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Abstract 
 

 
The development of a diagnostic technique that allows measurement of the six 

dimensional phase space distribution for the dust component of a plasma system is presented.  In 

the course of the measurement and analysis processes a number of long-standing questions 

related to the basic properties of dusty plasmas are addressed and explained for the first time.  

The work described below demonstrates the importance of using a generalized form of the 

standard Maxwellian probability distribution function to model the velocity space portion of 

phase space.  This generalization, the tri-normal probability distribution function, allows 

ellipsoidally symmetric anisotropy in velocity space; the appearance of such anisotropy has been 

an outstanding issue in weakly-coupled dusty plasmas for several years.  The measured velocity 

space anisotropy is shown to be both a real effect and an effect that is too large to be accounted 

for as a perturbation to the standard spherically symmetric model of the velocity space.  The 

spatially resolved measurements within the dust cloud and the new model for the velocity space 

are then combined to give the spatial distribution of the fluid properties of the dust cloud for the 

first time in a weakly-coupled system.  The fluid thermodynamic and transport properties 

obtained through the process are discussed in detail.  The analysis of these newly available 

transport and thermodynamic properties clearly shows that the dust component of the system is 

in a state of dynamic force-balanced equilibrium.  The dust component of such systems has long 

been suspected to be in a force-balanced equilibrium; the appearance of the tri-normal 

distribution in velocity space unambiguously confirms the suspicion.  The fact that the system is 

in a state of dynamic equilibrium is demonstrated by examination of the transport properties of 

the dust component and has not been previously demonstrated experimentally. 
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Chapter 1:  Introduction 

1.1:  Historical overview 

The plasma state of matter has been actively investigated in the laboratory for over 130 

years.  First described by William Crookes in 18791, this fourth “radiant” state of matter came 

about through two mechanisms:  The first being a lack of collisions between the constituent 

molecules, due to rarefaction of the gas, and second by applying an external force to a gaseous 

system and “coercing them into a methodical rectilinear movement2.” (pp. 471-2)  Crookes’ 

preferred method of coercion was the application of an electrical bias to various electrodes 

within glass tubes from which the air had been evacuated.  This is the earliest example of a dc 

glow discharge plasma produced in the laboratory; the experiments described in this dissertation 

are performed in a device that is quite similar to those described by Crookes. 

 Interest in the study of plasmas was rekindled in the early part of the twentieth century in 

the research labs of the General Electric corporation by Irving Langmuir and Lewi Tonks.  The 

pair characterized and developed techniques for the mathematical description of plasma systems 

for some twenty years, much of which is still used today.  Of particular interest from this time 

period is Langmuir’s observation of the first laboratory based dusty plasma system, the “streamer 

discharge3”, which describes a plasma that contains “globules” of sputtered tungsten that charge 

negatively and interact with the ambient environment.  Aside from this early observation, the 

thrust of plasma physics research remained mostly in the dust-free regime until the observation 
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of spoke-like structures in Saturn’s rings in the early 1980’s.  These observations sparked a 

renewed and focused interest in dusty plasmas that has continued to this day, with a multitude of 

research groups investigating such systems across the globe. 

 Modern study of dusty plasmas has expanded beyond simple observation of floating 

particulate matter; dusty plasma systems have been shown to exhibit, for example, wave 

phenomena, order structure formation, and allow detailed study of the thermodynamic properties 

of systems in the gaseous, liquid and solid states.  The wide range of properties observed within 

dusty plasmas makes the study of these systems a robust field of study at the intersection of 

chemistry, materials science, fluid mechanics, and fluid/plasma physics.  Section 1.2 will give a 

brief description of some very basic parameters that can be used to characterize these and other 

plasma systems and explain how dust grains acquire charge in a plasma environment.  The 

motivation for, and scope of, this dissertation is outlined in Section 1.3. 

1.2:  Dusty plasma parameters 

 Dusty (“complex”) plasmas are systems composed of electrons, ions, neutral gas, and 

charged particulate matter.  The inclusion of the fourth plasma species (the “dust”) is what 

separates dusty plasma physics from the standard picture of a plasma system.  All plasma 

systems can be characterized by a fairly standard set of parameters, including:  Densities, 

temperatures, screening lengths, and various characteristic frequencies.  The inclusion of a dust 

component in the derivation of these parameters can have a large effect of the values of these 

quantities.  Section 1.2.1 contains an overview of how some of these parameters change when 

the dust is included and introduces an important dimensionless quantity used to characterize the 

dust component.  Section 1.2.2 discusses the subject of how dust grains accumulate electrical 
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charge.  As will be shown in later chapters, many of the assumptions that are fundamental 

components in the derivation of these basic parameters are, at best, only partially valid; but the 

discussion of these quantities is quite useful because it facilitates the comparison of dusty 

plasmas with other, more standard, plasmas. 

1.2.1:  Plasma parameters 

 The introduction of dust grains into a plasma environment changes many of the basic 

plasma physics parameters that are used to characterize such systems4.  In this section several 

simplifying assumptions are made about the plasma:  The ions are assumed to be singly charged 

and positive, the electrons, ions, and dust are assumed to have isotropic Maxwellian velocity 

space distributions with no drift, and the dust grains are assumed to have a negative charge.  In 

what follows, the subscripts d, e, and i denote the dust grain, electron, and ion components of the 

plasma, respectively. 

1.2.1.1:  Quasi-neutrality 

 In a plasma environment the system is assumed to be macroscopically quasi-neutral, this 

condition can be expressed as: 

 
 

 

where the subscript s refers to any of the plasma species.  The symbol e (non-subscript) is the 

elementary (proton) charge, ns is the number density of plasma species s, and qd is the charge of 

a dust grain.  The dust grain charge can be re-written as dd  Zeq −= , where Zd is the dust grain 

charge number.  The dust grain charge number is defined to be greater than zero which gives the 

ddeiss n qn e-n eq n0 +== ∑
s
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minus sign in the equation for qd.  With this definition of the dust charge the quasi-neutrality 

becomes: 

 
ddie

ddei

n Z-nn
)n Z-n-(n e0

=
=

 1.1 

In some dusty plasma environments a large fraction of the electrons (and to a lesser extent, the 

ions) can reside on the surface of the dust grains, an effect known as electron (ion) depletion.  

This effect will be discussed further in Section 1.2.2. 

1.2.1.2:  Debye length 

 A fundamental property of a plasma is the ability to shield external electric fields.  This 

Debye shielding is described in terms of a characteristic length scale over which the shielding 

occurs.  For electrons and ions the Debye length is given by: 

 𝜆𝐷,(𝑒,𝑖) = �
𝜀0𝑘𝐵𝑇(𝑒,𝑖)

𝑛(𝑒,𝑖)𝑒2
  

where ε0 is the permittivity of free space, kB is Boltzmann's constant, and T(e,i) is the electron or 

ion kinetic temperature.  This characteristic shielding length in a plasma where dust grains are 

present can be found as follows:  Assume a plasma with an initially uniform background of 

electrons and ions.  If a single positively charged immobile sphere is placed in the plasma 

electrons will be attracted to the sphere and will form a "cloud" around the sphere that acts to 

cancel the local electric field introduced by the positive charge of the sphere.  The dust Debye 

length, λD,d, is a measure of the thickness of this cloud of ions and electrons.  The calculation 

begins Gauss' law: 
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 ( )ddei
00

2 n Z-n-n
εε

ρ e
c

−
=

−
=Φ∇  1.2 

where cΦ  is the electrostatic potential near the dust grain.  Next, the quasi-neutrality relation, 

Equation 1.1, is used to eliminate the dust term in Gauss’ law, the electron and ion distributions 

are assumed to have uniform spatial distributions far away from the grain: 

 ∇2Φ𝑐 =
−𝑒
𝜀0
�𝑛𝑖0𝑒𝑥𝑝 �

−𝑒Φ𝑐

𝑘𝐵𝑇𝑖
� − 𝑛𝑒0𝑒𝑥𝑝 �

𝑒Φ𝑐

𝑘𝐵𝑇𝑒
� − (𝑛𝑖0 − 𝑛𝑒0)�  

 =
𝑒 𝑛𝑖0
𝜀0

�1 − 𝑒𝑥𝑝 �
−𝑒Φ𝑐

𝑘𝐵𝑇𝑖
�� −

𝑒 𝑛𝑒0
𝜀0

�1 − 𝑒𝑥𝑝 �
𝑒Φ𝑐

𝑘𝐵𝑇𝑒
��  

Next, the standard assumption 
𝑞(𝑒,𝑖)Φ𝑐

𝑘𝐵𝑇(𝑒,𝑖)
≪ 1 is made and the terms found in the brackets are 

expanded in a Taylor series to first order in the small quantity. 

 c
eDiD

c
eB

e

iB

i
c Tk

ne
Tk

ne
Φ









+=Φ










+=Φ∇ 2

,
2

,0

,0
2

0

,0
2

2 11
λλεε

 1.3 

If we then assume that the potential from the dust grain falls off as:  

 Φ𝑐(𝑟) = Φ𝑐0 𝑒𝑥𝑝�−𝑟 𝜆𝐷,𝑑⁄ �  

where Φ𝑐0 is the potential at the grain surface (at 𝑟 = 0) and 𝜆𝐷,𝑑 is the dust Debye length, it is 

easy to show that 𝜆𝐷,𝑑 is given by: 

 
1
𝜆𝐷,𝑑
2 =

1
𝜆𝐷,𝑖
2 +

1
𝜆𝐷,𝑒
2   

Thus, this characteristic length scale is entirely determined by the ambient electron and ion 

environment. 
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1.2.1.3:  Plasma frequency 

 As in the case of an electron-ion plasma, small displacements of the charged species in a 

uniform, low temperature, dusty plasma give rise to stabilizing restoring forces which operate at 

rates characterized by a plasma frequency.  The calculation of this frequency for a system 

containing electrons, ions, and charged dust grains proceeds in the usual manner.  Beginning 

with the conservation of number density: 

 0 =
𝜕𝑛𝑠
𝜕𝑡

+ ∇ ⋅ (𝑛𝑠𝑣⃑𝑠)  

And the fluid momentum equation (with no pressure gradient or collision terms, discussed in 

much greater detail in Chapter 5): 

 0 =
𝜕𝑣⃑𝑠
𝜕𝑡

+ (𝑣⃑𝑠 ⋅ 𝛻)𝑣⃑𝑠 +
𝑞𝑠
𝑚𝑠

𝛻𝜙  

Gauss' law with the quasi-neutrality condition, Equation 1.2: 

 ∇2𝜙 =
−1
𝜀0

�𝑞𝑠𝑛𝑠
𝑠

  

We now assume no zero-order drift velocity and small number density and electric potential 

fluctuations for all species: 

 
sss nnn ,1,0 +=  

10 φφφ +=  
 

where 10 φφ >>  and ss nn ,1,0 >> .  The above equations can be linearized and combined to give 

the following differential equation for ∇2𝜙1: 
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𝜕2

𝜕𝑡2
∇2𝜙1 = −��

𝑞𝑠2𝑛0,𝑠

𝜀0𝑚𝑠𝑠

� ∇2𝜙1  

which is the differential equation for a simple harmonic oscillator.  The plasma frequency of the 

system is then: 

 𝜔𝑝2 = �
𝑞𝑠2𝑛0,𝑠

𝜀0𝑚𝑠𝑠

  

This is the standard expression for the plasma frequency; the only difference, compared to the 

usual case of a plasma consisting of electrons and ions, is that the dust component values must be 

included when performing the summation. 

1.2.1.4:  Coulomb coupling parameter 

 The general thermodynamic state of the dust component can be characterized by the 

Coulomb coupling parameter, Γc.  This parameter is the ratio of a characteristic dust grain’s 

electrostatic potential energy to the grain’s thermal kinetic energy.  The potential energy used is 

the electrostatic potential energy between the characteristic dust grain and a neighboring grain, 

this energy is given by: 

 Φ= dqW   

where Φ is the Debye–Hückel potential, which is a solution to Equation 1.3: 

 








 −
=Φ

dD

r
r ,0

exp
4

1
λπε

  

This potential is evaluated at r=a, the average separation distance between dust grains.  Using 

this definition of the potential energy, the coupling parameter ratio is given by: 
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Figure 1.1:  Dust clouds with different phases.  (a) A color inverted image of a strongly coupled dusty plasma5.  (b) 

An image of a dust cloud with two phases.  The portion of the cloud in the white (upper) box is gas-like and the 

portion of the cloud in the red (lower) box is liquid-like. 
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This plasma parameter describes the spatial correlation between neighboring dust grains.  In the 

limit cΓ  >> 1 a grain's electrostatic potential energy is much larger than its thermal kinetic 

energy.  This type of system is said to be a strongly-coupled dusty plasma, the dust grains form a 

Coulomb solid, the so-called dust crystals, as seen in Figure 1.1 (a).  When cΓ  ≈ 1 the dust 

component of the plasma is said to be moderately-coupled, in this regime the dust is in a liquid-

like state (Figure 1.1 (b), in the lower box outlined in red).  Finally, when cΓ  << 1 the system is 

said to be weakly-coupled and behaves as a Coulomb gas (Figure 1.1 (b), in the upper box 

outlined in white).  The experiments described in this work fall into the latter, weakly-coupled, 

regime. 

 The derivation of the plasma parameters presented in this section does not vary greatly 

from the process used in standard plasma systems, with the exception of the introduction of the 

Coulomb coupling parameter. 
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1.2.2:  Dust grain charging 

 There are a number of processes that can affect the charge of a dust grain found within a 

plasma environment, these processes fall into two basic categories:  The interaction of the dust 

grains with the electron and ion populations in the plasma and the interaction of dust grains with 

photons.  An approximate value for the dust grain charge can be calculated by considering the 

current to (and from) the dust grain surface due to the various processes: 

 ∑=
k

k
d I

dt
dq

 1.4 

where the sum over k refers to each charging mechanism.  In order to calculate the dust grain 

charge within a given experiment one must identify the charging processes that are important in 

the ambient environment and express each process as a current, Ik, to (or from) a dust grain.  In 

this section a brief description will be given for several common charging processes, after which 

an equation will be derived for the dust charge based on the charging currents that are important 

in the experiment described in chapters three and four. 

1.2.2.1:  Charging processes overview 

 When an initially neutral dust grain is introduced into a plasma environment, consisting 

of electrons and positively charged ions, it will accumulate a net charge on its surface as a result 

of low energy collisions with the ambient electron and ion populations.  Because electrons have a 

much lower mass than the ions, the electron thermal speed ( ssBsth mTkv /2, = ) is much higher 

than the ion thermal speed, this causes a dust grain to collide with the electrons more frequently 

and results in a dust grain charge that is net negative.  The process is brought to equilibrium 

through Coulombic repulsion.  After the grain acquires a negative charge the rate of electron 
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collection is decreased due to the resulting dust-electron electrostatic repulsion, at the same time 

the dust-ion collection rate is enhanced due to Coulombic attraction.  These electron and ion 

collection currents (Ic,e and Ic,i) are the dominant charging processes in the experiment described 

later. 

 The second type of charging process that arises due to the interaction of a dust grain with 

the background plasma is secondary electron emission.  This is the process by which high energy 

electrons or ions collide with a dust grain with sufficient energy to cause the ejection of electrons 

from the dust grain surface.  When a low energy electron or ion collides with a dust grain it 

sticks to the surface of the grain (this is the process of collection, described above); if the impact 

energy is high enough the incident electron or ion will tunnel into the grain interior.  As the 

particle tunnels some of its energy is transferred to the dust grain and some of its energy excites 

electrons on the surface which allows electrons to escape from the grain.  The collision energy 

threshold for this process to occur is in the 1 keV range, which is much higher than the electron 

and ion energies found in dc glow discharge plasmas. 

 The third broad class of charging processes is the interaction of the dust component with 

photons, via the photoelectric effect.  If the energy of a photon incident to a dust grain is larger 

than the grain's work function photo-electrons are emitted from the grain.  This charging process 

can be quite important for dusty plasma systems found in space, where there can be a high flux 

of UV radiation.   

 It is noted that there are additional dust grain charging mechanisms (including field 

emission, radioactive emission, neutral impact ionization, and thermionic emission) but these 
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processes require relatively extreme background plasma parameters or environments in order to 

become important charging mechanisms. 

1.2.2.2:  Dust charging due to electron and ion collection 

 In this section a transcendental equation relating the charge of a dust grain to the 

parameters of the ambient plasma environment and the properties of the dust grain is found.  The 

most straightforward  method for calculating the ion and electron collection currents to the 

surface of a dust grain is the Orbit Motion Limited (OML) method4,6.  In this charging process 

model several assumptions are made, namely:  The dust grains are spherical conductors of radius 

rd, the dust charge is steady state (and negative), and the velocity distribution functions of the 

background electrons and ions are assumed to be isotropic and Maxwellian with no drift 

velocity: 

 ( ) 








 −

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

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nvf

2
exp

2

22/3

,0 π
  

where vs is the velocity of species s far from the dust grain, before the collision.   

 If a low energy electron or ion collides with a dust grain it will stick to the grain's surface, 

for this to occur the incident charged particle must have an impact parameter less than the impact 

parameter of a grazing collision, bs (a schematic of a grazing collision can be found in Figure 

1.2).  The value of this critical impact parameter will vary with the dust grain charge, due to 

Coulombic attraction (ions) or repulsion (electrons), and the velocity of the incident charged 

particle vs.  The impact parameter can be found by considering the conservation of momentum 

and energy: 
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Figure 1.2:  Schematic of a grazing collision between an electron or ion and a dust grain. 
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The velocity of the particle after the grazing collision, vs,f, can be eliminated from Equations 1.5 

and 1.6, which gives an expression for the critical impact parameter: 

 2
02

1
ssd

ds
ds vmr

eZq
rb

πε
+=   

Next, the current to the dust grain surface can be found using: 

 ( )∫=
V

sss
d
ssss vdvfvqI 3σ   

where 2
s

d
s bπσ =  is the dust-s collision cross section and the region of integration, V, is over the 

volume of velocity space from which particles can collide with the dust grain.  Due to the 

assumption of velocity space isotropy this can be re-expressed as an integral over one velocity 

space dimension as: 
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where the parameter 𝑣𝑠𝑚𝑖𝑛 is the minimum velocity of a particle s that is required to overcome 

the dust grain - s electrostatic repulsion and result in a collision.  In this case the dust charge is 

assumed to be negative, meaning the minimum ion velocity value, 𝑣𝑖𝑚𝑖𝑛, is zero because the 

electrostatic force is attractive.  However, the dust grain - electron electrostatic interaction is 

repulsive, resulting in a non-zero 𝑣𝑒𝑚𝑖𝑛 which can be found using the conservation of energy, 

Equation 1.6: 
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with this information the ion and electron collection currents are given by: 
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For the plasma environment found in in the experiment described in what follows the electron 

and ion collection currents are the dominant charging mechanisms.   
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Substitution of Equations 1.7 and 1.8 into Equation 1.4, and by assuming a steady state 

dust grain charge, an equation can be obtained for the dust grain charge number, Zd: 

 ecic
d II

dt
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This equation can be solved numerically for two scenarios, which arise from algebraic 

manipulation of the quasi-neutrality condition, Equation 1.1: 
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The first case is the so-called "dust in plasma" limit, in this limit idd nnZ ,0<<  and represents the 

case where the dust grains are isolated from one another in the plasma.  In this limit there is no 

electron depletion and the dust charge, Equation 1.9, is given by: 
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The second scenario comes when idd nnZ ,0≅ , this is the so-called "dusty plasma" limit.  

