices help in boosting I/O performance of the prefetchers in upper-

levels. Consequently, iPipe reduces stall times, application elapsed times, and the prefetching

horizon. iPipe also improves the benefit of using more buffers for prefetching.

124



We developed an iPipe simulator to evaluate the performance of our pipelined prefetch-

ing scheme. The accuracy of the iPipe simulator was validated by a prototype running in

a real-world multi-level storage system. The simulation results show that iPipe reduces the

total elapsed time by up to 56% when the block size is 10 MB and by 34% when the block

size is 200 MB. The experimental results also show that as the number buffers increases,

the performance gap between iPipe and non-iPipe cases diminishes because the prefetching

module in the upper level becomes more efficient to reduce the application stalls.

8.1.2 IPO: Informed Prefetching Optimization

In the iPipe study, we assumed that multi-level storage systems have sufficient I/O band-

width. Unfortunately, our empirical experiments indicate that parallel storage systems may

have I/O congestions; evidence shows that there is a maximum number of concurrent read

requests processed in multi-level storage systems. In the second phase of our dissertation

study, we show that an upper-level prefetching mechanism many not fully utilize I/O band-

width, suggesting that unused I/O bandwidth can be allocated for lower-level prefetching

mechanisms to bring hinted blocks from lower-level to upper-level storage in a pipeline fash-

ion. We conducted experiments to illustrate that the pipelined prefetching process largely

depends on available I/O bandwidth for lower-level prefetchers.

In the IPO scheme, the lower-level prefetcher trigger a informed prefetching request

when the following conditions are met. First, the upper level SDDs have sufficient available

I/O bandwidth. Second, fetching hinted blocks from HDDs to SSDs will not saturate the

I/O bandwidth of SSDs and HDDs. We believe that the main concern is SSDs’ bandwidth,

because the SSDs are accessed by two prefetching modules. Compared with HDDs, SSDs

are more likely to have their I/O bandwidth saturated. Our IPO design ensures that a

lower-level prefetcher will never slow down the performance of its upper-level prefetching

counterpart.

125



The experimental results show that performance improvements offered by IPO are not

as significant as those offered by iPipe due to the limited I/O bandwidth. Nevertheless, IPO

reduces elapsed time by approximately 56% when the Xcahce is set to 1. As the Xcahce value

increases, IPO’s performance improvement is decreasing. This part of the study indicates

that our proposed IPO is very beneficial to parallel storage systems offering sufficient I/O

bandwidth.

8.1.3 IPODS: Pipelined Prefetching in Distributed/Parallel Storage Systems

In the third phase of the dissertation study, we extended the IPO schemes to meet the

needs of distributed/parallel multi-level storage systems, where massive amounts of data are

allocated to a set of storage servers built with multi-level storage devices.

Similar to iPipe and IPO, IPODS have several prefetching modules residing in each

storage server. Unlike iPipe and IPO, IPODS should incorporate a prefetcher to bring

data from remote storage servers to a client’s local I/O buffers. IPODS has a coordination

mechanism between a pair of client local I/O buffer and buffers in SSDs (i.e., upper-level

device) of a remote storage server. IPODS checks if hinted blocks have been cached in the

local buffer. If the hinted blocks are not available in the local buffer, a request will be sent

to the remote storage server to have the hinted blocks fetched from the server.

We developed the IPODS simulator and prototype to evaluate the performance of

IPODS deployed in distributed and parallel storage systems. Our results show that IPODS

can judiciously reduce the elapsed times of applications by approximately 6%. Importantly,

IPODS shows its best performance improvement when the there are a limited number of

prefetching buffers available in the upper-level storage devices.

8.1.4 Prototypes for iPipe, IPO, and IPODS

We implemented three prototypes for the above informed prefetching schemes. We

developed our prototypes using a computing cluster in our research laboratory at Auburn.

126



The prototypes replays real-world traces to evaluation the performance of the three pipelined

prefetching mechanism. The prototypes help us to validate the correctness of the simulators

in which iPipe, IPO, and IPODS are implemented. The validate process was performed by

comparing experimental results obtained from the prototypes with those obtained from the

simulators.

After comparing the simulators with the prototypes, we confirmed that both our proto-

typing and simulations results share similar performance trends. For example, for iPipe and

IPO, the simulation and prototyping results vary by 3-18%. When it comes to IPODS, the

simulation and prototyping results vary by only 1-8%. The prototyping results confirm that

the three simulators can be used to evaluate the performance of the iPipe, IPO, and IPODS

solutions.

