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Abstract 

 

 

 Derivative free optimization algorithms are often used when it is difficult to find function 

derivatives, or if finding such derivatives are time consuming. The Nelder Mead’s simplex 

method is one of the most popular derivative free optimization algorithms in the fields of 

engineering, statistics, and sciences. This algorithm is favored and widely used because of its fast 

convergence and simplicity. The simplex method converges really well with small scale 

problems of some variables. However, it does not have much success with large scale problems 

of multiple variables. This factor has reduced its popularity in optimization sciences 

significantly. Two solutions of quasi gradients are introduced to improve it in terms of the 

convergence rate and the convergence speed. The improved algorithm with higher success rate 

and faster convergence which still maintains the simplicity is the key feature of this paper. This 

algorithm will be compared on several benchmark functions with the original simplex method 

and other popular optimization algorithms such as the genetic algorithm, the differential 

evolution algorithm, and the particle swarm algorithm. Then the comparing results will be 

reported and discussed. 
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Chapter 1 

Introduction  

 

 The desire for optimality is the inherent nature of humans such as a manufacturer wants 

to produce its products with the lowest cost, or a delivery company wants to deliver its products 

to all distributers with the shortest distance to save gasoline, time, etc. These are the typical 

examples which optimization theories can be applied to give optimal solutions. From the 

appearance of computers, mathematical theories of optimization have been developed and 

applied widely. The computer with its computing power has the ability to implement 

optimization theories very efficiently in the manner of time and cost. The goal of the 

optimization theories is the creation of a reliable method to optimize models by an intelligent 

process. Applications of these theories play more important roles for modern engineering and 

planning, etc.  

 In real life scientists, engineers, and managers often collect a lot of data and usually fall 

into difficult situations how to select different factors to obtain desired results. Optimization is a 

process of how to trade off these factors to find the best solution by evaluating their 

combinations. Many engineering problems can be defined as optimization problems such as 

process design, logistics, process synthesis & analysis, telecommunication network, finding of an 

optimal trajectory for a robot arm, the optimal thickness of steel in pressure vessels, etc [1]. In
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practice, optimization algorithms are able to solve these problems but to find the best solution for 

these problems is often not very easy and straightforward because they include in large search 

spaces. It will be more challenging particularly in real life systems, which require optimal 

solutions in an acceptable amount of time.   

 Optimization is a useful and important tool in the decision science and the analysis of 

physical systems. In order to use this tool, an objective function has to be defined. This objective 

function can be the cost, profit, time, etc. Normally, an objective function is modeled by 

unknown variables to describe its characteristics. And optimization algorithms define values of 

these variables to meet the requirements of this objective function. If the model is so simplistic, 

the solution will not reflect useful insights into practical systems. If the model is so complex, 

optimization algorithms may not give solutions. Therefore, models and optimization algorithms 

usually have to be complex enough to be handled by the computer. There are numerous 

optimization algorithms. Each is developed to solve a particular set of problems, and each has its 

own strength and weakness. Users usually have to evaluate a model and decide which algorithm 

is suited for [2].  

 Discrete and continuous optimization: discrete optimization problems are known as 

integer programming problems. In discrete optimization problems, solutions make sense if and 

only if variables are integers. To meet this constraint, a good strategy is to solve problems with 

real variables and then round them up to the closest integers. This type of work is by no means 

guaranteed to give optimal solutions. In contrast with discrete optimization problems, continuous 

optimization problems are easier to solve because of the smoothness of continuous functions. 

Moreover, these problems have an infinite set of solutions with real values; therefore, we can use 

other information at any point to speculate the function’s behavior. However, the same method 
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cannot be applied to solve discrete optimization problems with a finite set of solutions, where 

points are close, may have different function values.  

 Constrained and unconstrained optimization: constrained optimization problems arise 

from models which have constraints on variables. These can be the constraints of input variables 

or the constraints to reflect relationships among variables, etc. Unconstrained optimization 

problems can be considered as particular cases of constrained optimization problems in which 

constraints of variables can be ignored without effect on the solution. Or these constraints can be 

counted as penalization terms in the objective functions of unconstrained problems.  

 Global and local optimization: local optimization algorithms converge much faster than 

global optimization algorithms. However, its solution is just a local one which is the minimum in 

the vicinity and it is not guaranteed to be the global solution which is the best of all minima.   

 Stochastic and deterministic optimization: in some optimization problems, the model 

cannot be fully defined because it depends on quantities that are unknown at the time of 

formulation. Normally, a modeler can predict unknown quantities with some degree of 

confidence. Stochastic optimization algorithms will use these quantifications of the uncertainty 

to produce solutions that optimize the expected performance of the model. Vice versus with 

stochastic optimization algorithms, deterministic optimization algorithms assume that the model 

is fully specified.  

 Each optimization algorithm has different techniques to converge iteratively to optimal 

solutions. Some use first derivatives, second derivatives, or function values, etc. to converge. 

Some accumulate information from previous iterations to predict its sequential convergence to 

target values. The optimization technique is a key to differentiate one algorithm from another. A 

good optimization algorithm should possess some following properties: 
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 Robustness: the algorithm has the ability to converge a wide range of problems in its 

category 

 Efficiency: the algorithm can converge without too expensive computing cost. This 

cost can be understood as computing time and storage cost 

 Accuracy: the algorithm can give solutions with precision. It is not very sensitive with 

errors when being implemented on computers.  

 The Nelder Mead’s simplex method [3] is a popular derivative free optimization 

algorithm and is a method of choice for many practitioners. It is the prime choice algorithm in 

Matlab optimization toolbox. It converges relatively fast and can be implemented relatively 

easily compared with other classical algorithms relying on gradients or evolutionary 

computations, etc. Unlike gradient methods [4], [5], the simplex method can optimize a function 

without calculating its derivatives, which usually require a lot of computing power and are 

expensive in high dimensional problems as well. This property makes it more advantageous than 

others.  

 Although the simplex method is simple and robust in small scale optimization, it easily 

fails with large scale optimization. In order to become a reliable optimization tool, it has to 

overcome this shortcoming by improving its convergence rate and convergence speed. This 

literature will give some new insights on why the simplex method may become inefficient in 

high dimensional optimization because of its lack of gradient information. This approach 

explains the low convergence rate without concerning its descent property when the objective 

function is uniformly convex presented in other literature [6], [7]. The dissertation will 

particularly present how to improve the simplex method by combining with two different quasi 
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gradient methods. The improved algorithm without complex mathematic computations can 

optimize multi-dimensional problems with higher success rate and faster convergence speed. 

 The genetic algorithm [8], the differential evolution algorithm [9], [10] and  the particle 

swarm algorithm [11], etc. are the other popular derivative free optimization tools which are 

widely applied and familiar by researchers and practitioners [12]-[14]. These algorithms can 

perform well in both a global and local search and have the ability to find the optimum solution 

without getting trapped in local minima. This capability is mostly lacked by local search 

algorithms such as the calculus-based algorithms or the simplex method.  The big issue of global 

search algorithms is the computational cost which often makes their convergence speed much 

slower than local search algorithms. The particle swarm optimization is a kind of global search 

technique. It is a probabilistic technique which is different from the deterministic and stochastic 

techniques. Compared with the genetic algorithm and the differential evolution algorithm, the 

particle swarm optimization is simpler in term of computations because its crossover and 

mutation operation are done simultaneously while the crossover and mutation operation of the 

genetic algorithm and the differential evolution algorithm are done between each pair in the 

whole population. With improvements contributed in this paper, the simplex method can be 

considered as another optional optimization algorithm which can work much more efficiently 

than other well-known derivative free optimization algorithms in many different fields of 

engineering or sciences. 

 

1.1 Genetic Algorithm 

 The genetic algorithm (GA) is invented to mimic the natural behavior of evolution 

according to the Darwin principle of survival and reproduction [15]. Unlike calculus-based 
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methods, GA does not require derivatives, and it also has the ability to do a parallel search in the 

solution space simultaneously. Therefore, it is less likely to get trapped in local minima. Like the 

particle swarm algorithm and the differential evolution algorithm, GA starts by its initial 

population, and each individual is called a chromosome to represent a solution. During each 

generation, chromosomes will be evaluated according to their fitness values and evolved to 

create new chromosomes for the next generation. New childish chromosomes can be produced in 

two different ways either by emerging from two parental chromosomes in current generation 

with the crossover operator or by modifying chromosomes with the mutation operator. In order 

to maintain the population size, all chromosomes have to go through the natural selecting 

process. The chromosomes with better genes or better fitness will have higher probability to go 

to the next generation and other ones with worse genes is more likely to be rejected. This 

procedure is repeated until the best chromosome close to the optimum solution can be obtained. 

Another big advantage of GA is that it can be applied in different domains, not just only in 

optimization problems. However, it still has the limitation of premature convergence and low 

local convergence speed. Therefore, GA is usually improved by research scholars [16], [17]. 

 

1.2 Differential Evolution Algorithm 

 The differential evolution algorithm (DE) was introduced by R. Storn and K. Price in 

1997 [9], [10]. Today it becomes one of the most robust function minimizers with relatively 

simple self-adapting mutation and is able to solve a wide range of optimization problems. The 

whole idea of DE is generating a new scheme to compute trial parameter vectors. These new 

parameter vectors are computed by adding the weighted difference between two population 

members to a third one. If the resulting vector has a lower objective function value than a 
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predefined population member, the newly generated vector will replace the vector with which it 

was compared. Through time, this algorithm has been adapted to increase its efficiency. In 2007, 

a new concept of multiple trial vectors [18] was introduced into this algorithm. This approach 

aims to make DE able to converge for a broader range of problems because one scheme of 

calculating trial vectors may work well with certain type of problems but may not work with 

other ones. Another approach was proposed where the choice of learning strategies and the two 

control parameters F (weighing factor) and CR (crossover constant) are dynamically adjusted 

and also made a significant improvement [19]. Recently, an adaptive differential evolution 

algorithm with multiple trial vectors can train artificial neural networks successfully and shows 

its competitive results with the error back propagation algorithm and the Lavenberg Marquardt 

algorithm [20]. 

 

1.3 Particle Swarm Optimization 

 The particle swarm optimization (PSO) is a concept that simulates the social swarm 

behavior of a flock of birds or a school of fish in searching for food [21]. The main concept is to 

utilize the inter-communication between each individual swarm with the best one to update its 

position and velocity. This algorithm operates on a randomly created population of potential 

solutions and searches for the optimum value by creating the successive population of solutions. 

PSO sounds similar to the differential evolution algorithm or the genetic algorithm in term of its 

selecting strategy of the best child (or the best swarm), but it is really different. In this algorithm, 

the potential solutions so called swarm particles are moving to the actual (dynamically changing) 

optimum in the solution space. Each swarm has its own location, best location, velocity, and 

fitness. In each generation, each swarm will contact with the best swarm and follow him to 
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update its own information. During its motion, if some swarms find better positions by 

comparing with their own fitness, they will automatically update themselves. In case there is a 

swarm finding the new best position, that swarm will be considered immediately as the current 

best. Because of its global search ability and fast convergence speed compared with other global 

search algorithms, PSO is applied widespread in optimization. 

 

1.4 Nelder Mead’s Simplex Algorithm 

 The simplex method [3] is a direct downhill search method. It is a simple algorithm to 

search for local minima and applicable for multidimensional optimization applications. Unlike 

classical gradient methods, this algorithm does not have to calculate derivatives. Instead it just 

creates a geometric simplex and uses this simplex’s movement to guide its convergence. A 

simplex is defined as a geometrical figure which is formed by (n+1) vertices. Where n is the 

number of variables of an optimization function, and vertices are points selected to form a 

simplex. In each iteration, the simplex method will calculate a reflected vertex of the worst 

vertex through a centroid vertex. According to the function value at this new vertex, the 

algorithm will do all kinds of operations as reflection or extension, contraction, or shrink to form 

a new simplex. In other words, the function values at each vertex will be evaluated iteratively, 

and the worst vertex with the highest function value will be replaced by a new vertex which has 

just been found. Otherwise, a simplex will be shrunk around the best vertex, and this process will 

be continued until a desired minimum is met. Moreover, the convergence speed of this algorithm 

can also be influenced by three parameters α, β, γ (α is the reflection coefficient to define how far 

a reflected point should be from a centroid point; β is the contraction coefficient to define how 

far a contracted point should be when it is contracted from the worst point and the reflected point 
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in case the function value of the reflected point is smaller than the function value of the worst 

point; γ is the expansion coefficient to define how far to expand from the reflected point in case a 

simplex moves on the right direction). Depending on these coefficients α, β, γ, the volume of a 

simplex will be changed by the operations of reflection, contraction, or expansion respectively. 