In this limit a non-zero fraction of the plasma’s electron population resides on the surface of dust 

grains (and the ambient electron population is said to be “depleted”).  The dust grain charge, 

Equation 1.9, in this limit is given by the solution to: 
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Figure 1.3:   Log plot of the dust grain charge number Zd, in electrons, vs the ratio of dust number density to ion 

number density.  The charge is calculated for rd = 1.5x10-6 m, kBTi = 0.025 eV, and kBTe = 2.5 eV. 

A system with a larger dust number density, nd, contains dust grains with lower individual charge 

(Figure 1.3) but more of the plasma system's total charge is associated with the dust component 

of the plasma. 

 The OML model for the dust grain charge gives an upper limit for the dust charge 

number, Zd.  All of the charging processes mentioned in Section 1.2.2.1 that were not included in 

the calculation of the charge equations decrease the number of electrons on the dust grain surface 

(i.e. these processes make qd less negative and Zd less positive).  It is noted that more 

sophisticated charging models exist that incorporate the neglected processes and take into 

account effects such as electron, ion, and dust grain drift velocities, non-spherical dust grains, 

and the effect of the sheath potential structure on the collision process4,6,7.  These mechanisms 

are typically neglected due to the vast uncertainty in the plasma parameters that are required for 

even the relatively simple OML description. 
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1.3:  Motivation and scope 

 The motivation for this work can be briefly summarized by noting that, in recent years, 

many of the assumptions that went into the derivation of the parameters discussed in Section 1.2 

have been found to be overly simplistic.  Before any type of rigorous, systematic, theoretical 

knowledge of weakly-coupled dusty plasmas can mature to the point where the majority of 

observed phenomena can be readily explained, the basic properties of such systems must be 

elucidated within the environments in which they are observed.  Weakly-coupled dusty plasmas, 

particularly those found in dc glow discharge devices, have a number of important basic 

properties that require investigation.  Many of these properties affect even the most basic 

descriptions of such systems; for example, recent work has shown that the distribution of the dust 

component of the plasma within velocity space is anisotropic8–12 and varies by position.13–15  

Additionally, these measurements of the velocity space have resulted in dust temperature 

values16,17 that can reach hundreds, or even thousands, of electron volts (in energy units) which is 

orders of magnitude larger than the temperature of any other plasma species found in the 

experiments.  The experimental results discussed here show that the observed velocity space 

anisotropy is both a real and a large effect.  The measurements of the velocity space will be 

modeled with a distribution that allows the previously unexplained anisotropy to be accounted 

for in a physically meaningful way.  The results will also show that the variation of various 

properties of the dust component can be measured in weakly-coupled dusty plasmas with 

unprecedented detail. 

The measurements of the dust component properties, in conjunction with the model that 

allows the anisotropy, leads to a discussion of the measured transport and distributions of 

particles, momentum, energy, forces, heat fluxes, and energy flow rates; all quantities that had 
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been, previously, experimentally unavailable in such a system.  The derivation of the transport 

equation relations will give more general expressions for several commonly used fluid quantities 

than have been previously used to describe plasma fluid systems. 

The presentation of this dissertation is as follows.  Chapter two contains discussion of the 

basic theoretical description of plasmas as fluids in phase space, the new velocity space 

distribution function that is used, and a brief introduction to Bayesian probability theory.  

Chapter three describes the experimental apparatus in which the experiment was performed and 

contains a discussion of the diagnostic used to measure the six dimensional distribution of the 

dust component of the plasma within phase space.  Chapter four details the process by which the 

measurements can be used to construct the spatially resolved phase space distribution and shows 

that the anisotropic model of velocity space is required for an adequate characterization of the 

dust component.  Various thermal and transport properties of the system are discussed in detail 

within Chapter five and the various conclusions that are drawn during the course of the 

dissertation are summarized in Chapter six.  
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Chapter 2:  Theory and Background 

 In this chapter the basic theoretical constructs required for the discussion of the 

experiment, analysis, and results will be reviewed.  The chapter begins by describing the phase 

space used to describe the observed plasma system.  Section 2.2 describes the two probability 

distribution functions used to model the velocity space portion of phase space.  Bayesian 

probability theory is reviewed in Section 2.3; emphasis is given to the processes used to obtain 

optimal model parameter values given a data set and the methodology that allows comparison of 

theoretical models that will be used extensively in Chapter 4. 

2.1:  The phase space distribution 

 The investigation of systems consisting of many small particles has a long history with a 

myriad of different specific approaches and methodologies.  As the basis for many of these 

systems of description lies the idea of a phase space distribution (PSD), which simultaneously 

encapsulates information about both the configuration space and velocity (or momentum) space 

distributions of the system in question.  For the plasma system described below the configuration 

space and velocity space both consist of three dimensions; when combined with time, the phase 

space of the plasma system consists of seven dimensions.  The N individual particles that make 

up each of the plasma components (the ions, electrons, neutral gas, and dust) each have a 

trajectory through the seven dimensional phase space which, at least in principal, must be known 

for a complete deterministic description of the dynamics for each component.  The position and 



19 
 

velocity of particle j, at time t, is given by the curves 𝜂⃑𝑗(𝑡) = {𝑟𝑗(𝑡), 𝑣⃑𝑗(𝑡)}, but due to the large 

number of particles, and the extremely complicated nature of the individual particle trajectories, 

knowledge of all of the individual 𝜂⃑𝑗(𝑡) curves is difficult to measure (except in the case of 

carefully prepared simple systems).  Even if known, the N six dimensional particle trajectories 

would be difficult to use as the basis for an efficient, practical, description of the plasma 

component in question.  In an effort to provide a tractable method for classifying and extracting 

useful information about such a system a simplified, statistics based, view is employed by 

treating the plasma components as fluids. 

 In the phase space fluid picture, knowledge of the trajectories of each particle is replaced 

by a statistical description in which a phase space density function, 𝑓 (𝑟, 𝑣⃑, 𝑡), gives the 

probability that there are some number of particles within the phase space volume element 

𝒹3𝑟𝒹3𝑣 at time t.  The fluid picture reduces the information required from a six dimensional 

vector field for each particle in the plasma component to a single scalar field for all particles 

within the system.  The fluid description of the dust component of the plasma considered here is 

further simplified by the fact that the system is in a steady state (for time scales on the order of 

hours or longer) which eliminates the time dimension.  The phase space distribution (PSD) is 

then: 

 𝑓 (𝑟, 𝑣⃑, 𝑡) = 𝑛 (𝑟)𝐹 (𝑟, 𝑣⃑) 2.1 

where 𝑛 (𝑟) is the particle number density within the configuration space volume element 𝑑𝑟3 

and  𝐹(𝑟, 𝑣⃑) is the function that describes the distribution of velocities within the volume 

element.  With the fluid picture, several useful quantities are easily obtained from the known 
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PSD by integrating over various components of phase space; for example, the number density 

scalar field, 𝑛 (𝑟), is found by integrating the PSD over the velocity space: 

 𝑛 (𝑟)  = � 𝑓(𝑟, 𝑣⃑, 𝑡) 𝑑3𝑣.
∞

−∞
 2.2 

Similarly, the total number of particles in the system can be found by integrating over all of 

phase space (or in a smaller region, by integrating over the configuration space volume of 

interest): 

 𝑁 = � 𝑛 (𝑟) 𝑑3𝑟
∞

−∞
= � 𝑓(𝑟, 𝑣⃑, 𝑡) 𝑑3𝑣 𝑑3𝑟

∞

−∞
 2.3 

The plasma as a fluid model gives direct access to many other physical quantities of interest, 

which can be obtained by taking velocity space moments of the PSD.  Perhaps the most useful 

examples of such quantities are given by the first two velocity space moments of the PSD.  The 

first velocity space moment, normalized to the number density, gives the drift (average) velocity 

vector field of the plasma fluid, 𝑢�⃑  (𝑟): 

 𝑢�⃑  (𝑟) =
1

𝑛 (𝑟)
� 𝑣⃑  𝑓(𝑟, 𝑣⃑, 𝑡) 𝑑3𝑣.
∞

−∞
 2.4 

The pressure tensor field is proportional to the second central moment of the PSD: 

 𝑃
⇄

(𝑟) =
1
2
𝑚� (𝑣⃑ − 𝑢�⃑ ) ⊗ (𝑣⃑ − 𝑢�⃑ )𝑓(𝑟, 𝑣⃑, 𝑡) 𝑑3𝑣.

∞

−∞
 2.5 

where "⊗" indicates the tensor (outer) product and m is the mass of an individual particle of the 

plasma species in question.  Similarly, the second "non-central" moment of the PSD gives the 

total energy density tensor, which is the sum of the pressure tensor and the kinetic energy 

associated with the drift velocity: 
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 2.6 

The process of taking moments of the velocity space proceeds ad infinitum.  The fluid picture is 

quite powerful and relatively straight forward, in principal, if the number density field and 

velocity distribution functions are known. 

 The basic approach towards applying the fluid model of plasmas is normally quite 

different depending if one studies the system in a textbook or experimental manner.  As a vast 

oversimplification of the processes:  The textbook approach starts by specifying the PSD and 

finds the resulting fluid parameters while the experimental approach is to measure the fluid 

parameters and work backwards towards the PSD.  The experimentalist is normally resigned to 

such an approach because the measurement tools at his (or her) disposal cannot generally be used 

to directly measure the PSD.  For example, Langmuir probes of various types can be used to 

measure the current drawn to an electrode immersed in a plasma environment as a function of the 

voltage applied to the electrode.  From the measured relationship between the current and 

voltage a large number of assumptions are made regarding the likely properties of the PSD, with 

these assumptions quantities such as the average kinetic energy can be extracted for the 

electrons.  Then, based on the average kinetic energy measurements, one can specify quantities 

such as the width of the velocity space distribution (the thermal velocity) or the number density, 

which are found in the PSD.  The experimental process is filled with assumptions, the validity of 

which are very difficult to test. 

 The dusty plasma system, as described in the following chapters, has several properties 

that allow the experimentalist to avoid such problems and approach the system from a 

perspective that is closer to that of the textbook.  The large radii of the particles that make up the 
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dust component of the plasma allow the number density scalar field to be measured directly by 

taking and analyzing photographs of the particles.  The large size of the particles also means that 

the mass of the individual grains is relatively large, the result is that the dynamics of the dust 

system are slow, which is conducive to the direct measurement of the velocities for particles in 

the dust component, many avenues exist for the measurement of the dust velocity depending on 

the specific characteristics of the system.8,18–24  The ability to measure the number density and 

the velocities of the particles means that the components of the PSD can be measured directly.  

In this dissertation a method is discussed that allows the full PSD of the dust component to be 

measured within many small volume elements of configuration space within a dust cloud 

structure.  This type of measurement gives the spatially resolved PSD of the dust fluid and 

allows one to proceed through an analysis hierarchy that starts by measuring and modeling the 

PSD and working towards using these measured quantities to calculate the various fluid 

properties of the system. 

2.2:  Velocity space distribution models 

 The phase space of the dust component of a plasma is composed of both configuration 

space and velocity space; the configuration space portion gives information regarding the 

number density of the particles within a given volume element of configuration space (which 

will simply referred to as a "volume element" or, less commonly, as an "element" in what 

follows).  The number density will be obtained through analysis of digital photographs of the 

dust cloud in a process described in detail within Chapter 4.  The end result of such analysis is a 

scalar value for the number density, which is simply the average number of particles within a 

volume element and an associated uncertainty which is used in error analysis.  The velocity 

space component contains much more information and is modeled by a probability distribution 
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function within each element.  Towards this end, both the standard Maxwellian distribution 

function25 and a generalization of the Maxwellian distribution function, the tri-normal probability 

distribution function, are used to model the measurements of the velocity space.  A brief review 

of the standard Maxwellian distribution function is given in Section 2.2.1.  The less commonly 

encountered multi-normal distribution function is described in Section 2.2.2 and a convenient 

coordinate system rotation that simplifies the multi-normal distribution is highlighted in Section 

2.2.3.  Section 2.2.4 shows the relationship between the distribution functions used to model the 

velocity space in this work and many of the other probability distribution functions commonly 

used in the sciences within a convenient hierarchy.  Finally, in Section 2.2.5 the general 

applicability of the multi-normal distribution function is discussed and several interesting 

historical notes are highlighted. 

2.2.1:  The Maxwellian distribution function 

 The standard probability distribution function used to model the velocity space 

component of phase space within plasmas is the three dimensional Maxwellian distribution 

function.  This probability distribution is ubiquitous across all fields in the sciences but will be 

discussed in detail to facilitate the discussion of the more mathematically complicated model that 

follows.  The d-dimensional Maxwellian probability distribution function has the form: 

 𝐹𝑚(𝑣⃑;𝑑) =
1

(2𝜋𝜎𝑚2 )𝑑 2⁄ exp �
−(𝑣⃑ − 𝑢�⃑ )2

2𝜎𝑚2
� 2.7 

where 𝑣⃑ is the d-dimensional velocity vector, 𝑢�⃑  is the d-dimensional drift (mean) velocity vector, 

and 𝜎𝑚2  is the variance of the probability distribution (a scalar quantity).  The square root of the 

variance (the standard deviation) of the velocity space is the "thermal velocity" which relates the 



24 
 

random fluctuations in velocity space to a temperature, T, and the mass, m, of a single particle of 

the plasma species in question: 

 𝜎𝑚 = �𝑘𝐵 𝑇 𝑚⁄  2.8 

where kB is the Boltzmann constant. 

 The one, two, and three dimensional versions of Equation 2.7 are of particular interest, all 

three of these distributions will be referred to as the "Maxwellian" distribution function without 

reference to the dimensionality, except in cases where such a reference is convenient in order to 

eliminate ambiguity.  The functional form of the three distributions is given below, in order of 

increasing dimensionality, in the general 𝑣⃑ = �𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘� coordinate system: 

 𝐹𝑚(𝑣𝑖) = (2𝜋𝜎𝑚2 )−1 2⁄ exp�
−(𝑣𝑖 − 𝑢𝑖)2

2𝜎𝑚2
� 2.9 

 𝐹𝑚(𝑣𝑖, 𝑣𝑗) = (2𝜋𝜎𝑚)−1exp �
−1
2
�
−(𝑣𝑖 − 𝑢𝑖)2

𝜎𝑚2
+
−(𝑣𝑗 − 𝑢𝑗)2

𝜎𝑚2
�� 2.10 

 

𝐹𝑚�𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘� = (2𝜋𝜎𝑚2 )−3 2⁄  × 

exp �
−1
2
�
−(𝑣𝑖 − 𝑢𝑖)2

𝜎𝑚2
+
−(𝑣𝑗 − 𝑢𝑗)2

𝜎𝑚2
+
−(𝑣𝑘 − 𝑢𝑘)2

𝜎𝑚2
�� 

2.11 

The most important aspect of this distribution function, for this discussion, is that for the two and 

three dimensional versions of the Maxwellian distribution the variance is identical in every 

vector direction, regardless of the choice of coordinate system orientation.  This is the 

manifestation of scalar variance of the Maxwellian probability distribution and results in a 

circular symmetry for the two dimensional case and a spherical symmetry for the three 

dimensional distribution. 
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Figure 2.1:  Plots of the one, two, and three dimensional Maxwellian distribution function.  In all cases the standard 

deviation is two and the offset (drift) is set to zero.  (a) The one dimensional Maxwellian distribution.  (b) The two 

dimensional Maxwellian distribution.  The amplitude is colored according to magnitude.  The black band around the 

peak indicates the contour of constant probability amplitude at the standard deviation.  (c) Two dimensional view of 

the black band seen in (b).  (d) The surface of constant probability amplitude for the three dimensional Maxwellian 

distribution is shown as gold.  The green planes indicate the coordinate axes.  The black circles show the intersection 

of the standard deviation surface and the coordinate axis planes. 

 A geometric picture of the Maxwellian distribution is a useful way to think about the 

function and can be built up starting with the one-dimensional case, as in Equation 2.9.  Figure 

2.1 (a) shows the one dimensional Maxwellian distribution function plotted with the parameter 

choices u=0 and 𝜎𝑚 = 2.  The circular symmetry of the two dimensional Maxwellian can be 

seen in Figures 2.1 (b) and 2.1 (c).  Figure 2.1 (b) shows the two dimensional Maxwellian plotted 

with the parameters 𝑢�⃑ = 0 𝑣�𝑖 + 0 𝑣�𝑗  and 𝜎𝑚 = 2, the black band around the peak of the 
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distribution is what will be referred to as the "standard deviation contour" (a manifold of 

constant probability amplitude).  This same contour of constant probability amplitude is shown 

in Figure 2.1 (c) as a two dimensional plot, where circular symmetry of the distribution is 

immediately apparent.  Moving to the case of the three dimensional Maxwellian distribution, as 

in Equation 2.11, a plot of the probability amplitude is shown in Figure 2.1 (d), the plot shows 

the three dimensional surface of constant probability amplitude for the parameter choices 

𝑢�⃑ = 0 𝑣�𝑖 + 0 𝑣�𝑗 + 0 𝑣�𝑘   and 𝜎𝑚 = 2.  The black circles that lie on the translucent green planes 

indicate the intersection of the spherical surface and the three planes formed by the coordinate 

axes.  The observation that the constant probability surface is spherical is equivalent to the 

statement that the distribution in velocity space described by the Maxwellian is spherically 

symmetric, or that the velocity space distribution is isotropic. 

