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Abstract

In VLSI testing we need Automatic Test Pattern Generator (ATPG) to get input test

vectors for Circuit Under Test (CUT). Generated test sets are usually compacted to save

test time which is not good for failure diagnosis. Physical defects in circuits are modeled

by different Fault Models to facilitate test generation. Stuck-at and transition fault models

are widely used because of their practicality. In this work a Diagnostic Automatic Test

Pattern Generation (DATPG) system is constructed by adding new algorithmic capabilities

to conventional ATPG and fault simulation programs. The DATPG aims to generate tests

to distinguish stuck-at fault pairs, i.e., two faults must have different output responses. This

will help diagnosis to pin point the failure by narrowing down the fault candidates which

may be the reason for this particular failure. Given a fault pair, by modifying circuit netlist

a new single fault is modeled. Then we use a conventional ATPG to target that fault. If

a test is generated, it is guaranteed to distinguish the fault pair in the original circuit. A

fast diagnostic fault simulation algorithm is implemented to find undistinguished fault pairs

from a fault list for a given test vector set. To determine the quality of the test vector set

generated by DATPG, we use a proposed Diagnostic Coverage (DC) metric, which is similar

to Fault Coverage (FC). The diagnostic ATPG system starts by first generating conventional

fault coverage vectors. Those vectors are then simulated to determine the DC, followed by

repeated applications of diagnostic test generation and simulation. We observe improved

DC in all ISCAS’85 benchmark circuits.

To distinguish between a pair of transition faults, we need to find a test vector pair

(LOC or LOS type) that produces different output responses for the two faults. By adding

a few logic gates and one modeling flip-flop to the circuit under test (CUT), we extend the

ability of the previous DATPG system to target transition faults. Given a transition fault
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pair, this ATPG model either finds a distinguishing test or proves the faults to be equivalent.

The number of fault pairs that needs to be targeted by the ATPG is greatly reduced after

diagnostic fault simulation. Experimental results show improved DC and shorter CPU time

compared to a previous work [38].

Although not demonstrated in this thesis, the proposed DATPG system can be used for

multiple or mixed fault models as long as there is an ATPG and fault simulator for targeted

faults. This work thus allows any conventional fault detection ATPG tools to be enhanced

for diagnosis purposes without significantly increasing their complexity.
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Chapter 1

Introduction

In the realm of modern VLSI designs, testing of the product constitutes a major part

of the total cost. For example, a 300mm wafer can produce about 700 1cm2 chips. An

estimation of the manufacturing cost can be broken down like this [41, 66]:

• Material cost: ∼5%

• Fab amortization cost (over $3 billion/fab) and fab operational cost: ∼25%

• Personnel cost: ∼20%

• Packaging cost: ∼10%

• Testing cost: ∼40%

Diagnosis plays a crucial role in cutting down testing cost and improving yield. To test

a circuit, physical defects are modeled with different Fault Models. A common objective

of testing is to detect all or most modeled faults. Although fault coverage (detected faults

divided by total number of faults) has a somewhat nonlinear relationship with the tested

product quality or defect level (failing parts per million), for practical reasons fault coverage

continues to be a measure of the test quality [20].

Most test generation systems are built around core ATPG (Automatic Test Pattern

Generation) algorithms [20] for (1) finding a test vector for a target fault and (2) simulating

faults to find how many have been detected by a given vector. The system then attempts

to find tests of high fault coverage because the primary objective is fault detection, i.e.,

presence or absence of faults.
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In some test scenarios we must diagnose or identify the fault, making the test intent

different from the original detection coverage. In practice, detection tests with high coverage

may not have adequate diagnostic capability. One often uses tests for multiple fault mod-

els [91, 98, 99] or multiple tests for the same model [15]. Basically, we generate tests that

are redundant for fault detection and then hope that they will provide better diagnostic ca-

pability. To reduce the excess tests we may resort to optimization or removal of unnecessary

tests [39, 82, 83].

Advanced VLSI technology employs finer features that are comparable or even smaller

than the wavelength used in lithography. This leads to larger process variability, leading

to non-classical fault models that the tests should be tuned to. As a result, the initial

yield ramp-up or characterization phase where defect identification is required has assumed

greater importance. The term non-classical faults refers to faults that do not conform to the

simple stuck-at fault model widely used in theory and industry practice. Characterization

phase refers to the pre-production testing where faults produced by the fabrication process

are diagnosed, analyzed and, if possible, eliminated. Details on these terms and processes

can be found in textbooks on electronic testing [4, 20, 43].

In this work we are dealing with classical fault and non-classical fault diagnosis. Classical

fault refers to the single stuck-at fault model [4, 20, 43], which assumes a single faulty signal

line permanently set to 0 or 1, i.e. the logic value on that line cannot be toggled. We express

this fault as line s-a-0 or s-a-1. A variety of other fault models are termed as non-classical

faults. Some examples are bridging fault (coupling between two or more signals), stuck-

open or stuck short fault (a transistor permanently open or short), transition fault (delayed

transition of a signal), path delay fault (extra delay on a clocked signal path), and IDDQ

fault (excess leakage or quiescent current) [20]. Details about different fault models can be

found in Chapter 2.
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1.1 Problem Statement and Contributions

Goals of this work are:

• Generate additional test vectors to distinguish fault pairs for multiple fault models.

• Develop efficient diagnostic fault simulation algorithm to get undistinguished fault

pairs and DC.

• Define diagnostic coverage (DC).

• Implement above algorithms into a DATPG system.

• Minimize test set with DATPG and compare to ILP based method.

A contribution of this work is in providing basic core algorithms for a diagnostic test

generation system with the capability to handle multiple fault models. Given a pair of

faults, we should either find a distinguishing test or prove that the faults are equivalent in

a diagnostic sense; diagnostic equivalence of two faults implies that faulty functions at all

outputs of a multi-output circuit are identical [76]. Two faults in the pair may belong to

different fault models. The new exclusive test algorithm of Chapter 4 and 5 represents a

non-trivial improvement in computational efficiency over previously published work [6, 38].

We provide a diagnostic coverage metric in Chapter 4 similar to the detection fault coverage,

such that a 100% diagnostic coverage means that each modeled fault is distinguished from

all other faults. This definition leads to efficient diagnostic fault simulation of Chapter 4,

which is another core algorithm. A fault simulator is an essential tool for obtaining mean-

ingful tests. Years of research have produced highly efficient fault simulation algorithms and

programs [20]. Both exclusive test generation and diagnostic fault simulation algorithms are

specifically devised to take full advantage of the highly developed existing tools for stuck-at

faults. The key features of the diagnostic algorithm presented here are (1) it accepts fault

detection data from any conventional fault simulator, thus benefiting from the efficiency of a
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mature program, (2) fault dropping is used to delete diagnosed faults from the list of faults as

fault simulation progresses, and (3) for a given set of input vectors it provides fault coverage

(FC), diagnostic coverage (DC), and necessary data for a fault dictionary. In Chapter 4 a

diagnostic test generation system is presented which combines the core algorithms and the

new coverage metric into an ATPG system.

We further extend the ability of the system to target transition faults and bridging

faults, by modeling them with stuck-at faults. Actually, as long as the faulty behavior can

be mapped to certain logic (combinational or sequential), our ATPG system can generate

distinguishing test vectors for that modeled fault.

With these diagnostic test vectors we can improve the test minimization algorithm

proposed in [82, 83, 98, 99]. Using a dedicated diagnostic test set instead of an N-detect test

set further reduces the CPU time.

1.2 Organization of this Dissertation

In Chapter 2, we present the basics of fault testing and diagnosis. Terminologies are

defined and explained. Previous work are summarized. Overview of VLSI diagnosis process

are presented in Chapter 3. In Chapter 4, we discuss in detail the proposed DATPG system.

Chapter 5 will expand the capability of the DATPG system to deal with transition faults.

Finally in Chapter 6 we give the conclusion and discuss the possibility to target arbitrary

fault models.

4



Chapter 2

Background and Overview of DATPG

While VLSI testing is considered a mature science, that maturity applies to fault detec-

tion. Detection tests, used in high-volume production, identify the device as good or faulty

without identifying the specific fault present. Larger process variation now places greater

emphasis on fault location in the pre-production or characterization test phase. Most work

on diagnostic tests has appeared only since mid to late 1990s. Ad-hoc definitions of diagnos-

tic coverage or diagnostic resolution exist but there is no accepted metric for diagnostic tests,

similar to fault coverage for detection tests. Algorithms for an exclusive test to distinguish

between two faults, functional equivalence identification, or fault dictionary optimization are

known to be NP-hard. They require practical heuristic solutions before they can be incorpo-

rated into a diagnostic test generation system. The proposed research will advance the state

of the art in diagnostic testing through algorithms and tools for non-classical faults that are

relevant to today’s nano-scale technologies.

This chapter deals with the basics of VLSI testing. First I will give a brief introduction

about different type of VLSI circuits, faults models, ATPG algorithms, and DFT techniques,

etc. Fundamentals described here will help the reader understand the proposed algorithms.

2.1 Combinational and Sequential Circuits

We can generally divide digital circuits into 2 subcategories: combinational and sequen-

tial. Combinational circuit means there’s no memory element in the circuit. The logic is

purely combinational. Figure 2.1 shows a common combinational circuit with several pri-

mary inputs (PI) and primary outputs (PO). If input vectors (logic 0s and 1s) are applied
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PI PO

Combinational
Logic

Figure 2.1: Illustration of a combinational circuit.

a

b

c

d

e

Figure 2.2: ISCAS’85 combinational benchmark circuit c17.

at PIs, output responses can be observed immediately at POs (after any gate delays). Fig-

ure 2.2 shows a simple example of a combinational circuit. If we apply a test vector “01010”

at the primary inputs we should get “11” if the circuit functions correctly.

Actually nearly all digital designs are sequential, i.e. there are flip-flops and/or other

state holding elements inside the circuit. Introducing memory elements such as D flip-

flops and latches [65] makes it possible to reuse logic and hold state, which can extend the

functionality of the circuit tremendously. Figure 2.3 shows a diagram for typical sequential

logic.

2.2 VLSI Testing

Testing is the process to verify that the fabricated VLSI circuit functions as expected

or designed. Figure 2.4 shows the principle of typical digital testing. Circuit/Device under

6



Q

Q D

Q
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Q
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Clock

Clock

Clock
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Logic

Figure 2.3: Illustration of a sequential circuit.

test (CUT/DUT) is exercised by applying test signals to its inputs. Output responses are

observed and compared. If there’s no mismatch between observed response and stored correct

response, the CUT is considered good, otherwise it will be labeled as bad. The input data

to the CUT is referred to as the test pattern or test vector. Usually tests applied during

testing are for fault detection. The purpose of a detection test is to identify the CUT as

faulty of fault-free. But in diagnosis, additional test patterns maybe applied, aiming to find

the cause/location of the failure.

Currently the available commercial silicon fabrication technology reduces the feature

size down to 22nm [1]. Process variation has greater and greater impact on product quality.

A manufactured circuit may develop various kinds of defects during and after the fabrication

process [57].
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---00
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response

Comparator

MatchMismatch

10---
01---
-- ---
-- ---
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11---

Faulty 
Circuit

Good 
Circuit

Output 
Responses

Figure 2.4: Basic test process.

There are several different types of testing [20]:

• Verification testing, characterization testing, or design debug

– Verifies correctness of design and correctness of test procedure − may require

correction of either or both

• Manufacturing testing

– Factory testing of all manufactured chips for parametric and logic faults, and

analog specifications

– Burn-in or stress testing

• Acceptance testing (incoming inspection)

– User (customer) tests purchased parts to ensure quality
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In this work we focus on manufacturing test. For details about other testing scenarios,

interested readers can refer to several text books [4, 20, 26, 43, 64, 65, 87, 97]. Input test

vectors are usually generated by an Automatic Test Pattern Generator (ATPG). Another

popular area in testing/test pattern generation is Built-in Self-test (BIST) [87]. For chips

with BIST structure all or part of the input test patterns are generated by on chip logic.

The idea is to let chips test themselves to cut down the testing cost since external Automatic

Test Equipment (ATE) is very expensive. The cost of a tester for current VLSI chips can

easily go over $20M [20, 87].

In manufacture testing, at different fabrication stages there are different kinds of tests.

Before the chip is packaged, wafer sort or probe test is conducted. Gate threshold volt-

age is measured to make sure it is within acceptable range. Other monitored parameters

include polysilicon sheet resistance, poly field threshold voltage, gate delay, currents, etc.

