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Abstract

In this work, the author develops an observer and non-collocated controller for

a robot-trailer system in which only the position of the trailer is measured. A lin-

earized state-space model of the system is derived using kinematic equations that have

previously proven sufficient for state feedback control. Optimal observer gains are cal-

culated using the known measurement noise variance. Simulation results suggest that

the non-collocated position measurements are sufficient to accurately estimate the full

system states while successfully regulating the trailer to the desired path. Experimen-

tal results show that the estimator is capable of tracking the system states and that

the robot and trailer system can be made to follow a typical geophysical surveying

path.
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Chapter 1

Introduction

1.1 Geophysical Surveying

In recent years, the application of geophysical surveying has grown significantly.

For example, mapping of unexploded ordnance (UXO) could require surveying up

to 10 million acres in the United States alone [1]. These surveys involve a variety

of sensing systems that are carried or towed [2] by highly-trained personnel. These

man-towed systems have their drawbacks: they are relatively slow, expensive for the

amount of ground covered, and especially in the case of UXO surveying can expose

the operators to significant danger. Remotely-driven ground vehicles [3] protect the

operator from the danger of unexploded ordnance, and airborne surveying systems [4]

can survey an area much faster than ground-based systems. But these methods

are not without their limitations. Airborne surveys are expensive, impossible for

smaller survey areas, and not suitable for some sensor technologies. Remotely-driven

vehicles, while increasing safety, still require a human operator to drive them. In an

effort to reduce the cost, necessary personnel, and to more precisely follow survey

paths, autonomous geophysical surveying systems have been designed that range in

complexity from single vehicles following a pre-defined path [5] to swarm systems [6]

that can not only detect but also retrieve objects. Autonomous systems represent a

tremendous step forward for geophysical surveying applications, but their use presents

an entirely new set of challenges.
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Figure 1.1: Geophysical surveying system towed by a human operator

1.2 Autonomous Path-Following

Geophysical surveying often requires the complete surveying of a specific area or

collection of interesting regions. Coverage paths [7] are often used to cover an area

and much research has been performed on their generation and efficiency. Real-time

generation of trajectories between individiual points [8] allows for the connection of

separate survey areas and waypoints but requires more computation effort during

operation. Once a survey path has been generated, the autonomous system must be

controlled to track the path. Leader-follower systems have been proven effective at

following paths [9] but require a second actuated vehicle, considerably increasing the

overall system cost and control complexity. Regulating lateral error from a path [10]

both simplifies the overall control complexity and provides an effective means of

forcing a robot to follow a pre-defined path.
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1.3 Autonomous Sensing Strategies

Regulating an autonomous robot to a path requires accurate measurements of

the robot states, including but not limited to position, orientation, speed, and turn

rate. Global-positioning system (GPS) receivers have relatively high position mea-

surement errors [11], but differential measurements between two or more sensor can

significantly increase the accuracy of a path-following system [12]. GPS receivers also

output velocity measurements that can be used to measure vehicle velocity to high

accuracy [13] and have even been proven effective for measuring vehicle side-slip [14]

in applications where significant slip can occur. Blending GPS receiver measurements

with inertial navigation systems (INS) results in a highly accurate measurement of

vehicle movement and position due to the two systems having uncorrelated mea-

surement errors [11]. Blended GPS/INS systems such as the NovAtel SPANTM are

commercially available and not only improve position accuracy, but also allow for

faster GPS signal reacquisition [15].

For geophysical surveying applications, the state of the towed sensor trailer is

often more important than that of the robot. Hitch angle sensors can be used to

directly measure [16] trailer heading when combined with robot heading information.

However, noisy measurements of the hitch angle can decrease the accuracy of trailer

heading calculations [16, 17]. Alternatively, the hitch angle can be estimated based

on the combination of one or more other robot and trailer state measurements [18].

State estimation can not only accurately track the hitch angle, but can also result in

a “smoother” reported hitch angle as compared with direct measurements [19]. This

smoothed state estimate could be considered preferable for purposes of control, as it

would result in a less erratic control effort compared with a noisy state measurement.

Alternatively, a blended GPS/INS system could be directly installed on the sensor

trailer to directly measure position and heading [20], bypassing many of the problems

associated with attempting to measure hitch angle and infer trailer orientation. But
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the use of blended GPS/INS systems can significantly increase instrumentation costs

compared with the use of a simpler GPS receiver.