2.2.2:  The multi-normal distribution function 

 A multi-dimensional generalization of the Maxwellian probability distribution function is 

the multi-normal probability distribution function.  This distribution is also known as the 

Maxwellian distribution function with tensor variance.  The d-dimensional multi-normal 

distribution function has the form: 

 
𝐹 (𝑣⃑;𝑑) =

1

(2𝜋)𝑑 2⁄ �𝛴
⇄
�
1 2⁄ exp �

−1
2

(𝑣⃑ − 𝑢�⃑ )† · 𝛴
⇄
−1 · (𝑣⃑ − 𝑢�⃑ )� 

2.12 

where 𝛴
⇄

 is the symmetric 𝑑 × 𝑑 covariance tensor for the velocity space.  The covariance tensors 

for the two and three dimensional cases of Equation 2.12, in the general 𝑣⃑ =

�𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘� coordinate system, are given by: 
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 𝛴
⇄

= �
𝜎𝑣𝑖
2 𝜌𝑣𝑖𝑣𝑗𝜎𝑣𝑖𝜎𝑣𝑗

𝜌𝑣𝑖𝑣𝑗𝜎𝑣𝑖𝜎𝑣𝑗 𝜎𝑣𝑗
2 � 2.13 

 𝛴
⇄

= �

𝜎𝑣𝑖
2 𝜌𝑣𝑖𝑣𝑗𝜎𝑣𝑖𝜎𝑣𝑗 𝜌𝑣𝑖𝑣𝑘𝜎𝑣𝑖𝜎𝑣𝑘

𝜌𝑣𝑖𝑣𝑗𝜎𝑣𝑖𝜎𝑣𝑗 𝜎𝑣𝑗
2 𝜌𝑣𝑗𝑣𝑘𝜎𝑣𝑗𝜎𝑣𝑘

𝜌𝑣𝑖𝑣𝑘𝜎𝑣𝑖𝜎𝑣𝑘 𝜌𝑣𝑗𝑣𝑘𝜎𝑣𝑗𝜎𝑣𝑘 𝜎𝑣𝑘
2

�. 2.14 

The 𝜎𝑣𝑖 terms are the standard deviation values along the 𝑣�𝑖 axis and the 𝜌𝑣𝑖𝑣𝑗  terms represent the 

statistical correlation of the velocity space in the {𝑣𝑖 , 𝑣𝑗} sub-space.  The correlation factors are 

dimensionless and have values in the range −1 < 𝜌 < 1.  In an attempt to improve clarity, the 

two dimensional version of Equation 2.12 will be referred to as the "bi-normal" distribution 

function and the three dimensional case will be referred to as the "tri-normal" distribution 

function.  This naming scheme is somewhat arbitrary due to the fact that Equation 2.12 is also 

known as the Maxwellian distribution function with tensor variance.  The distributions discussed 

in Section 2.2.1 will be referred to as "Maxwellian" and those found in this section as the "d-

normal" distributions. 

 The geometric picture of the bi-normal and tri-normal distribution functions is an 

extremely convenient way to understand how the inclusion of tensor variance affects the 

distributions.  We begin with the bi-normal distribution.  Figure 2.2 (a) shows the probability 

amplitude for the bi-normal distribution with the parameters 𝜎𝑣𝑖 = 𝜎𝑣𝑗 = 2 and 𝜌𝑣𝑖𝑣𝑗 = 0.5,  

which are combined to give the covariance matrix: 
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Figure 2.2:  Plots showing the bi-normal distribution function with the parameters chosen to be: 𝜎𝑣𝑖 = 𝜎𝑣𝑗 = 2 and 

𝜌𝑣𝑖𝑣𝑗 = 0.5.  (a) The bi-normal distribution, shown with the probability amplitude colored according to magnitude.  

The black band indicates the constant probability amplitude contour at the standard deviation.  (b) View of the same 

standard deviation contour seen in (a) in two dimensions. 

 𝛴
⇄
BN = �4 2

2 4� 2.15 

where the subscript "BN" indicates the bi-normal distribution.  The black band around the peak 

of the distribution in Figure 2.2 (a) indicates the standard deviation contour, as in Figure 2.1 (b).  

Figure 2.2 (b) shows the same contour projected onto two dimensions.  The symmetry for the bi-

normal distribution is clearly seen to be elliptical, in contrast with the two dimensional 

Maxwellian distribution where the symmetry was circular.  Other features of note are that the 

standard deviation values along both the 𝑣�𝑖 and 𝑣�𝑗  axes is two, as was the case in Figures 2.1 (b) 

and (c), but the inclusion of the correlation term has significantly altered the morphology of the 

constant probability amplitude manifold.  The effect of the sign of the correlation can also been 

seen in the figure; for this example the correlation was chosen to be positive, resulting in the bulk 

of the ellipse area to be in the two quadrants where 𝑣�𝑖 and 𝑣�𝑗 have the same sign.  A positive 

(negative) 𝜌𝑣𝑖𝑣𝑗 value indicates that if the  𝑣�𝑖 component of a velocity vector is greater (less than)  
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Figure 2.3:  Plots showing the surface of constant probability amplitude for the tri-normal distribution with 

parameters:   𝜎𝑣𝑖 = 𝜎𝑣𝑗 = 𝜎𝑣𝑘 = 2, 𝜌𝑣𝑖𝑣𝑗 = 𝜌𝑣𝑗𝑣𝑘 = 0.5, and 𝜌𝑣𝑖𝑣𝑘 = 0.1.  Parts (a) and (b) show the same 

distribution, but from different vantage points, which allows the ellipsoidal shape of the constant probability surface 

to be seen more clearly. 

zero there is an increased probability that the 𝑣�𝑗 component of the same velocity vector is also 

greater (less than) zero, compared to the case where the correlation is zero. 

 The standard deviation surface for a tri-normal distribution function is shown from two 

vantage points in Figure 2.3.  The distribution function parameters chosen for the figure are:  

𝜎𝑣𝑖 = 𝜎𝑣𝑗 = 𝜎𝑣𝑘 = 2, 𝜌𝑣𝑖𝑣𝑗 = 𝜌𝑣𝑗𝑣𝑘 = 0.5, and 𝜌𝑣𝑖𝑣𝑘 = 0.1, giving the covariance matrix: 

 𝛴
⇄
TN = �

4 2 0.4
2 4 2

0.4 2 4
� 2.16 

where the subscript "TN" indicates the covariance matrix is for the three dimensional (tri-

normal) distribution.  The black ellipses in Figure 2.3 show the intersection of the ellipsoidal 

surface with the planes formed by the coordinate axes, as in Figure 2.1 (d).  The red ellipses are 

intended to illustrate the ellipsoidal nature of the standard deviation surface.  The standard 
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deviation values along the �𝑣𝑖, 𝑣𝑗 , 𝑣𝑘� axial directions are the same as for the Maxwellian 

distribution plotted in Figure 2.1 (d), the inclusion of non-zero correlation, through the off-

diagonal tensor elements, clearly has a large effect on the resulting distribution. 

2.2.3:  The principal axis coordinate system 

 The geometric picture of the distributions discussed in Sections 2.2.1 and 2.2.2 is 

convenient because it allows for a more intuitive interpretation of the tensor variance.  Without 

the geometric picture it can be quite difficult to clearly see the effects of the non-zero correlation 

and anisotropy.  The full expression for the bi-normal distribution is given by inserting Equation 

2.13 into Equation 2.12: 

 

𝐹BN(v�⃑ ) =
1

2𝜋 �1 − 𝜌𝑣𝑖𝑣𝑗2 �
1 2⁄

𝜎𝑣𝑖𝜎𝑣𝑗
exp� 

−1
2(1 − 𝜌𝑣𝑖𝑣𝑗2 )

�
(𝑣𝑖 − 𝑢𝑖)2

𝜎𝑣𝑖2

+
(𝑣𝑗 − 𝑢𝑗)2

𝜎𝑣𝑗2
−

2𝜌𝑣𝑖𝑣𝑗(𝑣𝑖 − 𝑢𝑖)(𝑣𝑗 − 𝑢𝑗)
𝜎𝑣𝑖𝜎𝑣𝑗

�� 

2.17 

With the help of the geometric picture this can be simplified with a coordinate system rotation, 

which is motivated by the elliptical nature of the contour shown in Figure 2.2 (b).  We begin with 

the bi-normal distribution found in Figure 2.2 (b) which is also shown in Figure 2.4.  The black 

arrows in Figures 2.4 indicate the 𝑣�𝑖 and 𝑣�𝑗  coordinate system axes, the red arrows are along the 

major axes of the ellipse.  Figure 2.4 (a) shows the standard deviation contour in the same 

coordinate system as in Figure 2.2 (b).  If the coordinate system is rotated, as indicated by the 

blue arrow in 2.4 (a), such that the longest ellipse axis is in the 𝑣�1 direction the distribution is 

said to be in the "principal axis" coordinate system. 
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Figure 2.4:  An example of a rotation to the principal axis coordinate system in two dimensions.  The black ellipse in 

(a) and (b) is the same standard deviation contour as in Figure 2.2.  (a) Shown in the general coordinate system.  The 

black arrows show the general coordinate system orientation.  The red arrows show the principal axis coordinate 

system directions.  The blue arrow indicates the rotation direction.  (b) The same contour and arrows as in (a), 

except plotted in the principal axis coordinate system.  The major axes of the ellipse can be seen to lie along the 

principal axis ordinates. 

 The principal axis basis set is the coordinate system where the covariance tensor is 

diagonal.  The rotation matrix that provides the transformation from the general {𝑣𝑖 , 𝑣𝑗} 

coordinate system into the principal axis coordinate system {𝑣1, 𝑣2} is composed of columns of 

the eigenvectors of the covariance matrix computed in the {𝑣𝑖 , 𝑣𝑗} system.  In the principal axis 

basis set the diagonal elements of the covariance tensor are the eigenvalues of the covariance 

matrix in the {𝑣𝑖 , 𝑣𝑗} system: 

 𝛴
⇄
PA = �

𝜎𝑣1
2 0

0 𝜎𝑣2
2 � 2.18 

The functional form of the bi-normal distribution in the principal axis coordinate system is 

somewhat simplified, when compared to the same distribution in the general coordinate system 

(as in Equation 2.17): 
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 𝐹PA(𝑣⃑) =
1

2𝜋𝜎𝑣1𝜎𝑣2
exp�

−1
2
�

(𝑣1 − 𝑢1)2

𝜎𝑣12
+

(𝑣2 − 𝑢2)2

𝜎𝑣22
�� 2.19 

Where the drift velocity vector must also been rotated into the principal axis coordinate system 

with the rotation matrix describe above.  In this basis set the correlation is zero, meaning the 

velocity space components are statistically independent and the two dimensional distribution 

above is simply the product of the two one dimensional Maxwellian distributions along the 

𝑣�1 and 𝑣�2 axial directions.  The simplification provided by rotation to the principal axis 

coordinate system is more dramatic in three dimensions.  The functional form of the tri-normal 

distribution function in the general {𝑣𝑖, 𝑣𝑗 , 𝑣𝑘} coordinate system is given below, by combining 

Equations 2.14 and 2.12: 

 

𝐹TN �𝑣
⇀
� =

1

(2𝜋)3 2⁄ �1 − 𝜌𝑣𝑖𝑣𝑗
2 − 𝜌𝑣𝑗𝑣𝑘

2 − 𝜌𝑣𝑖𝑣𝑘
2 + 2𝜌𝑣𝑖𝑣𝑗𝜌𝑣𝑗𝑣𝑘𝜌𝑣𝑖𝑣𝑘�

1 2⁄
𝜎𝑣𝑖𝜎𝑣𝑗𝜎𝑣𝑘

× 

exp�
−1

2(1 − 𝜌𝑣𝑖𝑣𝑗
2 − 𝜌𝑣𝑗𝑣𝑘

2 − 𝜌𝑣𝑖𝑣𝑘
2 + 2𝜌𝑣𝑖𝑣𝑗𝜌𝑣𝑗𝑣𝑘𝜌𝑣𝑖𝑣𝑘)

�
(𝑣𝑖 − 𝑢𝑖)2

𝜎𝑣𝑖
2 +

(𝑣𝑗 − 𝑢𝑗)2

𝜎𝑣𝑗
2

+
(𝑣𝑘 − 𝑢𝑘)2

𝜎𝑣𝑘2
−

2𝜌𝑣𝑖𝑣𝑗(𝑣𝑖 − 𝑢𝑖)(𝑣𝑗 − 𝑢𝑗)
𝜎𝑣𝑖𝜎𝑣𝑗

−
2𝜌𝑣𝑗𝑣𝑘(𝑣𝑗 − 𝑢𝑗)(𝑣𝑘 − 𝑢𝑘)

𝜎𝑣𝑗𝜎𝑣𝑘

−
2𝜌𝑣𝑖𝑣𝑘(𝑣𝑖 − 𝑢𝑖)(𝑣𝑘 − 𝑢𝑘)

𝜎𝑣𝑖𝜎𝑣𝑘
�� 

2.20 

The rotation matrix to the principal axis basis set is, again, given by columns of the covariance 

tensor eigenvectors; the actual covariance tensor elements in the principal axis system are the 

eigenvalues, as discussed above in the two dimensional case: 

 𝛴
⇄
PA = �

𝜎𝑣1
2 0 0

0 𝜎𝑣2
2 0

0 0 𝜎𝑣3
2
�. 2.21 
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Figure 2.5:  An example of a rotation to the principal axis coordinate system for the tri-normal distribution function.  

Parts (a) and (b) show the standard deviation surface for the same distribution.  (a) The black axes are in the general 

coordinate system, the black ellipses show the intersection of the surface with the planes formed by the coordinate 

system axes.  The red arrows indicate the principal axis directions and the red ellipses show the intersection of the 

ellipsoidal surface with the planes formed by the principal axis ordinates.  (b) The surface is shown in the principal 

axis coordinate system. 

The rotation is illustrated in Figures 2.5, which shows the same tri-normal distribution surface as 

Figure 2.3.  Figure 2.5 (a) shows the standard deviation ellipsoid in the {𝑣𝑖, 𝑣𝑗 , 𝑣𝑘} coordinate 

system (the black arrows) and Figure 2.5 (b) shows the ellipsoid in the principal axis {𝑣1, 𝑣2, 𝑣3} 

system (red arrows).  The convention of aligning the longest ellipsoid axis with 𝑣�1 has been 

used, as in the two dimensional example.  The simplification of the functional form of the 

distribution can be seen by combining Equations 2.21 and 2.12: 

 𝐹TN(𝑣⃑) =
1

(2𝜋)3 2⁄ 𝜎𝑣1𝜎𝑣2𝜎𝑣3
exp�

−1
2 �

(𝑣1 − 𝑢1)2

𝜎𝑣1
2 +

(𝑣2 − 𝑢2)2

𝜎𝑣2
2 +

(𝑣3 − 𝑢3)2

𝜎𝑣3
2 �� 2.22 

In the principal axis system the velocity space along each direction is statistically independent 

from the other vector directions.  The three dimensional distribution is simply the product of 

three Maxwellian distributions with different variance values. 
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 The rotation to the principal axis coordinate system does not result in any loss of 

information because the rotation process is defined in terms of tensor rotation; the distributions 

given by Equations 2.20 and 2.22 are exactly the same, one is simply described in a more 

convenient coordinate system.  In addition to retaining the shape of the distribution, there are two 

particularly useful quantities that are invariant when the 𝛴
⇄

 tensor is rotated:  The trace and 

determinant of 𝛴
⇄

 are each preserved with the rotation: 

 Tr �𝛴
⇄
� = 𝜎𝑣𝑖

2 + 𝜎𝑣𝑗
2 + 𝜎𝑣𝑘

2 = 𝜎𝑣1
2 + 𝜎𝑣2

2 + 𝜎𝑣3
2  2.23 

 �𝛴
⇄
� = (1 − 𝜌𝑣𝑖𝑣𝑗

2 − 𝜌𝑣𝑗𝑣𝑘
2 − 𝜌𝑣𝑖𝑣𝑘

2 + 2𝜌𝑣𝑖𝑣𝑗𝜌𝑣𝑗𝑣𝑘𝜌𝑣𝑖𝑣𝑘)𝜎𝑣𝑖
2 𝜎𝑣𝑗

2 𝜎𝑣𝑘
2 = 𝜎𝑣1

2 𝜎𝑣2
2 𝜎𝑣3

2  2.24 

The trace will be seen to be related to the thermal kinetic energy density and the square root of 

the determinant is proportional to the volume of velocity space occupied by the distribution. 

2.2.4:  Other generalized distribution functions 

 The generalization of the Maxwellian distribution to the tri-normal distribution is just one 

of many options for an alternate distribution if the spherically symmetric Maxwellian is found to 

inadequately describe a system.  There are myriad distribution functions used in the sciences to 

model systems, many of these distributions fall under the Pearson hierarchy of distribution 

functions.  Introduced in a series of three papers26–28 between 1895 and 1916, the Pearson 

hierarchy of continuous, one dimensional, parameterized distributions stems from limits of the 

solution to the following differential equation for the probability density, p(x): 

 
𝜕𝑝 (𝑥)
𝜕𝑥

=
−(𝑎 + (𝑥 − 𝜆))

𝑏2(𝑥 − 𝜆)2 + 𝑏1(𝑥 − 𝜆) + 𝑏0
𝑝 (𝑥) 2.25 
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Figure 2.6:  The hierarchy of the Pearson family of distribution functions is shown schematically.  The path from the 

most general distributions to the Maxwellian distribution is outlined in blue.  Several probability distributions that 

are commonly encountered in physics are shown. 

