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Abstract 

 

 

Construction Site Utilization Planning (CSUP) involves identifying, sizing, and 

positioning the temporary construction facilities required during different stages of the project 

within the available site boundaries and using available offsite facilities. CSUP has a significant 

positive impact on worker productivity, costs, and duration of construction. An effectively 

planned layout could potentially result in improvements in quality of work and safety of 

operations. This research work presents a temporary facility layout planning tool aimed at 

building on existing research on site layout planning. A user friendly, mathematically robust 

optimization tool that enables the user to model geometric, temporal and project specific 

requirements is presented in this thesis. This tool uses an optimization engine based on genetic 

algorithms. The tool provides an option to conventional distance measurement formulas (i.e., 

Euclidean and Manhattan). The tool is designed to enable the user to specify project specific 

constraints such as unusable areas, use of offsite locations for temporary facilities, eliminating 

double handling of materials by locating the required temporary facilities (e.g., laydown areas) 

within the reach of a user defined crane location. The tool also has the capability to use data 

extracted from REVIT Building Information Modeling (BIM) models. This tool is designed to be 

user friendly, mathematically robust and practical. 
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Chapter 1: Introduction 

1.1 Construction Site Utilization Planning 

 

Construction Site Utilization Planning (CSUP) is the determination of the layout of 

temporary facilities, and is an integral and critical component of a project execution plan. 

Temporary facilities are those facilities which occupy physical space within the site boundaries, 

are not part of the permanent buildings/structure, and are only used to support the construction 

process. CSUP can also be defined as a decision making process for positioning the temporary 

facilities, which involves identifying problems and opportunities, developing solutions, choosing 

the best alternative and implementing the plan (Ning et al. 2010a). Typical temporary facilities in 

a construction project include material laydown areas, fabrication yards, concrete batching 

plants, equipment storage areas, and temporary site offices used by various contractors 

(Mawdesley et al. 2002). 

Practitioners and researchers have recognized CSUP as a vital process in construction 

planning, which essentially is a problem of utilizing the available site space efficiently. It is 

widely accepted that the available site space on a construction project varies greatly based on 

several project specific requirements (Ning et al. 2010a). Many construction projects performed 

in urban areas have very limited working space at the site and do not have sufficient space for 

positioning all the temporary facilities required for construction. Therefore, planning should 

essentially be aimed at effectively utilizing the available smaller spaces within the site 

boundaries to execute the construction activities efficiently. In construction projects on large 
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sites, the project managers might tend to not focus on site layout planning at the beginning of 

construction phase due to abundant availability of space. In such cases, the layout of temporary 

facilities is done on an ad-hoc basis with no concern for optimality or layout efficiency. This 

results in increased costs of transportation of materials, and inefficient labor movement. For 

example, in extreme cases, decision on where to store the materials might only be made after the 

delivery of the materials to the project site (Mawdesley et al. 2002). Evidently, the careful 

planning of the layout of temporary facilities has a bearing on the success of construction 

projects whether the site is confined with limited space, or it is a very large site where travel 

between various facilities could be time consuming and slow down production (Li and Love 

1998). 

The location of temporary facilities and equipment is coupled with the sequence of 

construction activities at the site. Poor planning of the temporary facilities layout could 

potentially lead to work delays, temporary material storage,  multiple handling of materials 

resulting in reduced labor productivity, schedule delays, loss of time and money, and unsafe 

working conditions (Mincks and Johnston 2010). For the construction process to flow smoothly 

and efficiently, utilization of site space needs to be determined with great care. Site spaces could 

be efficiently used by developing the site layout plan(s) which involve, i) defining the site 

boundaries ii) identifying the temporary construction facilities to be laid out iii) identifying the 

constraints between the facilities iv) determining the relative positions of the facilities that satisfy 

the relationships between them, and allowing them to function efficiently (Zouein et al. 2002). 

Consequently, a complete site layout should include the following aspects, i) identification of 

temporary facilities that need to be established ii) locations of the temporary facilities and, iii) 
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timing of the establishment and removal of specific facilities during the project (Mawdesley et 

al. 2002). 

According to Szymberski (1997), consideration of safety in earlier project stages has 

better potential to influence the outcome and its overall ability to influence safety decreases as 

the project progresses from conceptual stage to project startup, which can be seen in Figure 1.1. 

By extension, this theory is pertinent for individual project phases (e.g., construction) as well, 

where the project manager can influence safety to a greater extent at the beginning of the 

construction process through well planned layouts. 

 

Figure 1.1: Time/Safety Influence Curve (Szymberski 1997) 

Thus, CSUP which involves identifying the temporary construction facilities that are used 

to support the project is a vital activity that greatly contributes in achieving the project 

objectives. An efficiently planned site layout will result in one, some, or all of the following: i) 

reduction in project cost ii) improvement in quality of work iii) improvement in safety of 

operations on the project iv) improvement in project site environment (e.g., sequenced facilities 

positioning, elimination of untidy material storage) (Anumba and Bishop 1997; Mawdesley et al. 

2002). 
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Layout Problem: Manufacturing, Architecture and Very Large Scale Integration (VLSI) 

The layout planning problem involves the allocation of activities to space such that a set 

of constraints (for example, area requirement, adjacency requirements) are met and an objective 

function is optimized (usually transportation distance or cost) (Liggett 2000). It is encountered in 

several industries which include architecture, manufacturing, chip design, and construction. In 

manufacturing, a layout problem is typically concerned with an arrangement of physical facilities 

(i.e., departments, machines) primarily accomplishing two optimization objectives: minimizing 

the material handling cost, and maximizing some measure of closeness ratings (Rosenblatt 

1986). In architecture, layout  planning  is  characteristically defined as the  assignment  of  

discrete space  elements  to  their  corresponding  locations  while the  space elements  have  

relationships (topology, geometry)  among  each  other. In solving this problem, the objective is 

defined as identifying an optimal plan by considering the interaction and travel  cost  between  

the  space elements  in  the  plan (Jo and Gero 1998). 

VLSI is a technology for producing complex electronic circuits by combining a very 

large number of transistors efficiently in a very small area. The layout planning in VLSI involves 

identifying a layout that satisfies the required neighborhood relations (i.e., provide sufficient 

interfaces, route the corresponding connections between transistors) among the component 

rectangles and results in the smallest area, given a set of constraints on these rectangles (Heller et 

al. 1982; Kozminski and Kinnen 1984).  

1.2 Problem Statement 

The layout of temporary facilities is unique in every construction project due to the 

changing requirements on account of different site and building configurations,  project specific 
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location of adjacent roads and buildings, subsurface conditions, types of foundation systems 

planned, construction execution approach, location of underground utilities at the site, schedule 

requirements, types of construction methods being used, material delivery and storage 

requirements, and the safety requirements at the site. Layout planning in construction can be 

conceptualized as a multi-objective problem where an optimal layout of the temporary facilities 

needs to be identified. This layout should incorporate the project specifications and constraints 

while simultaneously minimizing the cost of resource flow and improving the construction 

safety. 

Moreover, the layout planning problem in construction also has a temporal aspect to it, in 

which a particular layout may need to change over the course of the project to meet the unique 

requirements of the construction process. In addition, several key, unique considerations need to 

be accounted for in solving this problem, further compounding the complexity of the problem. 

These considerations include offsite storage, worker safety, and areas that can’t be used to locate 

temporary facilities. While addressing this multi-objective problem, a set of constraints specific 

to the construction project also need to be considered.  These considerations could include, 

positioning the temporary facilities within the reachable radius of tower cranes, and avoiding 

close proximity between the temporary facilities that store materials of hazardous nature. 

Thus, the problem/complexity in solving the layout planning problem in construction is 

that i) it needs to be defined as a multi-objective problem where an optimal layout to position the 

temporary facilities should be identified, while addressing the safety requirements of the project 

ii) temporal aspect of the construction projects should be accounted in solving the problem iii) 

other identified project specific constraints (i.e., usage of tower crane, unusable areas, and offsite 
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locations of temporary facilities) should also be imposed in addressing the layout planning 

problem in construction.  

1.3 Research Objectives 

 

The primary objective of the research is to develop a multi-objective temporary facilities 

layout planning tool that: 

1. Makes a structured attempt to create an optimal site utilization plan based on the user 

requirements and project specific requirements 

2. Measures the potential travel distance among the temporary facilities in the 

construction site 

3. Considers project specific constraints 

4. Provides a mechanism to address safety requirements in the layout planning process 

5. Accounts for the temporal nature of the construction layout  

6. Provides an interface with the BIM data from a given REVIT model 

1.4 Organization of the Study 

 

This thesis presents the development of a multi-objective optimization tool to address the 

layout planning problem in construction. The optimization strategy presented in this tool is based 

on Genetic Algorithms. This tool also addresses several shortcomings of the earlier studies which 

include measuring potential travel distance, addressing safety, temporal aspect, tower crane 

usage, and unusable areas while addressing the problem. Discussion of this thesis document is 

organized as follows: 
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Chapter 1 – Introduction: This chapter provides detailed discussion about the CSUP, its 

significance in successfully accomplishing the projects objectives, and when it should be done. 

Subsequently, a brief introduction about the layout planning problem encountered in several 

other sectors, and how this problem in construction is more unique and complex as compared to 

other sectors is reviewed along with the problem statement and objectives of this research study. 

   Chapter 2 – Literature Review: Several research studies have been performed during 

the last two decades with the focus of addressing the layout planning problem. This chapter 

reviews these studies on layout planning and provides a comprehensive, critical review of the 

optimization models presented in the literature. 

Chapter 3 - Evolutionary Algorithms: This chapter provides an overview about the 

several evolutionary algorithms used in the past to address the layout planning problem. Since 

Genetic Algorithms is used in this study and is also prevalently used in the earlier studies 

addressing layout planning problem, a detailed discussion about Genetic Algorithms is also 

provided in this chapter. 

Chapter 4 – Site Utilization Planning Algorithm: This chapter provides an overview of 

the optimization methodology incorporated in the tool developed in this study to solve the 

problem under discussion. 

Chapter 5 – CONSITEPLAN – Architecture Review: This chapter provides information 

about the architecture of the programming developed in this study. It discusses the several 

coding functionalities developed in this study and how they are organized to solve this 

construction utilization planning problem. 

Chapter 6 – CONSITEPLAN: Illustrative Example: This chapter discusses the 

implementation of the developed optimization tool in a case study project and its results. 
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Chapter 7 – Summary and Scope for Future Research: An epilogue that summarizes the 

research study, its unique attributes, and scope for further research is discussed in this chapter. 

In this research, CONSITEPLAN, a windows based tool is developed to overcome the 

limitations of the current layout planning tools. The main objective behind developing 

CONSITEPLAN is to create a tool which addresses the practical requirements of layout planning 

without sacrificing the mathematical robustness of the underlying optimization algorithm. The 

main features of the tool include, space conceptualization, robust optimization engine, improved 

efficiency of the genetic optimization algorithm, development of an improved distance 

measurement algorithm, consideration of offsite temporary facilities, consideration of unusable 

areas, consideration of tower crane access, implementation of safety constraints, consideration of 

temporal nature of the CSUP problem, and ability to seamlessly interact with REVIT BIM files. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

9 
 

 

 

 

Chapter 2: Literature Review 

 

2.1 Research in Layout Planning 

 

Facility layout planning is encountered in several industries (e.g., architecture, 

manufacturing, chip design, construction), which essentially is concerned with the allocation of 

activities to space such that a set of constraints (e.g., area requirement, adjacency requirements) 

are met and an objective function is optimized (usually transportation distance or cost) (Liggett 

2000). It is a classic problem of combinatorial optimization. On account of the complexity and 

importance of the layout problem, several researchers have significantly contributed in 

addressing this planning problem by channelizing the problem to specific industrial sectors. 

For example, in the manufacturing industry, due to high market demand for variegated 

products, short product life cycles, and uncertain demand; layout planning has a significant 

impact on the system efficiency (Rajasekharan et al. 1998). Many studies have been done by 

several researchers since 1960s and numerous computerized packages have been developed to 

solve the plant layout problem e.g. CRAFT (Buffa et al. 1964), MATCH (Montreuil et al. 1987), 

FLEX-BAY (Tate and Smith 1995), FACOPT (Balakrishnana et al. 2003). A body of the 

published research in facility layout planning in the manufacturing, architecture sectors has also 

been summarized and surveyed by many researchers. For example, (Singh 2006) provides a 

detailed review of optimization methods proposed in the manufacturing sector, while (Liggett 

2000) provides an excellent review of the algorithms proposed to solve the facility layout 

problems in architecture.  
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2.2 Research in Construction Site Layout Planning 

2.2.1 Classification of Construction Site Layout Research  

 

The research in construction site layout planning can be classified based on i) the 

mathematical optimization algorithm used (e.g., population based evolutionary algorithms, 

trajectory algorithms, hybrid algorithms, harmony optimization, dynamic programming, mixed 

integer programming, etc.), ii) formulation of the problem (e.g., space as discrete objects, space 

as area and shape), as suggested by (Liggett 2000), iii) whether temporal nature of layout 

planning is considered to generate more than one layout for a project over the construction 

phases (static vs. dynamic nature), iv)  type of objective function used (e.g., single objective or 

multi-objective) and v) types of constraints addressed. Due to the overlap in these categories, the 

literature review is loosely organized on the basis of optimization techniques used and the 

conceptualization of the layout problem. 

2.2.2 Optimization Techniques  

 

A substantial amount of research effort has been directed at developing robust methods to 

identify optimal location of temporary facilities at construction sites. The conventional 

optimization algorithms such as linear programming or integer programming can’t be applied to 

the problem because of the complex, discrete nature of the problem. The layout problem is 

usually characterized by a very large search space which also makes it infeasible to use 

deterministic exact algorithms, such as ‘branch and bound’ to find a perfectly optimal solution 

(Gholizadeh et al. 2010). The layout problems are known to be NP-hard (Nondeterministic 

polynomial time hard) wherein no known polynomial time algorithms exists and the 

identification of a perfectly optimal solution may require exponential computation time 
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(Arikaran et al. 2010). Due to these reasons, researchers have proposed several meta-heuristic 

methods to obtain acceptable solutions to the layout problems.   

The solution strategies to solve the layout optimization problem can be classified into the 

following categories, i) constructive initial placement strategies ii) iterative improvement 

strategies iii) trajectory methods iv) population based strategies iv) hybrid strategies (Liggett 

2000). A constructive initial placement strategy, similar to the strategy based on decision trees, 

locates facilities one by one, building a solution from scratch in a step-by-step fashion. This 

approach can be used to solve simple, direct optimization problems, but is of little practical value 

in solving complex layout optimization problems. The iterative improvement, trajectory based 

and population based optimization strategies belong to a class of optimization strategies known 

as meta-heuristics. 

Meta-heuristic Optimization Methods: 

 Meta-heuristics are designed to search the solution space efficiently by generating 

candidate solutions and evaluating the performance of these solutions with respect to a 

predefined objective function. These algorithms are typically designed to enable the underlying 

problem specific heuristic to escape local optima and efficiently search a very large solution 

space by introducing an intelligently designed bias instead of randomly generating candidate 

solutions in the iterative cycles. This bias can be defined in the form of a memory bias (based on 

previously made decisions) or experience bias (based on prior performance of a candidate 

solution) or as a descent bias introduced in the objective function (Stützle 1999).  

Iterative Local Search Method: 

An iterative improvement solution strategy begins with an initial layout and attempts to 

improve it incrementally (Liggett 2000). This strategy basically involves a pair-wise exchange 
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between the current layout and a layout selected from the current neighborhood that 

demonstrates improvement based on some predetermined objective function. The performance of 

these algorithms is heavily influenced by the selection of initial population, the initial 

neighborhood, and the objective function. These strategies have the tendency to get trapped in 

local optima.   

Trajectory Methods: 

Other trajectory methods such as Simulated Annealing and Tabu search have been 

designed to enable the algorithms to escape local optima. Simulated Annealing allows for the 

movements that result in worse layout than the current layout, thus increasing the probability of 

escaping the local optima. Tabu Search, on the other hand uses short term memory in the form of 

Tabu lists to enable the escape from local optima. Other meta-heuristic explorative local search 

methods include Greedy Randomized Adaptive Search Procedure (GRASP), Guided Local 

Search, and Variable Neighborhood Search (Hansen and Mladenovic 1997; Pitsoulis and Resend 

2002; Voudouris and Tsang 1999). 

Population based Methods: 

As compared to the previous strategies, population based search methods such as Genetic 

Algorithms (GAs) deal with a set of layouts in each iteration instead of a single layout. In GAs, 

an initial population of layouts is generated at the beginning and these layouts are manipulated 

using strategies inspired by evolutionary processes to generate another, improved population of 

layouts (Goldberg 1989; Holland 1992). Ant Colony Optimization is another population based 

search method where artificial ants represent various layouts in an ant colony. These ants are 

then guided to better layouts using pheromone trails.   
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The optimization techniques used in the studies reviewed in this article include various 

variants and hybrids of genetic algorithm, particle swarm algorithm, ant colony algorithm 

variants, simulated annealing, Tabu search algorithm, and harmony search algorithm. In addition, 

researchers have also attempted to solve the problem by applying Geographic Information 

System (GIS) functionalities and artificial intelligence as well. The remainder of this chapter 

provides a comprehensive, critical review of the optimization models presented in research 

literature in solving the CSUP problem, barriers to application of the algorithms in practice and a 

review summary.   