1.4 A New Approach

A review of the available literature makes it apparent that the problem of ac-

curately controlling and measuring a towed trailer is complex, but not impossible.

The direct instrumentation of the towed trailer can provide a controller with highly-

accurate knowledge of the trailer states. However, the cost and complexity involved

in instrumenting both the robot and trailer can be prohibitive for some applica-

tions. In this work, the author explores the possibility of using a single GPS sensor

mounted on the trailer to not only measure trailer lateral error from a path, but

also estimate trailer heading and robot heading for the purposes of controlling the

combined robot-trailer system. Nonlinear kinematic model equations are derived that

describe the robot-trailer system and these equations are linearized around the path

trajectory in order to achieve effective path regulation [17]. Due to the numerous

nonlinearities present in kinematic trailer models [21], unmodeled dynamic effects

may negatively affect estimator and controller performance. However, the linearized

kinematic model has proven sufficient for state feedback control of the robot-trailer

system being studied [5] and thus the author has reason to believe that it may also

work for non-collocated state estimation and control of the same system. No direct

measurements will be made of the robot or trailer yaw rates or lateral accelerations,

unlike in [18]. The author believes that this is the first time that a single non-

collocated position sensor has been used to estimate robot and trailer system states

as well as control a robot-trailer system to a survey path. This work has also been

submitted for peer review to the 2012 IEEE International Conference on Industrial

Informatics (INDIN-2012, Beijing, China) [22].
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Chapter 2

System Model

Previous work developed an autonomous vehicle to tow geophysical sensor arrays

for customers using a linear controller with full state feedback [5, 20]. The author

uses this system as a research platform to explore the possibility of controlling the

vehicle with a reduced sensor package while still maintaining accurate knowledge

of the towed sensor position, which is of the utmost importance to the geophysical

surveying customer. In this thesis, the robot steers by differential drive of the left

and right wheels. The robot speed is constant.

2.1 System Model

Before an estimator and controller can be designed, a mathematical model of the

robot-trailer system must be developed. This model will ignore dynamic effects such

as momentum and slip, as previous work [5] has shown a purely kinematic model can

be sufficient for system control at low speeds.

2.1.1 Parameter Definitions

The parameters used to describe the robot-trailer system need to be defined

before any equations are presented. Table 2.1 shows the system parameters and their

definitions, with values where applicable. In the current configuration of the robot-

trailer system being studied, the robot speed is kept constant. Trailer speed matches

robot speed on straight lines, but is slightly less than robot speed when turning.
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Table 2.1: Robot and trailer system parameters

Variable Description Value
Lt Length of trailer tongue 3.495 m
Lr Length of robot hitch 0.0 m
Vt Speed of trailer
Vr Speed of robot 1.3 m/s
ψte Heading error of trailer
ψre Heading error of robot
yte Lateral position error of trailer
ψtact Actual heading of trailer
ψract Actual heading of robot
ytact Lateral position of trailer
ψtdes Desired heading of trailer
ψrdes Desired heading of robot
ytdes Desired lateral position of trailer
ωr Yaw rate of robot and system input

2.1.2 Kinematic Model

Figure 2.1 shows a kinematic diagram of the robot-trailer system being studied.

From this diagram, a set of continuous-time nonlinear dynamic equations can be

derived for the trailer lateral position, trailer heading, and robot heading

ẏt = Vt sin(ψt) (2.1)

ψ̇t = −Vr
Lt

sin(ψt − ψr) −
Lr

Lt

ωr cos(ψt − ψr) (2.2)

ψ̇r = ωr. (2.3)

Since the error states have been proven to be equal to the actual states, these equations

also define the error states. From these equations one can see the non-collocated

aspect of the system: the position and heading of the trailer is what is ultimately

being controlled, but the only input to the system is the yaw rate of the robot, ωr.
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Figure 2.1: Kinematic model of the robot-trailer system

2.1.3 Error Model

To simplify the control algorithm, an error model is created that defines the

system states as being the difference between the actual value and a desired value,

defined as:

yte = ytdes − ytact (2.4)

ψte = ψrdes − ψtact (2.5)

ψre = ψrdes − ψract (2.6)

With this model, regulating the error states to zero will force the vehicle to follow

the desired path. This model avoids the need for reference scaling techniques.