Solutions to this equation fall into two general classes:  When (𝑏12 − 4𝑏2𝑏0) ≥ 0 the solutions 

result in parameterized distributions with support on limited ranges of the real line.  When 

(𝑏12 − 4𝑏2𝑏0) < 0 the solutions for p(x) have support for all real positive and negative values of 

x.  The hierarchy of these distributions is shown schematically in Figure 2.6.  To model the 

velocity space we require support for all real values of x, such distributions are of Type IV and 
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the resulting re-parameterizations and limits.  The path from Equation 2.25 to the Maxwellian 

distribution is shown in blue in Figure 2.6, several common distributions (and the limits required 

to arrive at the distributions) are also shown.   

 Without going into great detail, the process required to arrive at the Maxwellian 

distribution function contains many simplifying assumptions and the Maxwellian can be 

considered the “least general" (or the most restrictive) of any distribution function in the Type IV 

hierarchy.  The Maxwellian retains two parameters:  𝜆, the mean of the distribution, and 𝜎, the 

standard deviation; all other parameters that describe the location and shape of the distribution 

are assumed unimportant when this most simple case is used.  The mathematical convenience of 

the Maxwellian distribution is a direct result of these simplifications. 

 The process of starting with a one dimensional distribution and generalizing to multiple 

dimensions is, as seen in the transition from the Maxwellian to the tri-normal distribution, most 

easily done when the variance is equal in all directions (i.e. the transition from the one 

dimensional to the three dimensional Maxwellian distribution).  If the variance (or some other 

shape parameter) is different in one or more vector directions then tensor variance must be 

incorporated.  The variance can be made tensor with a fairly general method developed primarily 

by economists to form what are referred to as "elliptical distributions" which seem to have led to 

multi-dimensional analogs for the one dimensional distributions that fall under the Pearson Type 

VII heading29–31.  The purpose of this discussion is to point out that, after the three dimensional 

Maxwellian distribution, the tri-normal distribution is the next most simple distribution function.  

The type of analysis presented in this dissertation for the tri-normal distribution could, in 

principal, be repeated for the tensorized generalization of any one dimensional distribution.  The 
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tri-normal is the next step up in terms of complexity and still retains the benefit of being quite 

restrictive in terms of parameterization constraints. 

2.2.5:  Applicability of the tri-normal distribution function model 

 The use of the Maxwellian velocity distribution function to describe gaseous system 

dynamics dates back to Clerk-Maxwell’s work in the 1860’s.25  In his 1867 paper Clerk-Maxwell 

derives the velocity distribution that would take his name from mostly geometrical 

considerations.  Of particular interest from this seminal work is Equation 27 and the 

accompanying text: 

"When the gas moves in mass, the velocities now determined are compounded with the 

motion of translation of the gas. 

 When the differential elements of the gas are changing their figure, being 

compressed or extended along certain axes, the values of the mean square of the velocity 

will be different in different directions.  It is probable that the form of the function will 

then be 

𝑓1(𝜉, 𝜂, 𝜁) =
𝑁1

αβγπ3 2⁄ 𝑒
−(𝜉

2

𝛼2+
𝜂2
𝛽2+

𝜁2
𝛾2)

. . . . . (27) 

where 𝛼, 𝛽, and 𝛾 are slightly different.  I have not, however, attempted to investigate the 

exact distribution of velocities in this case, as the theory of motion of gases does not 

require it. 
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 When one gas is diffusing through another, or when heat is being conducted 

through a gas, the distribution of velocities will be different in the positive and negative 

directions, instead of being symmetrical, as in the case we have considered."  (p. 64) 

Where the Greek letters 𝜉, 𝜂, and 𝜁 are the three velocity space coordinates.  One can readily 

recognize the above equation as the tri-normal distribution function, in the principal axis basis 

set, Equation 2.22, without drift terms (which he discusses in the first and last quoted sentences).  

Clerk-Maxwell’s comment about the differential elements changing figure, due to compression 

or extension, is also quite applicable to the preceding discussion of the geometrical picture of the 

Maxwellian and tri-normal distributions.  In a follow up paper Clerk-Maxwell32 used the same 

basic geometric representation of the distributions as spheres and ellipsoids and showed that a 

system is stable only when spherical symmetry is present (in more modern parlance he is 

referring to a system in a state of force-free equilibrium).  He goes on to show that a system in a 

force-balanced equilibrium must exhibit extension or compression along the lines of "principal 

tension" or "principal stress" which are the same as the principal axis directions discussed in 

Section 2.2.3.  There seem to be two main reasons that the shape of the velocity space 

distribution function was ignored in the ensuing decades.  The first is the fact that the initial 

development of statistical physics concerned itself with the very specific case of a system in a 

static force-free equilibrium, the formulation of statistical mechanics by Clerk-Maxwell, and 

more concretely with that of Boltzmann, was in terms of a phase space that consisted of 

configuration space and energy space.  The mechanics was largely developed with an energy 

distribution and not a velocity distribution.  The second reason the anisotropy was omitted in the 

development of the statistical fluids picture is that the forces acting on most gases do not 

generally result in large deviations from the spherical distribution shape (and such deviations are 
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difficult to measure).  These considerations may explain why this more general form of the 

distribution seems to have been ignored in the ensuing decades.   

 The idea of generalizing the spherically symmetric distribution was rejoined some nine 

decades later, when strong magnetic fields were added to plasma physics experiments.  In such 

cases the deviation from the spherically symmetric Maxwellian velocity space distribution was 

recognized as an important issue.  The anisotropy was accounted for within two basic 

hierarchies:  That of Braginskii33 and that of Chew, Goldberger, and Low (CGL)34.  The 

approach outlined in the famous review article by Braginskii was to account for the deviation by 

allowing a "Maxwellian plus perturbation" velocity space distribution and through the use of 

more complicated transport coefficients, which are allowed to vary based on spatial orientation.  

The CGL approach was to treat the velocity space distribution as a combination of a Maxwellian 

distribution with "non-scalar" (tensor) variance and additive perturbation distributions.  The CGL 

approach provides for separate pressures parallel and perpendicular to the magnetic field 

direction, due to the different collision rates parallel and perpendicular to the magnetic field that 

particles encounter in such environments.  The mechanism used to arrive at the anisotropic 

pressure tensor required Taylor expansion of the Boltzmann equation in the small quantity that is 

the ion mass to charge ratio (which, for the dusty plasma system of interest here, is a quantity 

that is much larger than unity).  As Chew et al. acknowledge, the general case of a Maxwellian 

distribution with non-scalar variance is more complicated than in the model they discuss and had 

not been previously treated (except, as we have seen, in passing remarks by Clerk-Maxwell and 

also very briefly by Spitzer35).  A literature search has indicated that the more general non-scalar 

Maxwellian distribution model remains unexplored to this day.  (An excellent account of the 

earlier development of the normal distribution was given by Stahl36.) 
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2.3:  Bayesian probability theory 

2.3.1:  Introduction to Bayesian probability theory 

 Bayesian probability theory, as used here, is simply a more coherent formulation of the 

standard probability theory.  The general idea is that by starting with a more complete 

mathematical framework of probability theory much of the ambiguity associated with the zoo of 

hypothesis tests and associated test statistics can be avoided in the description of a probabilistic 

or statistics based system.  Bayesian probability theory is based on four logical rules that govern 

the mathematics associated with probabilities:  A sum rule (Equation 2.26), a product rule 

(Equation 2.27), Bayes' theorem (Equation 2.28), and marginalization (Equation 2.29).  Much of 

the discussion that follows is adapted from Sivia37.  Beginning with the sum rule: 

 prob (𝑋|𝐼) + prob (𝑋
_

|𝐼) = 1 2.26 

which means that the probability of X occurring given the known information, I, plus the 

probability of X not occurring given the same information is unity.  The product rule: 

 prob (𝑋,𝑌|𝐼) = prob (𝑌|𝐼)prob (𝑋|𝑌, 𝐼). 2.27 

In words, the probability of X and Y given I is equal to the product of the probability of Y given 

I and the probability of X given Y and the information.  Bayes' theorem: 

 prob (𝑋|𝑌, 𝐼) =
prob (𝑌|𝑋, 𝐼)prob (𝑋|𝐼)

prob (𝑌|𝐼)
 2.28 

The terms within Bayes' theorem have special names; for example, suppose X is some 

hypothesis and Y is a set of data.  The term on the left hand side of Equation 2.28, prob(X|Y,I) = 

prob(hypothesis|data,I), is known as the posterior probability.  On the right hand side of Equation 

2.28 the term prob(Y|X,I) = prob(data|hypothesis, I) is known as the likelihood function of the 
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data given the hypothesis and information, prob(X|I) = prob(hypothesis|I) is known as the prior 

probability function for the hypothesis given I, and the term prob(Y|I) = prob(data|I) is known as 

the evidence (or marginal likelihood) for the data given I.  Finally, the marginalization rule: 

 prob (𝑋|𝐼) = � prob (𝑋,𝑌|𝐼) 𝑑𝑌
∞

−∞
 2.29 

The process of marginalization allows for an unknown quantity ("Y" here) to be accounted for in 

the probabilistic analysis of a system without explicit knowledge of the value.  These four logical 

guides act as the coherent framework for analyzing a system.  There are many specific 

applications of Bayesian based statistics, but for the purposes of this discussion the framework 

allows for a very clear process of comparing two different models for a given data set.   

2.3.2:  Bayesian model selection 

 The comparison of models used to describe a given data set is a vast subject with a long 

history.  Very briefly, the standard (non-Bayesian) approach involves several steps:  Acquisition 

of a data set, hypothesizing that a single model describes the data, selecting a statistical test (from 

among a rather large number of possibilities), calculating the appropriate test statistic, and 

arbitrarily selecting a cut-off value of the test statistic above or below which the hypothesis will 

be either accepted or rejected.  The process is rife with ambiguity (for example, which statistical 

test to use and the cut-off value to use), is open to false positive and false negative conclusions, 

and often has difficulty with large data sets (with “large” generally meaning data sets with ~500 

or more data points).  The Bayesian model comparison process avoids some of these issues by 

recasting the problem as a comparison of the posterior probabilities of two different models 

given data and any related information in hand. 
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 Given a data set consisting of N measurements (collectively referred to as "D") the 

program for comparing two models ("A" and "B") is to calculate the ratio, K, of the posterior 

probability for each of the models: 

 𝐾 ≡
prob (𝐴|𝐷, 𝐼)
prob (𝐵|𝐷, 𝐼)

 2.30 

If the posterior probability for model A, given the data, is greater than the posterior probability 

for model B, given the same data, then K>1 and model A is selected as the preferred model.  To 

add slight complication there is a scale for interpreting values of the ratio38.  It will suffice for 

this discussion to note that values of K > 100 are considered "decisive" (i.e. when the posterior 

probability of model A given the data is two orders of magnitude higher than the posterior 

probability of model B given the data it can be said that the evidence supporting model A is 

decisive compared to the evidence for model B).  It will be seen that exact choice for the cutoff 

value for K is unimportant in this discussion; the K values that will be encountered in the 

ensuing chapters are many orders of magnitude larger than unity.  Additionally, the framework 

provided by the Bayesian approach, through the marginalization rule, provides an unambiguous 

method to account for the finite measurement error in the acquisition of data and a clear method 

to penalize a model if it has extra parameters.  Accounting for the measurement uncertainty will 

prove particularly useful in the comparison of the two models for the velocity space because of 

the slight anisotropy in the velocimetry diagnostic that was used in the experiments.  The 

inclusion of the penalty for extra model parameters also proved to be extremely useful; if two 

models are similar but one contains extra parameters, the model with extra parameters will 

always provide a better "fit" to the data.  By inspecting the Maxwellian velocity distribution 

function model (Equation 2.11) and the tri-normal velocity distribution function model (Equation 

2.20) the need for a method to penalize for extra parameters is immediately apparent:  The 
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Maxwellian model contains one independent parameter (𝜎𝑚) while the tri-normal model contains 

six independent parameters (𝜎𝑣𝑥, 𝜎𝑣𝑦 , 𝜎𝑣𝑧 , 𝜌𝑣𝑥𝑣𝑦 , 𝜌𝑣𝑦𝑣𝑧 , and 𝜌𝑣𝑥𝑣𝑧). 

 The process for calculating the ratio of posterior probabilities given two models will be 

outlined in the remainder of this section in general terms; the process will then be illustrated in 

Section 2.3.3 with a relatively simple example.  Returning to the N measured quantities and the 

models A and B, the calculation of the K ratio begins by applying Bayes' theorem to the 

posterior probability for each model in Equation 2.30: 

 𝐾 = �
prob (𝐷|𝐴, 𝐼)prob (𝐴|𝐼)

prob (𝐷|𝐼)
� �

prob (𝐷|𝐼)
prob (𝐷|𝐵, 𝐼)prob (𝐵|𝐼)

� 2.31 

For all applications in this work the data set used in the comparison is the same for both models, 

meaning the evidence terms (the prob(D|I)) cancel.  The remaining terms in 2.31 can be 

rearranged to give the product of the ratio of the likelihood for the data given each of the models 

and the ratio of the prior probability for each model: 

 𝐾 = �
prob (𝐷|𝐴, 𝐼)
prob (𝐷|𝐵, 𝐼)

� �
prob (𝐴|𝐼)
prob (𝐵|𝐼)

�. 2.32 

The ratio of prior probabilities (the rightmost ratio in Equation 2.32) requires knowledge of the 

applicability of each model before any of the actual data is considered.  This is summarized 

nicely by Sivia:  "As usual, probability theory warns us immediately that [the value of K] 

depends partly on what we thought about the two [models] before the analysis of the data.  To be 

fair, we might take the ratio of the prior terms [...] to be unity; a harsher assignment could be 

based on the track records of the theorists!37"  In all cases considered here the ratio of prior 

probabilities is taken to be one, so as to provide a "fair" comparison.  By making the choice that 
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the prior probability ratio is unity, the expression for K reduces to the ratio of the likelihood for 

the data set given each of the models: 

 𝐾 =
prob (𝐷|𝐴, 𝐼)
prob (𝐷|𝐵, 𝐼)

 2.33 

The remaining task is to find the expression for the likelihood for the data given each of the 

models, each of these expressions will incorporate finite measurement error and penalization for 

the parameters contained in the model.  This process is described in detail, for a simple model, in 

the next section. 

2.3.3:  A simple example 

 To illustrate the process of calculating the likelihood for a data set the following example 

will be used:  The likelihood function for a one dimensional Maxwellian model will be 

calculated for a data set consisting of N data points.  The measurement of the data points will 

have finite uncertainty and the model will be penalized for an unknown standard deviation value.  

The one dimensional Maxwellian distribution is given by Equation 2.9, the various subscripts 

and the drift term will be omitted in this discussion: 

 𝐹 (𝑣) =
1

√2𝜋 𝜎
exp�

−𝑣2

2𝜎2
� 2.34 

In this section each of the components of the process will be discussed for this simple case in 

some detail, to facilitate the discussion of the much more complex distribution comparison that 

will appear in Chapter 4. 
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2.3.3.1:  Penalizing for unknown distribution parameters 

The first task is to assess a penalty for the unknown parameter 𝜎; the process begins with 

marginalization of the likelihood function for the combined data set over 𝜎, followed by use of 

the product rule: 

 prob (𝐷|𝐴, 𝐼) = ∫ prob (𝐷|𝜎,𝐴, 𝐼)prob (𝜎|𝐴, 𝐼)𝑑𝜎 2.35 

The last term in the integrand, prob(𝜎 |A,I), is the prior probability of 𝜎, given the model.  This 

prior probability function accounts for any a priori knowledge of 𝜎.  Here it will be assumed that 

�  can take any value 0 < 𝜎 ≤ 𝜎𝑚𝑎𝑥  with equal likelihood; that is, the prior probability for the 

parameter will be assumed uniform: 

 

prob (𝜎|𝐴, 𝐼) = �
1

𝜎max − 𝜎min
,𝜎min < 𝜎 ≤ 𝜎max

0         , elsewhere
�

= �
1

𝜎max
, 0 < 𝜎 ≤ 𝜎max

0    ,    elsewhere
� 

2.36 

The form of the prior probability found in Equation 2.36 is to ensure proper normalization.  

Next, given the data set and model, there will be a value of the parameter 𝜎 that gives the best fit, 

𝜎0, and an associated uncertainty in the parameter value, 𝛿𝜎.  If the uncertainty in 𝜎 is assumed 

to be normally distributed about the optimal value it can be incorporated into the likelihood 

function via convolution: 

 prob (𝐷|𝜎,𝐴, 𝐼) = prob (𝐷|𝜎0,𝐴, 𝐼)exp �
−(𝜎 − 𝜎0)2

2(δσ)2
� 2.37 

Inserting Equation 2.36 and 2.37 into the likelihood function found in Equation 2.35 gives: 
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 prob (𝐷|𝐴, 𝐼) =
prob (𝐷|𝜎0,𝐴, 𝐼)

𝜎max
� exp�

−(𝜎 − 𝜎0)2

2(δσ)2
�𝑑𝜎

𝜎max

0

 2.38 

The integral can be carried out to give: 

 prob (𝐷|𝐴, 𝐼) = �
𝜋
2
δσ
𝜎max

�erf �
𝜎0

√2δσ
� − erf �

𝜎0 − 𝜎max
√2δσ

�� prob (𝐷|𝜎0,𝐴, 𝐼) 2.39 

Before finding the values for 𝜎0 and 𝛿𝜎 the finite uncertainty in the measurement process must 

be included. 