The Nelder Mead’s simplex method can be summarized as following and more details can be 

found in the original paper [3]. 

 Step 1: get α, β, γ, select an initial simplex with random vertices x0, x1,…, xn-1 and 

calculate their function values. 

 Step 2: sort the vertices x0.,x1,…, xn-1 of the current simplex so that f0, f1,…, fn-1 in the 

ascending order. 

 Step 3: calculate the reflected point xr, fr  

 Step 4: if fr < f0: 

  (a) calculate the extended point xe, fe 

  (b) if fe < f0 , replace the worst point by the extended point xn = xe, fn-1 = fe 

  (c) if fe > f0 , replace the worst point by the reflected point xn = xr, fn-1 = fr  

 Step 5: if fr > f0:  

  (a) if fr < fi, replace the worst point by the reflected point xn = xr, fn-1 = fr 

  (b) if fr > fi: 

        (b1) if fr > fn-1: calculate the contracted point xc, fc 

             (c1) if fc > fn-1 then shrink the simplex  

            (c2) if fc<fn-1 then replace the worst point by the contracted point xn= xc,  

      fn-1= fc 
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      (b2) if fr < fn-1: replace the worst point by the reflected point xn-1 = xr, fn-1 = fr   

 Step 6: if the stopping conditions are not satisfied, the algorithm will return step 2 

 To describe in details how the Nelder Mead’s simplex method works, let f: IRn→IR, x Є 

IR
n
 be the objective function that should be minimized. For a two dimensional case n= 2, a 

simplex is a triangle formed by three vertices B=(x1, y1), G=(x2, y2) and W(x3, y3). The function 

values are evaluated at these vertices zi= f(xi,yi), i= 1:3. The subscripts are reordered in the way 

z1 ≤ z2 ≤ z3. So B is the best vertex, G is the good vertex and W is the worst vertex.  Assume α= 1, 

β= 0.5, γ= 2. This algorithm performs in the following steps: 

 Step 1: removal of the worst vertex W and calculate a centroid of rest vertices. In 2-d 

case shown in Fig. 1.1 the centroid would be average of B&G. 

                                              








2

GB

n

GB
M )

2
,

2
( 2121 yyxx 

                                          (1.1) 

 Step 2: the function will decrease if we move from W to B and from W to G. So it is 

possible the function will have a smaller value at R, where R is the reflected point of 

W through the centroid (Fig. 1.1). 

                                                      WMWMR  2)1(                                              (1.2)

 

Fig. 1.1: The triangular simplex ΔBGW with midpoint M, reflected point R and 

extended point E 
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 Step 3: if the function value at R is smaller than the function value at W, it means that 

the simplex is moving in the right direction and the new better simplex ΔBGR is 

created. At this stage, we can extend the line segment from M through R to E (Fig. 

1.1). If the function value at E is smaller than the function value at R, the new simplex 

ΔBGE is selected. 

                                            
MRMRE  2)1( 

                                                 (1.3) 

 Step 4: if the function value at R is greater than the function value at W, another point 

must be tested. The contracted points C1, C2 which are the midpoints of the line 

segments WM and MR can be considered in this case. The new simplex ΔBGC (Fig. 

1.2) will be formed if the function value at C is smaller than the function value at W 

(C: better point between C1 and C2). 

                                22
)1( 21

RM
Cor

MW
MWC
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                     (1.4) 

 
Fig. 1.2: Contracted points C1 and C2, shrinking points S and M toward B  

 

 

 Step 5: if the function value at C is not less than the function value at W, the points G 

and W will be shrunk toward B. G will move to M and W will move to S which are the 

midpoints of the line segments BG and BW respectively (Fig. 1.2).  
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 Step 6: a new vertex is found to replace the worst vertex W iteratively. The algorithm 

will repeat from step 1 until a desired minimum is found.  

 Compared with gradient methods, the simplex method is simpler in term of mathematic 

computation, which is normally more complicated to calculate derivatives and requires more 

computing cost as well. Unlike the genetic algorithm or the differential evolution algorithm, 

there is no operation of mutation or crossover in this algorithm. In each iteration, only one new 

vertex is computed; therefore, it converges much faster. These advantages are key features which 

motivate authors of this paper to improve the simplex algorithm and make it become a useful 

optimization tool for engineers, scientists, etc. in many different types of applications [22], [ 23].    

 The simplex method is a direct search algorithm. Its computational process is simple and 

does not require the calculation of derivatives [24]. However, the simplex method without 

gradients may lead its convergence process in wrong directions. This makes it become unreliable 

in optimization. This scenario usually happens and remarkably reduces the efficiency of the 

simplex method in solving high dimensional problems. This dissertation will give some new 

insights on why the simplex method becomes inefficient in high dimensions if not using the 

gradient information [25]-[27]. To improve its convergence speed and success rate, the simplex 

method can be incorporated with other techniques. This dissertation will particularly present how 

to improve it by combining with quasi gradient methods to define a new way to search for its 

moving directions reliably. The improved algorithm which does not require complex mathematic 

computations can optimize multidimensional problems with higher success rate and faster 

convergence speed.  
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Chapter 2 

Improved Simplex Method with Quasi Gradient Methods 

 

  

2.1 Deficiency of Nelder Mead’s Simplex Method 

 Although the simplex method was proposed a long time ago (1965) [3] and has not had 

much success in optimizing large scale problems [28], it is still a method of choice because of its 

simplicity. As a matter of fact, its necessary improvement of convergence speed and 

convergence rate is still an attractive research topic in the area of computing and optimization. 

For this purpose, many authors have proposed different ideas to address this issue. Fuchang Gao 

and Lixing Han [29] proposed an implementation of the simplex method in which the expansion, 

contraction, and shrinking parameters depend on the dimension of optimization problems. 

Another author - Torczon [30], suggested that this poor convergence may be due to the search as 

direction becomes increasingly orthogonal to the steepest descent direction, etc. Without any 

satisfactory convergence theory, there is no doubt that the effect of dimensionality should be 

extended and investigated more. Clearly, this is one of the main reasons restricting its 

convergence capability. This dissertation is another effort to improve the simplex algorithm with 

two simple solutions, which are different from other explanations in the literature. Furthermore, 

the simplicity is also the main goal of authors to keep this algorithm robust and different from 

other optimization algorithms.  

 As presented shortly in the overview, the simplex algorithm converges based on the
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formation of the geometric simplex and its movement to find local minima. During optimization, 

this algorithm assumes that the direction to local minima can be found by the operations of 

reflection, contraction, and expansion without caring about the gradient. In other words, the 

dynamic change of a geometric simplex through these operations is utilized to approximate 

better vertices along the gradient direction. However, this assumption is not always true in 

reality, and that explains why the simplex algorithm fails easily with high dimensional 

optimization problems. Instead of calculating the reflected vertex as the original algorithm 

proposed, a new way is presented in the next two paragraphs by combining it with two different 

quasi gradient methods respectively. These two quasi gradient methods can be assumed as two 

approaches to approximate gradients by using numerical analysis rather than analytical analysis. 

With this modification, the improved algorithm converges much faster and more reliably than the 

original one. 

 To illustrate this reasoning we can consider two extreme cases where the simplex method 

may not converge to local minima (using 2-d cases for easy illustration). These two cases with 

the locations of B (best), G (good), W (worst) points have significantly different gradient 

directions. In the case (a) Fig. 2.1a the function values at W and G are similar while in the case 

(b) Fig. 2.1b the function values at B and G are similar. In both cases, the gradient heads to 

different directions from the simplex method. According to this algorithm, the simplex ΔBGW 

will start to reflect and search in MR direction first. Once it cannot find a better vertex in this 

direction, this simplex starts to shrink and a new simplex ΔBSM is created and continues 

searching in the same direction M1R1, which maybe not the right direction to minima. This 

illustration clearly shows why the simplex method does not have enough the capability to search 

for its moving directions just by using its simple geometrical movement. This also explains why 
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this algorithm is not stable in optimizing multi-dimensional problems and mostly fails to 

optimize large scale problems, or converges very slowly. In order to improve its speed and 

convergence rate, it needs to rely on the gradient. With a new way to calculate the reflected point 

according to quasi gradient methods, a new simplex ΔBGR’ is created instead of ΔBGR. 

 
Fig. 2.1: The triangular simplex ΔBGW with similar function values at W and G (case (a))  

and the triangular simplex ΔBGW with similar function values at B and G (case (b)) 

 

2.2 Quasi Gradient Methods 

 To maintain the simplicity, two quasi gradient methods are presented to approximate 

gradients [31]. The first method uses an extra vertex in a simplex. Its accuracy depends on the 

linearity of a function in the vicinity of a simplex. However, its computing cost does not increase 

significantly when the size of optimization problems becomes larger. The second method uses a 

hyper plane equation formed from a simplex. This method can estimate gradients more 

accurately; therefore, it converges faster. However, its high computing cost of inverse matrixes 

does not have much advantage with the large size of optimization problems. 
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2.2.1 Quasi Gradient Method Using an Extra Vertex 

 This method approximates gradients of a (n+1) dimensional plane created from a 

geometrical simplex. First, it selects an extra vertex composed from (n+1) vertices in a simplex 

and then combines this vertex with other n selected vertices in the same simplex to estimate 

gradients. Its steps are presented as following:  

Assume an optimized function f: IRn→IR, x Є IRn
 

 Step1: initialize a simplex with (n+1) random vertices x1, x2, …, xn 

 Step 2: select an extra vertex xE with its coordinates composed from n vertices in the 

simplex. In other words, coordinates of the selected vertex are a diagonal of the 

matrix X from n vertices in the simplex. 
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 Step 3: approximate gradients based on the extra vertex E with other n vertices in the 

selected simplex.  

         For i =1: n, 
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To illustrate how this method works, a 2-d case with f: IR2→IR and x, y Є IR2
 which has a 

triangular simplex ΔBGW with B (best), G (good), W (worst) vertices is shown in Fig. 2. 

2. E is the extra vertex which has its coordinates formed from B and G. Then the 

approximate gradient of this plane will be: 
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Fig. 2.2: The simplex ΔBGW with extra vertex E 

 

 Step 4: calculate the new reflected vertex R’ based on the best vertex B and the 

approximate gradients Fig. 2.1. Parameter σ is the learning constant or step size. 

                                               Gxx BR *'                                                                (2.5) 

 Step 5: if the function value at R’ is smaller than the function value at B, it means that 

BR’ is the right direction of the gradient. Then R’ can be expanded to E’. 

                                            '' 1 RBE xxx                                                               (2.6) 

2.2.2 Quasi Gradient Method Using a Hyper Plane Equation 
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 This quasi gradient method forms a (n+1)-dimensional plane from (n+1) vertices in a 

simplex and then uses matrix calculations to approximate gradients. This method can be 

described as follows: 

 Assume an optimized function f: IRn→IR, x Є IRn
 

 Step 1: initialize a simplex with (n+1) random vertices x1, x2,…, xn+1 

 Step 2: a (n+1)-dimensional hyper plane formed from this simplex is assumed  to 

have the approximate equation 

                                              nnnn xaxaxaxaaV   1122110 ...
                                    (2.7) 

 Step 3: substitute each vertex into the hyper plane equation eq. 2.7, so there will be 

(n+1) equations: 
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  Step 4: calculate the approximate gradient matrix by writing the above multi-

equations in the matrix form G=X
-1

*V. 
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 Step 5: calculate the new reflected vertex R’ according to eq. 2.5. 

 Step 6: calculate the new expanded vertex E’ according to eq. 2.6. 

 Two quasi gradient methods without using derivatives presented above are much simpler 

than analytical gradient methods. These two methods do not require the calculation of 

derivatives. Instead they just approximate gradients without concerning the shape of a function. 

The first quasi gradient method using an extra vertex does not require high computing cost but its 

accuracy depends on the linearity of optimized functions in the vicinity of a simplex. Therefore, 

it converges slower than the second method using a hyper plane equation (comparisons of two 

methods are presented in the next section and summarized in Tables 2.4-2.7). The second 

method’s computing power is reduced significantly when the scale of optimization problems 

becomes larger because its computing time grows proportional to the square of the problem size 

n
2
 while the first method’s computing cost is proportional to n.  