To further simplify the control of the system, the survey paths are transformed

using a nonlinear transform [5] to appear as a straight line at 0 meters Easting, moving

in the north direction. If the heading in the north direction is defined as 0 radians,
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the desired values become

ytdes = 0 (2.7)

ψtdes = 0 (2.8)

ψrdes = 0 (2.9)

and therefore

yte = −ytact (2.10)

ψte = −ψtact (2.11)

ψre = −ψract . (2.12)

2.1.4 Linearization and Matrix Definitions

Though techniques exist for designing stable control laws and estimators for

nonlinear systems, it is far easier to ensure stability for a linear system of the form

ẋ = Ax(t) +Bu(t) (2.13)

y(t) = Cx(t) +Du(t) (2.14)

where x(t) is the state vector and y(t) is the system output [23,24]. To linearize the

nonlinear system model, the Jacobian of the nonlinear equations is calculated and

evaluated at the equilibrium point

xe =


0 m

0 rad

0 rad

 , (2.15)
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which corresponds to the state of the robot-trailer system when it is travelling along

the transformed survey path. This linearization produces the state space matrices

A =


0 Vt 0

0 −Vr
Lt

Vr
Lt

0 0 0

 B =


0

−Lr

Lt

1

 C =

[
1 0 0

]
D =

[
0

]
. (2.16)

The C matrix is determined by the characteristics of the system outputs. In the

method being developed in this thesis, only the position of the trailer is being mea-

sured by a single global position system (GPS) receiver. Thus the only measured

state is x1, or the lateral error of the trailer. The input to the system, ωr, does not

directly affect the output so the D matrix is zero.
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Chapter 3

Estimator Design

Since only trailer lateral error is being measured, variables x2 and x3 must be

estimated in real time for full state feedback control. The linearized system meets

the observability criterion and thus a linear state space estimator can be designed to

estimate the unknown states. The estimator has the form

˙̂x = Ax̂(t) +Bu(t) + L(y(t) − Cx̂(t)) (3.1)

ŷ(t) = Cx̂(t) (3.2)

where x̂(t) and ŷ(t) are estimates of the states and output, respectively, and matrix

L being a set of gains on the output error y(t) − Cx̂(t) [23, 24]. If the eigenvalues of

the matrix A−LC are in the left half of the s-plane, the estimator will be stable and

the estimates will converge to the true states in exponential time.

Measurement Characteristics

To improve estimator performance, the noise characteristics of the output mea-

surement must be considered. In the system being studied, the position of the trailer is

being measured by a single GPS receiver that is receiving real-time kinematic (RTK)

corrections from a nearby GPS base station. These corrections allow the trailer GPS

receiver to measure its position with an accuracy of 1σ = 0.02 meters. The variance

of this measurement, σ2 = 0.0004, can be used to calculate the estimator gains.
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Estimator Gains

Though many methods exist for calculating estimator gains, the steady-state

Kalman method is chosen to compensate for the measurement noise of characteristic

R = σ2 = 0.0004. The calculation of steady-state Kalman gains requires knowledge of

any process disturbance Q in order to determine the relative confidence in the system

model and output measurements. However, an accurate value of Q is unknown for

the system being studied, and thus Q is used as a tuning parameter to adjust the

estimator gains to achieve the best performance.

Using the kalman() method in MATLAB R©, steady-state Kalman gains L were

calculated for a Q of 0.001, resulting in the estimator gain matrix

L =


1.50628

0.87264

1.58114

 (3.3)

and estimator eigenvalues of

s =


−0.469 + 0.770

−0.469 − 0.770

−0.941

 . (3.4)

Since these poles all lie in the left-half s-plane, the linear estimator is considered

stable.

3.1 Simulation of the Estimator

To confirm that the steady-state Kalman estimator is capable of accurately track-

ing the state x(t), the estimator is simulated with both the linear and the nonlinear

plant models. A white Gaussian noise with σ2 = 0.0004 is added to the output of the
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plants to simulate the noisy measurements, and a white Gaussian noise with σ2 = 0.01

is added to the plant inputs to simulate the process disturbance. The input to the

system is a step of amplitude 2 and the plant has initial conditions

x0 =


0.2147 m

−0.4249 rad

0.3906 rad

 . (3.5)

Since the estimator will have access to GPS measurements when the system begins

operation, the estimator has initial states

x̂0 =


x0(1)

0

0

 . (3.6)

3.1.1 Estimator with Linear Plant

Linear estimator theory states that, if the poles of the estimator A − LC are

stable, the estimator should be able to accurately track the linear plant state in finite

time. To confirm the theory, the estimator is simulated with the open loop continuous-

time linearized system plant. Figure 3.1 shows that the estimator is indeed able to

track the state of the linear plant. Since the model equations of the estimator and the

plant are identical and the poles of A− LC are stable, this result is to be expected.