These measurements are called parametric testing. Another key testing scenario is the func-

tional/structure test. A full functional test is usually impractical. For example if we want

to exercise all possible inputs for a simple 64 bit ripple carry adder, 2129 test patterns are

needed (two 64-bit data plus one bit carry). A 1GHz automatic test equipment (ATE) will

take 1022 years to test it [20]. On the other hand, structure testing is widely used in practice

whose purpose is to verify the topology of the circuit under test (CUT). Based on the as-

sumption that the correctness of the design is verified before manufacturing (though design

verification is another huge problem to solve in the VLSI world), if we can test that every

node in the fabricated chip is toggling as simulated/expected then we can be sure about the

quality of the final product.

The goal of testing is to correctly separate good chips from bad ones. In reality the test

process itself is not perfect. It is possible that bad chips are not picked out and good chips

are labeled as bad. The former are called “test escapes” and the latter are called “yield

loss”. Both may bring serious economic loss [20]. To ensure high product quality, diagnosis
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plays a key role in improving testing procedures and may point out the direction for better

design methodology in future products.

2.3 Fault Modeling

To conduct structural testing first we need to model real world defects with mathemat-

ical fault models. A good fault model should accurately reflect the behavior of a physical

defect, and it should be computationally efficient for simulation [87].

2.3.1 Stuck-at and Redundant Fault

Stuck-at fault [31, 33] is the most widely used fault model. As the name implies, stuck-

at fault is a signal line (gate input/output) stuck-at logic “0” or “1”, i.e. it cannot change

its value during operation. In most literature stuck-at fault indicates gate level stuck-at

fault; so does this writing. Figure 2.5 shows an example of stuck-at fault [87]. The output

of AND3 is stuck at 0, meaning that no matter what the inputs are, the output of AND3

is always 0 after power up. Correct logic value is shown in black before “/” and the faulty

value is shown in red after “/”. The logic function is a simple multiplexer and it can be

expressed with Boolean algebra as:

Z = AS̄ + BS (2.1)

The corresponding Karnaugh map [65] is shown in Figure 2.6. The reason to have

redundant logic introduced into the multiplexer is to eliminate hazard. Figure 2.7 shows

an example of hazard condition [2]. It illustrates a logic race condition, showing how the

delays incurred in each element affect the final output. Interested reader can verify that

after introducing additional AND3 in Figure 2.5 race condition is eliminated.

Redundancy and re-convergent fanout shown in Figure 2.5 brings undetectable faults

(called redundant fault). For example, the s-a-0 fault at the output of AND3 can never be

10



AND1

AND2

AND3

S

A

B

s-a-0

1/0

Z

1

1

0
0
1/0

1/0

0

1

0

1&0

Figure 2.5: A multiplexer with s-a-0 fault and redundant logic to eliminate hazard [87].

AB
S 00 01 11 10

0 0 0 1 1
1 0 1 1 0

Figure 2.6: Karnaugh map for example of Figure 2.5. Items enclosed in red oval indicates
the redundant logic (AND3 in Figure 2.5).

detected. To detect the fault, both inputs of AND3 need to be 1 and the first 2 inputs

of OR gate must be 0 (in order to observe at primary output), and this will cause conflict

conditions for signal S. S has to be 1 and 0, which is impossible. Thus s-a-0 on AND3 is

a redundant fault. Redundancy identification is very important in conventional ATPG and

our DATPG system. It will influence fault coverage and diagnostic coverage, which will be

discussed in detail in the following chapters. Redundant fault does not affect the function

of the circuit since its existence has no impact on output values (assume there is no hazard,

i.e. no race condition).

Even though many physical defects do not manifest as stuck at fault, due to its effec-

tiveness to detect real failures, stuck-at fault continues to serve as a “default” fault model

in VLSI testing [47].
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Figure 2.7: Race condition in a logic circuit. Here, ∆t1 and ∆t2 represent the propagation
delays of the logic elements. When the input value (A) changes, the circuit outputs a short
spike of duration (∆t1 + ∆t2)−∆t2 = ∆t1 [2].

2.3.2 Transition Fault Model

Timing related fault models are also widely used. Because of the growing complexity of

modern VLSI designs it is more and more difficult to meet timing. Clock tree synthesis and

static timing analysis are part of the techniques dealing with timing issues [64]. Two types

of delay faults are commonly used. One is path delay fault, modeling accumulated excessive

delay along a certain path. The other is transition fault, which assumes that excessive delay

lumps at a gate input or output [20]. Since transition fault has similar behavior, as well

as similar complexity, compared to stuck-at fault in testing, it also enjoys a widespread

popularity.

2.3.3 Other Fault Models

The transistor level stuck-at model may be more accurate than gate level stuck-at fault

model. It is also more complex. A single (or multiple) transistor can be stuck at on or off
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state, causing excessive current flow (stuck-short/on) or memory effect (stuck-open/off) [87,

20]. Since this model does not make any noticeable improvement in testing quality it has not

enjoyed widespread success compared to stuck-at fault, which has much lower complexity [51].

Another fault model which is gaining popularity is called bridging fault. It models the

defect in the interconnect of modern chips. There are several types of bridging faults: wired-

AND, wired-OR and Dominant, etc. Wired-AND means two signal lines form an AND gate,

i.e. if one line get a value of “0”, the other line will be forced to “0”. Similarly wired-OR

causes “0” of one line to be overridden by the other line if it has a value of “1”. Dominant

bridging fault indicates one line dominates the other no matter what value the other line

has. More accurate bridging models, such as dominant-AND/dominant-OR have also been

proposed [87].

IDDQ faults are those causing excessive current during steady state (e.g. transistor

stuck-on is one possible cause of an IDDQ fault).

There are several other fault models that draw attention in VLSI testing. For example

open fault model, which targets interconnect opens/breaks, disconnected vias, can result in

state-holding, intermittent, and pattern-dependent fault behaviors [51].

2.4 Design for Test (DFT)

It is quite common for today’s digital VLSI designs to have millions of gates. Even

with the single stuck-at fault model, trying to test every input/output of every gate is a

challenging task. As discussed before, to exhaustively test each functionality of the design

is impossible. A commonly used testing strategy is to structurally test every signal line

(input/output of logic gate), to see whether they toggle correctly as simulated. To do this

we need two prerequisites: controllability and observability. The former indicates that a

test pattern/sequence should be able to set the targeted line to a desired value. And the

latter means we should be able to observe the behavior of a line from a primary output or

an observation point such as a scan flip-flop, which will be discussed below.
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Currently, nearly all digital designs integrate scan flip-flops. Figure 2.8 shows the idea

of scan design. Basically, all or most flip-flops are stitched together using different methods.

One way to implement the scan flip-flop is to use multiplexers as shown in Figure 2.8. With

scan design we can shift in any test pattern from a scan-in pin and observe the output

values captured in flip-flops from a scan-out pin. The area overhead is not significant. And

only several additional pins are needed (scan-in, scan-out, scan-enable, etc.), which are very

valuable resources in digital design. State-of-the-art VLSI chips have billions of transistors

and thousands of input/output pins. It is very difficult to add dedicated pins just for testing.

Quite often, even with scan chains implemented, some part of the circuit is still un-

controllable/unobservable. Ad-hoc techniques are applied in these situations to increase the

fault coverage to nearly 100%. Nowadays people put much emphasis on reliability of elec-

tronic devices, thus near 100% fault coverage, along with low DPPM (defective parts per

million), is usually required. To achieve this, control and/or observation points are inserted

into the circuit which do not influence the functionality but make it easier to test.

Another popular DFT technique is Built-in Self-test (BIST). Test patterns are gener-

ated internally inside the CUT and output responses are compacted into a pass-fail bit or
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signatures. This means a chip can test itself without outside stimulus, thus greatly reducing

the cost of testing, and ATEs are no longer needed.

In reality any single DFT technique is not sufficient to achieve near 100% coverage

while maintaining a reasonable cost. Most designs implement a combination of several DFT

techniques. For example BIST is used for initial screening and then ATE is used to apply

additional deterministic test patterns for further testing.

2.5 ATPG and Fault Simulation

Automatic Test Pattern Generation is another key area in VLSI testing. Its primary role

is to generate test patterns with as much coverage as possible. Lots of algorithms have been

proposed since the early years of VLSI design, such as D-algorithm, PODEM, FAN, TOPS,

etc. Introduction of these algorithms can be found in many text books [4, 20, 26, 43, 87].

An ATPG usually comes with a fault simulator whose goal is to simulate generated test

patterns to find undetected faults, calculate coverage, etc. Any ATPG system will benefit a

lot from a fast/efficient fault simulator.
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Chapter 3

VLSI Diagnosis

Many diagnosis techniques have been proposed through the years [51]. In this work we

use the dictionary based method as demonstration, though our diagnostic test generation

will also benefit other diagnosis methods.

3.1 Introduction of Diagnosis Procedure

The purpose of diagnosis is to identify the cause of a failing chip, i.e., the nature and

location of the defect. To hunt down the culprit causing the failure, a straightforward way

is to go through every “household”, using physical inspection equipment, such as scanning

electron microscopes, particle beams, infrared sensors, liquid crystal films, laser scanner,

etc [22, 51]. If the process is successful we may get a photograph of the “crime scene”.

It may be missing or extra metal conductor, resistive via, short/open transistor, cross talk

between neighboring wire, and so on. In [14, 67] there are several “crime scene” pictures

for open/short circuit failures obtained by SEM (Scanning Electron Microscope) or TEM

(Transmission Electron Microscope).

Because of the large scale of VLSI designs it is impossible to search through the en-

tire design with physical inspections. It is necessary to perform fault diagnosis to narrow

down the possible defect locations. Diagnosis algorithms can be roughly divided into two

categories: effect-cause fault diagnosis and cause-effect fault diagnosis [3, 51, 80].

Effect-cause diagnosis begins with the syndrome of the failing chip. A syndrome is the

observed faulty behavior of the chip under test. Various path-tracing methods are applied

to narrow down the logic locations (e.g. cross section of 2 logic cones). Several algorithms

have been proposed in previous works such as structural pruning [96], back-trace [97], inject
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and evaluate [69], etc. In cause-effect diagnosis it is usually assumed that there can be only

one fault which is causing the problem. This kind of assumption is not necessary in effect-

cause diagnosis. Although it has some advantage in handling a CUT with multi-defects, the

diagnosis results tend to be pessimistic and imprecise [80].

In cause-effect diagnosis, simulated faulty behaviors are stored/computed before hand.

Once a faulty response of a CUT is captured during testing, this observed response is com-

pared with the stored values. If there is a close or exact match, the CUT is diagnosed at

the first stage. Equipped with the location/fault type information, the next stage is design

tracing back to find weaknesses (timing/weak driving signal/large load/etc.) or physical

inspection to dig deeper. For cause-effect diagnosis usually there are some assumptions to

limit the mathematical complexity within a manageable extent. One popular assumption

is single fault, i.e. there is only one fault causing the failure. Since a fault model itself is

just an approximation of a real physical defect, quite often the observed faulty behavior of

a CUT does not match the simulated behavior based on the assumed fault model. Addi-

tional algorithms are developed to deal with this problem [49]. Once a fault model is chosen

(multiple fault models can be used, but one at a time), a basic diagnosis process can be

performed by comparing the signature of the failing CUT with the simulated signature for

each modeled fault. In [51] signature is defined as “the data representation of the response of

a defective circuit to a diagnostic test set”. For example a signature of a stuck-at 0 fault on

a primary input is the list of failing vectors that detect this fault and the outputs at which

the incorrect/unexpected value is captured.

3.2 Fault Dictionary

Many previously proposed diagnosis methods rely on a fault dictionary [11, 70, 73, 84,

90, 94]. In this section we demonstrate the construction of different types of dictionaries.

Figure 3.1 shows a benchmark circuit with a stuck-at 1 fault (f1) on the top interconnect.

Several test vectors (t1, t2, t3) are applied to detect the fault. All the faulty responses are
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Figure 3.1: c17 with a stuck-at-1 fault.

Table 3.1: Observed output responses for fault s-a-1 in c17.
Output responses

Faults t1 t2 t3
10110 11110 10101

fault free 10 10 11
f1 00 00 01
f2 10 00 11
f3 10 10 10
f4 10 10 01

recorded in table 3.1 with four faults injected, one at a time. Comparing the fault free

response to the faulty responses we can get signatures for faults. In table 3.2 the “fault free”

row has a signature of all 0s, indicating that observed bits are matching simulated/expected

outputs. A signature bit of “1” means there is a mismatch on that output. In this example

f1 (s-a-1) has a signature of “10” for test vector 1 (t1), meaning that a mismatch on the first

output is captured when applying t1. If we look closer we can see that faulty behavior of

f1 is only observed on the first output for all test vectors. In diagnosis this information can

be used to narrow down the possible locations of the fault(s) (fan-in cone of the first output

pin).