2.2.3 Layout Optimization Using Population Based Meta-Heuristics 

 

Li and Love (1998) proposed a pioneering research in which a solution for the site-level 

facilities layout problem using GAs was developed for the first time. They conceptualized the 

CSUP problem as laying out predetermined facilities in predetermined locations, (e.g., laying out 

11 facilities in 11 locations). This formulation has been adopted in most of the subsequent 

studies (Gholizadeh et al. 2010), (Lam et al. 2009), (Tam et al. 2002), (Zhang and Wang 2008). 

The GA optimization model developed in this study uses ‘Strings’ to represent the facilities 

locations, over which the GA operations, edge recombination crossover operation (to preserve 

genetic information from the parental strings) and symmetric gene exchange mutation operation 

(to prevent the loss of good genes in crossover) are performed to identify an optimal solution. (Li 

and Love 2000) later acknowledged that the representation of the problem as an equal–area 

problem limited the utility of the algorithm and proposed an alternate model. In the latter study, 

the problem is defined as an unequal-area problem by creating a subset of available locations 

(which are smaller than rest of the locations, say Lp) and facilities (which cannot be 

accommodated in Lp), and imposing a genetic constraint to govern the non-assignment 
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requirement between those subsets. In both the studies, the authors’ investigated the effect of the 

size of initial population on convergence and recommended that an initial population of 100, and 

90-100 GA iterations could be used for effective optimization. 

Due to the different functions of the temporary facilities and the space/topographic 

conditions, the CSUP problem is often an unequal-area facility layout where the facilities and 

locations have different sizes/areas. Harmanani et al. (2000) and Zouein et al. (2002) have 

developed an algorithm in which several GA operators (in addition to the traditional crossover 

and mutation) were used to solve the site layout problem with unequal size and constrained 

facilities. These operators include inversion, swap, move, rotation, flip2edge, add missing 

blocks, fix blocks, and aging. In this study, the layout problem is characterized as positioning a 

few rectangular blocks (fixed dimensions) within the available site, where the layout objects can 

take two orientations (0˚, 90˚) while satisfying the proximity, overlap, and orientation 

constraints. A function, Find-a-Set-of-Possible-Positions (Find-ASPP), is used to generate a set 

of feasible positions for a temporary facility in the neighborhood of a randomly selected location, 

and is invoked by several GA operators to evolve an initial population. Find-ASPP takes a given 

location as input and returns a set of four rectangles or less that describe feasible positions of the 

center-point of the temporary facilities. The authors tested the tool’s performance for different 

total object-to-size-area ratios (OSAR) in differing cases. The analysis results showed that the 

tool performed well for smaller total object-to-size-area ratios (55% or less).  

Hegazy and Elbeltagi (1999) have developed Evosite, a spread sheet based site utilization 

planning tool, which allows the user to define the space requirement for each facility as a group 

of unit areas (grids). These grids combine to take a user-specified shape (not limited to 

rectangular or square), allowing for more flexibility in the placement of the facilities and a 
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realistic representation of the site geometry. This tool also provides users the option of having 

unusable site areas by defining them as fixed facilities and thus excluding those spaces from 

allocation of facilities. The objective function developed is designed to facilitate effective 

placement of facilities within the site, while governing the desired closeness/proximity 

relationships (project manager’s preference in positioning the facilities). The desired proximity 

relationships are determined using a qualitative method in which a pair-wise assessment of 

numerical proximity weights is assigned to the facilities that are being considered for layout. 

2.2.4 Layout Optimization Using Swarm Intelligence 

 

 Many efficient decentralized, self-organized systems that exist in nature (e.g., colonies of 

ants, bee hives, schools of fish, etc). demonstrate an uncanny natural ability to find optimal 

paths. Over the last three decades, researchers have developed optimization algorithms that 

mimic these natural behaviors (Kennedy and Eberhart 2001). In particular, researchers have 

developed the Ant Colony Optimization (ACO) algorithm which is designed to mimic ants’ 

foraging behavior and Particle Swarm Optimization (PSO) algorithm which simulates schooling 

behavior of birds and fish. Researchers have proposed site layout optimization solutions using 

these algorithms. 

Zhang and Wang (2008) have developed a solution to the unequal-area layout planning 

problem using PSO algorithm that simulates social behaviors such as bird flocking together. In 

the PSO based algorithm, a solution approach is developed using priority-based particle 

representation of the layout solutions, transformation to the specific layout in consideration of 

non-overlay and geometric constraints, and framework for implementation. A comparative study 

with the solutions of GA based approach was also performed, and the results demonstrated that 
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PSO adopted solutions required fewer iterations to find the optimal solution than GA based 

solutions. 

Lam et al. (2009) used a hybrid max-min ant system-genetic algorithm (MMAS-GA) to 

solve the layout planning problem, in which (ACO) and GAs were integrated. In this hybrid 

approach, the MMAS is used to generate a better initial population than the population randomly 

generated in GA and can lead to better optimal solutions with the objective of minimizing the 

transportation flows among the facilities.  

2.2.5 Layout Optimization Using Trajectory based Meta-Heuristics 

 

The main drawback of hill climbing optimization methods is that they tend to get trapped 

in a local optimum. Simulated Annealing and Tabu Search algorithms are two methods 

commonly used to enable the escape from a local optimum. Simulated Annealing is a 

probabilistic optimization method which works by emulating the physical processes whereby a 

solid is slowly cooled so that its structure is finalized at a minimum energy configuration. Yeh 

(1995) used annealed neural networks to solve the site layout optimization problem. Liang and 

Chao (2008) proposed an algorithm based on Tabu Search (TS) to layout temporary facilities. 

They conceptualized it as a problem of allocating ‘n’ facilities to ‘n’ locations with the objective 

of minimizing the travel distance among the facilities. To avoid local optima, the TS include two 

main processes, intensification (to explore the solution space from similarity) and diversification 

(to modify the move strategy to become more efficient in the solution search). Much like the 

contemporary formulation of the problem, these studies formulated the optimization as a static, 

one-to one (i.e., space as discrete objects) problem with the single objective of minimizing the 

cost / distance traveled. 



 
 

17 
 

2.2.6 Graphical Site Layout Methods 

 

The layout of temporary facilities is inherently graphical in nature due to the fact that the 

site boundaries, existing permanent structures, the structure to be constructed, and temporary 

facility locations all occupy space in three dimensions.  Layout planning can be done effectively 

graphically because of inherent human ability to conceptualize space and inter-relationships 

between spaces in two or three dimensions. Two notable studies have proposed solutions that 

utilize this idea. 

ArcSite, developed by Cheng and O'Connor (1997), utilized the capabilities of GIS 

integrated with Database Management Systems (DBMS) to assist designers in solving the layout 

planning problem. Based on the knowledge based information provided by the user, GIS 

functionalities (e.g., buffer, erase, overlay) can be performed in the coverage files that identifies 

a feasible layout to solve the problem. The key benefit of the tool proposed in this study is that 

knowledgeable users can easily modify the project attributes and perform ‘What-If’ analysis with 

little effort.  

Osman et al. (2003) have developed a novel hybrid approach in which GA is integrated 

within the computer aided design AutoCAD
®
 environment to optimize the location of temporary 

facilities onsite. While most systems that use mathematical techniques aim at achieving one or 

more goals (typically minimization of cost) under problem-specific constraints, this hybrid 

system, in contrast, performs the optimization based on the geometric data provided in the 

AutoCAD® drawing (e.g., site boundaries, permanent facilities, obstacles). The drawing is used 

to detect space and ensure constraint satisfaction (facilities placed within site boundaries and 

non-overlap). While the first task (space detection) is performed only once to identify the space 
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available for placing temporary facilities, the latter task (constraint satisfaction) is performed in 

every cycle of the optimization process.  

2.2.7 Dynamic (Temporal) Site Layouts 

 

 By its very nature, construction is a dynamic process that requires different temporary 

facilities over its life cycle. Thus, the layout planning problem in construction has a temporal 

aspect to it, in which a particular layout may need to change over the course of the project to 

meet the unique requirements of the construction process. In many of the earlier solutions for 

CSUP, the layout is considered to be static through the construction phase. But in ideal practice, 

the space available for laying out temporary facilities may change during the construction phase. 

For example, less space might be available during the substructure construction phase. As the 

project progresses and superstructure is constructed, more space may become available. In some 

cases, the building structure may be used to house some of the temporary facilities. This 

increases the complexity and the computational effort in the optimization process.  

Zouein and Tommelein (1999) addressed the temporal nature of the problem by dividing 

the entire project duration into smaller time frames, termed as Primary Time Frames (PTFs), and 

generating a sequence of layouts, each spanning a time interval corresponding to a PTF and in 

combination corresponding to the duration of the project. Constraint Satisfaction and 

Propagation algorithm (to identify the feasible positions) and Linear Programming (to 

determine/evaluate the optimality of the identified layouts) were used for optimization in this 

study. Mahachi (2001) proposed a solution that used the PTFs (Zouein and Tommelein 1999) in 

conjunction with GAs to identify multiple layouts through the life of the project.  

Mawdesley et al. (2002, 2003) recommended balancing the benefits and cost of moving a 

facility from one location to another in different phases of construction using an appropriate 
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fitness function.  They modeled the dynamic nature of a construction project by associating site 

layout with the phase of construction and including facility setup and removal cost in the fitness 

evaluation function for the GA. Elbeltagi et al. (2004) proposed a GA based solution that 

accounted for the temporal nature of site layouts, which they defined as the reorganization of the 

location/areas of the needed temporary facilities (TFs) on-site at various schedule intervals, 

along project duration to suit the activities dynamic need of TFs.  This was also the first study to 

incorporate the safety aspects in the solution approach by defining safety related temporary 

facilities needed on-site, defining safety zones around construction space, considering safety in 

determining the optimum layout, and changing the TFs' uses to alleviate site congestion.  

  Ning et al. (2010a, 2010b) presented a site layout algorithm based on ACO, in which the 

planning problem is conceptualized as a dynamic multi-objective optimization problem. The 

authors chose to address the dynamic aspect of the problem by dividing the project duration into 

smaller layout intervals and generating a layout for each of the layout interval. The evaluation 

function is designed to find a layout that minimizes the likelihood of accidents (improve safety) 

and minimizes the total handing cost of interaction flows between the facilities associated with 

the construction site layout. 

2.2.8 Distance between Facilities: Euclidean or Manhattan 

 

Distance between facilities plays an important role in optimization because the objective 

function is usually defined as a least cost or a least distance function with some constraints. In 

facility layout problems, distances are usually measured using Manhattan (measuring the sum of 

absolute differences of the coordinates of the points under consideration) or Euclidean 

(measuring the diagonal distance between the points given by the Pythagorean formula) formula 
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(Mawdesley et al. 2002). For example, in a two dimensional space, the Euclidean distance 

between two points p(x1, y1) and q(x2, y2) is measured using the formula:  

d(p,q) = (x2-x1)
2
 + (y2-y1)

2
     (Eq. 1) 

where, 

d(p,q) = distance between the points p and q 

x1 = X coordinate of the point p  

x2 = X coordinate of the point q 

y1 = Y coordinate of the point p 

y2 = Y coordinate of the point q 

Whereas, in the case of Manhattan distance, the distance between the two points is 

measured using the formula:  

d(p,q) = (|y2-y1| + |x2-x1|)     (Eq. 2) 

Figure 2.1 graphically illustrates the idea behind measuring distance between two points 

using Euclidean and Manhattan formula. 

 

Figure 2.1: Distance Measurement Formulation 
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In most research studies reviewed in this article, the distance between facilities is 

calculated using the Euclidean formula.  While it may be appropriate to use Euclidean distance in 

some cases, from a practical point of view, the Manhattan distance could better reflect the actual 

operation on a construction site than the Euclidean distance. In the cases of facilities between the 

presence of some interfering activity or object, Euclidean distance measurement does not 

represent the actual travelling distance (Sanad et al. 2008). Perhaps, in order to model reality at 

construction sites, it may be effective to incorporate these two types of measurements. It should 

also be noted that the models based on the Manhattan and Manhattan-squared distances are very 

efficient, requiring only a few minutes to solve. This is because the Manhattan objective function 

is piecewise linear and thus much easier to bound and the Manhattan-squared objective function 

is a convex function. On the other hand, the Euclidean objective function, despite of being 

convex, is often treated as a convex power function imposed by another concave power function, 

and therefore the solver may require a significant computational effort to prove the global 

optimality. 

Sanad et al. (2008), acknowledging the lack of precision in measuring Euclidean distance 

(diagonal distance) between the facilities in evaluating a layout, proposed a multi objective 

optimization model which measured Manhattan distance between the facilities that aids to 

address the problem in a better aspect. In this study, Manhattan distance is measured between the 

facilities by dividing the entire site area into smaller grids and traversing through the grids 

between the facilities. The size of the grids dictates the number of possible locations for facility 

placement. If the size of the grid is too large, it may result in a fewer possible combinations 

while if the size of the grid is too small, it may generate a very large number of potential 

locations, resulting in significantly increased computational effort. 



 
 

22 
 

2.3 Review Summary 

 

In the last two decades, a significant amount of effort has been directed at developing 

algorithms for identifying optimal construction site layouts. This section provides a brief 

summary of the literature and the observations. 

 There are two prevailing schools of thought about formulation of the layout problem. The 

first one involves making discrete one-to-one assignments where facilities are assigned to 

previously defined locations and the second one conceptualizes the site space as a continuous 

domain, theoretically creating infinite layouts. Many researchers have defined the site layout as a 

one-to-one assignment problem where ‘n’ facilities are to be located in ‘n’ predefined locations. 

While this definition may be limited in scope, it can be used to effectively model a situation 

where space is limited and a limited number of locations are available for temporary facilities. 

On the other hand, conceptualization of the site as a continuous space is computationally 

intensive because it increases the potential locations for locating the facilities exponentially. This 

has been overcome by dividing the site into grids and using available grids as discrete options for 

the layout.  

The layout planning problem is typically defined as efficiently positioning the temporary 

facilities within the available site boundaries, while accomplishing an optimization objective. 

While this definition might be suitable for many projects, construction projects in urban areas 

tend to have limited working space at the site with fabrication carried out offsite. This aspect of 

site layout planning has not been adequately addressed in the current research.   

It is a common construction practice to use the additional covered areas that tend to 

become available with the progress of construction for short spells for temporary fabrication and 

material storage. This aspect has not been addressed in current research on site layout planning. 
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In order to control the complexity of the problem, most studies consider site layout 

planning as a single objective problem involving minimization of cost or minimization of 

distance travelled. Though this characterization can lead to “good” layouts from the process 

efficiency perspective, it is essential to consider safety implications of site layout right from the 

beginning of the project. Hence, the problem should be defined as a multi-objective problem 

where the optimization objectives would be to reduce layout cost while simultaneously meeting 

safety requirements. 

Most of the studies reviewed in this article have interpreted the site layout to be static 

(single layout for the entire project duration). But by the very nature of the construction process, 

the space available for laying out temporary facilities may change with time. It is important to 

consider CSUP as a dynamic/temporal problem. This dynamic aspect of creating a layout has 

been explicitly addressed by only a few researchers. However, it is worth noting that the existing 

static algorithms can be given a dynamic nature by generating layouts for different phases, 

including the facility setup cost, facility takedown cost, and unique unusable areas for every 

phase.  

As the objective function defined in all the studies involves minimizing the distance 

travelled or transportation cost, the method used to measure distance between facilities plays a 

critical role in giving validity to the results.  A majority of the research studies used the 

Euclidean formula to calculate the distance between facilities. This approximation may not be 

accurate in projects where such travel is not possible due to the obstructions. In such cases, 

Manhattan distance would provide a more realistic estimate of the distance travelled. The use of 

either of these formulas should not be hard coded in the optimization algorithm. The user should 

have the ability of choosing either or both based on the site specific conditions. This idea has not 
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been explored in any of the studies reviewed in this article. The review is summarized in Table 

2.1. While several studies addressing the CSUP problem were reviewed in this chapter, the next 

chapter discusses about the various evolutionary algorithms/optimization techniques used to 

address this complex layout planning problem in construction. 
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Table 2.1 – Literature Summary 

 
Abbreviations: 

ACO – Ant Colony Optimization    ADP – Approximate Dynamic Programming 

CSPA – Constraint Satisfaction and Propagation Algorithm GA – Genetic Algorithm 

GIS – Geographic Information System   LP – Linear Programming 

MIP – Mixed Integer Programming   PSO – Particle Swarm Optimization 

Study 
Algorithm 

used 
Objective 

Problem 

formulation 

Layouts  over the 

construction phase 

Distance 

measurement 

(Li and Love 1998) GA 
Minimize traveling 

distance 
Space as discrete Single Euclidean 

(Li and Love 2000) GA 
Minimize traveling 

distance 
Space as area Single Euclidean 

(Harmanani et al. 2000), 

(Zouein et al. 2002) 
GA Minimize layout cost Space as area Single Euclidean 

(Hegazy and Elbeltagi 

1999), (Osman et al. 

