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Abstract

In this dissertation the author has found the necessary and sufficient conditions for

obtaining a 6-cycle system of the Cartesian product of two complete graphs covering 2-

paths in the corresponding bipartite graph. She has found the maximum fair 6-cycle system

as well as 6-cycle system of the Cartesian product of two complete graphs. As a part of

this dissertation, the author has also found the necessary and sufficient conditions required

to obtain a 4-cycle system of complete graph on n vertices with a nearly 2-regular leave.

Finally the author has worked on the problem of finding a 4-cycle system of the line graph

of a complete multipartite graph.
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Chapter 1

Introduction

1.1 Introduction

A graph G, consists of a set of vertices or points, and a set of edges. G is denoted as

an ordered pair, (V (G), E(G)), where V (G) denotes the set of vertices or points, and E(G)

denotes the set of edges or line segments {u, v} (or more simply uv), such that u, v ∈ V (G).

The number of vertices in G is said to be the order of G and the number of edges in G is said

to be the size of G. Edges (e) are unordered pairs of vertices ({u, v}) that can be depicted

as line segments that connect the vertices, and the two vertices (u and v) that are connected

by the edge (e) are said to be it’s endpoints, and the edge (e) is said to be incident to the

two vertices (u and v). Any two vertices (u and v) are said to be adjacent if they form the

endpoints of an edge (e). The degree of a vertex v in V (G) is the number of vertices adjacent

to the vertex v in G. The degree of a vertex is also denoted by deg(v). A loop is an edge

that connects a vertex to itself. A graph is said to have multiple edges if at least one pair of

vertices are connected by more than one edge. A simple graph is a graph that contains no

loops nor multiple edges. A graph G
′

is said to be a subgraph of a graph G if V
′
(G) ⊆ V (G)

and E
′
(G) ⊆ E(G). And G

′
is said to be an induced subgraph of a graph G if it is formed

by the set of vertices V
′
(G), where V

′
(G) ⊆ V (G), and the edge set of G

′
contains the edges

in E(G) that join the vertices in V
′
(G).

A graph on n vertices in which each vertex is adjacent to every other vertex is said

to be a complete graph. It is denoted by Kn, where n is the order of the graph. The numbers

of edges in Kn is given by |E(G)| = (n)(n− 1)/2. λKn denotes the graph formed by joining

each pair of adjacent vertices in Kn by λ edges.
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A complete multipartite graph is denoted by G = K(a1, . . . , ap); the vertex set

of G can be expressed as the disjoint union, V (G) = V (Ka1) ∪ V (Ka2) ∪ . . . V (Kap), and

{u, v} ∈ E(G) if and only if u ∈ V (Kai), u ∈ V (Kaj) such that i 6= j. The case when p = 2

is defined to be the bipartite graph denoted by K(m,n) where a1 = m and a2 = n.

An m-path is a sequence of m + 1 vertices such that each vertex is connected to

the next vertex and two vertices have degree one, rest have degree two. It is also denoted

by Pm+1 = {v1, v2, . . . , vp+1}. An m-cycle is an m-path with the property that v1 = vp+1. It

is also denoted by Cm = (v1, v2, . . . , vp). Any connected graph with no cycles is said to be a

tree. A forest is a disjoint union of trees. A hamilton path is a path that spans the vertex

set of a graph G. Simillary we also define a hamilton cycle which spans the vertex set of a

graph G. An m-cycle system of a graph G is denoted by (V (G), C) where the set C contains

cycles of length m whose edges form a partition of the edge set of G.

The line graph of a graph G, L(G) is defined as follows: Every edge {u, v} ∈ E(G)

is a vertex in L(G) and two vertices are adjacent in L(G) if the corresponding edges in G

have a common end point. A clique of a graph G is a subset of the vertex set of G such that

any two vertices in the clique are adjacent to one another.

The history presented below is in chronological order.

In 1847, Kirkman [62] posed one of the earliest problems of graph theoretical im-

portance given below. Historically the problem is stated as follows:

“If Qx denotes the greatest number of triads that can be formed with x symbols, so that

no duad shall be twice employed, then
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3Qx = c(x− 1)/2− Vx

if for Vx we put 6k+4, when x = 6n−1;x/2+3k+1, when x = 6n−2; 0 when x = 6n+1 or

6n+ 3; and x/2, when x = 6n or 6n+ 2: where 2m(2k+ 1) = n;x, n,m, k, being all integers

≥ 0”. Notice that Vx is the number of duads excluded from Qx .

He then gave solutions for Q3, Q7, Q15 and Q25. In graph theory terminology, this

problem asks for a 3-cycle system of as big a subgraph of Kx as possible. Kirkman gave the

solution for the 3-cycle systems of K3, K7, K13 and K25.

Since then, there has been a lot of interest in problems pertaining to m-cycle systems

of G, especially the case where G = Kn. In 1965, Kötzig [63] gave several results regarding

even cycle systems of Kn. He first showed that there exists a 4k-cycle system of Kn when

n ≡ 1 (mod 8k) (sufficient condition). For the case where n and k are relatively prime he

gave necessary and sufficient conditions to obtain a 4k-cycle system of Kn where n ≡ 1

(mod 8k). Finally he showed that Kn can be decomposed into 2p-cycles, where p is prime if

and only if n ≡ 1 (mod 2p+1). In 1966, Rosa [80] completed Kötzig’s result regarding even

cycle systems of Kn by giving a solution for the case where m ≡ 2 (mod 4). He showed that

there exists a cyclic decomposition of Kn into p-cycles where p ≡ 2 (mod 4) and n = 2kp+1

for any k and p. In 1966 Rosa [81], solved the problem further by giving partial solutions

to the case where m is odd, n ≡ 1 (mod 2m), and n is an odd prime number satisfying the

condition, n ≡ m (mod 2m).

There are results in literature about various other type of H decompositions of

Kn too, where H is a subgraph of Kn. In 1979, Tarsi [88] gave necessary and sufficient

conditions for obtaining the star decomposition, Sn of λKn. A star Sn is defined to be the

bipartite graph K1,n. A few years later in 1983, Tarsi [89] gave a result regarding path

decompositions of λKn. He showed that the obvious necessary condition for obtaining an
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m-path decomposition of λKn, n(n − 1) ≡ 0 (mod 2m) and n ≥ m + 1, is also sufficient.

In 1980, Alspach and Varma [4] gave necessary and sufficient conditions for obtaining a 2pe-

cycle system of Kn, where p is prime and e is any positive integer. They showed that there

exists a 2pe-cycle system of Kn if and only if n is odd, n ≥ 2pe and 2pe divides ( n2 ). In 1981,

D. Sotteau [84] proved a prominent result on cycle systems of the complete bipartite graphs,

K(m,n). She showed that the complete bipartite graph K(m,n) can be decomposed into

cycles of length 2k if and only if m and n are even integers not less than k and 2k divides

mn. She also gave the conditions for obtaining a directed 2k-cycle system of the digraph

K(m,n)∗. In 1988, Jackson [51] gave a result for obtaining odd cycle systems of Kn. He

proved that there exists an m-cycle system of Kn, where n ≡ 1 or m (mod 2m) and m is

odd . Finally in 1989, Hoffman, Rodger, Lindner [45] gave necessary conditions for finding

the m-cycle system of Kn, when m is odd. They showed that these necessary conditions are

also sufficient if and only if there is an m-cycle system of all orders n satisfying the necessary

conditions with m ≤ n < 3m. In this paper the authors also gave an important result about

complete graphs with a hole of size v, where v is odd. They showed that for odd v = ql+ r,

where 1 ≤ r ≤ l, if q ≤ m+2r−1, there exists an m-cycle system of K2m+v with a hole of size

v. The reader is referred to the paper by Rodger [79] in 1990 for a complete survey on the

above mentioned results. By 1992, many researchers had solved the problem of finding an

m-cycle system of Kn for values of m ≤ 37. In 1993, Saad Zanati and Rodger [28] solved the

problem of obtaining the H decomposition of Kn, where H is a simple connected subgraph

of Kn containing at most 5 edges, which had the additional property of being able to 2-color

the vertices so that no copy of H is monochromatic.

The existence of m-cycle systems of L(Kn) was settled when m ∈ {4, 6} in [16, 21,

20]. In 1993, Colby and Rodger [21] showed that there exists a 4-cycle system of λKn if and

only if n and λ satisfy (a) n is even, or (b) n ≡ 1 (mod 4) and λ ≡ 0 (mod 2), or (c) n ≡ 3

(mod 4) and λ ≡ 0 (mod 4), or (d) n ≡ 1 (mod 8) and λ is odd. Continuing the work on
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m-cycle systems of L(Kn), Cox and Rodger [20] in 1996 showed that such cycle systems exist

for n ≡ 1 (mod 2m)n and for all m,n with m ≡ 0 (mod 4) and n ≡ 0 or 2 (mod m). Also,

there have been some results for obtaining m-cycle systems of K(a1, a2, . . . , ap), for example

being settled when all parts have the same size in [28] where m is even and when p is small and

then: There is a companion result for obtaining 4-cycle systems [78] of L(K(a1, a2 . . . , an)),

but much remains to be done in this area. Some new results regarding this problem are

discussed in Chapter 6.

By that time, a lot of research had been done on finding necessary and sufficient

conditions for obtaining m-cycle systems of Kn in the case where n is odd. However, when

n is even, the vertices of Kn have odd degree and therefore it is not possible to obtain an m-

cycle system of Kn in this case. Thus, the natural question to ask was what is the maximum

number of m-cycles that can be obtained in the case when n is even? Due to the odd degree

of each vertex in this case, we will have to remove some edges from Kn in order to be able

to construct an m-cycle system. The set of edges removed from the graph G is said to be

the leave, (F ). The problem of finding necessary and sufficient conditions to obtain m-cycle

systems of Kn and Kn − F , where F is a leave, has generated a lot of interest.

A k-regular graph is a graph in which every vertex has degree k. A k-factor of a

graph G is a spanning k-regular subgraph of the graph G. In 1986, Colbourn and Rosa [19]

used difference methods to show that there exists a 3-cycle system of Kn−F where F is any

2-regular leave. The problem of obtaining an m-cycle system of Kn minus a 1-factor was

looked at by Alspach and Marshall in 1994 [3]. In their paper they gave necessary conditions

for obtaining an m-cycle system of Kn− I where m and n are both even and I is a 1-factor.

In 1996, Buchanan in his PhD dissertation solved the problem of finding an n-cycle system

(or hamilton cycle system) of Kn with a 2-regular leave. Later Bryant [12] in 2004 and

McCauley [68] in 2008 gave different proofs for this problem.

5



In 2000, Fu and Rodger [31] found necessary and sufficient conditions for decom-

posing Kn − F into 4-cycles, where F is an n vertex forest. In 2001 [32], the same authors

solved the problem of obtaining 4-cycle systems of Kn − F and 2Kn − F , where F is a

2-regular leave, using the method of induction. Finally in 2001, Alspach and Gavlas [2]

found necessary and sufficient conditions for half the cases of the problem of finding m-cycle

systems of Kn and of Kn − I, where I is a 1-factor. In their remarkable paper they proved

that the obvious necessary conditions, that each vertex in Kn have even degree and the total

number of edges in Kn be divisible by the length of the cycle m, are also sufficient conditions

to obtain the m-cycle system of Kn where m and n are both odd, and to obtain the m-cycle

system of Kn − I where m and n are both even. In 2002, Sajna [82] showed that if for all n

satisfying the equation m ≤ n ≤ 3m there exists an m-cycle system of Kn − I, when m is

odd, then there exists an m-cycle system of Kn − I for all values of n ≥ m. In 2002, Sajana

[83] settled the existence problem of necessary and sufficient conditions of m-cycle systems

of G by solving the last two cases remaining in Alspach and Gavlas’s paper. He proved that

necessary conditions are also sufficient for the cases when m is even and G = Kn, and when

m is odd and G = Kn − I.

The case where the leave F is any 2-regular graph and m = 4 was solved in [31].

The case where F is any graph with maximum degree 3 and m = 4 was solved in [34]. In

2003, Leach and Rodger [65] showed that for n ≥ 1, p ≥ 2 and any given set of integers

s1, s2 . . . , sq satisfying the conditions sj ≤ p+ 1 for 1 ≤ j ≤ q and
∑q

j=1 sj = np, there exists

an n-cycle system of the complete p-partite graph K(n, n, . . . , n) minus a 2-factor containing

q cycles where the jth cycle is of length sj. In 2004, Ashe and Rodger [5] carried forward

the research of Fu and Rodger on m-cycle systems of Kn − F , where F is a forest (solved

in 2000). Ashe and Rodger found necessary and sufficient conditions for existence of a 6-

cycle system of Kn − F , where F is any spanning forest of Kn. In 2004, Leach and Rodger
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[66] showed that there exist n-cycle systems of Kn − F , where F is a 3-factor. They also

proved that given any 2-factor of Kn there exists a 3-factor, F of Kn containing the given

2-factor which statisfies the previous statement. In 2005, Ashe and Rodger [6] continued

their research on 6-cycles systems of Kn with a leave. They gave necessary and sufficient

conditions to settle the existence of 6-cycle systems of Kn − F , where F is any 2-regular

leave, not just a spanning subgraph of Kn like in their previous paper in 2004. This result

was taken further in 2007 by Ashe, Leach and Rodger [7]. They gave necessary and sufficient

conditions for obtaining 8-cycle systems of Kn−F , where F is any 2-regular leave. We have

carried forward the reasearch done by Fu and Rodger in 2001, by settling the necessary and

sufficient conditions for the 4-cycle systems of Kn − F ∗, where F ∗ is a nearly regular leave

in 2009. A nearly 2-regular leave is a 2-regular leave with the additional property that one

special vertex, say ∞ having degree k, k > 2. The details of this result are given in Chapter

5 and can also be found in [85].

There are some results regarding m-cycle systems of G− F , where G is a complete

multipartite graph and F is a leave. One of the first results about this problem was by

Byrant, Leach and Rodger in 2005 [12]. They showed that there exists a n-cycle system of

K(n, n)− F , where F is a 3-regular leave.

Another problem of graph theoretical importance was posed by Judson in 1899 [30]:

“Seven persons met at a summer resort, and agreed to remain as many days as there are ways

of sitting at a round table, so that no one shall sit twice between the same two companions.

They remained fifteen days. It is required to show in which way they may be seated.”

In 1900, Philbrick, [48] gave a solution to Judson’s problem for the cases when there

are 6 people (can be seated on 10 days) and when there are 8 people (he showed that they

can be seated as per Judson’s conditions for 21 days). In 1904, Safford, [50] gave the solution
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to Judson’s original problem for 7 people.

In 1905, Dickson [25] gave a generalization of Judson’s problem using group theory.

His problem statement was

“The general problem is to find all complete sets Smi of dihedrons”’,

where Smk was defined to be a set of k mutually consistent dihedrons on m letters when

every dihedron on m letters was inconsistent with at least one dihedron of Smk . He then

went on to solve his problem (another version of Judson’s problem) for the cases when m

(number of persons) was 6 (solution: 10 days), 8(solution: 21 days), 10(solution: 36 days)

and 12(solution: 55 days).

Rather than explain this notation, instead we consider the equivalent problem posed

by Dudeney in 1905 [26] which can be described in graph theoretical terminology as follows:

“Seat the same n persons at a round table on (n − 1)(n − 2)/2 occasions so that no

person shall ever have the same two neighbors twice. This is, of course, equivalent to saying

that every person must sit once, and only once, between every possible pair”.

This problem is now known as Dudeney’s Round Table problem. In 1917, Dudeney

[27] gave solutions for the cases 3 ≤ n ≤ 12. He claimed to have solved the problem for the

cases where 2 ≤ n ≤ 25 and n = 33. In graph theory this problem is equivalent to asking

for a set of hamilton cycles of Kn, with the added property that every 2-path lies in exactly

one hamilton cycle. This set of hamilton cycles is also known as the Dudeney set. Some

other generalizations of this problem could be formed by looking at x tables of size m each

instead of considering one large table.
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An (H, J) λ-covering of G is defined to be a set U of copies of the subgraph H

in G such that each copy of J in G is contained in exactly λ of the copies of H in the set

U . More informatively, this is also known as a set of copies of H that cover each copy of

J in λG. There are various results about 2-path coverings; that is, the case where J is the

2-path, P3. One of the earliest results was by Hanani in 1960 [40]. He proved that the

condition n ≡ 2 or 4 (mod 6) is necessary and sufficient in order to obtain a 4-cycle system

of Kn which covers each 2-path in Kn exactly once. In 1973, Huang and Rosa [47] solved

Dudeney’s Round table problem for the case when n = p+ 1, p prime, and they mentioned

that they found cyclic solutions for n = 13, 15. In 1983, Heinrich [41] showed that Kn can be

decomposed into oriented 2-paths. She proved that whenever the two arcs in the 2-path have

consistent orientation the result is true if and only if n is odd. Otherwise, the result holds

for all n ≥ 4. In 1987, Heinrich and Nonay [43] proved that there exists a set of 4-cycles,

(C4, P3)λ-covering of Kn if and only if one of the following conditions is satisfied:(1) n is

even, (2) n ≡ 1 (mod 4) and λ ≡ 0 (mod 2), or (3) n ≡ 3 (mod 4)and λ ≡ 0 (mod 4). As a

continuation of this result the same authors in 1988 [44] solved the problem of obtaining the

minimum (maximum) number of 4-cycles in Kn such that each 2-path in Kn is contained

in exactly λ 4-cycles. In 1992, Kobayashi and Nakamura [54] gave necessary and sufficient

conditions to obtain an n-cycle system of K2n such that each 2-path in K2n lies in exactly two

n-cycles. Later in 1993, these authors along with Kiyasu [53] gave the solution to Dudeney’s

Round Table problem for the case where n is even. A set of n-cycles of Kn is said to be a

double Dudeney set if each 2-path in Kn is contained in exactly two n-cycles. Thus, these

authors first constructed a double Dudeney set and then also gave the construction for a

Dudeney set for the case when n is even. Heinrich, Langdeau and Verall [42] in 2000 solved

the problem of finding n-cycle systems of Kn such that each 2-path in Kn is covered in

exactly λ n-cycles. In this paper they also showed there exists an H decomposition of Kn

such that each 2-path in Kn is covered in exactly λ copies of H, for each subgraph H of Kn
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having at most 4 vertices. Finally, they proved that there exists a 3-path decomposition of

K(n, n) covering each 2-path of K(n, n) exactly once. In the following year, McGhee and

Rodger [69] took the previous result further by giving two new constructions for the problem

of finding a set of 3-paths in Kn such that each 2-path is contained in exactly one 3-path.

They also solved a more general problem of finding an m-path decomposition of Kn covering

(m− 1)-paths. In 2001, Kobayashi and Nakamura [55] solved the problem of finding a set of

4-paths in Kn which cover each 2-path exactly once. The authors along with Nobuaki and

Kiyasu [56] gave constructions for a double Dudeney set for the case when n ≥ 3 is odd.

Kobayashi et. al. [57] solved the problem of obtaining a set of 5-paths in Kn such that each

2-path is contained in exactly one 5-path in Kn. In 2004, McGhee and Rodger [70] proved

that for all n ≥ 4 there exists a set of 4-paths in Kn such that each 2-path is contained in

exactly one 4-path. In the same year these authors [71] also gave a result about embedding

coverings of 2-paths with 3-paths.

Kobayashi et. al. have defined the uniform covering of the 2-paths in Kn with

m-paths (m-cycles) as a set S of m-paths (m-cycles) having the property that each 2-path

in Kn lies in exactly one m-path (m-cycle) in S. In 2005, Kobayashi et. al. [58] proved

that there exists a uniform covering of 2-paths with 5-paths in Kn. Akiyama, Kobayashi

and Nakamura also proved that there exists a uniform covering of 2-paths with 6-paths in

2005 [1], 6-cycles in 2006 [59]. In Chapter 2, we have given the constructions for obtaining

a 6-cycle system of Km ×Kn which covers each 2-path in K(m,n) exactly once.

An m-cycle system of a graph G is said to be k-perfect if replacing each m-cycle

c by the graph formed by replacing the edges in c with the edges joining vertices distance

k apart in c produces another cycle system of G. Necessary and sufficient conditions for

obtaining 2-perfect 6-cycle systems of Ks for all possible values of s was solved in [67]. The

problem of finding non-isomorphic 2-perfect 6-cycle systems of Ks was solved for the case

10



s = 13 in [38]. This problem was taken further in [9], where the authors solved the problem

of obtaining 2-perfect 6-cycle systems of λKs for all λ > 1. For all λ, those authors later also

solved the spectrum problem of 6-cycle systems of 2λKs for which the collection of distance

3 graphs obtained from each 6-cycle covers λKs (see [10]).

The problem of finding a metamorphosis of λ-fold K3,3 designs into λ-fold 6-cycle

systems was solved in [11]. The idea of metamorphosis was taken further in [91], where

the problem of metamorphosis of 2-fold 4-cycle system into the maximum packing of 2-fold

6-cycle system was solved.

Anm-cycle system of a graphG is said to be resolvable ifm-cycles can be partitioned

into classes such that each vertex in V (G) occurs exactly once in each class. Kobayashi and

Nakamura proved that there exists a resolvable covering of 2-paths by 4-cycles in Kn when

n ≡ 0 (mod 4) and a nearly resolvable covering when n ≡ 2 (mod 4) in [60]. Later, in 2002,

the authors [61] also constructed a resolvable covering of 2-paths by m-cycles in Kn where,

n = pe + 1, p is a prime number, e ≥ 1 and m is a divisor of n, k 6= 1, 2. In 2009, Danziger,

Mendelson and Quattrocchi [23] proved that there exists a resolvable decomposition of Kn

into the union of 2-paths.

Until now, we have considered the history of covering problems related to the com-

plete graph and the complete multipartite graph. Now, we will turn our focus on coverings of

the cartesian product of complete graphs. The Cartesian product of two graphs G1 and G2

is denoted by G1×G2 where (u, v) ∈ V (G1×G2) if and only if u ∈ V (G1) and v ∈ V (G2),

and {(u, v), (x, y)} ∈ E(G1 × G2) if and only if u = x and {v, y} ∈ E(G2) or v = y and

{u, x} ∈ E(G1). One of the earliest results on the decompositions of the cartesian product of

two complete graphs was by Myers [73] in 1972. He proved that product Kn×Kn, is the sum

of n − 1 spanning cycles. In 1978, Foregger [36] proved another useful result regarding the
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hamilton cycle systems of the cartesian product of two complete graphs. Kötzig [64] proved

that if G is the cartesian product of any regular graphs and one of the following conditions

is true; at least one of the regular graphs has a 1-factorization or there exists at least two

regular graphs containing a 1-factor then the graph G has a 1-factorization, in 1979. Wallis

[90] proved that there exists a 1-factorization of the cartesian product of the Petersen graph

with K3. In 1991, Stong [87] proved that the if G1 and G2 be graphs that are decompos-

able into n and m Hamilton cycles, respectively, with n ≤ m. Then G1 × G2 is Hamilton

decomposable if one of the following holds: (1) m ≤ 3n, (2) n ≥ 3, (3) |G1| is even, or (4)

|G2| ≥ 6dm/ne − 3, where dxe is the least integer greater than or equal to x. Hoffman and

Pike [46] gave necessary and sufficient conditions on n and m such that there exists a 4-cycle

system of Kn×Kn in 1998. Chen [18] gave the formula for obtaining the number of spanning

trees in the cartesian product graph of paths (or cycles) in 2003. Farrell and Pike [29] carried

forward the research of Hoffman and Pike on cycle systems of the cartesian product of two

complete graphs. In 2003, they gave necessary and sufficient conditions for constructing a

6-cycle system of Kn×Km. In Chapter 4, we give different and innovative constructions for

the same result. In the following year Pike and Swain gave necessary and sufficient condi-

tions for constructing an 8-cycle system of Kn×Km. Finally, Graham and Pike gave results

about the maximum packings (minimum coverings) of Kn ×Km with 4-cycles in 2005 [39].