 The improved algorithm with quasi gradient search is similar to the original simplex 

method except that it has to approximate gradients to search for its reflected vertex. In other 

words, its convergence will rely on the gradient direction through the new reflected vertex R’ 

rather than the reflected vertex R calculated through the centroid vertex proposed by the original 

simplex algorithm. The improved simplex method with quasi gradient search can be applied 

successfully in synthesizing lossy filters, and training artificial neural networks, etc [32]. 
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2.3 Testing Functions 

 All algorithms are tested on a set of functions with different levels of complexity. These 

functions are well-known unconstrained optimization functions in literature. A large number of 

problems are relatively adequate to prove the reliability and robustness of these algorithms. It 

also warrants that the improved algorithm is much better than the original algorithm overall, not 

just better than a small set of problems.  

 Algorithms are tested on a wide range not close to solutions to address on their 

convergence rate. Therefore, it is much more satisfactory when starting points are generated 

randomly. Unlike other publications in literature, we do not use the standard starting points for a 

certain function to test algorithms because it is fairly hard to measure their reliability and 

robustness, or to differentiate between similar algorithms in this case. The use of initial points 

farther away from solutions frequently reveals dramatic differences of algorithms as success rate, 

computing time, etc.   

 To evaluate the ability to solve problems, we measure these algorithms in terms of their 

success rate and computing time. 

 List of benchmark functions:  

( 1) De Jong function [3], [33]-[35] 
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( 2) De Jong function with moved axis [36] 
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( 3) Quadruple function [37] 
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( 4) Powell function [3], [34] 
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( 5) Moved axis Parallel hyper-ellipsoid function [36] 
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( 6) Zarakov function [38] 
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( 7) Schwefel function [38] 
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( 8) Sum of different power function [36] 
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( 9) Step function [33] 
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where a= t*i, t is a constant 

( 11) Rosenbrock function [1], [33], [34], [39] 
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( 12) Biggs Exp6 function [6], [34] 
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( 13) Kowalik and Osborne function [33], [34], [39] 
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where a, b are vectors in Table 2.1 

i ai bi 

1 0.1975 4.0000 

2 0.1947 2.0000 

3 0.1735 1.0000 

4 0.1600 0.5000 

5 0.0844 0.2500 

6 0.0627 0.1670 

7 0.0456 0.1250 

8 0.0342 0.1000 

9 0.0323 0.0833 

10 0.0235 0.0714 

11 0.0246 0.0625 

 
 

Table 2.1: Coefficients of Kowalik and Osborne function 

( 14) Colville function [33] 
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( 15) Wood function [6], [34], [39] 
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( 16) Bard function [6], [33] 
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where y, u, v, w are vectors in Table 2.2  

i yi ui vi wi 

1 0.14 1 15 1 

2 0.18 2 14 2 

3 0.22 3 13 3 

4 0.25 4 12 4 

5 0.29 5 11 5 

6 0.32 6 10 6 

7 0.35 7 9 7 

8 0.39 8 8 8 

9 0.37 9 7 7 

10 0.58 10 6 6 

11 0.73 11 5 5 

12 0.96 12 4 4 

13 1.34 13 3 3 

14 2.10 14 2 2 

15 4.39 15 1 1 

 
  

Table 2.2: Coefficients of Bard Functions 
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2.4 Experimental Results 

 With this significant improvement, the improved simplex method can be a useful 

optimization tool to replace for other popular algorithms as the genetic algorithm or the particle 

swarm algorithm, etc. All evaluated algorithms are written in Matlab, and all experiments are 

tested on a PC with Intel Quad. In order to compare performances of these algorithms, some 

assumptions are set: algorithms start with a random initial variables in the range of [-100, 100]; 

dimension of all benchmark problems is 20; maximum iteration is equal to 100,000; desired error 

predefined to terminate algorithms is equal to 0.001; coefficients of the simplex method α= 1, β= 

0.5, γ= 2, learning constant σ= 1. In addition, the genetic algorithm, the differential evolution 

algorithm, and the particle swarm optimization each has 20 members in its population. These 

algorithms use the same default values as the ones written in the standard Matlab toolboxes. 

Because of timing cost to test the genetic algorithm and the differential evolution algorithm, all 

results in Table 2.3 are the average values calculated over 25 random running times. 

 

Optimization 

Function 

GA DE PSO SIM1 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

De Jong  44% 153.435 100% 111.45 96% 5.5137 100% 0.3450 

De Jong with moved 

axis 

60% 152.184 100% 122.30 Failure  100% 0.4450 

Quadruple  100% 46.6543 80% 117.85 100% 0.0840 100% 0.2541 

Powell  Failure  10% 173.76 100% 4.5735 100% 1.1455 

Moved axis Parallel 

hyper-ellipsoid    

Failure  85% 123.50 96% 9.7553 100% 0.7254 

Zarakov  Failure  Failure  96% 5.2152 100% 1.1444 

Schwefel  Failure  Failure  32% 89.9445 100% 0.9587 

Sum of different 

power  

100% 141.422 Failure  100% 0.06425 100% 1.7978 

Step  35% 166.335 95% 121.09 80% 23.1161 100% 0.3992 

Rosenbrock  Failure  Failure  Failure  54% 10.107 

Biggs Exp6 Failure  10% 160.05 4% 126.276 27% 9.0644 

Colville Failure  Failure  Failure  40% 5.6746 

Wood Failure  Failure  Failure  44% 7.7333 

 
Table 2.3:   Evaluation of success rate and computing time of 20-dimensional function 
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 In this simulation, it is unnecessary to verify how the dimensionality affects the simplex 

algorithm. Therefore, one experiment with 20 dimensions is conducted. And only the algorithm 

using an extra vertex (SIM1) is selected to compare because of its simple computations relative 

to other derivative free optimization algorithms. 

 The Genetic Algorithm: There are only two cases, the genetic algorithm can obtain 

100% success rates. Although the genetic algorithm cannot obtain high success rate 

as the improved simplex method, but it still shows its convergence ability in 5 out of 

13 problems. However, this algorithm cannot converge as fast as the improved 

simplex method or the particle swarm optimization does. There are 8 out of 13 

problems, the genetic algorithm cannot converge. Even the data is not displayed in 

Table 2.3, but the genetic algorithm shows its convergence trend in this experiment if 

a number of generations is increased. Among four derivative free optimization 

algorithms discussed here, the genetic algorithm is the slowest one. This can be 

explained by its complex mutation and crossover operations. 

 The Differential Evolution Algorithm: This algorithm does not converge really well 

with these optimization functions. There are five cases, it converges with high success 

rates. And there are two cases, it converges with low success rates. It cannot converge 

nearly half of problems. In order to optimize these functions, this algorithm needs 

more iterations. Therefore, it will take longer to solve the same problems. The 

differential evolution algorithm converges faster than the genetic algorithm, but it is 

much slower than the improved simplex algorithm. 

 The Particle Swarm Algorithm: The particle swarm algorithm converges relatively 
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fast; however, it does not have enough consistency. There are four cases, it fails to 

converge with no matter of a number of generations. There is one case that it 

converges with a really low success rate. Even it converges more than half of cases, 

but it is still relatively slower and has lower success rate than the improved simplex 

method. However, the particle swarm algorithm is much faster than the differential 

evolution algorithm and the genetic algorithm in term of convergence speed. 

 The Improved Simplex Method: From the experimental results in Table 2.3, we can 

conclude that the improved simplex method converges much faster and more 

efficiently than the genetic algorithm, the differential evolution algorithm, and the 

particle swarm algorithm in local minimum optimization. This is reflected through its 

higher success rate and less computing time for each testing function. It can get 

optimum solutions more than 75% of problems with 100% success rate. In other 25% 

of problems, its success rates are around 50%, but it is still much better than other 

algorithms. In term of computing time, this algorithm particularly outclasses the 

others. Its convergence speed is at least from ten to hundred times faster. 

 Obviously, the improved simplex algorithm with this significant modification can be an 

alternative tool to replace efficiently for other optimization tools. This algorithm is a direct 

search method which is free of derivative calculation. Therefore, it can converge much faster and 

higher success rate than algorithms based on evolutionary computations such as the genetic 

algorithm, etc. 

 The next experiments are conducted with the same assumptions as the last one: 

algorithms start with a random initial simplex in the range of [-100, 100]; dimensions of all 

benchmark problems are equal to 10, 15, and 20 respectively; maximum iteration is equal to 
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100,000; target error predefined to terminate algorithms is equal to 0.001; coefficients α= 1, β= 

0.5, γ= 2, learning constant σ= 1. All results in Table 2.4-2.7 are average values calculated over 

100 random running times. Figures 2.3- 2.10 are error curves of algorithms plotted for 10 

dimensions.  

  
Fig. 2.3: Simulated error curves of De Jong function 1(a) and De Jong function 1 with 

moved axis (b) 

 

  
Fig. 2.4: Simulated error curves of Quadruple function(a) and Powell function (b) 
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Fig. 2.5: Simulated error curves of Parallel hyperellipsoid function (a) and Zakarov 

function (b) 

 

  
Fig. 2.6: Simulated error curves of Schwefel function (a) and sum of different power 

function (b) 
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Fig. 2.7: Simulated error curves of Step function (a) and Box function (b) 

 

  
Fig. 2.8: Simulated error curves of Rosenbrock function (a) and Biggs Exp6 function (b) 
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Fig. 2.9: Simulated error curves of Kowalik Osborne function (a) and Colville function (b) 

 

  
Fig. 2.10: Simulated error curves of Wood function (a) and Bard function (b) 
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Optimization 

Function 

Nelder Mead’s simplex 

algorithm 

Improved simplex 

algorithm using an extra 

vertex 

Improved simplex 

algorithm using a hyper 

plane equation 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

De Jong  100% 0.0907 100% 0.0806 100% 0.0474 

De Jong with moved 

axis 

100% 0.0932 100% 0.0824 100% 0.0477 

Quadruple  100% 0.2183 100% 0.0539 100% 0.0350 

Powell  100% 0.1037 100% 0.1346 100% 0.1444 

Moved axis Parallel 

hyper-ellipsoid    

100% 0.1102 100% 0.0841 100% 0.0648 

Zarakov  99% 0.3195 100% 0.1879 100% 0.1766 

Schwefel  100% 0.1666 100% 0.1400 100% 0.1420 

Sum of different power  26% 1.1012 100% 0.1150 100% 0.1232 

Step  100% 0.0863 100% 0.0825 100% 0.0475 

Box  65% 0.3321 81% 0.3636 81% 0.5761 

Rosenbrock  55% 0.8812 76% 1.2094 82% 1.5916 

Biggs Exp6 52% 0.1118 60% 0.1244 20% 0.3509 

Kowalik and Osborne 48% 0.2828 76% 0.4913 48% 5.0087 

Colville 46% 0.2026 50% 0.2081 60% 0.2077 

Wood 41% 0.2042 52% 0.2038 58% 0.2155 

Bard 16% 0.7240 48% 0.9095 13% 2.2250 

 
Table 2.4: Evaluation of success rate and computing time of 10-dimensional functions 

 

Optimization 

Function 

Nelder Mead’s simplex 

algorithm 

Improved simplex 

algorithm using an extra 

vertex 

Improved simplex 

algorithm using a hyper 

plane equation 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

De Jong  9% 0.2539 100% 0.2292 100% 0.0888 

De Jong with moved 

axis 

7% 1.0124 100% 0.2263 100% 0.0899 

Quadruple  21% 0.9097 100% 0.1778 100% 0.0638 

Powell  93% 1.5418 100% 0.4222 100% 0.3303 

Moved axis Parallel 

hyper-ellipsoid    

2% 0.6789 100% 0.2358 100% 0.1540 

Zarakov  Failure  100% 0.5598 100% 0.5123 

Schwefel  2% 1.1187 100% 0.3942 100% 0.3948 

Sum of different power  Failure  100% 0.3303 100% 0.3300 

Step  13% 0.4213 100% 0.1927 100% 0.0910 

Box  Failure  19% 1.8882 4% 4.2749 

Rosenbrock  Failure  55% 3.9881 80% 3.3474 

Biggs Exp6 4% 0.7417 60% 1.4860 3% 2.5735 

Kowalik and Osborne -  -  -  

Colville 10% 1.9298 53% 0.5028 52% 0.5123 

Wood 12% 2.3841 52% 0.5078 61% 0.5003 

Bard Failure 0.7240 11% 3.6462 Failure 2.2250 

 
 