2003) 

GA Minimize layout cost Space as area Single Euclidean 

(Zhang and Wang 2008) PSO Minimize layout cost Space as discrete Single Euclidean 

(Lam et al. 2009) ACO, GA 
Minimize 

transportation flow 
Space as discrete Single Euclidean 

(Cheng and O'Connor 

1997) 
GIS 

Minimize traveling 

distance 
Space as area Single Euclidean 

(Zouein and Tommelein 

1999) 
CSPA, LP Minimize layout cost Space as area Multiple Euclidean 

(Mahachi 2001), 

(Mawdesley et al. 2002) 
GA Minimize layout cost Space as area Multiple Euclidean 

(Mawdesley and Al-

Jibouri 2003) 
GA Minimize layout cost Space as discrete Single Euclidean 

(Elbeltagi et al. 2004) GA 
Minimize layout cost, 

Improve safety 
Space as area Multiple Euclidean 

(Ning et al. 2010a) ACO 
Minimize layout cost, 

Improve safety 
Space as area Multiple Euclidean 

(Sanad et al. 2008) GA 
Minimize layout cost, 

Improve safety 
Space as area Multiple Manhattan 

(Wong et al. 2010) GA, MIP Minimize layout cost Space as discrete Single Euclidean 

(Tommelein and Zouein 

1993) 
None 

Facilitate layout 

planning 
Space as area Multiple - 

(El-Rayes and Said 

2009) 
ADP 

Minimize layout cost, 

Improve safety 
Space as area Multiple Euclidean 
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Chapter 3: Evolutionary Algorithms 

3.1 Genetic Algorithms 

 

As discussed extensively in Chapters 1 and 2, optimization in CSUP involves searching 

the transportation cost surface until a minimum value is found. Typically, optimization problems 

can be classified in the following categories. 

3.1.1 Trail-and-Error Optimization 

 

 Trail-and-error optimization refers to an iterative process in which the variables that 

have an effect on the output are adjusted without knowing much about the process that produces 

the output. Several prominent discoveries (for example, discovery and refinement of penicillin as 

an antibiotic) resulted from the trial-and-error approach to optimization (Haupt and Haupt 2004). 

On the contrary, optimization based on mathematical formula defines an objective function in 

function optimization and various mathematical manipulations are performed over the function 

that leads to the optimal solution.  

3.1.2 Temporal Optimization 

 

 Optimization problems can also be classified based on whether or not the objective 

function should have a temporal aspect to it or not. Optimization functions which have temporal 

aspect associated with it (i.e. output is a function of time) are termed as dynamic optimization. 

Whereas, static optimization problems are those problems whose functions do not have a 

temporal aspect to it and whose output is independent of time. The static problem is difficult to 
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solve for the best solutions, but the added dimension of time increases the challenge of solving 

the dynamic problem (Haupt and Haupt 2004). 

3.1.3 Continuous Optimization 

 

Optimization problems can also be distinguished based on their approach in identifying 

the solutions. Discrete optimization has only a finite number of possible values and searches for 

optimality within the available set of predetermined solutions. Discrete variable optimization is 

also known as combinatorial optimization, because the optimum solution consists of a certain 

combination of variables from the finite pool of all possible variables. On the flipside, 

continuous optimization has infinite number of possible variable values and does search for 

optimality considering all possibilities. Thus, typically, optimization where continuous variables 

are involved is computationally more challenging. 

3.1.4 Constrained Optimization 

 

Constrained optimization introduces equality and inequality restrictions to the variables 

in the cost function. On the contrary, variables in unconstrained optimization problems are 

allowed to take any value without restrictions. A constrained variable often converts into an 

unconstrained variable through a transformation of variables (Haupt and Haupt 2004). 

3.1.5 Minimum Seeking Optimization 

 

The traditional optimization algorithms (based on calculus) generally try to minimize the 

cost function by starting from an initial set of variable values. These minimum seekers easily get 

stuck in local minima but tend to converge fast. In the minimum seeking approach, flow between 

the variable sets is based on some predetermined sequence of steps. On the other hand, random 
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methods use some probabilistic calculations to find variable sets. They tend to be slower but 

have greater success at finding the global minimum (Haupt and Haupt 2004). 

The optimization of construction site layouts is a combination of all the categories 

discussed above. Solving the CSUP problem requires an initial set of solutions which will 

subsequently be iterated until an optimal layout is identified within the expected threshold 

values. These initial populations are determined using the trial-and-error approach, in which a set 

of possible solutions are derived without knowledge of the output and are subsequently 

optimized with the utilization of minimum seeking optimization strategy. Typically, in most of 

the construction projects, the available site space varies significantly over the course of the 

project. This scenario mandates adjustments to the layout of temporary construction facilities to 

efficiently utilize the available site space during various construction stages. This 

conceptualization utilizes the temporal aspect of the optimization categories. 

CSUP can be conceptualized as i) discrete one-to-one assignments where facilities are 

assigned to previously defined locations, ii) a continuous domain. While the first definition may 

be limited in scope, it can be used to effectively model a situation where space is limited and a 

limited number of locations are available for temporary facilities. The second definition, which 

theoretically creates an infinite number of layouts, increases the potential locations for locating 

the facilities exponentially and results in increased optimality. Moreover, the layout planning 

problem in construction inherently requires that several constraints be imposed in the 

optimization process (for example, non-overlap constraints). Solving the problem without any 

optimization constraints restricts the applicability of the optimization algorithm to real-life 

scenarios. Thus, an efficient CSUP optimization solution requires a constrained optimization 

strategy.  
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3.2 Traditional Optimization Algorithms for Minimization 

 

The optimization algorithms can be traced back to the days of Newton, Lagrange, and 

Cauchy. Cauchy made the first application of the steepest descent method to solve unconstrained 

optimization problems. The foundations of calculus of variations, dealing with the minimizations 

of functions, were laid by Bernoulli, Euler, and Lagrange. Over the past several decades, several 

optimization methods have been developed for finding the minima. The main characteristics of 

these methods and their weaknesses are discussed in this section. 

3.2.1 Exhaustive Search 

 

 The traditional approach to optimization iterates through sufficient samples of cost 

function depending on the problem type to find the global minimum. Usually a list of function 

values is generated over the sampled variables, and then the list is searched for the minimum 

value. The exhaustive search goes through the appropriate sampling to produce a precise 

solution. This approach requires checking an extremely large but finite solution space with the 

number of combinations of different variable values given by iteration shown in the following 

equation (Haupt and Haupt 2004). 

 

where, 

V = number of different variable combinations 

Nvar = total number of different variables 

Qi = number of different values that variable i can attain 

E.q. 3.1  
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With the extensive sampling of the variables, this technique does not get trapped in local 

optimal/minimal solutions and works well for both discrete and continuous conceptualization of 

the optimization problem. However, the exhaustive sampling results in an extremely long time to 

find global minimum. Another shortfall of this approach is that the global minimum may be 

missed due to under-sampling. It is easy to under-sample when the cost function takes a long 

time to calculate. These shortfalls restrict the applicability of exhaustive search approach to only 

small number of variables in a limited search space (Haupt and Haupt 2004). 

3.2.2 Analytical Optimization 

 

 Calculus provides the tools and elegance for finding the minimum of many cost 

functions. The thought process can be simplified to a single variable for a moment, and then an 

extremum is found by setting the first derivative of a cost function to zero and solving for the 

variable value. If the second derivative is greater than zero, the extremum is a minimum, and 

conversely, if the second derivative is less than zero, the extremum is a maximum. One way to 

find the extrema of a function of two or more variables is to take the gradient of the function and 

set it equal to zero, f(x,y) = 0 (Haupt and Haupt 2004). 

When compared to exhaustive search approach, the analytical optimization technique is 

mathematically sound and finds a single minimum solution relatively faster. Yet, it requires a 

search scheme and continuous functions with analytical derivatives to find the global minimum. 

Also, the gradient of the cost function serves as the compass head pointing to the steepest 

downhill path. It works well when the minimum is nearby, but cannot deal well with cliffs or 

boundaries, where the gradient cannot be calculated. Moreover, if there are too many variables, 

then it is difficult to find all the extrema, which makes it an unfit strategy to solve the real world 
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optimization problems. Even though it is impractical, most numerical approaches are based on it. 

A typical algorithm starts at some random point in the search space, calculates a gradient, and 

then heads downhill to the bottom. These analytical approaches head downhill fast; however, 

they often result in local optima instead of the global optima and do not work well with discrete 

variables (Haupt and Haupt 2004). 

3.2.3 Ndeler-Mead Downhill Simplex Method 

 

 A downhill simplex method which does not require the calculation of derivatives was 

studied by (Nelder and R.Mead 1965). A simplex is the most elementary geometrical figure that 

can be formed in dimension N and has N + 1 sides (for example, a triangle in two dimensional 

space). The downhill simplex starts at N + 1 points that form the initial simplex. The goal of this 

method is to move the simplex until it surrounds the minimum, and then to contract the simplex 

around the minimum until it is within an acceptable error. As this definition gets stuck in local 

minima, it can be combined with the random search algorithm to find the minimum (Haupt and 

Haupt 2004). 

Though these optimization strategies apply the fundamental principle of heading 

downhill from an arbitrary starting point, they differ in deciding in which direction to move and 

how far to move. Successive improvements increase the speed of the downhill algorithms but do 

not add to the algorithm’s ability to find a global minimum instead of a local minimum. 

In the recent times, algorithms which generate new points in the vast solution space by 

applying operators to current points and statistically move toward more optimal places in the 

solution space have been developed. These include genetic algorithms (Holland 1975), simulated 

annealing (Kirkpatrick et al. 1983), particle swarm optimization (Parsopoulos and Vrahatis 
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2002), ant colony optimization (Dorigo and Gambardella 1997), and evolutionary algorithms 

(Schwefel 1995). These algorithms depend on an intelligent search of large but finite search 

space using statistical approaches and do not require taking cost function derivatives, which 

facilitates to deal with discrete variables and not continuous cost functions. 

Of these recent algorithms, Genetic Algorithms (GAs) is an optimization and search 

technique based on the principles of genetics and natural selection. GAs allow a population 

composed of many individuals to evolve under a specified selection rules to a state that 

maximizes the fitness. The natural selection of GAs pilot to several generalizations that lead to 

the view of its origins and workings that includes i) highly diverse organisms ii) complexity level 

in the organisms is striking iii) several of the organism features have an apparent usefulness. 

Some of the key advantages of GAs include: 

 The ability to optimize continuous or discrete variables 

 Does not require derivative information 

 Simultaneously searches from a wide sampling of the cost surface 

 The ability to deal with a large number of variables 

 Well suited for parallel computers 

 Optimizes variables with extremely complex cost surface (they can jump out of a local 

minimum) 

 Provides a list of optimum variables, not just a single solution 

 May encode the variables so that the optimization is done with the encoded variables 

 Works with numerically generated data, experimental data, or analytical functions (Haupt 

and Haupt 2004). 
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GAs represent processes in nature that are remarkably successful at optimizing natural 

phenomena. Algorithms based on GAs have been successfully applied on several complex civil 

engineering optimization problems. Hence, this research utilizes GAs to develop an algorithm for 

site utilization planning. Genetic Algorithms are discussed in detail in this chapter. 

3.3 Genetic Algorithms 

 

Genetic Algorithms (GAs) is inspired from the theory explaining the origin of species, in 

which weak and unfit individuals within their environment are faced with extinction by natural 

selection, and the stronger ones have greater opportunity to pass their genes to future generations 

via reproduction. In the long run, species carrying the correct combination in their genes become 

dominant in their population. Sometimes, during the slow process of evolution, random changes 

may occur in genes. If these changes provide additional advantages in the challenge for survival, 

new species evolve from the old ones. Unsuccessful changes are eliminated by natural selection. 

Genetic Algorithms is a population based meta-heuristic optimization method that is 

based on the evolutionary process which allows for the survival of the fittest. The main 

advantage of using GAs is that the algorithm needs a well-defined objective function and a set of 

constraints and doesn’t require any knowledge of the problem space. In GAs, a solution vector is 

represented as ‘Chromosome’. Each chromosome is made of several units called ‘Genes’. Each 

gene controls one or more features of the chromosome. GAs operates with a collection of 

different chromosomes called ‘Population’. The optimization starts with a population of 

randomly selected individuals (chromosomes). The initial population contains a number of 

potential solutions (chromosomes) which are combined and mutated using genetic operators to 

ensure diversity and avoid premature convergence to local optima. From this generation, the 



 
 

34 
 

fitter layouts survive while the less fit are eliminated. Thus, as the optimization evolves, the 

population includes the fitter solutions and eventually converges to a population dominated with 

a single solution. The fitness of each individual of the population is evaluated based on some 

predefined objective function. This process is repeated many times till either a predetermined 

number of iterations are reached or an acceptable solution is found.  

Several operators can be implemented in the GAs during the optimization process to 

produce new solutions, ensure diversity among the population, and avoid premature convergence 

to local optima. It includes selection, mating (crossover), mutation, inversion, swap, move, 

rotation, flip2edge, add missing blocks, fix blocks, and aging (Harmanani et al. 2000; Zouein et 

al. 2002). Due to their high flexibility and diverse applicability, the commonly used operators 

include Crossover and Mutation (Deb 2009). Flow chart of a binary GAs process is illustrated in 

Figure 3.1. 
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Define cost function, cost variables

Select GAs parameters

Generate initial population

Decode chromosomes

Find cost for each chromosome

Select mates

Mating

Mutation

Convergence Check

Solution Obtained

 

Figure 3.1: Flowchart for binary GAs (Haupt and Haupt 2004) 

While the above illustrates the flow of a GAs process, pseudo code of a common GAs 

optimization process is provided in the section below (Deb 2009). 

Step 1: Set t = 1. Randomly generate N solutions to form the first/initial population (Pt). 

Evaluate the fitness of solutions in Pt. 

Step 2: Generate an offspring population Qt (Crossover) as follows: 

2.1. Choose two solutions x and y from Pt based on the fitness values. 
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2.2. Using a crossover operator, generate offspring and add them to Qt. 

Step 3: Change the attributes of randomly selected solutions in Qt (Mutation) with a predefined 

mutation rate. 

Step 4:  Evaluate and assign a fitness value to each solution in Qt based on its objective function 

value and infeasibility. 

Step 5: Select N solutions from Qt based on their fitness and copy them to Pt+1. 

Step 6: If the stopping criterion is satisfied, terminate the search and return to the current 

population, else, set t = t+1, and iterate the process from Step 2. 

3.4 Genetic Operations 

3.4.1 Selection 

 

 GAs start with a group of chromosomes called population (Npop), of which the 

chromosomes with worst objective values will be discarded during the iterative process of 

accomplishing an optimal solution. In this survival of the fittest theory, to retain the best 

solutions in the mating pool (Nkeep) and discard the worst solutions, GAs uses the ‘Selection’ 

operator which chooses two chromosomes from the mating pool (Nkeep) to produce two new 

offspring. The selection process is iterated until an offspring population equal to the population 

of discarded chromosomes is born. Several selection techniques are available to perform this 

pairing process and are discussed in the following section. 

i) Pairing from top to bottom: 

This selection technique starts with pairing the top chromosomes from the population 

pool (Npop) until the top Nkeep chromosomes are selected for mating. In this top down approach, 
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the odd rows are paired with the even rows, in which the mother has the odd row numbers (1, 3, 

5,…) from the population matrix and the father has the even row numbers (2, 4, 6,…) from the 

population matrix (Haupt and Haupt 2004).  

ii) Random pairing: 

In this approach, instead of the top down technique for pairing, the chromosomes to be 

paired are randomly identified from the population matrix (Npop). For example, the row numbers 

of the parents to be paired from the population pool can be identified as, 

mother chromosome = int[Nkeep * random(1, Nkeep)] 

father chromosome = int[Nkeep * random(1, Nkeep)] 

iii) Weighted random pairing: 

In this selection technique, probabilities (inversely proportional to the objective value) 

are assigned to the chromosomes in the mating pool. A chromosome with lowest objective value 

has the highest probability of mating, whereas the chromosome with highest objective value has 

the lowest probability of mating. A random number determines which chromosome is selected. 