Table 3.2 shows one way to construct a full response dictionary. In a simple diagnosis

scenario once a faulty response is observed we can look in the dictionary for a matching

entry. If an entry is found then the corresponding fault is known. The type and location

of the fault can be used to guide physical inspection to pin-point the real defect on silicon,
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Table 3.2: Full response dictionary.
Signature

Faults t1 t2 t3

fault free 00 00 00
f1 10 10 10
f2 00 10 00
f3 00 00 01
f4 00 00 10

Table 3.3: Indexed full response dictionary.
Signature

Faults t1 t2 t3

f1 1 1 1
f2 - 1 -
f3 - - 2
f4 - - 1

otherwise it is impractical to use physical inspection through the entire chip. For large

industry designs, a full response dictionary can become prohibitively large (F ∗ V ∗O bits),

where F is the number of faults, V is the number of test vectors, and O is the number of

outputs [80]. Dictionary compaction is another well researched area [25, 68, 50, 39]. For

example we can use an index instead of binary bits for a dictionary. Table 3.3 shows an

index dictionary converted from Table 3.2. Since all possible output patterns are equal

to or smaller than 2n − 1, where n is the number of outputs, the largest index needed is

min(2n − 1, highest number of faults detected by any test vector). In reality faults in a

same logic cone tend to produce identical output responses for a given vector set, so that

the largest index is usually much smaller than highest number of faults detected by any test

vector [80]. In Table 3.3 detection at the first output is assigned index “1”, detection at the

second output is assigned index “2”. The indexed dictionary can be stored as {f1: [(t1, 1),

(t2, 1), (t3, 1)], f2: [(t2, 1)], f3: [(t3, 2)], f4: [(t3, 1)]}, and this is the one we use for our

DATPG system in next chapter.

To further reduce the size of a dictionary, another approach is to use a pass-fail dictio-

nary. As the name suggests, pass-fail dictionary only stores pass or fail status of a fault for
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Table 3.4: Pass-fail dictionary.
Signature Index

Faults t1 t2 t3

f1 1 1 1 1
f2 0 1 0 2
f3 0 0 1 3
f4 0 0 1 3

all applied vectors. Table 3.4 shows an example of a pass-fail dictionary. Fault f1 fails all

3 test vectors, thus having a signature of “111” (“1” indicating a fail). The corresponding

indexes are shown in the right side of the table. Failing all three tests are assigned an index

of 1. For every fault we can calculate the index like this: start from 1; increase by 1 as long

as the signature of current fault is unique (i.e. previous faults do not have same signature).

If the signature is a repetition of previous ones, the same index is assigned.

Obviously this compaction is achieved at the sacrifice of resolution. For example fault f3

and f4 have the same signature in the pass-fail dictionary, thus they cannot be distinguished.

In other words, if a CUT is passing t1 and t2 but failing t3, we cannot know which fault

(f3 or f4) is causing the failure. But with a full response dictionary they are distinguished

because they are detected at different outputs.
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Chapter 4

Combinational Diagnostic Test Generation

In this chapter we begin to construct our DATPG system using the stuck-at fault model

and indexed fault dictionary defined in previous chapters.

To better diagnose a failing CUT, the more unique output responses we get the more

accurate a conclusion we can reach. The purpose of a DATPG system is to generate addi-

tional test vectors that target pairs of faults, which can produce different output responses

for that pair, thus increasing the resolution of the diagnosis. The final fault candidate list

can be narrowed down with such tests. Fault candidates are those faults that have same or

similar signatures as observed signatures for a failing CUT.

Although nearly all circuits are sequential, in testing/diagnosis they are transformed

into combinational logic through scan design (refer to figure 2.8) or other DFT techniques.

Details about sequential logic diagnosis are presented in chapter 5.

4.1 Background

First we present some background about diagnostic test generation, including definitions

of exclusive test and diagnostic coverage (DC).

Given a pair of faults, Exclusive test has been defined as a test that detects one fault

but not the other [6] in this pair. Its primary intent is to distinguish between the fault

pair. For a multiple output circuit, this definition is applied separately to each output. An

exclusive test can detect both faults as long as they are not being detected at the same

outputs. Perhaps a more appropriate term would be distinguishing test. However, following

existing usage of the term, we will continue with exclusive test.
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Figure 4.1: The general exclusive test problem.

This background is reproduced from a previous publication [6]. Consider a pair of faults,

f1 and f2. An exclusive test must detect only one of these two faults. Figure 4.1 illustrates

generation of an exclusive test. A fault-free digital circuit is shown as C0. The other blocks

C1 and C2 are the same circuit with faults f1 and f2, respectively. The circuit is assumed

to be combinational and can have any number of inputs. For clarity, we will only consider

single output functions for now. We show an example of a multiple output circuit at the

end of this section. Any input vector that produces a 1 output in Figure 4.1, i.e., detects a

s-a-0 fault at the primary output is an exclusive test for the fault pair (f1, f2). This is the

Boolean satisfiability version of the exclusive test problem [103].

(C0 ⊕ C1)⊕ (C0 ⊕ C2) = 1 (4.1)

that can be simplified as:

C1 ⊕ C2 = 1 (4.2)

This simplification, shown in Figure 4.2, implies that the two faulty circuit outputs

differ for the exclusive test. There are two ways to generate exclusive tests. We can either

modify a single-fault ATPG program [35] or modify the circuit and use an unmodified ATPG
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Figure 4.2: Simplified exclusive test.

program [6, 93]. In the previous work [6], the exclusive test generation problem was solved

in a way similar to that showed in Figure 4.2. The fault pair was modeled as a single

fault [48, 17] thus reducing the problem to that of single-fault ATPG in a twice as big a

circuit. Figure 4.4 shows an example for generating an exclusive test for e1 (line e stuck-at

1) and b0 (line b stuck-at 0) in Figure 4.3. The model shown in Figure 4.4 is based on

equation 4.3:

(C0 ⊕ C0)⊕ (C1 ⊕ C2) = 1 (4.3)

Firstly e1 and b0 are modeled with the s-a-1 fault in Figure 4.4 [48] by adding three

additional gates and doubling the original CUT. This means a test that detects s-a-1 in

Figure 4.4 can also detect multiple faults e1 and b0 when they are both present in Figure 4.4

(without the added additional gates). Using any conventional single fault ATPG tool we can

get a test for the s-a-1 fault. For example we get “0110” and this test fulfills the condition

set in equation 4.3. The first part, (C0 ⊕ C0), represents the fault free response “0”. The

second part (C1 ⊕ C2) indicates that when e1 exists in one copy of CUT and b0 exists in

another copy of CUT, the two faulty CUT will produce different output responses for the

generated test (because of the added XOR gate in Figure 4.4). We successfully generate an

exclusive test for this fault pair at the expense of doubling the original CUT and adding

several modeling gates to transfer multiple faults into a single fault. A serious limitation

for this approach is that it can only generate tests for single output circuits. To extend the

method for multiple output circuits a XOR (Exclusive-Or) tree is used to compact output
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Figure 4.3: A circuit with exclusive test required for e s-a-1 and b s-a-0 [6].

responses to a single bit. An exclusive test for the modified single output circuit is also

an exclusive test for the original multiple output circuit. Unfortunately the converse is not

true [6].

Another way to enhance the 2 copy model to accommodate multiple output circuits

is shown in Figure 4.5 [80]. Circuit C1 is a CUT with fault f1 inserted and C2 is a CUT

with fault f2 inserted. By using an array of XOR gates and one multiple input OR gate we

transformed the exclusive test generation problem into a detection test generation problem.

If a test for s-a-0 at the output of the OR gate can be found, this test is the exclusive test

for fault pair f1 and f2. This construction ensures that at least one output response differs

between C1 and C2 in order to set the output line of OR gate to “1” to detect the s-a-0 fault.

Now we solved the exclusive test generation problem with only single stuck-at fault

ATPG. One of the advantages of this approach is that various highly developed ATPG

tools [88, 63, 24, 52] can be used. A previous paper proposed a specially designed ATPG

tool [35] which targets differences between faults instead of single faults. Though the reported

experimental results are good, its use is limited to fault pair distinguishing, and it cannot

utilize the newly developed ATPG algorithms.

4.2 Boolean Analysis of New Exclusive Test Algorithm

We propose a new exclusive test generation algorithm which simplifies the DATPG

problem to a single stuck-at ATPG problem. There is no need to double the circuit under
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Figure 4.4: A two-copy ATPG model for generating exclusive test required for e s-a-1 and b
s-a-0 [6].

test. The only modification to the CUT is inserting at most three logic gates (AND, OR,

NOT) and an additional primary input pin. Then we use any conventional ATPG tool to

target the s-a-0 or s-a-1 fault on the added input pin. If a test is found, this test is an

exclusive test for the fault pair under investigation.

To get a deep understanding of the transformation of the previous DATPG model to

our simplified model, Boolean algebra is used for deduction. In order to further simplify the

solution shown in Figure 4.2 and equation 4.2, we first transform it into an equivalent single-

fault ATPG problem shown in Figure 4.6. Here we have introduced a new primary input

variable y. The function G in Figure 4.6 is clearly implemented as Shannon’s expansion [20]

about y with cofactors C1 and C2:

G(X, y) = ȳC1 + yC2 (4.4)
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The condition for detecting s-a-0 or s-a-1 fault on y, using Boolean difference [20], is

∂G

∂y
= C1 ⊕ C2 = 1 (4.5)

This is identical to the exclusive test condition of equation 4.2. Thus, we establish that a

vector X that detects either s-a-0 or s-a-1 fault on y in the circuit G(X, y) of Figure 4.6

will also detect the output s-a-0 fault in the circuit of Figure 4.2. We call G as ATPG

circuit. It maps the given complex ATPG problem to a single fault ATPG problem. Next,

we synthesize a compact circuit for G(X, y).
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Suppose fault f1 is line x1 s-a-a and fault f2 is line x2 s-a-b, where x1 and x2 are two

signal lines in the circuit C. Fault variables a and b can assume any value 0 or 1. The

primary input of C is a vector X that may or may not contain the two fault lines. We

express the fault-free function using Shannon’s expansion [20] as,

C(X, x1, x2) = x̄1x̄2C(X, 0, 0) + x̄1x2C(X, 0, 1)

x1x̄2C(X, 1, 0) + x1x2C(X, 1, 1)

(4.6)

Therefore, the cofactors of G(X, y) are given by,

C1 = C(X, a, x2) = āx̄2C(X, 0, 0) + āx2C(X, 0, 1)

ax̄2C(X, 1, 0) + ax2C(X, 1, 1)

C2 = C(X, x1, b) = x̄1b̄C(X, 0, 0) + x̄1bC(X, 0, 1)

x1b̄C(X, 1, 0) + x1bC(X, 1, 1)

(4.7)

Let us define the following variables:

x′
1 = ȳa + yx1 and x′

2 = ȳx2 + yb (4.8)

We can clearly see that the function in equation 4.8 is multiplexing. Using the rules of

Boolean algebra, such as absorption and consensus theorems [65], we obtain:

x̄′
1x̄

′
2 = ȳāx̄2 + yx̄1b̄ (4.9)

x̄′
1x

′
2 = ȳāx2 + yx̄1b (4.10)
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x′
1x̄

′
2 = ȳax̄2 + yx1b̄ (4.11)

x′
1x

′
2 = ȳax2 + yx1b (4.12)

First we substitute C1 and C2 from equations 4.7 into equation 4.4 and then make use of

equations 4.9 through 4.12, to obtain:

G(X, y) = x̄′
1x̄

′
2C(X, 0, 0) + x̄′

1x
′
2C(X, 0, 1)

x′
1x̄

′
2C(X, 1, 0) + x′

1x
′
2C(X, 1, 1)

= C(X, x′
1, x

′
2) (4.13)

where the last result follows from the Shannon’s expansion of the original circuit function

C, given by equation 4.6, in which new variables x′
1 and x′

2 defined in equations 4.8 replace

x1 and x2, respectively.

The synthesized circuit for G(X, y), shown in Figure 4.7, is obtained by inserting two

multiplexers, a−mux and b−mux controlled by a new primary input y, in the original circuit

C(X). Veneris et al. [93] arrive at a similar construction, though our derivation provides

greater insight into the procedure. In practice, for any 0 or 1 value of variables a and b, each

multiplexer simplifies either to a single gate or a gate with an inverter.