2.3.3.2:  Finite measurement error 

 The combined likelihood for the N measurements given model A and the optimal value 

of the standard deviation, 𝜎0, is the product of the likelihood values for the N individual 

measurements: 

 prob (𝐷|𝜎0,𝐴, 𝐼) = �prob (𝐷𝑘|𝜎0,𝐴, 𝐼)
𝑁

𝑘=1

= �prob (𝑣𝑘|𝜖,𝜎0, 𝐼)
𝑁

𝑘=1

 2.40 

where 𝜖 is the magnitude of the known measurement uncertainty and "A" has been absorbed into 

"I", for simplicity.  In order to incorporate the measurement error, 𝜖, the assumption is made that 

the uncertainty is normally distributed, as is standard.  This means that if the kth measured value 

was found to be vk the "true" value of the quantity being measured, 𝑣�𝑘, was taken from a normal 

distribution centered at 𝑣�𝑘 with a standard deviation 𝜖: 

 prob (𝑣𝑘|𝑣�𝑘, 𝜖,𝜎0, 𝐼) =
1

√2𝜋𝜖
exp �

−(𝑣𝑘 − 𝑣�𝑘)2

2𝜖2
� 2.41 
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The actual value of 𝑣�𝑘 is, of course, unknown; to incorporate the uncertainty we turn to the 

likelihood for an individual measurement given the model (the right-most term in Equation 

2.40), marginalize for 𝑣�𝑘, and apply the product rule: 

 prob (𝑣𝑘|𝜖,𝜎0, 𝐼) = � prob (𝑣𝑘|𝑣�𝑘, 𝜖,𝜎0, 𝐼)prob (𝑣�𝑘|𝜖,𝜎0, 𝐼)𝑑𝑣�𝑘
∞

−∞
 2.42 

The first term in Equation 2.42 is given by Equation 2.41, this is the term through which the 

measurement uncertainty is incorporated into the analysis.  The second term in Equation 2.42 is 

the likelihood for the "true" measured value, 𝑣�𝑘, given the model: 

 prob (𝑣�𝑘|𝜖,𝜎0, 𝐼) =
1

√2𝜋𝜎0
exp �

−𝑣�𝑘2

2𝜎02
� 2.43 

Combining Equations 2.41 and 2.43 with Equation 2.42 gives the likelihood for the value that 

was actually measured, vk, given the model and measurement uncertainty: 

 prob (𝑣𝑘|𝜖,𝜎0, 𝐼) =
1

2πϵ𝜎0
� exp�

−(𝑣𝑘 − 𝑣�𝑘)2

2𝜖2
� exp�

−𝑣�𝑘2

2𝜎02
� 𝑑𝑣�𝑘

∞

−∞

 2.44 

Integration then gives: 

 prob (𝑣𝑘|𝜖,𝜎0, 𝐼) =
1

�2𝜋(𝜖2 + 𝜎02)
exp�

−𝑣𝑘2

2(𝜖2 + 𝜎02)
� 2.45 

This expression for the likelihood of the kth measurement can then be used with the expression 

for the likelihood of the entire data set given the model and � 0, Equation 2.40: 

 prob (𝐷|𝜎0,𝐴, 𝐼) = �(2𝜋(𝜖2 + 𝜎02))−1 2⁄ exp�
−𝑣𝑘2

2(𝜖2 + 𝜎02)
�

𝑁

𝑘=1

 2.46 
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To collect the progress to this point, Equations 2.46 and 2.39 are combined to give the likelihood 

for the entire data set, given model A: 

 

prob(𝐷|𝐴, 𝐼) = �
𝜋
2
δσ
𝜎max

�erf �
𝜎0

√2δσ
� − erf �

𝜎0 − 𝜎max
√2δσ

�� × 

�(2𝜋(𝜖2 + 𝜎02))−1 2⁄ exp�
−𝑣𝑘2

2(𝜖2 + 𝜎02)
�

𝑁

𝑘=1

 

2.47 

The terms that appear before the product can be thought of as the penalty that is assessed for the 

unknown parameter 𝜎. 

2.3.3.3:  Calculation of the parameter values 

 The remaining task is to find the optimal parameter value, 𝜎0, and the associated 

error,𝛿𝜎.  To find these quantities the likelihood function for the data given 𝜎 and the model is 

maximized.  This likelihood function is obtained by combining Equations 2.37 and 2.46: 

 

prob(𝐷|𝜎,𝐴, 𝐼) = 

exp �
−(𝜎 − 𝜎0)2

2(δσ)2 � �2𝜋(𝜖2 + 𝜎02)�
−𝑁 2⁄

exp�
−1

2(𝜖2 + 𝜎02)
�𝑣𝑘2
𝑁

𝑘=1

� 
2.48 

The natural logarithm of this equation is defined to be L: 

 

𝐿 ≡ ln(prob(𝐷|𝜎,𝐴, 𝐼)) 

=
−(𝜎 − 𝜎0)2

2(δσ)2 − 𝑁 ln ([2𝜋(𝜖2 + 𝜎02)]1 2⁄ ) −
1

2(𝜖2 + 𝜎02)
�𝑣𝑘2
𝑁

𝑘=1

 
2.49 

The optimal value 𝜎0 is found by minimizing L:  The partial derivative of L is taken with respect 

to 𝜎0, set equal to zero, and evaluated for 𝜎 = 𝜎0: 
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0 = �
𝜕𝐿
𝜕𝜎0

�
𝜎=𝜎0

 

𝜎02 =
1
𝑁
�𝑣𝑘2
𝑁

𝑘=1

− 𝜖2 

2.50 

The first term on the right is the standard expression for the variance.  To find the value for 𝛿𝜎, 

we return to Equation 2.49, for L, and replace the summation with the previous result: 

 𝐿 =
−(𝜎 − 𝜎0)2

2(δσ)2
− 𝑁 ln ��2𝜋(𝜖2 + 𝜎02)� −

𝑁
2

 2.51 

The value for 𝛿𝜎 is obtained through the second partial derivative of L with respect to�𝜎0: 

 

0 = �
𝜕2𝐿
𝜕𝜎02

�
𝜎=𝜎0

 

δσ2 =
(𝜎02 + 𝜖2)2

𝑁(𝜎02 − 𝜖2)
 

2.52 

This result mirrors what one would expect:  The uncertainty in the optimal parameter value 

decreases when more data are available (as N becomes large).  The fact that 𝛿𝜎 becomes large in 

the case where the measurement error approaches 𝜎0 also follows expected behavior (in the 

extreme case where the square of the measurement error is larger than 𝜎02 the parameter 

uncertainty, 𝛿𝜎, becomes imaginary, in such a case one may consider performing a different 

experiment).  Equation 2.52 contains an additional point worth noting, which is somewhat subtle:  

As data sets become large the uncertainty in the optimal parameter values decrease, without 

regard to how well the optimal parameter value describes the data.  As the number of data points 

increases the chance of the optimal parameter value being skewed in an important way by outlier 

data points decreases.  Regardless of how well a given model ultimately describes the data one 

can obtain an optimal value for any parameters, and given enough data points, a low value for 
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the uncertainty in the parameter values.  If the model does a poor job in its description of a data 

set it will become apparent by a relatively low value of the likelihood of the model, given the 

information, not by low parameter uncertainty. 

2.3.3.4:  Summary 

 To summarize the process of calculating the likelihood for the example:  After the data 

set and model were defined, the likelihood function was penalized for the unknown parameter � . 

Finite measurement error was then included, via marginalization, and the process for finding the 

optimal value of the unknown parameter and the associated uncertainty in the parameter were 

discussed.  The likelihood for the data set given the model defined in Equation 2.34 is: 

 

prob(𝐷|𝐴, 𝐼) = �
𝜋
2
δσ
𝜎max

�erf �
𝜎0

√2δσ
� − erf �

𝜎0 − 𝜎max
√2δσ

�� × 

 (2𝜋(𝜖2 + 𝜎02))−𝑁 2⁄ exp�
−1

2(𝜖2 + 𝜎02)
�𝑣𝑘2
𝑁

𝑘=1

� 

2.53 

The optimal parameter value and the associated uncertainty are obtained by minimizing the first 

and second derivatives of the logarithm of the likelihood function for the data given 𝜎, A, and I 

(Equations 2.49, 2.50, 2.51, and 2.52), respectively: 

 

𝐿 ≡ ln(prob(𝐷|𝜎,𝐴, 𝐼))  

= �
−(𝜎 − 𝜎0)2

2(δσ)2 �  − N  ln ��2𝜋(𝜖2 + 𝜎02)� −
1

2(𝜖2 + 𝜎02)
�𝑣𝑘2
𝑁

𝑘=1

  

0 = �
𝜕𝐿
𝜕𝜎0

�
𝜎=𝜎0

 

0 = �
𝜕2𝐿
𝜕𝜎02

�
𝜎=𝜎0

 

2.54 
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This process gives the numerator of the expression for the posterior probabilities ratio given in 

Equation 2.33.  The process would be repeated for the same data set given an alternate model, B.  

The models used in the actual data analysis are three dimensional and one contains six 

parameters, which results in considerably more complicated results than in Equations 2.53 and 

2.54, but the process is essentially the same as that used for the simple model discussed here.  
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Chapter 3:  Experimental Apparatus 

 The experiments described in this dissertation were performed on the Three dimensional 

Dusty Plasma eXperiment (3DPX) at Auburn University.  3DPX consists of several different 

sub-systems that work in conjunction with one another to produce and diagnose the dusty plasma 

systems of interest.  Section 3.1 describes the 3DPX apparatus and contains a short description of 

the plasmas produced within 3DPX.  A brief introduction to the particle image velocimetry 

diagnostic and its application to dusty plasma systems is given in Section 3.2. 

3.1:  3DPX 

 The 3DPX device is the combination of several different sub-systems that work to 

provide a repeatable and (relatively) consistent plasma environment in which experiments are 

performed.  The physical sub-systems that make up 3DPX will be discussed in Section 3.1.1; 

these systems include the vacuum vessel (Section 3.1.1.1), the gas flow (Section 3.1.1.2), the 

plasma source (3.1.1.3), and the dust (Section 3.1.1.4).  Section 3.1.2 contains a qualitative 

description of the plasma conditions and environment in which the experiments described in 

Chapter 4 were performed. 

3.1.1:  3DPX sub-systems 

3.1.1.1:  Vacuum vessel 

 The experimental volume of 3DPX is found within two stainless steel vacuum crosses 

connected at International Organization for Standardization (ISO) 100 flange surfaces (which  
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Figure 3.1:  (a) Photograph of the 3DPX device.  (b) Schematic view of the connected vacuum crosses.  (c) Detailed 

schematic of the "experiment end" of 3DPX. 

feature a nominal tube diameter of 102 mm) compression sealed with o-rings, a photograph can 

be seen in Figure 3.1 (a) and the device is shown schematically in Figures 3.1 (b) and (c).  The 

section labeled "Experiment End" in Figure 3.1 (b) is shown in more detail in Figure 3.1 (c), and 

is easily identifiable in the photograph due to the large rectangular window.  The experimental 

end of 3DPX is a custom six-way vacuum cross made of stainless steel, the total length of this 

section is approximately 17", the inner surface of the cross has a nominally circular cross section 

with a diameter of 4".  The large window seen in Figures 3.1 was included to allow optical 

diagnostic access, the window is approximately 10" long and 3" high, as indicated in Figure 3.1 
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(c).  The section labeled "Service End" in Figure 3.1 (b) is a standard 5-way vacuum cross with 

the same inner cross section as the experimental end. 

 The large window on the service end of the vessel forms a vacuum tight seal to the main 

chamber via a compressed o-ring.  The remaining ports of the two crosses are terminated with 

either acrylic windows (for optical access), stainless steel flanges with feed-throughs (to allow 

electrical connections to electrodes or gas system access), or with blank stainless steel caps.  The 

remaining sub-systems and diagnostics must all gain access to the interior volume of the 

chamber through one of the flange terminations.  The fact that the flange terminations are all of 

the standard "off the shelf" variety provides for a good deal of flexibility to the experimentalist; 

the vacuum vessel basically serves as a physical super-structure on which an individual 

experiment can be designed and carried out. 

3.1.1.2:  Gas flow 

 The gas flow system consists of two basic systems:  Pumping (out-flow, or "sink") and 

neutral gas inflow ("source").  The vacuum pump used for 3DPX is an ULVAC GLD-040 series 

oil-sealed mechanical roughing pump.  The pump is connected to the vacuum vessel structure via 

a 1.5" diameter reinforced plastic tube which is connected to the "service" end of the experiment 

at one of the flanges.  With all vacuum terminations sealed the pump provides a base neutral gas 

pressure of approximately 5-10 mTorr.  A neutral gas is introduced into the vacuum vessel 

through an additional connection found on the service end of the experiment.  A tank of ultra-

high purity argon is connected in series with the vacuum chamber and an MKS Type 1179A 

mass flow controller.  The mass flow controller allows a user selectable flow rate of neutral 

argon gas to be introduced into the vacuum vessel.  The flow rate of the mass flow controller is 
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adjusted until the source flow rate and sink rate (from the pump) are balanced, which results in a 

constant pressure of neutral gas within the experimental volume.  Typical neutral gas pressures 

for experiments within 3DPX range from 50 mTorr to 400 mTorr (approximately 6.6 to 53.3 Pa).  

The mass flow controller gas flow rate is adjusted with a user-selectable bias voltage specified 

within a custom LabView program developed for 3DPX and is monitored with a thermocouple 

based pressure gauge manufactured by the Kurt J. Lesker corporation (model KJC-6000). 

3.1.1.3:  Plasma source 

 The plasma source used in 3DPX is a dc glow discharge system.  This type of plasma 

source is, conceptually, quite simple; an electrode is electrically biased with respect to a different 

electrode.  When the resulting electric field is large enough to overcome the neutral gas 

ionization energy the outermost electrons are ripped off of an initially neutral atom resulting in a 

free electron and a positively charged ion.  The electrode configuration used for this experiment 

can be seen in Figures 3.2 (a) and (b), the circular brass disc is two inches in diameter (see 

Figures 3.2 (c) and (d) for a closer view).  The anode is electrically biased with a Glassman 

MK1.5P50L power supply to several hundred volts with respect to the vacuum chamber walls 

(see Figure 3.2 (e) for a circuit diagram). 

 The brass disc acts as the anode in the discharge circuit and draws a constant discharge 

current (Id) of electrons from the plasma, values of which can be varied between 0 and 50 mA.  

The top and lateral surfaces of the anode are covered with a dielectric paste (Torr Seal) to ensure 

that the collected current of electrons nominally originates in the region below the anode (this 

paste is the white substance seen in Figure 3.2 (d)).  The anode is suspended in the experimental 

volume with a 1/8" diameter hollow rod which is fed through the flange on the top of the 

experimental section of the vacuum vessel and the anode is electrically connected to the power  
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Figure 3.2:  (a) and (b) Photographs of the anode inside of the vacuum vessel in the position used for the experiment. 

(c) and (d) Photographs of the anode outside of the chamber.  (e) Circuit diagram for the dc glow discharge plasma 

source. 

supply with an insulated wire inside of the support rod.  The interior of the chamber also features 

a flat stainless steel surface (as seen covered with a layer of particulate matter in Figures 3.2 (a) 

and (b)) which is in direct electrical contact with the vacuum chamber walls, the chamber walls 
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and the metallic surface are connected to the laboratory and power supply ground and 

collectively act as cathode in the discharge circuit.  The flat surface is a feature that has been 

added in an attempt to regularize the structure of the electric field within the experimental 

volume.  The spacing between the bottom surface of the anode and the flat surface on which the 

dust sits was 4.7 cm in the experiment described below.  The exact separation distance, 

orientation of the anode asymmetry, and positions of the metal sheets that form the flat surface 

all have large effects on the characteristics of the plasma that is produced.  The anode/cathode 

orientation used for these experiments was selected for the simple reason that it produced fairly 

large dust clouds that were confined to the region near the anode over a fairly wide range of 

discharge currents and neutral gas pressures. 

3.1.1.4:  The dust 

 The final "sub-system" of the experiment is the particulate matter that acts as the dust 

component of the plasma.  For these experiments the dust is comprised of 1.5 ± 0.5 𝜇m radius 

silica particles.  The grains are nominally spherical and have individual masses of 3.60 × 10-14 ± 

0.13 × 10-14 kg.  The particles were acquired from Potters Industries Inc., where they are 

manufactured to be used as a dopant in molded plastics fabrication to increase the durability and 

strength of the manufactured parts.  The dust is introduced into the system by placing an 

approximately 5 mm thick flat sheet of the particles on the metallic surface below the anode, as 

can be seen in Figures 3.2 (a) and (b).   

 When a plasma is initiated in 3DPX a small fraction of the dust grains become levitated 

when the discharge arcs (transient lightning-like electric field enhancements most likely due to 

ionization instabilities).  After the initial "kick" up into the plasma environment a grain acquires 

charge by collecting a fraction of the ambient ions and electrons, because the electron population 
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has a higher mobility than the ion population the grain collects more electrons than ions which 

results in a net negative charge.  A simplified qualitative description of the process in which a 

grain becomes levitated in the bulk plasma is as follows.  If the trajectory of a grain is such that it 

falls back into the region near the anode, the force of gravity pulling the grain down towards the 

dust pile may, in some cases, be balanced by the upward electrostatic force in the sheath/pre-

sheath region above the dust pile.  In the vast majority of such events a grain moves with a 

velocity that is too large for the electrostatic force to slow the particle to zero velocity before it 

passes through the sheath and re-enters the dust pile.  The dust grains that form the dust cloud 

and become long-term participants in the plasma are rare cases, the success rate of injecting 

particles into the cloud can be increased by initiating cloud formation at higher neutral pressures 

where the dust-neutral drag force assists the process by slowing the grains via collisions as they 

fall. 

3.1.2:  Description of the plasma environment 

 DC glow discharge plasmas are widely used in both industrial and research settings 

because they are conceptually simple and fairly easy to produce.  One of the main benefits of the 

dc glow discharge plasma source is that "islands" of steady state operation can be found within 

the parameter space defined by the electrode configuration, neutral pressure, and discharge 

current.  With the electrode configuration shown in Figures 3.2 (a) and (b) the plasma was found 

to be more or less steady state for pressures ranging from ~70 - 250+ mTorr with discharge 

currents ranging from 2 - 15 mA.  The criteria for a "steady state" system consisted of two times 

scales:  The long time scale criteria were that a dust cloud could form, remain at a given location, 

and retain its approximate size for time scales of several hours and the shorter time scale 

criterion was that the plasma discharge circuit did not arc, which causes the cloud to either  
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Quantity Value Quantity Value 

ni 1014 m-3 ndust 1010 m-3 

qdust 4400 e- mdust 3.6 x 10-14 kg 

rdust 10-6 m 𝜆𝐷,𝑑 10-3 m 

𝜆𝐷,𝑖 10-4 m 𝜆𝐷,𝑒 10-3 m 

kBTi= kBTn 1/40 eV kBTe 5 eV 

𝑈𝑡ℎ,𝑖 3.8× 1012 eV/m3 𝑈𝑡ℎ,𝑒 7.5× 1014 eV/m3 

𝑈𝑡ℎ,𝑛 6.2× 1015 eV/m3   

Table 3.1:  Approximate plasma and dust parameters. 

disappear completely or to momentarily "jump" out of position and subsequently "fall" and 

violently oscillate about the previous equilibrium position.  For the experiment described in 

Chapter 4 the electrode configuration was the same as described in Section 3.1.1.3, the argon 

neutral pressure was 132 mTorr, and the discharge current was 5.37 mA. 

