
i

Improved Nelder Mead’s Simplex Method and Applications

by

Nam Dinh Pham

A dissertation submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama

May 7, 2012

Keywords: Nelder Mead’s simplex method, quasi gradient method,

 lossy filter, Error Back Propagation, Lavenberg Marquardt, neural networks

Copyright 2012 by Nam Dinh Pham

Approved by

Bogdan Wilamowski, Chair, Professor of Electrical and Computer Engineering

Lloyd Stephen Riggs, Professor of Electrical and Computer Engineering

Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Michael Baginski, Associate Professor of Electrical and Computer Engineering

Wei-Shinn Ku, Assistant Professor of Computer Science and Software Engineering

ii

Abstract

 Derivative free optimization algorithms are often used when it is difficult to find function

derivatives, or if finding such derivatives are time consuming. The Nelder Mead’s simplex

method is one of the most popular derivative free optimization algorithms in the fields of

engineering, statistics, and sciences. This algorithm is favored and widely used because of its fast

convergence and simplicity. The simplex method converges really well with small scale

problems of some variables. However, it does not have much success with large scale problems

of multiple variables. This factor has reduced its popularity in optimization sciences

significantly. Two solutions of quasi gradients are introduced to improve it in terms of the

convergence rate and the convergence speed. The improved algorithm with higher success rate

and faster convergence which still maintains the simplicity is the key feature of this paper. This

algorithm will be compared on several benchmark functions with the original simplex method

and other popular optimization algorithms such as the genetic algorithm, the differential

evolution algorithm, and the particle swarm algorithm. Then the comparing results will be

reported and discussed.

iii

Acknowledgments

I would like to express my deepest appreciation to my advisor, Professor B. M.

Wilamowski. Without his patience and guidance I would not be in the position I am today. From

him I have learned a multitude of things, of which, engineering is only the tip of the iceberg.

iv

Table of Contents

Abstract .. ii

Acknowledgements .. iii

List of Tables ... vii

List of Figures ... viii

List of Abbreviations ..x

1 Chapter 1: Introduction ...1

1.1 Genetic Algorithm ...5

1.2 Differential Evolution Algorithm ...6

1.3 Particle Swarm Optimization ..7

1.4 Nelder Mead’s Simplex Algorithm ..8

2 Chapter 2: Improved Simplex Method with Quasi Gradient Methods 13

2.1 Deficiency of Nelder Mead’s Simplex Method ..13

2.2 Quasi Gradient Methods ...15

2.2.1 Quasi Gradient Method Using an Extra vertex ..16

2.2.2 Quasi Gradient Method Using a Hyper Plane Equation 17

2.3 Testing Functions ...20

2.4 Experimental Results ..24

3 Chapter 3: Synthesize Lossy Ladder Filters with Improved Simplex Method 35

v

3.1 Filter Synthesis Algorithms ..35

3.1. 1 Butterworth Low- pass Filter ..35

3.1. 2 Chebyshev Low- pass Filter...37

3.1. 3 Inverse Chebyshev Low- pass Filter ...38

3.1. 4 Cauer Elliptic Low- pass Filter ...39

3.2 Ladder Prototype Synthesis Algorithms ...41

3.2. 1 Design Ladder Low-pass Prototype without Zeros ..42

3.2. 2 Design Ladder Low-pass Prototype with Zeros ..44

3.3 Transformation from Low-pass Filters to Other Type Filters ..46

3.4 Lossy Filter Synthesis with Improved Simplex Method ...47

4 Chapter 4: Training Neural Networks with Improved Simplex Method 53

4.1 Artificial Neural Networks ...53

4.1.1 Neural Network Architectures ..54

4.1.2 Error Back Propagation Algorithm ...58

4.1.3 Lavenberg Marquardt Algorithm ..63

4.2 Training Neural Networks with Improved Simplex Method ..67

4.3 Control Robot Arm Kinematics with Improved Simplex Method71

5 Chapter 5: Conclusions ...77

References: ..79

Appendix 1: Nelder Mead’s simplex method ...86

Appendix 2: Improved simplex method with quasi- gradient method using an extra point 90

Appendix 3: Improved simplex method with quasi-gradient method using a hyper plane 94

vi

Appendix 4: Test function ...98

vii

List of Tables

Table 2.1: Coefficients of Kowalik and Osborne function ...22

Table 2.2: Coefficients of Bard Functions ..23

Table 2.3: Comparison of derivative free optimization algorithms of 20-dimensional function ..24

Table 2.4: Comparison of derivative free optimization algorithms of 10-dimensional function ..31

Table 2.5: Evaluation of success rate and computing time of 15-dimensional functions 31

Table 2.6: Evaluation of success rate and computing time of 20-dimensional functions 32

Table 2.7: Evaluation of success rate and computing time of 40-dimensional functions 32

Table 3.1: Transformation of the low pass immittances L and C to ladder arms for high pass,

 band-pass, band-reject, and multiple pass-band filters ...46

Table 4.1: Number of neurons/weights required for different parity problems using neural

 network architectures ..58

Table 4.2: Comparison of training algorithms with MLP architecture ...69

Table 4.3: Comparison of training algorithms with BMLP architecture 70

Table 4.4: Comparison of training algorithms with fully connected cascade architecture 71

viii

List of Figures

Fig. 1.1: Triangular simplex ΔBGW with midpoint M, reflected point R and extended point E ..10

Fig. 1.2: Contracted points C1 and C2, shrinking points S and M toward B 11

Fig. 2.1: The triangular simplex ΔBGW with similar function values at W and G (case (a)) and the

 triangular simplex ΔBGW with similar function values at B and G (case (b)) 15

Fig. 2.2: The simplex ΔBGW with extra point E ...17

Fig. 2.3: Simulated error curves of De Jong function 1(a) and De Jong function 1 with moved

 axis (b) ..27

Fig. 2.4: Simulated error curves of Quadruple function (a) and Powell function (b) 27

Fig. 2.5: Simulated error curves of Parallel hyperellipsoid function (a) and Zakarov function (b)

 ..28

Fig. 2.6: Simulated error curves of Schwefel function (a) and sum of different power function (b)

 ..28

Fig. 2.7: Simulated error curves of Step function (a) and Box function (b) 29

Fig. 2.8: Simulated error curves of Rosenbrock function (a) and Biggs Exp6 function (b) 29

Fig. 2.9: Simulated error curves of Kowalik Osborne function (a) and Colville function (b)30

Fig. 2.10: Simulated error curves of Wood function (a) and Bard function (b) 30

Fig. 3.1: Butterworth filter response ...36

Fig. 3.2: Chebyshev filter response ...37

Fig. 3.3: Inverse Chebyshev filter response ..38

Fig. 3.4: Cauer Elliptic filter response ..39

ix

Fig. 3.5: Doubly terminated ladder network without zeros ..42

Fig. 3.6: General ladder circuit with presence of zeros ..44

Fig. 3.7: Models of real capacitors and real inductors ..47

Fig. 3.8: Chebyshev filter circuit with ideal elements ..48

Fig. 3.9: Chebyshev filter circuit with lossy elements ...48

Fig. 3.10: Magnitude and phase responses (a) and pole locations (b) of filters 49

Fig. 3.11: 4
th

 Chebyshev filter circuit with ideal elements ...51

Fig. 3.12: 4
th

 Chebyshev filter circuit with lossy elements ...51

Fig. 3.13: Magnitude and phase responses (a) and pole locations (b) of filters 52

Fig. 4.1: Multilayer perceptron architecture 3-3-4-1 (MLP) ..56

Fig. 4.2: Bridged multilayer perceptron architecture 3-3-4-1 (BMLP) ..56

Fig. 4.3: Fully connected cascade architecture 3-1-1-1 (FCC) ...57

Fig. 4.4: Neural network with one input layer and one output layer ..59

Fig. 4.5: Neural network with one hidden layer ...60

Fig. 4.6: Multilayer perceptron neural network to train parity-N problems 68

Fig. 4.7: Bridged multilayer perceptron neural network to train parity-N problems 69

Fig. 4.8: Fully connected cascade neural network to train parity-N problems 70

Fig. 4.9: Two-link planar manipulator ..72

Fig. 4.10: Neural network architecture to control robot arm kinematics 73

Fig. 4.11: Desired output (a) and actual output (b) from the neural network in x direction 73

Fig. 4.12: Desired output (a) and actual output (b) from the neural network in y direction 74

Fig. 4.13: Desired output of a function f ...75

Fig. 4.14: Output from fuzzy system (a), output from neural network (b) 76

x

List of Abbreviations

SIM: Nelder Mead’s Simplex Method

EBP: Error Back Propagation

LM: Lavernberg Marquardt

LMS: Least Mean Square

MLP: Multilayer Perceptron

BMLP: Bridged Multilayer Perceptron

FCC: Fully Connected Cascade

RBF: Radial Basis Function

LVQ: Learning Vector Quantization

1

Chapter 1

Introduction

 The desire for optimality is the inherent nature of humans such as a manufacturer wants

to produce its products with the lowest cost, or a delivery company wants to deliver its products

to all distributers with the shortest distance to save gasoline, time, etc. These are the typical

examples which optimization theories can be applied to give optimal solutions. From the

appearance of computers, mathematical theories of optimization have been developed and

applied widely. The computer with its computing power has the ability to implement

optimization theories very efficiently in the manner of time and cost. The goal of the

optimization theories is the creation of a reliable method to optimize models by an intelligent

process. Applications of these theories play more important roles for modern engineering and

planning, etc.

 In real life scientists, engineers, and managers often collect a lot of data and usually fall

into difficult situations how to select different factors to obtain desired results. Optimization is a

process of how to trade off these factors to find the best solution by evaluating their

combinations. Many engineering problems can be defined as optimization problems such as

process design, logistics, process synthesis & analysis, telecommunication network, finding of an

optimal trajectory for a robot arm, the optimal thickness of steel in pressure vessels, etc [1]. In

2

practice, optimization algorithms are able to solve these problems but to find the best solution for

these problems is often not very easy and straightforward because they include in large search

spaces. It will be more challenging particularly in real life systems, which require optimal

solutions in an acceptable amount of time.

 Optimization is a useful and important tool in the decision science and the analysis of

physical systems. In order to use this tool, an objective function has to be defined. This objective

function can be the cost, profit, time, etc. Normally, an objective function is modeled by

unknown variables to describe its characteristics. And optimization algorithms define values of

these variables to meet the requirements of this objective function. If the model is so simplistic,

the solution will not reflect useful insights into practical systems. If the model is so complex,

optimization algorithms may not give solutions. Therefore, models and optimization algorithms

usually have to be complex enough to be handled by the computer. There are numerous

optimization algorithms. Each is developed to solve a particular set of problems, and each has its

own strength and weakness. Users usually have to evaluate a model and decide which algorithm

is suited for [2].

 Discrete and continuous optimization: discrete optimization problems are known as

integer programming problems. In discrete optimization problems, solutions make sense if and

only if variables are integers. To meet this constraint, a good strategy is to solve problems with

real variables and then round them up to the closest integers. This type of work is by no means

guaranteed to give optimal solutions. In contrast with discrete optimization problems, continuous

optimization problems are easier to solve because of the smoothness of continuous functions.

Moreover, these problems have an infinite set of solutions with real values; therefore, we can use

other information at any point to speculate the function’s behavior. However, the same method

3

cannot be applied to solve discrete optimization problems with a finite set of solutions, where

points are close, may have different function values.

 Constrained and unconstrained optimization: constrained optimization problems arise

from models which have constraints on variables. These can be the constraints of input variables

or the constraints to reflect relationships among variables, etc. Unconstrained optimization

problems can be considered as particular cases of constrained optimization problems in which

constraints of variables can be ignored without effect on the solution. Or these constraints can be

counted as penalization terms in the objective functions of unconstrained problems.

 Global and local optimization: local optimization algorithms converge much faster than

global optimization algorithms. However, its solution is just a local one which is the minimum in

the vicinity and it is not guaranteed to be the global solution which is the best of all minima.

 Stochastic and deterministic optimization: in some optimization problems, the model

cannot be fully defined because it depends on quantities that are unknown at the time of

formulation. Normally, a modeler can predict unknown quantities with some degree of

confidence. Stochastic optimization algorithms will use these quantifications of the uncertainty

to produce solutions that optimize the expected performance of the model. Vice versus with

stochastic optimization algorithms, deterministic optimization algorithms assume that the model

is fully specified.

 Each optimization algorithm has different techniques to converge iteratively to optimal

solutions. Some use first derivatives, second derivatives, or function values, etc. to converge.

Some accumulate information from previous iterations to predict its sequential convergence to

target values. The optimization technique is a key to differentiate one algorithm from another. A

good optimization algorithm should possess some following properties:

4

 Robustness: the algorithm has the ability to converge a wide range of problems in its

category

 Efficiency: the algorithm can converge without too expensive computing cost. This

cost can be understood as computing time and storage cost

 Accuracy: the algorithm can give solutions with precision. It is not very sensitive with

errors when being implemented on computers.

 The Nelder Mead’s simplex method [3] is a popular derivative free optimization

algorithm and is a method of choice for many practitioners. It is the prime choice algorithm in

Matlab optimization toolbox. It converges relatively fast and can be implemented relatively

easily compared with other classical algorithms relying on gradients or evolutionary

computations, etc. Unlike gradient methods [4], [5], the simplex method can optimize a function

without calculating its derivatives, which usually require a lot of computing power and are

expensive in high dimensional problems as well. This property makes it more advantageous than

others.

 Although the simplex method is simple and robust in small scale optimization, it easily

fails with large scale optimization. In order to become a reliable optimization tool, it has to

overcome this shortcoming by improving its convergence rate and convergence speed. This

literature will give some new insights on why the simplex method may become inefficient in

high dimensional optimization because of its lack of gradient information. This approach

explains the low convergence rate without concerning its descent property when the objective

function is uniformly convex presented in other literature [6], [7]. The dissertation will

particularly present how to improve the simplex method by combining with two different quasi

5

gradient methods. The improved algorithm without complex mathematic computations can

optimize multi-dimensional problems with higher success rate and faster convergence speed.

 The genetic algorithm [8], the differential evolution algorithm [9], [10] and the particle

swarm algorithm [11], etc. are the other popular derivative free optimization tools which are

widely applied and familiar by researchers and practitioners [12]-[14]. These algorithms can

perform well in both a global and local search and have the ability to find the optimum solution

without getting trapped in local minima. This capability is mostly lacked by local search

algorithms such as the calculus-based algorithms or the simplex method. The big issue of global

search algorithms is the computational cost which often makes their convergence speed much

slower than local search algorithms. The particle swarm optimization is a kind of global search

technique. It is a probabilistic technique which is different from the deterministic and stochastic

techniques. Compared with the genetic algorithm and the differential evolution algorithm, the

particle swarm optimization is simpler in term of computations because its crossover and

mutation operation are done simultaneously while the crossover and mutation operation of the

genetic algorithm and the differential evolution algorithm are done between each pair in the

whole population. With improvements contributed in this paper, the simplex method can be

considered as another optional optimization algorithm which can work much more efficiently

than other well-known derivative free optimization algorithms in many different fields of

engineering or sciences.

1.1 Genetic Algorithm

 The genetic algorithm (GA) is invented to mimic the natural behavior of evolution

according to the Darwin principle of survival and reproduction [15]. Unlike calculus-based

6

methods, GA does not require derivatives, and it also has the ability to do a parallel search in the

solution space simultaneously. Therefore, it is less likely to get trapped in local minima. Like the

particle swarm algorithm and the differential evolution algorithm, GA starts by its initial

population, and each individual is called a chromosome to represent a solution. During each

generation, chromosomes will be evaluated according to their fitness values and evolved to

create new chromosomes for the next generation. New childish chromosomes can be produced in

two different ways either by emerging from two parental chromosomes in current generation

with the crossover operator or by modifying chromosomes with the mutation operator. In order

to maintain the population size, all chromosomes have to go through the natural selecting

process. The chromosomes with better genes or better fitness will have higher probability to go

to the next generation and other ones with worse genes is more likely to be rejected. This

procedure is repeated until the best chromosome close to the optimum solution can be obtained.