Fu and Huang [35] gave the conditions to find a maximum packing of Km×Kn with

hexagons in 2005. In Chapter 3, we give necessary and sufficient conditions for constructing

the maximal fair 6-cycle system of Km ×Kn.

We now, summarize the results mentioned in each of the following chapters to give

the reader a flavor of the work done by the author in this dissertation.
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Chapter 2: In this chapter we give necessary and sufficient conditions for obtaining

a 6-cycle system of Km × Kn which yields a 2-path covering of K(m,n). In other words,

we construct a (C6, P2) 1-covering of Km × Kn which leads us to a (C6, P3) 1-covering of

K(m,n). We define the concept of fairness in order to do so. Constructing the fair 6-cycle

system of Km ×Kn aids in the development of a 2-path covering of K(m,n).

Chapter 3: After constructing a fair 6-cycle system of Km×Kn in Chapter 2, we then

focused our attention on the next best possible result regarding fair 6-cycle systems. So in

this chapter, we give necessary and sufficient conditions to construct a maximum fair 6-cycle

system of Km ×Kn.

Chapter 4: In Chapter 4, we revisited the problem of finding the 6-cycle system of

Km × Kn. We give necessary and sufficient conditions to solve this problem using unique

and innovative constructions.

Chapter 5: In Chapter 5, we continued the work done by Fu and Rodger on 4-cycle

systems of Kn − F , where F is any 2-regular leave. Taking this result further in literature,

we found necessary and sufficient conditions for obtaining the 4-cycle system of Kn − F ∗,

where F ∗ is any nearly 2-regular leave. This result required several constructions for small

values of n, which have been explained in detail in this chapter.

Chapter 6: Here we continued the work done for the author’s Masters Thesis. We

continued to solve the problem of obtaining the 4-cycle system of L(K(a1, a2, . . . , ap)). Some

new results about this problem are given here. For the background work on this problem

the readers are reffered to [76].
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Chapter 2

6-cycle system of the Cartesian Product of Kx ×Ky covering 2-paths in Kx,y

2.1 Introduction

In this chapter, the bipartite graph B with the bipartition {S, T} of V (B) is denoted

by K(S, T ). Let L(B) denote the line graph of B. The Cartesian product of two graphs G1

and G2 is denoted by G1 ×G2. The vertices of Ki ×Kj will be considered as an array with

i rows and j columns unless otherwise stated. We can also view the line graph of B as the

Cartesian product of two complete graphs Ks and Kt. A k-path is a path having k edges and

is traditionally denoted by Pk+1. An m-cycle is a cycle having m edges and is denoted by Cm.

Recall that (H, J) λ-covering of G is defined to be a set U of copies of the subgraph

H in G such that each copy of J in G is contained in exactly λ copies of H in the set U .

The problem of finding (H, J) λ-coverings of G for the case when G = Kn, λ = 1 and J is a

2-path have been solved for the following graphs H.

1. H is a 3-path [42, 69].

2. H is a 4-cycle [43].

3. H is a 4-path [55, 70]. The case where G = Kn − E(P ) for some P where | E(P ) | is

as small as possible (this is known as the packing problem) has been solved for these

values of H and J in [44].

4. H is a 5-path [58], and the case where G = K2n for these graphs H and J was solved

in [57].

5. H is a 6-path [1].
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6. H is a 6-cycle [59].

The problem of finding a (Cn, P3) 1-covering of Kn is equivalent to solving the

Dudeney problem. In 1905, Dudeney posed the problem [26] which asks for a seating ar-

rangement of n people on (n − 1)(n − 2)/2 days such that no person can have the same

two neighbors in more than one seating arrangement. This problem was solved for the case

when n is even in [53]. In this case the set U of the copies of Cn in Kn is known as the

Dudeney set. It is difficult to solve this problem for the case when n is odd. Hence, the

problem of obtaining a double Dudeney set, D
′

was considered. A double Dudeney set is a

set of hamilton cycles, Cn such that each P3 lies in exactly two hamilton cycles in D
′
. In

other words this problem asks for a (Cn, P3) 2-covering of Kn. This problem was solved in

[56]. The problem of finding a (Cn, P3) 1-covering of K2n was solved in [52].

Some embedding results have also been obtained. An (H, J) λ-covering, U1 of a

graph G1 is said to be embedded in an (H, J) λ-covering, U2 of a graph G2 if the set U1 of

copies of the graph H in G1 is a subset of the set U2 of the copies of the graph H in G2.

The problem of embedding a (P4, P3) 1-covering of Kn or Kn − p into a (P4, P3) 1-covering

of Kn+m or Kn+m − p, where p is a path of length 2 has been solved in [71].

There has also been some progress with respect to finding resolvable (Cm, P3) λ-

coverings of Kn. A resolvable (H, J) λ-covering of G is an (H, J) λ-covering of G with

the added condition that the set U of the copies of H can be partitioned into classes such

that each vertex of G occurs in exactly one graph in each class. In [43], the authors found

the necessary and sufficient conditions for obtaining a resolvable (C4, P3) λ-covering of Kn

for all λ. In [60], the problem of finding a resolvable (C4, P3) 1-covering of Kn was solved.

This question was taken further in [61], where the authors solved the problem of obtaining

a resolvable (Ck, P3) 1-covering of Kn where n = pe + 1, p is an odd prime and k is a divisor

of n.

A cycle in G1 ×G2 is said to be fair if it has at most two vertices in each row and

in each column. Notions of fairness in graph decompositions have arisen in various forms,
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such as equitable [13] and gregarious [8] decompositions. A fair 6-cycle system of a graph G

is defined to be a 6-cycle system of G in which each 6-cycle is fair. Here an added incentive

is that a fair k-cycle in Ks × Kt = L(K(S, T )) naturally corresponds to a cycle of length

k in K(S, T ) as the following shows (see Lemma 7). In this chapter, we find necessary and

sufficient conditions and give the required constructions to obtain a fair (C6, P2) 1-covering of

Ks×Kt which yields a (C6, P3) 1-covering of K(S, T ). So, the motivation behind this result

was our observation that a fair 6-cycle in Ks×Kt corresponds to a 6-cycle in K(S, T ) which

covers six 2-paths in K(S, T ) corresponding to the 6 edges of the fair 6-cycle in Ks × Kt,

thus leading eventually to a construction of a (C6, P3) 1-covering of K(S, T ).

2.2 Notation

Let Ni = {1, 2, . . . , i}. The number of 2-paths in the graph G is denoted by P3(G). In a

2-path, say (a, b, c), the vertex, b, in the middle of the path is called the middle vertex. The

number of 2-paths having their middle vertex in a set T is denoted by m(T ). It will help the

reader to picture the graph Ks×Kt as a Zs×Zt array. An edge {(u1, v1), (u2, v2)} ∈ E(Ks×

Kt) is called a horizontal edge if u1 = u2 and {v1, v2} ∈ E(Kt). Similarly, an edge is called a

vertical edge if v1 = v2 and {u1, u2} ∈ E(Ks). Define diff p{i, j} = min{| i−j |, | p− i−j |}.

2.3 Preliminary Results

In this section we show that there exists a fair 6-cycle system of Ks×Kt for some small

values of s and t.

Lemma 1. There are 6-cycles in a 6-cycle system of Ks ×Kt

Proof

Lemma 2. There exists a fair 6-cycle system of K4 ×K4

Proof Let V (K4 ×K4) = Z4 × Z4. There are eight 6-cycles in every 6-cycle system of

K4 ×K4. Define the following sets of 6-cycles,
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C0 = {((0, j), (0, j + 1), (1, j + 1), (1, j + 2), (i, j + 2), (i, j))

| i = 2 and j ∈ Z2 or i = 3 and j ∈ Z4\Z2}

C1 = {((3, j), (3, j + 1), (2, j + 1), (2, j + 2), (i, j + 2), (i, j))

| i = 0 and j ∈ Z2 or i = 1 and j ∈ Z4\Z2}

Note that each 6-cycle in C0 and C1 is fair. It is easy to check that each edge of K4 ×K4

occurs in a 6-cycle. Thus, (V (K4 ×K4),∪i∈Z2Ci) is a fair 6-cycle system of K4 ×K4.

Lemma 3. There exists a fair 6-cycle system of K6 ×K6

Proof Let V (K6 ×K6) = Z6 × Z6. There are thirty 6-cycles in every 6-cycle system of

K6 ×K6. To obtain the required 6-cycle system, we make use of the difference edges in K6.

We first construct three 6-cycles using the vertical and horizontal difference two edges only.

We denote that set of 6-cycles by C0.

C0 = {((i, j), (i, j + 2), (i+ 2, j + 2), (i+ 2, j + 4), (i+ 4, j + 4),

(i+ 4, j)) | i = 0 and j ∈ {0, 2, 4}}

Next, we construct nine 6-cycles using vertical and horizontal difference one and

two edges. We denote these by C8, C10 and C12. For each i ∈ {0, 2, 4} let

Ci+8 = {((i, j), (i, j + 1), (i+ 4, j + 1), (i+ 4, j + 5), (i+ 5, j + 5),

(i+ 5, j)) | j ∈ {0, 2, 4}}

Now, we construct eighteen 6-cycles using the vertical and horizontal difference one,

two and three edges. Thus, we get the following sets of three cycles of length 6 each. For

each i ∈ Z6 let

Ci+1 = {((i, j), (i, j + 1), (i+ 1, j + 1), (i+ 1, j + 3), (i+ 3, j + 3),

(i+ 3, j)) | j ∈ {1, 3, 5}}

Thus, we have obtained thirty 6-cycles in K6 × K6. All the 6-cycles given above are fair.

One can easily check that each edge of K6 × K6 occurs in a 6-cycle. Hence, (V (K6 ×

K6),∪i∈{Z7∪{8,10,12}}Ci) is a fair 6-cycle system of K6 ×K6.
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Lemma 4. There exists a fair 6-cycle system of K3 ×K3

Proof Let V (K3×K3) = Z3×Z3. (V (K3×K3), {((0, 0), (0, 1), (2, 1), (2, 2), (1, 2), (1, 0)),

((0, 0), (0, 2), (1, 2), (1, 1), (2, 1), (2, 0)), ((0, 1), (0, 2), (2, 2), (2, 0), (1, 0), (1, 1))}) is a fair 6-cycle

system of K3 ×K3.

Lemma 5. There exists a fair 6-cycle system of K7 ×K7

Proof Let V (K7×K7) = Z7×Z7. There are forty-nine 6-cycles in every 6-cycle system

of K7 ×K7. The construction for this Lemma makes use of the method of differences.

Consider the following sets of ordered triples given in Table 2.1. As unordered sets

these triples would form a Steiner Triple System on seven points, so we refer to this as an

ordered STS(7). These ordered triples are chosen so that they satisfy the properties

P1 : For each x, y ∈ Z7, x 6= y there is exactly one ordered triple

containing x and y

P2 : For each i ∈ Z7 and for each j ∈ Z3 there is exactly one triple

containing i in position j

Table 2.1: An ordered STS(7)

(0,1,3) (4,5,0)
(1,2,4) (5,6,1)
(2,3,5) (6,0,2)
(3,4,6)

Making use of the ordered STS(7), we construct a 6-cycle system of K7 × K7,

as follows. For each ordered triple (x, y, z) in Table 2.1 we construct the following set of

6-cycles:

Cx,y,z = {((0 + i, x), (0 + i, y), (1 + i, y), (1 + i, z), (3 + i, z),

(3 + i, x)) | i ∈ Z7}
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Any edge in Ks ×Kt is of the form {(i1, x), (i2, x)} or {(i, x), (i, y)}. First consider

an edge of the form {(i1, x), (i2, x)}. If diff p(i1, i2) = 1, 2, 3, then this edge occurs in a cycle

in the set Ca,b,c where x = b, c and a respectively. Such an ordered triple exists by P2. Now,

consider an edge of the form {(i, x), (i, y)}. By P1 there exists exactly one ordered triple

(a, b, c) such that {x, y} ⊂ {a, b, c}. Then {(i, x), (i, y)} is in a cycle in Ca,b,c. We know that

in the STS(7) each difference edge appears exactly once and by ordering the STS(7), we

ensure that each difference edge is used once to construct a 6-cycle (this follows from the

above discussion). Hence, the 6-cycles in Cx,y,z are all edge disjoint.

Thus, we have obtained forty-nine 6-cycles and the reader can check that each of

them is fair. Clearly, one can see that each edge of K7 × K7 occurs in a 6-cycle. So,

(V (K7 ×K7),∪(x,y,z)∈STS(7)Cx,y,z) is a fair 6-cycle system of K7 ×K7.

Lemma 6. There exists a fair 6-cycle system of K9 ×K9

Proof Let V (K9 ×K9) = Z9 × Z9. In every 6-cycle system of K9 ×K9 there are 108

6-cycles.

Now, consider the following ordered Steiner Triple System on nine points, ordered

STS(9) denoted in Table 2.2. These ordered triples are chosen so that they satisfy the

properties

P1 : For each x, y ∈ Z9, x 6= y there is exactly one ordered triple

containing x and y

P2 : For each x ∈ Z9 and for each k ∈ {1, 2, 3, 4} there is exactly one

ordered triple (a0, a1, a2) containing x, say x = ai, such that

k = diff9{ai − ai−1} reducing the subscript mod 3

Making use of this ordered STS(9), we obtain a 6-cycle system of K9 × K9, as

shown below. For each ordered triple (x, y, z) in Table 2.2, we construct the following set of

6-cycles where the calculations in the first co-ordinate are done (mod 9).

Cx,y,z = {((0 + i, x), (0 + i, y), ((y − x) + i, y), ((y − x) + i, z),

((z − x) + i, z), ((z − x) + i, x)) | i ∈ Z9}
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Table 2.2: An ordered STS(9)

(0,1,2) (0,3,6) (0,4,8) (2,6,4)
(3,4,5) (1,4,7) (3,7,2) (3,1,8)
(6,7,8) (2,5,8) (6,1,5) (0,7,5)

Any edge in Ks×Kt is of the form {(i1, x), (i2, x)} or {(i, x), (i, y)}. First consider an

edge of the form {(i1, x), (i2, x)}. If diff 9(i1, i2) = 1, 2, 3, 4, then by the property P2 this edge

occurs in exactly one cycle in the set Ca0,a1,a2 , where x = ai such that k = diff9{ai− ai−1},

reducing the subscript (mod 3) respectively. Now, consider an edge of the form {(i, x), (i, y)}.

By P1 there exists exactly one ordered triple (a, b, c) such that {x, y} ⊂ {a, b, c}. Then

{(i, x), (i, y)} is in a cycle in Ca,b,c. As seen before, each difference edge in the STS(9)

appears exactly once and by ordering the STS(9), we can ensure that each difference edge

is used once to construct a 6-cycle (follows from the construction). Hence, the 6-cycles in

Cx,y,z are all edge disjoint.

Thus, we get 108 6-cycles and each of these 6-cycles is fair. It is easy to check that

each edge of K9 ×K9 occurs in a 6-cycle. Hence, (V (K9 ×K9),∪(x,y,z)∈STS(7)Cx,y,z) is a fair

6-cycle system of K9 ×K9.

Lemma 7. There exists a fair 6-cycle system of Ks×Kt if and only if there exists a (C6, P3)

1-covering of K(s, t)

Proof. Define V (Ks×Kt) = Zs×Zt. Now, let us we assume that there exists a fair 6-cycle

system of Ks ×Kt, (Zs × Zt, C). Any 6-cycle, c ∈ C is of the form

c = ((x0, y0), (x0, y1), (x1, y1), (x1, y2), (x2, y2), (x2, y0))

where xi ∈ Zs, yi ∈ Zt for i ∈ Z3.

Let c ′ = (x0, y0, x1, y1, x2, y2) be the cycle in K(S, T ) that corresponds to c in Ks × Kt.

Define C ′ = {c ′ | c ∈ C}. Let (x1, x2, x3) be a P3 in K(S, T ); without loss of generality

we can assume that {x1, x3} ⊂ Zs and x2 ∈ Zt. Let ci be the cycle in C containing the

edge {(x1, x2), (x3, x2)}. Then since ci is fair,
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ci = ((x1, x2), (x3, x2), (x3, x4), (x5, x4), (x5, x6), (x1, x6))

for some x5 ∈ V (S), and {x4, x6} ⊂ V (T )

Corresponding to this c, there exists c ′ = (x1, x2, x3, x4, x5, x6) ∈ C ′. Since, each 2-path

occurs in at least one 6-cycle in C ′, and since each c ′ covers 6 paths of length 2, it suffices

to prove that

6 | C ′ | = 6 | C | = m(K(S, T ))

= s
(
t
2

)
+ t
(
s
2

)
So, let us count the number of fair 6-cycles in Ks ×Kt.

| C | = st(s+ t− 2)/12

= s
(
t
2

)
+ t
(
s
2

)
/6

Hence, proved.

Now, suppose that there exists a (C6, P3) 1-covering of K(s, t). Then we will show that

there exists a fair 6-cycle system of Ks×Kt. By the reasoning given above each P3 in K(s, t)

corresponds to an edge in Ks ×Kt (no two paths of length 2 correspond to the same edge

in Ks × Kt). Clearly, a 6-cycle in K(s, t) corresponds to a 6-cycle in Ks × Kt as shown

earlier and by definition each vertex in the 6-cycle is distinct. Thus, each 6-cycle in K(s, t)

corresponds to a fair 6-cycle in Ks ×Kt and a 1-covering of K(x, y) implies that each edge

in Ks × Kt is covered exactly once. Hence, if there exists a (C6, P3) 1-covering of K(s, t)

then there exists a fair 6-cycle system of Ks ×Kt.

Corollary 1. There exists a (C6, P3) 1-covering of K(4, 4).

Proof The proof of this Corollary follows directly by applying Lemma 2 and Lemma 7.

Corollary 2. There exists a (C6, P3) 1-covering of K(6, 6).

Proof The proof of this Corollary follows directly by applying Lemma 3 and Lemma 7.

Corollary 3. There exists a (C6, P3) 1-covering of K(7, 7).
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Proof The proof of this Corollary follows directly by applying Lemma 5 and Lemma 7.

Corollary 4. There exists a (C6, P3) 1-covering of K(9, 9).

Proof The proof of this Corollary follows directly by applying Lemma 6 and Lemma 7.

2.4 Propositions

In this section we give the generalized constructions for the results obtained in the

previous section. These constructions are then used to prove our main results.

Proposition 1. There exists a fair 6-cycle system of K6x ×K6x

Proof This result will be completed in the future work.

Corollary 5. There exists a (C6, P3) 1-covering of K(6x, 6x)

Proof The proof of this Corollary follows by using Lemma 7 and Proposition 1.

Proposition 2. There exists a fair 6-cycle system of K6x+4 ×K6x+4

Proof This result will be completed in the future work.

Corollary 6. There exists a (C6, P3) 1-covering of K(6x+ 4, 6x+ 4)

Proof The proof of this Corollary follows by using Lemma 7 and Proposition 2.

Proposition 3. There exists a fair 6-cycle system of K6x+1 ×K6x+1

Proof Let V (K6x+1 ×K6x+1) = Z6x+1 × Z6x+1. There are x(6x + 1), 6-cycles in every

6-cycle system of K6x+1 × K6x+1. We know that there exists a Steiner Triple System on

6x + 1 ≡ 1 (mod 6) points. Now consider STS(Z6x+1). The total number of triples in this

STS(6x+1) is given by

= ((6x+1)(6x+1−1))/2
3

= (6x+1)(3x)
3

= (6x+ 1)(x)
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Using each triple in STS(Z6x+1), we construct a 6-cycle system of K6x+1×K6x+1 as

follows. Let (a, b, c) be any triple in the STS(Z6x+1), then construct the following 6-cycles

using it.

Ca,b,c = {(i, a), (i, a+ b), (i+ b, a+ b), (i+ b, a+ b+ c),

(i+ b+ c, a+ b+ c), (i+ b+ c, a)} | for i ∈ Z6x+1}

Thus, we get (6x+ 1)2(x) cycles of length 6 in K6x+1×K6x+1 by this construction.

Clearly, each 6-cycle in the above given cycle system is fair. Thus, there exists a fair 6-cycle

system of K6x+1 ×K6x+1.

Corollary 7. There exists a (C6, P3) 1-covering of K(6x+ 1, 6x+ 1)

Proof The proof of this Corollary follows by using Lemma 7 and Proposition 3.

Proposition 4. There exists a fair 6-cycle system of K6x+3 ×K6x+3

Proof This result will be completed in the future work.

Corollary 8. There exists a (C6, P3) 1-covering of K(6x+ 3, 6x+ 3)

Proof The proof of this Corollary follows by using Lemma 7 and Proposition 4.

2.5 Main Results

Theorem 2.1. There exists a fair 6-cycle system of Kx ×Ky if and only if

1. x = y

2. If x is even then,

(a) x ≡ 0 (mod 6) or

(b) x ≡ 4 (mod 6)

3. If x is odd then,

(a) x ≡ 1 (mod 6) or
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(b) x ≡ 3 (mod 6)

Proof To prove the necessity of these conditions, we first count the total number of

2-paths in K(X, Y ). Let V (X) = {1, 2 . . . x} and V (Y ) = {1, 2 . . . y}. Clearly, each 2-path

has the middle vertex in set X or in set Y . In order to count the number of 2-paths with the

middle vertex in set X, first choose the middle vertex. Then, we have to choose two vertices

from set Y to complete our path of length 2. Thus, | P3(X) | is given by

= x×
(
y
2

)
Similarly, | P3(Y ) | is

= y ×
(
x
2

)
So,

| P3(K(X, Y )) | = | P3(X) | + | P3(Y ) |

Thus, | P3(K(X, Y )) |

= (y ×
(
x
2

)
) + (x×

(
y
2

)
)

= xy
2

(x− 1 + y − 1)

= xy
2

(x+ y − 2)

The number of 6-cycles in a 6-cycle system of KX ×KY is given by

= (x(y(y−1)
2

) + y(x(x−1)
2

))/6

= (xy(x+ y − 2))/12

Suppose, that each 6-cycle lies on the same row or column of the graph KX ×KY .