This type of weighting is often referred as roulette wheel weighting and there are two types in it 

(Haupt and Haupt 2004). 

a) Rank Weighting: This approach is problem independent and finds the probability 

from the rank, n, of the chromosome: 

 

For example, consider the example provided in Table 3.1 which shows the results for 

Nkeep = 4 chromosomes. The cumulative probabilities listed in column 4 are used in selecting the 

chromosome. A random number between zero and one is generated. Starting at the top of the list, 

Eq. 3.2 (Haupt and Haupt 2004) 
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the first chromosome with a cumulative probability that is greater than the random number is 

selected for the mating pool. For example, if the random number (r) is 0.577, then r lies between 

0.4 and 0.7, so chromosome2 is selected. If a chromosome is paired with itself, there are several 

alternatives. First, let it go. It means that there are three of these chromosomes in the next 

generation. 

Table 3.1: Rank Weighting (Haupt and Haupt 2004) 

n Chromosome Pn 
i=n 

Σ Pi 
i=1 

1 00110010001100 0.4 0.4 

2 11101100000001 0.3 0.7 

3 00101111001000 0.2 0.9 

4 00101111000110 0.1 1.0 

 

Second, randomly pick another chromosome. The randomness in this approach is more 

indicative of nature. Third, pick another chromosome using the same weighting technique. In this 

approach, small populations have a high probability of selecting the same chromosome and the 

probabilities only have to be calculated once. 

b) Cost Weighting: In this approach, the probability of selection is calculated based 

on the cost of the chromosome, whereas the rank weighting approach is based on a 

chromosome’s rank in the population. A normalized cost is calculated for each chromosome by 

subtracting the lowest cost of the discarded chromosomes (cNkeep+1) from the cost of all the 

chromosomes in the mating pool. 

 
Cn = cn – cNkeep+1 Eq. 3.3 (Haupt and Haupt 2004) 
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Subtracting cNkeep+1 ensures all the costs are negative. This approach tends to weight the 

top chromosome more when there is a large spread in the cost between the top and bottom 

chromosome. On the other hand, it tends to weight the chromosomes evenly when all the 

chromosomes have approximately the same cost. The same issues as discussed in rank weighting 

apply if a chromosome is selected to mate with itself. In this technique, the probabilities must be 

recalculated for each generation (Haupt and Haupt 2004). 

iv) Tournament selection: 

 This approach closely mimics mating competition in nature in which a random small 

subset of the chromosomes is picked from the mating pool, and the chromosome with the lowest 

cost in the subset becomes parent. The tournament repeats for every parent needed. Thresholding 

and tournament selection make a nice pair, because the population never needs to be sorted. In 

large populations, as sorting of population becomes time-consuming, this technique works best 

for larger population sizes (Haupt and Haupt 2004). 

Each of the selection techniques results in a different set of parents, and the composition 

of the next generation also varies for each selection scheme. Roulette wheel and tournament 

selection are standard selection techniques in GAs (Haupt and Haupt 2004). 

3.4.2 Mating 

 

Mating is the process of creating one or more offspring from the parents selected in the 

pairing process. The most common form of mating process is to crossover the involved parents 

to produce offspring (Figure 3.2). A crossover point is randomly chosen from the length of the 

chromosome and the parent1 passes its solution to the left of that crossover point to offspring1. 

Similarly, parent2 passes its solution to the left of the same crossover point to offspring2. In a 
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like manner, solution from the right of parent1 and parent2 from the same crossover point goes 

to offspring2 and offspring1 respectively. This mating process is termed as single-point 

crossover (Haupt and Haupt 2004). 

Parent1 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 

Parent2 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 

 

Offspring1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 

Offspring2 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 

 

Figure 3.2: Single-Point Crossover example 

As the parents selected from the selection techniques are with preference towards better 

fitness (better objective values), the offspring generated from the parents in the mating process 

are expected to inherit good genes from the parents which make them fitter. By iteratively 

applying the mating/crossover operation, genes of good chromosomes are expected to appear 

more frequently in the population, eventually leading to convergence to an overall good solution 

(Deb 2009). 

3.4.3 Mutation 

 

 Mutation introduces random changes into the characteristics of chromosomes at a certain 

percentage. Mutation is the second way the GAs explore a cost surface. It can introduce traits not 

in the original population and keeps the GAs from converging too fast before sampling the entire 

cost surface. Mutation points are randomly selected from the (Npop * Chromosome length) total 

number of bits in the population matrix, and a single point binary mutation changes a 1 to a 0, 

and vice versa (equation 3.4). Increasing the number of mutations increase the algorithm’s 
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freedom to search outside the current region of variable space. It also tends to distract the 

algorithm from converging on a popular solution. As best solutions are designated as elite 

solutions and destined to propagate unchanged, mutation is typically not allowed on best 

solutions.   

 

 

 

 

In typical GAs implementations, the mutation rate (probability of changing the properties 

of a gene) is very small and depends on the length of the chromosome. Therefore, the new 

chromosome produced by mutation will not be very different from the original one (Deb 2009). 

This random mutation operation shall be implemented through several operators which include 

swap (exchanges the positions of two randomly selected genes in a chromosome), inversion 

(flips the attribute of a gene), move (moves the attribute of a randomly selected gene), rotation 

(rotates the attribute of a gene in either clockwise or anticlockwise direction), and aging 

(destroys a chromosome whose fitness did not change after a predefined number of iterations) 

(Harmanani et al. 2000). 

3.4.4 Convergence 

 

 The number of generations that evolve depends on whether an acceptable solution is 

reached or a set number of iterations are exceeded. After a while, all the chromosomes and 

# of mutations =  * (Npop-1) * length of chromosome 

 

Mutate chromosome = ( * Npop) + Random (1, Npop) 

 

Mutate gene = Random (, 1) * Npop 

 

where,  = mutation probability/rate 

Eq. 3.4 
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associated costs (objective value) would become the same if it were not for mutations. At this 

point the algorithm should be stopped. 

3.5 Summary 

 

The layout planning problem is a hybrid of several categories of optimization including   

temporal optimization, optimization in a continuous domain, constrained and minimum seeking 

optimization. The traditional optimization algorithms for minimization like exhaustive search, 

analytical optimization, and simplex methods often seek to identify locally minimal solutions 

and have limited applicability in solving complex real-time optimization problems. Several 

optimization strategies have been developed in the recent times and are contemporarily used in 

engineering optimization problems. Genetic Algorithms (GAs), one of the commonly used  

contemporary algorithm, is identified as a robust optimization technique that seek to improve 

performance by sampling areas of the parameters space that are likely to lead better solutions 

(Goldberg 1989), (Holland 1992). Also, it has the potential to move randomly from one feasible 

solution to another without getting into to local optima, in which other algorithms often get 

trapped (Li and Love 1998), and it has the highest potential to efficiently solve several 

engineering and construction management problems (Elbeltagi et al. 2004). 
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Chapter 4: Site Utilization Planning Algorithm 

4.1 Introduction 

 

Site layout planning in construction is a complex optimization problem, in which the 

layout of temporary facilities is unique in every construction project due to the changing 

requirements on account of different site configurations and project requirements. A significant 

amount of research effort has been made by academic research community over the last two 

decades to develop a satisfactory optimization algorithm for layout of temporary facilities at 

construction sites. Building on the existing research, a new and much improved site layout tool 

has been developed in this research study. This tool overcomes some of the critical shortcomings 

of the past research (e.g., distance measurement) and provides innovative means to model some 

of the constraints commonly observed on construction projects. The open and modular 

architecture of this tool also makes it an ideal platform for future improvements. The important 

algorithms used in this tool are discussed in this chapter. 

4.2Algorithms 

4.2.1Distance Measurement Algorithm 

 

The core objective of optimization in facility layout planning is to minimize the cost of 

transportation of materials, workers, and equipment between temporary facilities. In other words, 

the objective of optimization is essentially to minimize the distance travelled. Hence it is 

imperative that the actual distance travelled between facilities be measured accurately and 

realistically. Almost all of the optimization algorithms found in the literature measure distance 
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between facilities using the Euclidean formula. It is quite possible that the earlier studies have 

adopted the Euclidean approximation to simplify the complexity of the problem. This may not be 

accurate in projects where such travel is not possible and is likely to produce sub-optimal layouts 

(Sanad et al. 2008). 

Measuring the Euclidean distance between the temporary facilities uses the Pythagorean 

formula, which measures the diagonal distance between the points without considering any 

obstructions. For example, consider the Figure 4.1. In a two dimensional space, the Euclidean 

distance between the two points p(x1, y1) and q(x2, y2) is measured using the formula d(p,q) = 

(x2-x1)
2
 + (y2-y1)

2
. As illustrated in Figure 4.1, the distance between the points P1 and P2 is 

measured as the diagonal distance between the points without taking into account of the building 

between them. But such travel, between two temporary facilities, may not be possible in most 

construction projects due to the presence of the permanent structure or the excavation for the 

structure. Thus, measuring the Euclidean distance might not represent the actual distance 

travelled on a construction site. 

 

Figure 4.1 Euclidean Distance Measurement Approach 
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To overcome this shortcoming, many researchers have proposed the use of the Manhattan 

distance, which measures the sum of absolute differences of the coordinates of the points under 

consideration. Manhattan distance, also known as Rectilinear Distance, between two points 

refers to the distance traveled between two points on a grid of streets in a downtown area (e.g., 

Manhattan).  Manhattan distance between any two given points (x1, y1) and (x2, y2)   is measured 

using the formula:  

d(p,q) = (|y2-y1| + |x2-x1|)      Eq. 4.1 

While this type of distance measurement would provide a better estimate of the actual 

distance travelled (as compared to Euclidean distance), in some cases, even measuring the 

Manhattan distance might not represent the actual travel distance between the facilities. For 

example, consider the Figure 4.2. In this case, measuring the Manhattan distance between the 

points P1 and P2 represents the actual travel distance. But in this scenario the obstruction (i.e., 

building) does not interfere with the range of X coordinates of the points P1 and P2. 

 

Figure 4.2 Manhattan Distance Measurement Approach (applicable scenario) 
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Now consider the Figure 4.3 where the obstruction (building) interferes with the range of 

X coordinates of the points P1 and P2. In this scenario, as illustrated in Figure 4.3, measuring the 

pure Manhattan distance between the points P1 and P2 also does not represent the actual travel 

distance between the points. Thus, in solving the site utilization planning problem in 

construction, measuring the pure Manhattan distance among the facilities might not be accurate 

as it does not represent the accurate distance in some scenarios. 

 

 

Figure 4.3 Manhattan Distance Measurement Approach (inapplicable scenario) 

Hence, to overcome these shortcomings of the currently used Euclidean and Manhattan 

distance measurement approaches, an improvised distance measurement algorithm is developed 

in this study which would represent the actual travel distance among the construction facilities in 

all scenarios. For example, for the scenario illustrated in Figure 4.4, the distance measurement 

approach works as follows. 
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Figure 4.4 Improvised Distance Measurement Approach 

The algorithm first identifies the vertices (of any obstruction) that could be accessed 

directly from point p1 without passing through any obstruction (say, accessible vertices). For this 

case, the accessible vertices would be V1 and V2. Then, for each of the identified accessible 

vertices, it measures the distance to access point p2 from that vertex through other vertices in 

both clockwise and anticlockwise directions and identifies the minimum distance. For example, 

for the case under discussion, to measure the distance between the points p1 and p2, distance will 

be measured for all the below listed feasible ways and the minimum distance (P1 -> V1 -> V4 -> 

P2) will be identified. Thus, the distance measurement models the likely movement and measures 

the associated travel distance and thus improves the optimality of the layouts. 

i) P1 -> V1 -> V2 -> V3 -> P2 (clockwise from V1) 

ii) P1 -> V1 -> V4 -> P2 (anticlockwise from V1) – Optimal route 

iii) P1 -> V2 -> V3 -> P2 (clockwise from V2) 

iv) P1 -> V2 -> V1 -> V4 -> P2 (anticlockwise from V2) 
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Thus, the distance measurement algorithm measures the actual travel distance and aids to 

accomplish true optimal layouts. 

 In the developed optimization model, the site area is broken down into smaller grids of 

size provided by the user (through user interface) and the available girds are identified first. The 

distance measurement algorithm is then invoked to measure the distance between the centroid of 

each of the available grid. For example, consider the Figure 4.5. The site area is first divided into 

smaller grids of size 25’x25’, where 25’ is the preferred grid size provided by the user. The 

available grids (white colored grids) are identified and then the distance measurement algorithm 

is invoked which measures the distance among the centroid of each of the available grid. 

 

Figure 4.5 Distance Measurement Strategy 

Pseudo code for distance measurement algorithm is provided in the following section. 
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Distance Measurement Pseudo Algorithm 

 

Store the cells occupied by the corners of the building in an array variable ‘BCC(n)’ (Building Corner Cells) 

Store the x coordinate of point1 in ‘x1’ and x coordinate of point2 in ‘x2’ (p1, p2 - points between which the distance 

need to be measured) 

Store the y coordinate of point1 in ‘y1’ and x coordinate of point2 in ‘y2’ 

 

Function Distance_Measurement ([x1,y1], [x2,y2]) 

Define a variable MinDistance 

Call the function Has_Block([x1,y1], [x2,y2]) 

If Has_Block = ‘False’ Then 

MinDistance = sqrt[(x2-x1)^2 + (y2-y1)^2] 

Else 

For i = 0 to n-1 (n = number of vertices) 

Call the function Has_Block([x1,y1], [BCC(i)]) 

If Has_Block = ‘True’ Then 

i = i+1 

Else 

Call the function clockwise ([x1,y1], [BCC(i)], i) 

Call the function anticlockwise ([x1,y1], [BCC(i)], i) 

MeasuredDistance = Minimum(TotalDistanceC, TotalDistanceAC) 

If MinDistance = 0 then  

MinDistance = MeasuredDistance  

Else 

If MeasuredDistance < MinDistance then MinDistance = MeasuredDistance Else End 

End 

End 

i = i+1 

Loop 

End function 

 

Function Has_Block ([x1,y1], [x2,y2]) 

Store the cells occupied by the building in an array variable ‘BC()’ (Building Cells) 

Define an array variable Path(p) 

Set x = x1 

For x = x1 to x2 

y = [[(x-x1) * (y1-y2)] + y1(x1-x2)] / (x1-x2) 

y = round(y,0) 

Path(p) = (x,y) 

p = p+1 

x = x+1 

Loop 

For i = 0 to p-1 

If path(i) in BC() Then 

Has_Block = ‘True’ 

Exit Loop 

Else 

Has_Block = ‘False’ 

i = i+1 

End 

Loop 

Empty Path(p) 

End function 

 

Function clockwise ([x1,y1], [BCC(i)], i) 

Define a variable PC (Present Cell) to store the x,y coordinate of the current vertex 

Define an array Distance(v) 

Define a variable newi 

Define a variable TotalDistanceC 

newi = i 

Distance(v) = sqrt[(BCCnewix-x1)^2 + (BCCnewiy-y1)^2] 

PC = BCC(newi) 

v = v+1 
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Do until Has_Block[PC, (x2,y2)] = ‘False’ 

If newi = 0 then newi = (n-1) else newi = (newi-1) End 

Distance(v) = sqrt[(BCCnewix-PCx)^2 + (BCCnewiy-PCy)^2] 

PC = BCC(newi) 

v = v+1 

Loop 

 

Distance(v) = sqrt[(PCx-x2)^2 + (PCy-y2)^2] 

TotalDistanceC = sum[distance(v)] 

End Function 

 

Function anticlockwise ([x1,y1], [BCC(i)], i) 

Define a variable PC (Present Cell) to store the x,y coordinate of the current vertex 

Define an array Distance(v) 

Define a variable newi 

Define a variable TotalDistanceAC 

newi = i 

Distance(v) = sqrt[(BCCnewix-x1)^2 + (BCCnewiy-y1)^2] 

PC = BCC(newi) 

v = v+1 

 

Do until Has_Block[PC, (x2,y2)] = ‘False’ 

If newi = n-1 then newi = 0 else newi = (newi+1) End 

Distance(v) = sqrt[(BCCnewix-PCx)^2 + (BCCnewiy-PCy)^2] 

PC = BCC(newi) 

v = v+1 

Loop 

 

Distance(v) = sqrt[(PCx-x2)^2 + (PCy-y2)^2] 

TotalDistanceAC = sum[distance(v)] 

End Function 
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4.2.2 Optimization Algorithms 

As discussed in Chapter 2 and 3, the optimization of layouts of temporary facilities in  

construction projects is a complex, computationally intensive problem which can’t be solved 

using analytical optimization methods on account of the vast size of the solution space. A 

number of global optimization algorithms inspired by natural phenomena (e.g. ant colony 

optimization, genetic algorithms) have been proposed as an effective alternate solution to 

exploring an extremely vast solution space to identify a good layout. This research study has 

adopted Genetic Algorithms (GAs) as an optimization tool because it has been used and proven 

effective in solving complex engineering optimization problems.  Furthermore, GAs have the 

capability to explore the solution space without getting trapped in a local optimum. Genetic 

Algorithms essentially provide an intelligent bias to random exploration of the solution space to 

identify a good layout. The classic unconstrained GAs has limited applicability in modeling the 

real life, temporally dynamic requirements of construction sites. This section will provide the 

details of the essential elements of the algorithms used in the optimization tool. The optimization 

tool developed in this study is designed to model the constraints typically observed at 

construction sites. This tool consists of the following important algorithms: 

 An algorithm to conceptualize the site and generate initial layouts 

 An algorithm to evaluate the efficacy of each layout in meeting a predefined fitness 

objective 

  An algorithm to perform genetic operations of crossover (to improve the quality of 

solutions) and mutation (to enable the algorithm to escape local optimum and search the 

solution space more effectively through diversification) 
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4.2.2.1 Initial Solutions 

 

As discussed in chapter 3, the GAs starts with a population of randomly generated initial 

potential solutions (ie., chromosomes), which then undergo the optimization process through the 

genetic operators (e.g., Crossover and Mutation) for several generations and the algorithm 

eventually converges to a population dominated with a single solution. Several of the earlier 

literature studies formulate the layout planning problem as discrete one-to-one assignments, 

where facilities are assigned to previously defined locations. In this conceptualization, as the 

available positions are previously identified, it eases the process of generating the initial 

population and leaves the initial population generation algorithm as just randomly assigning the 

previously identified locations to the temporary facilities to be laid out without imposing any 

constraints. This definition (one-to-one assignment problem where ‘n’ facilities are to be located 

in ‘n’ predefined location) is limited in scope and it can only be used to effectively model a 

situation where space is limited and the number of locations available for locating the temporary 

facilities is predetermined. But in reality, the available locations are not discrete and are not 

predetermined as-well.  