 The characteristics of the background plasma species (ions, electrons, and neutral gas) are 

difficult to diagnose when dust is present in the system; due to complications related to surface 

contamination for probe based diagnostics and because of the low plasma density limitations for 

optical diagnostics.  Probe based measurements in similar discharge configurations, but without 

dust present in the chamber, have given the "typical" approximate plasma parameters listed in 

Table 3.1.  Acquisition of more accurate background species parameters, particularly for dc glow 

discharge plasmas and more generally for any type of discharge in which a significant dust 

component is observed, is an ongoing avenue of research in the dusty plasma physics community 

and is beyond the scope of this work. 

 The dust component of the plasma, on the other hand, can readily be investigated within 

3DPX.  The specific diagnostic technique used for this work, particle image velocimetry, will be 
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discussed in detail in Section 3.2 but several general observations will be noted here in order to 

facilitate the discussion that follows.  First, the "steady state" criteria described above ensure that 

the dust component remains more or less stable for time scales on the order of hours (and likely 

longer), this means that any observation or diagnostic can be performed over a period of time 

(several hours) on a single dust cloud.  This removes the ambiguity associated with the 

assumption that repeated formation/destruction/re-formation cycles result in identical ensembles 

of dust particles.  The experimentally selectable parameters used in the experiments described 

below (electrode configuration, neutral pressure, and discharge current) were also carefully 

chosen to ensure that the dust component formed a single cloud in a single location within the 

experimental volume, this was done so that the entire structure could be measured quickly and 

efficiently.  Finally, the discharge parameters were found where the cloud was as quiescent as 

possible, a "stable" cloud, free of waves and other obvious large scale transport, was chosen in an 

attempt to simplify the subsequent analysis. 

3.2:  Particle Image Velocimetry 

 Dusty plasmas containing large (𝑟𝑑 ≥ 1 2⁄  𝜇𝑚) dust grains are a novel system in 

experimental plasma physics for two main reasons:  The large particle size allows direct optical 

imaging of the particles and, secondly, the relatively small charge to mass ratio means that the 

dust grain dynamics occur on much longer time scales than those of the ion or electron plasma 

components.  In this section the application of an optical diagnostic known as Particle Image 

Velocimetry (PIV) is discussed39–41.  Due to the fact that PIV is somewhat uncommon outside of 

the fluid physics community the measurement technique will be described beginning with its 

most basic form, from which the method that is used in these experiments can be explained more 

clearly.  This section will be organized as follows:  Section 3.2.1 gives a brief introduction to 
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PIV, Section 3.2.2 describes two dimensional PIV (2DPIV), Section 3.2.3 contains a description 

of stereoscopic PIV (stereo-PIV), and Section 3.2.4 discusses the specific stereo-PIV system 

used in the experiment described in Chapter 4. 

3.2.1:  Introduction 

 PIV is a diagnostic technique developed within the fluid physics community to measure 

the flow of fluids in a manner that is minimally invasive.  Before the advent of PIV, a physical 

probe had to be inserted into a fluid flow in order to obtain a quantitative measure of the fluid 

velocity at the location of the probe.  This practice was not ideal, as the presence of a relatively 

large physical probe changes the flow pattern of the system in the region of the measurement.  

The solution to this issue was to seed the flow with neutrally buoyant particles ("tracers") which 

could be imaged optically.  The tracer particles follow the flow pattern of the system and can be 

imaged when illuminated with laser light.  If appropriate tracer particles are chosen the flow is 

not dramatically altered.  In order to obtain a measure of the flow pattern in the system of interest 

the tracer particles are imaged twice with a known time delay (∆tlaser) between images.  By 

comparing the two recorded images the displacement vector for groups tracer particles (and thus 

the fluid displacement vector) can be calculated, by dividing the measured displacement by the 

known time delay between laser pulses the velocity field of the fluid is obtained. 

 The application of the PIV diagnostic to dusty plasma systems was pioneered at Auburn 

University8,42–44.  The application of PIV has grown beyond Auburn and is now used by many of 

the research groups actively studying dusty plasmas.  The key advantage of the PIV diagnostic, 

when applied to dusty plasmas, is that one of the major difficulties in the standard application of 

the technique, the selection of an appropriate tracer particle, is eliminated.  In a dusty plasma 
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system the dust itself is the tracer particle.  While this makes the experimental process much 

more straightforward one must be aware that many of the techniques used by the fluid physics 

community to analyze PIV data are not applicable to the measurements of dusty plasmas.  This is 

due to the fact that in the application within the fluids community the tracer particles are only 

present in order to give information about the background fluid, meaning interesting quantities 

such as the temperature of the background fluid are calculated with an a priori  knowledge of the 

properties of the background fluid in question (i.e. the fluid density, diffusivity, etc.).  In the 

application of PIV to duty plasmas there is no background fluid, the tracer particles themselves 

are the system of interest.  The application of PIV to dusty plasma systems has the advantage of 

adopting a mature and established measurement technique, but has the drawback that much of 

the analysis that takes place after velocity vector computation must be carefully and 

systematically reconsidered. 

3.2.2:  Two dimensional PIV 

 In this section the process of obtaining a two dimensional velocity field using 2DPIV is 

discussed, while this specific diagnostic was not used in this work the hope is that by starting 

with the most basic form of PIV the more complicated cases discussed in Sections 3.2.3 and 

3.2.4 will be more clearly and easily understood.  It is noted that there are numerous techniques, 

methods, and variations of the 2DPIV measurement scheme, in what follows the so-called 

"double frame, double exposure" method is discussed. 

 As mentioned in Section 3.2.1, the 2DPIV measurement is remarkably simple in 

principal:  Calculate the displacement field of a seeded flow and divide by ∆tlaser.  In practice the 

process of finding the displacement field can become somewhat involved, this section describes  
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Figure 3.3:  Schematic drawings of the 2DPIV configuration for a single particle.  (a) As viewed from above.  (b) As 

viewed from the plane of the camera, the blue box indicates the camera's field of view. 

the process algorithmically.  In this section, and in Section 3.2.3, it will be assumed that there is 

some general fluid flow that is seeded with appropriately chosen tracer particles.   

 A two dimensional velocity field on a given spatial plane is found by orienting a laser 

sheet so that when the laser fires all of the tracer particles within the plane are illuminated.  The 

laser is then set to fire two very short pulses separated in time by a delay ∆tlaser.  The firing of 

each laser pulse is synchronized to a CCD camera oriented so that the CCD array is parallel to 

the laser sheet (as in Figure 3.3 (a), for a single particle in the laser sheet, and on the left hand 

side of Figure 3.4, for multiple tracer particles).  The camera records the intensity of the laser 

light scattered by the tracer particles as two separate images (one image for each of the laser 

pulses), represented in Figure 3.3 by the positions of the red dot 𝑟0 and 𝑟1.  The first image 

(frame 0, taken at time t0) and second image (frame 1, taken at time t0+ ∆tlaser) are each 

"snapshots" of the spatial distribution of the tracer particles in the laser plane.  The time delay 

∆tlaser must be chosen such that all tracer particle motion that occurs in the time between the two 

pulses can be approximated as linear, typical values are in the 1 - 1000 𝜇sec range, depending on 

the flow in question. 

 Each image is then divided into small regions known as interrogation cells ("cells"), as 

seen on the left side of Figure 3.4.  The cell size is chosen so that each is large enough to contain  
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Figure 3.4:  Flow chart for a single 2DPIV calculation for an interrogation cell containing multiple tracer particles 

(the green boxes on the left).  (Courtesy of LaVision) 

multiple tracer particles but small enough that meaningful spatial resolution is maintained.  

Factors such as camera lens, separation distance between the laser plane and camera, and tracer 

particle size must be considered when choosing the size of the interrogation cells.  Figure 3.4 

shows an example of two frames divided into interrogation cells with a seeded flow.  The next 

step in the process is to calculate the most probable average displacement vector for the tracer 

particles within each of the interrogation cells.  These quantities are computed by finding the 

peak of the spatial correlation function between the frame 0 and frame 1 images within each 

discrete cell.  The discrete correlation function is given by: 

 𝐶 (dx, dy) = � 𝐼0(𝑥,𝑦)𝐼1(𝑥 + dx,𝑦 + dy)  for  
−𝑛
2

𝑛

(𝑥,𝑦)=0

< (dx, dy) <
𝑛
2

 3.1 

where n is the spatial step size (the number of pixels on each side of the cell box) and where I0 

and I1 are the light intensity fields recorded by the CCD array in frames 0 and 1, respectively.  In 

words, the intensity function in frame 1 is shifted in both the x and y directions (by dx and dy) 

and compared to the intensity function in frame 0; the correlation, C(dx,dy), is a measure of the 

similarity of the two intensity functions due to a shift of I1 by (dx,dy).  This process is 
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mathematically identical to finding the complex two dimensional Fourier transformation for both 

I0 and I1 (𝐼0
~

 and 𝐼1
~

), performing a complex conjugate multiplication (𝐼0
~

· 𝐼1
~

*), and then calculating 

the inverse Fourier transformation of the resulting product.  The correlation function is a peaked, 

as shown in the center of Figure 3.4.  The most probable average displacement of the tracer 

particles within the interrogation cell is given by the peak location of the correlation function.  

This process is then repeated for each interrogation cell on the image plane, giving an 

instantaneous most probable average displacement field for the flow at time t0.  The 

displacement field is then converted to a velocity field by dividing each interrogation cell's 

instantaneous most probable average displacement by ∆tlaser. 

 The major limitation of the two dimensional version of the PIV diagnostic is that it can 

only measure the velocity field of the flow as projected onto the plane of the camera.  This 

projection becomes an issue when the flow in question is three dimensional; for example, if the 

"real" velocity vector for a fluid element is 𝑣⃑actual = 𝑣𝑥𝑣�𝑥 + 𝑣𝑦𝑣�𝑦 + 𝑣𝑧𝑣�𝑧, 2DPIV only gives the 

two dimensional vector 𝑣⃑ = 𝑣𝑥𝑣�𝑥 + 𝑣𝑦𝑣�𝑦.   To correct for this issue we use stereoscopic PIV. 

3.2.3:  Stereoscopic PIV 

 Stereoscopic PIV is a natural extension of the two dimensional version of PIV, this 

measurement technique uses two cameras focused on the same spatial region of a flow.  The 

cameras are oriented at known angles with respect to the laser sheet normal; a schematic of such 

a configuration can be seen in Figure 3.5 (a).  Stereo-PIV has three coordinate systems that must 

be considered:  The coordinate system defined by the laser sheet (the lab frame), the coordinate 

system defined by the CCD array of camera 1 (frame 1), and the frame of camera 2 (frame 2).  It 

is noted that in 2DPIV, as described in Section 3.2.2, the camera is oriented perpendicular to the  



66 
 

 

Figure 3.5:  (a) Top view of the stereo-PIV camera and laser sheet orientation.  (b) The displacement from (a) as 

seen by camera 1.  (c) The displacement in part (a) as seen by camera 2. 

laser sheet, meaning the lab frame and the camera frame are identical.  As in the 2D case the 

cameras are synchronized to record images of the seeded flow when the flow is illuminated by 

the two laser pulses separated by a delay ∆tlaser; but, because the cameras are oriented at different 

angles with respect to the laser sheet they will record different two dimensional displacement 

fields, as illustrated in Figures 3.5 (b) and (c).  It is through the geometric rotations of these 

different two dimensional displacement vectors that the three dimensional displacement fields 

are obtained. 

 In order to measure the velocity vectors of tracer particles in units of meters per second 

the spatial orientation angles and absolute scaling (camera pixels/meter) of the cameras must be 

carefully measured.  This is accomplished with the use of a calibration plate, as seen in Figure 

3.6 (a).  The plate is an array of regularly spaced circular white dots on two planes separated by 1 

mm.  When the cameras are focused on the plate, the angular orientation and spatial scaling of 

each camera can be found by using the known size and separation of the dots on each of the 

planes. 
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Figure 3.6:  (a) Image of the calibration plate used to determine the absolute orientation and spatial scaling of the 

PIV cameras.  (b) An image (courtesy of LaVision) illustrating the view of a similar calibration plate without (with) 

a Scheimpflug adapter is shown on the left (right).  (c) Images showing the view of the calibration plate after de-

warping for the calibration used in the experiment.  (d) Images showing the superposition of the de-warped images 

of the calibration used in the experiment after rotation into the laboratory coordinate system.  The image on the left 

shows the overlap of the dots in the far (recessed) plane of the plate and the image on the right shows the overlap for 

the nearer calibration plate plane.  The appearance of multiple dots in the superimposed images for the secondary 

plane in each image shows the parallax that is the result of the different camera positions. 

 Two issues arise due to the fact that the cameras are oriented at angles with respect to the 

laser sheet which must be corrected before the displacement fields can be calculated.  The first 

issue is that the laser plane and the plane of the CCD array (and its focusing lens) are not 

parallel, because of this the image is focused only in the region where the focus plane of the 
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camera and the laser plane intersect, the effect can be seen on the left hand side of Figure 3.6 (b).  

To correct the focus problem (which is known as the Scheimpflug principal) a Scheimpflug 

adapter is placed between the camera lens and the laser plane.  When properly adjusted the 

Scheimpflug adapter allows the camera to focus on the laser plane across the cameras entire field 

of view, as seen on the right hand side of Figure 3.6 (b).  The second issue that arises is that the 

magnification (zoom) level is not constant across the camera's field of view, as can be seen by 

the different dot sizes on the calibration plates in Figure 3.6 (b).  During the calibration process a 

de-warping function is calculated that corrects for the distortion.  De-warped images of the 

calibration plate used in the experiment described below are shown in Figure 3.6 (c).  With the 

Scheimpflug adapter and de-warping function the images from both cameras can be rotated into 

the laboratory coordinate system.  Figure 3.6 (d) shows a superposition of the same calibration 

plate images as in Figure 3.6 (c) after such a rotation; on the left the dots from the recessed plane 

of the calibration plate overlap at the intersection of the red grid lines, the dots on the nearer 

plane of the calibration plate do not overlap, showing the effect of the parallax that results from 

the two different viewing angles.  The image on the right hand side of Figure 3.6 (d) shows the 

same but for the other plane of the calibration plate.  The calibration is finalized by a process 

known as "self-calibration."  This process is based on the idea that if an object in the laser plane 

is imaged by both camera 1 and camera 2 at the same time the particle location should be 

identical when de-warped and rotated into the lab frame.  If the rotated images from camera 1 

and camera 2 differ the de-warping functions are corrected and the images are rotated to the lab 

frame with the corrected de-warping function.  The process is repeated until no further 

improvement can be made. 
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 With a valid camera calibration, the actual process of calculating the three dimensional 

displacement field is very similar to the 2DPIV procedure described in Section 3.2.2.  First, each 

camera image is de-warped and a two dimensional displacement vector is calculated within an 

interrogation cell in the coordinate systems of each camera.  The two dimensional displacement 

vectors from each camera, 𝑑c1 and 𝑑c2, are then related to the three dimensional lab frame 

displacement vector, 𝑑, in each interrogation cell through a rotation defined by: 

 𝑑ci = 𝑅
⇄
𝑖,𝑙𝑑 3.2 

where i refers to either camera 1 or 2 and 𝑅
⇄
𝑖,𝑙 is the rotation matrix that relates the lab and 

camera coordinate systems.  This process gives an overdetermined system of four linear 

equations with three unknowns (dx, dy, and dz): 

 

𝑑c1,𝑥 = 𝑑𝑥cos (𝛼1) + 𝑑𝑦sin (𝛼1) 

𝑑c2,𝑥 = 𝑑𝑥cos (𝛼2) + 𝑑𝑦sin (𝛼2) 

𝑑c1,𝑦 = −𝑑𝑥sin (𝛼1)cos (𝛽1) + 𝑑𝑦cos (𝛼1)cos (𝛽1) + 𝑑𝑧sin (𝛽1) 

𝑑c2,𝑦 = −𝑑𝑥sin (𝛼2)cos (𝛽2) + 𝑑𝑦cos (𝛼2)cos (𝛽2) + 𝑑𝑧sin (𝛽2) 

3.3 

where the angles 𝛼𝑖 and 𝛽𝑖 are the angles relating the camera and laser sheet coordinate systems.  

The lab frame displacement vector is found by fitting the system of equations using the least 

squares method, with the constraint that the uncertainty is distributed evenly across the three 

vector components.  After this is carried out for all of the interrogation cells the displacement 

field is converted to a velocity field by dividing by ∆tlaser. 
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3.2.4:  Stereoscopic PIV in 3DPX 

 The stereo-PIV system used on the 3DPX experiment consists of two LaVision Imager 

Intense cameras synchronized to a New Wave Research brand Solo laser (Nd:YAG) with a 

LaVision PTU 9 programmable timing unit (PTU).  The laser illuminates an approximately 2 

mm thick plane of the constant 𝑧̂ plane inside the 3DPX vacuum vessel.  The laser and the 

cameras are mounted on a translation stage which allows the point of camera focus and laser 

plane to be moved to all locations visible through the large window shown in Figure 3.1 (a).  The 

translation stage, cameras, laser, and PTU are all controlled by computer using the DaVis 

software (version 7.2) made by LaVision.  The cameras have fields of view that are 1419 pixels 

in the 𝑥� (horizontal) direction and 994 pixels in the 𝑦� (vertical) direction.  With the configuration 

described above, the spatial scale, after de-warping, is approximately 37.60 pixels/mm giving a 

field of view that is 3.77 cm in the horizontal direction by 2.64 cm in the vertical direction.  A 

typical image of a constant z slice of a dust cloud confined below the anode is shown in Figure 

3.7 (a). Typical interrogation cell sizes range from 12 x 12 pixels to 128 x 128 pixels, with the 

cell size chosen such that >10 dust grains are in each cell within the cloud region.  For the 

analysis described below the interrogation cells were chosen to be 64 pixels square (shown as the 

yellow grid in Figure 3.7 (b)).  The four camera images recorded within the cell outlined in red in 

Figure 3.7 (b) are shown in Figure 3.7 (c).  These four images, along with the fact that ∆tlaser=500 

𝜇sec, are then used to calculate the three dimensional velocity vector for the cell, which is shown 

projected onto the {𝑥�,𝑦�} plane in the black box outlined in Figure 3.7 (d).  The complete velocity 

vector field for the dust cloud cross section pictured in Figure 3.7 (a) is shown in Figure 3.7 (d). 
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Figure 3.7:  (a) Full camera frame view of a dust cloud cross section.  (b) Detailed view of the camera region 

containing the dust cloud (the region outlined in yellow in (a)), the yellow grid indicates the location of the 

individual interrogation cells.  (c) The four camera images of the cell outlined in red in (b).  (d) The instantaneous 

velocity field measured for the cloud cross section, projected onto the �𝑣�𝑥, 𝑣�𝑦� plane. 

