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Abstract

This thesis gives a new and much simpler proof of the intersection problem for Mendel-

sohn triple systems.

THE INTERSECTION PROBLEM: For each n ≡ 0 or 1(mod 3), n 6= 6, determine the

set of all k such that there exists a pair of MTS(n) having exactly k cyclic triples in common.

In what follows, we will set I[n] = {0, 1, 2, .., x = n(n−1)
3
} \ {x − 1, x − 2, x − 3, x − 5} and

denote by J [n] = {k| there exists two MTS(n) having k cyclic triples in common}.

In [2] it was shown that J [3] = {2}, J [4] = {0, 4} and J [n] = I[n] for all n ≥ 7 (n ≡ 0 or

1(mod 3), of course).

The objective of this thesis is a new and much simpler proof of the intersection problem

using results completely different from those used in the original solution.
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Chapter 1

Introduction and Outline

The complete directed graph Dn is the graph with n vertices in which each pair of

distinct vertices are joined by two directed edges in opposite directions.

Dn =

a

b

We will denote the directed edge from a to b by (a, b). A cyclic triple is a collection of

three directed edges of the form {(a, b), (b, c), (c, a)} where a, b, and c, are distinct.

a

b

c

We will denote this cyclic triple by any cyclic shift of (a, b, c). Finally, a Mendelsohn

Triple System (named after N.S. Mendelsohn[3]) of order n (MTS(n)) is a pair (S, T ),

where T is a collection of edge disjoint cyclic triples which partition Dn with vertex set S.
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Example 1.1 Two MTS (7).

Let S = {1, 2, 3, 4, 5, 6, 7} and T1 and T2 be the following two MTS(7)s.
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It is immediate that the two MTS(7) in this example have exactly one cyclic triple in

common, namely (2, 6, 7).

2

6

7

(2, 6, 7) =

It is well-known that the spectrum for Mendelsohn Triple Systems is precisely the set of all

n ≡ 0 or 1(mod 3) EXCEPT for n = 6 (there does not exist a Mendelsohn Triple System of

order 6), and if (S, T ) is a MTS(n), |T | = n(n−1)
3

.

THE INTERSECTION PROBLEM: For each n ≡ 0 or 1 (mod 3), n 6= 6, determine

the set of all k such that there exists a pair of MTS(n) having exactly k cyclic triples in

common. In what follows, we will set I[n] = {0, 1, 2, .., x = n(n−1)
3
}\{x−1, x−2, x−3, x−5}

and denote by J [n] = {k| there exists two MTS(n) having k cyclic triples in common}.

In [2] it was shown that J [3] = {2}, J [4] = {0, 4} and J [n] = I[n] for all n ≥ 7 (n ≡ 0 or

1(mod 3), of course).

The objective of this thesis is a new and much more simple proof of the intersection

problem using results completely different from those used in the original solution.
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Chapter 2

The Intersection of Idempotent Quasigroups

A quasigroup (Q, ◦) is said to be idempotent provided x ◦ x = x for all x ∈ Q. Two

idempotent quasigroups are said to intersect in k products provided their tables agree in

exactly k cells off of the main diagonal.

Example 2.1 (Two idempotent quasigroups of order 6 intersecting in 4 products).

◦1 1 2 3 4 65

1

2

3

4

5

6

1 6 2 5 3 4

4 2 5 6 1 3

2 4 3 1 6 5

5 3 6 4 2 1

6 1 4 3 5 2

3 5 1 2 4 6

◦2 1 2 3 4 65

1

2

3

4

5

6

1 5 6 2 4 3

6 2 5 1 3 4

5 4 3 6 2 1

3 1 2 4 6 5

4 6 1 3 5 2

2 3 4 5 1 6

In [1] H.L. Fu proved the following theorem.

Theorem 2.1 (H.L. Fu [1]). If n ≥ 6, there exists a pair of idempotent quasigroups of order

n having k products in common if and only if k ∈ {0, 1, 2, ..., x = n2− n} \ {x− 1, x− 2, x−

3, x− 5}. �

We will use this result to give a much simpler solution to the intersection problem

beginning with order 18.
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Chapter 3

The Basic Constructions

We give three basic constructions in this chapter which will be used for all of the

intersection results which follow.