The site area can be conceptualized as a continuous domain, theoretically creating infinite 

layouts. While this conceptualization can potentially result in evaluation of more solutions, it has 

limited potential benefits when it comes to implementing the layout plan at the site. For example, 

if the optimization process yields a layout that includes a facility which should be located exactly 

102 feet and 11.78 inches from the left corner of the site, it may not be practical or possible to 

layout the temporary facility with such precision. Hence, this study conceptualizes the site as a 

discrete domain divided into grids.  
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The algorithm starts with dividing the entire site space into smaller grids of size provided 

by the user. The vertices and the associated grids are numbered starting at the left bottom corner 

of the site. It then identifies the available grids (girds which are not occupied by any 

building/utilities and are available for temporary facilities allocation) and unavailable grids 

(girds which are occupied by the building/utilities and are not available for temporary facilities 

allocation), which are mutually exclusive. Once the available and unavailable grids are 

identified, the distance measurement algorithm is used to measure the actual travel distance 

among each of the identified available grids and is stored in an xml file.  

This study limits the shape of the facilities to rectangular or square. The algorithm selects 

a random grid number from the available grids to position the first facility that needs to be stored 

onsite. Once a grid/node number is chosen, there are 8 possible different alignments (4 

horizontal, 4 vertical) by which a rectangular facility can be placed, illustrated in Figure 4.6.a 

and 4.6.b. 

 

Alignment Type 1

Horizontal-Right-Above

Alignment Type 3

Horizontal-Right-Below

Alignment Type 4

Horizontal-Left-Below

Alignment Type 2

Horizontal-Left-Above

 

Figure 4.6.a – Horizontal alignment 
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Figure 4.6.b – Vertical alignment 

Of these eight possible alignment types, the algorithm randomly chooses an alignment 

type for the selected facility and identifies the grid numbers required for that facility. If the 

required grids for a facility are not available, the algorithm regenerates a different random grid 

number and identifies the required grids. If the algorithm is not able to find a location to position 

a facility for more than 100 iterations, it is supposed that there is not a feasible solution and the 

user is informed with a message. This process is repeated until the location for all the temporary 

facilities to be positioned onsite are identified. As the literature review on GAs inferred that an 

initial population of 100 (100 randomly generated solutions) can lead to better optimal solutions 

(Li and Love 1998), the algorithm identifies 100 different feasible solutions to position the 
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temporary facilities and assigns to the initial population pool, which will subsequently be 

optimized through the GAs process. An example of how the algorithm identifies the required 

grids for a facility is illustrated below. 

 

 

 

 

Figure 4.7 – Illustrative example 

Consider a site space with 25 continuously available grids (Figure 4.7) in which a 

rectangular facility of size 30x15 needs to be positioned. Assume that the user has provided the 

preferred grid size as 10x10. Hence, to position this facility it requires 3 grids (30/10) along the 

length side and 2 grids (round of 15/10) along the width side. Thus, the facility totally requires a 

sum of 6 grids (3x2). Assume that grid number 12 and alignment type 1 (horizontal-right-above) 

has been randomly chosen by the algorithm to position the facility. For this random grid number 

and alignment type, the algorithm will identify the grids 12, 13, 14, 17, 18, 19 as the required 

grids to position the facility. 

Layout solutions/chromosomes generated from the initial population algorithms will have 

the onsite stored facility numbers associated with their corresponding starting grid index number 

and alignment type. For example, consider a case where six temporary construction facilities are 

used in a construction project of which four are stored onsite (facilities 1, 3, 4, 5) and two in 

offsite (facilities 2, 6). Assume that Table 4.1 represents one of the layout 

20 22 23 24 25 

16 17 18 19 20 

11 12 13 14 15 

6 7 8 9 10 

1 2 3 4 5 
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solutions/chromosomes. The solution/chromosome reads as; facility 1 is located with starting 

grid as 25 and alignment type as 7, facility 3 is located with starting grid as 100 and alignment 

type as 6, facility 4 is located with starting grid as 5 and alignment type as 3, facility 5 is located 

with starting grid as 215 and alignment type as 4. Since facilities 2 and 6 are stored in offsite 

they are not represented in the solution chromosome. 

Table 4.1: Representation of Solution Chromosome 

Facility # 1 3 4 5 

Alignment 7 6 3 4 

Grid Position 25 100 5 215 

 

Pseudo code for initial population algorithm is provided in the following section. 
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Initial Population Generation Pseudo Algorithm 

 

Store the #’s of the grids occupied by the building (with safety boundary) and unusable areas in an array variable 

‘UG()’ (Unusable Grids) 

Store the #’s of the available grids in the site area in an array variable ‘AG()’ (Available Grids) 

Store the # of rows available in the entire grid split-up in a variable ‘Rows’ 

Store the # of columns available in the entire grid split-up in a variable ‘Columns’ 

Store the grid size provided by the user (in UI) in a variable ‘Grid_Size’ 

Function Initial Population () 

Define an array variable Solutions(i) // To store the different layout solutions 

For i = 1to 100 

Define a variable ‘Temp_AG()’ // To store the available grids locally for computations 

Define a variable ‘Temp_UG()’ // To store the unavailable grids locally for computations 

Temp_AG() = AG() 

Temp_UG() = UG() 

For j = 1 to n (n=number of facilities provided by the user) 

Define a variable ‘Position’ 

Position = Pick a random # from Temp_AG()  
Define a variable ‘Horz_Grid_Reqd’ //To store the number of horizontal grids required 

Define a variable ‘Vert_Grid_Reqd’ //To store the number of horizontal grids required 

Define a variable ‘Reqd_Grids’ //To store grids #’s occupied by a facility 

Horz_Grid_Reqd = int(Length(j)/Grid_Size ) 

Vert_Grid_Reqd = int(Breadth(j)/Grid_Size)  

Define a variable Alignment 

Alignment = int(random[1, 8]) 

Case When Alignment =1 // For the case Horizontal, Right, and Above 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Vert_Grid_Reqd-1 

Vert_Position = Position + (m * Columns) 

For n=1 to Horz_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =2 // For the case Horizontal, Left, and Above 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Vert_Grid_Reqd-1 

Vert_Position = Position + (m * Columns) 

For n=1to Horz_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 



 
 

58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When Alignment =3 // For the case Horizontal, Right, and Below 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Vert_Grid_Reqd-1 

Vert_Position = Position - (m * Columns) 

For n=1to Horz_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =4 // For the case Horizontal, Left, and Below 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Vert_Grid_Reqd-1 

Vert_Position = Position - (m * Columns) 

For n=1to Horz_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =5 // For the case Vertical, Right, and Above 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Horz_Grid_Reqd -1 

Vert_Position = Position + (m * Columns) 

For n=1to Vert_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =6 // For the case Vertical, Left, and Above 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 
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For m=0 to Horz_Grid_Reqd -1 

Vert_Position = Position + (m * Columns) 

For n=1to Vert_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =7 // For the case Vertical, Right, and Below 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Horz_Grid_Reqd -1 

Vert_Position = Position - (m * Columns) 

For n=1to Vert_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

 

When Alignment =8 // For the case Vertical, Left, and Below 

Define a variable Vert_Position 

Reqd_Grids = Null //To empty the variable before starting the assignment for next facility 

For m=0 to Horz_Grid_Reqd -1 

Vert_Position = Position - (m * Columns) 

For n=1to Vert_Grid_Reqd 

If Vert_Position is not available in the array variable Temp_AG() then 

Exit and Goto Step I (highlighted in Green+Bold) without incrementing facility # 

Else 

Reqd_Grids = Reqd_Grids + “,” + Vert_Position 

Vert_Position = Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

Grid #’s available in the variable ‘Reqd_Grids’ should be removed from the array variable Temp_AG() 

and added to the array variable Temp_UG() 

End Case 

Solutions(i) = Solutions(i) + (Position, Alignment) 

j = j+1 

Loop 

i = i+1 

Loop 

End Function // Initial Population 
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4.2.2.2 Solutions Evaluation 

 

In order to converge from a population dominated with diverse solutions to a single 

optimal solution, the initially generated random solutions have to be evaluated and their 

objective function has to be refined through successive iterations of genetic operations. In the 

majority of research papers reviewed in chapter 2, the objective function designed to evaluate the 

fitness of each solution is defined as the sum of the products of distances between the facilities, 

cost of transportation between the facilities, and preferred proximity weight between the 

facilities, to which a penalty value for constraint violations, if any, is added (Osman and Georgy 

2005). While using actual transportation costs in the objective function has the clear objective of 

minimizing the total transportation costs among the temporary facilities, obtaining accurate 

values for the actual inter-facility transportation costs can become quite difficult, especially 

during project planning stages. This limitation promotes the use of proximity weights instead of 

transportation costs (Osman et al. 2003). 

Osman et al. (2003) has presented a nice summary of the objective functions used in 

several earlier studies. Table 4.2 provides the summary studied by (Osman et al. 2003). 
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Table 4.2: Objective functions used in literature (Osman et al. 2003) 

S. No. Pseudo model of objective function Study 

1 
To minimize the frequency of trips made by 

construction personnel 
(Li and Love 1998) 

2 
To minimize the total transportation costs of 

resources between facilities 

(C.M. Tam 2001; S.O. 

Cheung 2002) 

3 
To minimize the cost of facility construction 

and the interactive cost between the facilities 
(Yeh 1995) 

4 

To minimize the total transportation costs of 

resources between facilities (presented 

through a system of proximity weights 

associated with an exponential scale) 

(Hegazy and Elbeltagi 1999) 

5 

To minimize the total transportation costs of 

resources between facilities and the total 

relocation costs (presented through a system 

of proximity weights and relocation weights) 

(Zouein and Tommelein 

1999) 

 

Objective function defined in this study (E.q. 4.1) has both cost and proximity parameters 

integrated in it. This facilitates the flexibility of utilizing the cost parameters in project cases 

where the data is available, and ignoring the cost aspect by defaulting to 1, where the data is not 

available. 

 

 

 

 

 

Objective Function =      i=n-1   i=n 

               Σ   Σ  dij * cij * wij + Penalty value   (Eq. 4.1) 
                             i=1     j=i+1 

 

Where, n = number of temporary construction facilities to be laid out 

dij = actual route distance between the facilities i and j 

cij = cost of moving the materials between the facilities i and j 

wij = preferred proximity weight between the facilities i and j 

- Smaller the objective function value, better the chromosome fitness. 
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In order to handle the hard constraints (overlap) and soft constraints (tower crane 

accessibility) in the evaluation process, ‘Penalty Approach’ has been identified as an efficient  

approach (Mahachi 2001). Hence, in this optimization, if a solution violates any of the hard/soft 

constraints, an arbitrary high positive value (penalty) will be added to the objective function, 

which reduces the fitness of that solution, leading to the elimination of that layout and better 

optimal solutions in the successive iterations. Deb (2009) has suggested the following 

considerations for assigning the penalty values. 

i) Very small penalty values (compared to objective function value) have a small distortion 

on the objective function, and the optimum F(x) may not be near the true constrained 

optimum. 

ii) Very large penalty values have a severe distortion on the objective function and may lead 

to locally optimal solutions. 

iii) Penalty value should be assigned in such a way that it is relative to the objective function 

value.  

In evaluating the objective function, as recommended by Osman and Georgy (2005), this 

study uses the proximity weight to be defined as 0, 1, 3, 9, 37, or 81 (Table 4.3)  and the penalty 

function value as 10,000 for each constraint violation. The values in Table 4.3 represent the 

user’s preference of the required proximity among the temporary construction facilities. As 

illustrated in the table, if the user prefers two facilities to be located as close as possible for some 

project specific constraints, it shall be represented by a high proximity value (e.g., 81). Similarly, 

if project requirements prefer two facilities to be located as farthest as possible, it shall be 

represented by a low proximity value (e.g., 0).  
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Table 4.3: Preferred proximity relationship mapping (Osman and Georgy 2005) 

Desired proximity relationship 

between the facilities 

Proximity weight 

Absolutely necessary (A) 81 

Especially important (E) 37 

Important (I) 9 

Ordinary closeness (O) 3 

Unimportant (U) 1 

Undesirable (X) 0 

 

The fitness evaluation algorithm developed in this study works as follows. For all the 

solutions in the solution pool, the objective function is calculated as a cumulative value of 

product of distance between each of the onsite stored temporary facilities (centroid to centroid) 

and their corresponding proximity weight and interaction cost values. While this value represents 

the unconstrained objective function value, a check for facilities overlap and violation of any 

user defined constraints is performed as-well. If there is any constraint violation, an appropriate 

penalty value is added to the unconstrained objective function value to reduce the fitness of that 

solution. 

In this study, constraints have been handled implicitly and explicitly. Implicit handling of 

constraints includes ensuring not allocating temporary facilities within the boundaries of the 

permanent structure and utility/unusable site areas, if any. It is implemented in the beginning of 

the optimization model, where the non-available grids (grids occupied by permanent structure 
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including safety boundary and utility/unusable areas) are removed, and only the available grids 

are considered for layout identification in the initial population algorithm.   

Two types of constraints are handled explicitly in this study. First constraint is the crane 

accessibility constraint which ensures that all the facilities that require access by the tower crane 

are within the reachable radius of the crane. This constraint violation is checked at the facility 

level, in which for each of the temporary facility in the solution that requires crane access, a 

check is done to identify if the facility is within the reachable radius of the crane provided by the 

user. If there is a constraint violation (not within the reachable radius), penalty value is added to 

the unconstrained objective function value of the corresponding solution. If not, the 

unconstrained objective function value is retained. 

The second constraint handled in this study is the non-overlap constraint through which a 

check is done to ensure that none of the temporary facility overlaps with the position of other 

temporary facilities and all the onsite temporary facilities are positioned within the available site 

boundaries. The algorithm evaluates the non-overlap of temporary facilities by analyzing their 

position and alignment types that were identified during the solution generation process. If an 

overlap or out-of-boundary violation is identified for a solution, penalty value is added to the 

objective function value of the corresponding solution. 

Offsite Facilities 

Once the constrained objective function value is identified, the functional value is 

recalculated to account the optimality of the facilities stored offsite. In this, an objective function 

is calculated as a cumulative value of product of distance between the onsite facility and each of 

the offsite stored temporary facilities and their corresponding proximity weight, interaction cost 
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values, and is then added to corresponding solution function. The distance between the onsite 

facility and offsite facilities is measured as the sum of distance between the offsite location and 

site gate (provided by user), and distance between the site gate and the facility centroid located 

onsite. 