Table 2.5: Evaluation of success rate and computing time of 15-dimensional functions  
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Optimization 

Function 

Nelder Mead’s simplex 

algorithm 

Improved simplex 

algorithm using an extra 

vertex 

Improved simplex 

algorithm using a hyper 

plane equation 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

De Jong  Failure  100% 0.4529 100% 0.1538 

De Jong with moved 

axis 

Failure  100% 0.4188 100% 0.1565 

Quadruple  3% 1.7213 100% 0.3212 100% 0.1124 

Powell  Failure  100% 0.8969 100% 0.6518 

Moved axis Parallel 

hyper-ellipsoid    

Failure  100% 0.4340 100% 0.3289 

Zarakov  Failure  100% 1.3628 100% 1.2251 

Schwefel  Failure  100% 0.8041 100% 0.9506 

Sum of different power  Failure  100% 0.7094 100% 0.6802 

Step  Failure  100% 0.3207 100% 0.1541 

Box  Failure  5% 2.1718 3% 8.8745 

Rosenbrock  Failure  54% 6.0026 75% 6.4713 

Biggs Exp6 Failure  27% 3.2283 Failure  

Kowalik and Osborne -  -  -  

Colville Failure  40% 1.1572 44% 1.1259 

Wood Failure  44% 1.1708 50% 1.0224 

Bard -  -  - 0.1538 

 Table 2.6: Evaluation of success rate and computing time of 20-dimensional functions 
 

Optimization 

Function 

Nelder Mead’s simplex 

algorithm 

Improved simplex 

algorithm using an extra 

vertex 

Improved simplex 

algorithm using a hyper 

plane equation 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

Success 

rate 

Comp. 

time (s) 

De Jong  Failure  100% 2.9637 100% 0.8254 

De Jong with moved 

axis 

Failure  100% 2.6757 100% 0.9004 

Quadruple  Failure  100% 2.0258 100% 0.6318 

Powell  Failure  100% 5.0306 100% 4.3891 

Moved axis Parallel 

hyper-ellipsoid    

Failure  100% 2.4636 100% 3.3235 

Zarakov  Failure  100% 13.072 100% 13.3271 

Schwefel  Failure  100% 6.7592 100% 11.8561 

Sum of different power  Failure  60% 11.340 100% 6.6748 

Step  Failure  100% 2.4082 100% 0.8045 

Box  Failure  1% 10.607 5% 20.9250 

Rosenbrock  Failure  39% 43.649 72% 78.5312 

Biggs Exp6 Failure  5% 36.843 Failure  

Kowalik and Osborne -  -  -  

Colville Failure  32% 7.8633 50% 8.2602 

Wood Failure  38% 7.375 49% 7.6051 

Bard -  -  -  

 Table 2.7: Evaluation of success rate and computing time of 40-dimensional functions 
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 The comparisons between the simplex algorithm and its improved versions are 

summarized above. In these simulations all algorithms are still compared in terms of the success 

rate and computing time. While the success rate is used to describe their reliability, computing 

time reflects how fast these algorithms can converge. Three different sizes of functions 10, 15, 

and 20 are also tested respectively for the purpose of comparing their robustness, and it is also 

used to verify how the simplex method is affected by its dimensionality. From Tables 2.4-2.7, we 

can draw a conclusion that the improved algorithm shows its better performance than the original 

simplex method in terms of both success rate and computing time. The experimental results also 

tell that the improved simplex method, using a hyper plane equation, converges faster than the 

one using an extra vertex in most cases. Even it requires more computations to approximate the 

gradient matrix. There are only two cases (Box function and Biggs Exp6 function), the method 

of a hyper plane equation shows its worse results than the method of an extra vertex. When the 

problem size increases, the simplex method starts getting worse and is unable to converge. In 

Table 2.4 of 10 dimensional functions, the simplex algorithm converges relatively well although 

it does not have a high success rate in several cases. However, these numbers are still good 

enough and acceptable because of its fast convergence. When the size increases to 15 in Table 

2.5, its convergence rate suddenly drops down dramatically, and it totally fails in 20 dimensional 

problems or higher (Table 2.6-2.7); whereas, the improved algorithm still converges consistently 

well. It has 100% success in 9 out of 14 problems and over 40% success rate in 3 out of 14 

problems. There is only one case of Box function that the improved algorithm cannot obtain a 

good success rate. Even with 20 dimensional problems, this algorithm is still able to converge 

very fast when its minimum and maximum computing time is less than 1(s) and 10(s) 

respectively. Comparing these two algorithms, we can conclude that the improved algorithm 
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using quasi gradients can define its moving direction more precisely. That is the reason why the 

improved algorithm converges much better. With the same random choice of initial vertices, the 

improved simplex method usually gets a higher convergence rate and less computing time than 

the original simplex method. Even this algorithm is combined with the quasi gradients, it does 

not face any difficulty to find function derivatives, and particularly its finding such derivatives is 

not time consuming as classical algorithms based on gradients. 
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Chapter 3 

Synthesize Lossy Ladder Filters with Improved Simplex Method 

 

3.1 Filter Synthesis Algorithms 

 There are many different types of filters such as the Butterworth filter, the Chebyshev 

filter, the Inverse Chebyshev filter and the Cauer Elliptic filter, etc. The characteristic responses 

of these classical filters are different. The Butterworth filter is flat in the stop-band, but it does 

not have a sharp transition from the pass-band to the stop-band. While the Chebyshev filter has a 

sharp transition from the pass-band to the stop-band, but it has ripples in the pass-band. 

Oppositely, the Inverse Chebyshev filter has the same characteristics as the Chebyshev filter, but 

it has ripples in the stop-band instead of the pass-band. The Cauer filter has ripples in both pass-

band and stop-band; however, it has lower order [40], [41]. This section will summarize all steps 

to design low-pass filters by using these methodologies.  

 

3.1. 1 Butterworth Low- pass Filter 

 Suppose ωp, ωs, αp, αs are the pass-band frequency, stop-band frequency, attenuation in 

pass-band, and attenuation in stop-band of a filter respectively. Depending on which method is 

used to synthesize, the frequency response of a filter will be different to meet these requirements. 

For an instance, a Butterworth filter will be designed as followings. 
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 ωp - pass-band frequency  

 ωs - stop-band frequency 

 αp - attenuation in pass-band 

 αs - attenuation in stop-band 

Fig. 3.1: Butterworth filter response 

Butterworth filter response:  

n

n
jT

2

0

2

2

1

1
|)(|








           (3.1)

  

In order to simplify, we can summarize three basic steps to synthesize any type of low-

pass filters. The first step is calculating the order of a low-pass filter. The second step is 

calculating poles and zeros of a low-pass filter. From hence its transfer function is derived. The 

third step is designing circuits to meet pole and zero locations; however, this part is another topic 

of analog filters so it will not be covered in this work [42]-[44]. 

All steps to design a Butterworth low-pass filter 

 Step 1: calculate order of a filter 

           lue)integer va  toroundup be  toneeds(n 

)log(

)]110/10)(110/10log[( 2/1

p

s
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n





 
    (3.2) 

 Step 2: calculate pole and zero locations 

 Angle if n is odd: 
n

k 0180
  ; k= 0,1,...(n-1)/2        (3.3) 

 Angle if n is even: 0180)5.0(
n

k
 ; k= 0,1,...(n-2)/2       (3.4) 
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 Step 3: design circuits to meet pole and zero locations (not covered in this work) 

 

3.1. 2 Chebyshev Low- pass Filter 

 

ωp - pass-band frequency 

ωs - stop-band frequency 

αp - attenuation in pass-band 

αs - attenuation in stop-band 

Fig. 3.2: Chebyshev filter response 

 

Chebyshev filter response: 
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All steps to design a Chebyshev low-pass filter 

 Step 1: calculate order of a filter   
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 Step 2: calculate pole and zero locations 
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 Step 3: design circuits to meet pole and zero locations (not covered in this work) 

 

3.1. 3 Inverse Chebyshev Low- pass Filter 

 

ωp - pass-band frequency 

ωs - stop-band frequency 

αp - attenuation in pass-band 

αs - attenuation in stop-band 

Fig. 3.3: Inverse Chebyshev filter response 

 

Inverse Chebyshev filter response: 
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 The method to design an inverse Chebyshev low-pass filter is almost the same as the one 

to design a Chebyshev low-pass filter. It is just slightly different on account of the appearance of 

conjugate poles and zeros. 

All steps to design an inverse Chebyshev low-pass filter 

 Step 1: calculate order of a filter 
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 Step 2: calculate pole and zero locations 
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 Notes: two conjugate poles on the imaginary axis 

 Step 3: design circuits to meet pole and zero locations (not covered in this work) 

 

3.1. 4 Cauer Elliptic Low- pass Filter 

 

ωp - pass-band frequency 

ωs - stop-band frequency 

αp - attenuation in pass-band 

αs - attenuation in stop-band 

Fig. 3.4: Cauer Elliptic filter response 

 

Cauer Elliptic filter response: 
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1
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Designing a Cauer Elliptic filter is more complex than designing three previous filters. In 

order to calculate its transfer function, a mathematic process is summarized as below. Although 

the low-pass Cauer Elliptic filter has ripples in both stop-band and pass-band, but it has lower 
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order than the previous filters. In other words, it requires less hardware components for 

implementation. This is the main advantage of the Cauer Elliptic filter. 
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3.2 Ladder Prototype Synthesis Algorithms 

 Implementation of analog filters usually falls into two categories: the cascade prototype 

and the ladder prototype. Implementation of the cascade prototype is much easier and 

straightforward as the step 3 above. However, the cascade prototype has many drawbacks 

because it is very sensitive with parameters of circuit elements or the propagation of signal 

through each cascaded stage can cause errors. Implementation of the ladder prototype is more 

complex. It requires designers to use tables. Unfortunately, these tables are not easy to use, and 

they do not cover all possible cases which are the important requirements to design good filters. 

Furthermore, many high quality filters with support of advanced technologies nowadays can be 
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implemented on the ladder prototype for examples switched capacitor filters, switched current 

filters, ladder filters using OPAMP, ladder filters using OTA (operational trans-conductance 

amplifiers) [45], [46]. That explains why we need simple algorithms to synthesize the ladder 

prototype conveniently. 

 

3.2. 1 Design Ladder Low-pass Prototype without Zeros 

 This algorithm deals with low-pass prototypes without zeros; therefore, it follows a 

classical approach for the Butterworth and Chebyshev filters [47]. Given a transfer function 

which describes the relationship between an input voltage and an output voltage of a filter 

circuit, this algorithm will use an auxiliary function to calculate an input impedance ZN= RN + 

jXN and then continued fractions to find all values of circuit elements [48]. As previous parts, we 

only describe briefly how the algorithm works without getting into details. Readers can refer to 

referenced papers to read more.  

 Assume T(s) is a transfer function of a filter and A(s) is an auxiliary function. Then its 

input impedance ZN= RN + jXN can be calculated as following: 

+

-

LC

Lossless

Netowrk

+

-

NZ

inV

inR

outRoutV

 
Fig. 3.5: Doubly terminated ladder network without zeros 
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 Step 1: define transfer function T(s) 
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        where Rin: input resistance, Rout: output resistance 

 Step 2: define auxiliary function A(s) respective to T(s) 
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 Step 3: define A(s) and A(-s) according to equations (3.36) and (3.37). Then calculate 

A(s) from A(s)A(-s) 

                                          01

2

2

1

1 ...)( asasasasasA N

N

N

N  

                                (3.36)  

                                       0

2

2

22

22

2

2 ...)()( ksksksksAsA N

N

N

N  

                             (3.37)  

       Based on equations (3.38) and (3.39), the k terms with respect to the a terms can be  

 found by using an iterative procedure 

                                       

)2/0(,)1(2)1(
1

122mod

2 Niaaak
i

j

jiji

j

i

i

i  





                  (3.38)  

                                       

)2/(,)1(2)1(
1

122mod

2 NiNaaak
iN

j

jiji

j

i

i

i  







                 (3.39)  

 Step 4: once A(s) is found, calculate input impedance 
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 Once the input impedance ZN is found, we can use the classical continued fraction 

expansion to refer values of all components. This method is well-documented in [49]. 