Another big advantage of GA is that it can be applied in different domains, not just only in

optimization problems. However, it still has the limitation of premature convergence and low

local convergence speed. Therefore, GA is usually improved by research scholars [16], [17].

1.2 Differential Evolution Algorithm

 The differential evolution algorithm (DE) was introduced by R. Storn and K. Price in

1997 [9], [10]. Today it becomes one of the most robust function minimizers with relatively

simple self-adapting mutation and is able to solve a wide range of optimization problems. The

whole idea of DE is generating a new scheme to compute trial parameter vectors. These new

parameter vectors are computed by adding the weighted difference between two population

members to a third one. If the resulting vector has a lower objective function value than a

7

predefined population member, the newly generated vector will replace the vector with which it

was compared. Through time, this algorithm has been adapted to increase its efficiency. In 2007,

a new concept of multiple trial vectors [18] was introduced into this algorithm. This approach

aims to make DE able to converge for a broader range of problems because one scheme of

calculating trial vectors may work well with certain type of problems but may not work with

other ones. Another approach was proposed where the choice of learning strategies and the two

control parameters F (weighing factor) and CR (crossover constant) are dynamically adjusted

and also made a significant improvement [19]. Recently, an adaptive differential evolution

algorithm with multiple trial vectors can train artificial neural networks successfully and shows

its competitive results with the error back propagation algorithm and the Lavenberg Marquardt

algorithm [20].

1.3 Particle Swarm Optimization

 The particle swarm optimization (PSO) is a concept that simulates the social swarm

behavior of a flock of birds or a school of fish in searching for food [21]. The main concept is to

utilize the inter-communication between each individual swarm with the best one to update its

position and velocity. This algorithm operates on a randomly created population of potential

solutions and searches for the optimum value by creating the successive population of solutions.

PSO sounds similar to the differential evolution algorithm or the genetic algorithm in term of its

selecting strategy of the best child (or the best swarm), but it is really different. In this algorithm,

the potential solutions so called swarm particles are moving to the actual (dynamically changing)

optimum in the solution space. Each swarm has its own location, best location, velocity, and

fitness. In each generation, each swarm will contact with the best swarm and follow him to

8

update its own information. During its motion, if some swarms find better positions by

comparing with their own fitness, they will automatically update themselves. In case there is a

swarm finding the new best position, that swarm will be considered immediately as the current

best. Because of its global search ability and fast convergence speed compared with other global

search algorithms, PSO is applied widespread in optimization.

1.4 Nelder Mead’s Simplex Algorithm

 The simplex method [3] is a direct downhill search method. It is a simple algorithm to

search for local minima and applicable for multidimensional optimization applications. Unlike

classical gradient methods, this algorithm does not have to calculate derivatives. Instead it just

creates a geometric simplex and uses this simplex’s movement to guide its convergence. A

simplex is defined as a geometrical figure which is formed by (n+1) vertices. Where n is the

number of variables of an optimization function, and vertices are points selected to form a

simplex. In each iteration, the simplex method will calculate a reflected vertex of the worst

vertex through a centroid vertex. According to the function value at this new vertex, the

algorithm will do all kinds of operations as reflection or extension, contraction, or shrink to form

a new simplex. In other words, the function values at each vertex will be evaluated iteratively,

and the worst vertex with the highest function value will be replaced by a new vertex which has

just been found. Otherwise, a simplex will be shrunk around the best vertex, and this process will

be continued until a desired minimum is met. Moreover, the convergence speed of this algorithm

can also be influenced by three parameters α, β, γ (α is the reflection coefficient to define how far

a reflected point should be from a centroid point; β is the contraction coefficient to define how

far a contracted point should be when it is contracted from the worst point and the reflected point

9

in case the function value of the reflected point is smaller than the function value of the worst

point; γ is the expansion coefficient to define how far to expand from the reflected point in case a

simplex moves on the right direction). Depending on these coefficients α, β, γ, the volume of a

simplex will be changed by the operations of reflection, contraction, or expansion respectively.

The Nelder Mead’s simplex method can be summarized as following and more details can be

found in the original paper [3].

 Step 1: get α, β, γ, select an initial simplex with random vertices x0, x1,…, xn-1 and

calculate their function values.

 Step 2: sort the vertices x0.,x1,…, xn-1 of the current simplex so that f0, f1,…, fn-1 in the

ascending order.

 Step 3: calculate the reflected point xr, fr

 Step 4: if fr < f0:

 (a) calculate the extended point xe, fe

 (b) if fe < f0 , replace the worst point by the extended point xn = xe, fn-1 = fe

 (c) if fe > f0 , replace the worst point by the reflected point xn = xr, fn-1 = fr

 Step 5: if fr > f0:

 (a) if fr < fi, replace the worst point by the reflected point xn = xr, fn-1 = fr

 (b) if fr > fi:

 (b1) if fr > fn-1: calculate the contracted point xc, fc

 (c1) if fc > fn-1 then shrink the simplex

 (c2) if fc<fn-1 then replace the worst point by the contracted point xn= xc,

 fn-1= fc

10

 (b2) if fr < fn-1: replace the worst point by the reflected point xn-1 = xr, fn-1 = fr

 Step 6: if the stopping conditions are not satisfied, the algorithm will return step 2

 To describe in details how the Nelder Mead’s simplex method works, let f: IRn→IR, x Є

IR
n
 be the objective function that should be minimized. For a two dimensional case n= 2, a

simplex is a triangle formed by three vertices B=(x1, y1), G=(x2, y2) and W(x3, y3). The function

values are evaluated at these vertices zi= f(xi,yi), i= 1:3. The subscripts are reordered in the way

z1 ≤ z2 ≤ z3. So B is the best vertex, G is the good vertex and W is the worst vertex. Assume α= 1,

β= 0.5, γ= 2. This algorithm performs in the following steps:

 Step 1: removal of the worst vertex W and calculate a centroid of rest vertices. In 2-d

case shown in Fig. 1.1 the centroid would be average of B&G.

2

GB

n

GB
M)

2
,

2
(2121 yyxx

 (1.1)

 Step 2: the function will decrease if we move from W to B and from W to G. So it is

possible the function will have a smaller value at R, where R is the reflected point of

W through the centroid (Fig. 1.1).

 WMWMR 2)1((1.2)

Fig. 1.1: The triangular simplex ΔBGW with midpoint M, reflected point R and

extended point E

W

B

G

M

R

E

d

d

d

11

 Step 3: if the function value at R is smaller than the function value at W, it means that

the simplex is moving in the right direction and the new better simplex ΔBGR is

created. At this stage, we can extend the line segment from M through R to E (Fig.

1.1). If the function value at E is smaller than the function value at R, the new simplex

ΔBGE is selected.

MRMRE 2)1(

 (1.3)

 Step 4: if the function value at R is greater than the function value at W, another point

must be tested. The contracted points C1, C2 which are the midpoints of the line

segments WM and MR can be considered in this case. The new simplex ΔBGC (Fig.

1.2) will be formed if the function value at C is smaller than the function value at W

(C: better point between C1 and C2).

 22
)1(21

RM
Cor

MW
MWC

 (1.4)

Fig. 1.2: Contracted points C1 and C2, shrinking points S and M toward B

 Step 5: if the function value at C is not less than the function value at W, the points G

and W will be shrunk toward B. G will move to M and W will move to S which are the

midpoints of the line segments BG and BW respectively (Fig. 1.2).

W

B

G

M

R

d

d

1
C

2
C

S

12

 Step 6: a new vertex is found to replace the worst vertex W iteratively. The algorithm

will repeat from step 1 until a desired minimum is found.

 Compared with gradient methods, the simplex method is simpler in term of mathematic

computation, which is normally more complicated to calculate derivatives and requires more

computing cost as well. Unlike the genetic algorithm or the differential evolution algorithm,

there is no operation of mutation or crossover in this algorithm. In each iteration, only one new

vertex is computed; therefore, it converges much faster. These advantages are key features which

motivate authors of this paper to improve the simplex algorithm and make it become a useful

optimization tool for engineers, scientists, etc. in many different types of applications [22], [23].

 The simplex method is a direct search algorithm. Its computational process is simple and

does not require the calculation of derivatives [24]. However, the simplex method without

gradients may lead its convergence process in wrong directions. This makes it become unreliable

in optimization. This scenario usually happens and remarkably reduces the efficiency of the

simplex method in solving high dimensional problems. This dissertation will give some new

insights on why the simplex method becomes inefficient in high dimensions if not using the

gradient information [25]-[27]. To improve its convergence speed and success rate, the simplex

method can be incorporated with other techniques. This dissertation will particularly present how

to improve it by combining with quasi gradient methods to define a new way to search for its

moving directions reliably. The improved algorithm which does not require complex mathematic

computations can optimize multidimensional problems with higher success rate and faster

convergence speed.

13

Chapter 2

Improved Simplex Method with Quasi Gradient Methods

2.1 Deficiency of Nelder Mead’s Simplex Method

 Although the simplex method was proposed a long time ago (1965) [3] and has not had

much success in optimizing large scale problems [28], it is still a method of choice because of its

simplicity. As a matter of fact, its necessary improvement of convergence speed and

convergence rate is still an attractive research topic in the area of computing and optimization.

For this purpose, many authors have proposed different ideas to address this issue. Fuchang Gao

and Lixing Han [29] proposed an implementation of the simplex method in which the expansion,

contraction, and shrinking parameters depend on the dimension of optimization problems.

Another author - Torczon [30], suggested that this poor convergence may be due to the search as

direction becomes increasingly orthogonal to the steepest descent direction, etc. Without any

satisfactory convergence theory, there is no doubt that the effect of dimensionality should be

extended and investigated more. Clearly, this is one of the main reasons restricting its

convergence capability. This dissertation is another effort to improve the simplex algorithm with

two simple solutions, which are different from other explanations in the literature. Furthermore,

the simplicity is also the main goal of authors to keep this algorithm robust and different from

other optimization algorithms.

 As presented shortly in the overview, the simplex algorithm converges based on the

14

formation of the geometric simplex and its movement to find local minima. During optimization,

this algorithm assumes that the direction to local minima can be found by the operations of

reflection, contraction, and expansion without caring about the gradient. In other words, the

dynamic change of a geometric simplex through these operations is utilized to approximate

better vertices along the gradient direction. However, this assumption is not always true in

reality, and that explains why the simplex algorithm fails easily with high dimensional

optimization problems. Instead of calculating the reflected vertex as the original algorithm

proposed, a new way is presented in the next two paragraphs by combining it with two different

quasi gradient methods respectively. These two quasi gradient methods can be assumed as two

approaches to approximate gradients by using numerical analysis rather than analytical analysis.

With this modification, the improved algorithm converges much faster and more reliably than the

original one.

 To illustrate this reasoning we can consider two extreme cases where the simplex method

may not converge to local minima (using 2-d cases for easy illustration). These two cases with

the locations of B (best), G (good), W (worst) points have significantly different gradient

directions. In the case (a) Fig. 2.1a the function values at W and G are similar while in the case

(b) Fig. 2.1b the function values at B and G are similar. In both cases, the gradient heads to

different directions from the simplex method. According to this algorithm, the simplex ΔBGW

will start to reflect and search in MR direction first. Once it cannot find a better vertex in this

direction, this simplex starts to shrink and a new simplex ΔBSM is created and continues

searching in the same direction M1R1, which maybe not the right direction to minima. This

illustration clearly shows why the simplex method does not have enough the capability to search

for its moving directions just by using its simple geometrical movement. This also explains why

15

this algorithm is not stable in optimizing multi-dimensional problems and mostly fails to

optimize large scale problems, or converges very slowly. In order to improve its speed and

convergence rate, it needs to rely on the gradient. With a new way to calculate the reflected point

according to quasi gradient methods, a new simplex ΔBGR’ is created instead of ΔBGR.

Fig. 2.1: The triangular simplex ΔBGW with similar function values at W and G (case (a))

and the triangular simplex ΔBGW with similar function values at B and G (case (b))

2.2 Quasi Gradient Methods

 To maintain the simplicity, two quasi gradient methods are presented to approximate

gradients [31]. The first method uses an extra vertex in a simplex. Its accuracy depends on the

linearity of a function in the vicinity of a simplex. However, its computing cost does not increase

significantly when the size of optimization problems becomes larger. The second method uses a

hyper plane equation formed from a simplex. This method can estimate gradients more

accurately; therefore, it converges faster. However, its high computing cost of inverse matrixes

does not have much advantage with the large size of optimization problems.

16

2.2.1 Quasi Gradient Method Using an Extra Vertex

 This method approximates gradients of a (n+1) dimensional plane created from a

geometrical simplex. First, it selects an extra vertex composed from (n+1) vertices in a simplex

and then combines this vertex with other n selected vertices in the same simplex to estimate

gradients. Its steps are presented as following:

Assume an optimized function f: IRn→IR, x Є IRn

 Step1: initialize a simplex with (n+1) random vertices x1, x2, …, xn

 Step 2: select an extra vertex xE with its coordinates composed from n vertices in the

simplex. In other words, coordinates of the selected vertex are a diagonal of the

matrix X from n vertices in the simplex.

 nxn

nnnnnn

nn

nn

E

xxxx

xxxx

xxxx

diagx

,1,2,1,

,21,22,21,2

,11,12,11,1

...

.........................

...

...

 (2.1)

 nnE xxxxor ,2,21,1 ,...,,

 (2.2)

 Step 3: approximate gradients based on the extra vertex E with other n vertices in the

selected simplex.

 For i =1: n,

 If mod (i, 2) = 0

iEii

E

i

i
xx

xfif

x

f
g

,,1

)()1(

 Else (2.3)

iEii

E

i

i
xx

xfif

x

f
g

,,1

)()1(

 End

 End

17

To illustrate how this method works, a 2-d case with f: IR2→IR and x, y Є IR2
 which has a

triangular simplex ΔBGW with B (best), G (good), W (worst) vertices is shown in Fig. 2.

2. E is the extra vertex which has its coordinates formed from B and G. Then the

approximate gradient of this plane will be:

 12

1
xx

ff

x

f
g EB

 ;

21

2
yy

ff

y

f
g EG

 (2.4)

),(
11

yxB

),(
33

yxW

),(
22

yxG

),(
21

yxE

Fig. 2.2: The simplex ΔBGW with extra vertex E

 Step 4: calculate the new reflected vertex R’ based on the best vertex B and the

approximate gradients Fig. 2.1. Parameter σ is the learning constant or step size.

 Gxx BR *' (2.5)

 Step 5: if the function value at R’ is smaller than the function value at B, it means that

BR’ is the right direction of the gradient. Then R’ can be expanded to E’.

 '' 1 RBE xxx (2.6)

2.2.2 Quasi Gradient Method Using a Hyper Plane Equation

18

 This quasi gradient method forms a (n+1)-dimensional plane from (n+1) vertices in a

simplex and then uses matrix calculations to approximate gradients. This method can be

described as follows:

 Assume an optimized function f: IRn→IR, x Є IRn

 Step 1: initialize a simplex with (n+1) random vertices x1, x2,…, xn+1

 Step 2: a (n+1)-dimensional hyper plane formed from this simplex is assumed to

have the approximate equation

 nnnn xaxaxaxaaV 1122110 ...
 (2.7)

 Step 3: substitute each vertex into the hyper plane equation eq. 2.7, so there will be

(n+1) equations:

 nnnnnnnnn

nnnn

nnnn

xaxaxaxaaV

xaxaxaxaaV

xaxaxaxaaV

,11,112,121,1101

,21,212,221,2102

,11,112,121,1101

...