Such a 6-cycle covers fifteen 2-paths in K(X, Y ). So, the total number of 2-paths

covered in K(X, Y ) by these types of 6-cycles is

(15[ (xy)(x+y−2)
2

])/6 6= xy(x+y−2)
2
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Hence, it is not possible, to construct the required 6-cycle system using cycles of

this type. Suppose, each 6-cycle in our 6-cycle system covers ∗ 2-paths exactly once, then

clearly,

{(xy(x+y−2)
2

)/6} × ∗ = xy(x+y−2)
2

So, clearly,

∗ = 6

Thus, each 6-cycle should cover exactly six distinct 2-paths. The only way to do that

is if each 6-cycle is a fair 6-cycle as shown below.

insert pic

Such a 6-cycle covers three 2-paths with the middle vertex in set X = {1, 2, . . . , x} and

three 2-paths with the middle vertex in set Y = {1, 2, . . . , y} in KX,Y . So,

Number of 2-paths covered with the middle vertex in setX =

Number of 2-paths covered with the middle vertex in setY

Thus,

| P3(X) | = | P3(Y )

So,

(y ×
(
x
2

)
) = [x×

(
y
2

)
]

⇒ y( (x)(x−1)
2

) = x( (y)(y−1)
2

)

⇒ x− 1 = y − 1

⇒ x = y

Thus, x = y, which proves the necessity of condition 1. Now, suppose that x is even,

then x ≡ 0, 2 or 4 (mod 6). First consider the case, where x ≡ 2 (mod 6), say x = 6a + 2.

Then the number of cycles of length 6 in K6a+2 ×K6a+2 is
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= (2(6a+ 2)× (6a+2)(6a+2−1)
2

)/6

= (6a+2)(6a+2)(6a+1)
6

= 2(3a+1)2(3a+1)(6a+1)
6

However, this is NOT an integer. So, x 6= 6a + 2. Now suppose, x ≡ 0 (mod 6).

Say, x = 6a. Then the number of 6-cycles in K6a ×K6a will be given by

= (2(6a)× (6a)(6a−1)
2

)/6

= (6a)(6a)(6a−1)
6

= (a)(6a)(6a− 1)

Thus, it is possible for x ≡ 0 (mod 6). x ≡ 4 (mod 6) is also possible by a similar

reasoning. This proves the necessity of condition 2.

Now, suppose that x is odd, then x ≡ 1, 3 or 5 (mod 6). First consider the case,

where x ≡ 5 (mod 6), say x = 6a+5. Then the number of cycles of length 6 in K6a+5×K6a+5

is

= (2(6a+ 5)× (6a+5)(6a+5−1)
2

)/6

= (6a+5)(6a+5)(6a+4)
6

= (6a+5)(6a+5)2(3a+2)
6

However, this is NOT an integer. So, x 6= 6a + 5. But, x ≡ 1 or 3 (mod 6) by

similar calculations. This proves the necessity of condition 3.

Now, to prove the sufficiency of these conditions, we make use of the earlier results

in this chapter. Suppose, that x is even, clearly x = y by condition 1. Then by condition 1,

1. x ≡ 0 (mod 6) or

2. x ≡ 4 (mod 6)

Case 1 Let x ≡ 0 (mod 6), say x = 6a. Then using Proposition 1, there exists a fair

6-cycle system of K6a ×K6a.

Case 2 Let x ≡ 4 (mod 6), say x = 6a + 4. Then using Proposition 2, there exists a

fair 6-cycle system of K6a+4 ×K6a+4.
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Now suppose, that x is odd and x = y (by condition 1) and by condition 3,

1. x ≡ 1 (mod 6) or

2. x ≡ 3 (mod 6)

Case 1 Let x ≡ 1 (mod 6), say x = 6a + 1. Then using Proposition 3, there exists a

fair 6-cycle system of K6a+1 ×K6a+1.

Case 2 Let x ≡ 3 (mod 6), say x = 6a + 3. Then using Proposition 4, there exists a

fair 6-cycle system of K6a+3 ×K6a+3.

This proves our Theorem.

Theorem 2.2. There exists a (C6, P3) 1-covering of K(x, y) if and only if

1. x = y

2. If x is even then,

(a) x ≡ 0 (mod 6) or

(b) x ≡ 4 (mod 6)

3. If x is odd then,

(a) x ≡ 1 (mod 6) or

(b) x ≡ 3 (mod 6)

Proof The proof of this Theorem follows from Lemma 7, Theorem 2.1 and Corollaries

5, 6, 7, and 8.

27



Chapter 3

Maximum fair 6-cycle system of the Cartesian Product of two Complete

Graphs Kx ×Ky

3.1 Introduction

In this chapter, we find necessary and sufficient conditions for obtaining a maximal fair

6-cycle system of Ks × Kt. An m-cycle is a cycle having m edges. An m-cycle system of

a graph G is denoted by the ordered set (V (G), C), where V (G) is the vertex set of G and

C is a set of cycles of length m that partition the edge set of G, E(G). A complete graph

on s vertices is denoted by Ks. The cartesian product of two complete graphs Ks and Kt is

denoted by Ks×Kt. The problem of finding m-cycle systems of Ks has been solved for many

values of m. For a survey of these results, we refer the reader to [79] (we will focus on the

results involving 6-cycle systems in particular). D. Sotteau [84] proved a prominent result

regarding m-cycle systems of K(s, t), where K(s, t) is the complete bipartite graph. A lot

of work has been done on the problem for finding m-cycle systems of Ks minus some edges,

called the leave. In [5], the authors found necessary and sufficient conditions for obtaining a

6-cycle system of Ks−E(F ), where F , the leave, is any spanning forest of Ks. The problem

of finding a 6-cycle system of Ks−E(L), where the leave L is any 2-regular (not necessarily

spanning) subgraph of Ks was solved in [6]. The spectrum problem for finding a 6-cycle

system of L(Ks) was solved in [22].

An m-cycle system of a graph G, say C, is said to be maximal if E(G) − E(C)

does not contain an m-cycle. There have some results regarding a maximal set of m-cycle

systems too. In 2000, the authors [14] found necessary and sufficient conditions for obtain-

ing a maximal set of hamilton cycles in K(s, s). In 2003, this problem was extended by
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finding the maximal set of hamilton cycles in the complete multipartite graph, Kp
s (p parts

of size s), [24]. The authors published the next part of this paper in 2007, [49]. In 2008 [33]

the problem of obtaining the maximal set of hamilton cycles in K2p − F was solved. The

latest result with respect to maximal m-cycle systems is [74], where the problem of finding

the maximal set of hamilton cycles in the directed complete graph, Ds is solved. In 2006

[37], the authors solved the problem of finding the maximal cyclic 4-cycle packings and the

minimal cyclic 4-cycle coverings of Kn.

The definitions of a fair m-cycle and a fair m-cycle system of a graph G can be

found in the previous chapter. A maximum fair 6-cycle system of Ks × Kt, C is defined

to be a 6-cycle system of Ks × Kt containing the most number of fair 6-cycles among all

6-cycle systems of Ks ×Kt. A 6-cycle system (V,C1) is said to be a maximum fair 6-cycle

system if for each of the 6-cycle systems (V,C2) of Ks×Kt, (V,C1) has at least as many fair

6-cycles as (V,C2). In the previous chapter we found the necessary and sufficient conditions

for obtaining a fair 6-cycle system of Ks × Kt (which then gave us a (C6, P3) 1-covering

of K(S, T )). So, the next natural problem to consider was to maximize the number of fair

6-cycles among the 6-cycle systems of Ks ×Kt. Thus, the results obtained in the previous

chapter were a motivation for this chapter. In the next section of this chapter, we give

the reader some useful notation. Then we give some preliminary results. Later, we give

constructions for some propositions which will be used to prove our main results. Finally,

we use all the tools constructed in the previous sections to prove our main Theorem.

3.2 Notation

The reader should refer to the notation section of the previous chapter for the notations

used in this chapter. MF (s, t) denotes the maximum number of disjoint fair 6-cycles in a

6-cycle system of Ks ×Kt. It will help the reader to picture the vertices of Ks ×Kt in an

s × t array in which if the vertex set M(i | Nj) is used then the vertex in position (i, j) of
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the array is x(i− 1) + j. All the edges in a graph, G expect vertical and horizontal are said

to be the diagonal edges. We have stated an important theorem by Sotteau that is used in

our constructions below.

Theorem 3.1. [84] There exists a 4-cycle system of Ka,b and of 2Ka,b if and only if each

vertex has even degree, the number of edges is divisible by 4, and a, b ≥ 2.

3.3 Preliminary Results

In this section we construct maximum fair 6-cycle systems of Ks ×Kt for some small

values of s and t. Before we proceed to those constructions, we will show the method for

calculating the maximum number of fair 6-cycles in a 6-cycle system of Ks ×Kt. Since, the

case where s ≥ t is solved in the previous chapter, here we can assume that s < t.

Lemma 8. Suppose that s ≤ t. Then the number of edge disjoint fair 6-cycles in Ks ×Kt

is at most MF(s, t) = bts(s− 1)/6c − δ where

δ = 2 if ts(s− 1)/2 = 4(mod6) and

δ = 0 otherwise.

Proof Each fair 6-cycle uses an equal number of vertical and horizontal edges. Thus,

in a fair 6-cycle, there are 6/2 = 3 vertical edges. Similarly, there are 6/2 = 3 horizontal

edges. By our assumption s ≤ t. So, the number of vertical edges is at most the number

of horizontal edges, since, |E(Ks)| ≤ |E(Kt)|. So, the maximum number of fair 6-cycles

depends on the number of vertical edges. Thus, the maximum number of fair 6-cycles is

t(|E(Ks)|)/3 = ts(s− 1)/6.

Lemma 9. There exists a maximal fair 6-cycle system of K4 ×K6 that contains MF (4, 6)

fair 6-cycles

Proof Let V (K4 × K6) = Z4 × Z6. There are 16 6-cycles in every 6-cycle system of

K4 × K6. By applying Lemma 8, the maximum number of fair 6-cycles in K4 × K6 is
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MF (4, 6) = 36/3 = 12. These can be obtained from the proof of Lemma 2 in the previous

chapter. So, the remaining 6-cycles (16− 12 = 4) can be any cycles of length 6.

Lemma 10. There exists a maximal fair 6-cycle system of K4×K10 that contains MF (4, 10)

fair 6-cycles

Proof Let V (K4 × K10) = Z4 × Z10. There are 40 6-cycles in every 6-cycle system

of K4 × K10. The maximum number of fair 6-cycles in K4 × K10 is 60/3 = 20, using

Lemma 8. In order, to find the required maximal fair 6-cycle system, we embed one copy

of K4 × K4 and one copy of K4 × K6 into K4 × K10. Let V (K4 × K4) = Z4 × Z4 and

V (K4 × K6) = Z4 × (Z10\Z4). We know that there exists a maximal fair 6-cycle system

(Z4×Z4, C0) of K4×K4, from the proof of Lemma 2 given in Chpater 2. This system contains

8 fair 6-cycles. By applying Lemma 9, we know that there exists a maximum fair 6-cycle

system (Z4 × (Z10\Z4), C1) of K4 × K6 containing 12 fair 6-cycles. Thus, in all, we have

8+12 = 20 = ts(s−1)/6 fair 6-cycles . Now to complete the rest of the maximal fair 6-cycle

system, we note that there is one copy of K(4, 6) on each row of the array of vertices Z4×Z10.

And to decompose K(4, 6) into the 6-cycle system (K(({i} × Z4), ({i} × Z10\Z4)), Ci+2) for

each i ∈ Z4, we make use Theorem 3.1. This embedding of K4×K4 and K4×K6 in Z4×Z10,

facilitated the construction of the required maximum fair 6-cycle system (Z4×Z10,∪i∈Z7Ci)

of K4 ×K10.

Lemma 11. There exists a maximal fair 6-cycle system of K5×K9 that contains MF (5, 9)

fair 6-cycles

Proof There are 45 6-cycles in every 6-cycle system of K5×K9. By Lemma 8 an upper

bound for the maximum number of fair 6-cycles in any maximum fair 6-cycle system of

K5 × K9 is ts(s − 1)/6 = 30. To construct this maximum fair 6-cycle system with 30 fair

6-cycles begin by, considering two parallel classes of triples on V (KZ9) = M(3 | Z9).

π1 = (i, i+ 3, i+ 6) ∀i ∈ {0, 1, 2}

π2 = (j, j + 1, j + 2)) ∀j ∈ {0, 3, 6}
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We use each of these triples to induce 6 base cycles (π1 induces B0, B1 and B2. And π2

induces the other three) in K5 ×K9. And these base 6-cycles are rotated cyclically, which

give rise to thirty fair 6-cycles in K5 ×K9. There are 180 horizontal edges and 90 vertical

edges in K5 × K9. To construct this cycle system, we assign subscripts to these triples to

form our base cycles. These subscripts guide us in using the vertical edges in K5×K9. Now,

let V (K5 ×K9) = G(Z5 × Z9).

π
′
1 = (

⋃
∀i∈{0,1}(i1, i+ 31, i+ 62)

⋃
(22, 52, 81))

π
′
2 = (

⋃
∀j∈{0,3}(j2, j + 12, j + 21)

⋃
(61, 71, 82))

For example, the base cycle B0 is formed from the triple (01, 31, 62) as follows:

B0 = ((0, 0), (0 + 1, 0), (1, 0 + 3), (1 + 1, 3), (2, 0 + 6), (2− 2, 6))

The other base blocks formed similarly are listed below:

Bi =



((0, 1), (1, 1), (1, 4), (2, 4), (2, 7), (0, 7)) for i = 1

((0, 2), (1, 2), (1, 5), (2, 5), (2, 8), (0, 8)) for i = 2

((0, 0), (2, 0), (2, 1), (4, 1), (4, 2), (0, 2)) for i = 3

((0, 2), (2, 2), (2, 3), (4, 3), (4, 4), (0, 4)) for i = 4

((0, 6), (2, 6), (2, 7), (4, 7), (4, 8), (0, 8)) for i = 5

On vertical rotation each Bi gives rise to a set of corresponding fair 6-cycles Ci (say), given

below:
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Ci =



⋃
i∈Z5

((0 + i, 0), (1 + i, 0), (1 + i, 3), (2 + i, 3), (2 + i, 6), (0 + i, 6))

for i = 0⋃
i∈Z5

((0 + i, 1), (1 + i, 1), (1 + i, 4), (2 + i, 4), (2 + i, 7), (0 + i, 7))

for i = 1⋃
i∈Z5

((0 + i, 2), (1 + i, 2), (1 + i, 5), (2 + i, 5), (2 + i, 8), (0 + i, 8))

for i = 2⋃
i∈Z5

((0 + i, 0), (2 + i, 0), (2 + i, 1), (4 + i, 1), (4 + i, 2), (0 + i, 2))

for i = 3⋃
i∈Z5

((0 + i, 2), (2 + i, 2), (2 + i, 3), (4 + i, 3), (4 + i, 4), (0 + i, 4))

for i = 4⋃
i∈Z5

((0 + i, 6), (2 + i, 6), (2 + i, 7), (4 + i, 7), (4 + i, 8), (0 + i, 8))

for i = 5

To form the triples, we had used all the horizontal edges in K5 ×K9. Now, to obtain the

remaining 6-cycles, we go back to the structure of M(3 | Z9) and make use of the diagonal

edges in that graph. And, we get 15 6-cycles, three on each of the five rows in K5×K9 from

the following cycle system.

C6 = {(i, j + 6, i+ 3, j, i+ 6, j + 3) | for all (i, j) ∈ {(0 + k, 1),

(0 + k, 2), (1 + k, 2)}, k ∈ Z5}

Thus, (V (K5 ×K9),∪i∈Z7Ci) is a maximal fair 6-cycle system of K5 ×K9.

Lemma 12. There exists a maximal fair 6-cycle system of K5×K21 that contains MF (5, 21)

fair 6-cycles

Proof There are 210 6-cycles in every 6-cycle system of K5×K21. By applying Lemma

8, there are at most 70 fair 6-cycles in any maximum fair 6-cycle system of K5 ×K21. To

construct a system with 70 fair 6-cycles, consider two parallel classes of triples on V (KZ21) =

M(7 | Z21).
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π1 = (
⋃
i∈Z5

(i, i+ 8, i+ 16)
⋃

(5, 13, 14)
⋃

(6, 7, 15))

π2 = (
⋃
i∈Z8\Z3

(j, j + 6, j + 12)
⋃

(10, 13, 19)
⋃

(1, 7, 20))

We use each of these triples to induce 14 base cycles (π1 induces B0, . . . , B7. And π2 induces

the other seven) in K5 × K21. There are 1050 horizontal edges and 210 vertical edges in

K5×K21. Then we will rotate these base cycles cyclically, to get 70 fair 6-cycles in K5×K21.

First, we assign subscripts to these triples to form our base cycles. These subscripts help us

use the vertical edges in K5 ×K21. For this, let V (K5 ×K21) = G(Z5 × Z21).

π
′
1 = (

⋃
i∈Z5

(i1, i+ 81, i+ 162)
⋃

(51, 131, 142)
⋃

(61, 71, 152))

π
′
2 = (

⋃
j∈Z8\Z3

(j2, j + 62, j + 121)
⋃

(102, 132, 191)
⋃

(12, 72, 201))

Now, for example, the base cycle B0 is formed from the triple (01, 81, 162) follows:

B0 = ((0, 0), (0 + 1, 0), (1, 0 + 8), (1 + 1, 8), (2, 8 + 8), (2− 2, 16))

The other base blocks formed similarly are listed below:

Bi =



((0, 1), (1, 1), (1, 9), (2, 9), (2, 17), (0, 17)) for i = 1

((0, 2), (1, 2), (1, 10), (2, 10), (2, 18), (0, 18)) for i = 2

((0, 3), (1, 3), (1, 11), (2, 11), (2, 19), (0, 19)) for i = 3

((0, 4), (1, 4), (1, 12), (2, 12), (2, 20), (0, 20)) for i = 4

((0, 5), (1, 5), (1, 13), (2, 13), (2, 14), (0, 14)) for i = 5

((0, 6), (1, 6), (1, 7), (2, 7), (2, 15), (0, 15)) for i = 6

((0, 2), (2, 2), (2, 8), (4, 8), (4, 14), (0, 14)) for i = 7

((0, 3), (2, 3), (2, 9), (4, 9), (4, 15), (0, 15)) for i = 8

((0, 4), (2, 4), (2, 10), (4, 10), (4, 16), (0, 16)) for i = 9

((0, 5), (2, 5), (2, 11), (4, 11), (4, 17), (0, 17)) for i = 10

((0, 6), (2, 6), (2, 12), (4, 12), (4, 18), (0, 18)) for i = 11

((0, 0), (2, 0), (2, 13), (4, 13), (4, 19), (0, 19)) for i = 12

((0, 1), (2, 1), (2, 7), (4, 7), (4, 20), (0, 20)) for i = 13
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After vertical rotation each Bi gives rise to a set of corresponding fair 6-cycles Cj (say),

given as below:

Cj =



⋃
i∈Z5

((0 + i, j), (1 + i, j), (1 + i, j + 8), (2 + i, j + 8),

(2 + i, j + 16), (0 + i, j + 16)) for j ∈ Z5⋃
i∈Z5

((0 + i, 5), (1 + i, 5), (1 + i, 13), (2 + i, 13), (2 + i, 14),

(0 + i, 14)), j = 5⋃
i∈Z5

((0 + i, 6), (1 + i, 6), (1 + i, 7), (2 + i, 7), (2 + i, 15),

(0 + i, 15)), j = 6⋃
i∈Z5

((0 + i, j − 5), (2 + i, j − 5), (2 + i, j + 1), (4 + i, j + 1),

(4 + i, j + 7), (0 + i, j + 7)) for j ∈ Z12\Z7⋃
i∈Z5

((0 + i, 0), (2 + i, 0), (2 + i, 13), (4 + i, 13), (4 + i, 19),

(0 + i, 19)), j = 12⋃
i∈Z5

((0 + i, 1), (2 + i, 1), (2 + i, 7), (4 + i, 7), (4 + i, 20),

(0 + i, 20)), j = 13

At this point, we have used up all the vertical edges in K5 × K21. Now, to obtain the

remaining 6-cycles, we go back to the structure of M(7 | Z21). And embed one copy of

the 6-cycle system of K3 × K7 corresponding to M(7 | Z21) on each of the five rows of of

K5 × K21. There are 14, 6-cycles in K3 × K7. Thus, we get 14 × 5 = 70, 6-cycles by this

embedding for i ∈ Z5.

•
Ci+14 = 6-cycle system ofK3 ×K7 corresponding toM(7 | Z21) on

(Zi+1\Zi)× Z21

Then we consider the unused edges in M(7 | Z21) as shown below to finish this proof.

•
Cα = ((i, j + 14, i+ 7, j, i+ 14, j + 7) | ((i, j) = (m,m+ 3),

m ∈ Z4)
⋃

((i, j) = (m+ 4,m), m ∈ Z3)

Cα gives us 7, 6-cycles. Now, place a copy of this set of 6-cycles on each of the five rows in

K5 ×K21. So, let
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• C19 = 6-cycle obtained by embedding a copy of Cα on each of the 5 rows in K5 ×K21

There are, 7× 5 = 35, 6-cycles in C19.

•
Cβ = ((i, j + 14, i+ 6, j, i+ 14, j + 8) | (i, j) = (m,m+ 1),

m ∈ Z6\Z1)
⋃

(0, 15, 13, 1, 14, 9)
⋃

(6, 14, 12, 0, 20, 8)

Now, embed a copy of Cβ in each of the five rows in K5×K21, and call the new set of 6-cycles

obtained, C20. So,

• C20 = 6-cycle obtained by embedding a copy of Cβ on each of the 5 rows in K5 ×K21

C20 also gives us 7 × 5 = 35 6-cycles. So, now we have 210 6-cycles. And thus, (V (K5 ×

K21),∪i∈Z21Ci) is a maximum fair 6-cycle system of K5 ×K21.

Lemma 13. There exists a maximum fair 6-cycle system of K5×K33 that contains MF (5, 33)

fair 6-cycles

Proof There are 495 6-cycles in every 6-cycle system of K5 × K33. The maximum

number of fair 6-cycles in a maximum fair 6-cycle system of K5×K33 is 330/3 = 110, using

Lemma 8. To construct this maximum fair 6-cycle system, consider two parallel classes of

triples on V (KZ33) = M(11 | Z33).

π1 = (
⋃
i∈Z8

(i, i+ 12, i+ 24)
⋃

(9, 21, 22)
⋃

(10, 11, 23))

π2 = (
⋃
i∈Z10\Z2

(j, j + 10, j + 20)
⋃

(0, 21, 31)
⋃

(1, 11, 32))

We use each of these triples to induce 22 base cycles (π1 induces B0, . . . , B11. And π2 induces

the other eleven) in K5 ×K33. There are 2640 horizontal edges and 330 vertical edges in

K5 × K33. And these base fair 6-cycles are rotated cyclically, which give rise to 110 fair

6-cycles in K5 × K33. First, we assign subscripts to these triples to form our base cycles,

which help us use the vertical edges in K5×K33. For this, let V (K5×K33) = G(Z5×Z33).