8.2 Future Work

There are several important issues that we were not able to address in this dissertation.

These issues open many future research opportunities for us. In this section, we will discuss

our future research directions.

8.2.1 Data Migration

Our pipelined prefetching schemes can hide the latency of accessing storage systems

by loading hinted blocks to upper-level storage devices. Our solutions invoke disk I/O

parallelisms and fetching data based on application-disclosed hints. When data blocks are

fetched to upper-level storage devices, the lower-level storage devices keep the original copies

of the data blocks.

As the first future research direction, we will investigate data migration schemes. Instead

of sending copies of the data to the uppermost level, our prefetching mechanisms can migrate

the entire data blocks; obviously, the uppermost level’s space limitation is an obstacle that

we may face. Data migration requires moving data back and forth among the different

127



storage levels. This activity consumes storage system I/O bandwidth, because a prefetching

scheme must move the prefetched data blocks back to lower storage level when the blocks

are evicted from I/O buffers. We will show that the data migration scheme will be very

beneficial to applications with mixed workload of both reads and writes.

8.2.2 The Cost-Benefit Model

Our pipelined prefetching schemes relies on the important cost-benefit model, that helps

to divide the compound cache space between the demand misses cache (LRU) and prefetch-

ing. The division may change frequently in a dynamic workload conditions. Our pipelining

mechanisms can adjust their pipelined prefetching depth according to available I/O band-

width. In this dissertation research, we fix the number of prefetching buffers. This strategy

is good as long as workload conditions do not change dramatically.

In the future, we will extend our pipelined prefetching schemes by dynamically adjusting

the number of prefetching buffers for fast changing I/O load. To allow our prefetching

modules to change the number of prefetching buffers, we must rely on a good cost-benefit

model that can estimate the cost and benefit of increasing or decreasing prefetching buffer

size. We plan to integrate the cost-benefit model in multiple prefetchers deployed in multiple

level storage systems. Because each prefetching module individually handles a pair of two

consecutive storage level, each prefetcher must independently control its prefetching buffer

size.

8.2.3 Write Performance

We only focus on read performance of multi-level storage systems. Our proposed iP-

ipe, IPO, and IPODS are designed to improve performance of read-intensive applications

supported by multi-level storage systems. When it comes to write-intensive applications,

iPipe, IPO, and IPODS may not be able to boost the I/O performance of the applications.

128



This motivate us to investigate in the future a pipelined prefetching module that hand effi-

ciently handle write requests. We also will develop a simulator to evaluate the performance

of multi-level storage systems supporting applications with mixed workload of both writes

and reads.

8.2.4 Most Recently Used Policy

The TIP module employed in our solutions uses most recently used policy (MRU)for

informed caching. As discussed in chapter 3, we did not implement informed caching in

our solution. This is mainly because we cannot predict if a particular hinted access will

be cached when TIP performs prefetching. In one of our future project, we will integrate

the (MRU) policy into our pipelined prefetching mechanism for multi-level storage systems.

Such an integration will enable us to determine if a particular hinted access will be cached

at its prefetching phase.

8.2.5 Extending Storage Hierarchy

In this dissertation research, we only evaluated the performance of iPipe, IPO, and

IPODS using two-level storage systems that contain solid state disks and hard drives. In the

future, we plan to further evaluate our three pipelined prefetching scheme in a three-level

storage systems, where tapes are used as the lowest storage level. Tapes have a huge storage

capacity and less speed performance compared to HDDs and SSDs. IBM System Storage

TS2240 Tape Drive Express is a good example of this [95]. It has a capacity of 1.6 TB and

a speed of approximately 120 MB/s.

To incorporate tapes, we need to extend our added a prefetcher to fetch hinted blocks

from tapes and hard disks and solid state disks. Fetching hinted blocks from tapes is dif-

ferent from fetching blocks from hard drives, because data tapes have very slow seek times.

However, once the tape is positioned, the tape drive can stream data much faster. This

129



motivate us to group hinted blocks together so that hinted blocks sequentially stored on the

tape can be fetched at the same time to reduce long seek time.