Pseudo code for solutions evaluation algorithm is provided in the following section. 
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Solutions Evaluation Pseudo Algorithm 

 

All the available solutions will be stored in the variable Solutions(i) // Generated from the initial solutions algorithm 

 

Function Evaluate_Solutions () 

Define an array variable Objective_Function(s) // To store the objective function value of the different solutions 

Define an variable TC_Reachable_Radius // To store the reachable radius of the tower crane 

Define an variable TC_Coordinate_X // To store the X coordinate of tower crane position 

Define an variable TC_Coordinate_Y // To store the Y coordinate of tower crane position 

TC_Reachable_Radius = Value entered by the user in UI in the text box for reachable radius of tower crane 

TC_Coordinate_X = Value before the comma entered by the user in the text box for TC position 

TC_Coordinate_Y = Value after the comma entered by the user in the text box for TC position 

Define an variable Penalty_Value // To store the penalty value that need to be added for each constraint violation 

Penalty_Value = 10000// Can be changed later 

Define a variable Offsite_Distance // To store the distance b/w Offsite storage and site gate 

Define a variable Gate_Position // To store the coordinate of site gate 

Define a variable Gate_Grid // To store the grid # of the site gate (to be manipulated) 

Offsite_Distance = Value provided by the user in the text box for Offsite Distance 

Gate_Position = Coordinate provided by the user in the text box for site gate position 

Gate_Grid = Grid # of Gate_Position (to be manipulated based on the Gate_Position Value) 

Store the #’s of the grids occupied by the building (with safety boundary) and unusable areas in an array variable 

‘Evlt_UG()’ (Unusable Grids)  

Store the #’s of the available grids in the site area in an array variable ‘Evlt_AG()’ (Available Grids)  

Store the # of rows available in the entire grid split-up in a variable ‘Rows’ 

Store the # of columns available in the entire grid split-up in a variable ‘Columns’  

 

For k = 1to i // Where i = number of available solutions, which will always be 100 

Objective_Function(k) = 0 // To start with the objective function value as zero 

Define a variable ‘Evlt_Temp_AG()’ // To store the available grids locally for computations 

Define a variable ‘Evlt_Temp_UG()’ // To store the unavailable grids locally for computations 

Evlt_Temp_AG() = Evlt_AG() //or AG() 

Evlt_Temp_UG() = Evlt_UG() //or UG() 

 

For j = 1 to n // Where n=number of facilities provided by the user 

If Offsite_Stored(j) is Unchecked, then proceed further, else exit and increment j by 1 

Define a variable Source_Position // To store the position of the jth facility of the current solution 

iteration 

Source_Position = Grid # assigned to the jth facility in the current solution iteration // To be read from 

Solutions(k) 

For m = j+1 to n // Where n=number of facilities provided by the user 

If Offsite_Stored(m) is Unchecked, then proceed further, else exit and increment m by 1 

Define a variable Target_Position // To store the position of the mth facility of the current solution 

iteration 

Target_Position = Grid # assigned to the mth facility in the current solution iteration 

Objective_Function(k) = Objective_Function(k) + (Distance b/w Source_Position & 

Target_Position * Interaction cost value of j,m  * Proximity weight value of j,m) 

m=m+1 

End Loop // For m 

// Start Penalty assignment 

// Tower crane accessibility of each facility entered in UI 

If facility j accessed by tower crane = True // To check if the jthfacility is accessible by tower crane 

Define a variable Eucl_Dist // To store the Euclidean distance b/w tower crane and source position 

Eucl_Dist = Sqrt(( TC_Coordinate_X – X of Source_Position)2 + (TC_Coordinate_Y – Y of 

Source_Position)2) 

If Eucl_Dist <= TC_Reachable_Radius 

Objective_Function(k) = Objective_Function(k) +0 // Value not increased as it is reachable 

Else 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Value increased as it is not 

reachable 

End if // For reachable radius 

Else 

Objective_Function(k) = Objective_Function(k) +0 // Value not increased as it is not accessed by TC 

End if // For TC access check 
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// to check overlap 

Define a variable ‘Source_Alignment’ 

Define a variable Evlt_Horz_Grid_Reqd 

Define a variable Evlt_ Vert_Grid_Reqd 

Source_Alignment = Alignment # assigned to the jth facility in the current solution iteration // To be read 

from Solutions(k) 

Evlt_Horz_Grid_Reqd = int(Length(j)/Grid_Size ) // Length(j) = Length of current facility 

Evlt_Vert_Grid_Reqd = int(Breadth(j)/Grid_Size) // Breadth(j) = Breadth of current facility 

 

Case When Source_Alignment =1 // For the case Horizontal, Right, and Above 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Vert_Grid_Reqd-1 

Evlt_Vert_Position = Source_Position + (m * Columns) 

For n=1to Evlt_Horz_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position-1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =2 // For the case Horizontal, Left, and Above 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Vert_Grid_Reqd-1 

Evlt_Vert_Position = Source_Position + (m * Columns) 

For n=1to Evlt_Horz_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position+1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =3 // For the case Horizontal, Right, and Below 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Vert_Grid_Reqd-1 

Evlt_Vert_Position = Source_Position - (m * Columns) 
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For n=1to Evlt_Horz_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position-1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =4 // For the case Horizontal, Left, and Below 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Vert_Grid_Reqd-1 

Evlt_Vert_Position = Source_Position - (m * Columns) 

For n=1to Evlt_Horz_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position+1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =5 // For the case Vertical, Right, and Above 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Horz_Grid_Reqd -1 

Evlt_Vert_Position = Source_Position + (m * Columns) 

For n=1to Evlt_Vert_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position-1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 
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When Source_Alignment =6 // For the case Vertical, Left, and Above 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Horz_Grid_Reqd -1 

Evlt_Vert_Position = Source_Position + (m * Columns) 

For n=1to Evlt_Vert_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position+1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =7 // For the case Vertical, Right, and Below 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Horz_Grid_Reqd -1 

Evlt_Vert_Position = Source_Position - (m * Columns) 

For n=1to Evlt_Vert_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position-1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position +1 

End 

n=n+1 

Loop 

m=m+1 

Loop 

 

When Source_Alignment =8 // For the case Vertical, Left, and Below 

Define a variable Evlt_Vert_Position 

For m=0 to Evlt_Horz_Grid_Reqd -1 

Evlt_Vert_Position = Source_Position - (m * Columns) 

For n=1to Evlt_Vert_Grid_Reqd 

If Evlt_Vert_Position is not in Evlt_Temp_AG() or (if n>0 and 

int(Evlt_Vert_Position/columns) <> int(Evlt_Vert_Position+1/columns)) then 

Objective_Function(k) = Objective_Function(k) + Penalty_Value // Facility has a 

overlap 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

Else 

Evlt_Vert_Position should be removed from the array variable Evlt_Temp_AG() 

and added to the array variable Evlt_Temp_UG() 

Evlt_Vert_Position = Evlt_Vert_Position -1 

End 
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n=n+1 

Loop 

m=m+1 

Loop 

End Case 

// End Penalty assignment 

 

// Offsite 

For z = 1 to n // Where n=number of facilities provided by the user 

If Offsite_Stored(z) is Checked, then proceed further, else exit and increment z by 1 

Objective_Function(k) = Objective_Function(k) +  ((Offsite_Distance +  Distance b/w Gate_Grid & 

Source_Position) * Interaction cost value of j,z  * Proximity weight value of j,z) 

 

z=z+1 

End Loop // For z 

 

j=j+1 // Step I 

End Loop // For j 

 

k=k+1 

End Loop // For k 

End Function Evaluate_Solutions 
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4.2.2.3 Genetic Operations Algorithms: Crossover and Mutation 

 

This algorithm improves the solutions available in the population set by eliminating the 

worst solutions and creating new solutions from the retained best solutions by utilizing the 

genetic operators, crossover (to generate new offspring from parents), and mutation (to introduce 

random changes to the solution set to ensure diversity). The algorithm works as follows. 

Once the value of the objective function of each solution is determined, the solutions are 

first sorted in ascending order (lowest to highest objective function value). In this sorted solution 

set, half of the solutions with worst objective function value (highest objective value) are then 

eliminated (Haupt and Haupt 2004). Thus, the solutions set is now left with half number of 

solutions of that was initially started, which have the best objective function value.  

Crossover 

First two solutions from the reduced solution set are selected and a random crossover 

point is chosen to swap the solution genes among the selected solutions and generate new 

offspring. The crossover point is identified as a random number between 0 and number of 

facilities stored onsite. This operation of generating new offspring using the crossover operator is 

repeated for the next set (solutions 3 and 4) available in the solution set and is repeated until all 

the best retained solutions are subjected to the crossover operation. Thus, at the end of the 

crossover process, the number of solutions available in the solutions set will again be equal to 

number of solutions that was initially started with.  

For example, consider the example 4.2 discussed earlier where six temporary 

construction facilities are used in a construction project of which four are stored onsite (facilities 

1, 3, 4, 5) and two in offsite (facilities 2, 6). Assume there are two parent chromosomes (Tables 
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4.4.a, 4.4.b) over which the crossover operation is performed to generate new 

offspring/solutions. Assume that the random crossover point is identified as 3. Hence, the 

algorithms perform the crossover operation of the facilities represented after facility# 3 in the 

parent chromosomes and generate the two offspring (represented in Tables 4.5.a, 4.5.b). 

Table 4.4.a: Parent Chromosome I                              Table 4.4.b: Parent Chromosome II 

 

Table 4.5.a: Offspring Chromosome I                              Table 4.5.b: Offspring Chromosome II 

 

Mutation 

Once the new offspring are generated using the crossover operation, the solution set is 

subject to a random, yet directed change to ensure diversity among the generated solutions and 

avoid premature sub-optimal convergence. This change is introduced through the Mutation 

operator, in which a random solution and a gene location is identified from the solution set and 

the alignment type of the facility located in the corresponding gene location is substituted with a 

new possible random alignment types. The random chromosome and random gene location is 

identified using the equation 4.2 provided in the following section. 
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Based on the review of literature, this study uses a mutation probability/rate () of 1%  

(Deb 2009). 

 Once new offspring and random changes are introduced to the population set, the 

solutions are again evaluated using the evaluation algorithm and this process of solutions 

evaluation and solutions generation is iterated for several times until the solution set is 

dominated with one single optimal solution. (Li and Love 1998) has suggested that number of 

solution iterations of 100 leads to better solutions with reasonable computational time. This study 

also defines the number of solution iterations as 100. If the iteration is run for the last time (100
th

 

time), the algorithm will not introduce the random changes to the solution set as it would have an 

adverse effect on the objective value of the solution set (Haupt and Haupt 2004).  

Pseudo code for solutions generation algorithm is provided in the following section. 

 

 

 

 

Eq. 4.2 

rC = int(( * numberOfSolutions) + random (1, numberOfSolutions – 2)) 

 

rGL = int(random( , 1) * (numberOfOnsitefacilities  – 1)) 

 

where,  = mutation probability/rate 

 

rC = random chromosome, rGL = random gene location 

rGL = random gene location 



 
 

74 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the available solutions with their corresponding rank (objective value) will be stored in the variable Solutions(i) // 

Generated from the evaluate solutions algorithm 

 

Function Generate_Solutions () 

Define a variable Solution_Iteration // To store the # of iterations to be done 

Solution_Iteration = 100  

Define a variable MutationProbability // To store the probability of mutation 

MutationProbability = 0.01  

Define a variable MutationCycle // To store for how many chromosomes mutation need to be done 

MutationCycle = int(MutationProbability * numberOfSolutions) 

Define a variable OnsiteStoredFacilities 

Define a variable numberOfOnsiteStoredFacilities 

numberOfOnsiteStoredFacilities = count of facilities for which ‘Is Stored Offsite ‘ is not checked 

OnsiteStoredFacilities = Facility #s of the facilities for which ‘Is Stored Offsite ‘ is not checked  

 

For s = 1 to Solution_Iteration 

Sort the solutions available in Solutions(i) based on their rank (objective value) in ascending order  

Discard the last (numberOfSolutions/2) from Solutions(i)  

 

If s>= Solution_Iteration-1 then Exit function // To check if last iteration 

Else proceed 

 

// Crossover 

For t = 1 to numberOfSolutions/2 

Define a variable ‘Chromosome1’ 

Define a variable ‘Chromosome2’ 

Choromosome1 = Solutions(t)  

Choromosome2 = Solutions(t+1)  

Define a variable ‘CrossoverPoint’ // To store the random crossover point 

CrossoverPoint = Random (from OnsiteStoredFacilities) 

IntermediateSolutions(t) = Solution from Choromosome1 for until CrossoverPoint + Solution from 

Choromosome2 after CrossoverPoint 

 

IntermediateSolutions(t+1) = Solution from Choromosome2 for until CrossoverPoint + Solution from 

Choromosome1 after CrossoverPoint 

 

Add the solutions available in  IntermediateSolutions (t) and IntermediateSolutions (t+1) to Solutions(i)  

t = t+2 

Loop // End Crossover 

 

// Mutation (flip2edge) 

For v = 1 to MutationCycle 

Define a variable ‘MutateChromosome’ // To store the Chromosome # to be mutated 

Define a variable ‘MutateGene’ // To store the gene/facility # to be mutated 

Define a variable ‘MutateValue’ // To store the alignment type to be flipped 

MutateChromosome = int[(MutationProbability * numberOfSolutions) + Random(1, 

numberOfSolutions - 2)]  

MutateGene = int(Random(MutationProbability, 1) * numberOfOnsiteStoredFacilities - 1) 

MutateValue = int(Random (1,8)) 

For the Solution(MutateChromosome), and the facility of ‘MutationGene’ the alignment type should be 

updated with the ‘MutationValue’ 

 

v = v+1 

Loop // End Mutation (flip2edge) 

 

If s < Solution_Iteration then 

Call Evauate_Solutions() 

Else 

Exit Loop 

End if 

s= s+1 

Loop // End Generate Solutions function 
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4.3 Summary 

 

CSUP problem that deals with accommodating the site-level temporary facilities that are 

used to support the project is a vital resource, and greatly contributes in achieving the project 

objectives. Solving the construction site layout planning problem is also inherently complex in 

nature that presses the need for a computationally robust global optimization technique. As 

researchers have identified that GAs has the potential to solve several engineering and 

construction management problems without getting into to local optima in which other 

algorithms often get trapped (Elbeltagi et al. 2004; Li and Love 1998), the optimization model 

developed in this study is based on GAs. Also, to overcome the limitations of earlier studies 

reviewed in the literature, four new algorithms were developed in this study that includes, 

i) Improved distance measurement algorithm 

ii) Initial solutions generation algorithm 

iii) Solutions evaluation algorithm 

iv) Solutions generation algorithm 

The following chapter discusses in detail about the user interface and architecture of the 

optimization tool developed in this research study. 
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Chapter 5: CONSITEPLAN – Architecture Review 

5.1 Introduction 

 

While a detailed discussion of the algorithms developed in this study was presented in 

Chapter 4, a review of the architecture of the optimization tool (CONSITEPLAN) is discussed in 

this chapter. CONSITEPLAN is a multi-objective optimization tool developed to solve the site 

utilization planning problem encountered in construction projects. CONSITEPLAN has been 

developed using the Microsoft Visual Studio platform. This chapter provides details of the 

architecture of the tool. 

5.2 CONSITEPLAN – Process flow 

 

A graphical illustration of flow of components of the developed optimization tool is 

provided in Figure 5.1. 
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Figure 5.1: CONSITEPLAN Architecture Flow 

While Figure 5.1 illustrates the architecture of the tool graphically, and Figure 5.2 

illustrates the GAs optimization process flow of the tool, the following discussion provides 

detailed information about each of the components listed in the diagram. 
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Tournament Selection

Generation of pool 

population (100)

Evaluate objective function 

value of each solution

Eliminate half of the solution 

with worst objective value

Sort the retained solutions 

(ascending)

Identify random crossover point

Geometric Constraints

Is population count = 

initial count?

Select random solution

Change alignment type

No

Yes

Is termination criteria 

reached?

Select best solution from 

population as the optimum solution

Yes

No

Generate offspring

Add offspring to solution pool

 

 

Figure 5.2: CONSITEPLAN GAs Optimization Process Flowchart 



 
 

79 
 

5.3 CONSITEPLAN – Input  

 

The data required for identifying a good site layout plan includes geometric information 

about the site, the final structure to be completed, the size of various temporary facilities, the 

project manager’s preferences regarding the location of these facilities, areas of the site where 

temporary facilities can’t be laid out and the location of tower crane if it is used in the project. 

The data requirements of the tool are discussed in detail in the following sections. 

5.3.1 Site Parameters 

 

 The primary input to the site utilization planning tool includes the site boundaries within 

which the layout needs to be planned, and the layout of the building to be constructed. The 

information can be obtained in two ways. If a BIM model using REVIT software is being used, 

this tool provides some basic interfaces to extract information from the BIM model file. A 

REVIT application programming interface has been integrated with CONSITEPLAN which can 

extract geography of the property lines (site boundaries) and the building layout from a REVIT 

model. In project cases where a REVIT model is not available, the user can always manually 

provide the appropriate parameters in an Extensible Markup Language (Xml) file 

(Sitedetails.xml), which extends the usability of the tool to a wide range of projects. Xml files 

are a textual data format file which aids to define a set of rules for encoding documents in 

formats that can be read by both humans and machine. As the xml files are simple to read, highly 

generic, and are currently used in programming interfaces, CONSITEPLAN uses xml files for 

data storage. 