...

...

...

 (2.8)

 where 1:1,),...,,(,2,1, nixxxfV niiii

 Step 4: calculate the approximate gradient matrix by writing the above multi-

equations in the matrix form G=X
-1

*V.

1

11,1,2,1

2,12,22,1

1,11,21,1

1

...

...

...

...

1...11

nnnnnn

n

n

xxx

xxx

xxx

X (2.9)

19

 111

2

1

...

nnV

V

V

V (2.10)

111210 ...

nnn aaaaaG i

i

a
x

V

, (2.11)

 Step 5: calculate the new reflected vertex R’ according to eq. 2.5.

 Step 6: calculate the new expanded vertex E’ according to eq. 2.6.

 Two quasi gradient methods without using derivatives presented above are much simpler

than analytical gradient methods. These two methods do not require the calculation of

derivatives. Instead they just approximate gradients without concerning the shape of a function.

The first quasi gradient method using an extra vertex does not require high computing cost but its

accuracy depends on the linearity of optimized functions in the vicinity of a simplex. Therefore,

it converges slower than the second method using a hyper plane equation (comparisons of two

methods are presented in the next section and summarized in Tables 2.4-2.7). The second

method’s computing power is reduced significantly when the scale of optimization problems

becomes larger because its computing time grows proportional to the square of the problem size

n
2
 while the first method’s computing cost is proportional to n.

 The improved algorithm with quasi gradient search is similar to the original simplex

method except that it has to approximate gradients to search for its reflected vertex. In other

words, its convergence will rely on the gradient direction through the new reflected vertex R’

rather than the reflected vertex R calculated through the centroid vertex proposed by the original

simplex algorithm. The improved simplex method with quasi gradient search can be applied

successfully in synthesizing lossy filters, and training artificial neural networks, etc [32].

20

2.3 Testing Functions

 All algorithms are tested on a set of functions with different levels of complexity. These

functions are well-known unconstrained optimization functions in literature. A large number of

problems are relatively adequate to prove the reliability and robustness of these algorithms. It

also warrants that the improved algorithm is much better than the original algorithm overall, not

just better than a small set of problems.

 Algorithms are tested on a wide range not close to solutions to address on their

convergence rate. Therefore, it is much more satisfactory when starting points are generated

randomly. Unlike other publications in literature, we do not use the standard starting points for a

certain function to test algorithms because it is fairly hard to measure their reliability and

robustness, or to differentiate between similar algorithms in this case. The use of initial points

farther away from solutions frequently reveals dramatic differences of algorithms as success rate,

computing time, etc.

 To evaluate the ability to solve problems, we measure these algorithms in terms of their

success rate and computing time.

 List of benchmark functions:

(1) De Jong function [3], [33]-[35]

n

i

ixF
1

2

1

(2) De Jong function with moved axis [36]

n

i

ii axF
1

2

2

(3) Quadruple function [37]

21

n

i

ix
xF

1

4

3
4

)(

(4) Powell function [3], [34]

]102

510[

4

3

4

21

1

2

32

2

14

iiii

n

i

iiii

xxxx

xxxxF

(5) Moved axis Parallel hyper-ellipsoid function [36]

n

i

iixF
1

2

5

(6) Zarakov function [38]

]5.05.0[

4

11

2

1

2

6

n

i

i

n

i

n

i

ii ixixxF

(7) Schwefel function [38]

2

1 1

7

n

i

i

j

jxF

(8) Sum of different power function [36]

n

i

i

ixF
1

1

8

(9) Step function [33]

2

1

9 5.0

n

i

ixF

(10) Box function [36]

n

i

aa

i

axax
eexeeF ii

1

210

210)(1

22

where a= t*i, t is a constant

(11) Rosenbrock function [1], [33], [34], [39]

n

i

iii xxxF
1

222

111)1()(100

(12) Biggs Exp6 function [6], [34]

2

53

1

212][41

i

xt

i

xt

i

xt
n

i

i yexexexF iiiiii

 where iti 5.0 and iii ttt

i eeey
410

35

(13) Kowalik and Osborne function [33], [34], [39]

 2

1 32

2

1

2

13

n

i iiii

iiii
i

xxbb

xbbx
aF

where a, b are vectors in Table 2.1

i ai bi

1 0.1975 4.0000

2 0.1947 2.0000

3 0.1735 1.0000

4 0.1600 0.5000

5 0.0844 0.2500

6 0.0627 0.1670

7 0.0456 0.1250

8 0.0342 0.1000

9 0.0323 0.0833

10 0.0235 0.0714

11 0.0246 0.0625

Table 2.1: Coefficients of Kowalik and Osborne function

(14) Colville function [33]

23

)]1)(1(8.19)(90

))1()1((1.10

)1()1()(100[

31

2

3

2

2

2

3

2

1

1

2

2

22

1

2

14

iiii

ii

n

i

iiii

xxxx

xx

xxxxF

(15) Wood function [6], [34], [39]

)]1)(1(8.19

))1()1((1.10

)1()(90

1100[

31

2

3

2

1

2

2

22

23

1

222

115

ii

ii

iii

n

i

iii

xx

xx

xxx

xxxF

(16) Bard function [6], [33]

2

1 21

16

n

i iiii

i
ii

xwxv

u
xyF

where y, u, v, w are vectors in Table 2.2

i yi ui vi wi

1 0.14 1 15 1

2 0.18 2 14 2

3 0.22 3 13 3

4 0.25 4 12 4

5 0.29 5 11 5

6 0.32 6 10 6

7 0.35 7 9 7

8 0.39 8 8 8

9 0.37 9 7 7

10 0.58 10 6 6

11 0.73 11 5 5

12 0.96 12 4 4

13 1.34 13 3 3

14 2.10 14 2 2

15 4.39 15 1 1

Table 2.2: Coefficients of Bard Functions

24

2.4 Experimental Results

 With this significant improvement, the improved simplex method can be a useful

optimization tool to replace for other popular algorithms as the genetic algorithm or the particle

swarm algorithm, etc. All evaluated algorithms are written in Matlab, and all experiments are

tested on a PC with Intel Quad. In order to compare performances of these algorithms, some

assumptions are set: algorithms start with a random initial variables in the range of [-100, 100];

dimension of all benchmark problems is 20; maximum iteration is equal to 100,000; desired error

predefined to terminate algorithms is equal to 0.001; coefficients of the simplex method α= 1, β=

0.5, γ= 2, learning constant σ= 1. In addition, the genetic algorithm, the differential evolution

algorithm, and the particle swarm optimization each has 20 members in its population. These

algorithms use the same default values as the ones written in the standard Matlab toolboxes.

Because of timing cost to test the genetic algorithm and the differential evolution algorithm, all

results in Table 2.3 are the average values calculated over 25 random running times.

Optimization

Function

GA DE PSO SIM1

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

De Jong 44% 153.435 100% 111.45 96% 5.5137 100% 0.3450

De Jong with moved

axis

60% 152.184 100% 122.30 Failure 100% 0.4450

Quadruple 100% 46.6543 80% 117.85 100% 0.0840 100% 0.2541

Powell Failure 10% 173.76 100% 4.5735 100% 1.1455

Moved axis Parallel

hyper-ellipsoid

Failure 85% 123.50 96% 9.7553 100% 0.7254

Zarakov Failure Failure 96% 5.2152 100% 1.1444

Schwefel Failure Failure 32% 89.9445 100% 0.9587

Sum of different

power

100% 141.422 Failure 100% 0.06425 100% 1.7978

Step 35% 166.335 95% 121.09 80% 23.1161 100% 0.3992

Rosenbrock Failure Failure Failure 54% 10.107

Biggs Exp6 Failure 10% 160.05 4% 126.276 27% 9.0644

Colville Failure Failure Failure 40% 5.6746

Wood Failure Failure Failure 44% 7.7333

Table 2.3: Evaluation of success rate and computing time of 20-dimensional function

25

 In this simulation, it is unnecessary to verify how the dimensionality affects the simplex

algorithm. Therefore, one experiment with 20 dimensions is conducted. And only the algorithm

using an extra vertex (SIM1) is selected to compare because of its simple computations relative

to other derivative free optimization algorithms.

 The Genetic Algorithm: There are only two cases, the genetic algorithm can obtain

100% success rates. Although the genetic algorithm cannot obtain high success rate

as the improved simplex method, but it still shows its convergence ability in 5 out of

13 problems. However, this algorithm cannot converge as fast as the improved

simplex method or the particle swarm optimization does. There are 8 out of 13

problems, the genetic algorithm cannot converge. Even the data is not displayed in

Table 2.3, but the genetic algorithm shows its convergence trend in this experiment if

a number of generations is increased. Among four derivative free optimization

algorithms discussed here, the genetic algorithm is the slowest one. This can be

explained by its complex mutation and crossover operations.

 The Differential Evolution Algorithm: This algorithm does not converge really well

with these optimization functions. There are five cases, it converges with high success

rates. And there are two cases, it converges with low success rates. It cannot converge

nearly half of problems. In order to optimize these functions, this algorithm needs

more iterations. Therefore, it will take longer to solve the same problems. The

differential evolution algorithm converges faster than the genetic algorithm, but it is

much slower than the improved simplex algorithm.

 The Particle Swarm Algorithm: The particle swarm algorithm converges relatively

26

fast; however, it does not have enough consistency. There are four cases, it fails to

converge with no matter of a number of generations. There is one case that it

converges with a really low success rate. Even it converges more than half of cases,

but it is still relatively slower and has lower success rate than the improved simplex

method. However, the particle swarm algorithm is much faster than the differential

evolution algorithm and the genetic algorithm in term of convergence speed.

 The Improved Simplex Method: From the experimental results in Table 2.3, we can

conclude that the improved simplex method converges much faster and more

efficiently than the genetic algorithm, the differential evolution algorithm, and the

particle swarm algorithm in local minimum optimization. This is reflected through its

higher success rate and less computing time for each testing function. It can get

optimum solutions more than 75% of problems with 100% success rate. In other 25%

of problems, its success rates are around 50%, but it is still much better than other

algorithms. In term of computing time, this algorithm particularly outclasses the

others. Its convergence speed is at least from ten to hundred times faster.

 Obviously, the improved simplex algorithm with this significant modification can be an

alternative tool to replace efficiently for other optimization tools. This algorithm is a direct

search method which is free of derivative calculation. Therefore, it can converge much faster and

higher success rate than algorithms based on evolutionary computations such as the genetic

algorithm, etc.

 The next experiments are conducted with the same assumptions as the last one:

algorithms start with a random initial simplex in the range of [-100, 100]; dimensions of all

benchmark problems are equal to 10, 15, and 20 respectively; maximum iteration is equal to

27

100,000; target error predefined to terminate algorithms is equal to 0.001; coefficients α= 1, β=

0.5, γ= 2, learning constant σ= 1. All results in Table 2.4-2.7 are average values calculated over

100 random running times. Figures 2.3- 2.10 are error curves of algorithms plotted for 10

dimensions.

Fig. 2.3: Simulated error curves of De Jong function 1(a) and De Jong function 1 with

moved axis (b)

Fig. 2.4: Simulated error curves of Quadruple function(a) and Powell function (b)

28

Fig. 2.5: Simulated error curves of Parallel hyperellipsoid function (a) and Zakarov

function (b)

Fig. 2.6: Simulated error curves of Schwefel function (a) and sum of different power

function (b)

29

Fig. 2.7: Simulated error curves of Step function (a) and Box function (b)

Fig. 2.8: Simulated error curves of Rosenbrock function (a) and Biggs Exp6 function (b)

30

Fig. 2.9: Simulated error curves of Kowalik Osborne function (a) and Colville function (b)

Fig. 2.10: Simulated error curves of Wood function (a) and Bard function (b)

31

Optimization

Function

Nelder Mead’s simplex

algorithm

Improved simplex

algorithm using an extra

vertex

Improved simplex

algorithm using a hyper

plane equation

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

De Jong 100% 0.0907 100% 0.0806 100% 0.0474

De Jong with moved

axis

100% 0.0932 100% 0.0824 100% 0.0477

Quadruple 100% 0.2183 100% 0.0539 100% 0.0350

Powell 100% 0.1037 100% 0.1346 100% 0.1444

Moved axis Parallel

hyper-ellipsoid

100% 0.1102 100% 0.0841 100% 0.0648

Zarakov 99% 0.3195 100% 0.1879 100% 0.1766

Schwefel 100% 0.1666 100% 0.1400 100% 0.1420

Sum of different power 26% 1.1012 100% 0.1150 100% 0.1232

Step 100% 0.0863 100% 0.0825 100% 0.0475

Box 65% 0.3321 81% 0.3636 81% 0.5761

Rosenbrock 55% 0.8812 76% 1.2094 82% 1.5916

Biggs Exp6 52% 0.1118 60% 0.1244 20% 0.3509

Kowalik and Osborne 48% 0.2828 76% 0.4913 48% 5.0087

Colville 46% 0.2026 50% 0.2081 60% 0.2077

Wood 41% 0.2042 52% 0.2038 58% 0.2155

Bard 16% 0.7240 48% 0.9095 13% 2.2250

Table 2.4: Evaluation of success rate and computing time of 10-dimensional functions

Optimization

Function

Nelder Mead’s simplex

algorithm

Improved simplex

algorithm using an extra

vertex

Improved simplex

algorithm using a hyper

plane equation

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

De Jong 9% 0.2539 100% 0.2292 100% 0.0888

De Jong with moved

axis

7% 1.0124 100% 0.2263 100% 0.0899

Quadruple 21% 0.9097 100% 0.1778 100% 0.0638

Powell 93% 1.5418 100% 0.4222 100% 0.3303

Moved axis Parallel

hyper-ellipsoid

2% 0.6789 100% 0.2358 100% 0.1540

Zarakov Failure 100% 0.5598 100% 0.5123

Schwefel 2% 1.1187 100% 0.3942 100% 0.3948

Sum of different power Failure 100% 0.3303 100% 0.3300

Step 13% 0.4213 100% 0.1927 100% 0.0910

Box Failure 19% 1.8882 4% 4.2749

Rosenbrock Failure 55% 3.9881 80% 3.3474

Biggs Exp6 4% 0.7417 60% 1.4860 3% 2.5735

Kowalik and Osborne - - -

Colville 10% 1.9298 53% 0.5028 52% 0.5123

Wood 12% 2.3841 52% 0.5078 61% 0.5003

Bard Failure 0.7240 11% 3.6462 Failure 2.2250

Table 2.5: Evaluation of success rate and computing time of 15-dimensional functions

32

Optimization

Function

Nelder Mead’s simplex

algorithm

Improved simplex

algorithm using an extra

vertex

Improved simplex

algorithm using a hyper

plane equation

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

De Jong Failure 100% 0.4529 100% 0.1538

De Jong with moved

axis

Failure 100% 0.4188 100% 0.1565

Quadruple 3% 1.7213 100% 0.3212 100% 0.1124

Powell Failure 100% 0.8969 100% 0.6518

Moved axis Parallel

hyper-ellipsoid

Failure 100% 0.4340 100% 0.3289

Zarakov Failure 100% 1.3628 100% 1.2251

Schwefel Failure 100% 0.8041 100% 0.9506

Sum of different power Failure 100% 0.7094 100% 0.6802

Step Failure 100% 0.3207 100% 0.1541

Box Failure 5% 2.1718 3% 8.8745

Rosenbrock Failure 54% 6.0026 75% 6.4713

Biggs Exp6 Failure 27% 3.2283 Failure

Kowalik and Osborne - - -

Colville Failure 40% 1.1572 44% 1.1259

Wood Failure 44% 1.1708 50% 1.0224

Bard - - - 0.1538

 Table 2.6: Evaluation of success rate and computing time of 20-dimensional functions

