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Abstract

In the field of unmanned aerial vehicles (UAVs), several control processes must be ac-

tive to maintain safe, autonomous flight. When flying multiple UAVs simultaneously, these

aircraft must be capable of performing mission tasks while maintaining a safe distance from

each other and obstacles in the air. Despite numerous proposed collision avoidance algo-

rithms, there is little research comparing these algorithms in a single environment. This

paper outlines a system built on the Robot Operating System (ROS) environment that

allows for control of autonomous aircraft from a base station. This base station allows a re-

searcher to test different collision avoidance algorithms in both the real world and simulated

environments. Data is then gathered from three prominent collision avoidance algorithms

based on safety and efficiency metrics. These simulations use different configurations based

on airspace size and number of UAVs present at the start of the test. The three algorithms

tested in this paper are based on mixed integer linear programming (MILP), the A* al-

gorithm, and artificial potential fields. The results show that MILP excelled with a small

number of aircraft on the field, but has computation issues with a large number of aircraft.

The A* algorithm struggled with small field sizes but performed very well with a larger

airspace. Artificial potential fields maintained strong performance across all categories be-

cause of the algorithm’s handling of many special cases. While no algorithms were perfect,

these algorithms demonstrated the ability to handle up to eight aircraft on a 500 meter

square field and sixteen aircraft safely on a 1000 meter square field.
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Chapter 1

Introduction

One area of technological research that has been growing increasingly important over

the last decade is the field of unmanned aerial vehicles (UAVs). In particular, UAVs are

being used for a large number of surveying applications. This includes surveying an area of

land, points of interests, or other mobile vehicles. However, in order to protect these UAVs,

algorithms are needed to route them safely through the airspace. In particular, missions

involving more than one UAV need these algorithms for safety.

Many algorithms have been proposed and even implemented to help manage this UAV

safety problem. Some algorithms work by generating maneuvers on a per second basis

whereas others work by planning a path far into the future. Despite all the variations in

collision avoidance, there is almost no work comparing them on a singular system. The goal

of this research is to take some of these prominent algorithms and evaluate their effectiveness.

1.1 General Problem

Before any algorithms were chosen for experimentation, the problem first had to be

defined along with some goals. The base problem is to test and compare collision avoidance

algorithms controlling multiple aircraft to determine which algorithms are the best. This

meant that there needed to be a standard test bed to perform all these calculations on and

a standard set of rules for the simulations. Since this problem will eventually be tested in a

real-world setting, some of these standards were chosen based on real model aircraft while

others were made to help frame the problem better.
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One of these framing standards was to limit the collision avoidance algorithms to a

two dimensional airspace with the idea of eventually expanding the simulations to three di-

mensions. The basic idea being this limitation was that if an algorithm can safely navigate

aircraft through a two dimensional space, it should be able to do it through a three dimen-

sional space after some modifications. Additionally, this would save time during algorithm

development by limiting the airspace. This would also allow for potential adaptation to

ground based vehicles which typically navigate using two dimensional space.

In this paper, environmental factors are also excluded from the problem. Typically, real

aircraft will experience a large number of environmental influences including air resistance,

wind, violent weather, and unresponsive obstacles such as unknown aircraft. Furthermore,

it’s assumed all aircraft in the simulation can be tracked and that their positions are known.

This means the algorithms assume all data received from the aircraft is accurate and that

all obstacles are known by the system.

1.2 Physical Constraints

There are also constraints due to the physics of a real aircraft. Specifically, these al-

gorithms are limited to aircraft with a maximum turn radius and constant speed. For this

problem, the maximum turning angle was limited to 22.5◦/second. This means for an aircraft

to reverse its direction, it would have to spend eight seconds of flight time changing its head-

ing. The aircraft was also limited to an airspeed of 25 miles/hour which is approximately

11.176 meters/second.

This problem is also considered a real-time problem. While the algorithms can choose

how long they wish to perform a particular calculation, the simulation will continue running

during this calculation time. In particular, the simulation would generate a new update from

each aircraft at a rate of one update per second and it will continue generating those updates

and following the preset course unless the collision avoidance algorithm alerts the aircraft to

a new path or until the aircraft is determined to have a collision.
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1.3 Analyzing Results

With the problem limitations defined, the methods for analyzing the algorithms must

be defined. First, collision avoidance algorithms are meant to reduce both the number of

collisions and the number of conflicts of the aircraft. A collision can be defined as two aircraft

occupying the same space. In this real world, this would typically imply destruction of both

aircraft. Because of the granularity of the simulations, a collision is defined as two aircraft

being approximately one second of flight time away from each other. Since the airspeed of

the aircraft is a constant 11.176 m/s, a circle of radius 12 meters is chosen as the collision

zone for these aircraft. Similarly, a conflict is meant to represent an imminent collision

between aircraft. For this conflict zone, the radius is double to a 24 meter circle representing

the conflict zone. For these simulations, each conflict and collision is tracked but a collision

will remove any aircraft involved from future time steps to simulate the destruction of those

aircraft.

While these two definitions describe the effectiveness of the collision avoidance, there

needs to also be a way to describe how efficient the algorithms are at reaching the goal

waypoints. In order to do this, the increase in waypoints achieved was used. This metric

was used because it accounts for both the effectiveness of collision avoidance and the efficiency

of the maneuvers. For example, an algorithm that loses several aircraft will have a lower

waypoints achieved, but an algorithm that takes overly cautious maneuvers will also have a

very lower number of waypoints achieved.

In the next chapter, several proposed algorithms are discussed along with some of the

known strengths and weaknesses of those algorithms. Then, three of those algorithms are

discussed further, implemented, and modified to improve on some of the known or discov-

ered weaknesses. Despite all the differences in these equations, these algorithms are then

implemented on a single common testbed for analysis. Finally, the results from the test bed

simulations are presented along with some analysis of the different algorithms.
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Chapter 2

Survey of Aerial Collision Avoidance Algorithms

2.1 Geometric Approach

Geometric methods for collision detection and maneuvering are based on a couple of

simple geometric principles. For this particular approach, the point of closest approach

(PCA) algorithm was examined. In this algorithm, the aircraft involved are typically con-

sidered a single point mass with a constant velocity vector denoting speed and direction [8].

By extending these velocity vectors out from the point mass, it’s possible to determine how

close two aircraft will come to each other, a distance referred to as ~rm, the “miss distance

vector” [8]. Referring to figure 2.1, if ĉ is the unit vector representing the difference in the

velocities of the two aircraft and ~r is the relative distance between the point masses, then

~rm is defined:

~rm = ĉ× (~r × ĉ) (2.1)

If this miss distance vector is lower than a pre-defined safe threshold, typically the con-

flict distance, then the algorithm knows that it needs to re-route one or both of the aircraft.

Further vector manipulation is done on the miss distance vector in order to determine the

maneuvers that need to take place to resolve the conflict [8].

One of the benefits of geometric approaches is the fact that typically, they can be

implemented in both 2D and 3D spaces by modifying the point mass and velocities to include

a z component. In addition, it’s already assumed that the aircraft maintain a constant speed

and ignores environmental components [8]. This algorithm is also a very efficient algorithm

in terms of time. With only two aircraft, it’s fairly trivial to determine if their paths are in
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Figure 2.1: Relative motion of two UAVs

conflict and then how to re-route those aircraft. However, this particular algorithm is only

shown to work for two aircraft. As the number of aircraft increase, the problem of checking

for conflict and re-routing becomes much more complex because you have to factor in each

point mass and vector.

2.2 Evolutionary

The evolutionary approach is a method of handling collision avoidance through adapta-

tion of a known path. To start, the algorithm creates a random set of solutions from the start

point to the end [10]. From this point, the algorithm enters a cyclical series of steps. First,

each path is mutated based on one of the following four techniques and that new mutated

path is added to the pool [10]:

1. Mutate and propagate - change one segment of the path and modified the rest of the

path to reach the endpoint

2. Crossover - uses the start of one path and the end of another path and combines them

using a “point-to-point-join function”

3. Go to goal - takes a point near the end of a path and performs the point-to-point-join

function from that point to the end

5



4. Mutate and match - mutate one or more of the segments in the path, then attempt to

connect the end of the mutated segments to the end portion of the path

This effectively doubles the pool size by creating a new, randomly-mutated path for

each old path. Then, this pool goes through an evaluation based on a variety of techniques

such as feasibility, constraints, goals, etc [10]. The most fit segments are kept within the

pool and the others are pruned away until the pool is back to its original size [10]. This

is one generation of the evolutionary approach, but in most scenarios, multiple generation

would be calculated before returning anything to the aircraft.

This approach has a couple of benefits because of its system of execution. First, it’s

easily adaptable to a real-time environment. WIth the evolutionary approach, the algorithm

can continuously create new random generations and can return a path (not necessarily

the best path) at any point. Additionally, the iterative nature allows it to receive updated

GPS data and modify its paths based on this new data [10]. This makes the algorithm

extremely easy to adapt to a real-time system. One of the downfalls of this process is that

the evolutionary algorithm is not guaranteed to ever find the optimal solution to a problem.

However, it is still very effective at finding a solution and continuously adapting that solution

as time passes.

2.3 Mixed-Integer Linear Programming (MILP)

While some of these approaches directly address the problem of collision avoidance,

the MILP method is actually an adaptation of this problem into a set of constraints [11].