Recall that the initial conditions of the estimator included knowledge of yt but no

knowledge of ψt or ψr. The plot shows that the initially-correct estimate of yt is pulled

away from the true value by the incorrect estimates of ψt and ψr. This behavior is

due to model equations, in which yt is dependent upon ψt, which is in turn affected

by itself and ψr. Errors in these estimates create an error in the yt estimate that

takes approximately six seconds for the estimator to eliminate.
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Figure 3.1: Estimation errors when tracking a linear plant model

3.1.2 Estimator with Nonlinear Plant

Simulating the open loop nonlinear system yields more insight into estimator

performance. In this simulation, the estimator does not have a completely accurate

model of the plant dynamics and is instead using a linearized version of the plant. As

Figure 3.2 shows, the ability of the estimator to track the nonlinear plant is nearly

identical to the performance in the linear case.

3.2 Conclusions

These simulation results seem to indicate that a linearized estimator should be

sufficient to estimate the full system states with an acceptable degree of accuracy,

thus making a more advanced estimator implementation such as an Extended Kalman

Filter (EKF) or particle filter unnecessary.

13



0 1 2 3 4 5 6
−0.5

0

0.5

1

Time (s)

E
s
ti
m

a
te

 E
rr

o
r 

(S
I 

u
n

it
s
)

 

 

trailer lateral error (m)

trailer heading error (rad)

robot heading error (rad)

Figure 3.2: Estimation errors when tracking a nonlinear plant model
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Chapter 4

Controller Design

Now that the designed estimator has been shown to be capable of tracking the

system states, a controller must be designed that regulates the robot-trailer system to

the desired survey path. This controller must not only be stable, but it must also be

capable of regulating the system to the path in an acceptable time period for practical

geophysical surveying.

4.1 Selection of Control Method

Previous works have used pole placement [5] to design a stable state feedback

controller. This method is perfectly acceptable for designing a stable linear controller,

but it does not allow for intuitive tuning of control effort for individual error variables.

To satisfy this design preference, a linear quadratic regulator (LQR) controller is

designed in order to precisely control the relative importance of regulating estimation

errors in trailer lateral error and the two headings errors.

4.1.1 Feedback Gains

A LQR controller uses a state feedback input of the type u = −Kx, where K is

calculated to minimize the cost function

J(u) =

∫ ∞
0

xTQx + uTRu dt. (4.1)

The matrices Qx and Ru are used to assign weights to the system variables and

to the input, respectively [24]. A higher weight value for a state variable results in
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a larger control effort directed toward that variable, and a higher weight value for

the input represents a penalty for large system inputs. In the system being studied,

the regulation of the measured trailer position error from the path is of the utmost

importance and the highest weight is therefore assigned to that variable. The resulting

weighting matrices are

Qx =


1000 0 0

0 1 0

0 0 1

 Ru =

[
1

]
. (4.2)

The low weight on the input, ωr, may result in an excessive turn rate being com-

manded to the robot. Using these weighting matrices results in closed loop controller

eigenvalues

s1 = −2.559 (4.3)

s2 = −1.279 + 2.083 (4.4)

s3 = −1.279 − 2.083. (4.5)

Simulation should yield some insight into the practicality of the system performance

resulting from these weighting matrix choices.

4.2 Simulation of the Controller

Before combining the controller with the estimator, the controller must first be

shown to be capable of regulating the system to the desired path. A simulation is

performed that uses the same initial conditions as the previous simulations.
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Figure 4.1: Nonlinear plant response to the LQR controller

4.2.1 Controller with Nonlinear Plant

LQR control theory says that the calculated gains K for the state feedback

equations u = −Kx should yield a stable system response for a linear plant. No

guarantee can be made for the original nonlinear plant, but Figure 4.1 shows that the

system response is stable for thsi set of initial conditions..