Optimization

Function

Nelder Mead’s simplex

algorithm

Improved simplex

algorithm using an extra

vertex

Improved simplex

algorithm using a hyper

plane equation

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

Success

rate

Comp.

time (s)

De Jong Failure 100% 2.9637 100% 0.8254

De Jong with moved

axis

Failure 100% 2.6757 100% 0.9004

Quadruple Failure 100% 2.0258 100% 0.6318

Powell Failure 100% 5.0306 100% 4.3891

Moved axis Parallel

hyper-ellipsoid

Failure 100% 2.4636 100% 3.3235

Zarakov Failure 100% 13.072 100% 13.3271

Schwefel Failure 100% 6.7592 100% 11.8561

Sum of different power Failure 60% 11.340 100% 6.6748

Step Failure 100% 2.4082 100% 0.8045

Box Failure 1% 10.607 5% 20.9250

Rosenbrock Failure 39% 43.649 72% 78.5312

Biggs Exp6 Failure 5% 36.843 Failure

Kowalik and Osborne - - -

Colville Failure 32% 7.8633 50% 8.2602

Wood Failure 38% 7.375 49% 7.6051

Bard - - -

 Table 2.7: Evaluation of success rate and computing time of 40-dimensional functions

33

 The comparisons between the simplex algorithm and its improved versions are

summarized above. In these simulations all algorithms are still compared in terms of the success

rate and computing time. While the success rate is used to describe their reliability, computing

time reflects how fast these algorithms can converge. Three different sizes of functions 10, 15,

and 20 are also tested respectively for the purpose of comparing their robustness, and it is also

used to verify how the simplex method is affected by its dimensionality. From Tables 2.4-2.7, we

can draw a conclusion that the improved algorithm shows its better performance than the original

simplex method in terms of both success rate and computing time. The experimental results also

tell that the improved simplex method, using a hyper plane equation, converges faster than the

one using an extra vertex in most cases. Even it requires more computations to approximate the

gradient matrix. There are only two cases (Box function and Biggs Exp6 function), the method

of a hyper plane equation shows its worse results than the method of an extra vertex. When the

problem size increases, the simplex method starts getting worse and is unable to converge. In

Table 2.4 of 10 dimensional functions, the simplex algorithm converges relatively well although

it does not have a high success rate in several cases. However, these numbers are still good

enough and acceptable because of its fast convergence. When the size increases to 15 in Table

2.5, its convergence rate suddenly drops down dramatically, and it totally fails in 20 dimensional

problems or higher (Table 2.6-2.7); whereas, the improved algorithm still converges consistently

well. It has 100% success in 9 out of 14 problems and over 40% success rate in 3 out of 14

problems. There is only one case of Box function that the improved algorithm cannot obtain a

good success rate. Even with 20 dimensional problems, this algorithm is still able to converge

very fast when its minimum and maximum computing time is less than 1(s) and 10(s)

respectively. Comparing these two algorithms, we can conclude that the improved algorithm

34

using quasi gradients can define its moving direction more precisely. That is the reason why the

improved algorithm converges much better. With the same random choice of initial vertices, the

improved simplex method usually gets a higher convergence rate and less computing time than

the original simplex method. Even this algorithm is combined with the quasi gradients, it does

not face any difficulty to find function derivatives, and particularly its finding such derivatives is

not time consuming as classical algorithms based on gradients.

35

Chapter 3

Synthesize Lossy Ladder Filters with Improved Simplex Method

3.1 Filter Synthesis Algorithms

 There are many different types of filters such as the Butterworth filter, the Chebyshev

filter, the Inverse Chebyshev filter and the Cauer Elliptic filter, etc. The characteristic responses

of these classical filters are different. The Butterworth filter is flat in the stop-band, but it does

not have a sharp transition from the pass-band to the stop-band. While the Chebyshev filter has a

sharp transition from the pass-band to the stop-band, but it has ripples in the pass-band.

Oppositely, the Inverse Chebyshev filter has the same characteristics as the Chebyshev filter, but

it has ripples in the stop-band instead of the pass-band. The Cauer filter has ripples in both pass-

band and stop-band; however, it has lower order [40], [41]. This section will summarize all steps

to design low-pass filters by using these methodologies.

3.1. 1 Butterworth Low- pass Filter

 Suppose ωp, ωs, αp, αs are the pass-band frequency, stop-band frequency, attenuation in

pass-band, and attenuation in stop-band of a filter respectively. Depending on which method is

used to synthesize, the frequency response of a filter will be different to meet these requirements.

For an instance, a Butterworth filter will be designed as followings.

36

 ωp - pass-band frequency

 ωs - stop-band frequency

 αp - attenuation in pass-band

 αs - attenuation in stop-band

Fig. 3.1: Butterworth filter response

Butterworth filter response:

n

n
jT

2

0

2

2

1

1
|)(|

 (3.1)

In order to simplify, we can summarize three basic steps to synthesize any type of low-

pass filters. The first step is calculating the order of a low-pass filter. The second step is

calculating poles and zeros of a low-pass filter. From hence its transfer function is derived. The

third step is designing circuits to meet pole and zero locations; however, this part is another topic

of analog filters so it will not be covered in this work [42]-[44].

All steps to design a Butterworth low-pass filter

 Step 1: calculate order of a filter

 lue)integer va toroundup be toneeds(n

)log(

)]110/10)(110/10log[(2/1

p

s

ps

n

 (3.2)

 Step 2: calculate pole and zero locations

 Angle if n is odd:
n

k 0180
 ; k= 0,1,...(n-1)/2 (3.3)

 Angle if n is even: 0180)5.0(
n

k
 ; k= 0,1,...(n-2)/2 (3.4)

37

 Normalized pole locations:)1();sin();cos(0 kk ba

 (3.5)

|
2

1
|;

)]110/10/()110/10[(

)(

)4/(1

2/1

0

k

k
nps

sp

a
Q

 (3.6)

 Step 3: design circuits to meet pole and zero locations (not covered in this work)

3.1. 2 Chebyshev Low- pass Filter

ωp - pass-band frequency

ωs - stop-band frequency

αp - attenuation in pass-band

αs - attenuation in stop-band

Fig. 3.2: Chebyshev filter response

Chebyshev filter response:
)(1

1
|)(|

22

2

nC
jT

 (3.7)

All steps to design a Chebyshev low-pass filter

 Step 1: calculate order of a filter

 lue)integer va toroundup be toneeds(n

)log(

)]110/10)(110/10log[(2/1

p

s

ps

n

 (3.8)

 Step 2: calculate pole and zero locations

 n

k

n

00
0 180)1(90

90

 (3.9)

38

np /)

1
(sinh;]110/10[12/1

 (3.10)

|
2

|;);sin()cosh();cos()sinh(
22

k

k

Kkkkkk
a

Qbaba

 (3.11)

 Step 3: design circuits to meet pole and zero locations (not covered in this work)

3.1. 3 Inverse Chebyshev Low- pass Filter

ωp - pass-band frequency

ωs - stop-band frequency

αp - attenuation in pass-band

αs - attenuation in stop-band

Fig. 3.3: Inverse Chebyshev filter response

Inverse Chebyshev filter response:
)/1(1

)/1(
|)(|

22

22

2

n

n
IC

C

C
jT

 (3.12)

 The method to design an inverse Chebyshev low-pass filter is almost the same as the one

to design a Chebyshev low-pass filter. It is just slightly different on account of the appearance of

conjugate poles and zeros.

All steps to design an inverse Chebyshev low-pass filter

 Step 1: calculate order of a filter

39

 lue)integer va toroundup be toneedsn (

])1(log[

)]110/10/()110/10(*4ln[

2/1

2

2

2/1

p

s

p

s

ps

n

(3.13)

 Step 2: calculate pole and zero locations

kk

ic
ba

P

1

, find zeros
)]2/(*cos[

1

ni
i

 ; i= 2k-1: 1, 3, 5….< np (3.14)

 Notes: two conjugate poles on the imaginary axis

 Step 3: design circuits to meet pole and zero locations (not covered in this work)

3.1. 4 Cauer Elliptic Low- pass Filter

ωp - pass-band frequency

ωs - stop-band frequency

αp - attenuation in pass-band

αs - attenuation in stop-band

Fig. 3.4: Cauer Elliptic filter response

Cauer Elliptic filter response:
),(1

1
|)(|

22

2

LwR
jwT

n
 (3.15)

Designing a Cauer Elliptic filter is more complex than designing three previous filters. In

order to calculate its transfer function, a mathematic process is summarized as below. Although

the low-pass Cauer Elliptic filter has ripples in both stop-band and pass-band, but it has lower

40

order than the previous filters. In other words, it requires less hardware components for

implementation. This is the main advantage of the Cauer Elliptic filter.

 s

p
k

 (3.16)

21' kk (3.17)

)1(

)1(5.0

'

'

0

k

k
q

 (3.18)

13

0

9

0

5

00 150152 qqqqq
 (3.19)

 110

110
1.0

1.0

P

S

D

 (3.20)

)/1log(

)16log(

q

D
n (3.21)

 1
05.0

10

1
05.0

10
ln

2

1

p

p

n

 (3.22)

|

)2cosh()1(21

])12sinh[()1(2

|

1

0

)1(4/1

0
2

m

mm

m

mmm

mq

mqq

 (3.23)

)1)(1(

2

02

0
k

k

 (3.24)

|

)
2

cosh()1(21

)12(
sinh)1(2

|

1

0

)1(4/1

2

m

mm

m

mmm

i

n

m
q

n

m
qq

 (3.25)

41

ri
nevenfori

noddfori

...,2,1

2

1

 (3.26)

)1)(1(

2
2

k
kV i

ii

 (3.27)

21

1

i

OA

 (3.28)

222

0

22

0
0

)1(

)()(

i

ii
i

V
B

 (3.29)

22

0

0
1

1

2

i

i
i

V
B

 (3.30)

nevenfor
A

B

noddfor
A

B

H
r

i i

i

r

i i

i

p

1 0

005.0

1 0

0
0

0

10

 (3.31)

3.2 Ladder Prototype Synthesis Algorithms

 Implementation of analog filters usually falls into two categories: the cascade prototype

and the ladder prototype. Implementation of the cascade prototype is much easier and

straightforward as the step 3 above. However, the cascade prototype has many drawbacks

because it is very sensitive with parameters of circuit elements or the propagation of signal

through each cascaded stage can cause errors. Implementation of the ladder prototype is more

complex. It requires designers to use tables. Unfortunately, these tables are not easy to use, and

they do not cover all possible cases which are the important requirements to design good filters.

Furthermore, many high quality filters with support of advanced technologies nowadays can be

42

implemented on the ladder prototype for examples switched capacitor filters, switched current

filters, ladder filters using OPAMP, ladder filters using OTA (operational trans-conductance

amplifiers) [45], [46]. That explains why we need simple algorithms to synthesize the ladder

prototype conveniently.

3.2. 1 Design Ladder Low-pass Prototype without Zeros

 This algorithm deals with low-pass prototypes without zeros; therefore, it follows a

classical approach for the Butterworth and Chebyshev filters [47]. Given a transfer function

which describes the relationship between an input voltage and an output voltage of a filter

circuit, this algorithm will use an auxiliary function to calculate an input impedance ZN= RN +

jXN and then continued fractions to find all values of circuit elements [48]. As previous parts, we

only describe briefly how the algorithm works without getting into details. Readers can refer to

referenced papers to read more.

 Assume T(s) is a transfer function of a filter and A(s) is an auxiliary function. Then its

input impedance ZN= RN + jXN can be calculated as following:

+

-

LC

Lossless

Netowrk

+

-

NZ

inV

inR

outRoutV

Fig. 3.5: Doubly terminated ladder network without zeros

43

 Step 1: define transfer function T(s)

2

2

2

)(

)(
)(

jwV

jwV
jwT

in

out

 (3.32)

 or
222 2

)()(
NNNinin

Nout

jwS XRRRR

RR
sTsT

 (3.33)

 where Rin: input resistance, Rout: output resistance

 Step 2: define auxiliary function A(s) respective to T(s)

22
)(

4
1)(jwT

R

R
jwA

out

in (3.34)

 or
2

2

)()(

Nin

Nin

jwS
ZR

ZR
sAsA

 (3.35)

 Step 3: define A(s) and A(-s) according to equations (3.36) and (3.37). Then calculate

A(s) from A(s)A(-s)

 01

2

2

1

1 ...)(asasasasasA N

N

N

N

 (3.36)

 0

2

2

22

22

2

2 ...)()(ksksksksAsA N

N

N

N

 (3.37)

 Based on equations (3.38) and (3.39), the k terms with respect to the a terms can be

 found by using an iterative procedure

)2/0(,)1(2)1(
1

122mod

2 Niaaak
i

j

jiji

j

i

i

i

 (3.38)

)2/(,)1(2)1(
1

122mod

2 NiNaaak
iN

j

jiji

j

i

i

i

 (3.39)

 Step 4: once A(s) is found, calculate input impedance

44

)(1

)(1
)(

sA

sAR
sZ in

N

 (3.40)

 Once the input impedance ZN is found, we can use the classical continued fraction

expansion to refer values of all components. This method is well-documented in [49].

3.2. 2 Design Ladder Low-pass Prototype with Zeros

 Ladder filters with zeros as the Cauer Elliptic and the inverse Chebyshev make the

synthesis more challenging. In this case, the classical continued fraction expansion cannot be

applied straightforwardly as presented in the last part. Instead this method will determine all

capacitor and inductor values by removing shunt capacitors and resonant circuits from the

impedance equation. This process of removing shunt capacitors and resonant circuits will

continue until all resonant circuits are removed. A general type of ladder filters with zeros is

depicted in Fig. 3.6. A resonant circuit with an inductor and a capacitor in parallel contributes a

pair of zeros.

LC

Lossless

Netowrk

+

-

AZ CZBZ

RC

RL

SC

outRoutV

Fig. 3.6: General ladder circuit with presence of zeros

 Step 1: given the input impedance equation calculated from an auxiliary function

45

 01

2

2

2

2

1

1

01

2

2

3

3

2

2

1

1

...

...
)(

bsbsbsbsbsb

asasasasasa

D

N
sZ

N

N

N

N

N

N

N

N

N

N

N

N

A

A
A

 (3.41)

 Step 2: calculate and remove shunt capacitor

 01

2

2

2

2

1

1

01

2

2

3

3

2

2

1

1

...

...
)(

ksksksksksk

asasasasasa

NsCD

N
sZ

N

N

N

N

N

N

N

N

N

N

N

N

ASA

A
B

 (3.42)

 where: 001),1(bkNiforaCbk iSii

 Shunt capacitor value is a concurrent solution of equations (3.43) and (3.44)

 ...

...
5

4

3

2

1

0

5

5

3

3

1

1

NNN

NNN

S
zazaza

zbzbzb
C (3.43)

 ...

...)(
5

5

3

3

1

1

5

4

3

2

1

0

NNN

NNN

S
zazaza

zbzbzb
C (3.44)

 where: 12][RRCLz

 Step 3: calculate the resonant inductor value and remove the resonant circuit from the

impedance equation

 C

CR
CLC

B

B
B

D

N

sz

sL
ZZ

D

N
Z

122
 (3.45)

)1(22 szDD CB (3.46)

 z

i
s

B

z

j
s

C

B
R

s

sz
sZ

sD

N
L

)1(
)(

22

 (3.47)

 Step 4: calculate CR and ZC

 Step 5: the proess will be repeated until all resonant circuits have been removed.