8.2.6 Caching and Benchmarking

Caching prevents our prefetching schemes from loading hinted blocks data again. Both

caching and pipelined prefetching improve performance of informed prefetching. In our

solutions, we assumed the worst case in which informed caching was not implemented. In

our future work, we will seamlessly integrate informed caching with pipelined prefetching

mechanisms to further improve I/O performance of multi-level storage systems.

We will evaluate performance of the new design using real-world I/O-intensive bench-

marks. The benchmarks to be considered in our future research include XDataSlice, Sphinx,

Agrep, and Gnuld. In addition, we will use the IOzone file system benchmark used to mea-

sure the performance of file system operations [100]. Other benchmarks to be considered are

some Linux commands such as (grep) and (wc) [31].

8.2.7 Various Solid State Disks

In our iPipe study, we conducted extensive experiments using various solid state disks.

However, the system parameters of these solid state disks were collected from devices vendors’

websites [90] [91] [92] [93] [94] [95]. In the future, we will have to validate these parameters

in the context of multi-level storage systems.

Solid state disks provided by different vendors have different capacity and speed [91]

[92] [93]. In our future work, we will test our solutions using a wide range of SSD products.

We will purchase more different types of solid state disks to perform such experiments.

8.2.8 Block Sizes

Our tests show that the SSD’s performance in respect to the HDD is affected by the

data block size. For example, reading a data block from SSD is faster than from HDD about

130



56% when the block size is 10 MB and by about 34% when it is 200 MB. Also, SSDs in

a distributed storage system shows better performance than HDDs by about 6% when the

block size is 200 MB.

In our future work, we will investigate a possibility of varying block sizes in a multi-

level storage system. Future multi-level storage systems should dynamically choose the most

appropriate block size for each storage level under I/O different workload.

8.2.9 Fast Networks for Distributed Storage Systems

Our prototypes show that IPODS provided 6% performance improvement when it was

implemented in a 2-level distributed storage system in our laboratory. We observed that

the network is an I/O performance bottleneck. Madhyastha et al. used a fast network to

implement their solutions [65]. In our future work, we also plan to further improve the

performance of IPODS using a fast network, such as fiber channel networks.

131



Bibliography

[1] R. Patterson, Hugo, G. Gibson, D. Stodolsky, and J. Zelenka: Informed prefetching and
caching, In Proceedings of the 15th ACM Symposium on Operating System Principles,
pages 79-95, CO, USA, 1995.

[2] J. Griffioen and R. Appleton: Reducing file system latency using a predictive approach,
In Proceedings of the 1994 USENIX Annual Technical Conference, pages 197 207, Berke-
ley, CA, USA, 1994.

[3] Chuanpeng Li , Kai Shen , Athanasios E. Papathanasiou: Competitive prefetching
for concurrent sequential I/O, Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2007, March 21-23, 2007, Lisbon, Portugal
[doi¿10.1145/1272996.1273017]

[4] Vellanki, V., Chervenak, A.L., A Cost-Benefit Scheme for High Performance Predictive
Prefetching, Proceedings of the AMC/IEEE SC99 Conference, 1999.

[5] Chen, Y., Byna, S., Sun, X., Data Access History Cache and Associated Data Prefetch-
ing Mechanisms, Proceedings of the AMC/IEEE Conference on Supercomputing, Reno,
NV, Nov, 2007, pp. 1-12.

[6] Wang, J.Y.Q, Ong, J.S., Coady,Y., Feeley, M.J., Using Idle Workstations to Implement
Predictive Prefetching, Proceedings of the 9th IEEE International Symposium on High
Performance Distributed Computing, Pittsburgh, PA, Aug. 2000, pp. 87-94.

[7] Domenech, J., Sahuquillo, J., Gil, J.A., Pont, A., The Impact of the Web Prefetch-
ing Architecture on the Limits of Reducing Users Perceived Latency, IEEE/WIC/ACM
International Conference on Web Intelligence, Hong Kong, China, Dec. 2006, 740-744.

[8] Jeon, J., Lee, G., Cho, H., Ahn, B., A Prefetching Web Caching Method Using Adaptive
Search Patterns, 2003 IEEE Pacific Rim Conference On Communications, Computers,
And Signal Processing, Aug. 2003, vol. 1, pp. 37-40.

[9] Z. Zhang ; K. Lee ; X. Ma ; Y. Zhou: PFC: Transparent Optimization of Existing
Prefetching Strategies for Multi-Level Storage Systems, In Proceedings of 28th Interna-
tional Conference on Distributed Computing System, pages 740 - 751, Beijing, China,
2008.