These constraints are then used as inputs into an MILP solver, a program that takes a

set of constraints and attempts to find an optimal solution [11]. Today, there are many

commercially available MILP problem solvers available for purchase.

With one of these solvers, the only things left to create are the input constraints. In

order to adapt the problem for MILP, a few basic constraints need to be considered. First,

each UAV is mapped into the program with it’s mechanical state: position, velocity, and
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acceleration [11]. This is necessary because the solver needs to know both where the UAVs

are positioned and it needs to insure that the UAVs maintain a safe distance while solving.

In turn, the constraints on safe distance must also be constraints to the problem solver

[11]. Finally, the goal to minimize traveling time must be entered as a constraint on the

system[11]. This gives the problem a goal and a method of evaluating success of each of the

solutions calculated by the solver.

One of the problems with the MILP method is that it can be extremely time-consuming

to calculate an optimal solution due to the infinite number of possibilities. Even with the

relatively quick MILP solvers, these problems are grow exponentially with each UAV added

to the equation. This means that for MILP to be a valid solution to collision avoidance, the

problem needs to be adapted for real-time and the problem needs to be heavily constrained

so that the time complexity goes down.

2.4 Grid-based approaches

Previous algorithms have used the aircraft as the focal points for collision avoidance.

However, there are several algorithms that instead focus on a grid representing the airspace.

These algorithms work by first taking the airspace and turning it into a discrete grid of

squares (or cubes in a three dimensional environment). After generating this grid, each

square is assigned values based on the algorithm. Typically, these values represent occupied

grid-space either through static or dynamic obstacles.

After generating this grid, the algorithm uses the grid to generate a path for the aircraft.

One of these specific algorithms is known as A*(spoken as “A-star”). In this algorithm, the

grid is used as a graph that starts at the aircraft’s initial position. From there, the idea is

to consider nodes that the aircraft could travel to. Then, each of these nodes are assigned

ratings that represent the best possible path to the destination. As each node is considered,

it’s added to a heap with the lowest cost element at the top of the heap. The process of

rating these nodes is called “branching” [17]. After branching once, it repeats the process by
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looking at the least cost node in the heap and considering where it can branch to from there.

This recursive process is known as “bounding” the future search to only best-cost estimates

[17]. Because of this, A* is known as a branch-and-bound method of handling these complex

problems.

Grid-based problems do have some drawbacks caused by the grid. One of these is

converting the three dimensional space into a three dimensional grid. For the planet, this

means that the curvature of the earth has to be specially handled by the grid. Additionally,

whenever a space is discretized, it can sometimes be difficult to determine what spaces are

occupied by objects. For example, two aircraft in adjacent grids could be almost directly

beside each other or on the far sides of their grid space. This can be accounted for by

discretizing the airspace further, but that can leads to problems of complexity due to the

grid space getting larger.

2.5 Artificial Potential Fields

Artificial potential fields offers a relatively simple method of handling collision avoidance.

In physics, particles have both positive and negative charges where particles of similar charge

repel each other and particles of opposite charge attract. Researchers discovered a way to

apply this idea to collision avoidance.

In this approach, each aircraft is considered a negative charge in order to make them

feel an artificial repulsive force from each other [6]. Additionally, each aircraft has a goal

waypoint associated with a positive charge [6]. In order to determine where the aircraft

should travel, the repulsive forces and attractive forces are added together into one vector.

Then, this vector is used to determine what direction the aircraft should travel to remain as

safe as possible [6]. This process is repeated for each aircraft in the scenario until each has

a direction vector.

Artificial potential fields is generally a significantly faster method of handling collision

avoidance compared to other algorithms. This is primarily due to the simplicity of the
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calculation. However, the simple design makes this algorithm purely reactive in nature.

This means that each time the algorithm is executed, it makes a greedy choice based purely

on the current state of the aircraft. Because of this greedy choice, there isn’t any long-term

planning for future time steps which may result in some special cases that can’t be handled

by only the artificial potential fields.

2.6 Conclusion

These five algorithms were the original algorithms that were looked at for use in this

collision avoidance test. Of those five, three algorithms were chosen to participate in this

comparison: MILP, A*, and artificial potential fields. The geometric approach was found to

have problems with working with a large number of aircraft, one of the problem requirements.

While the evolutionary approach doesn’t have that problem, it did suffer from problems

with random mutations and so more predictable algorithms were chosen for testing. MILP

and A* were both algorithms that could be potentially time consuming but were found to

be adaptable to real-time situations with the proper problem constraints. Finally, artificial

potential fields is a well-known solution to collision avoidance that has some special situations

that can be handled with proper planning. The following chapters address these algorithms

in greater detail along with some of the changes that were made to fit this specific problem.
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Chapter 3

Mixed Integer Linear Programming

3.1 Mixed-Integer Linear Programming (MILP) Basics

MILP is one way to adapt the collision avoidance problem to a known problem solver.

MILP is useful because it allows researchers to take a set of constraints and place them on

the input values in order to achieve a goal [11]. In the case of collision avoidance, you want

to minimize time traveling to the various waypoints while also minimizing collisions and

conflicts [11]. Unfortunately, MILP solvers suffer from the infinite number of possibilities

for these UAVs. With each aircraft added to the problem, the time to obtain a solution

grows exponentially. Fortunately, since the UAVs reside in the physical world, there are

several constraints that we can intuitively put on the solver to help reduce the problem.

Additionally, the computation time can be further reduced using some techniques to reduce

the problem size.

3.2 Constraints on the Function Solver

As mentioned earlier, the overall goal is to minimize the time needed to safely traverse

several waypoints. Since the speed of the aircraft is constant, this is the same as minimizing

the distance travelled to reach all of the waypoints. In order to do this, the objective function

must be defined to reflect this goal. For this scenario, the objective function J is defined in

Equation 3.1 where N is the number of aircraft in the problem and TFv is the time it takes

for each aircraft to reach its final waypoint.

min J =
N∑
v=1

(TFv) (3.1)
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With this goal defined, the solver now needs constraints on the problem. To begin,

the state of each aircraft is defined in Equation 3.2 based on the three primary elements of

motion: position, velocity, and force (from which acceleration can be calculated).

state =



x

y

vx

vy


force =

fx
fy

 (3.2)

Each aircraft will have a starting state based on it’s latitude, longitude, and original

bearing which will have to be converted into a Cartesian coordinate x, y, and velocity

components. For an aircraft flying straight, the force component of the state would be zero,

denoting that the aircraft is not feeling force from a turn. With this starting state defined,

it’s now necessary to relate each state to the previous state. Using well known physics

equations, this relationship is easily defined using Equations 3.3, 3.4, and 3.5.

statet+1 = A× statet +B × acceleration (3.3)

A =



1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1


B =



1
2
(dt)2 0

0 1
2
(dt)2

(dt) 0

0 (dt)


(3.4)

statet+1 =



xt + vxdt+ 1
2
ax(dt)

2

yt + vydt+ 1
2
ay(dt)

2

vx + axdt

vy + aydt


(3.5)
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With this relationship in place, the fundamental components of solving the problem are

in place. However, there are additional physical constraints that need to be added to the

system in order to maximize the accuracy of the solution.

3.3 Problem Constraints

The problem definition included both a constant speed and a maximum turning angle

for the aircraft, therefor the MILP solver must also be capable of accounting for both this

speed constraint and maximum turning angle or infeasible solutions might be generated [11].

In order to account for these constraints, two things must happen. First, the distance of

movement is converted into two polygons, a minimum and maximum velocity polygon. The

reason for this is because polygons are easily understood by the MILP solver and can be

used as an approximation for a circle around the aircraft. These two polygons are visually

represented by Figure 3.1.

(a) Added Turning Constraint (b) Force

Figure 3.1: Turning Constraint

In addition to this distance constraint, the turn constraint can be represented by this

polygon. Given the maximum turning angle, Θ, and the constant speed from the problem
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statement, we can calculate the maximum force, fmax that can safely be exerted on the

aircraft at any given moment. At this point, the solver has everything it needs to calculate

the path of one single aircraft. By modifying the constrained force exerted at each state, the

MILP solver changed the turn angle which dictates the next state’s location and velocity.

By doing this repeatedly, the solver can calculate several steps to form a complete path.

3.4 Handling Multiple Aircraft

In previous work, MILP solvers have been used for calculating paths for terrestrial

vehicles performing various tasks [11]. In order to perform these tasks, the vehicles often

had to avoid obstacles such as walls, boulders, or unsafe terrain. In order to do this, each

obstacle was mapped into the coordinate space as polygons that cannot be entered by the

vehicle [11]. With these additional constraints taken into account, the solution size gets

reduced and the problem of avoiding these obstacles is handled.

This previously implementation was used for static obstacles, but it can be easily

adapted for dynamic use. In order to implement dynamic avoidance, Richards and How

suggested treating the vehicles as rectangles and constraining the system to insure that no

vehicle entered another vehicles rectangle [11]. While the rectangle idea wasn’t used in this

implementation, the idea of a safety distance and having dynamic constraints using this

safety distance was borrowed. Instead of creating rectangles around each aircraft, the solver

uses the distance formula to calculate the distance between vehicles at each state. Each gen-

erated state must enforce that the distance between each aircraft is greater than the safety

distance. This constraint is the main component of MILP collision avoidance.