 The process described above gives a "snapshot" of the velocity field for the dust 

component of the plasma at the time of the measurement, to investigate the distribution of 

velocities the process is repeated many times (1500 for this experiment).  Figure 3.8 shows the 

first ten of the 1500 three dimensional velocity vectors measured within the volume element 

highlighted in Figure 3.7, the velocity vector corresponding to the cell outlined in red in Figure 

3.7 (b) is shown as blue in Figure 3.8.  The gray arrows in Figure 3.8 show the projections of the 
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Figure 3.8:  Time series showing the first ten three dimensional velocity vector measurements for the cell 

highlighted in Figure 3.7.  The blue vector is that which was calculated from the four camera images shown in 

Figure 3.7 (c).  The gray arrows on the back (bottom) plane are projections of the three dimensional vectors onto the 

{𝑣�𝑥, 𝑣�𝑦} ({𝑣�𝑥 ,𝑣�𝑧}) plane. 

measured three dimensional vectors onto the {𝑣�𝑥, 𝑣�𝑦} (the vertical, back, plane) and the {𝑣�𝑥, 𝑣�𝑧}  

(the horizontal, bottom, plane) these are intended to show the importance of measuring all three 

velocity vector components.  After the 1500 measurements of a given cross section are 

completed the translation stage holding the cameras and laser are moved 2 mm in the 𝑧̂ direction 

and the process of recording the 1500 velocity field snapshots is repeated for all planes that 

contain dust. 

 The final step involved with the acquisition of the velocity vector data is the 

quantification of the uncertainty in the stereo-PIV measurement, this is done with the so-called 

zero displacement test.  The zero displacement test measures a three dimensional velocity vector 

in the same way as described above, but with the time between laser pulses set to the minimum 

(0.6 𝜇sec).  With the very short time between laser pulses the dust grains do not have a chance to 

move between the recordings of the two camera images.  The displacement field is calculated as 

described above, giving the minimum measureable displacement vector for the diagnostic.  The 
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displacement vectors are then converted to m/sec by dividing the displacement vector values by 

the laser separation time used in the acquisition of the actual data set (that is, the zero 

displacement test displacement vectors are divided by 500 𝜇sec).   When repeated many times 

(again, 1500) the zero displacement test gives the minimum measurable velocity vector 

distribution in each volume element across the entire dust cloud structure. 
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Chapter 4:  Phase space distribution measurements 

4.1:  Introduction to the experiment 

 This chapter contains a description of the experiment and analysis which were performed 

in order to measure the spatially resolved phase space distribution of a dust cloud within the 

3DPX device.  The stereo-PIV diagnostic (referred to as "PIV" in what follows) was used to 

measure both the average distribution of the dust cloud in configuration space and to construct 

velocity distributions for small volume elements across the observed structure.  To make such 

measurements the 3DPX experimental volume was filled with neutral argon gas to a pressure of 

132 mTorr (~17.6 Pa).  A bias voltage was then applied to the anode, through which a constant 

current of 5.37 mA was drawn throughout the experiment.  A dust cloud was allowed to form, 

grow, and come to an apparent equilibrium during a time period of approximately two hours; 

after the growth and stabilization period the cloud was imaged with the stereo-PIV diagnostic as 

described in Section 3.2.  1500 PIV measurements were taken of each cloud cross section, with a 

laser pulse separation time of 500 𝜇sec, followed by 1500 measurements with a pulse separation 

time of 0.6 𝜇sec (for the zero displacement test).  After the two sets of PIV measurements were 

recorded for a given spatial cross section the translation stage carrying the PIV laser and cameras 

was moved 2 mm in the 𝑧̂ direction and the process was repeated for all of the planes of constant 

𝑧̂ that were observed to contain dust.  In total there were 13 such cross sections resulting in a 

total of 39,000 PIV "snap-shot" measurements across the dust cloud structure.  Each PIV 
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measurement contained 330 velocity vector measurements (for a total of ~12.9 million vectors) 

and a total of approximately 156,000 camera images.  The PIV velocity vector measurements 

were processed with the commercially available PIV analysis software package DaVis (version 

7.2) produced by the LaVision corporation.   

 The remainder of this chapter proceeds as follows:  Section 4.2 discusses the PSD 

construction process for a single volume element within the dust cloud, Section 4.3 describes the 

process that was used to compare the standard Maxwellian distribution and tri-normal models of 

the velocity space and determine that the tri-normal probability distribution function is required 

to accurately model the velocity space, and Section 4.4 gives an overview of the resulting 

spatially resolved PSD parameter value fields. 

4.2:  Single volume element 

 In order to facilitate the discussion of the data analysis process used to construct the 

spatially resolved PSD for all 853 volume elements within the dust cloud the analysis procedure 

will be demonstrated, in detail, for a single volume element.  The volume element that will be 

used as an example in this section is the same that was highlighted in Section 3.2.3 and shown in 

Figure 3.7.   

 The PSD contains configuration and velocity space components which are combined to 

give the overall PSD, as in Equation 2.1.  The process used to determine the configuration space 

component, the number density nd, is discussed in Section 4.2.1.  Section 4.2.2 contains a 

description of the method used to find the distribution function parameters for the two models of 

velocity space.  Section 4.2.3 discusses the test that was used to determine that the tri-normal  

 



76 
 

 

Figure 4.1:  (a) On the left, an example of a single camera image of the dust grains observed within the volume 

element.  On the right, the particles which were identified by the particle counting software are shown as different 

colors.  (b) A histogram of the number of particles identified within the volume element for all of the 1500 camera 

images obtained during the PIV acquisition process. 

velocity space distribution function model is required to describe the observations, and Section 

4.2.4 contains brief conclusions. 

4.2.1:  Configuration space 

 The dust number density was found by examination of the camera images obtained with 

the PIV diagnostic.  Each PIV measurement results in four camera images, as was seen in Figure 

3.7 (c).  The image recorded by camera two, with the first laser pulse, was extracted for each of 

the 1500 measurements and partitioned into sub-images on the same 64 pixel by 64 pixel grid 

which was used for the velocity vector reconstruction (as in Figure 3.7 (d)).  Figure 4.1 (a) shows 

an example of one such sub-image for the volume element, the unprocessed image is shown on 

the left and the individually identified particles from the same image are shown on the right hand 

side of the figure.  The particle identification was performed within the computer program 

Mathematica.  The number of identified particles was counted within the sub-image for each of 

the 1500 measurements of the volume element.  Figure 4.1 (b) shows a histogram of the number 

of particles observed within the volume element; the results showed that an average of 48.4±4.8 
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particles were present.  The dust number density, nd, has units of particles per cubic meter, to 

convert the number of particles, Nd, to the number density, nd, we simply divide the average 

number of particles by the configuration space volume of the element, 5.8×10-9 m3, to arrive at 

the resulting number density: nd = 8.3×109 ± 0.8×109 m-3. 

4.2.2:  Velocity space 

 The process used for construction of the velocity space component of the PSD is more 

complicated than for the number density field.  The result of the PIV measurements is two data 

sets within each of the volume elements; the first data set is a table of the 1500 three dimensional 

velocity vectors that were measured with a laser pulse separation time of 500 𝜇sec (collectively 

referred to as "D").  The second data set is a table of the 1500 velocity vectors that were used to 

quantify the error, obtained with a PIV laser pulse separation time of 0.6 𝜇sec (the data set "Z").  

The process used to calculate each of the individual velocity vectors was discussed in detail 

within Section 3.2.  In contrast to the configuration space distribution, the velocity space 

distribution is modeled with a continuous distribution function.  The two distribution functions 

examined here are the canonical three dimensional Maxwellian distribution function and the tri-

normal distribution function, both of which were described in Section 2.2.  The remainder of this 

section will describe the process used to calculate the parameters for each of the distribution 

functions. 

4.2.2.1:  Calculation of the drift velocity vector 

 The drift velocity of the dust grains within the volume element is the simplest of the 

velocity space distribution parameters that must be calculated.  The calculation merely involves 

finding the average value for each of the three velocity space components in the data set D, the 
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result is the drift vector, u�⃑ .  The drift velocity appears in an identical fashion within both the 

Maxwellian and tri-normal models of the velocity space, because of this the quantity is 

calculated in the same way for both distributions.   The fact that the calculation process is the 

same for both models means that it is unnecessary to incorporate the drift parameters into the 

model comparison process discussed later in this Chapter.  The values of the drift velocity 

components within the example volume element were found to be nearly zero:  𝑢�⃑ =

(0.00002 ± 0.00010)𝑣�𝑥 + (0.00004 ± 0.00013)𝑣�𝑦 + (0.00001 ± 0.00022)𝑣�𝑧 m/sec. 

4.2.2.2:  Single particle velocity space 

 The width characterization of the velocity space distributions obtained from the PIV 

measurements must be considered with more care than the offset (drift velocity) characterization.  

The individual velocity vectors that the PIV diagnostic system calculates are the result of 

correlation integrals; this type of data processing has an inherent bias that favors low 

displacement magnitude values (and thus low velocity magnitude values).  In effect, this bias 

acts to reduce the variance of the actual single-particle displacement distribution, 𝜎𝑎2, and instead 

gives variance values, 𝜎𝑃𝐼𝑉2 , that are smaller in magnitude by a variance ratio factor that is 

dependent on the number of particles that are present in the correlation calculation process.  An 

analytic expression can be found for the correction factor if the exact form of the correlation 

function is known for all of the measurements.  Estimates of the correlation function from 

measured data are, themselves, inherently biased, meaning that obtaining an analytic result for 

the correction with the PIV process described in Section 3.2 is impossible.   

The issue of correcting for the variance reduction has been addressed by simulation and is 

described in detail elsewhere8.  The simulation study found that the variance values obtained  
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Figure 4.2:  A plot of the correction factor, CF(Nd), that is used to convert the velocities measured by the PIV 
diagnostic to the velocity of a single particle within the volume element. 

from distributions of the PIV measured velocity vectors were less than the known single-particle 

velocity variance values that were input into the simulation, as expected.  It was also shown that 

correct variance values could be recovered by mapping the PIV (multiple-particle) velocity space 

into a single-particle velocity space with the use of the correction factor, shown in Figure 4.2, 

which depends on the number of dust grains observed within the velocity vector reconstruction 

region.  If effect, the mapping process re-scales all three components of the measured velocity 

vector, 𝑣⃑𝑘,PIV, into the single-particle velocity space: 

 𝑣⃑𝑘 = (𝑣⃑𝑘,PIV − 𝑢�⃑ ) CF (𝑁𝑑(𝑟))⁄  4.1 

where 𝑣⃑𝑘 is the vector that has been mapped into the single-particle velocity space and 

CF �𝑁𝑑(𝑟)� is the correction factor value.  For simplicity, from this point forward all references 

to "measured velocity vectors" refer to 𝑣⃑𝑘, the velocity vector which has already been mapped 

into the single-particle velocity space.  It is also noted that the drift velocity calculation is 

performed before the data are re-scaled.   It has been shown, through the analysis of both 

simulated dusty plasma systems and with the application of PIV to experiments where other 
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velocimetric methodologies are available8,43, that the mean values of the measured velocity space 

distributions, as measured by PIV, give the true drift velocity. 

4.2.2.3:  Visualization of the velocity space distribution 

 With the corrected values for the velocity vectors we can proceed toward the calculation 

of the distribution function parameters.  The measured velocity vectors within this volume 

element are shown as histograms in Figure 4.3, they are shown to help visualize the distributions 

and parameters that will be discussed in what follows.  Figure 4.3 (a) shows D as three one 

dimensional histograms in the "experiment" (or laboratory) coordinate system (𝑣⃑ = �𝑣𝑥, 𝑣𝑦, 𝑣𝑧�).  

A cursory examination of the histograms in 4.3 (a) would seem to imply that the velocity space is 

more or less isotropic, because of the relatively close agreement between the fitted standard 

deviation values of the two models (indicated on each of the histogram plots).  Figures 4.3 (b), 

shows the same data rotated into the principal axis coordinate system (𝑣⃑ = {𝑣1, 𝑣2, 𝑣3}).  The 

difference in the two sets of histograms qualitatively illustrates that the apparent isotropy seen in 

(a) is not a true feature of the distribution.  Figures 4.3 (c) shows two dimensional histograms of 

D in the �𝑣�𝑥, 𝑣�𝑦� subspace, where the elliptical nature of the velocity space distribution can 

clearly be seen.   

 Figure 4.4 shows similar histograms for data set Z.  Figure 4.4 (a) shows the error 

distribution as one dimensional histograms, in the laboratory frame, which have the same bin 

size (resolution) as in Figures 4.3 (a) and (b), from which it can seen that the error distribution 

has a much smaller standard deviation than the distributions in D.  Figures 4.4 (b), (c), and (d)  



81 
 

 

Figure 4.3:  Various histograms of the measured velocity vectors.  (a) The three one dimensional velocity space 

histograms in the laboratory coordinate system.  Note that the three distributions appear to have approximately the 

same width.  (b) The three one dimensional velocity space histograms after rotation into the principal axis 

coordinate system.  It can be seen here that the isotropy seen in (a) is not a true feature of the velocity space.  (c)  

Examples of a histogram in two velocity space dimensions �𝑣�𝑥, 𝑣�𝑦�, the two plots show the same data and have the 

same color scale.  The velocity space anisotropy can be seen clearly in this sub-space. 

show the error distribution for the three two dimensional velocity subspaces, these histograms 

have smaller bins (higher resolution) which allows visualization of the shape of the error 

distribution.  It is noted that the distributions in Figures 4.3 (c) are not simply different than the 

distributions in Figure 4.4 (b) by a scaling factor, but have intrinsically different shapes. 
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Figure 4.4:  Various histograms of the error vector measurements.   (a) The three velocity space histograms for the 

error distribution measurements in the laboratory coordinate system.  The histograms have the same resolution (bin 

size) as those in Figure 4.3, to show that the error distribution measurements have a much narrower width than those 

measured for D.  (b), (c), and (d):  The three two dimensional histograms of the error distribution measurements.  

The histograms here have higher resolution (smaller bin size) than in (a) so as to show the structure.  It is noted that 

the histogram in (b), for the ൛ݒො௫,  ො௬ൟ sub-space, is different than the histograms in Figure 4.3 (c) in both width (scale)ݒ

and shape. 

4.2.2.4:  Parameter value calculation:  Maxwellian distribution model 

 The process of calculating the parameter values, assuming the Maxwellian probability 

distribution function, is very similar to the process outlined in Section 2.3.3.3.  Recall that the 

three dimensional Maxwellian distribution is given by Equation 2.11: 
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4.2 

This is somewhat simplified because of the fact that we have translated our velocity space into 

the local rest (zero-drift) frame, as in Section 4.2.2.2, eliminating 𝑢�⃑  from the calculation of the 

distribution shape parameters.  To find 𝜎𝑚, the scalar standard deviation, for the Maxwellian 

distribution model we assume that 𝜎𝑚 can be expressed in terms of an optimal value and a 

normally distributed uncertainty:  𝜎𝑚 ≡ 𝜎𝑚0 ± 𝛿𝜎𝑚.  As with the discussion of the one 

dimensional example, outlined in Section 2.3.3.3, the likelihood function of D, given 𝜎𝑚, the 

model ("M"), the error distribution Z, and the associated information is given by: 
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4.3 

Where the components of 𝑣⃑𝑘 are the measured vectors in D and 𝜖
⇄

 is the velocity space 

covariance tensor for Z.  The error distribution is modelled with the tri-normal distribution 

function, the individual elements of 𝜖
⇄

 are given by: 

 𝜖ij = �(𝑍ki−< 𝑍𝑖 >)(𝑍kj−< 𝑍𝑗 >)𝑣�𝑖𝑣�𝑗

𝑁𝑧

𝑘=1

 4.4 

The summation is over the Nz velocity vectors that make up the data set Z and <Zi> is the 

average value of the 𝑣�𝑖 component of the vectors in Z.   
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Parameter Value 

𝑛𝑑 (8.3 ±  0.8) × 109m−3 

𝑢�⃑  (0.00002 ± 0.00010)𝑣�𝑥 + (0.00004 ± 0.00013)𝑣�𝑦 + (0.00001 ± 0.00022)𝑣�𝑧 m/sec 

𝜎𝑚 0.0219 ±  0.0059 m/sec 

Table 4.1:  PSD parameters with the Maxwellian velocity space model. 

 To find the optimal parameter value 𝜎𝑚0 we maximize the likelihood function given in 

Equation 4.3.  To compute the 𝜎𝑚0 value that gives the maximum value of the likelihood 

function the computer program Mathematica is used, the program includes the function 

"FindDistributionParameters" which numerically calculates the optimal parameter value for the 

distribution defined in Equation 4.3 by maximizing the likelihood function.  The 𝜎𝑚0 value 

calculated in this way for the volume element discussed in this section was found to be 𝜎𝑚0 =

0.02191 𝑚/𝑠𝑒𝑐.  With this value in hand, we can find the uncertainty 𝛿𝜎𝑚 by returning to the 

likelihood function, prob(D|𝜎𝑚,M,Z,I), taking two partial derivatives of its natural logarithm 

with respect to 𝜎𝑚0, and setting the resulting expression equal to zero, as was described in detail 

in Section 2.3.3.3.  Substitution of the 𝜎𝑚0 value into the resulting equation gives the uncertainty 

in the parameter estimate: 𝛿𝜎𝑚 = 0.00038 𝑚/𝑠𝑒𝑐.  So, for the volume element in question the 

parameters for the Maxwellian distribution function model were obtained by finding the drift 

vector and the scalar variance.  The full PSD within this volume element with the Maxwellian 

model is specified by the parameters listed in Table 4.1. 