[10] M. Huizinga, D. and S. Desai: Implementation of informed prefetching and caching in
linux, In Proceedings of the International Conference on Information Technology, pages
443 448, Las Vegas, NV, USA, 2000.

132



[11] R. Hugo Patterson , Garth A. Gibson , M. Satyanarayanan: A status report on research
in transparent informed prefetching, ACM SIGOPS Operating Systems Review, v.27
n.2, pages: 21-34, 1993.

[12] A.Tomkins, R. Hugo Patterson and G. Gibson: Informed multi-process prefetching and
caching, In Proceedings of the 1997 ACM SIGMETRICS international conference on
measurement and modeling of computer systems, pages 100 - 114, Seattle, WA , USA,
1997.

[13] Fay Chang , Garth A. Gibson: Automatic I/O hint generation through speculative
execution, Proceedings of the third symposium on Operating systems design and imple-
mentation, p.1-14, February 1999, New Orleans, Louisiana, United States

[14] Pei Cao , Edward W. Felten , Anna R. Karlin , Kai Li: A study of integrated prefetching
and caching strategies, Proceedings of the 1995 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems,p.188-197, May 15-19,
1995, Ottawa, Ontario, Canada [doi¿10.1145/223587.223608].

[15] Susanne Albers , Markus Bttner : Integrated prefetching and caching in single and
parallel disk systems, Proceedings of the fifteenth annual ACM symposium on Par-
allel algorithms and architectures, June 07-09, 2003, San Diego, California, USA
[doi¿10.1145/777412.777431].

[16] R.H. Patterson, G.A. Gibson, M. Satyanarayanan: Using Transparent Informed
Prefetching (TIP) to Reduce File Read Latency , In Proceedings of Conference on Mass
Storage Systems and Technologies, Pages: 329-342, Greenbelt, MD, 1992.

[17] D. Rochberg, G.A. Gibson: Prefetching over a network: early experience with CTIP,
ACM SIGMETRICS Performance Evaluation Review, v.25 n.3, Pages: 29-36, 1997.

[18] F. Jason: Multi-level memory prefetching for media and stream processing , In IEEE
International Conference on Multimedia and Expo, pages 101 104, St. Louis, MO, USA,
2002.

[19] Song J. and X. Zhang: Ulc: A file block placement and replacement protocol to effec-
tively exploit hierarchical locality in multilevel buffer caches, In Proceedings of the 24th
International Conference on Distributed Computer Systems, pages 168 - 177, St. Louis,
MO, USA, 2004.

[20] J. Kang and W. Sung: A multi-level block priority based instruction caching scheme
for multimedia processors, In Proceedings of the 24th International Conference on Dis-
tributed Computer Systems, pages 125 132, Antwerp, Belgium, 2001.

[21] S. Przybylski, M. Horowitz, and J. Hennessy: Performance tradeoffs in cache design,
In 15th Annual International Symposium on Computer Architecture, pages 290 298,
Honolulu, HI, USA, 1988.

133



[22] S. Przybylski, M. Horowitz, and J. Hennessy: Characteristics of performance-optimal
multi-level cache hierarchies, In 16th Annual International Symposium on Computer
Architecture, pages 114 - 121, Stanford University, CA, USA, 1989.

[23] M. Nijim: Modelling Speculative Prefetching for Hybrid Storage Systems, In Network-
ing, Architecture and Storage (NAS), 2010 IEEE Fifth International Conference on,
pages 143 - 151, Macau, 2010.

[24] M. Nijim, Z. Zong, X. Qin, Y. Nijim: Multi-Layer Prefetching for Hybrid Storage
Systems: Algorithms, Models, and Evaluations, In 2010 39th International Conference
on Parallel Processing Workshops, DOI 10.1109/ICPPW.2010.18.

[25] T. Kimbrel, P. Cao, E. Felten, A. Karlin, K. Li: Integrated Parallel Prefetching and
Caching, Proceedings of the 1996 ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, pages 262 - 263, PA,USA, 1996.

[26] R. Hugo Patterson, G. Gibson: Exposing I/O concurrency with informed prefetching,
Proceedings of the third international conference on on Parallel and distributed infor-
mation systems, pages 7 - 16, Austin, TX, USA, 1994.