π
′
1 = (

⋃
i∈Z8

(i1, i+ 121, i+ 242)
⋃

(91, 211, 222)
⋃

(101, 111, 232))

π
′
2 = (

⋃
j∈Z10\Z2

(j2, j + 102, j + 201)
⋃

(02, 212, 311)
⋃

(12, 112, 321))

Now, for example, the base cycle B0 is formed from the triple (01, 121, 242) follows:
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B0 = ((0, 0), (0 + 1, 0), (1, 0 + 12), (1 + 1, 12), (2, 12 + 12), (2− 2, 24))

The other base blocks formed similarly are listed below:

Bi =



((0, 1), (1, 1), (1, 13), (2, 13), (2, 25), (0, 25)) for i = 1

((0, 2), (1, 2), (1, 14), (2, 14), (2, 26), (0, 26)) for i = 2

((0, 3), (1, 3), (1, 15), (2, 15), (2, 27), (0, 27)) for i = 3

((0, 4), (1, 4), (1, 16), (2, 16), (2, 28), (0, 28)) for i = 4

((0, 5), (1, 5), (1, 17), (2, 17), (2, 29), (0, 29)) for i = 5

((0, 6), (1, 6), (1, 18), (2, 18), (2, 30), (0, 30)) for i = 6

((0, 7), (1, 7), (1, 19), (2, 19), (2, 31), (0, 31)) for i = 7

((0, 8), (1, 8), (1, 20), (2, 20), (2, 32), (0, 32)) for i = 8

((0, 9), (1, 9), (1, 21), (2, 21), (2, 22), (0, 22)) for i = 9

((0, 10), (1, 10), (1, 11), (2, 11), (2, 23), (0, 23)) for i = 10

((0, 2), (2, 2), (2, 12), (4, 12), (4, 22), (0, 22)) for i = 11

((0, 3), (2, 3), (2, 13), (4, 13), (4, 23), (0, 23)) for i = 12

((0, 4), (2, 4), (2, 14), (4, 14), (4, 24), (0, 24)) for i = 13

((0, 5), (2, 5), (2, 15), (4, 15), (4, 25), (0, 25)) for i = 14

((0, 6), (2, 6), (2, 16), (4, 16), (4, 26), (0, 26)) for i = 15

((0, 7), (2, 7), (2, 17), (4, 17), (4, 27), (0, 27)) for i = 16

((0, 8), (2, 8), (2, 18), (4, 18), (4, 28), (0, 28)) for i = 17

((0, 9), (2, 9), (2, 19), (4, 19), (4, 29), (0, 29)) for i = 18

((0, 10), (2, 10), (2, 20), (4, 20), (4, 30), (0, 30)) for i = 19

((0, 0), (2, 0), (2, 21), (4, 21), (4, 31), (0, 31)) for i = 20

((0, 1), (2, 1), (2, 11), (4, 11), (4, 32), (0, 32)) for i = 21

After rotation each Bi gives rise to a set of fair 6-cycles Cj (say), given as below:
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Cj =



⋃
i∈Z5

((0 + i, 0), (1 + i, 0), (1 + i, 12), (2 + i, 12), (2 + i, 24), (0 + i, 24)), j = 0⋃
i∈Z5

((0 + i, 1), (1 + i, 1), (1 + i, 13), (2 + i, 13), (2 + i, 25), (0 + i, 25)), j = 1⋃
i∈Z5

((0 + i, 2), (1 + i, 2), (1 + i, 14), (2 + i, 14), (2 + i, 26), (0 + i, 26)), j = 2⋃
i∈Z5

((0 + i, 3), (1 + i, 3), (1 + i, 15), (2 + i, 15), (2 + i, 27), (0 + i, 27)), j = 3⋃
i∈Z5

((0 + i, 4), (1 + i, 4), (1 + i, 16), (2 + i, 16), (2 + i, 28), (0 + i, 28)), j = 4⋃
i∈Z5

((0 + i, 5), (1 + i, 5), (1 + i, 17), (2 + i, 17), (2 + i, 29), (0 + i, 29)), j = 5⋃
i∈Z5

((0 + i, 6), (1 + i, 6), (1 + i, 18), (2 + i, 18), (2 + i, 30), (0 + i, 30)), j = 6⋃
i∈Z5

((0 + i, 7), (1 + i, 7), (1 + i, 19), (2 + i, 19), (2 + i, 31), (0 + i, 31)), j = 7⋃
i∈Z5

((0 + i, 8), (1 + i, 8), (1 + i, 20), (2 + i, 20), (2 + i, 32), (0 + i, 32)), j = 8⋃
i∈Z5

((0 + i, 9), (1 + i, 9), (1 + i, 21), (2 + i, 21), (2 + i, 22), (0 + i, 22)), j = 9⋃
i∈Z5

((0 + i, 10), (1 + i, 10), (1 + i, 11), (2 + i, 11), (2 + i, 23), (0 + i, 23)), j = 10⋃
i∈Z5

((0 + i, 2), (2 + i, 2), (2 + i, 12), (4 + i, 12), (4 + i, 22), (0 + i, 22)), j = 11⋃
i∈Z5

((0 + i, 3), (2 + i, 3), (2 + i, 13), (4 + i, 13), (4 + i, 23), (0 + i, 23)), j = 12⋃
i∈Z5

((0 + i, 4), (2 + i, 4), (2 + i, 14), (4 + i, 14), (4 + i, 24), (0 + i, 24)), j = 13⋃
i∈Z5

((0 + i, 5), (2 + i, 5), (2 + i, 15), (4 + i, 15), (4 + i, 25), (0 + i, 25)), j = 14⋃
i∈Z5

((0 + i, 6), (2 + i, 6), (2 + i, 16), (4 + i, 16), (4 + i, 26), (0 + i, 26)), j = 15⋃
i∈Z5

((0 + i, 7), (2 + i, 7), (2 + i, 17), (4 + i, 17), (4 + i, 27), (0 + i, 27)), j = 16⋃
i∈Z5

((0 + i, 8), (2 + i, 8), (2 + i, 18), (4 + i, 18), (4 + i, 28), (0 + i, 28)), j = 17⋃
i∈Z5

((0 + i, 9), (2 + i, 9), (2 + i, 19), (4 + i, 19), (4 + i, 29), (0 + i, 29)), j = 18⋃
i∈Z5

((0 + i, 10), (2 + i, 10), (2 + i, 20), (4 + i, 20), (4 + i, 30), (0 + i, 30)), j = 19⋃
i∈Z5

((0 + i, 0), (2 + i, 0), (2 + i, 21), (4 + i, 21), (4 + i, 31), (0 + i, 31)), j = 20⋃
i∈Z5

((0 + i, 1), (2 + i, 1), (2 + i, 11), (4 + i, 11), (4 + i, 32), (0 + i, 32)), j = 21

At this point, we have used up all the vertical edges in K5 ×K33. Now, to obtain the

remaining 6-cycles, we go back to the structure of M(11 | Z33). And embed the 6-cycle

system of K3 × K11 corresponding to (M(11 | Z33),∪i∈Z27\Z22Ci) on each of the five rows
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of K5 × K33. There are 33 6-cycles in every 6-cycle system of K3 × K11. Thus, we get

33× 5 = 165 6-cycles by this embedding. For i ∈ Z5

•
Ci+22 = 6-cycle system ofK3 ×K11 corresponding toM(11 | Z33) on

Zi+1\Zi × Z33

Now, we consider the unused edges in M(11 | Z33) as shown below to finish this proof.

•
Cα = ((i, j + 11, i+ 22, j, i+ 11, j + 22) | {((i, j) = (m,m+ 5),

m ∈ Z6)
⋃

((i, j) = (m,m+ 6), m ∈ Z5}))

There are 11 6-cycles in Cα. Now we, embed one copy of Cα in each of the five rows in

K5 ×K33.

• C27 = 6-cycle obtained by embedding one copy of Cα on each of the 5 rows in K5×K33

Thus, C27 gives us 11× 5 = 55 6-cycles.

•
Cβ = ((i, j + 22, i+ 10, j, i+ 22, j + 12) | ((i, j) = (m,m+ 1),

m ∈ Z10\Z1)
⋃

(0, 23, 21, 1, 22, 13)
⋃

(10, 22, 20, 0, 32, 12))

Now, embed one copy of Cβ in each of the five rows of K5 ×K33, to get C28.

• C28 = 6-cycle obtained by embedding one copy of Cβ on each of the 5 rows in K5×K33

And, we get 11× 5 = 55 6-cycles from C28.

•
Cγ = ((i, j + 22, i+ 10, j, i+ 22, j + 11) | {((i, j) = (m,m+ 3),

m ∈ Z8\Z1)
⋃

((i, j) = (m+ 8,m), m ∈ Z2))}

On embedding Cγ into the five rows in K5 ×K33, we get another 11 × 5 = 55 6-cycles, say

C29.

• C29 = 6-cycle obtained by embedding one copy of Cγ on each of the 5 rows in K5×K33

•
Cδ = ((i, j + 22, i+ 10, j, i+ 22, j + 11) | {((i, j) = (m,m+ 3),

m ∈ Z8\Z1)
⋃

((i, j) = (m+ 8,m), m ∈ Z2))}
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And, finally we get, 11×5 = 55 6-cycles by embedding Cδ in each of the five rows in K5×K33,

C30.

• C30 = 6-cycle obtained by embedding a copy of Cδ on each of the 5 rows in K5 ×K33

Thus, we have 495 6-cycles now. Thus, (V (K5×K33),∪i∈Z30Ci) a maximum fair 6-cycle

system of K5 ×K33.

Lemma 14. There exists a maximum fair 6-cycle system of K3 ×K7

Proof There are 14, 6-cycles in every 6-cycle system of K3 ×K7. Let V (K3 ×K7) =

Z3×Z7. In this case, the number of fair 6-cycles is 21/3 = 7, using Lemma 8. But, it is not

possible to pull out seven fair 6-cycles in the ∗-cycle systm of K3 ×K7.

Thus, the maximum number of fair 6-cycles possible in the maximum fair 6-cycle

system of K3 ×K7 is five. Let V (K3 ×K7) = G(Z3 × Z7).

• C0 = ∪i∈Z5((0, i), (0, i+ 1), (1, i+ 1), (1, i+ 2), (2, i+ 2), (2, i))

The remaining 6-cycles in the maximum fair 6-cycle system of K3 × K7 are obtained as

follows:

• C1 =
{((0, 0), (0, 5), (0, 6), (1, 6), (1, 1), (1, 0)),

((1, 0), (1, 3), (1, 1), (2, 1), (2, 6), (2, 0))}

• C2 =
{((0, 0), (0, 4), (0, 1), (0, 5), (0, 2), (0, 6)),

((0, 0), (0, 3), (0, 1), (0, 6), (0, 4), (0, 2))}

• C3 =
{((1, 0), (1, 4), (1, 1), (1, 5), (1, 2), (1, 6)),

((1, 0), (1, 5), (1, 3), (1, 6), (1, 4), (1, 2))}

• C4 =
{((2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5)),

((2, 0), (2, 3), (2, 6), (2, 5), (2, 1), (2, 4))}

And so, (V (K3 ×K7),∪i∈Z5Ci) is a maximum fair 6-cycle system of K3 ×K7.
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3.4 Proposition

In this section, we give constructions for maximum fair 6-cycle systems of Ks ×Kt for

some generalized values of s and t.

Proposition 5. There exists a maximum fair 6-cycle system of K6x+1 ×K6x+1

Proof To find the total number of 6-cycles in every 6-cycle system of K6x+1 ×K6x+1,

note that there is one copy of K6x+1 on each row in K6x+1 ×K6x+1. And, there is one copy

of K6x+1 on each column in K6x+1 ×K6x+1. Thus, we have 2(6x+ 1) copies of K6x+1 in our

graph. So, the total number of 6-cycles in every K6x+1 ×K6x+1 is

= 2(6x+1)(6x+1)(6x+1−1)/2
6

= (6x+1)(6x+1)(6x)
6

= (x)(6x+ 3)(6x+ 1)

Thus, there are (x)(6x+3)(6x+1) 6-cycles in K6x+1×K6x+1. And using Lemma 8, there

are (x)(6x+ 3)(6x+ 1) fair 6-cycles in every maximum fair 6-cycle system of K6x+1×K6x+1.

Thus, a fair 6-cycle system of K6x+1×K6x+1 is the same as the maximal fair 6-cycle system

of K6x+1×K6x+1. For the construction of a maximum fair 6-cycle system of K6x+1×K6x+1,

we refer the reader to the previous chapter.

Proposition 6. There exists a maximum fair 6-cycle system of K6x+3 ×K6x+3

Proof We first calculate the total number of 6-cycles in every 6-cycle system of K6x+1×

K6x+1. There is one copy of K6x+1 on each row in K6x+3 ×K6x+3. And, there is one copy

of K6x+1 on each column in K6x+3 ×K6x+3. Thus, we have 2(6x+ 3) copies of K6x+3 in our

graph. So, the total number of 6-cycles in every K6x+3 ×K6x+3 is

= 2(6x+3)(6x+3)(6x+3−1)/2
6

= (3)(2x+1)(6x+3)(6x+2)
6

= (2x+ 1)(6x+ 3)(3x+ 1)
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Thus, there are (2x+ 1)(6x+ 3)(3x+ 1) 6-cycles in K6x+3 ×K6x+3. And using Lemma

8, there are (2x + 1)(6x + 3)(3x + 1) fair 6-cycles in every maximum fair 6-cycle system of

K6x+3×K6x+3. Thus, a fair 6-cycle system of K6x+3×K6x+3 is the same as the maximal fair

6-cycle system of K6x+3 ×K6x+3. For this construction, we refer the reader to the previous

chapter.
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Chapter 4

6-cycle system of the Cartesian Product of two Complete Graphs

4.1 Introduction

All graphs considered in this chapter are simple (no loops or multiple edges) and

finite. An m-cycle is defined as a cycle on m edges. An m-cycle system of G is a set of

cycles of length m, such that each edge in G is contained in exactly one cycle. Considerable

amount of research has been done in finding m-cycle systems of a graph G. Initially graph

theorists were interested in the case when G was the complete graph on n vertices, denoted

by Kn. Alspach and Gavalas found a pivotal result on m-cycle systems of Kn and Kn − I,

[82].

Work has also been done in the case when the graph under consideration is the

cartesian product of two graphs. In the cartesian product G1 × G2, of two graphs G1 and

G2, (v1, v2) is adjacent to (u1, u2) iff v1 = u1 and v2 is adjacent to u2 in G2 or v2 = u2 and v1

is adjacent to u1 in G1. There are several results for the problem of finding n-cycle system of

Kn×Kn by [73, 36, 87]. The problem of finding a 1-factorization of Km×Kn was solved by

Ktzig [63] and Wallis [90]. Chen [18] solved the problem of finding the number of spanning

trees in Km ×Kn. The problems for obtaining k-cycle systems of Km ×Kn has been solved

for the cases when k = 4 [46],5 [72], 6 [29] and 8 [77]. Hoffman et. al. solved the problem

of finding the 4-cycle system of the Cartesian product of two complete graphs, [46]. The

problem of packing Km ×Kn with k-cycles has been been solved for the cases when k = 4

[39] and 6 [35].
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In this chapter we find necessary and sufficient conditions for obtaining a 6-cycle

system of Km×Kn. Let Nx denote the first x natural numbers. For the rest of the notations

used in this chapter the reader should refer to the notation section of Chapter 2.

And by definition, a cycle system decomposes the edge set of a graph into cycles,

such that each edge is contained in exactly one cycle. Here we mention some important

results used in this chapter.

Theorem 4.1. [84] There exists a 4-cycle system of Ka,b and of 2Ka,b if and only if each

vertex has even degree, the number of edges is divisible by 4, and a, b ≥ 2.

Theorem 4.2. [17] Billington’s theorem

Theorem 4.3. Sajna’s theorem

4.2 Preliminary Results

In this section we solve the problem for obtaining a 6-cycle system of Ks×Kt for some

small values of s and t.

Remark 1. The number of 6-cycles in a 6-cycle system of Ks × Kt is calculated as

follows:

| E(Ks ×Kt) | /6 = (t[ | E(Ks) | ] + s[ | E(Kt) | ])/6

= (t[ s(s−1)
2

] + s[ t(t−1)
2

])/6

Lemma 15. There exists a 6-cycle system of K2 ×K6

Proof Let V (K2 ×K6) = N12. Using Remark 1, there are 6 6-cycles in

K2 ×K6. (V (K2 ×K6), {(1, 3, 2, 4, 10, 7), (3, 5, 4, 6, 12, 9), (1, 2, 8, 11, 5, 6),

(1, 4, 3, 6, 2, 5), (7, 11, 10, 9, 8, 12), (7, 9, 11, 12, 10, 8)}) is a 6-cycle system of K2 ×K6.

Lemma 16. There exists a 6-cycle system of K4 ×K6
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Proof Let V (K4 ×K6) = Z4 × Z6. There are 16 6-cycles in K4 ×K6 using Remark 1.

The reader should refer to Chapter 3 for the proof of this Lemma.

Lemma 17. There exists a 6-cycle system of K6 ×K6

Proof There are 30 6-cycles in every 6-cycle system of K6 × K6. The reader should

refer to the proof given in Chapter 2 for this Lemma.

Lemma 18. There exists a 6-cycle system of K4 ×K4

Proof There are 8 6-cycles in every 6-cycle system of K4×K4. The reader should refer

to the proof of this Lemma given in Chapter 2.

Lemma 19. There exists a 6-cycle system of K4 ×K10

Proof There are 40 6-cycles in the 6-cycle system of K4×K10. The reader should refer

to Chapter 3 for the proof of this Lemma.

Lemma 20. There exists a 6-cycle system of K13 ×K13

Proof There are 338 6-cycles in the 6-cycle system of K13 × K13. The proof of this

Lemma is given in Chapter 2.

Lemma 21. There exists a 6-cycle system of K7 ×K7

Proof There are 49 6-cycles in this 6-cycle system. The detailed construction for this

proof is given in Chapter 2.

Lemma 22. There exists a 6-cycle system of K3 ×K3

Proof There are 3 6-cycles in this 6-cycle system. The reader should refer to Chapter

2 for the detailed construction of this proof.

Lemma 23. There exists a 6-cycle system of K3 ×K7

Proof Let V (K7×K7) = Z3×Z7. There are 14 6-cycles in the 6-cycle system of K3×K7,

using Remark 1. In order, to obtain this cycle system, we embed one copy of K2 × K6 in

K3 ×K7. Let V (K2 ×K6) = Z2 × Z6. The 6-cycle system of K2 ×K6 exists using Lemma
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15. So, define C0 = 6-cycle system of Z2×Z6 as a set of 6-cycles. C0 gives rise to six cycles.

Now, construct the following set of 6-cycles in K3 ×K7.

• C1 = ((0, i), (0, 6), (0, i+ 1), (2, i+ 1), (2, 6), (2, i)) for i ∈ {1, 3}

• C2 = ((0, 6), (1, 6), (1, 1), (2, 1), (2, 0), (0, 0))

• C3 = ((0, 5), (0, 6), (2, 6), (1, 6), (1, 5), (2, 5))

• C4 = ((1, 0), (1, 6), (1, 2), (2, 2), (2, 3), (2, 0))

• C5 = ((1, 3), (1, 6), (1, 4), (2, 4), (2, 5), (2, 3))

• C6 = ((2, 0), (2, 4), (2, 1), (2, 2), (2, 5), (2, 6))

• C7 = ((2, 0), (2, 2), (2, 4), (2, 3), (2, 1), (2, 5))

(∪i∈N7Ci) gives rise to eight 6-cycles. Thus (V (K3 × K7),∪i∈Z8Ci) is a 6-cycle system of

K3 ×K7.

Lemma 24. There exists a 6-cycle system of K3 ×K11.

Proof Let V (K3×K11) = Z3×Z11. Using Remark 1 there are 33 6-cycles in the 6-cycle

system of K3 × K11. In this case, we first embed one copy of K1 × K9 in K3 × K11. Let

V (K1×K9) = Z1×Z9. The 6-cycle system of K1×K9 exists by Lemma 25. And using that we

construct our first set of 6-cycles, C0 = 6-cycle system of G(Z1×Z9). C0 contains 6 6-cycles.

Similarly, we embed two more copies of K1×K9. First, let V (K1×K9) = (Z1\Z0)×Z9. And

based on this we construct a set of 6-cycles, C1 = 6-cycle system of G((Z1\Z0)×Z9). Finally,

we embed another copy of K1×K9 in K3×K11. And, let, V (K1×K9) = (Z2\Z1)×Z9. Let

the set of 6-cycles obtained from this be C2 = 6-cycle system of G((Z2\Z1)× Z9). Thus, so

far, we have constructed 18 6-cycles, six from each copy of K1×K9 embedded in to K3×K11.

Now, we embed one copy of K3 ×K3 in K3 ×K11. The 6-cycle system of K3 ×K3 exists,

using Lemma 22. Let V (K3 ×K3) = Z3 × (Z11\Z8). We obtain 3 more 6-cycles from this
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embedding, denoted by C3 = 6-cycle system of G(Z3 × (Z11\Z8)). At this stage, we have 21

6-cycles. We, construct the remaining 6-cycles as shown below.

• C4 = {((0, i), (0, 9), (0, i+ 1), (1, i+ 1), (1, 9), (1, i)) | for i ∈ {0, 2, 4, 6}}

• C5 = {((1, i), (1, 10), (1, i+ 1), (2, i+ 1), (2, 10), (2, i)) | for i ∈ {0, 2, 4, 6}}

• C6 = {((0, i), (0, 10), (0, i+ 1), (2, j + 1), (2, 9), (2, j)) | for i ∈ {0, 2, 4, 6}}

(∪i∈Z7\Z4Ci) contains 12 6-cycles. Thus, (V (K3 ×K11),∪i∈Z7Ci) is a 6-cycle system of K3 ×

K11.

Lemma 25. There exists a 6-cycle system of K1 ×K9

Proof Let (K1×K9) = Z9. There are 6 6-cycles in the 6-cycle system of K1×K9 by Re-

mark 1. Thus, (Z9, {(1, 8, 6, 0, 5, 2), (0, 2, 1, 5, 6, 7), (0, 1, 3, 5, 7, 4), (0, 3, 2, 6, 4, 8), (1, 6, 3, 8, 2, 7),

(1, 4, 3, 7, 8, 5)}) is 6-cycle system of K1 ×K9.

Lemma 26. There exists a 6-cycle system of K5 ×K9

Proof There are 45 6-cycles in the 6-cycle system of K5 × K9 using Remark 1. The

reader should refer to Chapter 2 for the detailed construction for this Lemma.

Lemma 27. There exists a 6-cycle system of K5 ×K21

Proof There are 210 6-cycles in the 6-cycle system of K5 × K21 by Remark 1. The

reader should refer to Chapter 2 for this proof.

Lemma 28. There exists a 6-cycle system of K5 ×K33

Proof There are 495 6-cycles in the 6-cycle system of K5 × K33 by Remark 1. The

reader should refer to Chapter 2 for this construction.
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4.3 Propositions

In this section we give generalized constructions for obtaining 6-cycle systems of Ks×Kt

for some general values of s and t.