3.1 The 3n Construction

Let (Q, ◦) be an idempotent quasigroup of order n, set S = Q× {1, 2, 3}, and define a

collection of cyclic triples T as follows:

1. ((a, 1), (a, 2), (a, 3)) and ((a, 1), (a, 3), (a, 2)) ∈ T for all a ∈ Q; and

(a, 1)

(a, 2)

(a, 3)

2. For each a 6= b ∈ Q the six cyclic triples ((a, i), (b, i), (a ◦ b, i + 1)), ((b, i), (a, i), (b ◦

a, i+ 1)) ∈ T .

a b

a ◦ b b ◦ a

a b

(a ◦ b) (b ◦ a)
b

a

(b ◦ a) (a ◦ b)
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Then, (S, T ) is a MTS(3n).

3.2 The 3nα Construction:

Let Q = {1, 2, 3, ..., 3n}, α = (1, 2, 3, ..., 3n), and (Q, ◦) an idempotent quasigroup of

order n. Set S = Q× {1, 2, 3} and define a collection of cyclic triples Tα as follows:

1. ((a, 1), (a, 2), (aα, 3)) and ((a, 1), (aα, 3), (a, 2)) ∈ Tα for all a ∈ Q; and

(a, 1)

(a, 2)

(aα, 3)

2. For each a 6= b ∈ Q, the six cyclic triples ((a, 1), (b, 1), (a ◦ b, 2)), ((b, 1), (a, 1), (b ◦

a, 2)), ((a, 2), (b, 2), ((a◦b)α, 3)), ((b, 2), (a, 2), ((b◦a)α, 3)), ((a, 3), (b, 3), ((a◦b)α−1, 1)),

((b, 3), (a, 3), ((b ◦ a)α−1, 1)) belong to Tα.

a b

a ◦ b b ◦ a
a b

(a ◦ b)α
(b ◦ a)α b

a

(b ◦ a)α−1
(a ◦ b)α−1

Then (S, Tα) is a MTS(3n).

3.3 The 3n+ 1 Construction:

Let (Q, ◦) be an idempotent quasigroup of order n, set S = {∞} ∪ (Q× {1, 2, 3}), and

define a collection of cyclic triples T as follows:
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1. For each x ∈ Q, place a copy of C = {(∞, 1, 2), (∞, 1, 3), (∞, 2, 3), (1, 2, 3)} on {∞} ∪

({x} × {1, 2, 3});

∞

C
(x, 1)

(x, 2)

(x, 3)

and place these cyclic triples in T ; and

2. for each a 6= b ∈ Q, place the six cyclic triples ((a, i), (b, i), (a◦b, i+1)), ((b, i), (a, i), (b◦

a, i+ 1)) ∈ T .

a b

a ◦ b b ◦ a

a b

(a ◦ b) (b ◦ a)
b

a

(b ◦ a) (a ◦ b)

Then (S, T ) is a MTS(3n+ 1).

With these three constructions in hand, along with the results in Chapter 2, we can give

a very simple and elegant solution to the intersection problem for Mendelsohn triple systems

beginning with n = 18.
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Chapter 4

The Solution for 3n+ 1 ≥ 19

This is the easier of the two equivalence classes; so a good place to begin.

Let (Q, ◦11), (Q, ◦21), (Q, ◦12), (Q, ◦22), (Q, ◦13), (Q, ◦23) be any six idempotent quasi-

groups of order n ≥ 6. Further, let M1 and M2 be the two Mendelsohn triple systems of

order 4 defined below:

M1 = {(1, 2, 3), (2, 1, 4), (1, 3, 4), (3, 2, 4)}, and

M2 = {(1, 2, 4), (2, 1, 3), (1, 4, 3), (2, 3, 4)}.

Then M1 ∩M2 = ∅.

Set S = {∞} ∪ (Q× {1, 2, 3}) and define two MTS(3n+ 1)s T1 and T2 as follows:

T1: (i) For each x ∈ Q place a copy of M1 or M2 on {∞} ∪ ({x} × {1, 2, 3}) and place

these cyclic triples in T1.

∞

(x, 1)

(x, 2)

(x, 3)

M1 or M2
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(ii) For each x 6= y ∈ Q place the six cyclic triples ((x, i), (y, i), (x ◦1i y, i+ 1))

and ((y, i), (x, i), (y ◦1i x, i+ 1)) in T1.

x y

y◦11x
x◦11y x y

x◦13y y◦13x

y
xx◦12y y◦12x

∞

Then (S, T1) is a MTS(3n).