3.5 Receding Horizon Control

One of the major problems associated with MILP is the problem of size. Typically,

MILP is used to generate a one-time solution for the entire problem. Unfortunately, this

type of solution doesn’t work well in a real-time environment such as collision avoidance for
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(a) RHC Flight Map (b) MILP Flight Map

Figure 3.2: RHC versus Full Path Planning

several reasons. The time to compute one master solution is infeasible for real-time problems,

and that time only grows exponentially with each aircraft added to the equation [14].

Fortunately, receding horizon control is one of the solutions to this problem. Receding

horizon works by limiting the number time steps into the future that the algorithm is calcu-

lating [14]. For example, instead of calculating one master solution over 10 minutes of time,

the algorithm may calculate 60 solutions that each span only 10 seconds. One of the down-

sides of the solution is a loss of optimality. Because each solution covers only a small portion

of time, each solution is only optimal for that period of time which may lead to suboptimal

solutions overall [13]. However, this suboptimal solution is still significantly better computa-

tionally and doesn’t vary too far from the overall optimal solution. Referring to Figure 3.2,

the receding horizon computation time total was a little under 11 seconds, whereas the total

computation was 865.9 seconds. Additionally, the receding horizon completion time was a
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total of 13 seconds slower than the three aircraft. The most important thing to note is the

mean computation time of .0676 seconds which is fast enough to function for this real-time

system. Because of these positive results, receding horizon control is implemented in the

MILP algorithm used for testing.

15



Chapter 4

A* Grid-Based Algorithm

4.1 A* Basics

As described earlier, A* is considered a grid-based algorithm. This means that the

airspace must first be converted to a grid and then that grid is used as a basis for the col-

lision avoidance algorithm. A* specifically works through the “branch-and-bound” method

of handling the problem. The algorithm starts at the node containing the aircraft and

“branches” out to all nodes that the aircraft can possibly move. Then, these nodes are

organized into a heap structure with the least cost node at the top of the heap. Next, the

algorithm “bounds” the search by only considering the best possible known option which is

as the top of the heap. The algorithm will do this recursively until the goal is reached.

This recursive algorithm means that the method of estimating cost is extremely impor-

tant for the algorithm. This estimation, known as the algorithm’s heuristic, is intended to

calculate the best path from the initial node to the goal node. This cost is calculated based

on two values: g(n), the known cost from the start node to node n, and h(n), the estimated

cost of the best path from n to the goal node. The estimation, f(n), can be calculated using

Equation 4.1 [17].

f(n) = g(n) + h(n) (4.1)

One of the benefits of this algorithm is that A* guarantees finding the optimum path

as long as two requirements are met [17]. The first requirement is that A* should not over-

estimate the cost of h(n), the cost from n to the goal. Second, h(n) needs to be estimated
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consistently. As long as these conditions hold, A* has the advantage of generating opti-

mum solutions. Unfortunately, the complexity of A* leads to high computation times that

grows exponentially with the input [17]. Fortunately, good heuristics can help reduce this

complexity while still maintaining a high level of optimality.

4.2 Dynamic Sparse A*

The algorithm specifically used in this paper is called Dynamic Sparse A*, a derivative of

Sparse A* Search (SAS). SAS was originally designed for military flight planning [16]. This

algorithm helped reduce the complexity issues described earlier through some assumption

about flight. One such restriction is the turning angle constraint which limits the grids

considered to only grids in front of the aircraft [16]. Second, the minimum travel distance

limits the grid space even further to only those a certain distance in front of the aircraft [16].

Both of these constraints can be shown by Figure 4.1.

SAS alone provides a large numbers of benefits to the collision avoidance problem. First,

it provides globally optimal paths based the A* algorithm. Second, time complexity only

scales linearly with the number of aircraft used in this kind of algorithm. Additionally, the

algorithm can be parallelized such that each aircraft can use it’s own processor allowing for

faster calculations. Finally, with a strong heuristic, the A* algorithm can plan paths for

multiple aircraft in a very short amount of time.

In order to improve further on this algorithm, Dynamic Sparse A* Search (DSAS) was

created to strengthen the heuristic used by the algorithm. One of these improvements is

to first check whether danger is present between an aircraft and its goal. In the case of no

danger, A* searches are unnecessary and the aircraft can simply fly a normal path to the

goal. This helps reduce unnecessary computations on the system. The major improvement

and where DSAS gets its name from is the way it can dynamically plan around moving

obstacles such as other aircraft. In order to handle this, DSAS uses grids created through
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time. Finally, the algorithm is capable of handling changes to the conditions of the airspace

and is capable of handling a high number of aircraft path planning.

These improvements lead to two main components of the algorithm: heuristic generation

and the search. The heuristic calculation is created by rating the danger in each grid space

and through several time steps into the future. This danger grid combines all the aircraft

danger zones into one grid which is then used to generate a path from the aircraft’s location

to its goal.

4.3 Creating a Heuristic

The main way to reduce complexity in A* is by modifying the heuristic function de-

scribed by Equation 4.1. As mentioned before, g(n) is the known component of the calcu-

lation generated by the search whereas h(n) is only an estimation. Since h(n) is the only

unknown, a good heuristic is defined by this estimation. In order to accurately and effi-

ciently perform this algorithm, h(n) must not overestimate this cost while maintaining a

close estimate [17].

4.3.1 Background Concepts

The first step in performing this algorithm is to create a grid representing the real-world

airspace. Originally, this danger grid was used by Szczerba et al. as a best cost grid [16].

This grid was designed to represent occupied airspace as having an extremely high cost such

that the algorithm wouldn’t attempt to traverse it. In addition to creating this x∗y best cost

grid, DSAS adds the time component, t, which creates an x ∗ y ∗ t matrix of best cost values

throughout time. Note that for this problem set, the altitude (third physical dimension) is

not included, but could be included to create an x ∗ y ∗ z ∗ t matrix.

One of the problems described earlier was defining this grid space dimensionally. In

order to do this, the actual attributes of the physical aircraft came into play. First, the

tests would be conducted on both 500 and 1000 meter square fields. Because of this, the
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resolution chosen was 10 meters per grid square. Second, the aircraft sends GPS updates

once per second, so the time step chosen was one second with a prediction of 20 seconds

(total of 21 including the present state t = 0) into the future. This means that the total

resolution is 100 by 100 by 21 grid squares. This is best shown by looking at Figure 4.2

which shows the grid from time 0 to 5.

Inside each square is the danger rating which represents the likelihood of encountering

an obstacle in that square. Note that for this experiment, the only obstacles included are

other aircraft but static obstacles could be included by simply making the squares occupied

by that static obstacle have a probability of 100%. This danger rating is related to the best

cost values described earlier and used by Szczerba [16]. In order to calculate this danger

rating, the algorithm predicts the location of each aircraft throughout time and fills in the

danger grid with the appropriate values. However, you don’t want an aircraft to try avoiding

itself so each aircraft is said to “own” a danger grid which doesn’t contain its own danger

ratings.

4.3.2 Predicting Plane Locations

With the grid structure defined, the next step is determining how to accurately predict

plane locations and how to use that prediction to fill in the danger grid. Predicting the linear

path from one point to another is considered a fairly simple thing to do. As mentioned earlier

though, using a discretized airspace to leads to problems in determining the aircraft’s path.

A straight line in grid space will typically bisect several grid squares in an uneven manner.

Fortunately, this grid bisecting line can be used as a method of calculating the probability

that an aircraft will occupy a grid square in the future. The aircraft’s bearing to the goal

is compared to the closest angle that will perfectly bisect a neighboring square. The offset

between these two allows for predictions of how much time the neighboring square will be

occupied by the aircraft. The remaining percentage is used as a prediction for the next

closest square. These two probabilities are then inserted into the danger grid as shown by
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Figure 4.1: Turning angle and constant speed constraints on a grid

Figure 4.2: Danger grids through time
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Figure 4.3: A plane’s predicted path. The yellow path is a predicted turn. The purple
represents the path to an intermediate waypoint and the green is the final path taken to the
planes goal.

Figure 4.3. This process is repeated until the aircraft is within the grid square containing

the goal.

This system works well for straight lines but not for curves or turns in the aircraft’s

path. In order to compensate for this, the straight line method isn’t used until the goal is

within the maximum turning angle of the aircraft. Once this condition is met, the straight

line algorithm is used to predict the future occupied airspace.

The final step for filling the danger grid is to create some buffer zones around the

aircraft. First, the danger rating of occupied squares would be the highest value allowed by

the algorithm to represent that under no circumstance should another aircraft attempt to fly

through that space. In addition to this central location, buffer zones are added around the

path with lower danger ratings. In front of the aircraft, the danger rating would be higher

because there is a higher likelihood that the aircraft may end up in that grid square, but

squares on the edge of the maximum turning angle may have a lower danger rating. Referring

21



Figure 4.4: Plane buffer zones

to Figure 4.4, the green square is the predicted location of an aircraft in the danger grid at

time t and therefor has the maximum danger rating. Additionally, the purple squares have

danger ratings with the darker purple representing a higher rating because the aircraft is

likely to move into those squares at time t+ 1 or even occupy those squares at time t.