Proposition 7. There exists a 6-cycle system of K6x+2 ×K6y

Proof The number of 6-cycles in the 6-cycle system of K6x+2 ×K6y is given by,

| E(K6x+2 ×K6y) | = (6x+ 2)[ | E(K6y) | ] + (6y)[ | E(K6x+2) | ]

= (6x+ 2)[6y(6y−1)
2

] + (6y)[6x+2(6x+2−1)
2

]

= (6x+ 2)[(3y)(6y − 1)] + (6y)[(3x+ 1)(6x+ 1)]

= 6(3x+ 1)(y)[(6y − 1) + (6x+ 1)]

= 6(3x+ 1)(y)[6y + 6x]

= 36(3x+ 1)(y)[x+ y]

So, there are 6|36(3x + 1)(y)[x + y] = 6(3x + 1)(y)[x + y], 6-cycles in the 6-cycle system of

K6x+2 × K6y. Now, let V (K6x+2 × K6y) = G(3x + 1, y), where each vi,j ∈ G(3x + 1, y) is

defined as follows:

vi,j = {K2 ×K6 | for all 1 ≤ i ≤ 3x+ 1, 1 ≤ j ≤ y}

Using Lemma 15, there exists a 6-cycle system of K2 ×K6. The 6-cycle system of K2 ×K6

contains six 6-cycles. Thus, we get a set of 6-cycles given below.

• C0 = 6-cycle system of vi,j for all {1 ≤ i ≤ 3x+ 1, 1 ≤ j ≤ y}

We get, 6(y)(3x + 1), 6-cycles from C0. Now, to obtain the remaining 6-cycles we observe

that the following edges do not appear in any 6-cycle yet.

1. There are
(
y
2

)
copies of K(6, 6), on each of the 6x+ 2 rows in K6x+2 ×K6y

2. There is one copy of K(6x+ 2)− F for each of the 6y columns in K6x+2 ×K6y
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Using Sotteau’s result, Theorem 4.1 there exists a 6-cycle system of K(6, 6). There are six

cycles of length 6, in the 6-cycle system of K(6, 6). This gives us another set of 6-cycles, say

C1.

• C1 = 6-cycle system of the
(
y
2

)
copies of K(6, 6), on each of the 6x+ 2 rows in K6x+2×

K6y

There are 3y(y−1)(6x+2), 6-cycles in C1. And, there exists a 6-cycle system of K(6x+2)−F ,

where F is a one factor of K6x+2 using Sajna’s result, Theorem 4.3. There are (x)(3x + 1),

6-cycles in the 6-cycle system of K(6x+ 2)− F . Let us denote this set of 6-cycles by C2.

• C2 = 6-cycle system of K(6x+ 2)− F one on each of the 6y columns in K6x+2 ×K6y

We get, 6y(x)(3x+ 1) cycles of length 6, from C2. Thus, we have 6y(3x+ 1)(x+ y), 6-cycles

now. And, thus (G(3x+ 1, y),∪i∈Z3Ci) is a 6-cycle system of K6x+2 ×K6y.

Proposition 8. There exists a 6-cycle system of K6x+4 ×K6y

Proof Let V (K6x+4 × K6y) = G(x + 2, y), where each vi,j ∈ G(x + 2, y) is defined as

follows:

vi,j =

 K4 ×K6 for (i, j) ∈G(1,y),∀y

K6 ×K6 for (i, j) ∈G(m,y),1 ¡ m ≤ x+ 2

And, there exists a 6-cycle system of K4 ×K6 using Lemma 16. Also, there exists a 6-cycle

system of K6 × K6, using Lemma 17. Now, to obtain the remaining 6-cycles, we observe

that the following edges do not appear in any 6-cycle yet.

1. There are
(
y
2

)
copies of K(6, 6) on each of the 6x+ 4 rows in K6x+4 ×K6y

2. There are x copies of K(4, 6) and
(
x
2

)
copies of K(6, 6) on each of the 6y columns in

K6x+4 ×K6y

And using Sotteau’s result, Theorem 4.1 we know that, there exist 6-cycle systems of K(4, 6)

and K(6, 6). Thus, there exists a 6-cycle system of K6x+4 ×K6y.
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Proposition 9. There exists a 6-cycle system of K6x ×K6y

Proof The number of 6-cycles in the 6-cycle system of K6x ×K6y is given by,

| E(K6x ×K6y) | = (6x)[ | E(K6y) | ] + (6y)[ | E(K6x) | ]

= (6x)[6y(6y−1)
2

] + (6y)[6x(6x−1)
2

]

= (6x)[(3y)(6y − 1)] + (6y)[(3x)(6x− 1)]

= 18xy[(6y − 1) + (6x− 1)]

= 36xy[3y + 3x− 1]

So, there are 6|36xy[3y + 3x − 1] = 6xy[3y + 3x − 1], 6-cycles in the 6-cycle system of

K6x ×K6y. Let V (K6x+4 ×K6y) = G(x, y), where each vi,j ∈ G(x, y) is defined as follows:

vi,j = {K6 ×K6 | for all 1 ≤ i ≤ x, 1 ≤ j ≤ y}

Using Lemma 17 there exists a 6-cycle system of K6 × K6. And, there are 30, 6-cycles in

K6 ×K6. Let, C0 be the set of 6-cycles obtained from this.

• C0 = 6-cycle system of vi,j for all {1 ≤ i ≤ 3x+ 1, 1 ≤ j ≤ y}

To obtain the remaining 6-cycles, we observe that the following edges do not appear in

any 6-cycle yet.

1. There are
(
y
2

)
copies of K(6, 6) on each of the 6x rows in K6x ×K6y

2. There are
(
x
2

)
copies of K(6, 6) on each of the 6y columns in K6x ×K6y

Using Sotteau’s result, Theorem 4.1 we know that there exists 6-cycle systems of K(6, 6).

There are 6 cycles of length 6 in the 6-cycle system of K(6, 6).

• C1 = 6-cycle system of the
(
y
2

)
copies of K(6, 6) on each of the 6x rows in K6x ×K6y

Clearly, there are 18xy(y − 1), 6-cycles in this set. Finally,we form our last set of 6-cycles,

C2, as given below:

• C2 = 6-cycle system of the
(
x
2

)
copies of K(6, 6) on each of the 6y columns in K6x×K6y
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So, we have 6xy[3x+ 3y−1], 6-cycles now. And hence, (G(x, y),∪i∈Z3Ci) is a 6-cycle system

of K6x ×K6y.

Proposition 10. There exists a 6-cycle system of K6x+4 ×K6y+4

Proof Let V (K6x+4 × K6y+4) = G(x + 1, y + 1), where each vi,j ∈ G(x + 1, y + 1) is

defined as follows:

vi,j =



K4 ×K6 for (i, j) ∈ G(m, y + 2−m), 1 ≤ m ≤ x,∀y

K4 ×K4 for (i, j) = (x+ 1, 1) if x 6= y

K6 ×K4 for (i, j) = (x+ 1, 1) if x = y

K6 ×K4 for (i, j) = (x+ 1,m), 2 ≤ m ≤ y + 1

K6 ×K6 otherwise

And, there exists 6-cycle systems of K4 × K4 (using Lemma 18), K4 × K6 (using Lemma

16) and K6 ×K6 (using Lemma 17). To obtain the remaining 6-cycles, we observe that the

following edges do not appear in any 6-cycle yet.

1. There are
(
y
2

)
copies of K(6, 6) and y copies of K(4, 6) on each of the 6x + 4 rows in

K6x+4 ×K6y+4

2. There are
(
x
2

)
copies of K(6, 6) and x copies of K(4, 6) on each of the 6y + 4 columns

in K6x+4 ×K6y+4

And using Sotteau’s result, Theorem 4.1 we know that, there exist 6-cycle systems of K(4, 6)

and K(6, 6). Hence, there exists a 6-cycle system of K6x+4 ×K6y+4.

Proposition 11. There exists a 6-cycle system of K12x+1 ×K12y+1

Proof The number of 6-cycles in the 6-cycle system of K12x+1 ×K12y+1 is given by,
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| E(K12x+1 ×K12y+1) | = (12x+ 1)[ | E(K12y+1) | ]+

(12y + 1)[ | E(K12x+1) | ]

= (12x+ 1)[ (12y+1)(12y)
2

]+

(12y + 1)[ (12x+1)(12x)
2

]

= (12x+ 1)[(6y)(12y + 1)]+

(12y + 1)[(6x)(12x+ 1)]

= 6(12x+ 1)(12y + 1)(x+ y)

So, there are 6|6(12x+ 1)(12y+ 1)(x+ y) = (12x+ 1)(12y+ 1)(x+ y), 6-cycles in the 6-cycle

system of K12x+1 ×K12y+1. There are 12x + 1 copies of K(12y + 1) on each of the 12x + 1

rows in K12x+1×K12y+1. The 6-cycle system of K(12yx+1) exists by Lemma 20. And there

are (12y+ 1)(y), 6-cycles in the 6-cycle system of K(12y+ 1). We denote this set of 6-cycles

by C0, as given below.

• C0 = 6-cycle system of the 12x + 1 copies of K(12y + 1) on each of the 12x + 1 rows

in K12x+1 ×K12y+1

So, we get y(12y + 1)(12x + 1), 6-cycles in this set. Similarly, there are 12y + 1 copies of

K(12x+ 1) on each of the 12y + 1 columns in K12x+1 ×K12y+1. And, there exists a 6-cycle

system of K(12x+1) using Lemma 20. There are (12x+1)(x), 6-cycles in the 6-cycle system

of K(12x+ 1). Let this set of 6-cycles be C1.

• C1 = 6-cycle system of the 12y+1 copies of K(12x+1) on each of the 12y+1 columns

in K12x+1 ×K12y+1

So, we have (12x+ 1)(12y+ 1)[x+ y], 6-cycles now. And so, there exists a 6-cycle system of

K12x+1 ×K12y+1.

Proposition 12. There exists a 6-cycle system of K12x+7 ×K12y+7

Proof The number of 6-cycles in the 6-cycle system of K12x+7 ×K12y+7 is given by,
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| E(K12x+7 ×K12y+7) | = (12x+ 7)[ | E(K12y+7) | ]+

(12y + 7)[ | E(K12x+7) | ]

= (12x+ 7)[ (12y+7)(12y+7−1)
2

]+

(12y + 7)[ (12x+7)(12x+7−1)
2

]

= (12x+ 7)[(12y + 7)(6y + 3)]+

(12y + 1)[(12x+ 7)(6x+ 3)]

= 3(12x+ 7)(12y + 7)[2x+ 2y + 2]

= 6(12x+ 7)(12y + 7)[x+ y + 1]

So, there are 6|6(12x+7)(12y+7)[x+y+1] = (12x+7)(12y+7)[x+y+1], 6-cycles in the 6-

cycle system of K12x+7×K12y+7. Let V (K12x+7×K12y+7) = G(4x+7, 4y+7), where each vi,j ∈

G(4x+7, 4y+7) is defined as follows:
vi,j =



K7 ×K7 for (i, j) = (1,1)

K7 ×K3 for (i, j) = (1,m), 1 ≤ m ≤ 4y

K3 ×K7 for (i, j) = (m,1), 1 ≤ m ≤ 4x

K3 ×K3 otherwise

And, there exists 6-cycle systems of K3×K3 (using Lemma 22), K3×K7 (using Lemma

23) and K7×K7 (using Lemma 21). We denote the set of 6-cycles obtained from this by C0.

• C0 = 6-cycle system of vi,j ∈ G(4x+ 7, 4y + 7)

There are 49 + 14(4y) + 14(4x) + 3(4x)(4y), 6-cycles in C0. Now, to obtain the remaining

6-cycles, we observe that the following edges do not appear in any 6-cycle yet.

1. There is a copy of K(7, 3 . . . 3) on each of the 12x+ 7 rows in K12x+7 ×K12y+7

2. There is a copy of K(7, 3 . . . 3) on each of the 12y + 7 columns in K12x+7 ×K12y+7

And using the Billington et. al. result, Theorem 4.2 we know that, there exists 6-cycle

systems of K(7, 3 . . . , 3). Also, there are (12x+ 7)[14y + 3y(4y − 1)], 6-cycles in the 6-cycle

system of and K(7, 3 . . . , 3).
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• C1 = 6-cycle system of K(7, 3 . . . 3) on each of the 12x+ 7 rows in K12x+7 ×K12y+7

Finally,

• C2 = 6-cycle system of K(7, 3 . . . 3) on each of the 12y+ 7 columns in K12x+7×K12y+7

There are (12y+7)[14x+3x(4x−1)], 6-cycles in C2. And so, we have (12x+7)(12y+7)[x+y+

1], 6-cycles in all. Hence, (G(4x+ 7, 4y+ 7),∪i∈Z3Ci) is a 6-cycle system of K12x+7×K12y+7.

Proposition 13. There exists a 6-cycle system of K12x+3 ×K12y+3

Proof The number of 6-cycles in the 6-cycle system of K12x+3 ×K12y+3 is given by,

| E(K12x+3 ×K12y+3) | = (12x+ 3)[ | E(K12y+3) | ]+

(12y + 3)[ | E(K12x+3) | ]

= (12x+ 3)[ (12y+3)(12y+3−1)
2

]+

(12y + 3)[ (12x+3)(12x+3−1)
2

]

= (12x+ 3)[(12y + 3)(6y + 1)]+

(12y + 3)[(12x+ 3)(6x+ 1)]

= (12x+ 3)(12y + 3)[6x+ 6y + 2]

= 18(4x+ 1)(4y + 1)[3x+ 3y + 1]

So, there are 6|18(4x+ 1)(4y + 1)[3x+ 3y + 1] = 3(4x+ 1)(4y + 1)[3x+ 3y + 1], 6-cycles in

the 6-cycle system of K12x+3 ×K12y+3. Let V (K12x+3 ×K12y+3) = G(4x+ 1, 4y + 1), where

each vi,j ∈ G(4x+ 1, 4y + 1) is defined as follows:

vi,j = {K3 ×K3 | 1 ≤ i ≤ 4x+ 1, 1 ≤ j ≤ 4y + 1}

And, there exists a 6-cycle system of K3×K3, using Lemma 22. There are 3, 6-cycles in the

6-cycle system of K3 ×K3. Let this set of 6-cycles be C0.

• C0 = 6-cycle system of vi,j for {1 ≤ i ≤ 4x+ 1, 1 ≤ j ≤ 4y + 1}

There are 3(4x+1)(4y+1), 6-cycles in C0. To obtain the remaining 6-cycles, we observe

that, the following edges do not appear in any 6-cycle yet.
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1. There are 12x+ 3 copies of K(3, 3, . . . , 3), one for each of the 12x+ 3 rows in K12x+3×

K12y+3

2. There are 12y + 3 copies of K(3, 3, . . . , 3), one for each of the 12y + 3 columns in

K12x+3 ×K12y+3

Also, there exists a 6-cycle system of K(3, 3, . . . , 3) and K(3, 3, . . . , 3), using the result by

Billington et. al., Theorem 4.2. So, we get, C1 and C2, two sets of 6-cycles from the two

corresponding types of edges given above respectively.

• C1 = 6-cycle system of 12x + 3 copies of K(3, 3, . . . , 3), one for each of the 12x + 3

rows in K12x+3 ×K12y+3

There are (3y)(4y + 1)(12x+ 3), 6-cycles in C1.

• C2 = 6-cycle system of 12y + 3 copies of K(3, 3, . . . , 3), one for each of the 12y + 3

columns in K12x+3 ×K12y+3

Finally, we get (3x)(4x+1)(12y+3), 6-cycles in C2. Thus we have 3(4x+1)(4y+1)[3x+3y+1],

6-cycles in all. And so, (G(4x+ 1, 4y + 1),∪i∈Z3Ci) a 6-cycle system of K12x+3 ×K12y+3.

Proposition 14. There exists a 6-cycle system of K12x+3 ×K12y+7

Proof The number of 6-cycles in the 6-cycle system of K12x+3 ×K12y+7 is given by,

| E(K12x+3 ×K12y+7) | = (12x+ 3)[ | E(K12y+7) | ]+

(12y + 7)[ | E(K12x+3) | ]

= (12x+ 3)[ (12y+7)(12y+7−1)
2

]+

(12y + 7)[ (12x+3)(12x+3−1)
2

]

= (12x+ 3)[(12y + 7)(6y + 3)]+

(12y + 7)[(12x+ 3)(6x+ 1)]

= (12x+ 3)(12y + 7)[6x+ 6y + 4]

= 6(4x+ 1)(12y + 7)[3x+ 3y + 2]
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So, there are 6|6(4x+ 1)(12y + 7)[3x+ 3y + 2] = (4x+ 1)(12y + 7)[3x+ 3y + 2], 6-cycles in

the 6-cycle system of K12x+3 × K12y+7. Now, let V (K12x+3 × K12y+7) = G(4x + 1, 4y + 1),

where each vi,j ∈ G(4x+ 1, 4y + 1) is defined as follows:

vi,j =

 K3 ×K7 for (i, j) = (m, 1), 1 ≤ m ≤ 4x+ 1

K3 ×K3 otherwise

And, there exists a 6-cycle system of K3 × K3, using Lemma 22 and a 6-cycle system of

K3 ×K7, using Lemma 23. There are 6, 6-cycles and 14, 6-cycles in the 6-cycle systems of

K3 ×K3 and K3 ×K7 respectively. We denote this set of 6-cycles as C0.

• C0 = 6-cycle system of vi,j ∈ G(4x+ 1, 4y + 1)

We get, 14(4x+1) + 3(4x+1)(4y), 6-cycles from C0. Now, to obtain the remaining 6-cycles,

observe that, the following edges do not appear in any 6-cycle yet.

1. There are 12x+ 3 copies of K(7, 3, . . . , 3), one for each of the 12x+ 3 rows in K12x+3×

K12y+7

2. There are 12y + 7 copies of K(3, 3, . . . , 3), one for each of the 12y + 7 columns in

K12x+3 ×K12y+7

We know that, there exists a 6-cycle system of K(7, 3, . . . , 3) using the result by Billington

et. al., Theorem 4.2. Let this set of 6-cycles be C1.

• C1 = 6-cycle system of 12x + 3 copies of K(7, 3, . . . , 3), one for each of the 12x + 3

rows in K12x+3 ×K12y+7

There are (12x+ 3)[14y+ 3y(4y− 1)], 6-cycles in C1. Similarly, there exists a 6-cycle system

of K(3, 3, . . . , 3), using the result by Billington et. al., Theorem 4.2. And so, we get another

set of 6-cycles, C2, given below.

• C2 = 6-cycle system of 12y + 3 copies of K(3, 3, . . . , 3), one for each of the 12y + 3

columns in K12x+3 ×K12y+3
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And, we get (12y+7)[(3x)(4x+1)], 6-cycles in C2. At this point, we have (4x+1)(12y+7)(3x+

3y+ 2), 6-cycles. And so, (G(4x+ 1, 4y+ 1),∪i∈Z3Ci) is a 6-cycle system of K12x+3×K12y+7.

Proposition 15. There exists 6-cycle system of K12x+3 ×K12y+11

Proof The number of 6-cycles in the 6-cycle system of K12x+3 ×K12y+11 is given by,

| E(K12x+3 ×K12y+11) | = (12x+ 3)[ | E(K12y+11) | ]+

(12y + 11)[ | E(K12x+3) | ]

= (12x+ 3)[ (12y+11)(12y+11−1)
2

]+

(12y + 11)[ (12x+3)(12x+3−1)
2

]

= (12x+ 3)[(12y + 11)(6y + 5)]+

(12y + 11)[(12x+ 3)(6x+ 1)]

= (12x+ 3)(12y + 11)[6x+ 6y + 6]

= 6(12x+ 3)(12y + 11)[x+ y + 1]

So, there are 6|6(12x+ 3)(12y + 11)[x+ y + 1] = (12x+ 3)(12y + 11)[x+ y + 1], 6-cycles in

the 6-cycle system of K12x+3 ×K12y+11. First let V (K12x+3 ×K12y+11) = G(4x + 1, 4y + 1),

where each vi,j ∈ G(4x+ 1, 4y + 1) is defined as follows:

vi,j =

 K3 ×K11 for (i, j) = (m, 1), 1 ≤ m ≤ 4x+ 1

K3 ×K3 otherwise

And, there exists a 6-cycle system of K3 ×K3, using Lemma 22 containing 3, 6-cycles. And

there exists a 6-cycle system of K3 ×K11, using Lemma 24, containing 33, 6-cycles. Let C0

be the set of 6-cycles obtained from this embedding.

• C0 = 6-cycle system of vi,j ∈ G(4x+ 1, 4y + 1)

There are 33(4x + 1) + 3(4x + 1)(4y), 6-cycles in C0. In order to obtain the remaining

6-cycles, observe that, the following edges do not appear in any 6-cycle yet.
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1. There are 12x+3 copies of K(11, 3, . . . , 3), one for each of the 12x+3 rows in K12x+3×

K12y+11

2. There are 12y + 11 copies of K(3, 3, . . . , 3), one for each of the 12y + 11 columns in

K12x+3 ×K12y+11

And, there exists a 6-cycle system of K(11, 3, . . . , 3) using the result by Billington et. al.,

Theorem 4.2. Denote the 6-cycles obtained from this by C1.

• C1 = 6-cycle system of 12x + 3 copies of K(11, 3, . . . , 3), one for each of the 12x + 3

rows in K12x+3 ×K12y+11

There are (12x+ 3)[22y+ 3y(4y− 1)], 6-cycles in C1. Similarly, there exists a 6-cycle system

of K(3, 3, . . . , 3), using the result by Billington et. al., Theorem 4.2. Using this fact, we get

another set of 6-cycles, C2, given below.

• C2 = 6-cycle system of 12y + 11 copies of K(3, 3, . . . , 3), one for each of the 12y + 11

columns in K12x+3 ×K12y+11

Hence, we get another (12y+ 11)[(3x)(4x+ 1)], 6-cycles from C2. Now, we have the required

total number of 6-cycles, (12x+ 3)(12y + 11)[x+ y + 1]. Thus, (G(4x+ 1, 4y + 1),∪i∈Z3Ci)

is a 6-cycle system of K12x+3 ×K12y+11.

Proposition 16. There exists a 6-cycle system of K12x+9 ×K12y+1

Proof The number of 6-cycles in the 6-cycle system of K12x+9 ×K12y+1 is given by,

| E(K12x+9 ×K12y+1) | = (12x+ 9)[ | E(K12y+1) | ]+

(12y + 1)[ | E(K12x+9) | ]

= (12x+ 9)[ (12y+1)(12y+1−1)
2

]+

(12y + 1)[ (12x+9)(12x+9−1)
2

]

= (12x+ 9)[(12y + 1)(6y)]+

(12y + 1)[(12x+ 9)(6x+ 4)]

= (12x+ 9)(12y + 1)[6x+ 6y + 4]

= 6(4x+ 3)(12y + 1)[3x+ 3y + 2]
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So, there are 6|6(4x+3)(12y+1)[3x+3y+2] = (4x+3)(12y+1)[3x+3y+2], 6-cycles in the

6-cycle system of K12x+9 ×K12y+1. There are 12x + 9 copies of K12y+1, one on each of the

12x+9 rows in K12x+9×K12y+1. We know that there exists a 6-cycle system of K12y+1, using

the result by Sajna, Theorem 4.3. We denote the 6-cycles obtained from this embedding by

C0.

• C0 = 6-cycle system of 12x + 9 copies of K12y+1, one on each of the 12x + 9 rows in

K12x+9 ×K12y+1

And, there are y(12y + 1)(12x+ 9), 6-cycles in C0. Next, note that there are 12y + 1 copies

of K12x+9, one on each of the 12y+ 1 columns in K12x+9×K12y+1. And we know that, there

exist 6-cycle system K12x+9, using the result by Sajna, Theorem 4.3. Using, this fact, we get

another set of 6-cycles, C1 given below.