Let’s try the new algorithm on the previous example circuit of Figure 4.3. We seek an

exclusive test for two faults shown (e1, b0). The ATPG circuit for this problem is given

in Figure 4.8 based on the above deductions. The logic shown with shading is obtained by

simplifying the multiplexers of Figure 4.7 upon setting a = 1 and b = 0. The exclusive test

found by a single fault ATPG is a = 0, b = 1, c = 1, d = 0. The signal values shown on

lines are from five-valued D-algebra [20]. We arrive at same result compared to the method

in the last section without doubling the CUT.
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4.3 Generation of Exclusive Test

An exclusive test for two faults in a single output circuit must detect only one of those

faults. In a multiple output circuit, that same condition must be satisfied at least on one

output. Suppose, C1 and C2 blocks in Figure 4.2 each has n outputs. Previously we have to

use n XOR gates such that the ith XOR receives the ith outputs from C1 and C2. All XORs

feed into an n-input OR gate whose output contains the single s-a-0 faults to be detected

(Figure 4.5).
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In general, an exclusive test for a multiple output circuit can detect both targeted faults

as long as they are not being detected on exactly the same outputs. Based on this extended

definition the ATPG circuit derived in the previous section (Figure 4.6 and Figure 4.7)

remains valid for multiple outputs. Figure 4.9 extends the ability of previous single output

algorithm to accommodate two-output CUT. Similarly we can construct n-output ATPG

circuits for exclusive test generation.
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X
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Figure 4.9: Exclusive test ATPG circuit for a two-output CUT.

Now let’s look at a simple example to get a deeper understanding. Consider the problem

of finding an exclusive test for two s-a-1 faults in the ISCAS’85 benchmark circuit c17 shown

in Figure 4.10(a). The fault on signal y in the ATPG circuit of Figure 4.10(b) provides a

test X0011. We can verify that this test detects both faults but at different outputs, hence

it will distinguish between them.

Compared to [6], which need 2 copies of the CUT to distinguish between a pair of faults,

we only use one copy. We insert 2 or 3 primary gates (AND, OR, NOT) and a new primary

input (PI) to the netlist. Then any conventional ATPG program targets a stuck-at fault on

the new PI. Either a test is found or the PI fault is proven to be redundant. In the former

case, the test is an exclusive test that distinguishes between the fault pair. In the latter case,

the faults in the pair are equivalent. Fault equivalence can be defined as: given two or more

faults from a fault model, if their output responses are identical for all possible tests they are

equivalent faults. So, in our modeled circuit, if the fault on the inserted PI is proven to be

redundant, i.e. no test exists to detect this fault, the corresponding fault pair is equivalent.
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Figure 4.10: Exclusive test example for multi-output circuit C17.

Since the detection of this fault and distinguishing of the targeted fault pair are equivalent

problems (proved in the previous section using Boolean algebra) fault equivalence checks can

be transferred to redundancy identification. The advantage is that redundancy identification

is a well researched area for conventional ATPG algorithms. We can use ATPG to do

equivalence check to aid the diagnosis process without any additional effort. These diagnosis

problems can be easily solved using highly developed testing tools. And the complexity of

diagnosis is reduced to a level similar to that of fault testing. In [12, 13, 100] the author

presents equivalence check techniques based on implication of faulty values and evaluation

of faulty functions in cones of dominator gates of fault pairs. The major limitations are a

special tool is needed and not all equivalence can be identified.
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Table 4.1: Modified dictionary from Chapter 3.
Signature with (t1, t2) Signature with t3

Faults t1 t2 t3
10110 11110 10101

f1 1/10 1/10 1/10
f2 0/00 1/10 0/00
f3 0/00 0/00 1/01
f4 0/00 0/00 1/10

4.4 Diagnostic Coverage Metric

To generate diagnostic tests we need a coverage criterion to measure how good the

generated test vectors are. This would be similar to the fault coverage (FC) used in con-

ventional ATPG systems where fault detection is the objective. 100% FC means that all

modeled faults are detected by the test set. In [6] diagnostic resolution (DR) is introduced

to measure the quality of a given test set for fault diagnosis. DR is defined as:

DR =
Total number of faults

Number of syndromes
(4.14)

Fault syndrome is the same as fault signature. DR represents the average number of faults

per fault class (faults with the same syndrome/signature). A perfect DR of 1.0 is achieved if

all faults have unique syndromes and all equivalent faults are identified (only one fault from

an equivalent class is kept in the calculation, others are dropped). Here is a simple example

for calculating DR. In Table 4.1 signatures before “/” are from a pass-fail dictionary and

those after “/” are from a full-response dictionary. For the pass-fail dictionary we have 3

unique signatures: (111, 010, 001). Thus DR = 4/3 = 1.33. For full-response there are 4

different signatures: (101010, 001000, 000001, 000010), and DR = 4/4 = 1.0

In this work we propose a diagnostic coverage metric similar to DR but with a form sim-

ilar to Fault Coverage (FC), making our DATPG system almost the same as a conventional

ATPG system.
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Since the core algorithm of previous sections generates exclusive/distinguishing tests

for fault pairs, our first inclination was to specify coverage as the fraction of distinguishable

fault pairs with respect to all possible fault pairs. This has been called diagnostic resolution

(different than the DR we defined above) in several papers [21, 23, 95]. In [38] number of

undistinguished fault pairs is used to indicate the diagnosability of a certain test set. Consider

an example. For N faults, there will be N(N − 1)/2 fault pairs. For a moderate size circuit,

suppose N = 10, 000, then there are 49,995,000 fault pairs. If our tests do not distinguish

5,000 fault pairs, then the coverage would be (49, 995, 0005, 000)/49, 995, 000 = 0.999, which

turns out to be highly optimistic. There is the additional problem of high complexity;

for N = 106, which is common for industrial designs [58], the number of fault pairs is

approximately half a billion. We, therefore, propose an alternative metric. For a set of vectors

we group faults such that all faults within a group are not distinguishable from each other by

those vectors, while each fault in a group is pair-wise distinguishable from all faults in every

other group. In other words, faults in the same group have same signature/syndrome, while

faults from different groups have different signatures. This grouping is similar to equivalence

collapsing except here grouping is conditional to the vectors. If we generate a new vector

that detects a subset of faults in a group then that group is partitioned into two subgroups,

one containing the detected subset and the other containing the rest (note that if faults

are detected at different outputs they are placed into different subgroups). Suppose, we

have sufficient vectors to distinguish between every fault pair, then there will be as many

groups as faults and every group will have just one fault (similar to perfect DR of 1.0). Prior

to test generation all faults are in a single group we will call g0. As tests are generated,

detected faults leave g0 and start forming new groups, g1, g2, . . . gn, where n is the number

of distinguishable fault groups. For perfect detection tests g0 will be a null set and for

perfect diagnostic tests, n = N , where N is the total number of faults. We define diagnostic
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coverage, DC, as:

DC =
Number of detected fault groups

Total number of faults
=

n

N
(4.15)

Initially, without any tests, DC = 0, and when all faults are detected and pair-wise distin-

guished, DC = 1. Also, the numerator in equation 4.15 is the number of fault dictionary

syndromes and the reciprocal of DC is actually diagnostic resolution (DR) defined previ-

ously. And DR can be viewed as the average size of a fault group that cannot be further

diagnosed. Other metrics, such as diagnostic expectation [74, 101] that gives unnormalized

and often large values and diagnostic power [21] that gives normalized but pessimistic values,

need to be compared with DC defined here. For completeness of this discussion, detection

fault coverage (FC) is:

FC =
Number of detected faults

Total number of faults
=

N − |g0|
N

(4.16)

To illustrate the point we made before about an alternative choice for a diagnostic met-

ric, consider Figure 4.11. This example is based on the fault simulation results for ISCAS’85

benchmark circuit c432. The graph shows two metrics for 69 detection and diagnostic vec-

tors for the c432 circuit reported in subsection 4.7.2 (Table 4.4). Vectors are generated using

our DATPG system targeting 520 structurally collapsed single stuck-at faults (excluding

4 identified redundant faults). The dashed line shows the fraction of distinguishable fault

pairs [21, 23, 95], which rises to almost 100% with about 40 vectors, although there are 900

undistinguished fault pairs as shown by the dropping curve (dot-dash) in the middle of the

graph. The solid line is the DCC coverage computed from Table 4.4. When this coverage

approaches 100% the undistinguished fault pair drops to 0. Thus, DC is a better metric

than the fault-pair coverage. For different CUTs, since circuit size varies, using only the

number of undistinguished fault pairs [38] is not good for comparison purpose.
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Figure 4.11: DC example of c432.

4.5 Diagnostic Fault Simulation and DATPG System

To construct a complete DATPG system a fault simulator is a necessity. We need an

efficient algorithm to find undistinguished fault pairs for the ATPG to target. Once a test

is generated, all remaining faults are simulated to get fault groups and DC is updated. The

process stops when DC reaches a set value or an abort/timing limit is reached. A flow chart

of the DATPG system is shown in Figure 4.12.

Key features of the new simulation algorithm are (1) it accepts fault detection data from

any conventional fault simulator, thus benefiting from the efficiency of a mature program,

(2) fault dropping is used to delete diagnosed faults from the list of faults as fault simulation

progresses, and (3) for a given set of input vectors it provides fault coverage (FC), diagnostic

coverage (DC), and necessary data for fault dictionary.
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Figure 4.12: Diagnostic test generation system.

We explain the simulation algorithm using a hypothetical fault simulation example

given in Figure 4.13. Suppose a circuit has eight faults (N = 8), identified as a through h.

Assume that the circuit has two outputs. The gray shading, which identifies the undetected

fault group g0, indicates that all faults are undetected in the initial fault list. Also, fault

coverage (FC) and diagnostic coverage (DC) are both initially 0. We assume that there are

three vectors generated in the detection phase and can detect all faults (blocks 1 and 2 in

Figure 4.12), thus having 100% FC. Later in the simulation process more vectors will be

generated by diagnostic ATPG to improve DC.

The diagnostic phase begins with the three vectors supplied to Block 3. The first

vector is simulated for all eight faults using a conventional fault simulator. We use a full-

response simulator that gives us the fault detection information for each primary output

(PO). Suppose we find that the first vector detects a, e and g. Also, faults a and e are

detected only on the first output and g is detected on both outputs. Thus, fault pairs (a, g)

and (e, g) are distinguishable, while the pair (a, e) is not distinguishable. The result is shown

in the second list in Figure 4.13. The fault list is partitioned into three groups. The first
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Figure 4.13: Diagnostic fault simulation example.

two groups, g1 and g2, shown without shading, contain detected faults. Group g0 now has

5 faults. Each group contains faults that are not distinguished from others within that

group, but are distinguished from those in other groups. Counting detected faults, the fault

coverage is 3/8 and counting detected fault groups, the diagnostic coverage is 2/8 [103].

Fault g, which is in a single fault group, is dropped from further simulation. This

is similar to diagnostic fault dropping reported in other papers [95, 100]. Fault dropping

greatly improves the efficiency. Previous dictionary based diagnosis procedures rely on fault

simulation without fault dropping to generate a full response dictionary [11, 70, 73, 84, 90,

94], which is time and storage consuming because all faults have to be simulated with all

test vectors.

Since fault g has been uniquely distinguished from all other faults, its distinguish-ability

status will not change by other vectors. Note that pair-wise distinguish-ability provided by

future vectors can only subdivide the groups and subdivision of a group with just one fault

will be impossible. The fact that faults can be dropped in diagnostic fault simulation is not

always recognized. However, fault dropping is possible here only because our interest is in
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diagnostic coverage and not in minimizing the vector set. Seven faults are now simulated

for the second vector, which detects faults b and d. Suppose, b and d are detected at the

same set of outputs and hence are placed within same partition g3. Thus, FC = 5/8 and

DC = 3/8. No new fault can be dropped at this stage.

Vector 3 detects faults a, c, f and h increasing the fault coverage to 100%. Suppose

c and f are detected at the same set of outputs and so are placed together in group g4.

Detection at different outputs distinguishes h from these two and hence h is placed in a

separate group g5. Also, noting that this test distinguishes between a and e, group g1 is split

into g1 and g6. Now, FC = 8/8 = 1.0 and DC = 6/8. Faults in fault groups with single

fault are dropped.

Having exhausted the detection vectors, we find that two pairs, (b, d) and (c, f), are

not distinguished. We supply target fault pair (b, d) to Block 4 in the ATPG system of

Figure 4.12. Suppose we find that an exclusive test is impossible thus indicating that the

two faults are equivalent. We remove one of these faults, say d, from g3 and from the fault

list as well. This does not change fault coverage since FC = 7/7, but improves the diagnostic

coverage to DC = 6/7. All faults except c and f are now dropped from further simulation.