4.2.2 Controller and Estimator with Linear Plant

The separation principle [25] states that a stable estimator and stable controller

can be designed separately and when combined in the form

ˆ̇x = [A− LC −BK]x̂+ Ly (4.6)

ŷ = Cx̂ (4.7)
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Figure 4.2: Nonlinear plant response to the combined estimator and controller

will yield a stable feedback controller that is able to accurately track the system state

in exponential time. As the estimator and controller designs have already been shown

to be stable for the linear case, the separation principle makes a combined simulation

with the linear system plant unnecessary.

4.2.3 Controller and Estimator with Nonlinear Plant

However, the separation principle only applies to the linear plant case and makes

no statements regarding stability when a nonlinear plant is considered. Figure 4.2

shows the nonlinear system response to the combined estimator and controller. Notice

that the regulation to the path takes longer than in full state feedback case of Fig-

ure 4.1. This extended regulation period is due to initial errors in the state estimates

that thwart the efforts of the controller. A plot of the state estimate errors, defined as

x− x̂, is shown in Figure 4.3. The time needed for the estimator to accurately track

the system states is almost identical to that of the open-loop case because the core
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Figure 4.3: State estimation errors

dynamics remain unchanged: measurements are made of the lateral error, yt, and

these measurements are used to calculate the three system states. But when the con-

troller tries to regulate the system using state feedback, it is initially using incorrect

estimates and thus has some difficulty. However, the estimates are not so incorrect as

to make progress toward regulation impossible and the system performance improves

as the estimates improve, so regulation can and does occur.

4.3 Conclusions

A stable LQR controller has been designed that is capable of regulating the robot-

trailer system to the desired path in simulation, even when using initially incorrect

state estimates. These results are encouraging, but experiments must be performed to

confirm that the actual robot-trailer system will perform similarly to the simulations.

Neither plant model took into account dynamic effects such as slip or momentum,
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and the vehicle may not be able to perform the commanded yaw rates, ωr, that the

controller produces.
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Chapter 5

Experimental Results

5.1 The AUXOS System

The Autonomous UneXploded Ordnance Surveyor (AUXOS) system is built

upon a Segway Robotics Mobility Platform (RMP) 400. This four-wheeled, differential-

drive platform is rugged enough to traverse the types of terrain typically involved in

unexploded ordnance (UXO) surveys and has ample payload capacity for electron-

ics [26]. Communication with the robot is achieved via a radio link to the operator

control unit (OCU). A NovAtel SPANTM Global Navigation Satellite System/Inertial

Navigation System (GNSS/INS), which uses real-time kinematic (RTK) position cor-

rections from a surveyed global-positioning system (GPS) base station, provides ac-

curate knowledge of the vehicle position and orientation in the global reference frame.

A rotary encoder attached to a trailer hitch extending up from the center of the ve-

hicle provides knowledge of the angle of a towed trailer with respect to the heading

of the robot. If the length of the trailer tongue is known, the position and orien-

tation of the towed sensor array can then be calculated. As previously mentioned,

the encoder is not used in this thesis (except for validation of estimates). The trailer

frame is constructed of fiberglass to minimize geophysical sensor interference and a

single Novatel GPS antenna is mounted in the center of the trailer. This antenna is

used to measure the trailer lateral error from the desired path and is the only sensor

used by the algorithm developed in this thesis. The trailer lateral error is found by

calculating the perpendicular distance from the current trailer position to the current

survey path line segment.
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Figure 5.1: Autonomous geophysical surveying system described in this thesis

Figure 5.1 shows the AUXOS system. The AUXOS system is an ideal experi-

mental platform for this research, as its onboard sensors allow for some measure of

“truth” when analyzing the controller developed in this work. Also, the onboard sen-

sors allow for a direct comparison between the single-GPS method developed in this

work and the combination of SPANTM and rotary encoder that was previously used to

determine trailer position. This comparison will be useful for analysing performance

of the developed controller.