• C1 = 6-cycle system of 12y + 1 copies of K12x+9, one on each of the 12y + 1 columns

in K12x+9 ×K12y+1

We get, (12y+ 1)(4x+ 3)(3x+ 2), 6-cycles from C1. So, now we have (4x+ 3)(12y+ 1)[3x+

3y+2], 6-cycles. Thus, by this construction there exists a 6-cycle system of K12x+9×K12y+1.

Proposition 17. There exists a 6-cycle system of K12x+5 ×K12y+9, and

1. y ≡ 0 (mod 3)

2. y ≡ 1 (mod 3)

3. y ≡ 2 (mod 3)

Proof We shall prove each of these three cases in turn.

Case 1. Suppose y = 3α.

First let V (K12x+5×K12y+9) = G(12x+1, 4α+1), where each vi,j ∈ G(12x+1, 4α+1)

is defined as follows:
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vi,j =

 K5 ×K9 for (i, j) = (1,m), 1 ≤ m ≤ 4α + 1

K1 ×K9 otherwise

And, there exists a 6-cycle system of K1×K9, using Lemma 25. Also, there exists a 6-cycle

system of K5 × K9, using Lemma 26. Now, to obtain the remaining 6-cycles, we observe

that the following edges do not appear in any 6-cycle yet.

1. There is one copy of K(9, . . . , 9), for each of the 12x+ 5 rows in K12x+5 ×K12y+9

2. There is one copy of K(5, 1, . . . , 1) for each of the 12y+ 9 columns in K12x+5×K12y+9

And, there exists 6-cycle systems of K(9, . . . , 9) and K(5, 1, . . . , 1), using the result by

Billington et. al., Theorem 4.2. Hence, there exists a 6-cycle system of K12x+5 ×K12y+9.

Case 2. For this case, let y = 3α + 1 (when y = 1, refer to Lemma 27).

And let V (K12x+5 × K12y+9) = (G(12x − 3, 4α + 1) ∪ G
′
(2, 4) ∪ G

′′
(3, 12y + 9)), as

depicted in the figure. And let each vi,j ∈ G(12x− 3, 4α + 1) be defined as follows:

vi,j =

 K5 ×K9 for (i, j) = (1,m), 1 ≤ m ≤ 4α + 1

K1 ×K9 for (i, j) = (p, q), 1 ≤ p ≤ 12x− 3, 1 ≤ q ≤ 4α + 1

And each v
′
i,j ∈ G

′
(2, 4) be defined as follows:

v
′
i,j =

 K11 ×K3 for (i, j) = (1,m), 1 ≤ m ≤ 4

K3 ×K3 for (i, j) = (2,m), 1 ≤ m ≤ 4

Finally, each v
′′
i,j ∈ G

′′
(3, 12y + 9) is defined as follows:

v
′′
i,j = {K12y+9 | ∀ 1 ≤ i ≤ 3, 1 ≤ j ≤ 12y + 9}
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And, there exists 6-cycle systems of K5 × K9 (using Lemma 23), K1 × K9 (using Lemma

25), K3×K11 (using Lemma 24), K3×K3 (using Lemma 22) and K12y+9 (using Lemma 25).

Now to obtain the remaining 6-cycles, we observe that the following edges do not appear in

any 6-cycle yet.

1. There are 12x− 2 copies of K(9, . . . , 9, 3, 3, 3, 3), one for each of the first 12x− 2 rows

in K12x+5 ×K12y+9

2. There are 12y − 3 copies of K(5, 1, . . . , 1), one for each of the first 12y − 3 columns in

K12x+5 ×K12y+9

3. There are 12 copies of K(11, 3, 1, 1, 1), one for each of the last 12 columns in K12x+5×

K12y+9

We know that, there exists a 6-cycle systems of K(9, . . . , 9, 3, 3, 3, 3), K(5, 1, . . . , 1) and

K(11, 3, 1, 1, 1), using the result by Billington et. al., Theorem 4.2. Thus, there exists a

6-cycle system of K12x+5 ×K12y+9.

Case 3. For this case, let y = 3α + 2(when y = 2, refer to Lemma 28).

And let V (K12x+5 × K12y+9) = (G(12x − 3, 4α + 1) ∪ G
′
(2, 8) ∪ G

′′
(3, 12y + 9)), as

depicted in the figure. And let each vi,j ∈ G(12x− 2, 4α + 1) be defined as follows:

vi,j =

 K5 ×K9 for (i, j) = (1,m), 1 ≤ m ≤ 4α + 1

K1 ×K9 otherwise

And each v
′
i,j ∈ G

′
(2, 8) be defined as follows:

v
′
i,j =

 K11 ×K3 for (i, j) = (1,m), 1 ≤ m ≤ 8

K3 ×K3 for (i, j) = (a, b), a = 2, 1 ≤ b ≤ 8
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Finally, each v
′′
i,j ∈ G

′′
(3, 12y + 9) is defined as follows:

v
′′
i,j = {K12y+9 | ∀ 1 ≤ i ≤ 3, 1 ≤ j ≤ 12y + 9}

And, there exists 6-cycle systems of K5 × K9 (using Lemma 23), K1 × K9 (using Lemma

25), K3×K11 (using Lemma 24), K3×K3 (using Lemma 22) and K12y+9 (using Lemma 25).

Now to obtain the remaining 6-cycles, we observe that the following edges do not appear in

any 6-cycle yet.

1. There are 12x+2 copies of K(9, . . . , 9, 3, 3, 3, 3, 3, 3, 3, 3), one for each of the first 12x+2

rows in K12x+5 ×K12y+9

2. There are 4α + 1 copies of K(5, 1, . . . , 1), one for each of the first 4α + 1 columns in

K12x+5 ×K12y+9

3. There are 24 copies of K(11, 3, 1, 1, 1), one for each of the last 24 columns in K12x+5×

K12y+9

There exists 6-cycle systems ofK(9, . . . , 9, 3, 3, 3, 3, 3, 3, 3, 3), K(5, 1, . . . , 1) andK(11, 3, 11, 1),

using the result by Billington et. al., Theorem 4.2. Hence, there exists a 6-cycle system of

K12x+5 ×K12y+9.

Proposition 18. There exists a 6-cycle system of K12x+9 ×K12y+9

Proof The number of 6-cycles in the 6-cycle system of K12x+9 ×K12y+9 is given by,

| E(K12x+9 ×K12y+9) | = (12x+ 9)[ | E(K12y+9) | ]+

(12y + 9)[ | E(K12x+9) | ]

= (12x+ 9)[ (12y+9)(12y+9−1)
2

]+

(12y + 9)[ (12x+9)(12x+9−1)
2

]

= (12x+ 9)[(12y + 9)(6y + 4)]+

(12y + 9)[(12x+ 9)(6x+ 4)]

= (12x+ 9)(12y + 9)[6x+ 6y + 8]

= 18(4x+ 3)(4y + 3)[3x+ 3y + 4]

62



So, there are 6|18(4x + 3)(4y + 3)[3x + 3y + 4] = 3(4x + 3)(4y + 3)[3x + 3y + 4], 6-cycles

in the 6-cycle system of K12x+9 ×K12y+9. There are 12x + 9 copies of K12y+9, one for each

row in K12x+9 × K12y+9. And there are 12y + 9 copies of K12x+9, one for each column in

K12x+9 ×K12y+9. Also, there exist 6-cycle systems of K12x+9 and K12y+9, using Lemma 25.

Based on this, we construct the following sets of 6-cycles, C0 and C1 respectively.

• C0 = 6-cycle system of 12x + 9 copies of K12y+9, one on each of the 12x + 9 rows in

K12x+9 ×K12y+9

We get (12x+ 9)(4y + 3)(3y + 2), 6-cycles from C0.

• C1 = 6-cycle system of 12y + 9 copies of K12x+9, one on each of the 12y + 9 columns

in K12x+9 ×K12y+9

As seen in the previous case, we get, (12y+9)(4x+3)(3x+2), 6-cycles from C1. Thus, there

exists a 6-cycle system of K12x+9 ×K12y+9 using this embedding of K12x+9 and K12y+9.

Now, we prove the main result of this chapter.

Theorem 4.4. There exists a 6-cycle system of Km ×Kn iff

1. m, n are even

(a) 6 | m or 6 | n

OR

(b) m + n ≡ 2 (mod 3)

2. m, n are odd

(a) m , n 6≡ 0 (mod 3) then (m + n) ≡ 2 (mod 12)

OR

(b) m &/or n ≡ 0 (mod 3) then m + n ≡ 2 (mod 4)
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Proof To prove the necessity of these conditions we will first prove that either m and

n are both even, or, m and n are both odd. Suppose that m and n are even and odd

respectively. Say m = 2x and n = 2y + 1. Then for any v ∈ V (Km ×Kn),

deg(v) = [(2y+1-1) + (2x-1)]

So, the deg(v ∈ (Km×Kn)) is odd. And, clearly to find an m-cycle system of any graph G,

all vertices in G should have even degree. So it is not possible for m and n to be even and

odd respectively. Hence, either both m and n are both even or both odd.

Now suppose that m and n are both even. Then,

| E(Km ×Kn) | = m[ (n)(n−1)
2

] + n[ (m)(m−1)
2

]

= mn(m+n−2)
2

And, to obtain a 6-cycle system of Km ×Kn,

6 | | E(Km ×Kn) |

⇒ 6 | mn(m+n−2)
2

So, either

1. 6 | m or 6 | n

OR

2. m+ n ≡ 2(mod 3)

This proves the necessity of condition 1. Now, suppose that m and n are both odd, then

if

1. m,n 6≡ 0(mod 3) then m+ n ≡ 2(mod 12)

OR

2. m&/or n ≡ 0(mod 3) then m+ n ≡ 2(mod 4)

And, this proves the necessity of condition 2. To prove the sufficiency, we first consider

the case when m and n are both even. Then either
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1. 6 | m or 6 | n

OR

2. m+ n ≡ 2(mod 3)

Case 1. Suppose 6 | m or 6 | n then there exists a 6-cycle system of Km × Kn using

Propositions 7 or 8 or 9.

Case 2. Suppose m + n ≡ 2(mod 3) then there exists a 6-cycle system of Km × Kn

using Proposition 10.

Now, consider the case when both m and n are odd. Then either

1. m,n 6≡ 0(mod 3) then (m+ n) ≡ 2(mod 12)

OR

2. m&/or n ≡ 0(mod 3) then m+ n ≡ 2(mod 4)

Case 1. Suppose m,n 6≡ 0(mod 3) then, there exists a 6-cycle system of Km×Kn using

Propositions 11 or 12.

Case 2. If m&/orn ≡ 0(mod 3) then, there exists a 6-cycle system of Km ×Kn using

Propositions 13, 14, 15, 16, 17 and 18.

This proves our Theorem.
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Chapter 5

Nearly 4-regular Leave of the Complete Graph on n vertices, Kn

5.1 Introduction

An m-cycle system of a graph G with vertex set V (G) is an ordered pair (V (G), S),

where S is a set of edge-disjoint cycles of length m, such that each edge in G is contained in

exactly one cycle in S.

Clearly, necessary conditions for an m-cycle system of G to exist are: m must divide

| E(G) |; each vertex in G must have even degree; and if | V (G) |> 1 then | V (G) |≥ m.

The existence problem of whether these conditions are sufficient was initially considered for

the case where G = Kn. After many papers it was finally settled in [2, 45, 83], showing

that these obvious necessary conditions are sufficient. Along the way, Sotteau [84] provided

necessary and sufficient conditions for the case when G = K(m,n). Let xG denote the graph

with vertex set V (G) in which, for all u, v ∈ V (G), u and v are joined by xy edges iff they

are joined by y edges in G.

Theorem 5.1. [84] There exists a 4-cycle system of Ka,b and of 2Ka,b if and only if each

vertex has even degree, the number of edges is divisible by 4, and a, b ≥ 2.

To denote a 4-cycle system of Km,n with bipartition {A,B} we write (K(A,B), S).

Let K(a1, a2, . . . , ap) denote a complete multipartite graph with p parts in which the ith

part has size ai for 1 ≤ i ≤ p. The line graph of a graph G, L(G) is defined as follows.

Every edge uv ∈ E(G) is a vertex in L(G) and two vertices are adjacent in L(G) if the

corresponding edges in G are adjacent. The existence of m-cycle systems of L(Kn) was

settled when m ∈ {4, 6} in [16, 19, 20]. Also, there have been some results for obtaining

m-cycle systems of K(a1, a2, . . . , ap), for example being settled when all parts have the same
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size in [17] where m is even and when p is small and then: There is a companion result

obtaining 4-cycle systems [78] of L(K(a1, a2 . . . , an)), but much remains to be done in this

area.

When n is even, vertices in Kn have odd degree, so a natural companion of finding

m-cycle systems of G = Kn was to solve the case where G is the complete graph on n vertices

with a one factor removed: Kn − I, [2]. (More generally, in this context the graph induced

by edges removed from Kn is called a leave).

These results led to further questions, asking for which small graphs H does Kn−H

have an m-cycle system. Buchanan [15] solved the case where H is a 2-regular graph and

m = n (i.e. hamilton cycle). A new proof of this case was provided in [12, 68]. The case

when H is 2-regular and m = 3, 4 and 6 were solved in [19], [32] and [6] respectively. The

case where H has maximum degree 3 and m = 4 was solved in [34].

In this chapter we extend these results in literature by completely solving the case

when G = Kn − E(F ∗) where F ∗ is a nearly 2-regular leave. A graph is said to be nearly

2-regular if all vertices have degree 2 except for one which has degree k > 2 (note that F ∗

need not be a spanning subgraph). Not only is this result of interest in it’s own right in the

context of the history of this problem, but, it also arose as a useful tool in studying the cycle

systems of the line graphs of complete multipartite graphs.

5.2 Applications

This result has direct applications to neighbor designs [75]. Consider an experiment in

serology in which we arrange the antigens in a petri dish and place the antiserum in the

center of that dish. Then the results of this paper can be applied to the case when we

are interested in observing reactions between most pairs of antigen-antigen reactions, the

omitted pairs being specified by the leave H.

If S is a set of cycles then let E(S) denote the set of edges in the cycles in S.
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Section 2 of this chapter deals with constructions for some small values of n and

cases where F ∗ contains cycles of lengths 4 and 5. These constructions are used to obtain

4-cycle systems for the larger values of n in Section 3. Finally, in Section 4 we combine the

earlier results, proving the main result of this paper, Theorem 5.2.

Lemma 29. There exists a 4-cycle system of K7 - E({(0, 1, 2, 3, 4)})

Proof. (Z7, {(0, 2, 4, 6), (0, 3, 1, 5), (1, 4, 5, 6), (6, 2, 5, 3)}) is a 4-cycle system of K7 -

E({(0,1,2,3,4)}).

Lemma 30. There exists a 4-cycle system of K9 - E({(0, 1, 2, 3), (0, 4, 5, 6)})

Proof. (Z9, {(0, 2, 4, 7), (0, 8, 2, 5), (1, 3, 4, 6), (1, 7, 6, 8), (1, 4, 8, 5), (2, 6, 3, 7), (3, 5, 7, 8)})

is a 4-cycle system of K9 − E({(0,1,2,3),(0,4,5,6)}).

Lemma 31. There exists a 4-cycle system of K9 - E({(0, 1, 2, 3), (4, 5, 6, 7)})

Proof. (Z9, {(0, 2, 5, 7), (0, 4, 1, 6), (0, 5, 1, 8), (1, 3, 8, 7), (2, 4, 3, 1), (2, 6, 4, 8), (3, 5, 8, 6)})

is a 4-cycle system of K9 − E({(0,1,2,3),(4,5,6,7)}).

Lemma 32. There exists a 4-cycle system of K9 - E({(0, 1, 2, 3, 4), (0, 5, 6, 7), (0, 3, 6)})

Proof. (Z9, {(1, 5, 2, 8), (1, 6, 2, 7), (1, 3, 7, 4), (2, 0, 8, 4), (3, 5, 7, 8), (4, 5, 8, 6)}) is a 4-

cycle system of K9 - E({(0,1,2,3,4),(0,5,6,7),(0,3,6)}).

Lemma 33. There exists a 4-cycle system of K9 - E({(0, 1, 2, 3, 4), (0, 5, 6, 7, 8), (0, 3, 7),

(0, 2, 6)})

Proof. (Z9, {(1, 4, 2, 5), (1, 3, 6, 8), (1, 7, 4, 6), (2, 7, 5, 8), (3, 5, 4, 8)}) is a 4-cycle system

of K9 - E({(0,1,2,3,4),(0,5,6,7,8),(0,3,7),(0,2,6)}).

Lemma 34. There exists a 4-cycle system of K11 - E({(0, 1, 2, 3), (0, 4, 5, 6), (0, 7, 8, 9),

(0, 2, 5)})

68



Proof. (Z11, {(1, 3, 9, 4), (1, 5, 7, 9), (1, 7, 2, 6), (1, 8, 0, 10), (2, 4, 3, 8), (2, 9, 5, 10),

(3, 5, 8, 6), (3, 7, 4, 10), (4, 6, 10, 8), (6, 7, 10, 9))}) is a 4-cycle system of K11 -

E({(0,1,2,3),(0,4,5,6),(0,7,8,9),(0,2,5)}).

Lemma 35. There exists a 4-cycle system of K13 - E({(0, 1, 2, 3), (0, 4, 5, 6), (0, 7, 8, 9),

(0, 10, 11, 12), (0, 2, 5), (0, 8, 11)})

Proof. (Z13, {(1, 3, 4, 6), (1, 4, 7, 5), (1, 7, 2, 8), (1, 10, 2, 9), (1, 11, 2, 12), (2, 4, 6, 8),

(3, 5, 9, 7), (3, 6, 10, 8), (3, 9, 4, 10), (3, 11, 4, 12), (5, 8, 12, 10), (5, 11, 6, 12), (6, 9, 10, 7),

(9, 11, 7, 12)}) is a 4-cycle system of K13 − E({(0, 1, 2, 3), (0, 4, 5, 6), (0, 7, 8, 9),

(0, 10, 11, 12), (0, 2, 5), (0, 8, 11)}).

We now focus on some special cases in which the nearly 2-regular leave only contains

4-cycles.

Lemma 36. There exists a 4-cycle system of Kn - E(F ∗) where F ∗ is nearly 2-regular, n

and F ∗ are chosen to be any of the following.

1. n = 9 and F ∗ consists of two 4-cycles, all of which intersect precisely in the vertex ∞.

2. n = 17 and F ∗ consists of five 4-cycles, all of which intersect precisely in the vertex

∞.

3. n = 25 and F ∗ consists of seven 4-cycles, all of which intersect precisely in the vertex

∞.

4. n = 25 and F ∗ consists of eight 4-cycles, all of which intersect precisely in the vertex

∞.

Proof. We will consider these four cases in turn.

1. Let V(Kn) = Z8

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i + 1, 3i +2) for each i εZ2
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and

F ∗ = (∪iεZ2F
∗
i )

Let (Z8 ∪ {∞}, C0) be a 4-cycle system of K9 − E(F ∗) (see Lemma 30).

2. Let V(Kn) = Z16

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i + 1, 3i +2) for each i ε Z5

and

F ∗ = (∪iεZ5F
∗
i )

Let (Z6 ∪ {∞, 7, 10}, C0) be a 4-cycle system of K9 − E(F ∗0 ∪ F ∗1 ) (see Lemma 30).

Similarly, let (((Z16\Z6) ∪{∞}), C1) be a 4-cycle system ofK11−E(F ∗2∪F ∗3∪{∞, 7, 10})

(see Lemma 34). Now, let (K(Z6, (∪xε{Z5\Z2}∪{15}{3x, 3x+2})), C2) be a 4-cycle system

of K(6, 8), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of K17 − E(F ∗).

3. Let V(Kn) = Z24

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i + 1, 3i +2) for each i ε Z7

and

F ∗ = (∪iεZ7F
∗
i )

Let (Z15 ∪ {∞, 21}, C0) be a 4-cycle system of K17 − E(∪iεZ5F
∗
i ) (see Lemma 36(2)).

Similarly, let (((Z24∪{∞}) \ (Z15∪{21})), C1) be a 4-cycle system ofK9−E(∪iεZ7\Z5F
∗
i )

(see Lemma 30). Now, let (K((Z24\ (Z15∪{21})),(Z15∪{21})), C2) be a 4-cycle system

of K(8, 16), using Theorem 5.1. Then (∪iεZ3 , Ci) is a 4-cycle system of K25 − E(F ∗).

4. Let V(Kn) = Z24

⋃
{∞}. Define
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Fi
∗ = (∞, 3i, 3i + 1, 3i +2) for each i ε Z8

and

F ∗ = (∪iεZ8F
∗
i )

Let (Z6 ∪ {∞, 13, 16}, C0) be a 4-cycle system of K9 − E(F ∗0 ∪ F ∗1 ) (see Lemma 30).

Similarly, let (((Z12\Z6) ∪{∞, 19, 22}), C1) be a 4-cycle system of K9 − E(F ∗2 ∪ F ∗3 )

(see Lemma 30). Let ((Z24\Z12∪{∞}), C2) be a 4-cycle system of K13−E(∪iεZ8\Z4 (F ∗i )

∪jε{4,6}(∞, 3j + 1, 3(j +1) +1)) (see Lemma 35). Using Theorem 5.1, (K((∪xεZ8\Z4{3x, 3x+

2}), (Z12)), C3) be a 4-cycle system ofK(8, 12). Similarly, (K(Z6∪{13, 16},∪xεZ4\Z2{3x, 3x+

1, 3x+ 2}), C4 ) be a 4-cycle system of K(6, 8). Finally, let (K({19, 22}, Z6), C5) is a

4-cycle system of K(2, 6). Then (∪iεZ6Ci) is a 4-cycle system of K25 - E(F ∗).

Lemma 37. There exists a 4-cycle system of Kn − E(F ∗) where F ∗ is nearly 2-regular, n

and F ∗ are chosen to be any of the following.

1. n = 9 and F ∗ consists of two vertex disjoint 4-cycles, one of which contains the vertex

∞.

2. n = 17 and F ∗ consists of four 4-cycles, three of which intersect precisely in the vertex

∞ and the other cycle does not contain ∞.

3. n = 17 and F ∗ consists of five 4-cycles, four of which intersect precisely in the vertex

∞ and the other cycle does not contain ∞.

4. n = 25 and F ∗ consists of seven 4-cycles, six of which intersect precisely in the vertex

∞ and the other cycle does not contain ∞.

Proof. We will consider these four cases in turn.

1. Let V(Kn) = Z8

⋃
{∞}. Define
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F ∗i =

 (∞, 0, 1, 2) for i = 0,

(3, 4, 5, 6) for i = 1

and

F ∗ = (∪iεZ2F
∗
i )

Let (Z8 ∪ {∞}, C0) be a 4-cycle system of K9 − E(F ∗) (see Lemma 31).