4.3.3 Estimation of Best Cost to Goal

With the danger grid defined, the last step before the A* search is to define the best

cost grid that’s used in the A* search algorithms. Typically, the estimate h(n) is determined

based on the distance to the goal. However, in this case, this estimate will actually be a

function of the danger rating and distance to the goal. Since any airspace using this algorithm

would be reasonably sparse and there are no static obstacles, the entire calculation of h(n)

is done by Equation 4.2. Within this equation, both the distance from the goal and a scaled

danger rating are added together to create the final best cost estimation.
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h(n) = (distance from n to the goal) + (danger rating of n) ∗ (scaling factor) (4.2)

While this heuristic may seem fairly simple, it works well for a couple of reasons. First,

in a relatively sparse airspace without obstacles, it will always be preferable to perform

the simple navigation around another aircraft rather than to risk a conflict or collision.

Second, by using this method, straight line paths will be preferred as well. Note that if

there are no other aircraft in the airspace, the straight line solution will always be chosen

by DSAS because it is the shortest physical distance. Using this solution also helps handle

the problem of overestimation by making it impossible to overestimate the distance portion

of the heuristic. This helps the algorithm adhere to the A* rules of not overestimating on

the best cost grid. The final reason to use this heuristic is time complexity. By using this

heuristic, the algorithm complexity is O(xytp) where x and y are the length and width of the

airspace, t is the number of time steps, and p is the number of aircraft in the airspace. Since

x, y, and t are typically chosen beforehand, this means that the best cost grid calculation is

linear with respect to the number of aircraft in the airspace.

4.4 Search with Dynamic Sparse A*

Once the danger grid has been created, DSAS creates a best cost grid that can finally

be used by the A* algorithm to create the path to the goal. In order to create the path, A*

will use the branch-and-bound methodology described earlier [17]. First, the algorithm will

branch out to all adjacent node from the start node and order them into a best cost heap

with the minimum cost at the top. Then, the algorithm bounds the search by looking at

all nodes branching off of the minimum cost node. The algorithm will recursively do this

branch-and-bound technique until it reaches the goal. Note that if the algorithm detects a
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better solution, it will be found at the top of the heap so at any point during this recursion,

the bounding may determine that a different path should be pursued [17].

Unfortunately, this basic A* implementation can create infeasible solutions in certain

scenarios. Consider a situation where is aircraft’s current bearing is due north but the goal

is located south of the aircraft. Given an obstacle free airspace, the traditional A* would

choose a straight line path south which is an impossible maneuver for the aircraft. The

aircraft would need to spend time to turn around and then head south to the goal.

In order to handle this type of situation, the branching in DSAS is limited to nodes

within the maximum turning angle and within the distance that can be travelled in one

time step. This constraint was previously shown in Figure 4.1. Having these two constraints

actually improves the performance of the algorithm by limiting the number of options that

DSAS has to search through when finding the best cost path [16]. The algorithm is further

optimized by checking for the base case of a danger free path to the goal. If this is the case,

the aircraft is simply allowed to fly to its goal with interruption from DSAS.

In short, DSAS works by first creating a danger grid representing the existence of hazards

in the real world. This danger grid is then converted into a best cost grid for each aircraft

that’s composed of both the danger rating and distance to goal of each node. Finally, DSAS

will use the limited branch-and-bound technique until the minimum node on the heap is

the goal or until the maximum time step value is reached. Once the search is complete, the

waypoints are transmitted to keep the aircraft both safe and on track to the destination.
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Chapter 5

Artificial Potential Fields

5.1 Simple Artificial Potential Field (APF) Implementation

The basic idea behind this algorithm is to create artificial fields of positive and negative

energy around objects in the airspace. Specifically, all aircraft in the airspace will have

a negative charge associated with their locations and the goal of each aircraft will have a

positive charge on that aircraft [6]. By following the same rules as magnets, the aircraft

(negative charges) will feel repulsive forces from each other and an attractive force from

their respective goals [6]. Each of these forces carries a weight on the final calculation of the

force vector for that aircraft. Then that vector is used to model the direction the aircraft

should go to travel safely.

These weights were tested in order to define the attraction constant. This attraction

constant, γ, was meant to serve as a method of determining the best weights for the attractive

and repulsive forces [15]. In practice, γ is used as the weight of the attractive force felt by

the aircraft and is a value such that 0 < γ < 1. For the full force equation, please refer to

Equation 5.1 [15].

~Ftot = γ ∗ ~Fattr + (1− γ) ∗ ~Frep (5.1)

In previous research, Sigurd and How used this equation to test this collision avoidance

algorithm as well [15]. They found that the best results were achieved when using γ = .66

for the attractive weight and .34 for the repulsive weight [15]. This specific implementation

follows their research in using both the force equation and those numerical weight values.

This formula forms the basis of this artificial potential field implementation.
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5.2 Calculating Force Vectors

With the basic equation for combining attractive and repulsive forces defined, the algo-

rithm now needs a way to calculate what those force vectors are. First, in the real world,

magnetic forces are based primarily on the distance between the two objects. This force can

be felt at any distance but gets weaker as the distance grows. However, at a certain point,

this force becomes negligible, so this algorithm needs to define dfmax, the maximum distance

at which one aircraft’s force can be felt.

In order to define this, the constant donesec is used to represent the distance that the

aircraft can travel in one second. In addition to this constant, a scale factor α is used to define

the ratio of the collision zone to the size of the potential field. Through experimentation, this

implementation chose to use α = 5 in the calculation. Finally, the field is modified to be an

elliptical shape with the force field extending farther in front of the aircraft to represent where

that aircraft is traveling [7]. To define this elliptical shape, two constants, λscalef and λscaleb,

are used to determine the amount of the elliptical extending in front and behind the aircraft.

These values were experimentally chosen to be λscalef = 2 and λscaleb = 1.25. Finally, θ

represents the angle from the bearing of one aircraft, Uk, to the position of the current

aircraft, Ui. These values are then used in Equation 5.2 to solve for the maximum distance

that would allow an aircraft to effect the current aircraft’s repulsive force calculation. Figure

5.1 represents the force field around an aircraft that may be included in this calculation.

dfmax = α ∗ donesec[(λscalef − (λscalef − λscaleb)/2)] + ((λscalef − λscaleb)/2) ∗ cos(θ)) (5.2)

Similar to the maximum distance described above, there also needs to be a minimum

distance, dfailsafe, that will modify our force value to represent an impending collision [7]. If

the distance between two aircraft becomes less than this minimum distance, both will feel a

strong force, Ffailsafe, that overpowers all other forces in the calculation.
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Figure 5.1: Determining the maximum distance of the repulsive force field

Finally, the last range to be covered is when dfailsafe < d ≤ dfmax. In this range, there

are two primary factors that will effect the repulsive force. First, the distance between the

two aircraft is a major factor as it was for determining the minimum and maximum forces

[7]. Second, the position and direction of the aircraft is taken into account such that if one

aircraft is in front of another, it will feel a stronger force trying to push it out of the way. In

contrast, if an aircraft is behind another, it won’t feel as strong a force because the aircraft

is moving away. This final calculation uses two constants: kemitf for the scalar effecting the

force in front of Uk and kemitb for the forces behind it. The value qUAV is used as the negative

charge from a UAV in this equation. Finally, let λ be a scalar value that helps check the

strength of this repulsive force. With all of these conditions and values taken into account,

the final repulsion force is calculate with Equation 5.3.

r(θ, d) =


0 if d > dfmax

qUAV ∗ [(kemitf − (kemitf − kemitb)/2)] + ((kemitf − kemitb)/2) ∗ cos(θ)dfmax−d
γ∗α if dfailsafe < d ≤ dfmax

Ffailsafe if d ≤ dfailsafe

(5.3)
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Figure 5.2: Geometry of calculating the repulsive force acting on Ui

Note that through experimentation, this implementation found that qUAV = 80, kemitf =

1.5, kemitb = 1, and λ = 4 to be the constants with the best results.

With the emitted force calculated, the algorithm determines how much of the emitted

force is felt by the aircraft. In order to calculate this, three additional values must be known:

the angle between aircraft’s bearing and the repulsive force (φrep), a scalar representing the

force felt from obstacles in front of the aircraft (βfeelf ), and a scalar representing the force

felt from an obstacle behind the aircraft (βfeelb). Using these values, Equation 5.4 is used to

increase the force felt from obstacles in the path of the aircraft. For a visual representation

of the angle described here, please refer to Figure 5.2. Through experimentation, values of

βfeelf = 1 and βfeelb = .5 were used for this implementation.

s(θ, φrep, d) = r(θ, d) ∗ [(βfeelf − (βfeelf − βfeelr)/2)− ((βfeelf − βfeelr)/2) ∗ cos(φrep)] (5.4)

With these two angle based equations defined, a couple observations can be made. First,

the most powerful forces will be present when two aircraft are heading directly for each other.

In these scenarios, if two aircraft are heading towards each other, the result angles are θ = 0

and φrep = π. This will result in the maximum force emission from the obstacle and the
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Figure 5.3: Calculating the total force acting on a UAV

maximum force felt by the aircraft. Conversely, if two aircraft are heading directly away

from each other, the force emitted and the force felt will be at a minimum.

After calculation of each repulsive force, the values are combined into one value ~Frep

using Equation 5.5.