Following section provides a sample of how the site boundaries / property lines are stored 

in the Sitedetails.xml file. As shown, the file starts with a main tag ‘SiteDetails’ beneath which 
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the layout parameters (site boundaries, building layout) are stored under individual tags. The 

provided example illustrates the data storage format for site boundaries, where all the site 

boundary vertices are stored in clockwise direction under the sub-tag ‘PropertyPoints’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solutions Evaluation Pseudo Algorithm 
 

<?xml version="1.0" encoding="utf-8"?> 

<SiteDetails xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"> 

  <PropertyPoints> 

    <XYZPoint> 

      <X>-120</X> 

      <Y>-100</Y> 

      <Z>0</Z> 

    </XYZPoint> 

    <XYZPoint> 

      <X>-120</X> 

      <Y>71</Y> 

      <Z>0</Z> 

    </XYZPoint> 

    <XYZPoint> 

      <X>102</X> 

      <Y>71</Y> 

      <Z>0</Z> 

    </XYZPoint> 

    <XYZPoint> 

      <X>102</X> 

      <Y>-100</Y> 

      <Z>0</Z> 

    </XYZPoint> 

  </PropertyPoints> 

</SiteDetails> 
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5.3.2 Layout Parameters 

 

 To enhance the ease of using the tool, CONSITEPLAN is designed with a User Interface 

(UI) screen through which details about the layout parameters can be provided by the user. The 

UI is developed with one primary screen and four secondary screens which are discussed in 

detail in the following section. 

Primary Screen: 

 The primary screen is designed to collect the following information: 

i) Phase of the project: 

In reviewing the published literature, it was found that there is an agreement amongst 

researchers that the construction site layout planning problem may be a dynamic problem, i.e., 

different facilities may be required during different phases of time during the life cycle of the 

project based on the work being executed at the site. While one layout may be sufficient in some 

projects, it is quite possible that various facilities get used during different time spans of a 

project. This tool broadly breaks the project down in two phases, sub-structure construction 

phase and super-structure construction phase. The architecture of the tool is modular and 

extensible to allow for definition of additional user defined phases in the future revision of the 

tool. 

ii) Safety boundary around the permanent structure  

OSHA recommends not to store materials within the free fall zone of the permanent 

structure and to maintain a recommended buffer distance around the structure to improve 

construction safety in site. For example, a buffer distance of 6 feet can be maintained around the 
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permanent structure which eliminates material storage in those spaces and increases site safety. 

This buffer distance need to be decided based on the construction activities going on-site and any 

project specific constraints. For example, the safety buffer may be significantly wider than the 

building’s footprint during the substructure phase on account of the need to construct 

basements/foundations at a significant depth. Hence, CONSITEPLAN has been designed with 

the option to request the user’s preference on the preferred safety boundary around the building 

structure, and not utilizing that space for identifying optimal layouts. 

iii) Preferred grid size 

As discussed in the literature, layout planning on construction can be conceptualized as, 

i) making discrete one to one assignments where facilities are assigned to previously defined 

locations ii) continuous domain (implemented in CONSITEPLAN). The second 

conceptualization theoretically creates infinite layouts and is computationally intensive as it 

increases the potential locations for locating the facilities exponentially. To overcome this 

complexity, CONSITEPLAN divides the site space into smaller grids and uses the available 

grids as discrete options for the layout. For example, consider a case where the size of the site is 

100 x 100 ft and the preferred grid size is provided as 10. In this case, the site space will be 

divided into 100 smaller grids as illustrated in Figure 5.3. The size of the grids (the size of the 

search space) has a direct correlation with the number of possible layout options as well as the 

computational effort required. 

     
  

      
                 (Cheng et.al, 2002) 

 where, 

u = number of facilities 

n = number of locations  
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For example, the 100’ x 100’ site, divided into 10’ x 10’ grids has 100 vertices at which a 

facility could be located. If, for example, we need to lay out 4 facilities on this site, we would 

have a search space of 3,921,225. Thus, the smaller the grid size, the larger the search space and 

the computational effort. For example, with a 1’X 1’ grid size, the size of search space increases 

exponentially to 416,416,712,497,500 (416.41 trillion). 

 

 

 

 

 

 

 

Figure 5.3: Site Space Conceptualization 

iv) Tower crane 

In many building projects where space is confined, tower cranes are an effective 

mechanism of transporting materials and equipment. If a tower crane is used in a project, it may 

be efficient to enable it to access certain temporary facilities (such as rebar fabrication area). This 

requirement / optimization constraint has been implemented in this tool. 
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v) Temporary facilities, Offsite storage 

In addition, the user provides the number of temporary facilities that need to be laid out 

on the site. Construction projects in urban areas tend to have limited working space at the site 

and tend to utilize the available offsite spaces, if any. Hence, if one or more facilities need to be 

located offsite, the tool facilitates the user to provide information regarding the location of the 

site gate, distance between the offsite location and the site, and identify the facilities to be 

located offsite. Figure 5.4 shows a screen capture of the primary screen. 

 

Figure 5.4: CONSITEPLAN – Primary Screen 
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Secondary Screen – Facilities Details: 

 Facilities details screen facilitates the user to provide information about the temporary 

facilities to be laid out for the selected project phase. These details of the facilities include, 

facility description, length (measured in feet), breadth (measured in feet), tower crane access, 

and offsite location of the facility. Figure 5.5 shows the screen shot of the data entry page. 

 

Figure 5.5: CONSITEPLAN – Facilities Detail 

Secondary Screen – Unusable Areas: 

 There may be some areas of the site where the project manager may not want to locate a 

temporary facility. The unusable areas screen facilitates the user to define the unusable areas in 
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the project site. The unusable area can be a utility area (for example, piping, sump), hazardous 

area, or project manager’s preference of not utilizing specific onsite area(s) for laying out the 

temporary facilities. In this screen, the user can provide details about the unusable areas at the 

project including, unusable area description, geographical location, length (measured in feet), 

and breadth (measured in feet). Figure 5.6 shows the image of the utility/unusable areas screen. 

  

 

Figure 5.6: CONSITEPLAN – Unusable Areas 

 

 



 
 

87 
 

Secondary Screen – Cost Interaction: 

 The cost interaction screen is designed to facilitate the user in providing the cost of 

moving the materials among the temporary construction facilities provided in the facilities detail 

screen. Cost details provided in this screen reflects the cost of moving the materials per unit 

distance from one temporary facility to another temporary facility. As the cost of moving a 

material from location1 to location2 will be the same as moving from location2 to location1, the 

cost matrix is designed as a symmetric matrix in which the lower matrix will be disabled for user 

input. Figure 5.7 shows the image of the cost interaction screen. 

 

Figure 5.7: CONSITEPLAN – Cost of Interaction among Facilities 
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Secondary Screen – Preferred Proximity: 

 The preferred proximity screen is designed to facilitate the user in providing his 

preference on how close the facilities should be located based on the project requirements. As 

discussed in chapter 4, the user shall provide the preferred proximity as 81, 37, 9, 3, 1 or 0 based 

on the project preferences/requirements (Osman and Georgy 2005). The preferred proximity 

screen is designed as symmetric matrix. Figure 5.8 shows the image of the preferred proximity 

screen. 

 

Figure 5.8: CONSITEPLAN – Preferred Proximity among Facilities 
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5.4 CONSITEPLAN – Optimization Components 

 

This section discusses about the various optimization components/computational 

functions of the developed tool. 

5.4.1 SplitBoundary 

 

 Once all the input parameters are provided and the user chooses the option to generate an 

optimal site utilization plan, the function ‘SplitBoundary’ is invoked by CONSITEPLAN. This 

function splits the entire site area into smaller grids of the preferred grid size provided by the 

user in the primary screen. Splitting the entire site area into grids of smaller size facilitates the 

idea of conceptualizing the site space as a continuous domain in solving the problem. 

5.4.2 ExtractFreeArea 

 

 The function ‘ExtractFreeArea’ identifies the available grids (grids which are not 

occupied by building and utility areas) from the total grids in the project site. To accomplish this, 

the function first expands the layout out of the building by adding the preferred safety boundary 

provided by the user. Then, the set of grids which are not in the zones of the expanded building 

layout and the utility areas (unusable areas provided by the user) are identified as available grids. 

These grids are used in the subsequent functions in identifying an optimal layout plan for the 

temporary facilities. 

 5.4.3 ComputeDistance 

 

 Once the available grids are identified, the function ‘ComputeDistance’ calculates the 

potential travel distance (improvised distance measurement) between all the available grids 
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based on the algorithm discussed in chapter 4 (4.2.1). The distance measured between all the 

available grids are written in a dataset format to the output file, DistanceMatrix.xml, which will 

then be subsequently accessed in later part of the optimization algorithm. 

5.4.4 InitialPopulation 

 

 This algorithm generates 100 random initial solutions to position the onsite temporary 

construction facilities in the available grids in any of the possible 8 alignment types. The section 

4.2.2 of this thesis document provides a detailed discussion about the algorithm and pseudo code.  

5.4.5 EvaluateSolution 

 

 In optimizing layouts using Genetic Algorithms, the generated layouts need to be 

evaluated for their fitness in meeting the objectives and constraints specified by the user. This 

process is carried out for every solution in every generation. Then, typically, the worst solutions 

(solutions with high objective function value) are eliminated and new solutions are created from 

the best retained solutions using the genetic operators such as Crossover and Mutation. The 

function ‘EvaluateSolution’ assesses each of the solution in the solution pool based on the 

provided user preferences and constraints, and calculates their corresponding objective function 

value. The detailed information about the objective function and evaluation processes is 

presented in section 4.2.3 of this document. 

5.4.6 GenerateSolutions 

 

 As discussed in section 5.4.5, genetic operations are performed on the evaluated 

solutions. These include elimination of worst solutions and generation of new solutions from the 

remaining high quality solutions. The function ‘GenerateSolutions’ identifies and eliminates the 
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worst solutions (solutions with high objective function value) from the set of evaluated solutions 

and then generates new solutions from the retained solutions by performing the crossover and 

mutation operations. The functions ‘EvaluateSolution’ and ‘GenerateSolutions’ are iterated for 

several times (100 times in this research study,  (Li and Love 1998)) after which the best solution 

from the solution pool (solution with minimum objective function value) is identified as the 

optimal layout. The detailed information about the crossover and mutation operations with the 

related pseudo-code can be found in section 4.2.4. 

5.4.7 DrawDimensions 

 

 The function ‘DrawDimensions’ is used to display the identified optimal solution in a 

graphical format. It displays the building layout along with the utility and facilities areas 

supplemented with a tooltip listing their dimensions, position, and alignment type. 

5.5 Summary 

 

CONSITEPLAN is a Microsoft Visual Studio based optimization tool and it comprises of 

several functional modules. The code is developed in a modular fashion to facilitate the changes 

for any future enhancements with minimal effort. It has a primary input screen that facilitates the 

user to enter the phase specific details and four secondary screens to provide detailed layout 

attributes (facilities, utility areas, cost of interaction, preferred proximity). It comprises of seven 

major functional modules (SplitBoundary, ExtractFreeArea, ComputeDistance, InitialPopulation, 

EvaluateSolution, GenerateSolutions, DrawDimensions) which are used in identifying an 

optimal layout and displaying the output in a graphical format. 
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Chapter 6: CONSITEPLAN- Illustrative Example 

6.1 Introduction 

 

Several optimization tools have been created by researchers in an attempt to address the 

site utilization planning problem. As each study has unique attributes, most of the researchers 

have developed their own examples for implementing their algorithm, and no single example is 

applied across several studies. In many cases, especially  (Yeh 1995) and (Li and Love 1998) 

have formulated the problem as a one-to-one quadratic assignment problem where the locations 

of temporary facilities were pre-defined. This problem was further modified and used by   

Mawdesley and Al-Jibouri (2003) added an interactive cost criteria to it to evaluate the tool 

developed in their study. (Sanad et al. 2008) applied this tool in ‘Tanta University Educational 

Hospital’ project in Egypt. The project involved locating 18 temporary construction facilities 

based on the provided proximity preferences in a site of area 28,500 sq.m., and does not impose 

additional layout constraints. 

 (Harmanani et al. 2000) created their own example where the developed tool was used to 

identify an optimal site utilization plan for a construction site of size 30’ x 20’ in which 10 

temporary construction facilities of different size need to be laid out without considering any 

additional layout constraints. Evosite, an excel based model developed by (Hegazy and Elbeltagi 

1999) was implemented on a sample project in which 17 temporary construction facilities (each 

800 sq.ft. average) were to be positioned in an available site space of 25500 sq. ft.. The tool 
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identifies an optimal layout based on the proximity preference, and the example does not account 

for any additional parameters. 

(Elbeltagi and Hegazy 2001; Elbeltagi et al. 2004; Ning et al. 2010a; Ning et al. 2010b; 

Osman et al. 2003) also evaluated the developed optimization tool by implementing against a 

manipulated example. As the tools developed in these studies didn’t provide any geometric data 

about the construction site or provide the option of accounting the usage of tower cranes, 

excluding unusable areas, and utilization of offsite space, these examples were not suitable for 

optimization using CONSITEPLAN. 

Since most of the earlier studies which address the site utilization planning problem have 

not considered several of the practical layout parameters (tower crane accessibility, offsite 

storage, unusable areas), the hypothetical examples formulated to implement those models do not 

provide any relevant information. Since CONSITEPLAN has the sophistication of defining those 

additional parameters to identify an optimal layout, it becomes necessary to define those 

parameters in the input for effective evaluations. 

The new kinesiology building project, currently under construction at Auburn University 

on Heisman drive was also evaluated for implementation of the tool. Unfortunately, project 

execution strategy calls for extensive use of off-site area located at Hemlock Ave. for most 

temporary facilities. The temporary facilities envisioned on the site include parking lot, site 

trailers and a small rest area. This project would not have been sufficient to demonstrate the 

abilities of CONSITEPLAN. Hence, a hypothetical example is used to demonstrate the 

capabilities of the tool.  
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6.2 Illustrative Example 

 

This example involves locating 12 temporary construction facilities (11 onsite, 1 offsite) 

in a site of size 600’ x 400’, in which the permanent structure is of size 200’ x 150’ (Figure 6.1).   

 

Figure 6.1: Case Study Example Layout 

The example utilizes an offsite location that is assumed to be at a distance of 0.25 miles 

(2640’) from the site gate location. The project site is assumed to have two unusable areas which 

cannot be used for positioning the temporary facilities. It include, i) underground utilities (40’ x 

40’) ii) dewatering sump (20’ x 10’). Typically, locating the parking space, site office, and rest 

areas are not integrated with the layout process of temporary facilities, and are determined by the 
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project manager. Hence, their locations are predetermined and are defined as fixed facilities (by 

defining them as unusable areas) in this example. As they are generally located to the site gate 

(to avoid unnecessary site congestion, enabling easy removal of waste from port-a-potties), the 

example assumes them to be close to the site gate. Tower crane is assumed to be used in the 

project (boom length of 150’) and is located within the permanent structure. A preferred safety 

boundary of 10’ is assumed around the building footprint. 

Table 6.1 provides the list of facilities with their corresponding layout attributes, which 

needs to be located for this case study example. Typically, as the reinforcement fabrication yard, 

staging area for tower crane lifting, formwork contractor’s laydown area, and cladding 

contractors laydown are accessed by tower crane, the tower crane accessibility option is enabled 

for those facilities. Concrete batching plant of the example is assumed to be located offsite. 

Table 6.1: Case Study Example Temporary Facilities 

Facility # Facility Description Length Breadth TC access Offsite 

1 Reinforcement Fabrication yard 30 30 Yes No 

2 Reinforcement Contractor's Tool Shed 10 10 No No 

3 Warehouse 40 30 No No 

4 Area for plumbing contractor 60 60 No No 

5 Staging Area for Tower Crane lifting  20 20 Yes No 

6 Formwork Contractor's laydown area 50 50 Yes No 

7 HVAC Contractor's work area 100 60 No No 

8 Cladding Contractor's laydown area 40 40 Yes No 

9 Formwork Contractor's tool trailer 15 10 No No 

10 Cladding Contractor's tool trailer 15 10 No No 

11 Electrical Contractor's Storage Shed 30 20 No No 

12 Concrete Batching Plant 200 200 No Yes 
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Table 6.2 provides the preferred proximity among the listed temporary facilities, in which 

a lower value signifies a least preference and vice versa. 

Table 6.2: Case Study Example Preferred Proximity 

 

 

CONSITEPLAN was run several times for this example with the optimization parameters 

in Table 6.3. Li and Love (1998) have recommended an initial solution pool of 100 with 90 

iterations to get satisfactory results using Genetic Algorithms. Most of the past research studies 

have used a 1% probability of mutation. The same is used for optimization here. 

 

Table 6.3: Case Study Example Optimization Parameters 

Optimization Parameter Case Study Value 

Number of Iterations 90 

Number of Solutions 100 

Percentage of Probability of Mutation 1% 
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The optimal layouts suggested by CONSITEPLAN during the several runs are shown in 

the Figures 6.2, 6.3, 6.4, and 6.5. 