From then, the remaining shunt capacitor, inductor and output resistance are found by

using classical continued fraction approach.

46

3.3 Transformation from Low-pass Filters to Other Type Filters

Z Y

PassLow

PassHigh

PassBand

jectBand Re

0/L

)/(1 0L

BL/ 2

0L

B

4

02/LB

LB

2

02

2

0/BL

)/(1 BL

2

01

2

02

BL

)/(LB

)/(2

01BL

BL /

PassbandDouble

PassbandDouble

cC /

)/(1 cC

BC/

2

0C

B

BC

1
2

0

BC

BC/

)/(LB)/(2

01BL

)/(2

01

2

02 BC

BC

2

02

4

02

BC

Table 3.1: Transformation of the low pass immittances L and C to ladder arms for

high pass, band-pass, band-reject, and multiple pass-band filters

 There are existing two different approaches to design high-pass, band-pass and band-stop

filters, etc. from low-pass filters. One approach uses the Foster function, and substitutes it into

the transfer function of a low-pass filter to get the transfer function of a desired filter. This

approach is popularly used in designing active filters. Then the realized circuits can be cascaded

47

to meet the target function. In contrast with this approach, which requires the transformation

from the low-pass function into the target function, another approach can complete the design

process of LC filters in the low-pass domain S without constructing of the transfer function. This

approach can be interpreted as transforming the realized circuit from a low-pass filter to desired

filters. The operation of this second approach can be summarized in Table 3.1 [47].

3.4 Lossy Filter Synthesis with Improved Simplex Method

 Ladder filters are made up of inductors and capacitors and widely used in communication

systems. How to design a good filter with a desired frequency response is a challenge because

the traditional algorithms as Butterworth, Chebyshev or inverse Chebyshev, etc. just synthesize

filters without affects of lossy inductors and capacitors Fig. 3.7. Therefore, the frequency

responses of these ideal filters are much different from the ones of real filters. In order to

implement a real filter with lossy elements, which has similar characteristics as a prototype filter,

we have to shift pole locations of a real filter close to pole locations of a prototype filter. In this

part, the improved simplex algorithm can be utilized to replace for analytical solutions or other

methods which are very complex and inefficient especially with high order filters.

Ideal

Capacitor

Real

Capacitor

Ideal

Inductor

Real

Inductor

C C GC L

L

RL

Fig. 3.7: Models of real capacitors and real inductors

48

Our example is to design a 4
th

 low-pass Chebyshev filter with attenuation in the pass-

band αp= 3dB, attenuation in the stop-band αs= 30 dB, pass-band frequency ωp= 1kHz, stop-band

frequency ωs=2kHz. Using the Chebyshev methodology with ideal elements [43], we can find

the transfer function of this filter (eq. 3.48) and its circuit with all element values (Fig. 3.8).

 0.17198 0.64803S
2

1.22091S
3

0.88598S
4

S

0.17198
)(

SH (3.48)

Fig. 3.8: Chebyshev filter circuit with ideal elements

 Instead of using ideal elements, we replace them by lossy elements respectively with

GC1= GC2= RL1= RL2= 0.1 (Fig. 3.9). On account of this affect, the synthesized filter has the

new transfer function eq. 3.49 with different pole locations Fig. 3.10b. Therefore, the frequency

response of the real filter is changed with its shifted cut-off frequency to the left Fig. 3.10a

Fig. 3.9: Chebyshev filter circuit with lossy elements

in
V

1
R

1
C

1
G C

1
L

1
R L

2
C

2
G C

2
L

2
R L

2
R

49

 5
a s

4
a

2
s

3
a

3
s

2
a

4
s

1
a

)(
1

SH (3.49)

2
R

1
0.201R

2
1.0301R

1
1.01R0.201

5

2
R

1
R

2
0.01L

2
R

1
R

2
1.01C

2
R

1
R

1
1.01C

2
R

2
0.101L

2
R

1
0.201L

2
R

2
0.201C

2
R

1
0.101C

1
R

2
0.1L

1
R

1
0.1C

2
1.01L

1
1.01L

1
0.01C

4
a

2
R

1
R

2
L

2
0.1C

2
R

1
R

2
L

1
0.1C

2
R

1
R

2
C

1
0.1C

2
R

2
L

1
0.01L

2
R

2
L

2
1.01C

2
R

2
L

1
0.01C

2
R

1
L

2
1.01C

2
R

1
L

1
1.01C

2
R

2
C

1
0.01C

1
R

2
L

1
C

2
L

1
0.1L

2
L

1
0.1C

1
L

1
0.1C

3
a

2
R

1
R

2
L

2
C

1
C

2
R

2
L

1
L

2
0.1C

2
R

2
L

1
L

1
0.1C

2
R

2
L

2
C

1
0.1C

2
R

1
L

2
C

1
0.1C

2
L

1
L

1
C

2

2
R

2
L

1
L

2
C

1
C

1

:

a

a

a

where

 (3.50)

Fig. 3.10: Magnitude and phase responses (a) and pole locations (b) of filters

50

 In order to design a filter having desired characteristics as the ideal filter, its transfer

function (eq. 3.49) has to be similar to the transfer function of the prototype filter (eq. 3.48). In

other words, its pole locations have to be close to pole locations of the ideal filter (Fig. 3.10b).

According to the analytical method presented in [50], they have to solve a nonlinear system (eq.

3.51) of five equations with five unknowns (assume R2 is known). Clearly, the analytical method

is not an effective way to find proper solutions for this filter. Firstly, it is not easy to solve this

nonlinear system especially with high order filters. Secondly, its solutions may not be applied in

real implementation if one of its component values is a negative number. Therefore, it is

necessary to have a simpler method which can synthesize iteratively without complex

modifications.

0.17198

0.64803

1.22091

0.88598

 1

5

4

3

2

1

a

a

a

a

a

 (3.51)

 As presented in the previous sections, the improved simplex method has ability to

optimize high dimensional problems with very reliable convergence rates. For this particular

application, this algorithm can be applied very effectively to synthesize filters. Instead of using

the analytical method, we can use the improved simplex method to optimize the error function

(eq. 3.52). To guarantee reasonable results with all positive values, we may divide the numerator

and denominator of the transfer function of the real filter by the value of C1 in this case (which

does not change characteristics of filters). The desired filter with R1= 0.07131, R2= 0.2, C1=

3.3831, L1= 0.70676, C2= 9.7949, L2= 0.7189 has similar frequency response and pole locations

as the ideal filter (Fig. 3.10).

51

 5/]0.1719)(0.6480)(1.2209)(0.8859)(1)[(2

5

2

4

2

3

2

2

2

1 aaaaaEr (3.52)

 Let us consider another example with a singly terminated 4th order Chebyshev low-pass

filter with its ideal transfer function eq. 3.53. To synthesize this filter with lossy elements, we

have to replace ideal components in the circuit Fig. 3.11 by real components in the circuit Fig.

3.12 and repeat the same procedure as presented in the previous example.

 144475.217051.317713.220699.1

1
)(

234

ssss
sH

 (3.53)

Fig. 3.11: 4th Chebyshev filter circuit with ideal elements

Fig. 3.12: 4th Chebyshev filter circuit with lossy elements

The new transfer function has its coefficients a1, a2, a3, a4, a5 as eq. 3.49.

in
V 1

C
1

G C

1
L

1
RL

2
C

2
G C

2
L

2
RL

R

52

1.0301R+0.201
5

R
2

0.101L+R
1

0.201L+R
2

0.201C+

R
1

0.101C+
2

1.01L+
1

1.01L+
1

0.01C
4

a

R
2

L
1

0.01L+R
2

L
2

1.01C+

R
2

L
1

0.01C+R
1

L
2

1.01C+R
1

L
1

1.01C+

R
2

C
1

0.01C+
2

L
1

0.1L+
2

L
1

0.1C+
1

L
1

0.1C
3

a

R
2

L
1

L
2

0.1C+R
2

L
1

L
1

0.1C +

R
2

L
2

C
1

0.1C+R
1

L
2

C
1

0.1C+
2

L
1

L
1

C
2

R
2

L
1

L
2

C
1

C
1

:

a

a

a

where

 (3.54)

 By using the improved simplex method to optimize the error function with different

values as eq. 3. 52, the desired filter with R= 2.1727, C1= 2.0432, L1= 0.8568, C2= 0.2497, L2=

2.1364 has similar frequency response and pole locations as the ideal filter.

Fig. 3.13: Magnitude and phase responses (a) and pole locations (b) of filters

53

Chapter 4

Training Neural Networks with Improved Simplex Method

4.1 Artificial Neural Networks

 A neuron is normally connected by inputs, weights and a bias weight. Its output is

defined by the standard activation function:

)(,)1(1

bias

n

i

ii

a
wxwaef

 (4.1)

 where xi is input, wi is weight and wbias is bias weight.

 Each neuron can be connected together to form a neural network. A neural network is

trained by input patterns and desired outputs. Weights of a network are adjusted to minimize the

error function between actual outputs and desired outputs eq. 4.2.

P

p

M

m

pmpm yywE
1

2

1

,

^

,
2

1
)((4.2)

 where:
^

, pmy and p

my are actual and desired outputs of a network respectively

 P: is the total number of patterns

 M : is the total number of output neurons.

 Although neural networks have shown their potential power for many applications, it is

so difficult to train them successfully [51]-[54]. This frustration can be explained from the

architectures and the training algorithms. If the size is too small, a neural

54

network cannot be trained. Inversely, if the size is too large, outputs from a neural network

maybe not satiable. It means that a neural network can be an efficient solution once we can select

a good architecture and a good algorithm to train it. Many training algorithms have been

introduced so far, but each of them has its pros and cons. Some algorithms are good at training

these types of neural network architectures, but are not good at training the others. Some

algorithms converge very fast but require a lot of computing cost, which limits themselves in

many practical applications. Some others do not require high computing cost but are unreliable.

As the matter of fact, it is not easy to find a reliable algorithm which has the ability to train all

types of neural networks. Until now neural networks are still an interesting area of artificial

intelligence. The Error Back Propagation (EBP) is considered as a breakthrough to train neural

networks but it is not an effective algorithm because of its slow convergence. The Lavenberg

Marquardt is much faster but it is not suitable for large networks.

4.1.1 Neural Network Architectures

 As presented above, artificial neural networks are a complex combination of training

algorithms and architectures. It is clear that training algorithms are desperately an important key

to ANN’s success and also the most challenging part. Nevertheless, neural network architectures

cannot be contempted, which help us reason many phenomena during training process. In

practice, many researchers usually face a problem when some neural networks can be trained

very well with training patterns but they perform poorly with verification patterns [55]. This can

be explained that the selected neural network architectures are not optimal. Therefore, they do

not have enough power to interpolate with the new patterns which are not used during training

process. The main goal of neural networks is not to find the exact solutions, but to find the

55

optimum solutions. In case, the architecture is not optimized, a neural network will lose its

generality and will not interpolate well. In order to reduce this side affect, it is better to select the

architecture as small number of neurons as possible. A network with more neurons can normally

get higher success rate with training algorithms, but its training result is usually far from the

desired one. In other words, its success may be misleading. In contrast, a network with fewer

neurons can give much better results; however, it is very tough to train this network with small

errors and often requires efficient training algorithms. Fewer neurons require more intensive

computations which can only work with advanced training algorithms discussed later. There is

no proper answer to know how many neurons are optimum for a certain application. The best

approach is trial and error, which is usually time-consuming in case an architecture is trained

with an inefficient algorithm. However, this work can be easier with powerful architectures using

fewer neurons plus more advanced algorithms to train the same problems.

 Some well-known architectures as radial basis function (RBF), learning vector

quantization (LVQ), etc. which can be trained easily, but they require a large number of neurons

equal to the number of patterns or the number of clusters [55]. In order to obtain optimum

results, these architectures are not the best solutions compared with others. They not only use

more neurons than needed, but also are so expensive in computing cost. This will become more

critical in training large networks for complex problems. Because of these reasons, this section

will only focus on three basic but fundamental architectures: (1) the multilayer perceptron

(MLP), (2) the bridged multilayer perceptron (BMLP), (3) the fully connected cascade (FCC).

These three architectures are familiar and widely used in training neural networks.

56

Fig. 4.1: Multilayer perceptron architecture 3-3-4-1 (MLP)

Fig. 4.2: Bridged multilayer perceptron architecture 3-3-4-1 (BMLP)

1

2

3

5

6

4

7

8

+1

+1

+1

input

output

M L P 3-3-4-1

1

2

3

5

6

4

7

8

+1

+1

+1

input

output

B M L P 3-3-4-1

57

Fig. 4.3: Fully connected cascade architecture 3-1-1-1 (FCC)

 The multilayer perceptron without connections cross layers is the oldest architecture. The

MLP can have one hidden layer or multiple layers and signals have to propagate through each

layer. Disadvantage of this architecture is that it has to use more neurons than other architectures

to solve the same problems, and it limits abilities of signal processing. The BMLP and FCC are

more powerful than the MLP. These two prototypes allow connections cross layers. With these

additional connections, neural networks are more transparent, and hence easier to train. In order

to evaluate performances of these three prototypes, an experiment is conducted to test them with

parity-N problems which are considered as one of the toughest issues of training neural networks

[55]. Then the results are reported in Table 4.1 in term of the number of neurons over weights.

From the comparison, the FCC architecture can be the most powerful prototype in most cases. It

needs much fewer neurons. It is also easier to find the optimal architecture from the FCC

prototype. In contrast, if we use the MLP or BMLP, it will be more difficult. Because there are

1

2

3

4

+1

+1

+1

+1

input

output
FC C 3-1-1-1-1

58

more neurons, and from hence there are more possibilities.

Architecture Parity-3 Parity-7 Parity-15 Parity-31 Parity-63

MLP 4/16 8/64 16/256 32/1024 64/4096

BMLP 3/14 5/44 9/152 17/560 33/2144

FCC 2/9 3/27 4/70 5/170 6/399

 Table 4.1: Number of neurons/weights required for different parity problems using neural

network architectures

4.1.2 Error Back Propagation Algorithm

 The steepest descent gradient method is a well-known technique in optimization and

training neural networks even though it was named differently as the Widrow-Hoff learning rule

or the delta learning rule. Before the appearance of the Error Back Propagation (EBP), it had

very limited ability to train neural networks, which consist of one input layer and one output

layer (Fig 4.4). In order to train this type of neural network, this method has to calculate

gradients of an error function of each neural output with respect to each weight. Assume the total

error function LMS (Least Mean Square) is defined as:

p

p

p

j

p

jj doE
1

2

2

1
 (4.3)

 where o = f(net)

 p: number of patterns

 j: number of outputs

 Take the derivative of LMS with respect to the weight wij

 i

p

p
p

j

p

jp

j

p

j

ij

j
x

net

netf
do

w

E

1

)(
 (4.4)

p

p

i

p

j

p

j

p

jij xfdow
1

')((4.5)

59

 where xi is input signal

 For each training pattern, each weight will be updated by this formula

 ijijij www (4.6)

 where α is a learning constant

Fig. 4.4: Neural network with one input layer and one output layer

 According to this algorithm, the neuron weights will change in proportional to the error

values between the desired outputs and the actual outputs, and to the derivative of the activation

function, and to the input signal. However, we will face difficulties to train multi-layer neural

networks with hidden layers if we try to apply the same approach. The reason is that neural

networks do not have target values of each neuron output in hidden layers. Therefore, we do not

know how to tell hidden units what to do. In other words, the contribution of weights in hidden

layers to outputs is unknown. Actually, this unsolved question used to be a big problem which

made neural networks fall out of flavor after an initial period of high popularity in 1950s. It took

60

30 years before the Error Back Propagation popularized a new way to train hidden neurons. And

this algorithm has lead to the new waves of neural network researches and applications.