The only remaining fault pair (c, f) is targeted and an exclusive test is found. Suppose

fault f is detected by this vector but c is not detected Thus, g4 is partitioned to create

group g7 with fault f . The new partitioning has just one fault per group, FC = 7/7, and

DC = 7/7.

Figure 4.12 shows the flowchart of a diagnostic ATPG system implemented in the Python

programming language [92]. Main functions are Blocks 1 through 4. Blocks 1 and 2 form a

conventional detection coverage ATPG system. In our system, these functions are provided

by Atalanta [52] and Hope [53], acquired from Virginia Tech. Note that any ATPG tools can

be used. Block 4 is an exclusive test generator program that implements the core algorithm

of Sections 3 and 5. Internally, it also uses Atalanta for detecting a fault on line y in the
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ATPG circuit constructed for the given fault pair (Figure 4.9). Block 3 is a diagnostic fault

simulator described before.

4.6 Dictionary Construction and Dictionary-less Diagnosis

A fault dictionary is necessary in conventional cause-effect diagnosis, though generated

exclusive tests can also be used with effect-cause diagnosis. It facilitates faster diagnosis by

comparing the observed behaviors with pre-computed signatures in the dictionary [91, 82, 83].

Based on the discussion in Chapter 3, our diagnostic fault simulator will generate an indexed

full response dictionary on the fly. Only faults that are not dropped are simulated and

signatures for the current test are stored. Signatures for previous tests are discarded, thus

the memory required for diagnostic simulation is kept minimal. This scheme also provides a

way to perform diagnosis without a pre-computed dictionary, which can grow impractically

large for industrial designs. And it can help cutting down the cost of more and more expensive

ATEs (Automatic Test Equipment).

Let’s use Figure 4.13 in the previous section as an example. The dictionary shown

in Table 4.2 is generated based on Figure 4.13 during simulation. Among the entries, X

means the fault is already dropped and not simulated, 0 stands for pass (same as fault-free

response), and 1 stands for fail. To reduce the dictionary size we assign integers to index

different output responses. In this example,“1”, and “11” are indexed with “1” and “2”

for t1 as shown in Table 4.3. “01” is indexed with “1” for t2 and so on. As discussed in

section 3.2 the largest index needed is usually much smaller than the highest number of faults

detected by any test vector. We can see that even for the small example there is obvious

reduction by comparing Table 4.2 and Table 4.3. For larger ISCAS’85 benchmark circuits

the reduction can be over an order of magnitude. During simulation only one column of

Table 4.3 is stored in memory. After simulating t1, we can discard the results because faults

are already grouped for t1. To better illustrate this we can look at Figure 4.13. After t1 (a, e)

are already put into one group, meaning they are distinguished from all other groups based
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Table 4.2: Full response dictionary for Figure 4.13.
Signatures

Faults t1 t2 t3 t4

a 10 00 10 X
b,d 00 01 00 X
c 00 00 01 00
e 10 00 00 X
f 00 00 01 11
g 11 X X X
h 00 00 10 X

Table 4.3: Indexed dictionary for Figure 4.13.
Signatures

Faults t1 t2 t3 t4

a 1 0 1 X
b,d 0 1 0 X
c 0 0 2 0
e 1 0 0 X
f 0 0 2 1
g 2 X X X
h 0 0 1 X

on signatures of t1. In subsequent simulations only faults from same groups are targeted for

“sub-division”, thus previous simulation results are not needed.

Another application of this diagnostic simulator is dictionary-less cause-effect diagnosis.

Still using Figure 4.13 as an example, suppose a failing signature of “00 00 01 11” is observed

during testing. We simulate all faults for t1, and faults (a, e, g) are dropped. (b, d, c, f, h) are

simulated for t2 and (b, d) are dropped. After t3 only (c, f) are left as possible candidates.

And finally, with t4 c is eliminated. We get f as the one fault that is most likely to cause the

failure. Physical inspection may be carried out to get final conclusion. One problem with

this procedure is that there may be no match between observed signatures and simulated

ones; more investigation is needed. Some sophisticated matching algorithms are proposed

in [49, 51].

There is a limitation on our fault simulation algorithm. Because of fault dropping in

our simulator there will be “X” in the generated dictionary. This limits the use of the fault
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dictionary to single stuck-at faults. For a real defect the faulty responses may have no match

in the dictionary. To solve this problem we introduce a heuristic matching algorithm:

FC =
Hamming Distance

O(V −X)
≤ Threshold V alue (4.17)

Here hamming distance is calculated from observed response to the stored syndromes, ignor-

ing “X”s. O is the number of primary outputs, V is number of vectors, and X is number of

“X”s for a fault in the dictionary. If the calculated result is smaller than a given threshold,

the corresponding fault will be added to a candidate list. Then fault simulation without fault

dropping will be performed on this list to obtain additional information to further narrow

down upon a fault candidate.

With the proposed exclusive test generation model, diagnostic coverage metric, and

fault simulation scheme we keep the complexity of DATPG same with conventional ATPG,

meaning that no additional effort is needed to extend the ability of fault testing tools for

fault diagnosis.

4.7 Experimental Results

In this section we use ISCAS’85 [19, 36] combinational benchmark circuits to test our

DATPG system.

4.7.1 Equivalence and Aborted Faults

In the ATPG system of Figure 4.12 when a single fault ATPG program is run it can

produce three possible outcomes, (1) test found, (2) no test possible, or (3) run aborted due

to CPU time or search limit in the program. In (1) a new detection or exclusive test is found.

In (2), if it is detection test then the fault is redundant and is removed from the fault list.

If it is an exclusive test then the two faults are equivalent (perhaps functionally) and either

one is removed from the fault list. In (3), for detection phase the fault remains in the set g0
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and results in less than 100% FC and DC. For an aborted exclusive test the target fault

pair remains indistinguishable, causing reduced DC and worse diagnostic resolution (DR) [6].

Hartanto et al. [37] introduced local circuit transformations and structural analysis to identify

equivalences. Amyeen et al. [13] presented techniques based on implication of faulty values

and evaluation of faulty functions in cones of dominator gates of fault pairs. The efficiency

of our Diagnostic ATPG system will benefit from these methods of equivalence checking. We

discuss this aspect in the next section.

4.7.2 Results

We used the ATPG system of Figure 4.12. Internally, it employs the ATPG program

Atalanta [52] and fault simulator Hope [53]. The circuit modeling for exclusive test and fault

grouping for diagnostic fault simulation are implemented in the Python language [92]. The

system runs on a PC based on Intel Core-2 duo 2.66GHz processor with 3GB memory. The

results for c432 were as follows:

• Fault detection phase:

Number of structurally collapsed faults: 524

Number of detection vectors generated: 51

Faults: detected 520, aborted 3, redundant 1

Fault coverage, FC: 99.43%

• Diagnostic phase:

Initial DC of 51 vectors: 91.985%

Number of exclusive tests generated: 18

Number of undistinguished groups: 0

Largest size of undistinguished group: 1
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Figure 4.14: Diagnostic fault simulation of c432 for 69 algorithmic vectors. FC: fault
coverage, DC: diagnostic coverage.

Final diagnostic coverage DC: 100%

Fault coverage (FC) and diagnostic coverage (DC) as functions of number of vectors

are shown in Figure 4.14. First 51 vectors were generated in the fault detection phase,

which identified only one of the known four redundant faults in this circuit. Diagnostic fault

simulation computed the diagnostic coverage of 51 vectors as 91.985%. The diagnostic phase

produced 18 exclusive tests while identifying 13 equivalent fault pairs. Diagnostic coverage

of combined 69 vectors is 100%. No group has more than 1 fault. We also simulated a set

of 69 random vectors and their coverages are shown in Figure 4.15. As expected, both fault

coverage and diagnostic coverage are lower than those for algorithmic vectors. Results for

ISCAS’85 circuits are shown in Table 4.4 and 4.5.

Table 4.5 indicates a dropping DC as circuit size increases. Once again, this is expected

because of larger numbers of aborted pairs. Notice 740 aborted pairs for c1355. This circuit

is functionally equivalent to c499, which has a large number of XOR gates. In c1355, each
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Figure 4.15: Diagnostic fault simulation of c432 for 69 random vectors. FC: fault coverage,
DC: diagnostic coverage.

XOR gate is expanded as four NAND gates. This implementation of XOR function is known

to have several functionally equivalent faults [9]. Its structurally collapsed set of 1,574 faults

reduces to 950 faults when functional collapsing is used. If we use the set of 950 faults,

the same 85 + 2 = 87 vectors of Table 4.5 will show a significantly higher DC. Thus, the

advantage of functional fault collapsing, though only marginal in detection ATPG, can be

significant in diagnostic test generation.

Similarly, the size of the undiagnosed fault group tends to increase for larger circuits. It

is 11 for c2670. This is related to the lower DC, whose reciprocal is the diagnostic resolution

(DR). DR > 1 indicates poor diagnosis; the ideal resolution DR = 1 requires that each

undistinguished fault group has no more than one fault.

The above discussion points to the need for improved fault collapsing and efficient re-

dundancy identification algorithms. Much work on these has been reported [13, 37], which

we are exploring for suitable approaches. Interestingly, we find that most redundancies or

44



Table 4.4: Experimental results for ISCAS’85 benchmark circuits (detection phase).
No. Detection test generation

Circuit of Det. FC DC CPU
faults tests % % s*

c17 22 7 100.0 95.45 0.031
c432 524 51 99.24 91.99 0.032
c499 758 53 100.0 97.36 0.032
c880 942 60 100.0 92.57 0.047
c1355 1574 85 100.0 58.90 0.046
c1908 1879 114 99.89 84.73 0.047
c2670 2747 107 98.84 79.10 0.110
c3540 3428 145 100.0 85.18 0.125
c6288 7744 29 99.56 85.32 0.220
c7552 7550 209 98.25 85.98 0.390

*Intel Core 2 Duo 2.66GHz, 3GB RAM.

Table 4.5: Experimental results for ISCAS’85 benchmark circuits (exclusive phase).
Diagnostic test generation

Circuit Excl. Abort Equ. Max. DC DC ∗ ∗ CPU CPU
tests pairs pairs grp. % % s s***

c17 1 0 0 1 100.0 100.0 0.33 0.030
c432 18 0 13 1 100.0 100.0 1.75 0.031
c499 0 12 12 1 98.40 100.0 0.39 0.031
c880 10 55 55 1 94.16 100.0 2.77 0.051
c1355 2 740 740 1 59.38 100.0 26.06 0.131
c1908 20 300 277 8 86.46 98.78 10.84 0.066
c2670 43 494 466 11 86.42 98.94 26.70 0.336
c3540 29 541 486 8 89.69 97.17 22.03 0.420
c6288 108 842 977 3 86.87 99.52 27.15 7.599
c7552 87 904 1091 7 86.85 99.35 26.36 2.181

**Equivalent pairs identified and DC after applying fault implication
and dominator evaluation [13].

***CPU time excluding the time to rebuild data structure, which is
avoidable through efficient implementation.

functional fault equivalences are localized within relatively small sub-circuits irrespective of

how large the entire circuit is. Similar results are also reported in [37]. After applying equiv-

alence checking, the DCs are greatly increased, as shown in table 4.5, column 7. Column 6

shows the DC before redundancy checking.
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A comparison of two CPU time columns (column 6 and 8) of Table 4.4 and Table 4.5

shows that diagnostic ATPG takes significantly longer. This is because our implementation

uses an existing ATPG program without changes. For detection ATPG, the circuit data

structure is built once and then used repeatedly by every vector generation run. Even

though the data structure building time is higher than that of a single vector generation,

the total CPU time is dominated by the combined vector generation times. However, in

diagnostic ATPG we repeatedly modify the netlist, and the ATPG program must rebuild the

data structure prior to each vector generation run. An improved program will incrementally

update the data structure instead of rebuilding it. That will bring the diagnostic ATPG

time (column 8 of Table 4.5) in line with the detection ATPG time (column 6 of Table 4.4).

For diagnostic fault simulation, the CPU time is linearly dependent on each of the three

variables, namely, number of gates, number of faults and number of vectors. The CPU times

in Table 4.5 include the time of the conventional fault simulator Hope [53] and that of our

Python program that partitions the fault list and computes DC. The overall increase in

run times with increasing circuit size for diagnostic simulation shown in Table 4.5 is between

O(gates2) and O(gates3), which is no different from what has been reported for conventional

fault simulation [15, 21].