[27] Jon A. Solworth , Cyril U. Orji: Write-Only Disk Caches, Proceedings of the 1990 ACM
SIGMOD international conference on Management of data, p.123-132, May 23-26, 1990,
Atlantic City, New Jersey, United States [doi¿10.1145/93597.98722]

[28] David Kotz , Carla Schlatter Ellis: Caching the writeback policies in parallel file systems,
Journal of Parallel and Distributed Computing, v.17 n.1-2, p.140-145, Jan./Feb. 1993
[doi¿10.1006/jpdc.1993.1012]

[29] Mendel Rosenblum: The design and implementation of a log-structured file system,
University of California at Berkeley, Berkeley, CA, 1992

[30] Y. Chen ; Byna, S. ; X. Sun ; Thakur, R. ; Gropp, W: Exploring Parallel I/O Concur-
rency with Speculative Prefetching, Proceedings of the 2008 37th International Confer-
ence on Parallel Processing, pages 422 - 429, Portland, OR, USA, 2008.

[31] J. Lewis, M. I. Alghamdi, M. A. Assaf, X.-J. Ruan, Z.-Y. Ding, and X. Qin: An
Automatic Prefetching and Caching System, In Proceedings of the 29th International
Performance Computing and Communications Conference (IPCCC), 2010.

[32] Y. Chen ; Byna, S. ; X. Sun ; Thakur, R. ; Gropp, W: Hiding I/O Latency with Pre-
execution Prefetching for Parallel Applications, Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1 - 10, Austin, TX, USA, 2008.

[33] Gabriel Rivera , Chau-Wen Tseng: Locality optimizations for multi-level caches,
Proceedings of the 1999 ACM/IEEE conference on Supercomputing (CDROM),p.2-es,
November 14-19, 1999, Portland, Oregon, United States [doi¿10.1145/331532.331534].

134



[34] Achim Kraiss , Gerhard Weikum: Integrated document caching and prefetching
in storage hierarchies based on Markov-chain predictions, The VLDB Journal The
International Journal on Very Large Data Bases,v.7 n.3, p.141-162, August 1998
[doi¿10.1007/s007780050060]

[35] Surendra Byna , Yong Chen , Xian-He Sun , Rajeev Thakur , William Gropp: Parallel
I/O prefetching using MPI file caching and I/O signatures, Proceedings of the 2008
ACM/IEEE conference on Supercomputing, November 15-21, 2008, Austin, Texas.

[36] Xiaonan Zhao, Zhanhuai Li, and Leijie Zeng: A hierarchical storage strategy based on
block-level data valuation, In Fourth International Conference on Networked Computing
and Advanced Information Management, pages 36 41, Gyeongju, South Korea, 2008.

[37] Song Jiang, Kei Davis, and Xiaodong Zhang: Coordinated multilevel buffer cache man-
agement with consistent access locality quantification, In IEEE Transcations on Com-
puters, volume 56, pages 95 108, Baltimore, MD, USA, 2007.

[38] Srinivas Kashyap, Samir Khuller, Yung-Chun Wan, and Leana Golubchik: Fast recon-
figuration of data placement in parallel disks, Proceedings of the eighth Workshop on
Algorithm Engineering and Experiments and the Third Workshop on Analytic Algorith-
mics and Combinatorics , 2006.

[39] Mary G. Baker , John H. Hartman , Michael D. Kupfer , Ken W. Shirriff , John K.
Ousterhout: Measurements of a distributed file system, Proceedings of the thirteenth
ACM symposium on Operating systems principles, p.198-212, October 13-16, 1991, Pa-
cific Grove, California, United States [doi¿10.1145/121132.121164]

[40] Mirjana Spasojevic , M. Satyanarayanan: An empirical study of a wide-area distributed
file system, ACM Transactions on Computer Systems (TOCS), v.14 n.2, p.200-222, May
1996 [doi¿10.1145/227695.227698]

[41] A Vijay Srinivas , D. Janakiram : A model for characterizing the scalability of dis-
tributed systems, ACM SIGOPS Operating Systems Review , Volume 39 Issue 3, July
2005.

[42] M. Satyanarayanan : Scalable, Secure and Highly Available Distributed File Access,
Computer, vol. 23, no. 5, pp. 9-21, May 1990.