~Frep =
n∑
k=1

s(θk, φrepk, dk) (5.5)

This value is finally used with Equation 5.1 and an associated force for the attraction to

the goal waypoint. In this implementation, a constant force value is used for the attractive

force felt by the aircraft such that | ~Fattr| = 100. At this point the algorithm calculates the

total force, as is shown in Figure 5.3, and uses it to determine where the aircraft should

go for the next time step. If the angle of ~Ftot is outside the maximum turning angle of the

aircraft, it will tell the aircraft to turn as far as it can towards ~Ftot, but if the angle is within

the maximum turning angle of the aircraft it will instead tell that aircraft to turn to that

matching angle.
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Figure 5.4: Adjusting the repulsive force to handle head-on collisions

5.3 Special Cases

As previously mentioned, artificial potential fields is a relatively easy algorithm for

collision avoidance, both in theory and in execution time. However, it does suffer from a few

special cases that cause aircraft to follow courses that don’t make sense or are longer than

necessary. The follow sections detail some of these special cases and how they are addressed

in this implementation.

5.3.1 Handling Deadlocks

One of the special cases with this algorithms involves a deadlock scenario where two

aircraft are heading towards each other and their destinations are behind the other aircraft

[9]. In this situation, the attractive and repulsive forces will be directly opposite of each other

and the aircraft will simply fly straight into each other. In order to detect this problem, the

attractive and repulsive forces are converted into unit vectors and added together. If the unit

vectors cancel each other out, then the deadlock situation is detected. In order to resolve

the deadlock situation, the aircraft are given directional changes of 15◦ to the right so they

can safely pass each other [9]. The deadlock situation and simulation of the resolution are

shown in Figure 5.4.
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Figure 5.5: Situation in which the right hand turn rule should not be applied. Ui should
continue towards its destination instead of traveling behind Uk.

5.3.2 Right Hand Rule

Another tweak to the algorithm involves scenarios where it is faster to cross paths behind

another UAV instead of in front of it. In some cases, if this doesn’t happen, a deadlock will

occur for an extended period of time. In order to fix this problem, additional rules had to

be applied to modify the direction of force vectors felt by other aircraft in these situations.

In order to detect these special cases, three values are used. The first value used is

θ, the angle between the bearing of another aircraft, Uk, and the location of the current

aircraft, Ui. If θ is found to be on the interval [-135, 0], then Ui is to the left of Uk. Next,

the algorithm calculates φrep, the angle between the current bearing of Ui and the repulsive

force acting on Ui from Uk. If this angle is between [-180, -90], then Ui is attempting to

turn left to avoid Uk. However, this could place Ui on the path in front of Uk and potential

create a hazardous and/or deadlock scenario. Finally, φattr is defined as the angle between

the bearing of Ui and the attractive force from its goal. If φattr ≤ 0 and θ < −90 then the

situation is fine because Ui is both to the left of Uk and turning left away from a collision as

shown in Figure 5.5.

If θ is on the interval [-135, -25], then a right turn should be used such that Ui passes

behind Uk. In this situation, the angle φrep is actually flipped across the length of the aircraft
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Figure 5.6: Finding the new repulsive force vector in order to travel behind Uk

to φrepf which is shown in Figure 5.6. This will guild Ui behind Uk to avoid both a collision

and a deadlock scenario.

The last interval is when θ is bound by [-25, 0]. For this situation, Ui is still to the left

of Uk, but we need to use a spherical triangle to determine the appropriate course of action.

Referring to Figure 5.6, a is defined as the great-circle distance between Ui and Uk. Then,

b is the great-circle distance between Ui and the point of intersection with Uk while c is the

great-circle distance between Uk and the point of intersection. b and c and calculated using

the spherical law of cosines and are used as a basis for determining if the aircraft should

turn. If (c − b) ≤ (−φrep − 90), then the right hand turn is active just like if θ was on the

[-135, -25] range. If this doesn’t happen, it simply means the distance c is large enough that

Ui can cross Uk’s path and while maintaining safety. Generally speaking, if θ is in the [-25,

0] range, Ui will simply pass in front of Uk.

5.3.3 Aircraft Priorities

One of the noticeable problems with artificial potential fields is that as an aircraft

approaches its goal waypoint, it can be pushed off course by other aircraft that are too

close. This can have several negative effects such as unnecessary turns, being thrown way off

course, or getting stuck in a loop around the waypoint. Eventually, the interfering aircraft
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will fly away from the waypoint but not after potentially causing some serious problems for

the main aircraft.

In order to address this issue, the algorithms prioritizes the aircraft based on how far it

is from its destination. If it is within dpriority, defined as dpriority = 4.5 ∗ donesec, of its goal,

the aircraft will become a prioritized. For an aircraft of priority m, the repulsion forces of

only aircraft of higher priority are factored into the summation. This is best represented by

Equation 5.6 which takes the priority system into account by only factoring in aircraft of a

higher priority when calculating ~Frep.

~Frep =
m−1∑
k=1

s(θk, φrepk, dk) (5.6)

Unfortunately, this doesn’t completely solve the problem because another problem is

introduced. Considering any situation where one aircraft is within dpriority, only one of

the two vehicles will attempt to avoid the other due to the priority system which can lead

to problems because normally both are trying to avoid a collision. To handle this side

effect, aircraft that are prioritized have an expanded potential field that can be defined as

pmult ∗ dfmax. For this implementation, a value of pmult = 1.2 was used when calculating the

force fields of prioritized aircraft.

5.3.4 Aircraft Looping

The final problem major problem accounted for with this algorithm is the issue of

looping. Consider two sequential waypoints that are close to each other. It’s possible for the

aircraft to arrive at the first, but then get stuck in a loop because it cannot turn sharp enough

to reach the close waypoint. If this happens, the aircraft will continuously loop around the

waypoint indefinitely because of the strong attractive force emitted by that waypoint.

In order to solve this problem, a method of detection and a method of correction must

both be defined. In order to detect it, some basic geometry is used along with some of

our pre-defined aircraft constraints. In this system, the aircraft is consider to have reached
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Figure 5.7: Geometry involved to detect a looping condition.

a waypoint if it is within a threshold distance, dthres of the goal. Additionally, there is a

maximum turning angle that constrains the aircrafts’ physical movements. With these two

values combined, you can create an unreachable area as shown in Figure 5.7. In this figure,

the white zone is reachable by a turn, but the area in red cannot be reached with a normal

turn maneuver. By using the pre-defined values, this circle of unreachable waypoints can be

easily defined as a point, c, and a radius, rturn.

First, there is no reason to check for this condition unless the aircraft is close to the

destination. In fact, this distance can be defined as dloopmax = 2 ∗ rturn − dthres. If this

condition is met, the algorithm calculates the value of dctodest which is the distance between

c and the destination. If dctodest ≤ runreachable then the aircraft needs to correct itself to

prevent looping. The simplest way to perform this correction is to change the waypoint’s

attractive force into a repulsive force until the condition is no longer true.
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Chapter 6

Test-bed Design

6.1 Test-bed Requirements

One of the key goals of this research is to create a standardized way to test and compare

collision avoidance algorithms based on a set of metrics. To accomplish this goal, there

needed to be a system that would be standardized regardless of which collision avoidance

algorithm was currently active. Additionally, this system needed to work with a pre-existing,

Java-based control system that was capable of sending waypoints to a UAV and receiving

GPS data from that UAV. For testing purposes, the control system needed to have the ability

to perform simulations. This feature would allow a researcher to perform basic tests and

error checking in a laboratory setting before risking the hardware components of a real UAV.

There also needed to be methods to both store and potentially visualize the data collected

from these flights such that analysis could be performed on the collected GPS data. In

summation, this system would need to meet the following requirements:

1. Standardization of the control system

2. Ability to easily switch collision avoidance algorithms

3. Integrate into pre-existing control software

4. Ability to perform laboratory simulation

5. Collect and visualize GPS data

6. Provide an interface for loading waypoints, paths, or courses into the system
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6.2 Pre-existing Hardware Configuration

6.2.1 Base ArduPilot Configuration

This system is actually a continuation of the AU Proteus Project [12], a project aimed

at research in the field of controlling UAVs from the ground. Because of this, many of the

hardware design decisions were carried over from the previous research. For hardware, the

UAV used is the Multiplex EasyStar system in combination with an Arduino based autopilot

known as ArduPilot. The EasyStar is composed of several aerial components: the UAV body,

servos for control, electronic speed controller, ArduPilot board, ArduIMU board (used for

stabilization), an XBee antenna, the manual receiver, and a power source. Fortunately,

there are step-by-step instructions readily available online for assembling the EasyStar along

with all of the Arduino components [1, 2]. By simply assembling the unit with the online

instructions and using the default software provided, these hardware components will allow

you to manually fly a UAV and autonomously fly that UAV on a pre-determined course

while maintaining stability.

6.2.2 AU Proteus modifications

The major change to the core system was the addition of a XBee antenna in order to

relay messages back and forth between the UAVs and the ground station. The XBee was

attached to the ArduPilot using extra pins located on it’s shield such that any messages to

and from the ground station could be relayed [12]. We were able to use pin 4 on the shield

for our data output and read incoming packets by using the extra A4 pins that also provided

power to the XBee. Each UAV is equipped with its own antenna and each antenna has a

unique identifier for recognition by the whole network.
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6.3 Pre-existing Software Configuration

6.3.1 ArduPilot Modifications

Because of the addition of the XBee antenna, some modification had to be made to the

actual ArduPilot code. Mainly, there had to be functionality in the code to pass on any new

GPS data along with the ability to receive waypoints while flying and switch the autopilot

to go to the new waypoint [12]. This modification serves as the core communication unit to

the UAVs during flight and provides our ground station with any relevant data regarding

position and speed to perform control functions on the UAVs. Another thing to note about

these modifications is that they’re fairly general modifications for all ArduPilots. As long

as you have the proper hardware configuration and the correct code additions, this wouldn’t

be limited to the EasyStar setup that was used in these specific tests.