T2: (i) For each x ∈ Q place a copy of M1 or M2 on {∞} ∪ ({x} × {1, 2, 3}) and place

these cyclic triples in T2.

∞

(x, 1)

(x, 2)

(x, 3)

M1 or M2
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(ii) For each x 6= y ∈ Q place the six cyclic triples ((x, i), (y, i), (x ◦2i y, i+ 1))

and ((y, i), (x, i), (y ◦2i x, i+ 1)) in T2.

∞

x y

x y

x yy◦22x x◦22y

y◦21x x◦21y

x◦23yy◦23x

Then (S, T2) is a MTS(3n).

It is immediate that the intersection number for (S, T1) and (S, T2) is |T1∩T2| =
∑n

j=1m+

k1 + k2 + k3, where m ∈ {0, 4} and |(Q, ◦11) ∩ (Q, ◦21)| = k1, |(Q, ◦12) ∩ (Q, ◦22)| = k2,

|(Q, ◦13) ∩ (Q, ◦23)| = k3. A straight-forward calculation shows that any k ∈ I[3n + 1] can

be written in the form
∑n

j=1m + k1 + k2 + k3, where k1, k2, k3 ∈ {0, 1, 2, ..., x = n2 − n} \

{x − 1, x − 2, x − 3, x − 5}. Since J [3n + 1] ⊆ I[3n + 1] (a necessary condition), it follows

that I[3n+ 1] ⊆ J [3n+ 1] so that I[3n+ 1] = J [3n+ 1]. We have the following result.

Lemma 4.1 J [3n+ 1] = I[3n+ 1] for all 3n+ 1 ≥ 19. �
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Chapter 5

The Solution for 3n ≥ 18

There are two cases to consider here: (a) k ≤ 2n, and (not too surprisingly) (b) k ≥ 2n

.

a) k ≤ 2n. We will use the 3n and 3nα Constructions here. Set S = Q × {1, 2, 3} and let

(Q, ◦1) and (Q, ◦2) be a pair of idempotent quasigroups of order n ≥ 6. Since n ≥ 6, for

any k ∈ {1, 2, 3, ..., x = n2−n}\{x−1, x−2, x−3, x−5}, we can take |(Q, ◦1)∩(Q, ◦2)| = k.

It is important to note that any k ≤ 2n ∈ {0, 1, 2, ..., x = n2−n}\{x−1, x−2, x−3, x−5}.

Now define two MTS(3n)s T1 and T2 as follows:

T1: Use the 3n Construction with (Q, ◦1).

a b

b ◦1 a a ◦1 b
a b

b ◦1 a a ◦1 b a b

b ◦1 a a ◦1 b

T2: Use the 3nα Construction with (Q, ◦2) from the first to the second level; and (Q, ◦1)

between the second and third, and third and first levels.
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a b

b ◦2 a a ◦2 b
a b

(b ◦1 a)α
(a ◦1 b)α

a
b

(b ◦1 a)α−1
(a ◦1 b)α−1

a

a

aα

Clearly the intersection number for T1 ∩ T2 is |(Q, ◦1) ∩ (Q, ◦2)| = k.

b) k ≥ 2n. In this case we use the 3n Construction with pairs of quasigroups as in the

3n + 1 solutions. It is immediate that any k ≥ 2n ∈ I[3n] can be written in the form

2n+k1+k2+k3 where k1, k2, k3 ∈ {0, 1, 2, ..., x = n2−n}\{x−1, x−2, x−3, x−5}. Since

J [3n] ⊆ I[3n], it follows that I[3n] ⊆ J [3n] and I[3n] = J [3n]. We have the following

result.

Lemma 5.1 J [3n] = I[3n] for all 3n ≥ 18. �

12



Chapter 6

Concluding Remarks

Combining Lemmas 4.1 and 5.1 gives the following result.

Theorem 6.1 J [n] = I[n] for all n ≡ 0 or 1 (mod 3) ≥ 18, except n = 6 for which no

MTS(6) exists. �

The solution for the cases where n ≤ 16 can be found in the original paper [2] and are

handled by an eclectic collection of ad-hoc constructions. A quick glance at [2] will convince

the reader that the solution for n ≥ 18 given in this thesis is vastly superior to the original

solution in its simplicity.
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