[43] Dhruba Borthakur: The Hadoop Distributed File System: Architecture and Design,
The Apache Software Foundation., 2007, DOI: http://hadoop.apache.org/
common/docs/r0.18.0/hdfs design.pdf

[44] Dhruba Borthakur: HDFS Architecture, The Apache Software Foundation., 2008, DOI:
http://hadoop.apache.org/
common/docs/r0.20.0/hdfs design.pdf

[45] Shafer, J., Rixner S., Cox A.L : The Hadoop distributed filesystem: Balancing porta-
bility and performance , IEEE International Symposium on Performance Analysis of

135



Systems Software (ISPASS), pp. 122 - 133 , White Plains, NY , March 2010. DOI:
10.1109/ISPASS.2010.5452045 .

[46] Diana Moise, Gabriel Antoniu, Luc Boug: Improving the Hadoop map/reduce frame-
work to support concurrent appends through the BlobSeer BLOB management sys-
tem , Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC ’10), pp. 834 - 840 , Chicago, IL, June 2010. DOI:
10.1145/1851476.1851596

[47] Jeffrey Dean , Sanjay Ghemawat: MapReduce: a flexible data processing tool, Commu-
nications of the ACM, , v.53 n.1, January 2010 [doi¿10.1145/1629175.1629198]

[48] Jeffrey Dean , Sanjay Ghemawat: MapReduce: simplified data process-
ing on large clusters, Communications of the ACM, v.51 n.1, January 2008
[doi¿10.1145/1327452.1327492]

[49] G. Hughes; J. Murray: Reliability and security of RAID storage systems and D2D
archives using SATA disk drives, ACM Transactions on Storage, Vol. 1, Issue 1, Pages:
95 107, 2005.

[50] Q. Zou; Y. Zhu, D. Feng: A Study of Self-similarity in Parallel I/O Workloads, MSST
’10 Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), Pages:1 - 6 , 2010, DOI: 10.1109/MSST.2010.5496978 .

[51] Ganger, G.R. ; Worthington, B.L. ; Hou, R.Y. ; Patt, Y.N: Disk arrays: high-
performance, high-reliability storage subsystems, Journal: Computer, issn: 0018-9162,
volume 27, pages 30-36, doi: 10.1109/2.268882 Ann Arbor, MI, USA, 1994.

[52] Alexander Thomasian: Multi-level RAID for very large disk arrays, ACM
SIGMETRICS Performance Evaluation Review, v.33 n.4, March 2006
[doi¿10.1145/1138085.1138091]

[53] Maria E. Gomez , Vicente Santonja: Analysis of Self-Similarity in I/O Workload Us-
ing Structural Modeling, Proceedings of the 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, p.234, March
24-28, 1999.

[54] Nancy Tran , Daniel A. Reed: ARIMA time series modeling and forecasting for adaptive
I/O prefetching, Proceedings of the 15th international conference on Supercomputing,
p.473-485, June 2001, Sorrento, Italy [doi¿10.1145/377792.377905]

[55] James Oly , Daniel A. Reed: Markov model prediction of I/O requests for scientific
applications, Proceedings of the 16th international conference on Supercomputing, June
22-26, 2002, New York, New York, USA [doi¿10.1145/514191.514214]

[56] J. No: A Design for Hybrid File System, European Conference for the APPLIED MATH-
EMATICS and INFORMATICS, Applied Mathematics and Informatics, ISBN: 978-960-
474-260-8, Pages: 143 - 148, Vouliagmeni, Athens, Greece, 2010.

136



[57] G. Gibson et al: A Cost-Effective, High-Bandwidth Storage Architectures, Proceed-
ings of the 8th Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, California, 1998.

[58] Mishra, S.K. ; Mohapatra, P.: Performance Study of RAID-5 Disk Arrays with Data
and Parity Cache, Proceedings of 1996 International Conference on Parallel Processing,
Pages: 222-229, Ithaca, NY , 1996.

[59] S.H. Baek et al: Reliability and performance of hierarchical RAID with multiple con-
trollers, Proceedings of twentieth annual ACM symposium on principles of distributed
computing, Pages: 246 254, 2001.

[60] W. MEADOR: DISK ARRAY SYSTEMS, Proceedings of COMPCON Spring ’89.
Thirty-Fourth IEEE Computer Society International Conference, Pages: 143 - 146 ,
San Francisco, CA , USA, 1989.