Fig. 4.5: Neural network with one hidden layer

 The EBP is considered as a first order gradient method. This algorithm proposed a way to

train hidden neurons in multi-layer networks through the back-propagation technique. From

hence, it allows us to compute derivatives of error functions with respect to each weight. The

EBP is a fundamental algorithm in training neural networks, and understanding the EBP would

help us grasp more advanced training algorithms later. Because of this reason, this section will

present more details about this algorithm. In order to simplify the presentation, training neural

networks with one pattern will be described here.

(1) Definitions

Error signal for unit i: ii netE / (4.7)

...

...

O
u

tp
u

t

In
p

u
t

...
H

id
d

e
n

61

The gradient with respect to weight: ijij wEw /

 (4.8)

The set of nodes anterior to unit i: iji wjA :

The set of nodes posterior to unit j: ijj wiP :

(2) Forward propagation, the input units are determined by the external input signal x.

All other units propagate forward and their outputs are defined as following:

)(

IAj

jijii ywfy

 (4.9)

where f is an activation function

(3) Calculate error function between desired values and actual values

o

oo ydE
2

2

1

 (4.10)

(4) Calculate gradient at the output layer by the use of chain rule.

 ij

i

iij

ij
w

net

net

E

w

E
w

 (4.11)

The first factor: i

inet

E

 (4.12)

The second factor:

IAk

jkik

ijij

i yyw
ww

net
 (4.13)

Put these factors together we have jiij yw (4.14)

(5) Error back propagation: after calculating errors at output units, it has to be

propagated back to calculate errors of hidden units. Once again the chain rule is

applied to expand the error function of hidden units in terms of posterior nodes.

62

jPi j

j

j

i

ij

j
net

y

y

net

net

E

net

E

 (4.15)

The first factor: i

inet

E

 (4.16)

The second factor: ij

Ak

kik

jj

i wyw
yy

net

I

 (4.17)

The third factor:)(' jj

j

j
netf

net

y

 (4.18)

Put these factors together we have

JPi

ijijjj wnetf)(' (4.19)

(6) Error back propagation will continue until the derivative of the error function with

respect to each weight is done

 nw

E

w

E

w

E

ggradient

2

1

 (4.20)

(7) Update weights for each training pattern in each iteration

gww kk 1 (4.21)

 As seen above, the EBP algorithm includes in mathematic equations which look

complicated. In fact, its process is intuitively very clear. When a training pattern is clamped, it

will propagate through a network and produce an actual value at each output neuron. Each actual

value is compared with each desired value to calculate the error. In order to train neural

networks, training algorithms have to minimize this error value close to zero by adjusting

63

network weights as gradient methods. However, just by applying this rule straightforwardly,

networks cannot update new weights of hidden neurons because these units do not have δ values.

The EBP solved this problem by the chain rule which distributes each error value to all hidden

neurons that it is connected to and then weighs for each connection. In other words, a hidden

neuron will receive a δ value which is equal to a δ value of each output unit multiplied by the

weight of connection between those units.

 The EBP algorithm is a breakthrough which proposed a new way to train neural networks

with hidden layers. It sets up a foundation for many advanced training algorithm later. It also has

an advantage over advanced algorithms in term of computing cost, which plays a very important

role in training large neural networks for many real applications. However, the EBP also has

many disadvantages. It is known as a slow training algorithm which is very difficult to train with

small errors. Besides that, this algorithm usually requires larger networks to solve the same

problems compared with advanced algorithms. As considered in the section about neural

network architectures, unoptimal architectures may result in undesired outputs. On account of

these deficiencies, the EBP is not considered as an efficient training algorithm. Many works to

improve the EBP in term of convergence speed have been done, but their success is not enough

to be more realistic and applicable [56]-[58]. Because of this reason, the advanced training

algorithms as Levernberg Marquardt (LM) are used the most. They require more computations,

but they are more efficient with faster convergence and smaller error.

4.1.3 Lavenberg Marquardt Algorithm

 The Lavenberg Marquardt algorithm is a combination between the gradient descent

method and the Gauss-Newton method. It gives exchange between the stability of the first order

64

method and the speed of the second order method. When the current solution is far from the

correct solution, the Lavenberg Marquardt algorithm behaves as the steepest gradient method,

which is slow but its convergence is guaranteed. Vice versa, when the current solution is close to

the correct solution, it behaves as the Gauss-Newton method, which is much faster. This explains

why the Laveberg Marquardt algorithm can train neural networks with smaller errors and faster

than the Error Back Propagation.

 Like the quasi Newton method, the Lavenberg Marquardt algorithm was designed to

approach second order speed without calculating the Hessian matrix with second derivatives.

Instead it just approximates by using the Jacobian matrix, which contains first derivatives with

respect to weights, biases and network errors. The Jacobian matrix can be calculated through the

error back propagation technique as presented in the previous section, which is less complicated

than the Hessian matrix.

 Steepest descent method

gkk ww 1 (4.22)

 nw

E

w

E

w

E

g

2

1

 (4.23)

 Newton method

gAww kkk

1

1

 (4.24)

 where Ak is Hessian matrix

65

2

2

2

2

1

2

2

2

2

2

2

21

2
1

2

12

2

2

1

2

nnn

n

n

k

w

E

ww

E

ww

E

ww

E

w

E

ww

E

ww

E

ww

E

w

E

A

 (4.25)

 Gauss-Newton method

 eJJJww T

kk

T

kkk

1

1

 (4.26)

 Where J is Jacobian matrix

N

MP

2

MP

1

MP

N

2P

2

2P

1

2P

N

1P

2

1P

1

1P

N

M1

2

M1

1

M1

N

21

2

21

1

21

N

11

2

11

1

11

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

w

e

J (4.27)

 N: number of weights

 P: number of patterns

 M: number of output

 Lavenberg-Marquardt method

 JJA T2 (4.28)

66

 eJg T2 (4.29)

 eJIJJww T

kk

T

kkk

1

1

(4.30)

 where g - gradient vector of size N

 e - error vector of size M*P

 Derivatives:

 i

i
w

E
g

 (4.31)

P

p

M

m

pm

P

p

M

m

pmpm eodE
1 1

2

1 1

2
 (4.32)

 where pmpmpm ode

MP

P

P

M

e

e

e

e

e

e

e

1

1

1

21

11

 (4.33)

pm

P

p

M

m i

pm

pm

P

p

M

m i

pm

i

i e
w

e
e

w

e

w

E
g

1 11 1

22 (4.34)

 From equation 4.30, we see that when the scalar factor μ is small, the Lavenberg

Marquardt is similar to the Gauss-Newton method. In contrast, when the scalar factor μ is large,

it is similar to the steepest decent method with a small step size. Because the Gauss-Newton

method converges much faster with higher accuracy, thus the scalar factor μ is decreased after

67

each successful iteration, and increased in case a tentative iteration tends to increase the

performance function. In other words, the scalar is a factor to shift the Lavenberg Marquardt

between the Gauss-Newton method and the steepest decent method to reduce the performance

function. This factor is normally adjusted automatically by the algorithm.

 The Lavenberg Marquardt has more advantages than the Error Back Propagation in terms

of convergence speed and smaller error. However, the Lavenberg Marquardt has to compute the

Jacobian matrix J and the inversion of J
T
J square matrix, which is not suitable and practical for

large neural networks. That is the reason why the training algorithm is still a challenging topic in

neural network researches.

4.2 Training Neural Networks with Improved Simplex Method

 Both the Error Back Propagation and the Lavenberg Marquardt have pros and cons. The

EBP requires less computation but converges extremely slowly with complex networks. In

contrast, the LM has more advantages than the EBP in terms of converge speed, success rate,

number of neurons, etc. but it is not efficient in training large neural networks. Its computational

cost increases approximately proportional to N
2
 size of problems. These two well-known

algorithms have ability to solve many practical problems, but they are very limited with some

reasons have just been presented above.

 In order to train neural networks more efficiently, there need to be reliable algorithms

having the ability to train neural networks fast enough without expensive computational cost.

The Nelder Mead’s simplex method is a simple algorithm which has potential to meet these

criterions. In every iteration, it just computes an extra vertex and evaluates its function value to

converge; whereas, the EBP and the LM require the back propagation to compute the gradient

68

matrix and the Jacobian matrix. In other words, the Nelder Mead’s simplex method can train

neural networks only by forward propagation, which is much simpler. Unlike the EBP and the

LM algorithms, the simplex method’s performance does not depend on the number of training

patterns. When the number of training patterns increases, the LM has to compute the bigger size

of the Jacobian matrix and the EBP is required to propagate through all patterns iteratively.

Unfortunately, the original simplex method is not very successful in training neural networks. As

presented in previous sections, this algorithm faces difficulties in optimizing high dimensional

problems. Therefore, its training success rate is not very good, and definitely it is not a reliable

trainer. By adapting the simplex method with quasi gradient search, the improved simplex

method performs much better. Its convergence rate in optimization increases magnificently. This

section will present how the improved simplex method with an extra vertex can train neural

networks with some parity-N problems. Then its performance is compared with the EBP.

Moreover, three different types of architectures will be used in these experiments.

 Multilayer Perceptron (MLP) with one hidden layer and one output: number of hidden

neurons is equal to number of patterns Fig. 4.6.

1
x

2
x

m
x

.

.

.

1
N

2
N

n
N

1n
N

.

.

.

1
w

2
w

n
w

1n
w

output

input

Fig. 4.6: Multilayer perceptron neural network to train parity-N problems

69

Parity-N Algorithm Success rate
Average

Iteration

Comp.

time (s)

Parity-2 EBP 96% 6226 2.3969

SIM 39% 190 0.0203

SIM_Q 100% 293 0.0513

Parity-3 EBP 100% 8423 3.1235

SIM 30% 437 0.0542

SIM_Q 100% 739 0.1459

Parity-4 EBP 78% 113902 37.007

SIM Failure - -

SIM_Q 75% 21139 4.9239

Parity-5 EBP 58% 9357 5.5821

SIM Failure - -

SIM_Q 55% 23595 6.7642

Table 4.2: Comparison of training algorithms with MLP architecture

 Bridged Multilayer Perceptron (BMLP) with one hidden layer and one output: number of

hidden neurons is equal to number of patterns Fig. 4.7.

1
x

2
x

m
x

.

.

.

1
N

2
N

n
N

1n
N

.

.

.

1
w

2
w

n
w

1n
w

output

input

Fig. 4.7: Bridged multilayer perceptron neural network to train parity-N problems

70

Parity-N Algorithm Success rate
Average

Iteration

Comp.

time (s)

Parity-2 EBP 100% 10137 4.167

SIM 100% 334 0.0337

SIM_Q 100% 95 0.0177

Parity-3 EBP 100% 7415 3.651

SIM 85% 841 0.0909

SIM_Q 100% 278 0.0582

Parity-4 EBP 85% 164645 69.419

SIM Failure - -

SIM_Q 100% 4510 1.068

Parity-5 EBP 2% 21931 5.156

SIM Failure - -

SIM_Q 97% 14125 4.1983

Table 4.3: Comparison of training algorithms with BMLP architecture

 Fully Connected Cascade (FCC): two neurons are used to train parity- 2, 3 and three

neurons are used to train parity- 4, 5 Fig. 4.8.

1

2

Input

+1

Outputn

+1

+1

Fig. 4.8: Fully connected cascade neural network to train parity-N problems

71

Parity-N Algorithm Success rate
Average

Iteration

Comp.

time (s)

Parity-2 EBP 100% 15144 5.567

SIM 100% 331 0.0345

SIM_Q 100% 105 0.0206

Parity-3 EBP 100% 14833 4.848

SIM 43% 539 0.0548

SIM_Q 100% 240 0.0435

Parity-4 EBP 100% 79703 25.636

SIM Failure - -

SIM_Q 95% 14301 2.9833

Parity-5 EBP 7% 204759 77.125

SIM Failure - -

SIM_Q 80% 18346 4.4676

Table 4.4: Comparison of training algorithms with fully connected cascade architecture

 From the experiments, we can conclude that the improved simplex method is able to train

neural networks. It even converges much faster than the Error Back Propagation in most cases.

Its success rate is consistently high. Whereas, the original simplex method does not converge

really well, and fails to train parity-4, parity-5. Although the improved simplex method shows its

ability to train neural networks with lower computing cost, it also has some disadvantages which

need to be improved. It is not very stable, and normally requires more neurons than the LM

algorithm. In order words, the improved simplex method has difficulty to train neural networks

with optimum architectures. This deficiency may come from the accuracy of the quasi gradient

methods, which is an interesting topic of future researches. Overall, the improved simplex

method still has some advantages than the EBP and LM algorithms and it can be applied in many

practical problems. Next section will present applications of the improved simplex method.

4.3 Control Robot Arm Kinematics with Improved Simplex Method

72

 The Error Back Propagation (EBP) is considered as a breakthrough to train neural

networks, but it is not an effective algorithm because of its slow convergence. The Lavenberg

Marquardt is much faster but it is not suitable for large networks. Although these two algorithms

are well-known, they usually face difficulties in many real applications because of their complex

computations. Training neural networks to control robot arm kinematics is a typical example.

1
R

2
R

EffectorEnd

Fig. 4.9: Two-link planar manipulator

 Forward kinematics is a practical example which can be resolved by neural networks.

Neural networks can be trained to determine the position x and y of robot arms based on the data

α, β read from sensors at the joints. This data set can be calculated from the equations (4.35,

4.36). While R1, R2 are the fixed length arms and α, β are the movement angles of robot arms as

shown in Fig. 4.9. By sensing its movement angles α, β, the position x and y of a robot arm can

be determined.

)cos(cos 21 RRx (4.35)

)sin(sin 21 RRy (4.36)

73

 To train a neural network with three neurons fully cascaded in Fig. 4.10, we use 2500

(50x50) training patterns generated from equations (4.35), (4.36) with parameters α, β uniformly

distributed in the range of [0, π] and R1= R2= 0.5. The desired outputs and the actual outputs

from this network are depicted in Fig. 4.11 and Fig. 4.12.

1

2

Input

+1

Output3

+1

+1

Fig. 4.10: Neural network architecture to control robot arm kinematics

Fig. 4.11: Desired output (a) and actual output (b) from the neural network in x direction

74

Fig. 4.12: Desired output (a) and actual output (b) from the neural network in y direction

 As we can see, the desired outputs and actual outputs from the neural network are not so

much different with an error about 0.001. The advantage of this algorithm in training neural

networks is that its computational cost is proportional to the number of weights not the number

of input patterns. For this particular case, all 2500 patterns can be applied iteratively, and the

improved simplex method will train neural networks by optimizing a function with seven

variables, which are equal to seven weights. In contrast, training neural networks with the Error

Back Propagation for 2500 patterns seems impractical because it has to adjust its weights for

each training pattern in each iteration. Therefore, its training process is extremely time-

consuming and inapplicable for this particular case. The Levenberg Marquardt is known as a

fast training algorithm, but its training ability is limited by the number of input patterns P,

weights N, and outputs M. In other words, the problem becomes more difficult with the

increasing size of a network. In each iteration, this algorithm has to calculate the Jacobian matrix

JP*MxN and the inversion of J
T
J square matrix. It is obvious that the LM algorithm cannot train

neural networks with seven weights and 2500 input patterns for this robot arm kinematics

75

because of the huge size of Jacobian matrix J2500x7, which over-limits computing capability of PC

computers. In order to train neural networks with the EBP or LM algorithm, the size of training

patterns usually has to be reduced. This will ease the computing tension but it will affect the

accuracy of neural network outputs significantly. Therefore, the actual outputs may be much

different from the desired outputs. In contrast, the increased size of input patterns may affect the

convergence rate, but not the training ability of the improved simplex method. This character

makes it different from the Error Back Propagation and the Lavenberg Marquardt.