 

3.2. 2 Design Ladder Low-pass Prototype with Zeros 

 Ladder filters with zeros as the Cauer Elliptic and the inverse Chebyshev make the 

synthesis more challenging. In this case, the classical continued fraction expansion cannot be 

applied straightforwardly as presented in the last part. Instead this method will determine all 

capacitor and inductor values by removing shunt capacitors and resonant circuits from the 

impedance equation. This process of removing shunt capacitors and resonant circuits will 

continue until all resonant circuits are removed. A general type of ladder filters with zeros is 

depicted in Fig. 3.6. A resonant circuit with an inductor and a capacitor in parallel contributes a 

pair of zeros.   

LC
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Netowrk
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Fig. 3.6: General ladder circuit with presence of zeros 

 

 Step 1: given the input impedance equation calculated from an auxiliary function 
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 Step 2: calculate and remove shunt capacitor 

  01

2

2

2

2

1

1

01

2

2

3

3

2

2

1

1

...

...
)(

ksksksksksk

asasasasasa

NsCD

N
sZ

N

N

N

N

N

N

N

N

N

N

N

N

ASA

A
B



























  (3.42) 

 

  where: 001 ),1( bkNiforaCbk iSii    

  Shunt capacitor value is a concurrent solution of equations (3.43) and (3.44) 
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  where: 12 ][  RRCLz   

 Step 3: calculate the resonant inductor value and remove the resonant circuit from the 

impedance equation 
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 Step 4: calculate CR and ZC  

 Step 5: the proess will be repeated until all resonant circuits have been removed. 

From then, the remaining shunt capacitor, inductor and output resistance are found by 

using classical continued fraction approach.  
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3.3 Transformation from Low-pass Filters to Other Type Filters 
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Table 3.1: Transformation of the low pass immittances  L and C to ladder arms for 

high pass, band-pass, band-reject, and multiple pass-band filters 

 

 There are existing two different approaches to design high-pass, band-pass and band-stop 

filters, etc. from low-pass filters. One approach uses the Foster function, and substitutes it into 

the transfer function of a low-pass filter to get the transfer function of a desired filter. This 

approach is popularly used in designing active filters. Then the realized circuits can be cascaded 
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to meet the target function.  In contrast with this approach, which requires the transformation 

from the low-pass function into the target function, another approach can complete the design 

process of LC filters in the low-pass domain S without constructing of the transfer function. This 

approach can be interpreted as transforming the realized circuit from a low-pass filter to desired 

filters. The operation of this second approach can be summarized in Table 3.1 [47].  

 

3.4 Lossy Filter Synthesis with Improved Simplex Method 

 Ladder filters are made up of inductors and capacitors and widely used in communication 

systems. How to design a good filter with a desired frequency response is a challenge because 

the traditional algorithms as Butterworth, Chebyshev or inverse Chebyshev, etc. just synthesize 

filters without affects of lossy inductors and capacitors Fig. 3.7. Therefore, the frequency 

responses of these ideal filters are much different from the ones of real filters. In order to 

implement a real filter with lossy elements, which has similar characteristics as a prototype filter, 

we have to shift pole locations of a real filter close to pole locations of a prototype filter. In this 

part, the improved simplex algorithm can be utilized to replace for analytical solutions or other 

methods which are very complex and inefficient especially with high order filters.   

Ideal 

Capacitor

Real

Capacitor

Ideal 

Inductor

Real 

Inductor

C C GC L

L

RL

 
Fig. 3.7: Models of real capacitors and real inductors 
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Our example is to design a 4
th

 low-pass Chebyshev filter with attenuation in the pass-

band αp= 3dB, attenuation in the stop-band αs= 30 dB, pass-band frequency ωp= 1kHz, stop-band 

frequency ωs=2kHz. Using the Chebyshev methodology with ideal elements [43], we can find 

the transfer function of this filter (eq. 3.48) and its circuit with all element values (Fig. 3.8). 

                                     0.17198 0.64803S 
2

1.22091S 
3

0.88598S 
4

S

0.17198
)(



SH                                       (3.48) 

 
Fig. 3.8: Chebyshev filter circuit with ideal elements  

 

 Instead of using ideal elements, we replace them by lossy elements respectively with 

GC1= GC2= RL1= RL2= 0.1 (Fig. 3.9). On account of this affect, the synthesized filter has the 

new transfer function eq. 3.49 with different pole locations Fig. 3.10b. Therefore, the frequency 

response of the real filter is changed with its shifted cut-off frequency to the left Fig. 3.10a 

 
Fig. 3.9: Chebyshev filter circuit with lossy elements 
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Fig. 3.10: Magnitude and phase responses (a) and pole locations (b) of filters 
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 In order to design a filter having desired characteristics as the ideal filter, its transfer 

function (eq. 3.49) has to be similar to the transfer function of the prototype filter (eq. 3.48). In 

other words, its pole locations have to be close to pole locations of the ideal filter (Fig. 3.10b). 

According to the analytical method presented in [50], they have to solve a nonlinear system (eq. 

3.51) of five equations with five unknowns (assume R2 is known). Clearly, the analytical method 

is not an effective way to find proper solutions for this filter. Firstly, it is not easy to solve this 

nonlinear system especially with high order filters. Secondly, its solutions may not be applied in 

real implementation if one of its component values is a negative number. Therefore, it is 

necessary to have a simpler method which can synthesize iteratively without complex 

modifications.     
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 As presented in the previous sections, the improved simplex method has ability to 

optimize high dimensional problems with very reliable convergence rates. For this particular 

application, this algorithm can be applied very effectively to synthesize filters. Instead of using 

the analytical method, we can use the improved simplex method to optimize the error function 

(eq. 3.52). To guarantee reasonable results with all positive values, we may divide the numerator 

and denominator of the transfer function of the real filter by the value of C1 in this case (which 

does not change characteristics of filters). The desired filter with R1= 0.07131, R2= 0.2, C1= 

3.3831, L1= 0.70676, C2= 9.7949, L2= 0.7189 has similar frequency response and pole locations 

as the ideal filter (Fig. 3.10). 
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 Let us consider another example with a singly terminated 4th order Chebyshev low-pass 

filter with its ideal transfer function eq. 3.53. To synthesize this filter with lossy elements, we 

have to replace ideal components in the circuit Fig. 3.11 by real components in the circuit Fig. 

3.12 and repeat the same procedure as presented in the previous example. 

                                144475.217051.317713.220699.1
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                    (3.53)
 
 

 

Fig. 3.11: 4th Chebyshev filter circuit with ideal elements 

 

 

Fig. 3.12: 4th Chebyshev filter circuit with lossy elements 

 

The new transfer function has its coefficients a1, a2, a3, a4, a5 as eq. 3.49.  

in
V 1

C
1

G C

1
L

1
RL

2
C

2
G C

2
L

2
RL

R



52 
 

 

































1.0301R+0.201
5

R
2

0.101L+R
1

0.201L+R
2

0.201C+

R
1

0.101C+
2

1.01L+
1

1.01L+
1

0.01C
4

a

R
2

L
1

0.01L+R
2

L
2

1.01C+

R
2

L
1

0.01C+R
1

L
2

1.01C+R
1

L
1

1.01C+

R
2

C
1

0.01C+
2

L
1

0.1L+
2

L
1

0.1C+
1

L
1

0.1C
3

a

R
2

L
1

L
2

0.1C+R
2

L
1

L
1

0.1C +

R
2

L
2

C
1

0.1C+R
1

L
2

C
1

0.1C+
2

L
1

L
1

C
2

R
2

L
1

L
2

C
1

C
1

:

a

a

a

where

         (3.54)  

 By using the improved simplex method to optimize the error function with different 

values as eq. 3. 52, the desired filter with R= 2.1727, C1= 2.0432, L1= 0.8568, C2= 0.2497, L2= 

2.1364 has similar frequency response and pole locations as the ideal filter.  

 
Fig. 3.13: Magnitude and phase responses (a) and pole locations (b) of filters
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Chapter 4 

Training Neural Networks with Improved Simplex Method 

 

4.1 Artificial Neural Networks 

 A neuron is normally connected by inputs, weights and a bias weight. Its output is 

defined by the standard activation function: 
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                                     (4.1)    

 where xi is input, wi is weight and wbias is bias weight.  

 Each neuron can be connected together to form a neural network. A neural network is 

trained by input patterns and desired outputs. Weights of a network are adjusted to minimize the 

error function between actual outputs and desired outputs eq. 4.2.  
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 where: 
^

, pmy  and p

my  are actual and desired outputs of a network respectively 

   P: is the total number of patterns  

  M : is the total number of output neurons. 

 Although neural networks have shown their potential power for many applications, it is 

so difficult to train them successfully [51]-[54]. This frustration can be explained from the 

architectures and the training algorithms. If the size is too small, a neural
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network cannot be trained. Inversely, if the size is too large, outputs from a neural network 

maybe not satiable. It means that a neural network can be an efficient solution once we can select 

a good architecture and a good algorithm to train it. Many training algorithms have been 

introduced so far, but each of them has its pros and cons. Some algorithms are good at training 

these types of neural network architectures, but are not good at training the others. Some 

algorithms converge very fast but require a lot of computing cost, which limits themselves in 

many practical applications. Some others do not require high computing cost but are unreliable. 

As the matter of fact, it is not easy to find a reliable algorithm which has the ability to train all 

types of neural networks. Until now neural networks are still an interesting area of artificial 

intelligence. The Error Back Propagation (EBP) is considered as a breakthrough to train neural 

networks but it is not an effective algorithm because of its slow convergence. The Lavenberg 

Marquardt is much faster but it is not suitable for large networks. 

 

4.1.1 Neural Network Architectures 

 As presented above, artificial neural networks are a complex combination of training 

algorithms and architectures. It is clear that training algorithms are desperately an important key 

to ANN’s success and also the most challenging part. Nevertheless, neural network architectures 

cannot be contempted, which help us reason many phenomena during training process. In 

practice, many researchers usually face a problem when some neural networks can be trained 

very well with training patterns but they perform poorly with verification patterns [55]. This can 

be explained that the selected neural network architectures are not optimal. Therefore, they do 

not have enough power to interpolate with the new patterns which are not used during training 

process. The main goal of neural networks is not to find the exact solutions, but to find the 
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optimum solutions. In case, the architecture is not optimized, a neural network will lose its 

generality and will not interpolate well. In order to reduce this side affect, it is better to select the 

architecture as small number of neurons as possible. A network with more neurons can normally 

get higher success rate with training algorithms, but its training result is usually far from the 

desired one. In other words, its success may be misleading. In contrast, a network with fewer 

neurons can give much better results; however, it is very tough to train this network with small 

errors and often requires efficient training algorithms. Fewer neurons require more intensive 

computations which can only work with advanced training algorithms discussed later. There is 

no proper answer to know how many neurons are optimum for a certain application. The best 

approach is trial and error, which is usually time-consuming in case an architecture is trained 

with an inefficient algorithm. However, this work can be easier with powerful architectures using 

fewer neurons plus more advanced algorithms to train the same problems. 

 Some well-known architectures as radial basis function (RBF), learning vector 

quantization (LVQ), etc. which can be trained easily, but they require a large number of neurons 

equal to the number of patterns or the number of clusters [55]. In order to obtain optimum 

results, these architectures are not the best solutions compared with others. They not only use 

more neurons than needed, but also are so expensive in computing cost. This will become more 

critical in training large networks for complex problems. Because of these reasons, this section 

will only focus on three basic but fundamental architectures: (1) the multilayer perceptron 

(MLP), (2) the bridged multilayer perceptron (BMLP), (3) the fully connected cascade (FCC). 

These three architectures are familiar and widely used in training neural networks.  
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Fig. 4.1: Multilayer perceptron architecture 3-3-4-1 (MLP) 

 

 
Fig. 4.2: Bridged multilayer perceptron architecture  3-3-4-1 (BMLP) 
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Fig. 4.3: Fully connected cascade architecture 3-1-1-1 (FCC) 

 

 The multilayer perceptron without connections cross layers is the oldest architecture. The 

MLP can have one hidden layer or multiple layers and signals have to propagate through each 

layer. Disadvantage of this architecture is that it has to use more neurons than other architectures 

to solve the same problems, and it limits abilities of signal processing. The BMLP and FCC are 

more powerful than the MLP. These two prototypes allow connections cross layers. With these 

additional connections, neural networks are more transparent, and hence easier to train. In order 

to evaluate performances of these three prototypes, an experiment is conducted to test them with 

parity-N problems which are considered as one of the toughest issues of training neural networks 

[55]. Then the results are reported in Table 4.1 in term of the number of neurons over weights. 