[61] Y. Wu, A. G. Dimakis, and K. Ramchandran: Deterministic regenerating codes for
distributed storage, presented at the Allerton Con. Control, Computing, and Commu-
nication, Urbana-Champaign, IL, Sep. 2007.

[62] Dimakis A.G., Godfrey P.B., Yunnan Wu, Wainwright M.J., Ramchandran K.: Network
Coding for Distributed Storage Systems, IEEE TRANSACTIONS ON INFORMATION
THEORY, VOL. 56, NO. 9, SEPTEMBER 2010

[63] R. Hou, J. Menon; and Y. Patt: Balancing I/O Response Time and Disk Rebuild Time
in a RAID5 Disk Array, Proceedings of on Systems Sciences, Pages: 70-79, 1993.

[64] A. Drapeau ; R. Katz: Striped tape arrays, Proceedings of 12th IEEE Symposium on
Mass Storage Systems, 1993.

[65] T.Madhyastha; G. Gibson; C. Faloutsos: Informed prefetching of collective in-
put/output requests, Proceedings of the 1999 ACM/IEEE conference on Supercomputing
(CDROM), Portland, Oregon, 1999.

[66] Fay Chang; Jeffrey Dean; Sanjay Ghemawat; Wilson C. Hsieh; Deborah A. Wallach;
Mike Burrows; Tushar Chandra; Andrew Fikes; Robert E. Gruber: Bigtable: A Dis-
tributed Storage System for Structured Data, ACM Transactions on Computer Systems
(TOCS), v.26 n.2, pages: 1-26, 2008.

[67] Brian Tierney ; Jason Lee ; Ling Tony Chen ; Hanan Herzog ; Gary Hoo ; Guojun Jin
; William E. Johnston: Distributed parallel data storage systems: a scalable approach
to high speed image servers, Proceedings of the second ACM international conference
on Multimedia, pages: 399-405, San Francisco, CA, 1994.

[68] Edward K. Lee ; Chandramohan A. Thekkath: Petal: distributed virtual disks, Proceed-
ings of the seventh international conference on Architectural support for programming
languages and operating systems, pages: 84-92, Cambridge, Massachusetts, 1996.

137



[69] Moyer, S.A.; Sunderam, V.S: PIOUS: a scalable parallel I/O system for distributed com-
puting environments, Proceedings of Scalable High-Performance Computing Conference,
pages: 71 - 78, Knoxville, TN, 1994.

[70] D. Feng, Q. Zou, H. Jiang, and et al.: A novel model for synthesizing parallel i/o
workloads in scientific applications, Proceedings of the IEEE International Conference
on Cluster Computing (Cluster’08), Tsukuba, Japan, September 2008.

[71] Luis Cabrera , Darrell D.E. Long: SWIFT: USING DISTRIBUTED DISK STRIPING
TO PROVIDE HIGH I/O DATA RATES, University of California at Santa Cruz, Santa
Cruz, CA, 1991.

[72] D. D.E. Long , Bruce R. Montague , Luis Cabrera: SWIFT/RAID: A DISTRIBUTED
RAID SYSTEM, University of California at Santa Cruz, Santa Cruz, CA, 1994.

[73] Sanjay Ghemawat , Howard Gobioff , Shun-Tak Leung: The Google file system, Pro-
ceedings of the nineteenth ACM symposium on Operating systems principles, October
19-22, 2003, Bolton Landing, NY, USA [doi¿10.1145/945445.945450]

[74] Sage A. Weil , Scott A. Brandt , Ethan L. Miller , Darrell D. E. Long , Carlos Maltzahn:
Ceph:a scalable, high-performance distributed file system, Proceedings of the 7th sympo-
sium on Operating systems design and implementation, November 06-08, 2006, Seattle,
Washington.

[75] John H. Howard , Michael L. Kazar , Sherri G. Menees , David A. Nichols , M. Satya-
narayanan , Robert N. Sidebotham , Michael J. West: Scale and performance in a
distributed file system, ACM Transactions on Computer Systems (TOCS), v.6 n.1,
p.51-81, Feb. 1988 [doi¿10.1145/35037.35059]

[76] Chandramohan A. Thekkath , Timothy Mann , Edward K. Lee: Frangipani: a
scalable distributed file system, Proceedings of the sixteenth ACM symposium on
Operating systems principles, p.224-237, October 05-08, 1997, Saint Malo, France
[doi¿10.1145/268998.266694]

[77] Siegel A., Birman K., Marzullo K.: Deceit: A Flexible Distributed File System, Pro-
ceedings of the Workshop on the Management of Replicated Data, 1990, p.15-17, 8-9
Nov 1990, Houston, TX , USA .