2. Let V(Kn) = Z16

⋃
{∞}. Define

Fi
∗ = (∞, 3i, 3i + 1, 3i +2) for each i ε Z3

and

F ∗ = ((∪iεZ3(F
∗
i )) ∪ (9, 10, 11, 12))

Let (Z14\Z6∪{∞}, C0) be a 4-cycle system of K9−E(F2
∗∪ (9, 10, 11, 12)) (see Lemma

31). Similarly, let ((Z6∪{∞, 14, 15}), C1) be a 4-cycle system of K9−E(∪iεZ2F
∗
i ) (see

Lemma 30). Now, let (K((Z14\Z6), (Z6 ∪ {14, 15})), C2) be a 4-cycle system of K(8,

8), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of K17 − E(F ∗).

3. Let V(Kn) = Z16

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i + 1, 3i +2) for each i ε Z4

and

F ∗ = ((∪iεZ4(F
∗
i )) ∪ (12, 13, 14, 15))

Let (Z6∪{∞, 12, 14}, C0) be a 4-cycle system of K9−E(F ∗0 ∪F ∗1 ) (see Lemma 30). Sim-

ilarly, let (((Z12\Z6)∪{∞, 13, 15}), C1) be a 4-cycle system of K9−E(∪iεZ4\Z2F
∗
i ) (see

Lemma 30). Using Theorem 5.1, let (K({12, 14}, (Z12\Z6)), C2) be a 4-cycle system
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of K(2, 6). Similarly, (K({13, 15},Z6), C3) be a 4-cycle system of K(2, 6). Also, let

(K(Z6,Z12\Z6), C4) be a 4-cycle system of K(6,6). Then (∪iεZ5Ci) is a 4-cycle system

of K17 − E(F ∗).

4. Let V(Kn) = Z24

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i + 1, 3i +2) for each i ε Z6

and

F ∗ = ((∪iεZ6(F
∗
i ))∪ (18, 19, 20, 21))

Let (Z6∪{∞, 18, 20}, C0) be a 4-cycle system of K9−E(F ∗0 ∪F ∗1 ) (see Lemma 30). Sim-

ilarly, let (((Z12\Z6)∪{∞, 19, 21}), C1) be a 4-cycle system of K9−E(∪iεZ4\Z2F
∗
i ) (see

Lemma 30). Let ((Z18\Z12)∪{∞, 22, 23}, C2) be a 4-cycle system of K9−E(∪iεZ6\Z4F
∗
i )

(see Lemma 30). Now, let (K({18, 20}, (Z12\Z6)),C3) be a 4-cycle system of K(2, 6),

using Theorem 5.1. Similarly, (K({19, 21}, Z6), C4) be a 4-cycle system of K(2,

6). And, let (K((Z18\Z12 ∪ {22, 23}), (Z12 ∪ {18, 19, 20, 21})), C5) be a 4-cycle system

of K(8, 16). Finally, let (K(Z6,Z12\Z6), C6) be a 4-cycle system of K(6,6). Then

(∪iεZ7 , Ci) is a 4-cycle system of K25 − E(F ∗).

Now we turn to the cases in which all cycles in the nearly 2-regular leave have size

5.

Lemma 38. There exists a 4-cycle system of Kn − E(F ∗) where F ∗ is a nearly 2-regular

leave, n and F ∗ are chosen to be any of the following.

1. n = 7 and F ∗ consists of one 5-cycle which contains the vertex ∞.

2. n = 17 and F ∗ consists of four 5-cycles, all of which intersect precisely in the vertex

∞.

Proof. We will consider these two cases in turn.
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1. Let V(Kn) = Z6

⋃
{∞}. Define

F ∗0 = (∞, 0, 1, 2)

and

F ∗ = (F ∗0 )

Let (Z6 ∪ {∞}, C0) be a 4-cycle system of K7 − E(F ∗) (see Lemma 29).

2. Let V(Kn) = Z16

⋃
{∞}. Define

F ∗i = (∞, 4i, 4i + 1, 4i +2, 4i + 3) for each i εZ4

and

F ∗ = (∪iεZ4F
∗
i )

Let (Z4∪{∞, 9, 13}, C0) be a 4-cycle system of K7−E(F ∗0 ) (see Lemma 29). Similarly,

let (((Z8\Z4) ∪ {∞, 10, 14}), C1) be a 4-cycle system of K7 − E(F ∗1 ) (see Lemma 29).

Let ((Z16\Z8)∪{∞}, C2) be a 4-cycle system of K9−E(∪iεZ4\Z2F
∗
i ∪ (∞, 9, 13) ∪ (∞,

10, 14)) (see Lemma 33). Now, let (K((Z8\Z4), (Z4∪{9, 13})), C3) be a 4-cycle system

of K(4, 6), using Theorem 5.1. Similarly, let (K({14, 10}, Z4), C4) be a 4-cycle system

of K(2, 4). Finally, let (K(({8, 11, 12, 15}),Z8), C5) be a 4-cycle system of K(4, 8).

Then (∪iεZ6 , Ci) is a 4-cycle system of K17 − E(F ∗).

Lemma 39. There exists a 4-cycle system of Kn − E(F ∗) where F ∗ is a nearly 2-regular

leave, n and F ∗ are chosen to be any of the following.

1. n = 29 and F ∗ consists of six 5-cycles, two of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

2. n = 35 and F ∗ consists of seven 5-cycles, two of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.
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3. n = 41 and F ∗ consists of eight 5-cycles, two of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

4. n = 47 and F ∗ consists of nine 5-cycles, two of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

Proof. We will consider these four cases in turn.

1. Let V(Kn) = Z28

⋃
{∞}. Define

F ∗i =

 (∞, 4i, 4i+ 1, 4i+ 2, 4i+ 3) for each i εZ2,

(i, i+ 1, i+ 2, i+ 3, i+ 4) for each i ε {8, 13, 18, 23},

G∗i = (8, i, i+ 1, i+ 2, i+ 3) for each i ε {9, 14, 19, 24},

and

F ∗ = ((∪iεZ2∪{8,13,18,23}(F
∗
i ))

Let (Z28\(Z8 ∪ {13, 18, 23}), C0) be a 4-cycle system of K17 − E(∪iε{9,14,19,24}G∗i ) (see

Lemma 38(2)). Let ((Z9∪{13, 18, 23,∞}), C1) be a 4-cycle system of K13−E(∪iεZ2F
∗
i ∪

{∞, 13, 18, 23}) (see Lemma 13(5)). And, let (K(Z9 ∪ {13, 18, 23}),

(Z28\(Z8 ∪ {8, 13, 18, 23}))), C2) be a 4-cycle system of K(12, 16), using Theorem 5.1.

Then ((∪iεZ3Ci)∪(8, 13, 18, 23)∪{(14, 8, 17, 0), (19, 8, 22, 0), (24, 8, 27, 0)}\{(14, 13, 17, 0),

(19, 18, 22, 0), (24, 23, 27, 0)} be a 4-cycle system of K29 − E(F ∗).

2. Let V(Kn) = Z34

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ5

(∞, 4i+ 1, 4i+ 2, 4i+ 3, 4i+ 4) for each i εZ8\Z6

and

F ∗ = (∪iεZ7\{5} (F ∗i ))
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Let (Z20∪(Z33\Z25)∪{∞}, C0) be a 4-cycle system ofK29−E(∪iεZ8\{4,5}F
∗
i ) (see Lemma

39(1)). Similarly, let (((Z25\Z20)∪{∞, 33}), C1) be a 4-cycle system of K7−E(F ∗4 ) (see

Lemma 29). Now, let (K(((Z25\Z20)∪{33}), (Z20∪(Z33\Z25))), C2) be a 4-cycle system

of K(6, 28), using Theorem 5.1. Then (∪iεZ3 , Ci) is a 4-cycle system of K35 − E(F ∗).

3. Let V(Kn) = Z40

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ6

(∞, 4i− 2, 4i− 1, 4i, 4i+ 1) for each i εZ10\Z8

and

F ∗ = (∪iεZ10\{6,7} (F ∗i ))

Let (Z25 ∪ (Z39\Z30) ∪ {∞}, C0) be a 4-cycle system of K35 − E(∪iεZ10\{5,6,7}F
∗
i ) (see

Lemma 39(2)). Similarly, let (((Z30\Z25) ∪ {∞, 39}), C1) be a 4-cycle system of K7 −

E(F ∗5 ) (see Lemma 29). Now, let (K(((Z30\Z25) ∪ {39}), (Z25 ∪ (Z39\Z30))), C2) be a

4-cycle system of K(6, 34), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of

K41 − E(F ∗).

4. Let V(Kn) = Z46

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ7

(∞, 4i− 1, 4i, 4i+ 1, 4i+ 2) for each i εZ11\Z9

and

F ∗ = (∪iεZ11\{7,8} (F ∗i ))

Let (Z30 ∪ (Z45\Z35) ∪ {∞}, C0) be a 4-cycle system of K41 − E(∪iεZ11\{6,7,8}F
∗
i ) (see

Lemma 39(3)). Similarly, let (((Z35\Z30) ∪ {∞, 45}), C1) be a 4-cycle system of K7 −

E(F ∗6 ) (see Lemma 29). Now, let (K(((Z35\Z30) ∪ {45}), (Z30 ∪ (Z45\Z35))), C2) be a

4-cycle system of K(6, 40), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of

K47 − E(F ∗).
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Lemma 40. There exists a 4-cycle system of Kn − E(F ∗) where F ∗ is a nearly 2-regular

leave, n and F ∗ are chosen to be any of the following.

1. n = 23 and F ∗ consists of five 5-cycles, three of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

2. n = 29 and F ∗ consists of six 5-cycles, three of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

3. n = 35 and F ∗ consists of seven 5-cycles, three of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

4. n = 41 and F ∗ consists of eight 5-cycles, three of which intersect precisely in the vertex

∞ and the other cycles do not contain ∞.

Proof. We will consider these four cases in turn.

1. Let V(Kn) = Z22

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ2,

(∞, 4i− 2, 4i− 1, 4i, 4i+ 1) for each i εZ6\Z3,

G∗i = (∞, i, i+ 1, i+ 2, i+ 3) for each i ε {1, 6, 10, 14},

and

F ∗ = (∪iεZ6\{2} F
∗
i )

Let (((Z18 ∪ {∞})\{0, 5}), C0) be a 4-cycle system of K17 − E(∪iε{1,6,10,14}G∗i ) (see

Lemma 38(2)). And, ((Z22\Z18)∪{∞, 0, 5}), C1) be a 4-cycle system of K7−E(F ∗5 ) (see

Lemma 29). (K(((Z22\Z18) ∪ {0, 5}),Z18\{0, 5}), C2) be a 4-cycle system of K(6, 16),

using Theorem 5.1. Then, ((∪iεZ3Ci)∪{(1, 5, 4,∞), (6, 0, 9,∞)}\{(1, 5, 4, 0), (6, 0, 9, 5)}

is a 4-cycle system of K23 − E(F ∗).

2. Let V(Kn) = Z28

⋃
{∞}. Define
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F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ3,

(∞, 4i− 1, 4i, 4i+ 1, 4i+ 2) for each i εZ7\Z4,

and

F ∗ = (∪iεZ7\{3} (F ∗i ))

Let (Z10∪(Z27\Z15){∞}, C0) be a 4-cycle system of K23−E(∪iεZ7\{2,3}F
∗
i ) (see Lemma

40(1)). Similarly, let (((Z15\Z10)∪ ∞, 27}), C1) be a 4-cycle system of K7−E(F ∗2 ) (see

Lemma 29). Now, let (K(((Z15\Z10)∪{27}), (Z10∪(Z27\Z15))), C2) be a 4-cycle system

of K(6, 22), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of K29 − E(F ∗).

3. Let V(Kn) = Z34

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ4,

(∞, 4i, 4i+ 1, 4i+ 2, 4i+ 3) for each i εZ8\Z5,

and

F ∗ = (∪iεZ8\{4} (F ∗i ))

Let (Z15∪(Z33\Z20){∞}, C0) be a 4-cycle system of K29−E(∪iεZ8\{3,4}F
∗
i ) (see Lemma

40(2)). Similarly, let (((Z20\Z15)∪{∞, 33}), C1) be a 4-cycle system of K7−E(F ∗3 ) (see

Lemma 29). Now, let (K(((Z20\Z15)∪{33}), (Z15∪(Z33\Z20))), C2) be a 4-cycle system

of K(6, 28), using Theorem 5.1. Then (∪iεZ3 , Ci) is a 4-cycle system of K35 − E(F ∗).

4. Let V(Kn) = Z40

⋃
{∞}. Define

F ∗i =

 (5i, 5i+ 1, 5i+ 2, 5i+ 3, 5i+ 4) for each i εZ5,

(∞, 4i− 3, 4i− 2, 4i− 1, 4i) for each i εZ10\Z7,

and

F ∗ = (∪iεZ10\{5,6} (F ∗i ))
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Let (Z20 ∪ (Z39\Z25) ∪ {∞}, C0) be a 4-cycle system of K35 − E(∪iεZ10\{4,5,6}F
∗
i ) (see

Lemma 39(3)). Similarly, let (((Z25\Z20) ∪ {∞, 39}), C1) be a 4-cycle system of K7 −

E(F ∗4 ) (see Lemma 29). Now, let (K(((Z25\Z20) ∪ {39}), (Z20 ∪ (Z39\Z25))), C2) be a

4-cycle system of K(6, 34), using Theorem 5.1. Then (∪iεZ3Ci) is a 4-cycle system of

K41 − E(F ∗).

Finally, we turn to some small cases where the nearly 2-regular leave contains both

4-cycles and 5-cycles.

Lemma 41. There exists a 4-cycle system of Kn − E(F ∗) where F ∗ is a nearly 2-regular

leave which consists of x 4-cycles and y 5-cycles each intersecting in precisely the vertex ∞

where n, x ≤ 8 and y ≤ 4 can be chosen to be any of the following.

1. n = 23, x = 6 and y = 1.

2. n = 21, x = 4 and y = 2.

3. n = 19, x = 2 and y = 3.

4. n = 15, x = 3 and y = 1.

5. n = 13, x = 1 and y = 2.

6. n = 35, x = 7 and y = 3.

7. n = 29, x = 6 and y = 2.

8. n = 27, x = 4 and y = 3.

9. n = 23, x = 5 and y = 1.

10. n = 21, x = 3 and y = 2.

11. n = 19, x = 1 and y = 3.

Proof. We will consider these eleven cases in turn.
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1. Let V(Kn) = Z22

⋃
{∞}. Define

F ∗i =

 (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ6

(∞, 18, 19, 20, 21) for i = 6

and

F ∗ = (∪iεZ7 (F ∗i ))

Let (Z6 ∪ {∞, 7, 10}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

Similarly, let (((Z22\Z18) ∪ {∞, 13, 16}), C1) be a 4-cycle system of K7 − E(F6
∗) (see

Lemma 29). And (((Z18\Z6)∪{∞}), C2) be a 4-cycle system of K13−E(∪iεZ6\Z2(F
∗
i )∪

(∞, 7, 10)∪(∞, 13, 16)) (see Lemma 35). Now, let (K({18, 19, 20, 21}, Z18\{13, 16}), C3)

be the 4-cycle system of K(4, 16), using Theorem 5.1. Similarly, (K(Z6,Z18\(Z6 ∪

{7, 10})), C4) be a 4-cycle system of K(6, 10). Then (∪iεZ5Ci) is a 4-cycle system of

K23 − E(F ∗).

2. Let V(Kn) = Z20

⋃
{∞}. Define

F ∗i =


(∞, 3i, 3i+ 1, 3i+ 2) for each i εZ4

(∞, 12, 13, 14, 15) for i = 4

(∞, 16, 17, 18, 19) for i = 5

and

F ∗ = (∪iεZ6 (F ∗i ))

Let (Z16\Z12 ∪ {∞, 1, 4}, C0) be a 4-cycle system of K7 − E(F ∗4 ) (see Lemma 29).

Similarly, let (((Z20\Z16) ∪ {∞, 7, 10}), C1) be a 4-cycle system of K7 − E(F ∗5 ) (see

Lemma 29). And (((Z12 ∪ {∞}), C2) be a 4-cycle system of K13 − E(∪iεZ4 (F ∗i ) ∪

(∞, 1, 4)∪ (∞, 7, 10)) (see Lemma 35). Now, let (K({16, 17, 18, 19}, Z16\{7, 10}), C3)

be a 4-cycle system of K(4, 14), using Theorem 5.1. Similarly, (K({12, 13, 14, 15},
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Z12\{1, 4}), C4) be a 4-cycle system of K(4, 10). Then (∪iεZ5Ci) is a 4-cycle system of

K21 − E(F ∗).

3. Let V(Kn) = Z18

⋃
{∞}. Define

F ∗i =



(∞, 3i, 3i+ 1, 3i+ 2) for each i εZ2

(∞, 6, 7, 8, 9) for i = 2

(∞, 10, 11, 12, 13) for i = 3

(∞, 14, 15, 16, 17) for i = 4

and

F ∗ = (∪iεZ5 , (F
∗
i ))

Let (Z6 ∪ {∞, 11, 16}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

Similarly, let (((Z10\Z6) ∪ {∞, 12, 15}), C1) be a 4-cycle system of K7 − E(F ∗2 ) (see

Lemma 29). And (((Z18\Z10) ∪ {∞}), C2) be a 4-cycle system of K9 − E(F ∗3 ∪ F ∗4 ∪

(∞, 10, 15)∪ (∞, 11, 16)) (see Lemma 33). Now, let(K(Z6,Z18\(Z6∪{11, 16})), C3) be

a 4-cycle system of K(6, 10), using Theorem 5.1. Similarly, (K({6, 7, 8, 9}, Z18\(Z10∪

{12, 15})), C4) be a 4-cycle system of K(4, 6). Then (∪iεZ5 , Ci) is a 4-cycle system of

K19 − E(F ∗).

4. Let V(Kn) = Z14

⋃
{∞}. Define

F ∗i =

 (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ3

(∞, 9, 10, 11, 12) for i = 3

and

F ∗ = (∪iεZ4 (F ∗i ))

Let (Z6 ∪ {∞, 7, 10}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

Similarly, let (((Z14\Z6)∪{∞}), C1) be a 4-cycle system of K9−E(F ∗2 ∪F ∗3 ∪(∞, 7, 10))
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(see Lemma 32). Now, let (K(Z6,Z14\(Z6 ∪ {7, 10})), C2) be a 4-cycle system of K(6,

6), using Theorem 5.1. Then (∪iεZ3 , Ci) is a 4-cycle system of K15 − E(F ∗).

5. Let V(Kn) = Z12

⋃
{∞}. Define

F ∗i =

 (∞, 4i, 4i+ 1, 4i+ 2, 4i+ 3) for each i εZ2

(∞, 8, 9, 10) for i = 2

and

F ∗ = (∪iεZ3 (F ∗i ))

Let (Z4 ∪{∞, 6, 9}, C0) be a 4-cycle system of K7−E(F ∗0 ) (see Lemma 29). Similarly,

let (((Z12\Z4) ∪ {∞}), C1) be a 4-cycle system of K9 −E((F ∗1 ∪ F ∗2 ) ∪ (∞, 6, 10)) (see

Lemma 32). Now, let (K(Z4,Z12\(Z4 ∪ {6, 9})), C2) be a 4-cycle system of K(4, 6),

using Theorem 5.1. Then (∪iεZ3 , Ci) is a 4-cycle system of K13 − E(F ∗).

6. Let V(Kn) = Z34

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ7

G∗i = (∞, 4i+ 1, 4i+ 2, 4i+ 3, 4i+ 4) for each i εZ8\Z5

and

F ∗ = ((∪iεZ7 (F ∗i )) ∪ (∪iεZ8\Z5(G
∗
i )))

Let (Z6 ∪ {∞, 19, 22}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

Similarly, let (((Z25\Z18) ∪ {∞, 33}), C1) be a 4-cycle system of K9 − E(F ∗6 ∪ G∗5 ∪

{∞, 19, 22}) (see Lemma 32). And (((Z29\Z25) ∪ {∞, 7, 13}), C2) be a 4-cycle system

of K7 − E(G∗6) (see Lemma 29). Also, let (((Z33\Z29) ∪ {∞, 10, 16}), C3) be a 4-cycle

system of K7 − E(G∗7) (see Lemma 29). Let (((Z18\Z6) ∪ {∞}), C4) be a 4-cycle

system of K13 − E((∪iεZ6\Z2F
∗
i ) ∪ {∞, 7, 13} ∪ {∞, 10, 16}) (see Lemma 35). Now, let

(K(Z6,Z34\(Z6 ∪ {19, 22})), C5) be a 4-cycle system of K(6, 26), using Theorem 5.1.
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Similarly, (K((Z25\Z18)∪ {33},Z33\(Z6 ∪ (Z25\Z18))), C6) be a 4-cycle system of K(8,

20). And (K((Z29\Z25), ((Z18\Z6) ∪ (Z33\Z29))), C7) be a 4-cycle system of K(4, 16).

Finally, let (K((Z33\Z29), (Z18\(Z6 ∪ {7, 10, 13, 16}))), C8) be a 4-cycle system of K(4,

8). Then (∪iεZ9 , Ci) is a 4-cycle system of K35 − E(F ∗).

7. Let V(Kn) = Z28

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ6

G∗i = (∞, 4i− 2, 4i− 1, 4i, 4i+ 1) for each i εZ7\Z5

and

F ∗ = ((∪iεZ6 (F ∗i )) ∪ (∪iεZ7\Z5 (G∗i )))

Let (Z22\Z18 ∪ {∞, 1, 7}, C0) be a 4-cycle system of K7 − E(G∗5) (see Lemma 29).

(Z26\Z22∪{∞, 4, 10}, C1) be a 4-cycle system of K7−E(G∗6) (see Lemma 29). Similarly,

let (((Z18\Z12)∪{∞, 26, 27}), C2) be a 4-cycle system of K9−E(∪iεZ6\Z4F
∗
i ) (see Lemma

30). (Z12∪{∞}, C3) be a 4-cycle system of K13−E(∪iεZ4F
∗
i ∪(∞, 4, 10)∪(∞, 1, 7)) (see

Lemma 35). Using Theorem 5.1, let (K((Z22\Z18), (Z28\((Z22\Z18) ∪ {1, 7}))), C4) be

a 4-cycle system of K(4, 22). And, (K((Z26\Z22), ((Z18\{10, 14}) ∪ {26, 27})), C5) be

a 4-cycle system of K(4, 16). Similarly, (K((Z18\Z12)∪{26, 27},Z12), C6) be a 4-cycle

system of K(8, 12). Then (∪iεZ7Ci) is a 4-cycle system of K29 − E(F ∗).

8. Let V(Kn) = Z26

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ4

G∗i = (∞, 4i, 4i+ 1, 4i+ 2, 4i+ 3) for each i εZ6\Z3

and

F ∗ = ((∪iεZ4 (F ∗i )) ∪ (∪iεZ6\Z3 (G∗i )))
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Let (Z16\Z12 ∪ {∞, 1, 7}, C0) be a 4-cycle system of K7 − E(G∗3) (see Lemma 29).

(Z20\Z16∪{∞, 4, 10}, C1) be a 4-cycle system of K7−E(G∗4) (see Lemma 29). Similarly,

let (((Z24\Z20) ∪ {∞, 24, 25}), C2) is a 4-cycle system of K7 −E(G∗5) (see Lemma 29).