From the comparison, the FCC architecture can be the most powerful prototype in most cases. It 

needs much fewer neurons. It is also easier to find the optimal architecture from the FCC 

prototype. In contrast, if we use the MLP or BMLP, it will be more difficult. Because there are 
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more neurons, and from hence there are more possibilities.  

Architecture Parity-3 Parity-7 Parity-15 Parity-31 Parity-63 

MLP 4/16 8/64 16/256 32/1024 64/4096 

BMLP 3/14 5/44 9/152 17/560 33/2144 

FCC 2/9 3/27 4/70 5/170 6/399 

 Table 4.1: Number of neurons/weights required for different parity problems using neural 

network architectures 

 

4.1.2 Error Back Propagation Algorithm 

 The steepest descent gradient method is a well-known technique in optimization and 

training neural networks even though it was named differently as the Widrow-Hoff learning rule 

or the delta learning rule. Before the appearance of the Error Back Propagation (EBP), it had 

very limited ability to train neural networks, which consist of one input layer and one output 

layer (Fig 4.4). In order to train this type of neural network, this method has to calculate 

gradients of an error function of each neural output with respect to each weight. Assume the total 

error function LMS (Least Mean Square) is defined as: 
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 where o = f(net) 

  p: number of patterns 

  j: number of outputs 

 Take the derivative of LMS with respect to the weight wij 
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 where xi is input signal 

 For each training pattern, each weight will be updated by this formula 

                                                                ijijij www                                                            (4.6)  

 where α is a learning constant 

 
Fig. 4.4: Neural network with one input layer and one output layer 

 

 According to this algorithm, the neuron weights will change in proportional to the error 

values between the desired outputs and the actual outputs, and to the derivative of the activation 

function, and to the input signal. However, we will face difficulties to train multi-layer neural 

networks with hidden layers if we try to apply the same approach. The reason is that neural 

networks do not have target values of each neuron output in hidden layers. Therefore, we do not 

know how to tell hidden units what to do. In other words, the contribution of weights in hidden 

layers to outputs is unknown. Actually, this unsolved question used to be a big problem which 

made neural networks fall out of flavor after an initial period of high popularity in 1950s. It took 
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30 years before the Error Back Propagation popularized a new way to train hidden neurons. And 

this algorithm has lead to the new waves of neural network researches and applications. 

 
Fig. 4.5: Neural network with one hidden layer  

 

 The EBP is considered as a first order gradient method. This algorithm proposed a way to 

train hidden neurons in multi-layer networks through the back-propagation technique. From 

hence, it allows us to compute derivatives of error functions with respect to each weight. The 

EBP is a fundamental algorithm in training neural networks, and understanding the EBP would 

help us grasp more advanced training algorithms later. Because of this reason, this section will 

present more details about this algorithm. In order to simplify the presentation, training neural 

networks with one pattern will be described here.  
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The gradient with respect to weight: ijij wEw  /
       

 (4.8)  

The set of nodes anterior to unit i:  iji wjA  :  

The set of nodes posterior to unit j:  ijj wiP  :   

( 2) Forward propagation, the input units are determined by the external input signal x. 

All other units propagate forward and their outputs are defined as following: 
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where f is an activation function 

( 3) Calculate error function between desired values and actual values 
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( 4) Calculate gradient at the output layer by the use of chain rule. 
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Put these factors together we have jiij yw         (4.14)  

( 5) Error back propagation: after calculating errors at output units, it has to be 

propagated back to calculate errors of hidden units. Once again the chain rule is 

applied to expand the error function of hidden units in terms of posterior nodes.   
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Put these factors together we have 
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( 6) Error back propagation will continue until the derivative of the error function with 

respect to each weight is done   
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( 7) Update weights for each training pattern in each iteration 
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 As seen above, the EBP algorithm includes in mathematic equations which look 

complicated. In fact, its process is intuitively very clear. When a training pattern is clamped, it 

will propagate through a network and produce an actual value at each output neuron. Each actual 

value is compared with each desired value to calculate the error. In order to train neural 

networks, training algorithms have to minimize this error value close to zero by adjusting 
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network weights as gradient methods. However, just by applying this rule straightforwardly, 

networks cannot update new weights of hidden neurons because these units do not have δ values. 

The EBP solved this problem by the chain rule which distributes each error value to all hidden 

neurons that it is connected to and then weighs for each connection. In other words, a hidden 

neuron will receive a δ value which is equal to a δ value of each output unit multiplied by the 

weight of connection between those units. 

 The EBP algorithm is a breakthrough which proposed a new way to train neural networks 

with hidden layers. It sets up a foundation for many advanced training algorithm later. It also has 

an advantage over advanced algorithms in term of computing cost, which plays a very important 

role in training large neural networks for many real applications. However, the EBP also has 

many disadvantages. It is known as a slow training algorithm which is very difficult to train with 

small errors. Besides that, this algorithm usually requires larger networks to solve the same 

problems compared with advanced algorithms. As considered in the section about neural 

network architectures, unoptimal architectures may result in undesired outputs. On account of 

these deficiencies, the EBP is not considered as an efficient training algorithm. Many works to 

improve the EBP in term of convergence speed have been done, but their success is not enough 

to be more realistic and applicable [56]-[58]. Because of this reason, the advanced training 

algorithms as Levernberg Marquardt (LM) are used the most. They require more computations, 

but they are more efficient with faster convergence and smaller error.  

 

4.1.3 Lavenberg Marquardt Algorithm 

 The Lavenberg Marquardt algorithm is a combination between the gradient descent 

method and the Gauss-Newton method. It gives exchange between the stability of the first order 



64 
 

method and the speed of the second order method. When the current solution is far from the 

correct solution, the Lavenberg Marquardt algorithm behaves as the steepest gradient method, 

which is slow but its convergence is guaranteed. Vice versa, when the current solution is close to 

the correct solution, it behaves as the Gauss-Newton method, which is much faster. This explains 

why the Laveberg Marquardt algorithm can train neural networks with smaller errors and faster 

than the Error Back Propagation.  

 Like the quasi Newton method, the Lavenberg Marquardt algorithm was designed to 

approach second order speed without calculating the Hessian matrix with second derivatives. 

Instead it just approximates by using the Jacobian matrix, which contains first derivatives with 

respect to weights, biases and network errors. The Jacobian matrix can be calculated through the 

error back propagation technique as presented in the previous section, which is less complicated 

than the Hessian matrix.   

 Steepest descent method 

                                                            
gkk  ww 1                                                           (4.22)    
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 Newton method 
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  where Ak is Hessian matrix 
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 Gauss-Newton method 
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  Where J is Jacobian matrix 
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  N: number of weights 

  P: number of patterns 

  M: number of output 

 Lavenberg-Marquardt method 

                                                                        JJA T2                                                          (4.28)  
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                                                                        eJg T2                                                           (4.29)  
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  where g - gradient vector of size N  

             e - error vector of size M*P 

  Derivatives: 
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  where pmpmpm ode   
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 From equation 4.30, we see that when the scalar factor μ is small, the Lavenberg 

Marquardt is similar to the Gauss-Newton method. In contrast, when the scalar factor μ is large, 

it is similar to the steepest decent method with a small step size. Because the Gauss-Newton 

method converges much faster with higher accuracy, thus the scalar factor μ is decreased after 
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each successful iteration, and increased in case a tentative iteration tends to increase the 

performance function. In other words, the scalar is a factor to shift the Lavenberg Marquardt 

between the Gauss-Newton method and the steepest decent method to reduce the performance 

function. This factor is normally adjusted automatically by the algorithm.  

 The Lavenberg Marquardt has more advantages than the Error Back Propagation in terms 

of convergence speed and smaller error. However, the Lavenberg Marquardt has to compute the 

Jacobian matrix J and the inversion of J
T
J square matrix, which is not suitable and practical for 

large neural networks. That is the reason why the training algorithm is still a challenging topic in 

neural network researches.    

 

4.2 Training Neural Networks with Improved Simplex Method 

 Both the Error Back Propagation and the Lavenberg Marquardt have pros and cons. The 

EBP requires less computation but converges extremely slowly with complex networks. In 

contrast, the LM has more advantages than the EBP in terms of converge speed, success rate, 

number of neurons, etc. but it is not efficient in training large neural networks. Its computational 

cost increases approximately proportional to N
2
 size of problems. These two well-known 

algorithms have ability to solve many practical problems, but they are very limited with some 

reasons have just been presented above. 

 In order to train neural networks more efficiently, there need to be reliable algorithms 

having the ability to train neural networks fast enough without expensive computational cost. 

The Nelder Mead’s simplex method is a simple algorithm which has potential to meet these 

criterions. In every iteration, it just computes an extra vertex and evaluates its function value to 

converge; whereas, the EBP and the LM require the back propagation to compute the gradient 
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matrix and the Jacobian matrix. In other words, the Nelder Mead’s simplex method can train 

neural networks only by forward propagation, which is much simpler. Unlike the EBP and the 

LM algorithms, the simplex method’s performance does not depend on the number of training 

patterns. When the number of training patterns increases, the LM has to compute the bigger size 

of the Jacobian matrix and the EBP is required to propagate through all patterns iteratively. 

Unfortunately, the original simplex method is not very successful in training neural networks. As 

presented in previous sections, this algorithm faces difficulties in optimizing high dimensional 

problems. Therefore, its training success rate is not very good, and definitely it is not a reliable 

trainer. By adapting the simplex method with quasi gradient search, the improved simplex 

method performs much better. Its convergence rate in optimization increases magnificently. This 

section will present how the improved simplex method with an extra vertex can train neural 

networks with some parity-N problems. Then its performance is compared with the EBP. 

Moreover, three different types of architectures will be used in these experiments. 

 Multilayer Perceptron (MLP) with one hidden layer and one output: number of hidden 

neurons is equal to number of patterns Fig. 4.6.  
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Fig. 4.6: Multilayer perceptron neural network to train parity-N problems 
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Parity-N Algorithm Success rate 
Average 

Iteration 

Comp. 

time (s) 

Parity-2 EBP 96% 6226 2.3969 

SIM 39% 190 0.0203 

SIM_Q 100% 293 0.0513 

Parity-3 EBP 100% 8423 3.1235 

SIM 30% 437 0.0542 

SIM_Q 100% 739 0.1459 

Parity-4 EBP 78% 113902 37.007 

SIM Failure - - 

SIM_Q 75% 21139 4.9239 

Parity-5 EBP 58% 9357 5.5821 

SIM Failure - - 

SIM_Q 55% 23595 6.7642 

  
Table 4.2: Comparison of training algorithms with MLP architecture 

 

 Bridged Multilayer Perceptron (BMLP) with one hidden layer and one output: number of 

hidden neurons is equal to number of patterns Fig. 4.7. 
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Fig. 4.7: Bridged multilayer perceptron neural network to train parity-N problems 
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Parity-N Algorithm Success rate 
Average 

Iteration 

Comp. 

time (s) 

Parity-2 EBP 100% 10137 4.167 

SIM 100% 334 0.0337 

SIM_Q 100% 95 0.0177 

Parity-3 EBP 100% 7415 3.651 

SIM 85% 841 0.0909 

SIM_Q 100% 278 0.0582 

Parity-4 EBP 85% 164645 69.419 

SIM Failure - - 

SIM_Q 100% 4510 1.068 

Parity-5 EBP 2% 21931 5.156 

SIM Failure - - 

SIM_Q 97% 14125 4.1983 

 
 

Table 4.3: Comparison of training algorithms with BMLP architecture 

 

 Fully Connected Cascade (FCC): two neurons are used to train parity- 2, 3 and three 

neurons are used to train parity- 4, 5 Fig. 4.8.   
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Fig. 4.8: Fully connected cascade neural network to train parity-N problems 
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Parity-N Algorithm Success rate 
Average 

Iteration 

Comp. 

time (s) 

Parity-2 EBP 100% 15144 5.567 

SIM 100% 331 0.0345 

SIM_Q 100% 105 0.0206 

Parity-3 EBP 100% 14833 4.848 

SIM 43% 539 0.0548 

SIM_Q 100% 240 0.0435 

Parity-4 EBP 100% 79703 25.636 

SIM Failure - - 

SIM_Q 95% 14301 2.9833 

Parity-5 EBP 7% 204759 77.125 

SIM Failure - - 

SIM_Q 80% 18346 4.4676 

 
 

Table 4.4: Comparison of training algorithms with fully connected cascade architecture 

 

 From the experiments, we can conclude that the improved simplex method is able to train 

neural networks. It even converges much faster than the Error Back Propagation in most cases. 