[78] M. Satyanarayanan , John H. Howard , David A. Nichols , Robert N. Sidebotham , Al-
fred Z. Spector , Michael J. West,: The ITC distributed file system: principles and de-
sign, Proceedings of the tenth ACM symposium on Operating systems principles,p.35-50,
December 1985, Orcas Island, Washington, United States [doi¿10.1145/323647.323633]

[79] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and D. C.
Steer.: Coda: A highly available file system for a distributed workstation environment,
IEEE Transactions on Computers,39(4):447459, 1990.

138



[80] Narayan, S., Chandy, J.A: Parity Redundancy in a Clustered Storage System, In-
ternational Workshop on Storage Network Architecture and Parallel I/Os, 2007.
SNAPI.,page(s): 17 - 24, Volume: Issue: , 24-24 Sept. 2007

[81] C.K. Yang, T. Mitra and T. Chiueh: A Decoupled Architecture for Application-Specific
File Prefetching, Freenix Track of USENIX 2002 Annual Conference, 2002.

[82] R. W. Watson , R. A. Coyne: The parallel I/O architecture of the high-performance
storage system (HPSS), Proceedings of the 14th IEEE Symposium on Mass Storage
Systems, Page: 27, 1995.

[83] John H. Hartman , John K. Ousterhout: The Zebra striped network file system, ACM
Transactions on Computer Systems (TOCS), v.13 n.3, pages: 274-310, 1995.

[84] Brian L. Tierney , William E. Johnston , Hanan Herzog , Gary Hoo , Guojun Jin , Jason
Lee , Ling Tony Chen , Doron Rotem: Using high speed networks to enable distributed
parallel image server systems, Proceedings of the 1994 conference on Supercomputing,
Pages: 610-619, Washington, D.C, 1994.

[85] W. Tuma: Comparison of drive technologies for high transaction databases, Storage
developer conference, Santa Clara,2008, doi: www.storage-developer.org

[86] S. Rizvi ; T. Chung: Flash SSD vs HDD: High Performance Oriented Modern Embedded
and Multimedia Storage Systems, Proceedings of 2010 2nd International Conference on
Computer Engineering and Technology, Pages: V7-297 - V7-299, Chengdu, 2010.

[87] T. Kaneko: Optimal Task Switching Policy for a Multilevel Storage System, IBM Jour-
nal of Research and Development, vol.18, no.4, pp.310-315, July 1974.

[88] Nanopoulos, A., Katsaros, D., Manolopoulos, Y., A Data Mining Algorithm for Gener-
alized Web Prefetching, IEEE Transactions on Knowledge and Data Engineering, Sep.
2003, vol. 15, no. 5.

[89] Hadoop Archive Guide, doi: http://hadoop.apache.org/mapreduce/docs/
r0.21.0/hadoop archives.html

[90] Kingston Valueram, doi: http://www.valueram.com/desktop/memory.asp

[91] Intel X25-E Extreme SATA Solid-State Drive, doi: http://www.intel.com/
design/flash/nand/extreme/index.htm

[92] Corsair Nova Series V64 Solid-State Hard Drive, doi: http://www.corsair.com/
solid-state-drives/nova-series.html

[93] Corsair Force Series F115 Solid-State Hard Drive, doi: http://www.corsair.com/
force-feries-f115-solid-state-hard-drive.html

[94] WD Caviar Green, doi: http://www.wdc.com/en/products/Products.asp?DriveID=559

139



[95] Ibm system storage ts2240 tape drive express model, doi. http://www03.ibm.com/
systems/storage/tape/ts2240/.

[96] DELL PowerConnect 2824 Switch, doi:http://www.dell.com/us/business/p/
powerconnect-2824/pd.

[97] Lasr trace machine01, doi:http://iotta.snia.org/traces/list/Subtrace?parent=LASR+Traces.

[98] Lasr trace machine06, doi:http://iotta.snia.org/traces/list/Subtrace?parent=LASR+Traces.

[99] RamSpeed Cache and memory benchmarking tool, doi:
http://alasir.com/software/ramspeed/

[100] IOzone Filesystem Benchmark, doi: http://www.iozone.org/

140