Table 4.6 shows a comparison between the results obtained from our DATPG system

when Atalanta [52] or a commercial tool Fastscan [63] is used. These results are for the IS-

CAS’85 benchmark circuit c7552. The data from Atalanta is taken from Tables 4.4 and 4.5.

In the detection phase, Fastscan produced almost half as many vectors, 116 versus 209 from

Atalanta. As may be expected from a commercial ATPG tool, Fastscan has a more compre-

hensive vector minimization built in strategy. It also has highly efficient search algorithms

and is able to identify more redundant faults. Hence, a higher fault coverage, FC = 99.94%

versus 98.25% for Atalanta. The corresponding diagnostic coverages for the detection vectors

were 85.98% for Atalanta and 86.95% for Fastscan.
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Table 4.6: Diagnostic test generation results for ISCAS’85 benchmark circuit c7552.
Detection phase Diagnostic phase

Test system Detect. FC DC Exclu. Total Aborted Final
vectors % % vectors vectors fault pairs DC %

DATPG (Atalanta) 209 98.25 85.98 87 296 904 86.85 (99.35)
DATPG (Fastscan) 116 99.94 86.95 44 160 9 99.80
N-detect ILP [83] 122 ∼98 85.47 31 153 — 86.88

In case of Atalanta, exclusive tests were generated for all undiagnosed fault pairs before

using diagnostic fault simulation. In contrast, for Fastscan every exclusive test was simulated

for diagnostic coverage before generating the next exclusive test. This strategy produced

fewer exclusive tests, 44 versus 87 for Atalanta. Perhaps compaction of the Atalanta vectors

will close this gap. More noticeable is number 904 of aborted fault pairs for the exclusive test

generation by Atalanta. With Fastscan, all but 9 fault pairs either produced an exclusive

vector or were found to be equivalent through the comprehensive search build into Fastscan.

This resulted in a high DC of 99.8%. Atalanta-based DATPG produced DC = 86.85%,

which was then updated to 99.35% shown in parenthesis in Table 4.6 by additional fault

equivalence analysis of 904 fault pairs. The final fault coverage (FC) of the total set of

vectors remained the same as obtained by the initial detection vectors (column 3).

We could not exactly compare the run times of Atalanta and Fastscan because they

ran on different computing platforms. However, their normalized CPU times may not differ

much. The result of DATPG with Atalanta required additional equivalence pair identification

consuming extra CPU time. One difference between the two cases is the diagnostic ATPG

strategies. The one adopted with Fastscan, following each exclusive vector by an immediate

diagnostic fault simulation, proved to be better and is recommended.

The last row in Table 4.6 gives a result reported in previous publications [80, 81, 82, 83].

In that work the authors minimize test sets without reducing DC. They start with an N-

detect test set and use a primal-dual integer linear programming method to compact the

test set while also applying additional heuristics. For this result, they started with 4924 N-

detect vectors for c7552 circuit and minimized them in two steps. The fault coverage (FC)
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of these vectors was approximately 98%. First, in a detection step, they obtained a minimal

test set of 122 vectors to cover all faults detectable by the given vectors. These vectors had

DC = 85.47%, computed as reciprocal of the reported diagnostic resolution DR = 1.17.

Then, in a diagnostic step, from the remaining 4924− 122 = 4802 vectors, 31 were selected

for preserving the diagnostic capability of the original vectors. These vectors boosted DC

to 86.88% without affecting the fault coverage. This DC will most probably rise to similar

levels as obtained the other two cases in Table 4.6 if exclusive tests were attempted for

undiagnosed fault pairs or they were analyzed for equivalence. In comparison, the DATPG

approach is more direct, based on generation of detection, and exclusive tests and does not

require an ILP-type of minimization, which can be expensive.

4.8 Conclusion

The core algorithms for exclusive test generation and diagnostic fault simulation should

find effective use in the test generation systems of the future. Key features of these algo-

rithms are: (1) exclusive test generation is no more complex than test generation for a single

fault, and (2) diagnostic fault simulation has similar complexity as conventional simulation

with fault dropping. The new definition of diagnostic coverage (DC) is no more complex

than the conventional fault detection coverage and it directly relates to the diagnostic res-

olution [6], which is the reciprocal of DC. These methods can be applied to other fault

models [38, 54, 55] and to mixed fault models [99]. Future extensions of this work would be

on generating compact diagnostic tests and organizing fault dictionaries of test syndromes.

Because our fault simulation is done with fault dropping, the syndromes will contain 0, 1,

and X (don’t care). However, these don’t cares do not reduce the diagnosability of a fault,

although, reordering or compaction of vectors will be affected. This needs further investiga-

tion. Our results indicate that to obtain high DC for large circuits, efficient heuristics and

algorithms for functional equivalence checking and redundancy identification are essential.

The presented diagnostic ATPG system can also be applied to transition faults after some
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modification, since transition faults are actually based on stuck-at faults. This can be a

future expansion of the ATPG system.
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Chapter 5

Diagnostic Test Generation for Transition Faults

As discussed in Chapter 1 more and more failures of modern VLSI chips are timing

related. For example hold and setup violations will cause incorrect values being captured in

flip flops. If the clock speed is too fast or there is excessive delay along a certain path, it

may cause a setup violation, meaning that data arrives too late. If a path is too short or

a previous flip-flop cannot hold an output value long enough, it may cause hold violations.

Usually many iterations are needed during place and route to fix all timing violations [64].

It will be very helpful to improve design methodology or product quality if we can diagnose

a timing related fault.

Two types of delay fault models are introduced in Chapter 2. Since transition fault is

very similar to stuck-at fault, in this chapter we propose an algorithm to extend the ability

of our DATPG system to be able to target transition faults. We also discuss the potential to

further extend its ability for other fault models, such as path delay fault [5], bridging fault,

etc.

With a DATPG capable of targeting multiple fault models we can distinguish between

different types of faults. This greatly improves the accuracy and application area of the

proposed method.

5.1 Introduction

Chapter 4 describes a system for generating diagnostic tests using the single stuck-

at fault model. Main ideas introduced there were a definition of diagnostic coverage and

algorithms for diagnostic simulation and exclusive test [6] generation. In that work emphasis

was placed on using the existing tools that were originally designed for fault detection only.
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The work presented in this chapter provides a similar capability for the diagnosis of

transition faults. A reader will find these extensions to be non-trivial. In this work we

emphasize the use of existing tools and techniques to implement the new algorithms. The

basic tools used are the simulation and test generation programs for detection of single

stuck-at faults. Scan test environment is assumed in which both launch-off-capture (LOC)

and launch-off-shift (LOS) types of tests can be conducted. Figure 2.8 of section 2.4 shows

a basic scan design using multiplexers to choose from scan mode and function mode. The

two testing schemes (LOC, LOS) will be presented in detail in section 5.6. It is well known

that a transition fault test contains a pair of vectors applied to the combinational part of

the circuit [20]. In scan testing, as the first of these vectors is scanned in it appears at the

input of the combinational logic. The second vector is then either produced by clocking

the circuit in the normal mode (known as launch-off-capture or LOC test [79]) or in the

scan mode (launch-off-shift or LOS test [78]), following which the response is captured in

scan register always in the normal mode and scanned out in the scan mode. In Figure 2.8,

switching between scan mode and normal (functional) mode is controlled by a Scan Enable

pin. Enhanced scan [27] has the capability of applying any vector pairs at the cost of extra

hardware (flip-flops are doubled), which is not widely used.

Our principal objective in this work is not just to test for transition faults, as is normally

done, but to distinguish the exact fault that may have caused a failure. We continue to use the

diagnostic coverage (DC) metric from the previous chapter. The new modeling techniques

and algorithms for transition faults are more efficient than those published before [38]. Our

implementation and results support the practicality of the presented approach.

5.2 Background

The usefulness of the transition fault model stems from the fact that modern VLSI

devices must be tested for performance. Transition faults are not perfect and in fact may

not represent many of the actual defects. Their acceptability, like that of stuck-at faults,
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is due to several practical reasons. To name a few, their number grows only linearly with

circuit size, they require two-pattern tests that are essential for detecting delay and other

non-classical faults, and the scan methodology can be adapted to test them.

Why is the diagnosis of transition faults important? The same technology advances

that give us lower cost and higher performance make it necessary that we diagnose delay

defects. Presently, we must rely on ad-hoc measures like at-speed testing, N -detect vectors,

etc. N -detect tests have shown promising ability to detect/diagnose non-classical faults [59].

By increasing N , we expect that more faults, including some timing related faults, can be

captured. But the number of test patterns also grows with increasing N , which leads to longer

test time and/or higher cost. Methods have been proposed [46, 47, 82, 83] for compaction of

N -detect vector sets. These require computational effort. The present work [104] is aimed

at providing a similar diagnostic capability for transition faults as is available for stuck-at

faults [6, 35, 100, 102] without increasing the ATPG effort, while also keeping test pattern

count down.

A previous attempt [38] at generating diagnostic tests for transition faults used a com-

plex model requiring up to four copies of the combinational circuit. This increases the

complexity of the ATPG, which is already known to be an NP-complete problem [20]. Be-

sides, that method is demonstrated to work only for LOC tests. The ATPG model presented

here requires only one copy of the circuit, although the model is mildly sequential. The

sequential behavior comes from one or two modeling flip-flops that are added to the circuit.

These flip-flops are pre-initialized and hence do not increase the ATPG complexity. The new

procedure is equally suitable for both LOC and LOS tests. It is also more flexible since both

sequential and combinational ATPG can be used. For combinational ATPG the CUT needs

to be unrolled into two time frames. It is still more efficient compared to [38] because only

two, and not four, copies of the CUT are required. SAT based diagnostic test generation

procedures have been proposed [16] for the transition fault model. A SAT formulation may

be too complex for large designs.
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Figure 5.1: Modeling a faulty circuit with a single transition fault on line xx′.

5.3 Modeling a Transition Fault

Because we wish to use the existing methods that are based on the logic description

of the fault condition, we will use a synchronous model for the transition fault. Figure 5.1

shows a method of modeling a single slow-to-rise or slow-to-fall transition fault on a line xx′

in the combinational logic with a synchronous sequential sub-circuit. The shaded elements

are inserted for modeling the fault and do not belong to the actual circuit. The modeling flip-

flop (MFF) is initialized to the value shown. Consider the slow-to-rise fault in Figure 5.1(b).

Flip-flop initialization to 1 ensures that the output x′ on the line will be the correct logic

value on the first vector. Of the four two pattern sequences on x, 00, 01, 10 and 11, all

except 01 will produce the correct output at x′. The sequence 01 at x will appear as 00 at

x′, correctly representing a slow-to-rise transition fault on line xx′. Figure 5.1(c) shows a

similar model for a slow-to-fall transition fault on line xx′.
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5.4 An ATPG Model

An ATPG (automatic test pattern generation) model is a netlist of the circuit under

test (CUT), modified to represent the target fault as a stuck-at fault. The modification

amounts to insertion of a few logic elements for modeling only. For a transition fault, we

construct a single stuck-at fault ATPG model as shown in Figure 5.2. The ATPG model of

Figure 5.2(a) gives the conventional Boolean satisfiability formulation. Note that a 1 output

from the EXOR gate cannot be obtained by a single vector. Because the modeling flip-flop

MFF is initialized to 1, initially, x′ = x. To produce a different output from the faulty

circuit, the first vector must set x = 0 and then a second vector should set x = 1, besides

sensitizing a path from x′ to the primary output (PO) or an observable point (e.g. a scan

flip flop).

The ATPG model of Figure 5.2(b) can be used in the same way [102]. Any test sequence

for either s-a-0 or s-a-1 fault on y must produce different outputs from the fault-free and

faulty circuits. The advantage of this model is that it can be simplified to use a single copy

of the circuit, which is an improvement over the previous work [38]. The analysis that leads

to the ATPG model of Figure 5.3 is the same as given in Chapter 4. There a single-copy

ATPG model was obtained for finding an exclusive test for a pair of stuck-at faults. Thus,

the fault-free CUT in Figures 5.2 (a) and (b) was replaced by the CUT containing one of

the faults.