6.3.2 AU Proteus JAVA Controller

With the autopilot sending relevant messages to the XBee, the system needed a way to

receive those messages at a ground station for processing. For this, the pre-existing system

had a JAVA program running that allowed users to monitor incoming data and send single

waypoints to the program [12]. On the ground station, there is another XBee antenna

plugged in via USB that will monitor the data being sent from any UAVs. The JAVA

controller is polling this XBee for any packets from the UAV and processes them for the

user upon receiving one. This program is one of the core programs used in the new system

because it was a standalone component providing the necessary communication channels to

the UAVs. For specifics on this original controller, please review the references provided [12].

6.4 Robot Operating System

One of the major design decisions for this system revolved around the fact that there

was already a pre-existing program for ground-to-air communication. In order to avoid
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reinventing this software, the new system needed to either build on that software or find

a method to compartmentalize it so it could easily communicate with it. Fortunately, the

Robot Operating System (ROS) framework provided a simple solution to this problem. ROS

is commonly used on robots in order to divide up tasks amongst the various components

of the device such as sensors, motors, controllers, and input/output [4]. In fact, many

components commonly used for research projects (such as the roomba or the kinect) have

standard communication protocols in ROS. This allows for developers or researchers to easily

create methods for controlling each part of a complete robot while simultaneously isolating

those parts into smaller subprograms.

6.4.1 Nodes

In ROS, the three main things to know about are nodes, messages, and services. A

node is basically any subprogram or process within an entire system [4]. Usually, each node

is responsible for one particular task and can share information regarding that task through

messages and/or services. Because of this partitioning of tasks, many ROS based programs

typically have several nodes to cover each aspect of a given program. The node structure

also allows for easy portability or swapping of nodes. For example, if I have two different

nodes for steering a robot, as long as both adhere to the same communication protocol, they

can steer completely differently but still fill the same node slot in the overarching system.

6.4.2 Messages and Topics

A message within ROS is effectively a broadcast to any nodes listening and is considered

a many-to-many form of communication [4]. These messages get posted to a topic and anyone

subscribed to that topic will receive the message when it gets posted [4]. It’s important to

note that there can be multiple publishers and subscribers for each topic and that each node

has it’s own way to handle a message when it is received on that topic. Typically, messages

are used for components of the system that need to operate periodically such as a sensor
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reading or status messages [4]. When setting up a system based on ROS, the developer must

carefully plan the data components of the messages such that the information within that

topic makes logical sense. Then, each node using the topic must be aware of the format in

order to pass the proper messages to each topic.

6.4.3 Services

A service is instead a one-to-one communication system between two nodes where there

is both a request and response component to the communication [4]. Like with messages,

you can specify the data in both a request and response such that any developers know what

needs to be filled out when invoking a service. In contrast to messages, most services tend to

run at irregular intervals and tend to be specific to a particular node. The request/response

format also allows for bi-directional communication between two nodes instead of a global

broadcast with no direct response. Finally, two nodes can’t advertise the same service, but

any node can invoke a service call to another node [4].

6.5 Core Control Nodes

In Figure 6.1, the overall architecture of the system is represented in a visual manner.

Within this system, there are three core nodes that are necessary for control of the UAVs in

flight: X-Bee IO, Coordinator, and Control Menu [5].

6.5.1 X-Bee IO

With the movement of this system from a standalone program into ROS, the pre-existing

Java controller needed to be ported into ROS. This mostly involved adding callbacks to

forward messages received from the UAVs into the position updates topic and forwarding

commands from inside the ROS system out to the UAVs. Because of this, the X-Bee IO

node acts like a translator from the message format that the UAVs use into a internal format

understood by ROS. For example, latitude and longitude on the UAVs are multiplied by one
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Figure 6.1: The layout and interactions of ROS nodes in this system. Nodes are ovals with
services represented by dashed lines and messages by solid lines [5].
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million and stored as integers [2]. When that information gets passed through X-Bee IO, it is

divided by one million and stored as a double such that any internal operations are performed

on the real latitude and longitude values. Because of this translation functionality, this node

is basically a bridge from internal control messages to the real world UAVs.

6.5.2 Coordinator

The second major control node is the Coordinator, a node that, in many ways, can

be thought of as the core control node within this system. When a user has provided a

waypoint, path, or course for the UAV(s) to go to, the coordinator is the part of the system

storing this information for later use. Whenever it detects that the UAV has reached its

current destination (based on a new telemetry message), it will remove that waypoint from

its destination queue and send a command to go to the next waypoint in the queue. In does

this by monitoring the telemetry topic and checking messages from that topic against the

destination queue for that UAV. This automates a lot of the control functionality for the

user. When managing multiple UAVs, the coordinator keeps independent queues for each

UAV. In addition to the normal destination queue, each UAV has a second prioritized queue

referred to as the collision avoidance queue. If this queue is empty, then the UAV will act

like it normally would in going from destination to destination. However, when a waypoint is

placed in the collision avoidance queue, the Coordinator will immediately send that waypoint

to the UAV because it takes priority over a normal destination waypoint. This prioritized

queue system is the way collision avoidance waypoints are quickly conveyed to the UAVs.

Since this is a priority queue, it also allows some collision avoidance algorithm to plan a list

of waypoints in between destinations in order to insure UAV safety.

In addition to the monitoring aspect of the coordinator, there is also a wide range

of services in place to keep the system running smoothly. In order for the user to load a

single path or (for multiple UAVs) a course, there are callbacks in place that simply hand

the coordinator a filename and it extracts all of the necessary waypoint information from
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that file. This allows users to pre-plan a path or course and simply load it with ease at

runtime. There are also callbacks for nodes to add waypoints to either queue or to even

empty a queue. In short, the coordinator handles all the syntax with sending commands

while providing services to other nodes so the coordinator can be updated on what waypoints

need to be sent in those commands.

6.5.3 Control Menu

In order to manage this system, there needed to be a node running that the user could

interact with. This is where the Control Menu comes in by providing a basic user interface

for all of the services provided by the other nodes. It’s a fairly simply terminal based

menu system for a user of the system to interact with. The first functionality it provides is

just control over the waypoints being stored in the coordinator. There are menu options for

loading a path, loading a course, or simply sending a waypoint to a specific UAV. In addition

to the services associated with the Coordinator, there are also services associated with the

Simulator such as the creation and deletion of simulated planes within the environment.

One of the nicer features of the control menu is being able to automatically create simulated

planes to match a course file. For example, if a user decides to load a course file containing

points for UAVs 1, 3, and 4, the user can also specify that simulated UAVs with those IDs

should be created if they don’t already exist.

6.6 Core Message Types

The messages compose the communication backbone of this system. When UAVs are

flying, these topics are typically very active due to the need to receive real-time UAV data

and send back responses in an expedient manner.
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6.6.1 Telemetry Updates

Within this system there are two major message structures with the first being an

actual telemetry update. The telemetry update message is meant to be a simple message

containing any data acquired by the UAV that can be used for coordination, path planning,

or visualization. As of now, this core data includes longitude, latitude, altitude, plane ID,

destination waypoint, ground speed, bearing to target (current destination), and distance

to target. The only nodes planned to publish to this topic are X-Bee IO which has real

telemetry messages and the Simulator which generates fake messages for testing purposes.

6.6.2 Commands

The second major message type is the command. Command messages are generated in

order to tell UAVs where their current destination is (regardless of being a normal destination

or collision avoidance destination). Within this system, we want to limit the publisher of

this topic to the Coordinator only. The reason for this is to insure that the Coordinator is

aware of any current commands to the UAVs. In fact, if the Coordinator detects that the

current destination of the UAV doesn’t match what’s in it memory, it will immediately send

a corrective command. Only X-Bee IO and the Simulator currently subscribe to this topic.

6.7 Research Nodes

With the core nodes and communication channels in place, development of nodes tai-

lored towards research can be added to the system. These nodes are meant to be modified

by researchers in order to test a wide variety of components such as simulation, collision

avoidance algorithms, and data representation.

6.7.1 Simulator

Since one of the major functions of this system is to test and perform collision avoidance

algorithms, there needed to be a cheap (in terms of hardware cost) method to test algorithms
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without running the risk of destroying equipment. For this reason, a simulator was created

to work within the system. In order to maximize the simulation, the Simulator was written

to act just like the X-Bee IO would in terms of how it communicates with the coordinator.

This means that the Simulator subscribes to the same command topic and publishes to the

same telemetry topic. One of the interesting results from this setup is the fact that to the

coordinator, there is nothing distinguishing a real UAV from a simulated one so you could

have both real and simulated UAVs flying simultaneously. As mentioned before, there are

services within the Simulator that allow a user to create UAVs at specified waypoints and

then delete them later as well.

As far the simulation functionality goes, the current simulator was designed to be very

simple representation of UAV activity. The simulator takes in an estimated cruise speed

and will calculate a telemetry update based on that speed alone. However, it does allow for

researchers to set a maximum turning angle in order to impose some physical limitation on

the simulated UAVs. For the testing results presented later, a turning angle of 22.5◦. This

means over the course of 4 seconds, the UAV can make a 90◦ turn. It’s important to note

that this basic simulator doesn’t factor in other conditions such as weather, wind resistance,

or other environmental elements.