(Z12 ∪ {∞}, C3) be a 4-cycle system of K13 − E(∪iεZ4F
∗
i ∪ (∞, 1, 7) ∪ (∞, 4, 10)) (see

Lemma 35). Using Theorem 5.1, let (K((Z16\Z12), (Z26\((Z16\Z12) ∪ {1, 7}))), C4) be

a 4-cycle system of K(4, 20). And, (K((Z20\Z16),Z26\((Z20\Z12) ∪ {4, 10})), C5) be

a 4-cycle system of K(4, 16). Similarly, (K((Z26\Z20),Z12), C6) is a 4-cycle system of

K(6, 12). Then (∪iεZ7 , Ci) is a 4-cycle system of K27 − E(F ∗).

9. Let V(Kn) = Z22

⋃
{∞}. Define

F ∗i =

 (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ5

(∞, 15, 16, 17, 18) for i = 5

and

F ∗ = (∪iεZ6 (F ∗i ))

Let (Z6 ∪ {∞, 13, 16}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

(Z20\Z12 ∪ {∞}, C1) be a 4-cycle system of K9 − E(∪iεZ6\Z4F
∗
i ∪ (∞, 13, 16)) (see

Lemma 32). Similarly, let (((Z12\Z6) ∪ {∞, 20, 21}), C2) be a 4-cycle system of K9 −

E(∪iεZ4\Z2F
∗
i ) (see Lemma 30). Using Theorem 5.1, let (K(Z6, (Z22\(Z6∪{13, 16}))), C3)

be a 4-cycle system of K(6, 14). By Theorem 5.1 let, (K((Z20\Z12), (Z22\(Z6 ∪

(Z20\Z12)))), C4) be a 4-cycle system of K(8, 8). Then (∪iεZ5 , Ci) is a 4-cycle sys-

tem of K23 − E(F ∗).

10. Let V(Kn) = Z20

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i+ 1, 3i+ 2) for each i εZ3

G∗i = (∞, 4i− 3, 4i− 2, 4i− 1, 4i) for each i εZ5\Z3

and
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F ∗ = ((∪iεZ3 (F ∗i )) ∪ (∪iεZ5\Z3 (G∗i )))

Let (Z6 ∪ {∞, 7, 10}, C0) be a 4-cycle system of K9 − E(∪iεZ2F
∗
i ) (see Lemma 30).

((Z13\Z6) ∪ {∞, 19}, C1) be a 4-cycle system of K9 − E(F ∗2 ∪ G∗3 ∪ (∞, 7, 10)) (see

Lemma 32). Similarly, let (((Z19\Z13) ∪ {∞}), C2) be a 4-cycle system of K7 −E(G∗4)

(see Lemma 29). Now, using Theorem 5.1, let (K(Z6, (Z20\(Z6 ∪ {7, 10}))), C3) be a

4-cycle system of K(6, 12). Similarly, (K((Z19\Z13), (Z13\Z6)∪{19}), C4) be a 4-cycle

system of K(6, 8). Then (∪iεZ5 , Ci) is a 4-cycle system of K21 − E(F ∗).

11. Let V(Kn) = Z18

⋃
{∞}. Define

F ∗i = (∞, 3i, 3i+ 1, 3i+ 2) for i = 0

G∗i = (∞, 4i− 1, 4i, 4i+ 1, 4i+ 2) for each i εZ4\Z1

and

F ∗ = ((F ∗0 ) ∪ (∪iεZ4\Z1 (G∗i )))

Let ((Z11\Z7) ∪ {∞, 1, 4}, C0) be a 4-cycle system of K7 − E(G∗2) (see Lemma 29).

((Z17\Z11) ∪ {∞}, C1) be a 4-cycle system of K7 − E(G∗3) (see Lemma 29). Similarly,

let ((Z7∪{∞, 17}), C2) be a 4-cycle system of K9−E(F ∗0 ∪G∗1∪{∞, 1, 4}) (see Lemma

32). Now, using Theorem 5.1 let, (K((Z11\Z7), (Z18\((Z11\Z7) ∪ {1, 4}))), C3) be a

4-cycle system of K(4, 12). Similarly, (K((Z17\Z11), (Z7 ∪ {17})), C4) be a 4-cycle

system of K(6, 8). Then (∪iεZ5 , Ci) is a 4-cycle system of K19 − E(F ∗).

5.3 Proposition

In this section we give constructions for obtaining 4-cycle systems of Kn − E(F ∗) for

some general values of n.

Proposition 19. Suppose n = 24x + y, x, y ε Z+ and F ∗ consists of 4 cycles, all of which

are incident with the vertex∞ where y ε {1, 9, 17} for some x εN. Then there exists a 4-cycle

system of Kn − E(F ∗)
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Proof. We know that y ε {1, 9, 17} for some x ε N. When y ε{9, 17} the required 4-

cycle system exists by Lemma 36. And the remaining 4-cycle systems exist by the following

construction.

Let V(Kn) = {{∞}
⋃
{Z24 × Zx} ∪ {Zy−1}}. For each z ε Zx let, ({∞} ∪ (Z24 ×

{z}), Cz) be a 4-cycle system of order 25 which exists, by Lemma 36. ({∞} ∪ Zy−1, Cy)

be a 4-cycle system of order y which exists, by Lemma 36. By Theorem ??, for 0 ≤

i < j < x let, ({Z24 × {i}} ∪ {Z24 × {j}}, C(i, j)) be a 4-cycle system of (K24, K24) and

for all i ε Zx, ({Z24 × {i}} ∪ {Zy−1}, C(i, x)) be a 4-cycle system of (K24, Ky−1). Then

((∪zεZx+1Cz)∪ (∪0≤i<j<xC(i, j))∪ (∪iεZxC(i, x))∪Cy) is a 4-cycle system of Kn - E(F ∗).

Proposition 20. Suppose n = 24x + y, x, y ε Z+ and F ∗ consists of 4 cycles of which all

but one is incident with the vertex ∞ where y ε {1, 9, 17} for some x ε N. Then there exists

a 4-cycle system of Kn − E(F ∗)

Proof. We know that y ε {1, 9, 17} for some x ε N. When y ε{9, 17}, the required 4-

cycles system exists by Lemma 36. And the remaining 4-cycle systems exist by the following

construction.

Let V(Kn) = {{∞}
⋃
{Z24 × Zx} ∪ {Zy−1}}. For each z ε Zx let, ({∞} ∪ (Z24 ×

{z}), Cz) be a 4-cycle system of order 25 which exists, by Lemma 37. ({∞} ∪ Zy−1, Cy)

be a 4-cycle system of order y which exists, by Lemma 37. By Theorem ??, for 0 ≤

i < j < x let, ({Z24 × {i}} ∪ {Z24 × {j}}, C(i, j)) be a 4-cycle system of (K24, K24) and

for all i ε Zx, ({Z24 × {i}} ∪ {Zy−1}, C(i, x)) be a 4-cycle system of (K24, Ky−1). Then

((∪zεZx+1Cz)∪ (∪0≤i<j<xC(i, j))∪ (∪iεZxC(i, x))∪Cy) is a 4-cycle system of Kn - E(F ∗).

Proposition 21. Suppose n = 16x + y, x, y ε Z+ and F ∗ consists of 5 cycles, all of which

are incident with the vertex ∞ where y ε {1, 7} for some x ε N. Then there exists a 4-cycle

system of Kn − E(F ∗)
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Proof. We know that y ε {1, 7} for some x ε N. When y = 7, the required 4-cycle

system exists by Lemma 29. And, the remaining 4-cycle systems can be obtained by the

following construction.

Let V(Kn) = {{∞}∪{Z16×Zx}∪{Zy−1}}. Using Lemma 38, we see that for each z

ε Zx, ({∞}∪{Z16×{z}}, Cz) be a 4-cycle system of order 17. Similarly, ({∞}∪{Zy−1}, Cy)

be a 4-cycle system of order y using Lemma 38. Using Theorem ??, for 0 ≤ i < j < x,

({Z16 × {i}} ∪ {Z16 × {j}}, C(i, j)) be a 4-cycle system of (K16, K16) and for all i ε Zx,

({Z16 × {i}} ∪ ({Zy−1}, C(i, x)}) be a 4-cycle system of (K16, Ky−1). Thus ((∪zεZx+1Cz) ∪

(∪0≤i<j<xC(i, j)) ∪ (∪iεZxC(i, x)) ∪ Cy) is a 4-cycle system of Kn - E(F ∗).

Proposition 22. Suppose n = 40x+ y, x, y ε Z+ and F ∗ consists of 5 cycles of which only

two cycles intersect precisely in the vertex ∞ where y ε {1, 7, 29, 35} for some x ε N. Then

there exists a 4-cycle system of Kn − E(F ∗)

Proof. We know that y ε {1, 7, 29, 35} for some x ε N. When y ε{29, 35} the 4-cycle

system exists by Lemma 39. The remaining 4-cycle sytems can be obtained by the following

construction.

Let V(Kn) = {{∞} ∪ {Z40 ×Zx} ∪ {Zy−1}}. Using Lemma 39, we see that for each

z εZx, ({∞}∪{Z40×{z}}, Cz) be a 4-cycle system of order 41. Similarly, ({∞}∪{Zy−1, Cy)

be a 4-cycle system of order 41 too. For 0 ≤ i < j < x, ({Z40×{i}}∪{Z40×{j}}, C(i, j)) be

a 4-cycle system of (K40, K40) and for all i εZx, ({Z40 × {i}} ∪ {Zy−1}, C(i, x)) be a 4-cycle

system of (K40, Ky−1). Thus ((∪zεZx+1Cz)∪(∪0≤i<j<xC(i, j))∪(∪iεZxC(i, x))∪Cy) is a 4-cycle

system of Kn - E(F ∗).

Proposition 23. Suppose n = 40x+ y, x, y ε Z+ and F ∗ consists of 5 cycles of which only

three cycles intersect precisely in the vertex ∞ where y ε {1, 23, 29, 35} for some x ε N.

Then there exists a 4-cycle system of Kn − E(F ∗)
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Proof. We know that y ε {1, 23, 29, 35} for some x ε N. We know that y ε {23, 29, 35}

then there exists the required 4-cycle system by Lemma 40. The remaining 4-cycle systems

can be obtained by the following construction.

Let V(Kn) = {{∞}∪{Z40×Zx}∪ {Zy−1}}. Using Lemma 40, we see that for each

z εZx, ({∞}∪{Z40×{z}}, Cz) be a 4-cycle system of order 41. Similarly, ({∞}∪{Zy−1, Cy)

be a 4-cycle system of order 41 too. For 0 ≤ i < j < x, ({Z40×{i}}∪{Z40×{j}}, C(i, j)) be

a 4-cycle system of (K40, K40) and for all i εZx, ({Z40 × {i}} ∪ {Zy−1}, C(i, x)) be a 4-cycle

system of (K40, Ky−1). Thus ((∪zεZx+1Cz)∪(∪0≤i<j<xC(i, j))∪(∪iεZxC(i, x))∪Cy) is a 4-cycle

system of Kn - E(F ∗).

Proposition 24. Suppose n = 16x+ y, x, y ε Z+ and F ∗ consists of 5 cycles of which four

or more cycles intersect precisely in the vertex ∞ where y ε {1} for some xεN. Then there

exists a 4-cycle system of Kn − E(F ∗)

Proof. The proof is similar to the proof of Proposition 19.

Proposition 25. Suppose n = 24x + y, x, y ε Z+ and F ∗ consists of s 4 cycles and t 5

cycles all of which are incident with the vertex ∞ where y ≤ 4 and x ≤ 8. Then there exists

a 4-cycle system of Kn − E(F ∗)

Proof. The proof is similar to the proof of Proposition 19.

And, now we prove the main result of this chapter.

Theorem 5.2. There exists a 4-cycle system of Kn − E(F ∗) if and only if the following

conditions are satisfied.

1. n is odd, and

2. 4 divides (Kn)− E(F ∗)

Proof. The necessity of condition (1) follows from the fact that in a 4-cycle system

each vertex clearly has even degree. Condition (2) follows since each 4-cycle has four edges.
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To prove the sufficiency we use induction on n, the total number of vertices. The

result is trivially true when n = 3. Let (Z4 ∪ {∞}, (0, 3, 1, 2)) be the 4-cycle system of

K5−E((∞, 0, 1)∪ (∞, 2, 3)) which has the only possible leave (of two 3-cycles) when n = 5.

And the only possible leave when n = 7 is a 5-cycle which was considered in Lemma 29.

So we can assume that n = 2x + 1 ≥ 9, and suppose that for any odd z < n and any

nearly 2-regular leave F̄ ∗ for which, 4 divides (Kz)−E(F̄ ∗) there exists a 4-cycle system of

Kz − E(F̄ ∗). It will be useful to notice that if

4 divides (Kn − E(F ∗)) then 4 divides (Kz − E(F̄ ∗)) (*)

where z = n− 2, | E(F̄ ∗) |=| E(F ∗) | −3.

We construct the required 4-cycle systems by considering the following cases in

turn. In each case, V(Kn) = Zn−1 ∪ {∞}.

Case 1. F ∗ contains a cycle c, of length 3.

1. Suppose that c is incident with the vertex ∞, say c = (∞, n − 2, n − 3). Then by

(*) (V (z), C0) is the 4-cycle system of Kn−2 − E(F̄ ∗), where V (z) = {Zn−3 ∪ {∞}}

and | E(F̄ ∗) |=| E(F ∗) | −c. Also, (K({n − 2, n − 3}, V (z)\{∞}), C1) will be a 4-

cycle system of K(2, n− 3) using Theorem 5.1. Then (∪iεZ2 , Ci) is a 4-cycle system of

Kn − E(F ∗).

2. Suppose that c is not incident with the vertex ∞, say c = (n− 2, n− 3, n− 4). Then

(V (z), C0) be the 4-cycle system of Kn−2 − E(F̄ ∗), where V (z) = {Zn−3 ∪ {∞}} and

| E(F̄ ∗) |=| E(F ∗) | −c. Also, (K({n−2, n−3}, V (z)\{n−4}), C1) be a 4-cycle system

of K(2, n− 3), using Theorem ??. Then (∪iεZ2 , Ci) is a 4-cycle system of Kn−E(F ∗).

Case 2. F ∗ contains a cycle of length ≥ 6.

89



The proof of this case is completely solved by [31] but is included here for the sake

of continuity.

Let F ∗ contain a cycle of length l, where l ≥ 6 (say c = (n − 1, n − 2, . . . , n − l +

1, n − l)). Let c1 = (n − 3, n − 4, . . . , n − l). Let E(F̄ ∗) = (F ∗ − c) ∪ c1. Then using the

technique of induction, there exists a 6-cycle system of (Zn−2, C) of Kn−2 − E(F̄ ∗). Now,

let the edge {n− 3, n− 4} be contained in the 4-cycle c2 = (n− 3, n− 4, a, b) contained in

the cycle system C. Clearly, b 6= n− l since {n− l, n− 3} ∈ c1. Let C1 = (C\{c2}) ∪ {(n−

l, n− 3, b, n− 2), (b, a, n− 3, n− 1)}∪K({n− 2, n− 1},Zn−2\{n− 1, n− 3, b}). Then clearly,

(Zn, C1) is the 4-cycle system of Kn − E(F ∗).

Case 3. F ∗ contains only cycles of length 4.

1. Suppose that a cycle c, of length 4 is incident with the vertex ∞, say c = (∞, n −

2, n − 3, n − 4). And, suppose there exists a 4-cycle system of Kn − E(F ∗) when

n = 24x + y, x, y εZ+ and F ∗ consists of 4 cycles, all of which are incident with the

vertex ∞. Then y ε {1, 17, 9} for some x εN because if F ∗ contains 0, 1, 2 or 3

isolated vertices, condition (2) requires that y = {25, 17, 9, 25} respectively. In each of

these four cases by Lemma 36, the required 4-cycle system exists. The constructions for

obtaining the 4-cycle systems for this case follows directly from the proof of Proposition

19.

2. Suppose that a cycle c, of length 4 is not incident with the vertex ∞, say c = (n −

2, n− 3, n− 4, n− 5). Now, suppose that there exists a 4-cycle system of Kn −E(F ∗)

when n = 24x + y, x, y εZ+ and F ∗ consists of 4 cycles, all of which all but one

is incident with the vertex ∞. Then y ε {17, 9, 1} for some x εN because if F ∗

contains 0, 1, 2 or 3 isolated vertices then condition (2) requires that y = {17, 9, 2517}

respectively. And the 4-cycle systems in these cases follow from Lemma 37. The
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remaining constructions needed to complete the proof of this case follow directly from

the proof of the Proposition 20.

Case 4. F ∗ contains only cycles of length 5.

1. F ∗ contains only cycles of length 5 of which only two cycles intersect precisely in

the vertex ∞. Suppose that there exists a 4-cycle system of Kn − E(F ∗) when n =

40x+y, x, y εZ+ and F ∗ consists of 5 cycles, of which only two cycles intersect precisely

in the vertex ∞ then y ε {29, 35, 11, 7} for some x εN. Because, if F ∗ contains 0, 1, 2

or 3 isolated vertices then condition (2) requires that y = {29, 35, 41, 47} respectively.

The 4-cycle systems of these cases can be obtained from Lemma 39. The remaining

constructions needed to complete this proof follow directly from Proposition 22.

2. F ∗ contains only cycles of length 5 of which only three cycles intersect precisely in

the vertex ∞. Now, suppose that there exists a 4-cycle system of Kn − E(F ∗) when

n = 40x + y, x, y εZ+ and F ∗ consists of 5 cycles of which only three cycles intersect

precisely in the vertex ∞ then y ε {23, 29, 35, 1} for some x εN. Because, if F ∗

contains 0, 1, 2 or 3 isolated vertices then condition (2) requires that y = {23, 29, 35, 41}

respectively. The 4-cycle systems of these cases follow from Lemma 40. The remaining

constructions needed to complete this proof follow directly from Proposition 23.

3. F ∗ contains four or more cycles of length 5 which intersect precisely in the vertex ∞.

Suppose that there exists a 4-cycle system of Kn−E(F ∗) when n = 16x+ y, x, y εZ+

and F ∗ consists of 5 cycles, all of which are incident with the vertex ∞ then y ε {1,

7} for some x εN. Because, if F ∗ contains 0 or 2 isolated vertices then condition (2)

requires that y = {17, 7} respectively. The 4-cycle systems for these two cases follow

clearly from Lemma 38. The remaining constructions needed to complete this proof

follow directly from Propositions 21 and Proposition 24.
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Case 5. F ∗ contains only cycles of lengths 4 and 5 incident with the vertex ∞.

The proof of this case follows directly from Lemma 41 and Proposition 25.

This proves our main result of this chapter.
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Chapter 6

4-cycle system of the line graph of a complete multipartite graph: adding eight

vertices

6.1 Introduction

In this chapter, we assume that there exists a 4-cycle system of L(G), where G is

a complete multipartite graph. Let G = (V1, V2, . . . , Vp), and | V (Vi) |= ai for 1 ≤ i ≤ p,

where for 1 ≤ i ≤ p, Vi = {vi,j|1 ≤ j ≤ ai}. Also, we assume that the part size, ai, is odd

for 1 ≤ i ≤ p and that the number of parts, p, is even. Then, we obtain the results needed

for a 4-cycle system of a new L(G
′
) obtained from L(G) such that all but one parts are the

same, the remaining part being increased in order by eight (i.e. we add eight vertices).

Let G
′
= L(K(V1

′
, V2

′
, . . . , Vp

′
)), where Vi

′
= Vi for 2 ≤ i ≤ p, and, | V1

′ |=| V1 | + 8.

The size of each part, | Vi
′ | is denoted by ai

′
. Also, each vertex in Vi

′
is denoted as vi,j

′
for

1 ≤ i ≤ p and 1 ≤ j ≤ ai
′
. Finally, we denote the clique formed by a vertex in the complete

multipartite graph, say, v, by c(v). We will need a result given by Sotteau, to prove our

Theorem. Hence, it is stated below for reference.

Theorem 6.1. There exists a 4-cycle system of Ka,b and of 2Ka,b if and only if each vertex

has even degree, the number of edges is divisible by 4, and a, b ≥ 2.

We now, look at the 4-cycle system of a complete graph on 9 vertices. We will use this

Lemma to prove our main Theorem.

Lemma 42. There exists a 4-cycle system of K9.
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Proof Let V (K9) = Z9. Construct a base block B0 = (0, 1, 5, 2). Note that this base

block contains exactly one edge of each of the four differences in K9 . So, we can form the

4-cycle system (Z9,∪i∈Z9(i, i+ 1, i+ 5, i+ 2)) of K9.

Theorem 6.2. If there exists a 4-cycle system of G = L(K(V1, . . . , Vp)) then there exists a

4-cycle system of G′ = L(K(V
′
1 , . . . , V

′
p ))

Proof Before we look at the construction for this result, we make the following observa-

tion. The line graph of a graph G1, L(G1), can also be constructed as a union of the cliques

of each vertex v ∈ G1. We make use of this fact to decompose G′ into cycles of length 4.

We will denote the eight new vertices added to part V
′
1 be denoted by vi for i ∈ N8.

We first, decompose the cliques of all the vertices, c(v1,j
′
) in part V1

′
. Now, note

that the cliques of the vertices in part V1 are the same as the cliques of the vertices in part

V1
′
. We already have the 4-cycle system of c(v1,j) for vi,j ∈ V1 from the 4-cycle system of G.

Thus, we obtain the cycle systems of c(v
′
1,j). Let C0 denote the set of these 4-cycles.

• C0 = 4-cycle system of (∪i∈N8c(vi)) ∪ 4-cycle system of (c(v1,j
′
))

Now, the 4-cycle system of the c(vi,j
′
) for 1 ≤ j ≤ ai

′
and 2 ≤ i ≤ p can be

constructed by a similar method. Consider the clique c(vi,j
′
) formed by the vertex vj

′ ∈ Vi
′
,

for 1 ≤ j ≤ ai
′

and 2 ≤ i ≤ p. Suppose that, | V (c(vi,j)) |= m for vi,j ∈ Vi. Then clearly,

m is odd. Since, by our assumption p is even and ai
′

is odd for all 1 ≤ i ≤ p. Thus,

| V (c(vi,j)) |= (p− 1) ∗ ai is odd too. Thus,

| V (c(vi,j
′
)) | = m+ 8 wherem is an odd number

Also, there exists a 4-cycle of Km (the edges in Km have been used up in the

4-cycle system of G). If |S| = 9 then let C(vi,j;S) be a set of 4-cycles on the vertex set

{{vi,j, s}|s ∈ S} in c(vi,j) that form a 4-cycle system of K9 using Lemma 42. Also, if |S1|

and |S2| are even integers then let C(vi,j;S1, S2) be a set of 4-cycles of K({{vi,j, s1}|s1 ∈
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S1}, {{vi,j, s2}|s2 ∈ S2}). Now, let C1 be the set of 4-cycles obtained from the cliques c(vi,j)

for 1 ≤ j ≤ ai
′

and 2 ≤ i ≤ p, defined as follows:

• C1 = {
⋃

2≤i≤p,1≤j≤ai(C(vi,j; {v
′
i|1 ≤ i ≤ 8} ∪ {v1,1}))

⋃
C(vi,j;K({v′

i|1 ≤ i ≤ 8}, {V (G
′
)\{{v′

i|1 ≤ i ≤ 8} ∪ {v1,1}}}))

Thus (V (G
′
),∪i∈Z2Ci) is a 4-cycle system of G′.
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