 The improved simplex method can be a useful algorithm to train neural networks for

many real applications. The improved simplex method can be used to train neural networks in

modeling. Curve fitting is a typical example. Neural networks has ability to approximate

functions more precisely than the fuzzy system which is well-known. The same neural network

architecture as Fig. 4.10 is used to approximate the function f in Fig. 4.13 and its outputs are

compared in Fig. 4.14.

Fig. 4.13: Desired output of a function
22)3(5.0)4(15.04 yxef

76

Fig. 4.14: Output from fuzzy system (a), output from neural network (b)

77

Chapter 5

Conclusions

 Upon the comparative study of derivative free optimizations algorithms, it seems like the

improved simplex method has more advantages than other algorithms based on evolutionary

computations. Their comparison was summarized in Table 2.3-2.7. The improved simplex

algorithm with quasi gradient search is presented with details in this paper. It is a derivative free

optimization algorithm with two simple approaches of gradient search described. This algorithm

can be used when it is difficult to find function derivatives, or if finding such derivatives are time

consuming. This algorithm was tested over several benchmark problems of local minimum

optimization, and shows its better performance than the original simplex method in terms of both

convergence rate and computing time. Therefore, it shows a great deal of large scale

optimization problems and has been applied successfully in synthesizing filters and training

neural networks. This algorithm also shows very promising results compared with other well-

known evolutionary algorithms independent of gradients as the genetic algorithm, the particle

swarm algorithm, or the differential evolution algorithm, etc. it outperforms these algorithms

with much higher success rate and at least ten to hundred times faster. The experiments tell that

this algorithm is an effective alternative for other optimization algorithms. However, the

modified algorithm presented in this paper can be improved by using other numerical techniques

to calculate more accurate gradients. By using the analytical gradient instead of the quasi

78

gradient for some optimization problems, the improved simplex method can converge at least ten

times faster. These types of improvements can be a good topic of future research.

79

REFERENCES:

[1] G. C. Onwubolu, B. V. Babu, ―New Optimization Techniques in Engineering‖, Springer

2004.

[2] J. Nocedal, S. J. Wright, ―Numerical Optimization‖, Springer, 1999.

[3] J. A. Nelder, R. Mead, ―A Simplex Method for Function Minimization,‖ Computer

Journal, vol. 7, pp. 308-313, 1965.

[4] K. Bredies, D. A. Lorenz and P. Mass, ―A Generalized Conditional Gradient Method and

Its Connection to an Iterative Shrinkage Method,‖ Comput. Optim. Appl, vol. 42, no. 2,

pp. 173–193, 2009.

[5] K. Levenberg, ―A Method for the Solution of Certain Problems in Least Squares,‖ Quart.

Appl. Mach., vol. 2, pp. 164–168, 1944.

[6] A. Burmen, J. Puhan and T. Tuma, ―Grid Restrained Nelder-Mead Algorithm,‖ Comput.

Optim. Appl, vol. 34, no. 3, pp. 359–375, 2006.

[7] C. T. Kelly, ―Detection and Remediation of Stagnation in The Nelder–Mead Algorithm

Using a Sufficient Decrease Condition,‖ SIAM Journal on Optimization, vol. 10, no. , pp.

43–55, 2000.

[8] W. Lenwari, M. Sumner and P. Zanchetta, "The Use of Genetic Algorithms for the Design

of Resonant Compensators for Active Filter," IEEE Trans. on Industrial Electronics, vol.

56, no. 8, pp. 2852-2861, August 2009.

[9] R. Storn and K. Price, ―Differential Evolution—A Simple and Efficient Heuristic for

80

Global Optimization over Continuous Spaces,‖ J. Glob. Optim., vol. 11, no. 4, pp. 341–

359, Dec. 1997.

[10] K. Price, ―An Introduction to Differential Evolution,‖ in New Ideas in Optimization, D.

Corne, M. Dorigo, and F. Glover, Eds. London, U.K.: McGraw-Hill, 1999, pp. 79–108.

[11] B. Biswal, P. K. Dash and B. K. Panigrahi, "Power Quality Disturbance Classification

Using Fuzzy C-Means Algorithm and Adaptive Particle Swarm Optimization," IEEE

Trans. on Industrial Electronics, vol. 56, no. 1, pp. 212-220, Jan 2009..

[12] Sung-Ho Hur, R. Katebi, A. Taylor, "Modeling and Control of a Plastic Film

Manufacturing Web Process," IEEE Trans. on Industrial Informatics, vol. 7, no. 2, pp. ,

May 2011.

[13] C.H. Lo, E.H.K. Fung, Y.K. Wong, "Intelligent Automatic Fault Detection for Actuator

Failures in Aircraft," IEEE Trans. on Industrial Informatics, vol. 5, no. 1, pp. , Feb 2009.

[14] F. Tao, D. Zhao, Y. Hu, Z. Zhou, "Resource Service Composition and Its Optimal-

Selection Based on Particle Swarm Optimization in Manufacturing Grid System," IEEE

Trans. on Industrial Informatics, vol. 4, no. 4, pp. , Nov 2008.

[15] P. Zanchetta, P. W. Wheeler, J. C. Clare, M. Bland, L. Empringham and D. Katsis,

―Control Design of a Three-Phase Matrix-Converter-Based AC-AC Mobile Utility Power

Supply,‖ IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 209-217, 2008.

[16] K. Hangyu, J. Jing, S. Yong, ‖Improving Crossover and Mutation for Adaptive Genetic

Algorithm,‖ Computer Engineering and Application, vol. 12, pp. 93-96, 2006

[17] L. H. Cheng, W. Y. Ping, ‖Genetic Algorithm with a Hybrid Crossover Operator and its

Convergence,‖ Computer engineering and application, vol. 16, pp. 22-24, 2006.

[18] A. K. Qin, V. L. Huang and P. N. Suganthan, ―Differential Evolution Algorithm with

81

Strategy Adaptation for Global Numerical Optimization,‖ IEEE Transactions on

Evolutionary Computation, vol. 13, 2009, pp. 398–417.

[19] E. M. Montes, C. A. Coello, J. V. Ryes, L M. Davila, ―Multiple Trial Vectors in

Differential Evolution for Engineering Design,‖ Eng. Optim, vol. 39, no. 5, pp. 567-589,

July. 2007

[20] A. Slowik, ―Application of an Adaptive Differential Evolution Algorithm With Multiple

Trial Vectors to Artificial,‖ IEEE Trans. on Industrial Informatics, vol. 58, no. 8, pp. ,

Nov 2011.

[21] S. Agrawal, Y. Dashora, M. K. Tiwari, Y. J. Son, ―Interactive Particle Swarm: A Pareto-

Adaptive Metaheuristic to Multiobjective Optimization,‖ IEEE Trans. on System, Man

and Cybernetics, vol. 38, no. 2, pp. 258-277, 2008.

[22] S. Wang, J. Watada, W. Pedrycz, "Value-at-Risk-Based Two-Stage Fuzzy Facility

Location Problems," IEEE Trans. on Industrial Informatics, vol. 5, no. 4, pp. , Nov 2009.

[23] G. Guo, Y. Shouyi, ―Evolutionary Parallel Local Search for Function Optimization,‖

IEEE Trans. on System, Man, and Cybernetics, Vol. 33, no. 6, pp. 864-876, 2003.

[24] C. J. Price, I. D. Coope, and D. Byatt, ―A Convergent Variant of the Nelder-Mead

Algorithm‖, Journal of Optimization Theory and Applications, vol. 11, no. 3, pp. 5–19,

2002.

[25] B. Arpad, P. Janez, T. Tadej, ―Grid Restrained Nelder-Mead Algorithm‖, Comput. Optim.

Appl, vol. 34, no. 3, pp. 359–375, 2006.

[26] C. T. Kelly, ―Detection and Remediation of Stagnation in the Nelder–Mead Algorithm

Using a Sufficient Decrease Condition‖, SIAM Journal on Optimization, vol. 10, no. , pp.

43–55, 2000.

82

[27] N. Larry, T. Paul, ―Gilding the Lily: a Variant of the Nelder-Mead Algorithm Based on

Golden-Section Search‖, Comput. Optim. Appl, vol. 22, no. 1, pp. 133–144, 2002.

[28] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of

the Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal of Optimization,

vol. 9, no. 1, pp. 112-147, 1998.

[29] F. Gao, L. Han, ―Implementing the Nelder-Mead Simplex Algorithm with Adaptive

Parameters,‖ Comput. Optim. Appl, vol., no. , pp. , 4th May 2010.

[30] Torczon, ―V.:Multi-directional Search: A Direct Search Algorithm for Parallel Machines,‖

Ph.D. Thesis, Rice University, TX (1989).

[31] M. Manic, B. M. Wilamowski, ―Random Weights Search in Compressed Neural

Networks Using Overdetermined Pseudoinverse,‖ IEEE International Symposium on

Industrial Electronics 2003, vol. 2, pp. 678-683, 2003.

[32] Nam Pham, B. M. Wilamowski, "Improved Nedler Mead's Simplex Method and

Applications," Journal of Computing, vol. 3, issue 3, March 2011, pp. 55- 63, 2011.

[33] C. J. Chung, R. G. Reynolds, ―Function Optimization Using Evolutionary Programming

with Self-Adaptive Cultural Algorithms,‖ Proceeding SEAL'96 Selected papers from the

First Asia-Pacific Conference on Simulated Evolution and Learning.

[34] J. J. More, B. S. Garbow, and K. E. Hillstrom, ―Testing Unconstrained Optimization

Software,‖ ACM Trans. on Mathematical Software, vol. 7, no. 1, pp. 136-140, 1981.

[35] J. T. Betts, ‖Solving the Nonlinear Least Square Problem: Application of a General

Method,‖ Journal of Optimization Theory and Applications, vol. 18, no. 4, 1976.

[36] K. M. Bryden, D. A. Asklock, S. Corn, S. J. Wilson, ―Graph- Based Evolutionary

Algorithms,‖ IEEE Trans. on Evolutionary Computation, vol. 10, no. 5, pp. 550-567,

83

2006.

[37] J. D. Hewlett, B. M. Wilamowski, G. Dundar, "Optimization Using a Modified Second-

Order Approach With Evolutionary Enhancement," IEEE Trans. on Industrial Electronics,

vol. 55, no. 9, pp. 3374-3380, Sept 2008.

[38] C.J. Price, I.D. Coope, and D. Byatt, ―A Convergent Variant of the Nelder-Mead

Algorithm,‖ Journal of Optimization Theory and Applications, vol. 11, no. 3, pp. 5–19,

2002.

[39] L. Nazareth, P. Tseng, ―Gilding the Lily: A Variant of the Nelder-Mead Algorithm Based

on Golden-Section Search,‖ Comput. Optim. Appl, vol. 22, no. 1, pp. 133–144, 2002.

[40] Steve Winder, ―Analog and Digital Filter Design‖, Newnes 2002.

[41] M. R. Kobe, J. Ramirez-Angulo, and E. Sanchez-Sinencio, ―FIESTA-A Filter Educational

Synthesis Teaching Aid‖, IEEE Trans. Education, 32(3), pp. 280-286, August 1989.

[42] B. M. Wilamowski, "A Filter Synthesis Teaching-Aid", Rocky Mountain ASEE Section

Meeting, Golden CO, USA, April 6, 1990.

[43] B. M. Wilamowski and R. Gottiparthy, ―Active and Passive Filter Design with

MATLAB‖, International Journal on Engineering Educations, vol. 21, No 4, pp. 561-571,

2005.

[44] B. M. Wilamowski, S. F. Legowski, and J. W. Steadman, "Personal Computer Support for

Teaching Analog Filter Analysis and Design Courses", IEEE Trans. on Education, vol E-

35, no 4, pp. 351-361, 1992.

[45] W. M. Anderson, B. M. Wilamowski, and G. Dundar, ―Wide Band Tunable Filter Design

Implemented in CMOS‖, 11th INES 2007 -International Conference on Intelligent

Engineering Systems, Budapest, Hungary, pp. 219-223, June 29 2007-July 1 2007.

84

[46] W. Tangsrirat, T. Dumawipata and S. Unhavanich, ―Realization of Low-pass and Band-

pass Leapfrog Filters Using OAs and OTAs‖, SICE 2003 Annual Conference, vol. 3, pp

4-6, 2003.

[47] Rolf Schaumann, M.E. Van Valkenburg, ―Analog Filter Design‖, Oxford 2001

[48] R. Koller, B. M. Wilamowski, "Simulation of Analog Filters Using Ladder Prototypes"

proceedings of 23-Pittsburgh Conference on Modeling and Simulations, Pittsburgh, USA,

April 30 - May 1, vol 23, part 4. pp. 1755-1761, 1992

[49] T. C. Fry, ―The Use of Continued Fractions in the Design of Electrical Networks‖,

American Mathematical Society, pp. 463-498, 1929.

[50] Marcin Jagiela and B.M. Wilamowski ―A Methodology of Synthesis of Lossy Ladder

Filters‖ 13-th IEEE Intelligent Engineering Systems Conference, INES 2009, Barbados,

April 16-18., 2009, pp. 45-50.

[51] C. Kwan and F. L. Lewis, ―Robust Back-stepping Control of Nonlinear Systems Using

Neural Networks‖, IEEE Trans. System, Man and Cybernetics. A, Syst.,Humans, vol. 30,

no. 6, pp. 753–766, Nov. 2000.

[52] H. Miyamoto, K. Kawato, T. Setoyama, and R. Suzuki, ―Feedback-error Learning Neural

Network for Trajectory Control of a Robotic Manipulator‖, IEEE Trans. on Neural

Network, vol. 1, no. 3, pp. 251–265, 1988.

[53] Y. Fukuyama, Y. Ueki, ―An Application of Neural Networks to Dynamic Dispatch Using

Multi Processors‖, IEEE Trans. on Power Systems, vol. 9, no. 4, pp. 1759-1765, 1994.

[54] G. Indiveri, E. Chicca, R. Douglas, "A VLSI Array of Low-power Spiking Neurons and

Bi-stable Synapses with Spike-timing Dependent Plasticity", IEEE Trans. on Neural

Networks, vol. 17, no. 1, pp. 211-221, Jan 2006.

85

[55] B. M. Wilamowski, ―Neural Network Architectures and Learning Algorithms‖, IEEE

Industrial Electronics Magazine, vol. 3, no. 4, pp.56-63, 2009.

[56] R. A. Jacobs, ―Increased Rates of Convergence through Learning Rate Adaption‖, IEEE

Trans. on Neural Network, vol. 5, no. 1, pp. 295-307, 1988.

[57] T. Tollenaere, ―SuperSAB: Fast Adaptive Back Propagation with Good Scaling

Properties‖, IEEE Trans. on Neural Networks, vol. 3, no. , pp. 561-573, 1990.

[58] R. Salomon, J. L. Van Hemmen, ―Accelerating Back Propagation through Dynamic Self-

Adaption‖, IEEE Trans. on Neural Networks, vol. 9, no. , pp.589-601, 1996.