The main idea that allows us to collapse the two copies of the circuit in Figure 5.2(b)

into a single copy is the realization that the two circuits are almost identical. The only

difference is at the faulty line. It can be shown [102] that the multiplexer at PO can be

moved to the fault site. The procedure is as follows: Suppose a transition fault is to be

detected on a signal interconnect from x (source) to x′ (destination). In a single copy of the

circuit, the source signal x is made to fan out as two signals x1 and x2. Fanout x1 is left

as fault-free signal. The other fanout x2 is modified according to Figure 5.1 to produce the

faulty value. These two signals x1 and x2 are applied to the two data inputs of a multiplexer
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Fault−free CUT

Fault−free CUT

MFF

MFF

CUT with slow−to−rise fault

Figure 5.2: ATPG model with a stuck-at fault for detecting a slow-to-rise fault on line xx′.

whose output x′ now feeds into all destinations of the original x′, and whose control input

is a new PI y. The target fault now is any stuck-at fault (s-a-0 or s-a-1) on y. Any test

for this target fault must produce different values at fault-free x1 and the faulty x2 while

propagating the value of x′ to a PO, and hence must detect the fault modeled by x2. This

ATPG model for a slow-to-rise fault on xx′ is shown in Figure 5.3. Any test for y s-a-0 or

for y s-a-1 in the ATPG model of Figure 5.3 will always contain two vectors. The model

for a slow-to-fall transition fault is obtained by replacing the AND gate by an OR gate and

changing the initialization of the flip-flop to 0, as shown in Figure 5.1(c). The gate and
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Figure 5.3: A single circuit copy ATPG model in which a test for a stuck-at fault on y detects
the slow-to-rise fault on line xx′.

multiplexer combination can be further simplified to an equivalent ATPG model given in

Figure 5.4, which shows the ATPG models for both slow-to-rise and slow-to-fall transition

faults.

5.5 Combinational and Scan Circuits

The above fault modeling procedure is valid for both combinational and scanned sequen-

tial circuits. For a combinational circuit under test (CUT), the modeling flip-flop (MFF)

serves two purposes. First, it requires a two-vector test. Second, the initial state of the

flip-flop makes it impossible to activate the fault effect at x′ in the first vector. This model

can be used to generate a two-vector test either by a sequential ATPG program or by a

combinational ATPG program applied to a two time-frame expansion of the circuit.

For a scanned sequential circuit under test (CUT) the ATPG models of the previous

section will also generate two-vector tests. The vectors can be generated either by a scan

ATPG program in the partial scan mode to accommodate the modeling flip-flop (MFF) or

by a combinational ATPG program. The second vector is generated either as a launch-off-

capture (LOC) sequence or as a launch-off-shift (LOS) sequence.

Figure 5.5 shows the two time-frame circuit for a combinational ATPG program.
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Figure 5.4: Simplified single circuit copy ATPG models in which a test for a stuck-at fault
on y detects a transition fault on line xx′.

5.6 Scan Test Generation

Consider a sequential circuit to be tested via scan. An ATPG tool like Mentor’s

Fastscan [61] will generate scan sequences for all stuck-at faults in the combinational logic of

the circuit. Fastscan can also generate two-pattern scan sequences for all transition faults in

the combinational logic. At the user’s option, it generates tests for application in either LOC

or LOS mode. Fastscan allows test generation in the partial scan mode as well, provided

the number of non-scan flip-flops is small. That capability is useful for the ATPG model of

Figure 5.3 which requires a single non-scan flip-flop.
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A sequential circuit is first modified for scan testing using Mentor’s DFTAdvisor [62].

The modeling flip-flops are treated as non-scan pre-initialized flip-flops. Thus, scan-in, scan-

out and scan-enable (SE) signals are added to the circuit. The ATPG program Fastscan [61]

then generates a test for a single stuck-at fault. This test consists of a scan-in sequence and

two primary input vectors. The application sequence of this test is: (1) Set SE = 1 (scan

mode) and apply the scan-in sequence, (2) Apply first primary input vector, (3) Set SE = 0

(normal mode), apply second primary input vector and clock the circuit at the same time to

launch the second vector, (4) Clock the circuit again with functional clock, which is faster

than shift clock, to capture responses in scan flip-flops, (5) Set SE = 1 and scan out the

captured results as well as scan in the next vector with shift clock. This sequence will test

the fault in the LOC mode. For LOS mode, we hold SE = 1 (scan mode) for one cycle, which

Fastscan allows. In that case, the ATPG assumes that the circuit will be clocked in the scan

mode for a specified number of clock periods (one, in this case) while new primary inputs

are applied. This test will then detect the modeled transition fault in the LOS mode. One

disadvantage of LOS mode is that it requires a global scan-enable signal. All scan flip-flops

need to change modes (normal, scan) simultaneously. And it is very difficult to implement

a scan-enable signal with low skew. Generally LOS can achieve better coverage than LOC

test, but not widely used.

The above ATPG model allows test generation for transition faults using the conven-

tional stuck-at fault test generation tools. Fastscan, however, can directly generate tests

as well as simulate them for transition faults. In our experiments, we use that capability

of Fastscan. The ATPG models of Figures 5.3 and 5.4 will be used in the next section for

generating exclusive tests for transition faults.

These models are especially useful when we generate tests using a combinational ATPG

program. Both types of two-vector (V 1, V 2) tests, namely, LOC and LOS, can be generated.

Figure 5.5(a) shows a combinational circuit for LOC test of a slow-to-rise fault. It contains

two copies of the combinational part of the sequential circuit. The fault is modeled using the
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(b) Simplified combinational ATPG circuit; a test for y s−a−1 is a LOC test for slow−to−rise fault on xx’ 
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(a) Two time−frame combinational circuit for LOC test of slow−to−rise transition fault on line xx’ 

Figure 5.5: Two time-frame circuit for a LOC transition test for slow-to-rise fault on line
xx′ by a combinational ATPG program targeting the fault y s-a-1.

construction of Figure 5.4(a). In the first time-frame the initial state, 1 (shown as init. 1),

of the unscanned fault modeling flip-flop (MFF) is applied through an extra primary input

(PI) fixed at 1. All scan flip-flops (SFF) are stripped off and replaced by pseudo primary

inputs (PPI) and pseudo primary outputs (PPO). Vector V 1 consists of the normal PI and

PPI. Vector V 2 consists of the PI of the second time-frame where the PPI are the PPO of

the first time-frame. All outputs of the second time frame are observable, PO directly and

PPO through scan-out. The circuit of Figure 5.5(a) has two faults. A closer examination,

however, shows that it is impossible for the first y s-a-1 fault to cause any effect in the first
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(b) Simplified combinational ATPG circuit; a test for y s−a−1 is a LOS test for slow−to−rise fault on xx’ 

(a) Two time−frame combinational circuit for LOS test of slow−to−rise transition fault on line xx’ 
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Figure 5.6: Two time-frame circuit for a LOS transition test for slow-to-rise fault on line xx′

by a combinational ATPG program targeting the fault y s-a-1.

time-frame due to the fixed “init. 1” input. Thus, the circuit can be simplified as shown in

Figure 5.5(b) with a single stuck-at fault y s-a-1 for which any conventional combinational

ATPG program can be used to obtain a test.

Figures 5.6(a) and (b) show two time-frame combinational circuit for a LOS test for a

slow-to-rise transition fault. The basic difference from the LOC model of Figures 5.5(a) and

(b) is in the way the PPI bits are obtained in the second time-frame. For LOC test these

bits are obtained by a one-bit shift of the PPI bits of V 1.
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Similar combinational circuit models for LOC and LOS tests can be obtained for a

slow-to-fall transition fault by using the equivalent circuit of Figure 5.4(b).

To generate exclusive test with 2 time-frame model we can use the stuck-at DATPG

model described in Chapter 4. By inserting up to 3 primitive logic gates at the 2 new y

inputs (one input for each transition fault), we can generate exclusive test for the transition

fault pair with only 2 copies of the CUT.

5.7 Diagnostic Test Generation

The main contribution of previous sections is in modeling of a transition fault as a single

stuck-at fault. The benefit of this model is that we can use the tools and techniques available

for single stuck-at faults. We now illustrate the use of the following techniques discussed in

Chapter 4 for transition faults:

1. Diagnostic coverage (DC) of tests that provides a quantitative measure for their ability

to distinguish between any pair of faults.

2. Diagnostic fault simulator that determines DC for any given set of vectors and iden-

tifies undistinguished fault pairs. This diagnostic fault simulator internally uses any

conventional single stuck-at fault simulator or any transition fault simulator.

3. Exclusive test generator that derives an exclusive test for a fault pair such that the two

faults in the pair can be distinguished from each other. If an exclusive test is found

to be impossible then the two faults are equivalent and one of them can be removed

from the fault list to further collapse it. This exclusive test generator internally uses a

conventional single stuck-at fault test generator.

4. A complete diagnostic test generation system that first generates the conventional tests

for fault detection coverage, determines the DC of those tests, and then generates more

vectors if necessary to enhance DC.
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Table 5.1: Transition fault diagnostic test generation for ISCAS’89 [18] benchmark circuits.
Circuits have full scan and tests are generated for application in LOC mode.

No. Detection test generation Diagnostic test generation
Circuit of Detect FC DC Undiag. Lgst. Excl. DC Undiag. Lgst.

faults tests % % flt. grp. grp. tests % flt. grp. grp.

s27 46 11 100.0 52.2 12 7 18 97.8 1 2
s298 482 44 79.9 62.4 62 5 34 70.1 39 4
s382 616 51 80.8 64.1 82 4 24 68.5 58 4
s1423 2364 102 92.9 79.3 280 5 106 84.1 182 5
s5378 6589 205 91.2 82.0 400 9 472 90.0 85 7
s9234 10416 377 92.8 75.8 1219 11 597 82.1 754 8
s13207 14600 480 89.1 70.0 1707 20 543 74.1 1392 11
s15850 17517 306 87.6 71.2 1961 9 486 74.3 1565 7
s35932 52988 75 99.0 88.3 3737 6 725 90.2 2867 4
s38417 47888 244 98.4 87.5 4090 9 1336 91.0 2883 8
s38584 56226 395 95.7 86.7 4042 8 1793 90.3 2440 7

Table 5.2: Comparison between previous work [38] and ours for s38584.
No. Detection test generation Diagnostic test generation

s38584 of Detect FC DC Undiag. Excl. DC Undiag. CPU
faults tests % % flt. grp. tests % flt. grp. s**

Previous 1000 2120 — 97.16* — 583 97.42* — 174649
This work 56226 395 95.7 86.7 4042 1793 90.3 2440 14841
*Fault pair coverage (number of distinguished pairs divided by total number of pairs)
**Hardware configuration is not reported in previous work

In our work: 2 x 1.0 GHz, 1885 MB RAM, x86 Linux

5.8 Results

The results of these procedures when applied to transition faults are shown in Table 5.1.

We used Fastscan [61] to generate fault detection tests for transition faults. Fastscan

can generate transition fault tests for full-scan circuits in either of the two (LOC and LOS)

modes. The results of Table 5.1 are for LOC mode only. The equivalent circuits of Figure 5.4

provide an alternative method. Here the target transition fault is represented as a single

stuck-at fault. The modeling flip-flop (MFF) starts with a specified initial state and is not

scanned. Thus, Fastscan generates a test for a single stuck-at fault y s-a-1 in the partial scan

mode; all normal flip-flops of the circuit are scanned and the modeling flip-flop MFF is not
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scanned. All flip-flops, including MFF, are assumed to have the same clock. Because of the

initial state of the unscanned MFF, the fault cannot be detected by the first vector, which

merely initializes the circuit. The test consists of two combinational vectors, i.e., a scan-in

sequence, followed by one clock in normal mode (LOC) or in scan mode (LOS), capture, and

a scan-out sequence.

The second column of Table 5.1 lists the number of transition faults. Faults on the same

fanout free interconnect and the input and output of a not gate are collapsed [63]. Also some

of the redundant transition faults are identified during ATPG and they are removed. The

third column lists the number of LOC tests. Note that Fastscan can perform test pattern

compaction. Since in this work our focus is on the ATPG algorithm, we did not perform

compaction on diagnostic test patterns. Each test consists of a scan-in, launch, capture

and scan-out sequence. The detection fault coverage (FC) of transition faults is given in

column 4. Reasons for less than 100% FC are (a) aborted ATPG runs, (b) LOS mode not

used, and (c) redundancy or untestability not identified. Because Fastscan for transition

faults operates in sequential mode, it often fails to identify redundancies. In our ongoing

work we are developing a combinational two time-frame model mentioned in Section 5.6

to improve the fault efficiency. Based on observations made from several small ISCAS’89

circuits through detailed structural analysis we find that most aborted pairs are actually

functionally equivalent. If all fault equivalences are identified, similar to fault efficiency,

“diagnostic efficiency” would be much higher than diagnostic coverage. Note that FC can

be considered as an upper bound on DC and fault efficiency is an upper bound on “diagnostic

efficiency”. The experimental results from [38] show that all targeted fault pairs are either

distinguished or identified as equivalent pairs. Using 2-time-frame expansion we should get

similar results. This needs further investigation.