5.2 Experimental Setup

Experiments were performed at the field immediately adjacent to the Auburn

University Solar House. The AUXOS system was used as the experimental platform,

and an approximately 100-by-30 meter survey grid was created to test the ability of

the controller to regulate the robot-trailer system to the desired survey path.
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Figure 5.2: Open loop estimated and measured trailer lateral error

5.3 Open Loop Estimator

Before implementing the full controller and estimator on the experimental plat-

form,the estimator was tested on the full state feedback system developed in [5]. The

system autonomously followed a survey path using robot position, robot heading,

and hitch angle measurements, while the estimator attempted to estimate the sys-

tem state using only trailer position measurements. Figure 5.2 shows a plot of the

estimated and measured trailer lateral error. The estimator starts with perfect initial

knowledge of the lateral error, but the estimate is pulled incorrect due to the errors

in the initial trailer and robot heading estimates. As these estimates improve, the

lateral error estimate quickly tracks the actual values to a high degree of accuracy.

But accurately estimating the trailer lateral error is relatively simple, as this state

is the one being directly measured. Examining the estimated trailer heading shows

the ability of the estimator to track states that are not directly measured. Figure 5.3
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Figure 5.3: Open loop estimated and measured trailer heading error

shows the ability of the estimator to quickly track trailer heading error. The general

curve of the trailer heading error is tracked well by the estimator, and the filtering

effect of the estimation provides a much “cleaner” knowledge of the trailer heading

error. The open loop results are encouraging, and suggest that the linearized model

does seem to prove sufficiently accurate to allow for full state estimation.

5.4 Controller and Estimator

5.4.1 Controller Tuning via Monte Carlo Simulation

Initial experiments using the combined controller and estimator showed that the

controller oscillated in steady-state, indicating marginal system stability. In an effort

to improve the LQR controller design, a Monte Carlo simulation was developed and

performed. This simulation generated 1,000 random Qx weighting matrices and sub-

sequent LQR controller gains, then simulated the combined controller and estimator
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for a random set of initial conditions. Steady-state statistics of the trailer lateral error

variable such as standard deviation, mean, and maximum were then plotted. Promis-

ing configurations were then simulated for a range of random initial conditions to test

their viability. An LQR design was found that seemed to show improved steady-state

stability over the original design. This new design had weighting matrices

Qx =


949 0 0

0 174 0

0 0 1.9

 Ru =

[
1

]
(5.1)

which resulted in controller eigenvalues

s1 = −2.306 (5.2)

s2 = −1.553 + 2.013 (5.3)

s3 = −1.553 − 2.013. (5.4)

By increasing the weight for the trailer heading error variable, the new controller

design focuses slightly less on regulating the trailer to the path and slightly more on

aligning the trailer heading with the path direction.

5.4.2 Path Following Ability

The combined controller and estimator was implemented on the experimental

platform and the vehicle was instructed to follow a pre-defined survey path. To test

the ability of the controller to regulate to the path, the trailer was positioned at a

non-zero lateral error from the path. Figure 5.4 shows the path of the trailer overlaid

on top of the desired path. Not only is the trailer regulated to the desired survey

path line segments, but the controller is also able to track the various curve shapes

present in the path. As the non-linear model was linearized around the line segment
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Figure 5.4: Screenshot of the trailer path (black) overlaid on top of the desired path
(blue)
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Figure 5.5: Comparison of measured and estimated trailer lateral error during path
regulation

trajectories, the ability of the controller to regulate the trailer around the curves is a

testament to the effectiveness of the LQR controller.

5.4.3 State Estimate Accuracy

However, the ability of the controller to regulate to the path is of little conse-

quence to the geophysical surveying client if the system state is not being accurately

estimated. In Figure 5.5, the measured and estimated trailer lateral errors are plot-

ted versus time. The peaks of the initial oscillations are difficult for the estimator

to track, as the dynamics of the trailer when turning undoubtedly contain nonlinear

and unmodeled effects unavailable to the linearized model. But as the oscillations

dampen and the trailer reaches a steady-state of negligible lateral error, the discrep-

ancies between estimates and measurements approach zero and the estimator appears

to track the true values of the system. As the trailer lateral error is the only variable
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Figure 5.6: State estimate errors versus time during path regulation

being directly measured, this result in unsurprising. The real question concerns the

ability of the estimator to track the trailer and robot heading errors, neither of which

is directly measured.

Figure 5.6 shows an enlarged view of the three state estimate errors versus time.