86

APPENDIX

APPENDIX 1: Nelder Mead’s simplex method

function [f_BEST,BEST]=nelder_mead_nd(obj,x0,d_SIM,df_min,ite_max,times)

% INPUT ARGUMENTS:

% nelder_mead_nd(@testf1,[100,100],1,1e-4,2e2,100)

% obj - Handle of objective function.

% x0 - Initial starting point.

% d_SIM - Size of initial simplex.

% df_min - Minimum improvement required for termination.

% ite_max - Desired number of iterations.

% OUTPUT ARGUMENTS:

% BEST - Location of baest solution.

% f_BEST - Best value of the objective found.

% SIMPLEX - Matrix conatining final simplex.

% f - Objective values for each point in the simplex.

tavg_ite=0;

tsecond=0;

second=0;

succ_time=0;

avg_ite=0;

avg_time=0;

avg_error=0;

average_min=0;

%Initialize parameters and create simplex

for itee=1:times, %training timesa=1;

 tic;

 a=1;

 b=2;

 c=0.5;

 n=length(x0);

 X0=ones(n,1)*x0;

 SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices

 f(n+1)=0;

 f_mid(n)=0;

 mid=zeros(n)

87

for init=1:n+1

 f(init)=feval(obj,SIMPLEX(init,:));

 end

 init=0;

 SIMPLEX(:,end+1)=f';

 SIMPLEX=sortrows(SIMPLEX,n+1); %sort row depending of value of f in ascending order;

 f=SIMPLEX(:,end)';

 SIMPLEX(:,end)=[];

 %% Simplex Code

 for ite=1:ite_max,

 Pb=sum(SIMPLEX(1:n,:))/n; %calculate the centroid P_ of points with i#h

 Ps=(1+a)*Pb-a*SIMPLEX(end,:); %calculate reflection point of Ph:Ps

 f_Ps=feval(obj,Ps);

 if f_Ps<f(1) %f(P*)<f(l)

 Pss=(1-b)*Pb+b*Ps; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Pss<f(1) %f(P**)<f(l)

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 else

 check=0;

 for i=1:n,

 if f_Ps>f(i) % f_P*>f_i and i#h

 check=1;

 break;

 end

 end

 if check==0

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 else

 if f_Ps>f(end) %f_P*>f_h

 Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Pss>f(end) %f(P**)>f(h)

 for i=1:n+1

 SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2

88

 f(i)=feval(obj,SIMPLEX(i,:));

 end

 else

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 end

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 end

 end

 % reorder and display iteration output

 SIMPLEX(:,end+1)=f';

 SIMPLEX=sortrows(SIMPLEX,n+1);

 f=SIMPLEX(:,end)';

 SIMPLEX(:,end)=[];

 %calculate error

 error(ite)=f(1);

 t(ite)=ite;

 % terminate condition3 for neural network training

 if f(1)<df_min,

 succ_time=succ_time+1;

 avg_ite=avg_ite+ite;

 avg_time=avg_time+1;

 avg_error=avg_error+f(1);

 second=second+toc;

 break;

 end

 end;

 % display the result

 succ_rate=succ_time/times;

 BEST=SIMPLEX(1,:);

 f_BEST=f(1);

 average_min=average_min+f_BEST;

 tavg_ite=tavg_ite+ite;

 tsecond=tsecond+toc;

 disp(' ');

 disp(['Minimum value of f = ',num2str(f_BEST),])

 disp(['located at x = [',num2str(BEST),'].'])

89

 disp(['Success rate = [',num2str(succ_rate),'].'])

 %plot

 semilogy(t,error,'-r');

 xlabel('Iterations')

 ylabel('Error')

 title('Error Plot')

 ax=axis; ax(3)=0; ax(2)=110; axis(ax);

 hold on;

end

 avg_iteration=avg_ite/avg_time;

 avg_errors=avg_error/avg_time;

 avg_second=second/avg_time;

 tavg_iteration=tavg_ite/times;

 avg_minimum=average_min/times;

 avg_tsecond=tsecond/times;

 disp(['Average Iteration = ',num2str(avg_iteration),])

 disp(['Average Error = ',num2str(avg_errors),])

 disp(['Average second = ',num2str(avg_second),])

 disp(['tAverage Iteration = ',num2str(tavg_iteration),])

 disp(['tAverage Minimum = ',num2str(avg_minimum),])

 disp(['tAverage second = ',num2str(avg_tsecond),])

return

90

APPENDIX 2: Improved simplex method with quasi- gradient method using an extra vertex

function [f_BEST,BEST]=nelder_mead_ndmd1(obj,x0,d_SIM,df_min,ite_max,times)

% INPUT ARGUMENTS:

% nelder_mead_ndmd1(@testf1,[100,100],1,1e-4,2e2,100)

% obj - Handle of objective function.

% x0 - Initial starting point.

% d_SIM - Size of initial simplex.

% df_min - Minimum improvement required for termination.

% ite_max - Desired number of iterations.

% OUTPUT ARGUMENTS:

% BEST - Location of baest solution.

% f_BEST - Best value of the objective found.

% SIMPLEX - Matrix conatining final simplex.

% f - Objective values for each point in the simplex.

format long;

tavg_ite=0;

tsecond=0;

second=0;

succ_time=0;

avg_ite=0;

avg_time=0;

avg_error=0;

average_min=0;

%% Initialize parameters and create simplex

for itee=1:times, %training timesa=1;

 tic;

 alpha=1;

 a=1;

 b=2;

 c=0.5;

 n=length(x0);

 mo=zeros(1,n);

 mu=0.1;

 X0=ones(n,1)*x0;

 SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices

 f(n+1)=0;

 f_mid(n)=0;

 mid=zeros(n);

 for init=1:n+1

 f(init)=feval(obj,SIMPLEX(init,:));

 end

91

 init=0;

 SIMPLEX(:,end+1)=f';

 SIMPLEX=sortrows(SIMPLEX,n+1); %sort row depending of value of f in ascending order;

 f=SIMPLEX(:,end)';

 SIMPLEX(:,end)=[];

 %% Simplex Code

 for ite=1:ite_max,

 Pb=sum(SIMPLEX(1:n,:))/n; %calculate the centroid P_ of points with i#h

 Ps=(1+a)*Pb-a*SIMPLEX(end,:); %calculate reflection point of Ph:Ps

 f_Ps=feval(obj,Ps);

 Pss=(1-b)*Pb+b*Ps; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Ps>f(1)

 %% using composite point

 for i=1:n,

 ord(i)=SIMPLEX(i,i);

 end

 f_ord=feval(obj,ord);

 for i=1:n,

 if mod(i,2)==0

 grad(i)=(f(i-1)-f_ord)/(SIMPLEX(i-1,i)-ord(i));

 else

 grad(i)=(f(i+1)-f_ord)/(SIMPLEX(i+1,i)-ord(i));

 end

 end

 Gs=SIMPLEX(1,:)-alpha*grad/sqrt(sum(grad.^2));

 % Calculate reflected point

 P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:);

 P1=SIMPLEX(1,:);

 P2=Gs;

 PP=(P3-P1).*(P2-P1);

 u=sum(PP)/sum((P2-P1).^2);

 Gs=P1+u*(P2-P1);

 f_Gs=feval(obj,Gs);

 if f_Gs<f_Ps

 Ps=Gs; %new reflected point

 f_Ps=f_Gs;

 Pb=SIMPLEX(1,:);

92

 Pss=(1-b)*SIMPLEX(1,:)+b*Ps; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 end

 end

 if f_Ps<f(1) %f(P*)<f(l)

 if f_Pss<f(1) %f(P**)<f(l)

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 else

 check=0;

 for i=1:n,

 if f_Ps>f(i) % f_P*>f_i and i#h

 check=1;

 break;

 end

 end

 if check==0

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 else

 if f_Ps>f(end) %f_P*>f_h

 Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Pss>f(end) %f(P**)>f(h)

 for i=1:n+1

 SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2

 f(i)=feval(obj,SIMPLEX(i,:));

 end

 else

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 end

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 end

 end

 % reorder and display iteration output

 SIMPLEX(:,end+1)=f';

93

 SIMPLEX=sortrows(SIMPLEX,n+1);

 f=SIMPLEX(:,end)';

 SIMPLEX(:,end)=[];

 error(ite)=f(1);

 t(ite)=ite;

 % terminate condition3 for neural network training

 if f(1)<df_min,

 succ_time=succ_time+1;

 avg_ite=avg_ite+ite;

 avg_time=avg_time+1;

 avg_error=avg_error+f(1);

 second=second+toc;

 break;

 end

 end;

 % display the result

 succ_rate=succ_time/times;

 BEST=SIMPLEX(1,:);

 f_BEST=f(1);

 average_min=average_min+f_BEST;

 tavg_ite=tavg_ite+ite;

 tsecond=tsecond+toc;

 disp(' ');

 disp(['Minimum value of f = ',num2str(f_BEST),])

 disp(['located at x = [',num2str(BEST),'].'])

 disp(['Success rate = [',num2str(succ_rate),'].'])

 %plot

 semilogy(t,error,'b');

 xlabel('Iterations')

 ylabel('Error')

 hold on;

end

 avg_iteration=avg_ite/avg_time;

 avg_errors=avg_error/avg_time;

 avg_second=second/avg_time;

 tavg_iteration=tavg_ite/times;

 avg_minimum=average_min/times;

 avg_tsecond=tsecond/times;

 disp(['Average Iteration = ',num2str(avg_iteration),])

 disp(['Average Error = ',num2str(avg_errors),])

 disp(['Average second = ',num2str(avg_second),])

 disp(['tAverage Iteration = ',num2str(tavg_iteration),])

 disp(['tAverage Minimum = ',num2str(avg_minimum),])

 disp(['tAverage second = ',num2str(avg_tsecond),])

return

94

APPENDIX 3: Improved simplex method with quasi-gradient method using a hyper plane

 equation

function [f_BEST,BEST]=nelder_mead_ndmd2(obj,x0,d_SIM,df_min,ite_max,times)

% INPUT ARGUMENTS:

% nelder_mead_ndmd2(@testf1,[100,100],1,1e-4,2e2,100)

% obj - Handle of objective function.

% x0 - Initial starting point.

% d_SIM - Size of initial simplex.

% df_min - Minimum improvement required for termination.

% ite_max - Desired number of iterations.

% OUTPUT ARGUMENTS:

% BEST - Location of baest solution.

% f_BEST - Best value of the objective found.

% SIMPLEX - Matrix conatining final simplex.

% f - Objective values for each point in the simplex.

format long;

tavg_ite=0;

tsecond=0;

second=0;

succ_time=0;

avg_ite=0;

avg_time=0;

avg_error=0;

average_min=0;

% Initialize parameters and create simplex

for itee=1:times, %training timesa=1;

 tic;

 alpha=1;

 a=1;

 b=2;

 c=0.5;

 n=length(x0);

 mo=zeros(1,n);

 mu=0.1;

 X0=ones(n,1)*x0;

 SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices

 f(n+1)=0;

 f_mid(n)=0;

 mid=zeros(n);

 for init=1:n+1

95

 f(init)=feval(obj,SIMPLEX(init,:));

 end

 init=0;

 SIMPLEX(:,end+1)=f';

 SIMPLEX=sortrows(SIMPLEX,n+1); %sort row depending of value of f in ascending order;

 f=SIMPLEX(:,end)';

 SIMPLEX(:,end)=[];

 % Simplex Code

 for ite=1:ite_max,

 Pb=sum(SIMPLEX(1:n,:))/n; %calculate the centroid P_ of points with i#h

 Ps=(1+a)*Pb-a*SIMPLEX(end,:); %calculate reflection point of Ph:Ps

 f_Ps=feval(obj,Ps);

 Pss=(1-b)*Pb+b*Ps; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Ps>f(1)

 % using hyper plane equation

 I=SIMPLEX(:,1:n);

 A=ones(1,n+1)';

 A(:,2:n+1)=I;

 B=f';

 P=pinv(A)*B;

 grad=P';

 Gs=SIMPLEX(1,:)-alpha*grad(1,2:n+1);

 % Calculate reflected point

 P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:);

 P1=SIMPLEX(1,:);

 P2=Gs;

 PP=(P3-P1).*(P2-P1);

 u=sum(PP)/sum((P2-P1).^2);

 Gs=P1+u*(P2-P1);

 f_Gs=feval(obj,Gs);

 if f_Gs<f_Ps

 Ps=Gs; %new reflected point

 f_Ps=f_Gs;

 Pb=SIMPLEX(1,:);

 Pss=(1-b)*SIMPLEX(1,:)+b*Ps; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 end

 end

96

 if f_Ps<f(1) %f(P*)<f(l)

 if f_Pss<f(1) %f(P**)<f(l)

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 else

 check=0;

 for i=1:n,

 if f_Ps>f(i) % f_P*>f_i and i#h

 check=1;

 break;

 end

 end

 if check==0

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 else

 if f_Ps>f(end) %f_P*>f_h

 Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion

 f_Pss=feval(obj,Pss);

 if f_Pss>f(end) %f(P**)>f(h)

 for i=1:n+1

 SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by (Pi+Pl)/2

 f(i)=feval(obj,SIMPLEX(i,:));

 end

 else

 SIMPLEX(end,:)=Pss; %replace Ph by P**

 f(end)=f_Pss;

 end

 else

 SIMPLEX(end,:)=Ps; %replace Ph by P*

 f(end)=f_Ps;

 end

 end

 end

 % reorder and display iteration output

 SIMPLEX(:,end+1)=f';

 SIMPLEX=sortrows(SIMPLEX,n+1);

 f=SIMPLEX(:,end)';

97

 SIMPLEX(:,end)=[];

 error(ite)=f(1);

 t(ite)=ite;

 % terminate condition3 for neural network training

 if f(1)<df_min,

 succ_time=succ_time+1;

 avg_ite=avg_ite+ite;

 avg_time=avg_time+1;

 avg_error=avg_error+f(1);

 second=second+toc;

 break;

 end

 end;

 % display the result

 succ_rate=succ_time/times;

 BEST=SIMPLEX(1,:);

 f_BEST=f(1);

 average_min=average_min+f_BEST;

 tavg_ite=tavg_ite+ite;

 tsecond=tsecond+toc;

 disp(' ');

 disp(['Minimum value of f = ',num2str(f_BEST),])

 disp(['located at x = [',num2str(BEST),'].'])

 disp(['Success rate = [',num2str(succ_rate),'].'])

 % plot

 semilogy(t,error,'b');

 xlabel('Iterations')

 ylabel('Error')

 hold on;

end

 avg_iteration=avg_ite/avg_time;

 avg_errors=avg_error/avg_time;

 avg_second=second/avg_time;

 tavg_iteration=tavg_ite/times;

 avg_minimum=average_min/times;

 avg_tsecond=tsecond/times;

 disp(['Average Iteration = ',num2str(avg_iteration),])

 disp(['Average Error = ',num2str(avg_errors),])

 disp(['Average second = ',num2str(avg_second),])

 disp(['tAverage Iteration = ',num2str(tavg_iteration),])

 disp(['tAverage Minimum = ',num2str(avg_minimum),])

 disp(['tAverage second = ',num2str(avg_tsecond),])

return

98

APPENDIX 4: Test function

function [f]=testf1(x,c)

% Robot arm training

f=0;

p=length(c);

gain=0.5;

for i=1:p

 % three neurons

 f1=tanh(gain*(x(1)*c(i,1)+x(2)*c(i,2)+x(3)));

 f2=tanh(gain*(x(4)*c(i,1)+x(5)*c(i,2)+x(6)*f1+x(7)));

 f=f+(1/p)*(tanh(gain*(x(8)*c(i,1)+x(9)*c(i,2)+x(10)*f1+x(11)*f2+x(12)))-c(i,3))^2;

end

return