 

Figure 6.2: CONSITEPLAN – Site Utilization Plan 1 

 

Figure 6.3: CONSITEPLAN – Site Utilization Plan 2 

 

Legend: 

1 – Reinforcement Fabrication Yard 

2 – Reinforcement contractor tool shed 

3 – Warehouse 

4 – Area for plumbing contractor 

5 – Staging area for tower crane lifting 

6 – Formwork contractor laydown area 

7 – HVAC contractor work area 

8 – Cladding contractor laydown area 

9 – Formwork contractor tool trailer 

10 – Cladding contractor tool trailer 

11 – Electrical contractor storage shed 

Legend: 

1 – Reinforcement Fabrication Yard 

2 – Reinforcement contractor tool shed 

3 – Warehouse 

4 – Area for plumbing contractor 

5 – Staging area for tower crane lifting 

6 – Formwork contractor laydown area 

7 – HVAC contractor work area 

8 – Cladding contractor laydown area 

9 – Formwork contractor tool trailer 

10 – Cladding contractor tool trailer 

11 – Electrical contractor storage shed 
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Figure 6.4: CONSITEPLAN – Site Utilization Plan 3 

 

 

 

Figure 6.5: CONSITEPLAN – Site Utilization Plan 4 

Legend: 

1 – Reinforcement Fabrication Yard 

2 – Reinforcement contractor tool shed 

3 – Warehouse 

4 – Area for plumbing contractor 

5 – Staging area for tower crane lifting 

6 – Formwork contractor laydown area 

7 – HVAC contractor work area 

8 – Cladding contractor laydown area 

9 – Formwork contractor tool trailer 

10 – Cladding contractor tool trailer 

11 – Electrical contractor storage shed 

Legend: 

1 – Reinforcement Fabrication Yard 

2 – Reinforcement contractor tool shed 

3 – Warehouse 

4 – Area for plumbing contractor 

5 – Staging area for tower crane lifting 

6 – Formwork contractor laydown area 

7 – HVAC contractor work area 

8 – Cladding contractor laydown area 

9 – Formwork contractor tool trailer 

10 – Cladding contractor tool trailer 

11 – Electrical contractor storage shed 
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On analyzing the layouts created by the tool, one can notice that the location of the 

formwork contractor’s trailer is not close to their laydown area. Upon examining the proximity 

preference, it can be seen that the user stated that their proximity is “Especially Important”. One 

of the reasons for the anomaly in layouts 2 and 4 could be the effect of the proximity 

relationships between the tool trailer and rest of the facilities. Thus, it becomes clear that careful 

evaluation of the required proximity is especially important in achieving a useful utilization plan. 

6.3 Analysis of the impact of Optimization Parameters 

 

To analyze the impact of optimization parameters on the objective function value and 

computation time, CONSITEPLAN was run for several iterations for the above example with 

differing optimization parameters. The following section discusses about the results. 

6.3.1 Impact of the Number of Iterations on Objective Function Value  

 

 To study the impact of number of iterations on the objective function value, 

CONSITEPLAN is run for several times with different solution iteration values. Figure 6.6 

illustrates the variation in objective function value based on the number of solution iterations. As 

plotted, as the number of solutions iteration increases, the objective function value decreases 

(improved solution quality). But if the number of iterations is increased there seems to be 

disruption in the objective function value. Literature review suggested that a number of solution 

iterations between 90 to 100 could yield better optimization results. In this study, as a solution 

iteration of 90 yields the best objective function value, suggestion from the literature holds good. 



 
 

100 
 

 

Figure 6.6: Objective function value vs. No. of iterations 

6.3.2 Impact of the Percentage of Probability of Mutation on Objective Function Value  

  

The mutation component of the genetic algorithms is designed to enable the escape of a 

solution from a local optimum. As discussed earlier, the typical value of mutation is 1%, i.e. 1% 

of the solutions are randomly changed. In order to impact of this on the quality of the resulting 

solutions, CONSITEPLAN was run for several times with different percentage of probability of 

mutation values, and Figure 6.7 illustrates the results. It can be seen that up to 5% of mutation 

probability, there is a decrease in objective function value with an increase in percentage of 

probability of mutation. However, with higher percentage of probability of mutation (i.e., greater 

than 5%), the objective function value does not seem to have a continuous trend, as illustrated in 

Figure 6.7. 
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Figure 6.7: Objective function value vs. Percentage of probability of mutation 

6.3.3 Impact of the selected Grid Size on the Objective Function Value  

 

It was hypothesized that smaller size of grids will improve the quality of the solution 

while impacting the computation time negatively. In order to evaluate this, CONSITEPLAN was 

run for several times with different grid size values, and the results are plotted in Figure 6.8. As 

it can be seen in Figure 6.8, an increase in grid size value results increases the objective function 

value (less optimal solutions). This is because of the fact that as the grid size increases, the 

number of potential available locations decreases. But, a very low grid size value (as compared 

to the site space) seems to have disruptive impact in the objective function value, as with the grid 

size 10.  
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Figure 6.8: Objective function value vs. Grid size 

6.3.4 Number of Iterations, Grid Size vs Computation Time 

 

Figures 6.9 and 6.10 depict the impact of number of solution iterations and grid size on 

the computation time respectively. The computation time increases with an increase in number of 

solution iterations and grid size. The optimization was carried out using a Windows 7 PC 

powered by an Intel Core2Quad Q9400 @ 2.66 GHz with 4GB memory. 
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Figure 6.9: Number of solution iterations vs. Computation time 

 

Figure 6.10: Grid size vs. Computation time  
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6.4 Summary 

 

The illustrative examples presented in published literature don’t specify many of the 

parameters used in CONSITEPLAN. The dimensions of site, permanent structure are notably 

absent in all the studies reviewed in literature. None of the studies provide the option of 

considering offsite areas, tower crane accessibility for facilities or unusable areas on the site. 

Hence, the algorithm couldn’t have realistically been implemented on these examples. Hence, 

CONSITEPLAN was applied to a hypothetical project. The tool was also run for several 

iterations for the above example with differing optimization parameters to analyze the impact of 

optimization parameters on the objective function value and computation time. The results 

suggest that the number of solution iterations of 90, with 1% mutation probability, grid size as 

20, and 100 initial solutions yield better solutions. Also, the analysis results generically suggest 

the following. 

 Optimality of solutions increase with increase in number of iterations 

 Optimality of solutions decrease with increase in grid size 

 Up to 5% of mutation probability, optimality of the solutions increases with 

increase in percentage of mutation probability. However, this trend is not 

followed for higher mutation probability values (i.e., greater than 5%). 

 Computation time increases with increase in number of iterations  

 Computation time decreases with increase in the grid size 
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Chapter 7: Summary and Scope for Future Research 

7.1 Introduction 

 

Construction Site Utilization Planning, which primarily deals with accommodating the 

site-level temporary construction facilities that are used to support the construction process, is a 

vital aspect of construction operation planning which greatly contributes in achieving the project 

objectives. Typical temporary facilities in a construction project include material laydown areas, 

fabrication yards, concrete batching plants, equipment storage areas, and temporary site offices 

used by various contractors. A poor planning of laying out the temporary facilities could 

potentially lead to work delays, temporary material storage only to move it subsequently,  

multiple handling of materials resulting in reduced labor productivity, schedule delays, loss of 

time and money, and unsafe working conditions. For the construction process to flow smoothly 

and efficiently, utilization of site space need to be determined with great care. 

Many construction projects carried out in urban areas have very limited working space at 

the site and don’t have sufficient space for positioning all the temporary facilities required for 

construction. Therefore, planning is essentially aimed at effectively utilizing the available 

smaller spaces within the site boundaries to execute the construction activities efficiently. In 

construction projects on large sites, the project managers might tend to not focus on site 

utilization planning at the beginning of construction phase due to abundant availability of space, 

and the layout of temporary facilities is done on an ad-hoc basis with no concern for optimality 

or layout efficiency. This results in increased costs of transportation of materials and inefficient 
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labor movement. For example, in extreme cases, decision on where to store the materials might 

only be made after the delivery of the materials to the project site. Evidently, the careful planning 

of the layout of temporary facilities has a bearing on the success of construction projects whether 

the site is confined with limited space, or it is a very large site where travel between various 

facilities could be time consuming. 

 The layout planning problem in construction can be conceptualized as a multi-objective 

problem where an optimal layout to position the temporary facilities need to be identified, which 

incorporates the project requirements and constraints while simultaneously minimizing the cost 

of resource flow and improving construction safety. The layout of temporary facilities is unique 

in every construction project due to the changing process requirements on account of different 

site configurations and project specific conditions. Moreover, the layout planning problem in 

construction also has a temporal aspect to it, in which a particular layout may need to change 

over the course of the project to meet the unique requirements of the construction process. In 

addition, several key, unique considerations such as crane access to certain facilities also need to 

be accounted for in solving this problem. This further compounds the complexity of the problem. 

In attempt to address this complex, multi-objective problem, a significant amount of 

research effort has been directed world-wide in the last two decades at developing algorithms for 

identifying optimal construction site layouts. Due to the combinatorial and computationally 

intensive nature of the problem, researchers have increasingly used meta-heuristics solutions 

inspired by evolution and other natural phenomena. These include population based strategies 

such as Genetic Algorithms (GAs), Ant Colony Optimization, Particle Swarm Optimization, and 

trajectory based strategies such as Simulated Annealing, Tabu lists etc. GAs is the most 

commonly used optimization strategy in recent research in this area. GAs is favored by most 
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researchers because of its capacity to move randomly in the fitness landscape from one feasible 

solution to another without getting trapped into local optima. 

Layout planning in construction can be conceptualized as, i) making discrete one to one 

assignments where facilities are assigned to previously defined locations ii) assigning facilities to 

a continuous space. The first definition, where n facilities are to be located in n predefined 

locations, is limited in scope, and it can be effectively used only in situations where space is 

limited and the number of available locations is predetermined, which may not be applicable in 

many projects. 

 

CONSITEPLAN 

While many tools and algorithms can be found in the review literature, the practical 

applicability of these algorithms is fairly limited due to quadratic assignment (predetermining 

locations and then simply assigning facilities to those locations), distance measurement (using 

Euclidean or Manhattan distance measurement formulas which can have severe limitations), lack 

of consideration of the availability of offsite spaces for locating temporary facilities, lack of a 

mechanism to implement a variable transportation constraint for certain facilities (location, 

radius of a crane, access to certain temporary facilities ), lack of a mechanism to explicitly ensure 

that facilities are not located at certain locations within the site, and lack of flexibility in 

specifying a certain size and shape (rectangular/square) for the proposed temporary facility. 

In this research, CONSITEPLAN, a windows based tool was developed to overcome 

these limitations of the current layout planning tools. The main objective behind developing 

CONSITEPLAN was to create a tool which addresses the practical requirements of layout 
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planning without sacrificing the mathematical robustness of the underlying optimization 

algorithm. The main features of the tool are as follows: 

1. Space conceptualization 

Unlike requiring predefined locations for temporary facilities, CONSITEPLAN 

conceptualizes the site as continuous domain, which it divides into smaller grids and uses the 

available grids as discrete options for the layout. Thus, the entire available area is considered 

for layout purposes. The tool gives the user flexibility in choosing the size of the grid that 

they would like to use for layout purposes. Thus, it is flexible enough to handle very small or 

very large construction sites. 

2. Robust Optimization Engine 

CONSITEPLAN uses genetic algorithms as an optimization engine to search the fitness 

landscape for a good layout based on the project requirements, site geometry, permanent 

facility location and dimensions, and as well as other constraints that the user might want to 

impose. Genetic Algorithms allow for a very transparent implementation of the constraints to 

locating the temporary facilities. 

3. Improved Efficiency of the Genetic Optimization Algorithm 

Typically, the optimization algorithms found in literature use the entire site space 

(including the final structure) to locate temporary facilities and impose a penalty on any 

solution that uses the occupied areas for locating temporary facilities. CONSITEPLAN 

improves the efficiency of the underlying genetic algorithm by initially creating a list of 

locations that are not available for laying out temporary facilities and then ensuring that the 

random process of solution generation doesn’t consider these locations as options. This could 
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potentially reduce number of infeasible solutions in a great manner, which would have to be 

eliminated in the optimization process. 

4. Distance Measurement 

The distance measurement algorithms conventionally used in research literature, i.e. 

Euclidean (diagonal distance between the facilities using Pythagorean formula) and 

Manhattan (sum of absolute differences of the coordinates of the points under consideration), 

have significant limitations on account of the obstruction placed by the excavated area or the 

superstructure, which may realistically not allow for such movement (direct or rectilinear). 

As the objective function in identifying an optimal construction site layout involves 

minimizing the distance travelled, the method used to measure distance between facilities 

plays a critical role in giving validity to the results.  To overcome these limitations, an 

improvised distance measurement algorithm is developed in this study. This algorithm 

accounts for the obstruction caused by the permanent facility or the excavated areas for 

foundation and measures the likely travel distance among the construction facilities. 

5. Modeling offsite temporary facilities 

Another unique feature of CONSITEPLAN is that it allows the user to specify the use of 

temporary facilities at offsite locations. The distance between these offsite facilities and the 

construction site (provided by the user) and the facility’s relationship with other temporary 

facilities is used as a factor in the optimization process. 

6. Modeling Unusable Areas 

On construction sites, some areas could potentially be unusable on account of 

underground utility work, storm drainage connections etc. The size, geographic, and 

temporal location of these areas may change from project to project. Ideally, the project 
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manager may not want to locate a temporary facility on such a location because it may 

require removing and reinstalling that temporary facility at a later date. CONSITEPLAN 

allows for the definition and location of unusable areas at the site. A constraint is added to 

the optimization algorithm to ensure that the temporary facilities are not located in these 

unusable areas.  

7. Modeling Crane Access 

At a construction site, a tower crane may be used or a large crane may be permanently 

stationed to perform the erection / lifting activities. The project manager may want to ensure 

that certain temporary facilities, e.g. reinforcement steel fabrication area are accessible by the 

crane to eliminate the inefficiencies caused by double handling of materials. 

CONSITEPLAN allows the user to define the crane location, crane radius and the facilities 

that will be accessed by the crane. These factors form an additional constraint to the 

optimization process. 

8. Safety Considerations  

Safety is one of the important factors in construction projects and is widely accepted that 

considering safety factors in developing a site utilization plan has a notable impact in 

improving the site safety. For example, OSHA recommends not to store any materials within 

the free fall zone of the permanent structure, and to maintain recommended buffer distance 

around the permanent structure, which is a safety factor that could be considered while 

creating a site utilization plan. CONSITEPLAN has been designed with the option to request 

the user’s preference on the preferred safety boundary around the building structure, and not 

utilizing that space for identifying optimal layouts. 
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9. Dynamic Planning 

Construction site utilization planning problem can be defined as a dynamic problem, 

where different facilities may be required during different phases of time during the life cycle 

of the project. Hence, it is quite possible that different site utilization plans are being used 

during different time spans of a project. This tool broadly breaks the project down in two 

phases, sub-structure construction phase and super-structure construction phase, and provides 

the flexibility of generating multiple site utilization plans based on the project requirements. 

10. Ability to seamlessly interact with REVIT BIM files 

CONSITEPLAN provides initial interfaces to extract essential geometric data about the 

site and permanent structure using the application programming interface (API) provided by 

Autodesk REVIT® products. This lays a foundation for exciting future developments in the 

development of site utilization plans. 

7.2 Conclusion 

 

The site utilization planning problem has been subject to a significant body of work by 

well-respected researchers over the last two decades. This study addresses the layout planning 

problem in construction in a very novel and sophisticated manner by developing the tool 

‘CONSITEPLAN’. CONSITEPLAN has been developed in a modular fashion on a purpose to 

allow for improvements and additions in the future. This research lays a foundation for future 

development of a site utilization planning tool which could be useful to the construction 

community. The efficiencies envisaged through the use of this tool could help the owner and the 

contractor to save money, while simultaneously improving safety at the constructions site. There 

is ample scope for further improving this tool. This tool can be improved in the following ways.  
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Currently, the tool limits the project phase to two broader phases (sub-structure and 

super-structure). Future research shall target to allow for definition of additional user defined 

phases. In construction projects, it is quite possible to use the additional covered areas (that are 

part of the permanent structure) for short spells for temporary fabrication and material storage, 

which tend to become available for contractors with the progress of construction. This aspect has 

not been addressed in the current research and can be extended for future research.  

In construction projects that use tower cranes, the lifting capacity of the tower cranes can 

vary based on the distance accessed. Currently, this attribute is not included in the tool, and the 

tool assumes a constant lifting capacity for any distance accessed within the reachable radius of 

the crane. The tool can be enhanced to facilitate this attribute which enables the option of 

providing varying reachable distance based on the weight of the accessed temporary facility. The 

tool can also be provided with an interactive layout plan, which allows the user to modify the 

layout provided by the tool as per his/her preference, based on which the proximity rating among 

the facilities can be updated and the optimality of the modified layout can be evaluated. The tool 

has some basic capabilities to interact with the Autodesk REVIT®. This capability can be 

enhanced even further in the future as more robust programming APIs become available. Ideally, 

CONSITEPLAN could become independent of BIM products used i.e., it could allow for 

seamless interaction with TEKLA, VICO BIM models as well. The seamless cost, estimating, 

scheduling, and geometric data integration into a centralized BIM model could provide even 

more opportunities of making CONSITEPLAN user friendly while staying mathematically 

robust. 
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