Column 5 of Table 5.1 gives the diagnostic coverage (DC) obtained from diagnostic

fault simulation [102], which divides faults into groups. Group g0 contains undetected faults.

Groups with more than one fault contain the faults that are mutually undistinguished (or
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undiagnosed). Thus, circuit s27 has 12 such groups and the largest of those groups has 7

faults (see columns 6 and 7). Similarly, s5378 has 400 multi-fault undiagnosed groups, the

largest one containing 9 faults. In [38] instead of targeting all transition faults they randomly

choose 1000 faults and extract those pairs that cannot be distinguished by a detection test

set. These pairs then serve as the starting set for their diagnostic test generation flow. For

s38584 the CPU time reported in [38] is 174649 seconds, whereas ours is 14841 seconds

for the same circuit (Table 5.2). Note that CPU times reported here cannot be compared

directly (hardware configuration is not reported in [38]).

Table 5.2 shows a comparison between our work and [38]. Note that the CPU time

in our work is not optimized. For every fault pair the CUT is flattened and the data

structure reconstructed. This huge overhead can be avoided by modifying the data structure

incrementally. Thus the proposed algorithm has great potential in efficiency. Since only

number of distinguished fault pairs are reported in [38], the coverage is calculated as number

of distinguished fault pairs divided by number of total fault pairs (499,500) for their results.

In [38], only 1000 faults are chosen randomly as the starting fault set in their experiment,

whereas we are targeting all collapsed fault (56226). A total of 2188 test vectors (detection

and diagnosis) are generated with our DATPG system targeting all transition faults, and

2703 test vectors are generated for 1000 random transition faults in [38].

The purpose of diagnostic test generation is to derive exclusive tests that will provide

pair-wise diagnosis of faults within groups. This is done by modeling a pair of transition

faults as two stuck-at faults, using the technique of Figure 5.4 and then using a single stuck-

at fault representation for those two faults [102]. Additional tests obtained for fault pairs

formed within each multi-fault group are listed in column 8 of Table 5.1. The corresponding

diagnostic coverage (DC) is given in column 9. For example, 18 tests were generated for s27

raising DC to 97.8%. There was only one undiagnosed fault group left (column 10) and it

contained two faults (column 11).
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Figure 5.7: Circuit s27 showing the fault pair left undiagnosed after simulation of 11+18
LOC tests of Table 5.1. These faults are functionally equivalent though they are diagnosable
in LOS mode.

The two undiagnosed faults of s27 are shown in Figure 5.7. Using a two time-frame com-

binational model, we determined that these two faults cannot be distinguished by any LOC

test. Because the functional operation of the circuit is constrained to a subset of conditions

allowed during the LOC testing, these two faults can be considered functionally equivalent.

That will make DC = 100% in column 9. At the present stage of our investigation, such

fault equivalence checking is not automated. Once we have enhanced such capability, we

hope to analyze the undiagnosed fault groups in column 10 for all circuits. We have verified

that with an added LOS test all faults in s27 can be diagnosed.

In [5] a method was proposed to model a path delay fault with a single stuck-at fault.

The detection condition of the delay fault is equivalent to the detection condition of the

modeling stuck-at fault. Equipped with this algorithms our DATPG can also be used to

generate exclusive test for path delay faults.
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Generally speaking, any fault if its faulty behavior can be mapped to a single stuck-

at fault with additional modeling logic gate(s), a conventional stuck-at ATPG tool can be

used for detection or diagnostic test generation for such faults. Delay effect can be modeled

with flip-flops. Incorrect logic can be modeled with primitive gates (AND, OR, NOT). A

multiplexer is added to choose between fault free behavior and faulty behavior (detection

test) or between two different faulty behaviors (exclusive test). The two faulty behaviors

do not need to come from same fault models. Thus mixed fault model diagnosis is easy to

implement for the proposed DATPG system.
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Chapter 6

Conclusion and Future Work

In this chapter we conclude our work and give some examples for future development

of this DATPG system.

6.1 Conclusion

The proposed DATPG generates tests to distinguish fault pairs, i.e., two faults must

have different output responses. Given a fault pair, by modifying circuit netlist a new single

fault is modeled. Then we use a conventional ATPG to target that fault. If a test is

generated it distinguishes the given fault pair. A fast diagnostic fault simulation algorithm

is implemented to find undistinguished fault pairs from a fault list for a given test vector

set. We define a new diagnostic coverage (DC) metric [102] as the ratio of the number

of fault groups (faults within a group are not distinguished from each other but across

groups are distinguished) to the number of total faults. The diagnostic ATPG system starts

by first generating conventional fault coverage vectors. Those vectors are then simulated

to determine the DC, followed by repeated applications of diagnostic test generation and

simulation.

In Chapter 4 we construct a DATPG system for a combinational circuit with stuck-at

faults [102]. This DATPG system augments the ability of conventional ATPG to gener-

ate exclusive tests without increasing the complexity. Thus, a specially designed DATPG

tool [35] is no longer needed. Chapter 5 shows the potential to distinguish between arbitrary

fault models, thus making it very practical for diagnosing actual physical defects.

The Boolean analysis in Chapter 4 provides a theoretical proof of the one-copy ATPG

model for generating an exclusive test that also provides greater insight into the process
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than previous work [93]. An efficient novel diagnostic fault simulator [103] is integrated

with this ATPG model to form a DATPG system that, to the best of our knowledge, has

not been reported prior to this research. This simulation algorithm also makes it possible

to construct rather compact fault dictionaries. Our objective, however, is to generate tests

with high DC. If necessary, any previous dictionary compaction method can be used for

further test compaction without affecting DC [25, 39, 50, 68, 74, 80]. The DATPG system

can be modified to target multiple and/or mixed fault models. We provide details of new

methods to generate exclusive tests for transition faults [104].

The stuck-at fault models of transition faults derived in this work are significantly more

compact than those previously published [38]. Combined with diagnostic fault simulation

and test generation algorithms similar to those for stuck-at faults [102], the new transition

fault models provide potentially very effective ATPG methodology. Delay fault diagnosis is

important in the characterization of modern VLSI devices and a high diagnostic coverage

of tests is desirable. Whether or not the tests have an adequate diagnostic coverage cannot

be ascertained unless we have an effective tool for identifying fault equivalence [13, 37, 71,

75, 76, 77]. The present work provides the possibility of doing so entirely by combinational

ATPG programs. This is because we have shown that once an exclusive test for any type

of faults is modeled as a single stuck-at fault, the problem of fault equivalence is solved by

redundancy identification. The problem, however, has high complexity. As a result heuristic

methods are found to be useful [7, 34, 42, 60]. Our ongoing research is exploring this aspect.

That will give transition fault testing the same level of maturity as enjoyed by stuck-at faults.

Another direction for the future is to make the diagnostic tests specific to small delay defects

(SDD), i.e., derive tests to detect transition faults, each through the longest sensitizable path

through its site [56].
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6.2 Future Work

6.2.1 Exclusive Tests for Other Fault Models

Tests generated by the system of Chapter 4 have high diagnostic capability but they

are specific to classical stuck-at fault model. Because this fault model is implementation

independent, such tests serve as a good starting point. As a typical VLSI design progresses,

technology specific data on non-classical fault models becomes available. Besides, the char-

acterization phase may identify faults that are not diagnosable by the pre-generated tests.

In such cases, it becomes necessary to generate more tests. This section illustrates the pos-

sibility of using the core ATPG algorithm of Section 4.2 for a non-classical bridging fault.

Diagnostic tests of arbitrary fault have been attempted using Boolean satisfiability (SAT) [16]

and time-frame expansion methods [38]. The SAT procedure uses a tuple representation for

a variety of faults that includes time-frame information [16]. The SAT solution requires

large CPU time and in some cases (e.g., c6288) high space complexity. Because complexity

of these solutions is high there is scope for efficient methods.

The algorithm of Section 4.2, although derived for stuck-at faults, is adaptable to the so-

called non-classical faults (bridging, transition, etc.) [4, 20, 43]. The trivially small example

of Figure 6.1 illustrates the point. This textbook circuit [20] has a collapsed set of six stuck-at

faults diagnosed by four vectors, (a, b, c): 010, 011, 100, 110. Table 6.1 gives a fault dictionary

that associates a binary vector called a syndrome (signature) with each fault. A row in this

table corresponds to a fault and a “1” entry under a test means that the corresponding fault

is detectable by the test. Ignore the last column and last row of Table 6.1 for now. The

four-bit vector 0001 in the row of a s-a-0 fault is the syndrome for that fault. Since every

fault has a unique four-bit syndrome, all stuck-at faults can be completely diagnosed by four

vectors. Consider a non-classical fault, AND bridge (a, c). That means in the faulty circuit

signals a and c are replaced by a ∧ c. An analysis of the fault-free circuit shown on the

upper side of Figure 6.1 gives a syndrome 0101, which matches that of e s-a-0. Although the
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Figure 6.1: Exclusive test for e s-a-0 and AND bridge (a, c) faults.

bridging fault is distinguishable from all other stuck-at faults, it cannot be isolated from e

s-a-0 by the four vectors. We therefore need an exclusive test for faults AND bridge (a, c)

and e s-a-0.

The circuit on the bottom of Figure 6.1 shows the construction of Section 4.2. Signals a,

c, e that are affected by faults have been replaced by a′, c′, e′. When y = 0, a′ = a and c′ = c

have their correct values, but e′ = 0 emulates the e s-a-0 fault. When y = 1, e′ = e, but

a′ = c′ = a ∧ c. We derive a test for y s-a-0, which gives us an exclusive test (a, b, c) = 111.

This detects e s-a-0, but does not detect AND bridge (a, c). Adding this test provides us the

last column in Table 6.1.

The number of bridging faults, though large, can be reduced depending upon how much

physical data is available [32, 85, 86]. Recent results by our colleagues at Auburn University

show a drastic reduction when capacitive coupling is used [89]. The coverage of bridging

faults by a set of vectors usually remains close to that of stuck-at faults. However, diagnostic

testing requires distinguishing a bridging fault from single or multiple stuck-at [48], other

bridging, transition and other faults. Our future research will target such tests.
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Table 6.1: Fault dictionary for the AND-OR circuit shown on the upper side in Figure 6.1.
Collapsed Test syndrome

Faults 010 011 100 110 111

a sa0 0 0 0 1 0
a sa1 1 0 0 0 0
b sa1 0 0 1 0 0
c sa0 0 1 0 0 0
c sa1 1 0 1 0 0
e sa0 0 1 0 1 1

AND bridge (a,c) 0 1 0 1 0

6.2.2 Diagnostic Test Pattern Compaction

Compactness of tests is desirable because it translates into efficiency of test and diag-

nosis. One recent research [80, 81, 82, 83] explores two principal ideas. First, mathematical

optimization techniques like integer linear program (ILP) provide absolute minimal results.

High complexity can be reduced by prudent choices of heuristics [30, 40, 44, 45, 46, 72]. Sec-

ond, fault independence has been used for finding compact detection tests [8, 10, 28, 29, 45].

Two faults are called independent if they have no common test. The largest group of mutu-

ally independent faults is a lower bound on the tests required for 100% detection. The tests

generated for independent faults may also have superior diagnostic properties and we will

examine those.

The proposed ILP based compaction approach has high computational complexity and

long CPU time. With our DATPG system it either eliminates the need for compaction with

N-detect test or greatly reduces the CPU time for ILP run, because a N-detect test set is

usually much larger compared to our generated test set. Reverse/random order simulation

of generated vector set can also provide some compaction. If no new faults are detected and

no new fault groups are formed, the vector in reverse/random simulation can be dropped.
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6.2.3 Diagnosis of Real Defects

The ultimate goal of diagnosis is to find the location and nature of a real defect causing

a functional (electrical) failure. Modeled faults, on the other hand, are analyzable entities,

but not all real defects actually map onto modeled faults. The idea behind using multiple

fault models, suggested in Section 6.2.1, is to obtain tests that will activate and detect

the presence of most real defects. Diagnosis, being an analytical procedure, must use fault

models and, therefore, exact identification of many defects may not be possible. A possible

direction would be to use electrical tests to narrow down the possible location of the defect.

The purpose is to facilitate additional procedures, such as optical or electron microscopes, to

identify the actual cause that may be a mechanical or quantum mechanical defect. Recent

work has used stuck-at and transition faults to diagnose faulty nets, which may be then

closely examined for real defects [105, 106].
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