The accuracy of the trailer heading error estimate closely mirrors that of the trailer

lateral error estimate, which is to be expected due to their strongly intertwined dy-

namics. The robot heading error estimate, while initially almost three times less

accurate than the trailer state estimates, is eventually able to track the true state

after approximately 35 seconds. It might be expected that the robot heading error

estimate would be more accurate due to the state variable dynamic equation being

based solely on the system input, ωr. However, delays in input response and dynamic

effects such as robot momentum and slip are unaccounted for in the linearized model.

Therefore future attempts to incorporate these dynamics may very well yield more

accurate robot state estimates.
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Figure 5.7: System response when regulating to a line

5.4.4 Steady-State Controller Accuracy

The regulator has been shown capable of following the survey path and accurately

tracking the system states, but the steady-state response of the controller remains an

important factor in analysing design effectiveness. Figure 5.7 shows the full system

response as the controller attempts to regulate the robot-trailer system to a line.

Initial large oscillations, exacerbated by estimate errors, soon dampen down into a

stable steady-state response that accurately tracks the line to within 2 centimeters

of lateral error. As the standard deviation, 1σ, of the GPS measurement noise is 2

centimeters, this regulation is considered more than acceptable. Though the controller

forces the robot to perform initially aggressive maneuvers when attempting path

regulation, the response shows that the model of the robot is close enough that

unmodeled dynamic effects do not prevent successful regulation.
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5.4.5 Comparison with the Full State Feedback System

To put the performance of the combined estimator and controller in perspective,

it is helpful to examine a comparison between its performance and the performance of

a system using full state feedback. Figure 5.8 shows a comparison between the non-

collocated method developed in this thesis and a full state feedback method measuring

robot position, robot heading, and hitch angle developed in previous work. While the

steady-state behavior of both methods seems similar, the state estimation method

requires significantly longer time to regulate to the path than the full state feedback

method. However, the smoothed trailer state estimates may be more desirable to the

geophysical surveying client than quick regulation to the survey path achieved by the

full state feedback system.
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(a) Full state feedback
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Figure 5.8: A comparison between the full state feedback and state estimation meth-
ods
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Chapter 6

Conclusions

The experimental results verify the conclusions reached from the simulations.

The non-collocated position measurements are sufficient for a linearized model to

track the robot-trailer system variables to an acceptable degree of accuracy, and the

LQR controller is capable of using these state variable estimates for feedback control

of the system to a desired survey path. The author believes that this is the first

time that an observer using a single non-collocated sensor has been shown capable of

estimating and controlling a robot-trailer system. Unlike [18], no measurements were

made of robot or trailer yaw rates or lateral accelerations.

6.1 Effectiveness of the State Estimator

The state estimator is able to track the trailer and robot state variables within

40 seconds of beginning operation, as seen in Figure 5.6. Though the simulations

predicted accurate state tracking in less than 10 seconds, the unmodeled dynamic

effects present in the experimental system clearly have a negative impact on estimator

performance. Despite these deficiencies, the estimator is able to use a model linearized

around the ideal path-following trajectory to accurately track the system states in

finite time. In fact, the filtering or “smoothing” effect of the estimator results in

less noisy recorded system states, a feature which may be preferable to a geophysical

surveying client.
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6.2 Effectiveness of the Control Algorithm

As with the state estimator, the LQR controller was shown to be capable of

accurately regulating the robot-trailer system to the desired survey path despite the

deficiencies of the linearized system model. The tuning of the LQR weighting matrices

to greatly penalize trailer lateral errors seems to allow the system to track the survey

path on curves and to within 2 centimeters of the desired value on straight line

segments. This accuracy is judged to be more than acceptable for survey grids that

can often cover hundreds of square meters in area.

6.3 Future Work

The linear controller and estimator have been shown to be capable of accurately

following a survey path and tracking the system states, but numerous improvements

might be made to the algorithm designs to account for system dynamics during turns

or for the effects caused by initially large estimate errors.

6.3.1 Inclusion of Unmodeled Dynamic Effects

As discussed in Chapter 2, the derived system model is based on only kinematic

relationships. While a kinematic model is relatively simple and often sufficient for

control purposes, the exclusion of dynamic effects can have a negative impact on

the controller and estimator performance. Future work will include the modeling of

input delays and the speed at which the robot is able to achieve the desired yaw

rates. Modeling these dynamics may improve the ability of the estimator to track the

robot and trailer heading errors and reduce the inaccuracy of the trailer lateral error

estimates when the trailer is turning.
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6.3.2 Design of a Reduced-Order Observer

Though the trailer lateral error was directly measured in this work, the full-order

observer estimated this variable long with the robot and trailer heading errors. Future

work could look to utilize a reduced-order observer to directly use the trailer lateral

error measurements and only estimate the other two variables. This design may result

in reduced computation load and a more accurate knowledge of trailer lateral error,

as the estimate error produced by the dynamics of the robot-trailer system resulted

in imprecise knowledge of the trailer position.