6.7.2 Collision Avoidance

One of the key reasons for this project was to provide a way to test some of the collision

avoidance algorithms proposed by various researchers. Because of this, a shell node was

created to demonstrate how collision avoidance can be obtained within this system. The

idea behind collision avoidance within this system is to monitor the telemetry data received

and correct the UAV’s path as necessary in order to avoid collision or conflicts in the air. The

shell houses no algorithm for collision avoidance but serves as a model for how to implement

a collision avoidance algorithm. The three implemented algorithms were built off this shell

by taking the callback and filling those callbacks with algorithmic processes.
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6.7.3 Visualization

Another area for expansion of this project lies in visualizing the data received from

the UAVs. As of now, there is no functionality for viewing this data real-time within the

system. However, there is a node provided with the system known as the KMLCreator. The

KMLCreator will monitor any telemetry data received and will save all of that data in a kml

format which is support by Google Maps [3]. This is useful for visually seeing the paths of

UAVs after a course (real or simulated) has been run.
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Chapter 7

Results

In order to compare the different algorithms, five metrics were used as the primary

methods of analysis. The first four metrics were used to determine the effectiveness of the

algorithms. These metrics were number of conflicts, number of collisions, aircraft survival

rate, and average time of death of the aircraft in the test. The final metric is the increase in

the number of waypoints achieved. This metric was created to determine the efficiencies of

the algorithms.

In order to perform a variety of stress tests, two major variables were modified: number

of aircraft on the field and the size of the field. For the number of aircraft on the field,

the base value was four aircraft with each subsequent test doubling that number until the

maximum value of thirty-two aircraft was met. For the field, all tests were performed on

square fields of both 500x500 meters and 1000x1000 meters. Finally, for each combination

of number of aircraft and field size, three randomly generated courses were used for telling

the aircraft where to go. This led to a grand total of twenty-four simulations per algorithm.

Additionally, each simulation ran a total of 10 minutes (600 seconds) which meant four hours

of simulation per algorithm. The base case of a system with no collision avoidance was also

executed with these same simulations and is included in the results below.

These tests present a wide range of stressful situation to these algorithms. First, on

a small 500m field, it’s fairly reasonable to fly four aircraft, but becomes difficult to fly

any more than that in such a constrained airspace. The 1000m field offers more flexibility,

but even that airspace becomes stressed when 32 aircraft are flying around it. Second, the

variable number of aircraft helps to show how efficiently the algorithms can calculate viable

solutions for a large number of aircraft. Without efficiency, the solutions will not reach
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Figure 7.1: Average conflict reduction on a 500x500 meter field

the aircraft in time which may result in conflicts and/or collisions. Finally, the randomly

generated courses present the challenge of flightpaths that may not make sense. Typically,

the aircraft would have goals such as mapping a field, scanning an area for personnel, or

even just flying to specific points on the field. However, in these tests, there is no logical

organization to the waypoints which can create unique problems for these algorithms.

7.1 Number of Conflicts

As described in the problem statement, a conflict is detected when two aircraft are

within two time steps of each other. In these situations, imminent danger is present because

while a collision has not occurred, there is a high probability of one occurring within the

next time step. Since each time step in these tests are one second and the flight speed is

constant, a conflict zone can be safely defined as a circle with a radius of 24 meters.

Figures 7.1 and 7.2 show the average percentage of conflict reduction that occurred

across the tests for each algorithm. For the 500m tests, each algorithm showed over a 75%

improvement over having no collision avoidance. However, all three algorithms struggled

to keep conflicts low as the number of aircraft increased. The maximum reduction with

47



Figure 7.2: Average conflict reduction on a 1000x1000 meter field

thirty-two aircraft was under 30% and MILP showed almost no decrease in the number of

conflicts on the field.

On the 1000m field, you can see definite improvement in the number of conflicts for

all three algorithms. Specifically, both A* and artificial potential fields kept conflicts to a

minimum even at sixteen aircraft on the field with potential fields having no conflicts with

only four aircraft on the field. Even at thirty-two aircraft, both algorithms showed significant

improvement by reducing the number of conflicts by approximately 70%. MILP performed

well with only four aircraft, but only showed minor improvements at eight and sixteen.

In addition, there was no improvement in MILP compared to the base case at thirty-two

aircraft.

7.2 Collision Reduction and Survival Rate

The percentage reduction of collisions and the survival rate of the aircraft are almost

completely related due to the fact that if a collision is detected, at least two aircraft are elim-

inated. However, survival rate was included as a statistic because there are some situations

where more than two aircraft can be eliminated. Because of these situations, survival rate
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Figure 7.3: Average collision reduction on a 500x500 meter field

is generally a more accurate representation of how well the collision avoidance algorithms

performed.

In Figures 7.3 and 7.4, there are some trends in each algorithms’ performance and across

the board. First, as the number of aircraft on the field increases, the reduction in collision

avoidance decreases. This is primarily due to the increasingly crowded airspace. This creates

increasingly stressful problems for the algorithms that don’t always have an easily generated

solution. Additionally, it’s important to not that on a 500m field, at least one algorithm was

capable of safely managing eight aircraft, and on a 1000m field, at least one algorithm could

safely manage sixteen aircraft.

The results from the survival rate calculations are shown in Figure 7.5 and 7.6. Note

that a “perfect” algorithm would have 100% survival rate for each feasible simulation. First,

consider the base case simulations. In almost every simulation on a 500m field, the base

case would have collisions until approximately two aircraft were left alive. At this point,

the chances of the two aircraft flying into each other became minimal and they typically

survived the simulation. The same trend can be seen on a 1000m field, but there were more
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Figure 7.4: Average collision reduction on a 1000x1000 meter field

Figure 7.5: Average survival rate on a 500x500 meter field
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Figure 7.6: Average survival rate on a 1000x1000 meter field

cases where up to four aircraft were left alive at the end of the simulation due to the larger

airspace.

Looking at the survival rates, it’s apparent that the most stressful test was, as ex-

pected, thirty-two aircraft on a 500m field. For this scenario, the best algorithm averaged

41.67% survival rate or 13.3 aircraft. Additionally, at the sixteen aircraft simulations, these

algorithms had up to a 70.83% survival rate or 11.3 aircraft.

The simulations involving four and eight aircraft on a 500m field were more realistic.

Both MILP and artificial potential fields had 100% survival rate for four aircraft on a 500m

field. A* had only one collision one of these simulations which dropped its survival rate. At

eight aircraft, artificial potential fields still maintained 100% survival but both MILP and

A* had a slight drop in survival rate. From here, all algorithms deteriorated in survival with

MILP having almost no improvement in survival over the base case in the thirty-two aircraft

scenarios.

On the 1000m fields, many of the same trends are reflected. However, because of the

significant increase in airspace, many of these trends are less drastic. The vast airspace

allowed all three algorithms to perform perfectly with only four aircraft on the field. At
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Figure 7.7: Average increase in life expectancy on a 500x500 meter field

eight aircraft, each algorithm lost a total of two aircraft across all three simulations. A* and

artificial potential fields proceeded to work well with even 16 and 32 aircraft on the field with

both algorithm staying above 80% survival rate. Unfortunately, the same cannot be said for

MILP which had drastic drops in survival rate at both sixteen and thirty-two aircraft.

7.3 Aircraft Life Expectancy

The life expectancy statistic was meant to serve as a statistic demonstrating the average

flight time of each aircraft in these simulations. For life expectancy, the simulation with no

avoidance was used as the base case with Figures 7.7 and 7.8 showing the actual increase in

the aircrafts’ flight time.

The charts show that the algorithms were almost all effective at all levels in increasing

the life of the aircraft in the simulations. Even on a small 500m field, the aircrafts’ flight

time was increased anywhere from 50-275%. The growth in life expectancy can be partially

attributed to the fact that as the number of aircraft go up, the flight time of aircraft in the

base case goes down. Both A* and artificial potential fields show significant and comparable
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Figure 7.8: Average increase in life expectancy on a 1000x1000 meter field

improvements in life expectancy at all levels, but MILP struggles with a large number of

aircraft in the simulations.

7.4 Efficiencies of the Algorithms

The primary metric for measuring efficiency was the increase in the number of waypoints

achieved during the simulation. For the base cases, the raw value was typically lower due

to the fact that a large number of aircraft would collide during the simulation. This would

prevent those aircraft from reaching future waypoints, so in many ways, this metric is also

related to the effectiveness of the algorithms. Additionally, the raw numbers are typically

smaller on a large field due to a larger distance between waypoints. Because of this, the

percent increase in the waypoints achieved is the metric used. In theory, the algorithms

should increase the waypoints achieved by keeping the aircraft from colliding which would

allow each individual aircraft to reach more waypoints.

Figures 7.9 and 7.10 show the increases for each algorithm. Note that the base case is

also represented as a straight line across 0%. Generally speaking, the increases are larger on

the smaller field. The reason for this lies in the fact that on a smaller field, the aircraft are
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Figure 7.9: Average increase in the number of waypoints achieved on a 500x500 meter field

Figure 7.10: Average increase in the number of waypoints achieved on a 1000x1000 meter
field
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more likely to collide. Without any collision avoidance, the aircraft tended to collide earlier

on the 500m field which allowed for greater improvements across all algorithms. Generally

speaking, all three algorithms showed improvements with a small number of aircraft on the

field. However, MILP began to suffer with a larger number of aircraft and actually achieved

less waypoints than the base case with thirty-two aircraft on the field.