Its success rate is consistently high. Whereas, the original simplex method does not converge 

really well, and fails to train parity-4, parity-5. Although the improved simplex method shows its 

ability to train neural networks with lower computing cost, it also has some disadvantages which 

need to be improved. It is not very stable, and normally requires more neurons than the LM 

algorithm. In order words, the improved simplex method has difficulty to train neural networks 

with optimum architectures. This deficiency may come from the accuracy of the quasi gradient 

methods, which is an interesting topic of future researches. Overall, the improved simplex 

method still has some advantages than the EBP and LM algorithms and it can be applied in many 

practical problems. Next section will present applications of the improved simplex method.    

 

4.3 Control Robot Arm Kinematics with Improved Simplex Method 
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 The Error Back Propagation (EBP) is considered as a breakthrough to train neural 

networks, but it is not an effective algorithm because of its slow convergence. The Lavenberg 

Marquardt is much faster but it is not suitable for large networks. Although these two algorithms 

are well-known, they usually face difficulties in many real applications because of their complex 

computations. Training neural networks to control robot arm kinematics is a typical example. 

1
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2
R





EffectorEnd

 
Fig. 4.9: Two-link planar manipulator 

 

 Forward kinematics is a practical example which can be resolved by neural networks. 

Neural networks can be trained to determine the position x and y of robot arms based on the data 

α, β read from sensors at the joints. This data set can be calculated from the equations (4.35, 

4.36). While R1, R2 are the fixed length arms and α, β are the movement angles of robot arms as 

shown in Fig. 4.9. By sensing its movement angles α, β, the position x and y of a robot arm can 

be determined. 

                                                                              
)cos(cos 21   RRx                                                       (4.35) 

                                                                              
)sin(sin 21   RRy                                                        (4.36)  
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 To train a neural network with three neurons fully cascaded in Fig. 4.10, we use 2500 

(50x50) training patterns generated from equations (4.35), (4.36) with parameters α, β uniformly 

distributed in the range of [0, π] and R1= R2= 0.5. The desired outputs and the actual outputs 

from this network are depicted in Fig. 4.11 and Fig. 4.12. 
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Fig. 4.10: Neural network architecture to control robot arm kinematics 

 

 
Fig. 4.11: Desired output (a) and actual output (b) from the neural network in x direction 



74 
 

 
Fig. 4.12: Desired output (a) and actual output (b) from the neural network in y direction 

 

 As we can see, the desired outputs and actual outputs from the neural network are not so 

much different with an error about 0.001. The advantage of this algorithm in training neural 

networks is that its computational cost is proportional to the number of weights not the number 

of input patterns. For this particular case, all 2500 patterns can be applied iteratively, and the 

improved simplex method will train neural networks by optimizing a function with seven 

variables, which are equal to seven weights. In contrast, training neural networks with the Error 

Back Propagation for 2500 patterns seems impractical because it has to adjust its weights for 

each training pattern in each iteration. Therefore, its training process is extremely time-

consuming and inapplicable for this particular case.  The Levenberg Marquardt is known as a 

fast training algorithm, but its training ability is limited by the number of input patterns P, 

weights N, and outputs M. In other words, the problem becomes more difficult with the 

increasing size of a network. In each iteration, this algorithm has to calculate the Jacobian matrix 

JP*MxN and the inversion of J
T
J square matrix. It is obvious that the LM algorithm cannot train 

neural networks with seven weights and 2500 input patterns for this robot arm kinematics 
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because of the huge size of Jacobian matrix J2500x7, which over-limits computing capability of PC 

computers. In order to train neural networks with the EBP or LM algorithm, the size of training 

patterns usually has to be reduced. This will ease the computing tension but it will affect the 

accuracy of neural network outputs significantly. Therefore, the actual outputs may be much 

different from the desired outputs. In contrast, the increased size of input patterns may affect the 

convergence rate, but not the training ability of the improved simplex method. This character 

makes it different from the Error Back Propagation and the Lavenberg Marquardt.  

 The improved simplex method can be a useful algorithm to train neural networks for 

many real applications. The improved simplex method can be used to train neural networks in 

modeling. Curve fitting is a typical example. Neural networks has ability to approximate 

functions more precisely than the fuzzy system which is well-known. The same neural network 

architecture as Fig. 4.10 is used to approximate the function f in Fig. 4.13 and its outputs are 

compared in Fig. 4.14. 

 

Fig. 4.13: Desired output of a function 
22 )3(5.0)4(15.04  yxef  
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Fig. 4.14: Output from fuzzy system (a), output from neural network (b)
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Chapter 5 

Conclusions 

 

 Upon the comparative study of derivative free optimizations algorithms, it seems like the 

improved simplex method has more advantages than other algorithms based on evolutionary 

computations. Their comparison was summarized in Table 2.3-2.7. The improved simplex 

algorithm with quasi gradient search is presented with details in this paper. It is a derivative free 

optimization algorithm with two simple approaches of gradient search described. This algorithm 

can be used when it is difficult to find function derivatives, or if finding such derivatives are time 

consuming. This algorithm was tested over several benchmark problems of local minimum 

optimization, and shows its better performance than the original simplex method in terms of both 

convergence rate and computing time. Therefore, it shows a great deal of large scale 

optimization problems and has been applied successfully in synthesizing filters and training 

neural networks. This algorithm also shows very promising results compared with other well-

known evolutionary algorithms independent of gradients as the genetic algorithm, the particle 

swarm algorithm, or the differential evolution algorithm, etc. it outperforms these algorithms 

with much higher success rate and at least ten to hundred times faster. The experiments tell that 

this algorithm is an effective alternative for other optimization algorithms. However, the 

modified algorithm presented in this paper can be improved by using other numerical techniques 

to calculate more accurate gradients. By using the analytical gradient instead of the quasi 
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gradient for some optimization problems, the improved simplex method can converge at least ten 

times faster. These types of improvements can be a good topic of future research. 
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APPENDIX 

 

APPENDIX 1: Nelder Mead’s simplex method 

 

function [f_BEST,BEST]=nelder_mead_nd(obj,x0,d_SIM,df_min,ite_max,times) 

%   INPUT ARGUMENTS: 

%   nelder_mead_nd(@testf1,[100,100],1,1e-4,2e2,100) 

%   obj         - Handle of objective function. 

%   x0          - Initial starting point. 

%   d_SIM   - Size of initial simplex. 

%   df_min  - Minimum improvement required for termination. 

%   ite_max - Desired number of iterations. 

 

%  OUTPUT ARGUMENTS: 

%   BEST        - Location of baest solution. 

%   f_BEST     - Best value of the objective found. 

%   SIMPLEX - Matrix conatining final simplex. 

%   f                 - Objective values for each point in the simplex. 

 

tavg_ite=0; 

tsecond=0; 

second=0; 

succ_time=0; 

avg_ite=0; 

avg_time=0; 

avg_error=0; 

average_min=0; 

%Initialize parameters and create simplex 

for itee=1:times,   %training timesa=1; 

    tic; 

    a=1; 

    b=2;  

    c=0.5; 

    n=length(x0); 

    X0=ones(n,1)*x0; 

    SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices 

    f(n+1)=0; 

    f_mid(n)=0; 

    mid=zeros(n)
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for init=1:n+1 

        f(init)=feval(obj,SIMPLEX(init,:)); 

    end 

    init=0; 

    SIMPLEX(:,end+1)=f'; 

    SIMPLEX=sortrows(SIMPLEX,n+1);   %sort row depending of value of f in ascending order; 

 

    f=SIMPLEX(:,end)'; 

    SIMPLEX(:,end)=[]; 

     

    %% Simplex Code 

    for ite=1:ite_max, 

         Pb=sum(SIMPLEX(1:n,:))/n;      %calculate the centroid P_ of points with i#h          

         Ps=(1+a)*Pb-a*SIMPLEX(end,:);    %calculate reflection point of Ph:Ps   

         f_Ps=feval(obj,Ps);  

 

         if f_Ps<f(1)    %f(P*)<f(l) 

               Pss=(1-b)*Pb+b*Ps;   %calculate P** by expansion 

               f_Pss=feval(obj,Pss); 

               if f_Pss<f(1)    %f(P**)<f(l) 

                   SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                   f(end)=f_Pss; 

               else 

                  SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                  f(end)=f_Ps; 

               end       

         else 

             check=0; 

             for i=1:n, 

                 if f_Ps>f(i)      % f_P*>f_i and i#h  

                     check=1;     

                     break; 

                 end 

             end 

 

             if check==0 

                 SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                 f(end)=f_Ps; 

             else 

                 if f_Ps>f(end)    %f_P*>f_h 

                     Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion 

                     f_Pss=feval(obj,Pss); 

                     if f_Pss>f(end)    %f(P**)>f(h) 

                         for i=1:n+1 

                            SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2 
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                            f(i)=feval(obj,SIMPLEX(i,:)); 

                         end 

                     else 

                        SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                        f(end)=f_Pss;  

                     end 

                 else 

                    SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                    f(end)=f_Ps; 

                 end      

             end 

 

         end 

 

        % reorder and display iteration output     

        SIMPLEX(:,end+1)=f'; 

        SIMPLEX=sortrows(SIMPLEX,n+1); 

 

        f=SIMPLEX(:,end)'; 

        SIMPLEX(:,end)=[]; 

       %calculate error 

        error(ite)=f(1); 

        t(ite)=ite; 

     

       % terminate condition3 for neural network training 

        if f(1)<df_min, 

            succ_time=succ_time+1; 

            avg_ite=avg_ite+ite; 

            avg_time=avg_time+1; 

            avg_error=avg_error+f(1); 

            second=second+toc; 

            break;  

        end 

     end; 

 

    % display the result 

    succ_rate=succ_time/times; 

    BEST=SIMPLEX(1,:); 

    f_BEST=f(1); 

    average_min=average_min+f_BEST; 

    tavg_ite=tavg_ite+ite; 

    tsecond=tsecond+toc; 

    disp(' '); 

    disp(['Minimum value of f = ',num2str(f_BEST),]) 

    disp(['located at x = [',num2str(BEST),'].']) 
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    disp(['Success rate = [',num2str(succ_rate),'].']) 

    %plot 

    semilogy(t,error,'-r'); 

    xlabel('Iterations') 

    ylabel('Error') 

    title('Error Plot') 

    ax=axis; ax(3)=0; ax(2)=110; axis(ax); 

    hold on;   

end 

     

    avg_iteration=avg_ite/avg_time; 

    avg_errors=avg_error/avg_time; 

    avg_second=second/avg_time; 

    tavg_iteration=tavg_ite/times; 

    avg_minimum=average_min/times; 

    avg_tsecond=tsecond/times; 

    disp(['Average Iteration = ',num2str(avg_iteration),]) 

    disp(['Average Error = ',num2str(avg_errors),]) 

    disp(['Average second = ',num2str(avg_second),]) 

    disp(['tAverage Iteration = ',num2str(tavg_iteration),]) 

    disp(['tAverage Minimum = ',num2str(avg_minimum),]) 

    disp(['tAverage second = ',num2str(avg_tsecond),]) 

return 
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APPENDIX 2: Improved simplex method with quasi- gradient method using an extra vertex 

function [f_BEST,BEST]=nelder_mead_ndmd1(obj,x0,d_SIM,df_min,ite_max,times) 

%   INPUT ARGUMENTS: 

%   nelder_mead_ndmd1(@testf1,[100,100],1,1e-4,2e2,100) 

%   obj         - Handle of objective function. 

%   x0          - Initial starting point. 

%   d_SIM   - Size of initial simplex. 

%   df_min  - Minimum improvement required for termination. 

%   ite_max - Desired number of iterations. 

 

%  OUTPUT ARGUMENTS: 

%   BEST        - Location of baest solution. 

%   f_BEST     - Best value of the objective found. 

%   SIMPLEX - Matrix conatining final simplex. 

%   f                 - Objective values for each point in the simplex. 