6.3.3 Further Tuning of the LQR Controller

The LQR controller tunings discussed in Chapter 4, the LQR weighting matrices

were heavily weighted toward eliminating trailer lateral error with relatively insignif-

icant importance placed on trailer and robot heading errors. Different combinations

of these weight values were extensively explored during the design process, but it

is believed that a combination exists that can substantially reduce the oscillations

seen in the system responses. Attempts at placing a penalty on system inputs were

explored, and it remains possible that slightly limiting commanded yaw rates would

results in a more gradual regulation with less oscillation.

6.3.4 Design of a Nonlinear Estimator and Controller

Finally, the ideal controller and estimator could include the full nonlinear dy-

namic equations in their models, allowing for highly-accurate tracking of the system

states and calculation of system inputs. Techniques exist for designing sufficiently

stable nonlinear controllers, and much research has been performed on using nonlin-

ear estimators to track system states. Future work will involve converting one or both

designs to a nonlinear model and exploring improvements in system response.
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Appendix A

MATLAB code used to generate simulations

%%

% Mike Payne

% August 2011

% Single-GPS Robot-Trailer Regulator Simulation

%%

clear all; close all;

% System Constants

Lr = 0; %Robot Tongue Length

Lt = 3.495; %Trailer Tongue Length

% User Settings

Vr = 1.3; %Robot Speed

Xo = [0.2147; -0.4249; 0.3906]; %Initial System Conditions

Xe = [0;0;0]; %Equilibrium Point

Xo_est = [Xo(1,1);0;0]; %Initial Estimator Conditions

Uo = 0; %Initial System Input

Ue = 0; %Input Equilibrium Point

%Trailer speed at equlibrium point

Vt = Vr*cos(Xe(2,1) - Xe(3,1)) - Lr*Ue*sin(Xe(2,1)-Xe(3,1));

% Tuning Parameters

GPS_Std_Dev = 0.02; %1-sigma from RTK corrections

R = GPS_Std_Dev^2; %Measurement variance

Ts = 0.04; %Sample period

Qc = .01; %Process disturbance variance, used as a tuning parameter

% Linearized System Model

A = [0,Vt,0;0,-Vr/Lt,Vr/Lt;0,0,0];

B = [0;-Lr/Lt;1];

C = [1,0,0];

D = 0;

Qn = Qc;

Rn = R;
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plant = ss(A,B,C,D); %Conversion to state-space object

% Continuous Estimator Design - kalman() poles

[KEST,L,P] = kalman(plant,Qn,Rn);

% Linear Estimator Model

A_est = A;

B_est = [B L]; %Trick to make Simulink block diagram simpler

%Gives full access to estimates in Simulink, only x(1) is used

C_est = eye(3);

D_est = zeros(3,2); %Second column due to B matrix augmentation

% Conversion of Estimator to Discrete Time using Zero-Order Hold

[Ad_est,Bd_est,Cd_est,Dd_est] = c2dm(A_est,B_est,C_est,D_est,Ts,’zoh’);

% Controller Design - lqr() poles

Qx = [1000,0,0;0,1,0;0,0,1]; %State weighting matrix

Ru = 1; %Input weighting matrix

[K,S,E] = lqr(A,B,Rxx,Ruu);

% Simulate the system - uncomment the desired simulation

%sim(’LinearPlantLinearEstimator’);

%sim(’NonlinearPlantLinearEstimator’);

%sim(’NonlinearPlantStateFeedback’);

sim(’NonlinearPlantLinearEstimatorStateFeedback’);
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Appendix B

SIMULINK model block diagrams
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Figure B.1: Simulation of the linear observer for the linear plant
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Figure B.2: Simulation of the linear observer for the nonlinear plant
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Figure B.3: Simulation of the LQR controller for the nonlinear plant
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Figure B.4: Simulation of the combined observer and controller for the nonlinear
plant
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