7.5 Algorithm Performance

7.5.1 MILP performance

While MILP wasn’t the best performing algorithm overall, it still proved that it’s capable

of working under the more reasonable simulations. In particular, MILP excelled at solving

problems with only four aircraft. It had the lowest number of conflicts, perfect survival rate,

and the best increase in waypoints achieved on both a 500m and a 1000m field. For the eight

aircraft simulations, it had a near perfect survival rate in combination with a large time of

death implying that the aircraft that didn’t survive were in flight for a relatively lengthy

amount of time.

Unfortunately, this implementation of MILP struggled to handle the stress test simu-

lations. As described earlier, MILP becomes increasing complex with each aircraft added

to the algorithm. In a tight airspace, the use of receding horizon to reduce the problem

becomes increasingly inefficient. This implementation struggled to safely navigate sixteen

and thirty-two aircraft simulations. This is most noticeable in the 1000m simulations where

A* and potential fields maintain a high survival rate whereas MILP’s plummets. Addition-

ally, the conflict reduction on a 1000m field helps emphasize the problems that MILP has

with keeping the aircraft at a safe distance. While the survival rate and life expectancy are

roughly the same as other algorithms at four and eight aircraft, the reduction in conflicts

tended to be fairly low when compared to the other algorithms.

Typically, the MILP simulations would fall behind in the calculations until the problem

was reduced. In the thirty-two aircraft simulations, the algorithm would be stuck calculating
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solutions for previous time steps. Eventually, a solution would be calculated, but it would be

received far too late to matter anymore. In fact, the solution calculated at a previous time

step may actually cause more collisions due to the mismatch between time steps. During

these simulations, this would continue to happen until enough aircraft perished that the

algorithm could handle the complex calculations. Unfortunately, this usually happened

after a large number of collisions. This problem is reflected in both the survival rate and

the waypoints achieved for the simulations. The survival rate obviously plummets at 16

and 32 aircraft. Additionally, the waypoints of the thirty-two aircraft, 500m simulation is

low because the algorithm isn’t really working until the problem is reduced through aircraft

collisions. Unfortunately, this latency tended to lead to a worse performance than if there

was no algorithm at all.

In summary, MILP is a very efficient algorithm for manageable problems. The algorithm

performed very well when only working with four aircraft. The algorithm also performed well

with eight aircraft, but didn’t maintain perfect survival rate anymore. Unfortunately, sixteen

and thirty-two aircraft proved to be too complex for this implementation on both field sizes

due to the inability of the algorithm to reduce the problem into smaller subproblems. While

this MILP implementation works well for a small quantity of aircraft, more work needs to be

done on reducing the problem size and increasing the algorithm efficiency before it’s ready

for a large number of aircraft in the airspace.

7.5.2 A* performance

This implementation of A*, DSAS, struggled when compared to the other algorithms

on simulations with a small number of aircraft. In particular, both the four, 500m and eight,

500m simulations have a significantly lower survival rate (15-35%) compared to MILP and

potential fields. However, at the higher populations, this algorithm was capable of being

competitive with potential fields in terms of survival.
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DSAS also tended to perform much better on the 1000m field than it did on the 500m

field. This is most likely due to the way the algorithm computes paths. On a 500m field, the

grid space used for calculating a path is relatively small, but a 1000m field quadruples the

number of grids that could be considered occupied or unoccupied. More grid space allows for

more room for the aircraft to maneuver which gives DSAS more options when calculating a

path. The DSAS algorithm will need to be modified to handle a constrained airspace better

even with a small number of aircraft.

On the 1000m field, DSAS proved very capable of maintaining a high survival rate. In

fact, the lowest average survival rate was 85.42% at thirty-two aircraft. This is approximately

a 70% improvement in survival rate when compared to the base case. Furthermore, when

there were collisions, the uptime of those aircraft before the collision were very high with

an average time of death always above 500 seconds. While this algorithm wasn’t the most

efficient, it did provide significant improvements in the waypoints achieved by improving

simulations at with sixteen and thirty-two aircraft by over 100%.

On the whole, DSAS provided a significant increase in survivability on a large field. In

addition, large field simulations showed that DSAS can provide protection while maintaining

efficiency. However, small fields created situations that weren’t easily handled by DSAS

which often led to collisions. Future work on this algorithm would be to handle some of the

situations created by small field simulations and to further improve the survival rates and

efficiency of large field situations.

7.5.3 Artificial Potential Fields performance

Artificial potential fields was actually considered the “best” performing algorithm in

these specific tests for a few reasons. One of the most prevalent reasons was that it was

capable of competing with both other algorithms at all simulation levels in respect to both

conflicts and survival rate. On the 500m field, it had a perfect survival rate for both four
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and eight aircraft. On the 1000m field, it maintained an almost perfect survival rate through

sixteen aircraft and dropped to about 81% for thirty-two aircraft.

The second reason potential fields excelled in the comparison was because it tended to

have a higher improvement in waypoints achieved, especially with a high number of aircraft

on the field. On almost all simulations, this algorithm had either the highest improvement or

next highest in waypoints achieved. While this may be due to the relative simplicity of the

calculations, the fact that it can maintain a a high survival rate with this level of efficiency

made it the highest performance algorithm in these implementations.

In summation, this implementation of artificial potential fields was comparable or better

than the other implementations in terms of efficiency, survival rate, and number of conflicts.

As mentioned earlier, there are a couple possible reasons for this result. One is the relatively

simple calculation of the algorithm which allowed it to produce a result at all levels of

stress. Second, this relative simplicity also allowed for the algorithm to be easily modified to

handle several special cases or unique scenarios which may have further impacted. Basically,

this algorithm’s relative simplicity allowed time for it to be modified to handle some of its

problem areas. Of course, this algorithm still is not perfect and will require further testing

and modification to handle some of the other special cases generated by its implementation.

7.5.4 Conclusion

While each algorithm has strengths and weaknesses, it’s equally important to recognize

those traits with respect to the scenarios. Many of the scenarios presented in this research

are extremely dangerous even with an exceptional collision avoidance algorithm. From this

research, it’s apparent that some algorithms are already be capable of flying eight aircraft in

a 500m field and sixteen aircraft in a 1000m field despite the randomness of the scenarios.

However, if an algorithm is capable of handling this randomness, it should be able to handle

more realistic scenarios. The final results from the simulations are shown in Table 7.1. Note
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Summary of Results: Best Performing Algorithms
Field Size 500m 1000m

Number of Aircraft 4 8 16 32 4 8 16 32
Conflict Reduction MILP, DSAS MILP APF DSAS APF APF DSAS DSAS
Collision Reduction MILP, APF APF MILP DSAS Tie Tie APF DSAS

Survival Rate MILP, APF APF MILP DSAS Tie Tie APF DSAS
Life Expectancy MILP, APF APF MILP APF Tie DSAS APF DSAS

Efficiency MILP APF MILP APF MILP MILP APF APF

Table 7.1: Table showing the best performing algorithm for each category

that for the 500m, thirty-two aircraft simulations, MILP is excluded from the efficiency

section as an outlier due to the problems described earlier.

After analyzing the results from all three algorithms, it’s apparent that improvements

can still be made to all three algorithms. For MILP, the algorithm needs to be improved to

handle high stress situations. Specifically, simulations with a large number of aircraft cause

the problem to become difficult for the current implementation of MILP to reduce. Future

research on MILP would need to be focused on creating ways to reduce the problem structure

so it can return valid collision avoidance paths. Similarly, DSAS (this implementation of

A*) currently has difficulties in scenarios that have a small grid space. Future improvements

on this algorithm would need to address this weakness and provide alternate methods for

handling the small grid size. While this implementation of artificial potential fields has no

noticeable, specific weakness, it didn’t have perfect test runs even at feasible simulations.

This means there are still special cases that aren’t addressed by the current algorithm. In

fact, all three algorithms most likely have more special cases that would be revealed through

further testing of the algorithms.

In conclusion, there are several areas of future research in this topic. The improvements

listed above are a starting point for further improvements and comparisons of the algorithms

presented in this paper. In particular, both MILP and DSAS have room for a large number

of improvements and handling special cases. The next step in development would be to test

these algorithms in real-world, feasible scenarios. This presents additional challenges such
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as having pilots and people to perform the test, but it would provide more accurate results

than a simulator. Once the algorithms are functioning with a high safety level, the final

step would be to apply these algorithms to real missions such as surveying an area. With

these algorithms in place, survey style missions could be completed by several aircraft with

a high level of safety of the aircraft. In this setup, an extra ROS node could be added to

handle elements related to the mission such as planning the goals for each aircraft while the

avoidance algorithm handles safety. With the growth of UAV technology, these algorithms

and systems of management will continue to grow until UAVs can be safely controlled even

in complex, stressful scenarios.
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Appendix A

Links to source code

Test bed repository: https://github.com/holtjma/AU-UAV-ROS

MILP Team Documentation: http://pfduav.com/

DSAS Team Documentation: https://sites.google.com/site/uavcaau/

APF Team Documentation: https://sites.google.com/site/auburn2011uav/
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