 

format long; 

tavg_ite=0; 

tsecond=0; 

second=0; 

succ_time=0; 

avg_ite=0; 

avg_time=0; 

avg_error=0; 

average_min=0; 

%% Initialize parameters and create simplex 

for itee=1:times,   %training timesa=1; 

    tic; 

    alpha=1; 

    a=1; 

    b=2; 

    c=0.5; 

    n=length(x0); 

    mo=zeros(1,n); 

    mu=0.1; 

    X0=ones(n,1)*x0; 

    SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices 

    f(n+1)=0; 

    f_mid(n)=0; 

    mid=zeros(n); 

 

    for init=1:n+1 

        f(init)=feval(obj,SIMPLEX(init,:)); 

    end 
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    init=0; 

    SIMPLEX(:,end+1)=f'; 

    SIMPLEX=sortrows(SIMPLEX,n+1);    %sort row depending of value of f in ascending order; 

 

    f=SIMPLEX(:,end)'; 

    SIMPLEX(:,end)=[]; 

 

    %% Simplex Code 

    for ite=1:ite_max, 

          

         Pb=sum(SIMPLEX(1:n,:))/n;       %calculate the centroid P_ of points with i#h 

         Ps=(1+a)*Pb-a*SIMPLEX(end,:);    %calculate reflection point of Ph:Ps   

         f_Ps=feval(obj,Ps);  

         Pss=(1-b)*Pb+b*Ps;    %calculate P** by expansion 

         f_Pss=feval(obj,Pss); 

        

         if f_Ps>f(1)  

                   

             %% using composite point 

             for i=1:n, 

                ord(i)=SIMPLEX(i,i); 

             end 

             f_ord=feval(obj,ord); 

             for i=1:n, 

                if mod(i,2)==0 

                    grad(i)=(f(i-1)-f_ord)/(SIMPLEX(i-1,i)-ord(i)); 

                else 

                    grad(i)=(f(i+1)-f_ord)/(SIMPLEX(i+1,i)-ord(i)); 

                end 

             end          

             Gs=SIMPLEX(1,:)-alpha*grad/sqrt(sum(grad.^2)); 

             

             % Calculate reflected point 

             P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:); 

             P1=SIMPLEX(1,:); 

             P2=Gs; 

             PP=(P3-P1).*(P2-P1); 

             u=sum(PP)/sum((P2-P1).^2); 

             Gs=P1+u*(P2-P1); 

             f_Gs=feval(obj,Gs); 

              

             if f_Gs<f_Ps 

                 Ps=Gs;             %new reflected point 

                 f_Ps=f_Gs; 

                 Pb=SIMPLEX(1,:); 
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                 Pss=(1-b)*SIMPLEX(1,:)+b*Ps;   %calculate P** by expansion 

                 f_Pss=feval(obj,Pss); 

             end    

         end 

         if f_Ps<f(1)    %f(P*)<f(l) 

               if f_Pss<f(1)    %f(P**)<f(l) 

                   SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                   f(end)=f_Pss; 

               else 

                  SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                  f(end)=f_Ps; 

               end         

         else 

             check=0; 

             for i=1:n, 

                 if f_Ps>f(i)      % f_P*>f_i and i#h  

                     check=1;     

                     break; 

                 end 

             end 

             if check==0 

                 SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                 f(end)=f_Ps; 

             else 

                 if f_Ps>f(end)    %f_P*>f_h 

                     Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion 

                     f_Pss=feval(obj,Pss); 

                     if f_Pss>f(end)    %f(P**)>f(h) 

                         for i=1:n+1 

                            SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2 

                            f(i)=feval(obj,SIMPLEX(i,:)); 

                         end 

                     else 

                        SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                        f(end)=f_Pss;  

                     end 

                 else 

                    SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                    f(end)=f_Ps; 

                 end      

             end 

         end 

 

        % reorder and display iteration output     

        SIMPLEX(:,end+1)=f'; 
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        SIMPLEX=sortrows(SIMPLEX,n+1); 

        f=SIMPLEX(:,end)'; 

        SIMPLEX(:,end)=[]; 

        error(ite)=f(1); 

        t(ite)=ite; 

        % terminate condition3 for neural network training 

        if f(1)<df_min, 

            succ_time=succ_time+1; 

            avg_ite=avg_ite+ite; 

            avg_time=avg_time+1; 

            avg_error=avg_error+f(1); 

            second=second+toc; 

            break;  

        end 

     end; 

    % display the result 

    succ_rate=succ_time/times; 

    BEST=SIMPLEX(1,:); 

    f_BEST=f(1); 

    average_min=average_min+f_BEST; 

    tavg_ite=tavg_ite+ite; 

    tsecond=tsecond+toc; 

    disp(' '); 

    disp(['Minimum value of f = ',num2str(f_BEST),]) 

    disp(['located at x = [',num2str(BEST),'].']) 

    disp(['Success rate = [',num2str(succ_rate),'].']) 

    %plot 

    semilogy(t,error,'b'); 

    xlabel('Iterations') 

    ylabel('Error') 

    hold on;  

end 

    avg_iteration=avg_ite/avg_time; 

    avg_errors=avg_error/avg_time; 

    avg_second=second/avg_time; 

    tavg_iteration=tavg_ite/times; 

    avg_minimum=average_min/times; 

    avg_tsecond=tsecond/times; 

    disp(['Average Iteration = ',num2str(avg_iteration),]) 

    disp(['Average Error = ',num2str(avg_errors),]) 

    disp(['Average second = ',num2str(avg_second),]) 

    disp(['tAverage Iteration = ',num2str(tavg_iteration),]) 

    disp(['tAverage Minimum = ',num2str(avg_minimum),]) 

    disp(['tAverage second = ',num2str(avg_tsecond),]) 

return 
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APPENDIX 3: Improved simplex method with quasi-gradient method using a hyper plane  

  equation 

function [f_BEST,BEST]=nelder_mead_ndmd2(obj,x0,d_SIM,df_min,ite_max,times) 

%   INPUT ARGUMENTS: 

%   nelder_mead_ndmd2(@testf1,[100,100],1,1e-4,2e2,100) 

%   obj         - Handle of objective function. 

%   x0          - Initial starting point. 

%   d_SIM   - Size of initial simplex. 

%   df_min  - Minimum improvement required for termination. 

%   ite_max - Desired number of iterations. 

 

%  OUTPUT ARGUMENTS: 

%   BEST    - Location of baest solution. 

%   f_BEST  - Best value of the objective found. 

%   SIMPLEX - Matrix conatining final simplex. 

%   f       - Objective values for each point in the simplex. 

 

format long; 

tavg_ite=0; 

tsecond=0; 

second=0; 

succ_time=0; 

avg_ite=0; 

avg_time=0; 

avg_error=0; 

average_min=0; 

% Initialize parameters and create simplex 

for itee=1:times,   %training timesa=1; 

    tic; 

    alpha=1; 

    a=1; 

    b=2; 

    c=0.5; 

    n=length(x0); 

    mo=zeros(1,n); 

    mu=0.1; 

    X0=ones(n,1)*x0; 

    SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices 

    f(n+1)=0; 

    f_mid(n)=0; 

    mid=zeros(n); 

 

    for init=1:n+1 
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        f(init)=feval(obj,SIMPLEX(init,:)); 

    end 

    init=0; 

    SIMPLEX(:,end+1)=f'; 

    SIMPLEX=sortrows(SIMPLEX,n+1);    %sort row depending of value of f in ascending order; 

 

    f=SIMPLEX(:,end)'; 

    SIMPLEX(:,end)=[]; 

 

    % Simplex Code 

    for ite=1:ite_max, 

          

         Pb=sum(SIMPLEX(1:n,:))/n;       %calculate the centroid P_ of points with i#h 

         Ps=(1+a)*Pb-a*SIMPLEX(end,:);    %calculate reflection point of Ph:Ps   

         f_Ps=feval(obj,Ps);  

         Pss=(1-b)*Pb+b*Ps;    %calculate P** by expansion 

         f_Pss=feval(obj,Pss); 

        

         if f_Ps>f(1)  

             % using hyper plane equation 

             I=SIMPLEX(:,1:n); 

             A=ones(1,n+1)'; 

             A(:,2:n+1)=I; 

             B=f'; 

             P=pinv(A)*B; 

             grad=P'; 

             Gs=SIMPLEX(1,:)-alpha*grad(1,2:n+1);     

             % Calculate reflected point 

             P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:); 

             P1=SIMPLEX(1,:); 

             P2=Gs; 

             PP=(P3-P1).*(P2-P1); 

             u=sum(PP)/sum((P2-P1).^2); 

             Gs=P1+u*(P2-P1); 

             f_Gs=feval(obj,Gs); 

              

             if f_Gs<f_Ps 

                 Ps=Gs;             %new reflected point 

                 f_Ps=f_Gs; 

                 Pb=SIMPLEX(1,:); 

                 Pss=(1-b)*SIMPLEX(1,:)+b*Ps;   %calculate P** by expansion 

                 f_Pss=feval(obj,Pss); 

             end 

            

         end 
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         if f_Ps<f(1)    %f(P*)<f(l) 

               if f_Pss<f(1)    %f(P**)<f(l) 

                   SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                   f(end)=f_Pss; 

               else 

                  SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                  f(end)=f_Ps; 

               end         

         else 

             check=0; 

             for i=1:n, 

                 if f_Ps>f(i)      % f_P*>f_i and i#h  

                     check=1;     

                     break; 

                 end 

             end 

             if check==0 

                 SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                 f(end)=f_Ps; 

             else 

                 if f_Ps>f(end)    %f_P*>f_h 

                     Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion 

                     f_Pss=feval(obj,Pss); 

                     if f_Pss>f(end)    %f(P**)>f(h) 

                         for i=1:n+1 

                            SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2 

                            f(i)=feval(obj,SIMPLEX(i,:)); 

                         end 

                     else 

                        SIMPLEX(end,:)=Pss;      %replace Ph by P** 

                        f(end)=f_Pss;  

                     end 

                 else 

                    SIMPLEX(end,:)=Ps;        %replace Ph by P* 

                    f(end)=f_Ps; 

                 end      

             end 

         end 

 

        % reorder and display iteration output     

        SIMPLEX(:,end+1)=f'; 

        SIMPLEX=sortrows(SIMPLEX,n+1); 

 

        f=SIMPLEX(:,end)'; 
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        SIMPLEX(:,end)=[]; 

        error(ite)=f(1); 

        t(ite)=ite; 

 

        % terminate condition3 for neural network training 

        if f(1)<df_min, 

            succ_time=succ_time+1; 

            avg_ite=avg_ite+ite; 

            avg_time=avg_time+1; 

            avg_error=avg_error+f(1); 

            second=second+toc; 

            break;  

        end 

     end; 

    % display the result 

    succ_rate=succ_time/times; 

    BEST=SIMPLEX(1,:); 

    f_BEST=f(1); 

    average_min=average_min+f_BEST; 

    tavg_ite=tavg_ite+ite; 

    tsecond=tsecond+toc; 

    disp(' '); 

    disp(['Minimum value of f = ',num2str(f_BEST),]) 

    disp(['located at x = [',num2str(BEST),'].']) 

    disp(['Success rate = [',num2str(succ_rate),'].']) 

    % plot 

    semilogy(t,error,'b'); 

    xlabel('Iterations') 

    ylabel('Error') 

    hold on; 

end 

    avg_iteration=avg_ite/avg_time; 

    avg_errors=avg_error/avg_time; 

    avg_second=second/avg_time; 

    tavg_iteration=tavg_ite/times; 

    avg_minimum=average_min/times; 

    avg_tsecond=tsecond/times; 

    disp(['Average Iteration = ',num2str(avg_iteration),]) 

    disp(['Average Error = ',num2str(avg_errors),]) 

    disp(['Average second = ',num2str(avg_second),]) 

    disp(['tAverage Iteration = ',num2str(tavg_iteration),]) 

    disp(['tAverage Minimum = ',num2str(avg_minimum),]) 

    disp(['tAverage second = ',num2str(avg_tsecond),]) 

return 
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APPENDIX 4: Test function 

 

function [f]=testf1(x,c) 

% Robot arm training  

f=0; 

p=length(c); 

gain=0.5; 

for i=1:p 

       % three neurons 

       f1=tanh(gain*(x(1)*c(i,1)+x(2)*c(i,2)+x(3))); 

       f2=tanh(gain*(x(4)*c(i,1)+x(5)*c(i,2)+x(6)*f1+x(7))); 

       f=f+(1/p)*(tanh(gain*(x(8)*c(i,1)+x(9)*c(i,2)+x(10)*f1+x(11)*f2+x(12)))-c(i,3))^2; 

end 

return 