4.2.2.5:  Parameter value calculation:  Tri-normal distribution model 

 The calculation of the distribution parameter values for the tri-normal probability 

distribution function model proceeds in much the same way as for the Maxwellian model.  We 

begin with the tri-normal distribution function, which is given in the local rest frame by: 



85 
 

 

𝐹TN �𝑣
⇀
� = (2𝜋)−3 2⁄ �𝛴

⇄
�
−1 2⁄

exp�
−1
2

(𝑣⃑)† · 𝛴
⇄
−1 · (𝑣⃑)� 

𝛴
⇄

= �

𝜎𝑣𝑥
2 𝜌𝑣𝑥𝑣𝑦𝜎𝑣𝑥𝜎𝑣𝑦 𝜌𝑣𝑥𝑣𝑧𝜎𝑣𝑥𝜎𝑣𝑧

𝜌𝑣𝑥𝑣𝑦𝜎𝑣𝑥𝜎𝑣𝑦 𝜎𝑣𝑦
2 𝜌𝑣𝑦𝑣𝑧𝜎𝑣𝑦𝜎𝑣𝑧

𝜌𝑣𝑥𝑣𝑧𝜎𝑣𝑥𝜎𝑣𝑧 𝜌𝑣𝑦𝑣𝑧𝜎𝑣𝑦𝜎𝑣𝑧 𝜎𝑣𝑧
2

�. 

4.5 

The standard deviation and correlation parameters are all assumed to be distributed as an optimal 

value with normal uncertainty: 𝜎𝑣𝑖 = 𝜎𝑣𝑖0 ± δσ𝑣𝑖 and 𝜌𝑣𝑖𝑣𝑗 = 𝜌𝑣𝑖𝑣𝑗0 ± δρ𝑣𝑖𝑣𝑗 .  The resulting 

likelihood function is given by: 
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where the tri-normal model is indicated by "TN" and the components of the error tensor, 𝜖
⇄

, are 

calculated as before, with Equation 4.4.  The individual optimal parameter and uncertainty values 

are found by maximizing the likelihood function as described in Section 4.2.2.3.  The results for 

the volume element discussed here are summarized in Table 4.2.  It is noted that the values for 

𝜎𝑣𝑥,  𝜎𝑣𝑦, and 𝜎𝑣𝑧 listed in Table 4.2 differ from those indicated in Figure 4.3 (a), this is due to 

the fact that the standard deviation values shown in the figure were obtained through curve-

fitting, which did not include a consideration of finite measurement error or the full 

dimensionality of the velocity space. 
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Parameter Value 

𝑛𝑑 (8.3 ±  0.8) × 109m−3 

𝑢�⃑  (0.00002 ± 0.00010)𝑣�𝑥 + (0.00004 ± 0.00013)𝑣�𝑦 + (0.00001 ± 0.00022)𝑣�𝑧 m/sec 

𝜎𝑣𝑥  0.01883 ±  0.0038 m/sec 

𝜎𝑣𝑦 0.02299 ±  0.0050 m/sec 

𝜎𝑣𝑧 0.02418 ±  0.0081 m/sec 

𝜌𝑣𝑥𝑣𝑦 0.627 ±  0.018 

𝜌𝑣𝑦𝑣𝑧 0.016 ±  0.076 

𝜌𝑣𝑥𝑣𝑧 0.192 ±  0.071 

Table 4.2:  PSD parameters with the tri-normal velocity space model. 

4.2.3:  Comparison of the velocity space distribution models 

 To this point the PIV measurements have been modeled with both the Maxwellian and 

the tri-normal velocity space distributions.  It can be seen, visually, in Figure 4.3, that the tri-

normal model of the velocity space provides a better qualitative fit; but, as discussed in Section 

2.3.2, almost any model will provide a better fit to a given data set than an alternate model if it 

contains more free parameters.  In this section the application of the posterior probability ratio 

test outlined in Section 2.3.2 is applied to give a quantitative determination of whether the tri-

normal model provides a superior description of the system, even with heavy penalization for the 

extra parameters.  Section 4.2.3.1 contains a discussion of the process used to calculate the ratio 

and its value for the volume element analyzed above and Section 4.2.3.2 discusses the effects of 

the large number of vectors that were recorded on the posterior probability ratio and calculated 

parameter values. 
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4.2.3.1:  The posterior probability ratio 

 The Bayesian approach to model selection was outlined in Section 2.3.2.  Recall that the 

ratio of the posterior probabilities for two models given the data set, D, and the accompanying 

information, I, is given by: 

 𝐾 ≡
prob (TN|𝐷, 𝐼)
prob (𝑀|𝐷, 𝐼)

 4.7 

where, in contrast to Equation 2.30, the models are identified as the tri-normal model ("TN") and 

Maxwellian model ("M") as opposed to A and B.  The posterior probabilities are expanded by 

use of Bayes' Theorem and a "fair" comparison of the models is made by setting the ratio of prior 

probabilities for the models, given the information, to unity.  After algebraic manipulation the 

expression for K reduces to the ratio of likelihood functions: 

 𝐾 =
prob (𝐷|TN, 𝐼)
prob (𝐷|𝑀, 𝐼)

. 4.8 

 Next, the marginalization rule was applied to each of the likelihood functions for all 

unknown parameters found in each model (as was discussed in detail within Section 2.3.3.1) and 

uniform prior probability functions were chosen.  All standard deviation values were assumed to 

be within the range 0 < 𝜎 ≤ 0.10 𝑚/𝑠𝑒𝑐 and the correlation values were assumed to have 

values in the range −1 < 𝜌 < 1.  We begin with the likelihood function for the Maxwellian 

model, marginalize over 𝜎𝑚, and assume normally distributed parameter uncertainty, 𝜎𝑚 =

𝜎m0 ± δσ𝑚: 
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prob (𝐷|𝑀, 𝐼) = ∫ prob (𝐷|𝜎𝑚,𝑀, 𝐼)prob (𝜎𝑚|𝑀, 𝐼)𝑑𝜎𝑚

=
prob (𝐷|𝜎m0,𝐴, 𝐼)

𝜎max
� exp�

−(𝜎 − 𝜎m0)2

2(δσ𝑚)2
�𝑑𝜎

𝜎max

0

 
4.9 

 

prob(𝐷|𝑀, 𝐼) = 

�
𝜋
2
δσ𝑚
0.1

�erf� 
𝜎m0

√2δσ𝑚
� − erf �

𝜎m0 − 0.1
√2δσ𝑚

�� prob (𝐷|𝜎m0,𝑀, 𝐼). 
4.10 

The final step needed to find the Maxwellian model's likelihood is to express the posterior 

probability, prob(D|𝜎𝑚0,M,I), in terms of the model and the measurement uncertainty, as was 

outlined in Section 2.3.3.2: 

 

prob(𝐷|𝜎m0,𝑀, 𝐼) = 

�(2𝜋)3 2⁄ ��𝜖
⇄

+ 𝜎m02 𝐼
⇄
��

−𝑁

exp�
−1
2
�(𝑣⃑𝑘)† · �𝜖

⇄
+ 𝜎m02 𝐼

⇄
�
−1

· (𝑣⃑𝑘)
𝑁

𝑘=1

�. 
4.11 

 The process is the same for the tri-normal velocity space distribution model.  The 

likelihood function is marginalized for the three standard deviation parameters and the three 

correlation parameters, after integration: 

 

prob(𝐷|TN, 𝐼) = �
10𝜋

4
�
3

�δσ𝑣𝑥δσ𝑣𝑦δσ𝑣𝑧δρ𝑣𝑥𝑣𝑦δρ𝑣𝑦𝑣𝑧δρ𝑣𝑥𝑣𝑧� × 
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𝜎𝑣𝑥0
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� − erf �
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prob (𝐷|𝜎𝑣𝑥0,𝜎𝑣𝑦0,𝜎𝑣𝑧0,𝜌𝑣𝑥𝑣𝑦0,𝜌𝑣𝑦𝑣𝑧0,𝜌𝑣𝑥𝑣𝑧0,𝑀, 𝐼) 

4.12 
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The tri-normal distribution likelihood function is given by combining the following: 
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 With these expressions for the likelihood functions, the ratio K can be expressed as the 

product of a factor that penalizes for the distribution parameters, P, and the ratio of the likelihood 

functions for the two models given the optimal parameter values: 

 

𝐾 = 𝑃 ×
prob �𝐷�𝜎𝑣𝑥0,𝜎𝑣𝑦0,𝜎𝑣𝑧0,𝜌𝑣𝑥𝑣𝑦0,𝜌𝑣𝑦𝑣𝑧0,𝜌𝑣𝑥𝑣𝑧0, TN, 𝐼�

prob(𝐷|𝜎m0,𝑀, 𝐼)
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4.14 

With Equations 4.11, 4.13, and 4.14 and the parameter values found in Tables 4.1 and 4.2 we can 

make a firm quantitative statement about which of the velocity space models best describes the 

data.  For the volume element discussed in this section the value of the ratio was found to be 
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𝐾 = 2.9 × 10163, which includes a penalty factor of 𝑃 = 7.3 × 10−9.  This value of K is much 

higher than the threshold for a definitive conclusion that the tri-normal model should be selected 

(K>100).  The penalty factor is on the order of 10-9, meaning that the likelihood of the tri-normal 

model must be more than 1011 larger than for the Maxwellian model to arrive at such a strong 

conclusion (here the tri-normal model's likelihood is ~10172 times greater than that of the 

Maxwellian model).  The very large value of the K ratio will be shown to be systematic for all of 

the volume elements in the dust cloud, but before proceeding, the astonishingly large magnitude 

of this K value will be examined. 

4.2.3.2:  The effect of large data sets 

 The large value of the posterior probability ratio that was found for the volume element 

discussed above seems, at first glance, to be almost too large, even when one considers the fact 

that the tri-normal model provides a much better qualitative fit to the data (as seen in Figure 4.3).  

The large K value quoted in the previous section is a direct result of the large number of vectors 

that were measured in the experiment and used throughout the analysis process.  The effect of 

the large number of measurements is most apparent in Equations 4.3 and 4.6, each likelihood 

function has a term similar to:   

 �(2𝜋)3 2⁄ �|𝜖
⇄

+ 𝜎m02 𝐼
⇄

|�
−𝑁

 4.15 

The standard deviation values are less than one, so these terms grow very quickly as the number 

of measurements, N, becomes large.  The large number of measurements also eliminates the 

effects of small sample size, namely the effects of outlier data points and uncertainty in  
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Figure 4.5:  Plots showing the order of magnitude of the K ratio as a function of the number of vectors randomly 

selected from D.  (a)  log10K for between 10 and 1000 vectors.  (b)  A closer view of the boxed region of (a).  This 

view shows that the two models cannot be easily distinguished when a small number of measurements are made.  

The black line is at K=100, where the two models are equally as likely and the blue line is at K=100, where the tri-

normal model can be said to be definitively preferred. 

parameter estimates.  The large data sets mean that strong conclusions about the relative 

descriptive power of the distribution models can be drawn without ambiguity. 

 To test the effect of the number of vector measurements on the value of the posterior 

probability ratio and the parameter value calculations, the data set for the volume element 

discussed above was broken up into smaller pieces and re-analyzed.  Randomly selected subsets 

of D containing 10, 20, 30, 50, 75, 100, 200, 300, 500, 750, and 1000 vectors were selected and 

analyzed (400 times for each subset size) to give the parameter values and K ratios as a function 

of N using the same analysis process described in Section 4.2.2.  The base ten logarithm of the 

resulting K ratios is shown in Figure 4.5 (a), as a function of the number of vectors in the 

randomly selected subsets.  The posterior probability ratio's order of magnitude is directly 

proportional to the number of vectors measured.  Figure 4.5 (b) shows a closer view of the same 

data for small values of N.  It is noted that the majority of the PIV studies performed in the past 

have had N�100 (most commonly with N50), meaning that, because of the penalization for the 

extra parameters, the value of posterior probability ratio in such cases would not indicate that the 
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tri-normal model is a better description of the system.  The large number of vectors measured 

here allows us to definitively discriminate between the models. 

 

Figure 4.6:  Plots showing the parameter and uncertainty values obtained from random samples of D as a function of 

the number of vectors within the sample.  The black dots indicate the average value and the red bars indicate the 

standard deviation of the parameter or uncertainty value. 
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 The second effect of the large data set is that parameter value estimate uncertainty 

decreases as more data is added.  In Figure 4.6 the parameter value estimates and the associated 

parameter value uncertainties are plotted as a function of N (black dots).  The corresponding 

standard deviation values of the estimates are also shown as a function of the number of data 

points (the red bars).  As a general rule, it can be seen that the optimal parameter values reach a 

set value with fewer vectors (N~250) than for the uncertainties (N~500).  Small parameter 

uncertainty is an important factor in the value of the K ratio; if the parameter uncertainty values 

are large they can dominate the expression for K through the parameter penalty factor (Equation 

4.14).  Finally, the more exact parameter values obtained by the inclusion of many vector 

measurements in D means that even small differences between the models are magnified, which 

makes the model comparison and selection process very clean. 

4.2.4:  Summary 

 The process of constructing the PSD within a single volume element of the dust cloud is 

straightforward in principal, although somewhat mathematically involved in practice.  The 

configuration space component of phase space is modeled as a scalar quantity, the number 

density, which is obtained through analysis of the camera images acquired with the PIV 

diagnostic system.  The velocity space was then modeled with both the canonical Maxwellian 

distribution function and the tri-normal probability distribution function.  The optimal parameter 

values for the two velocity space distribution models were obtained through the same general 

process with the help of Bayesian probability theory.  After the parameters for the two velocity 

space distribution models were found the Bayesian model comparison/selection process was 

employed and it was found that the tri-normal model was approximately 163 orders of magnitude 

more probable than the Maxwellian model.   
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4.3:  Velocity space model selection 

 The PIV data was analyzed with the process described in Section 4.2 for all 853 volume 

elements found within the dust cloud.  Section 4.3.1 contains a discussion of the results of the 

posterior probability ratio tests that were performed on all volume elements.  Section 4.3.2 

describes a geometrical method that can be used to visualize the extent of the anisotropy semi-

quantitatively. 

4.3.1:  Posterior probability ratios 

 

Figure 4.7:  Histograms of the base 10 logarithm of the K ratio for all volume elements within the dust cloud.  (a)  

Histogram showing the results for all of the volume elements.  (b) Closer view of the same data for small values of 

log10K.  The blue line indicates K=100, no volume elements within the dust cloud were found to have K values 

below this cutoff. 

 The ratio of the posterior probability of tri-normal model of the velocity space 

measurements compared to that of the Maxwellian model was calculated, as in Section 4.2.3, for 

all of the volume elements within the dust cloud.  As was seen for the single volume element 

described above, the values of K were found to be much greater than 100, indicating that the tri-

normal model provides a much better description of the data across the entire dust cloud volume.  

The base 10 logarithm of the K values are shown as histograms in Figures 4.7, part (a) shows 

that the majority of the volume elements have K ratios in the 10100-10300 range.  Figure 4.7 (b) 

shows the same data but for smaller values of log10(K).  The smallest value of the posterior  
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Figure 4.8:  Histogram of the order of magnitude of the penalty factor assessed to the distributions for their unknown 

parameters and uncertainties.  The blue dashed line is a guide to the eye. 

probability ratio for any volume element within the dust cloud was found to be K=7.3×103, 

which is still more than an order of magnitude above the threshold for a definitive conclusion 

that the tri-normal model provides a superior description of the data (indicated by the blue 

dashed line in 4.7 (b)). 

 The process used to calculate the ratio K included a draconian penalty factor (P, Equation 

4.14) for the extra parameters found in the tri-normal model of the velocity space.  The order of 

magnitude of the penalty factor values for all volume elements is shown in Figure 4.8.  The 

values of the penalty factor were all found to be much less than one, indicating that the extra 

parameters in the tri-normal model would have to provide a significantly better description of the 

observations in order to overcome the penalty and result in large K ratio values.  The fact that 

these penalty factor values favor the Maxwellian model so strongly makes the K ratio values 

seen in Figure 4.7 even more compelling. 
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4.3.2:  Geometrical comparison 

 The posterior probability ratio method of model comparison provides a concrete, but 

somewhat abstract, quantitative metric which has allowed us to reach the conclusion that the tri-

normal model is required.  In this section several semi-quantitative methods of comparing the 

velocity space models will be given in an attempt to show the discrepancy between the models 

more clearly.  The first comparison, found in Section 4.3.2.1, looks at the volume of velocity 

space that is occupied by each of the two models.  The second comparison, the ratio of the 

squares of the principal axis ellipsoid lengths to the square of the Maxwellian sphere radius, is 

found in Section 4.3.2.2.  Section 4.3.2.3 provides a geometrical explanation of the results by 

combining the volume and axis length comparisons. 

4.3.2.1:  Velocity space volume 

 The volume of velocity space occupied by each of the distributions is the inverse of the 

normalization constant used to make the distribution integrate to unity.  The Maxwellian 

probability distribution function is given by Equation 2.5, from which the volume can be seen to 

be: 

 Vol𝑚 = (2𝜋)3 2⁄ 𝜎𝑚3 . 4.16 

Similarly, the volume occupied by the tri-normal distribution is given by Equation 2.16: 

 VolTN = (2𝜋)3 2⁄ �𝛴
⇄
�
1 2⁄

= (2𝜋)3 2⁄ 𝜎𝑣1𝜎𝑣2𝜎𝑣3 . 4.17 

These formulae for the velocity space volume are directly proportional to the volume occupied 

by the spheres and ellipsoids discussed in Section 2.2.  The volume of velocity space occupied 

by the Maxwellian distribution function is equal to the volume of a sphere with radius 𝜎𝑚 times a  
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Figure 4.9:  Scatter plots comparing the velocity space volumes calculated with both models for each volume 

element in the dust cloud.  (a)  All of the volume elements are shown.  The solid black line indicates slope one.  The 

red dashed line indicates a line fitted to the data.  (b)  A closer view of the boxed region of (a).  The blue dot 

indicates the volume element discussed in Section 4.2.  The green bars are representative error bars. 

constant (3�𝜋 2⁄ ).  The volume occupied by the tri-normal distribution is proportional to the 

product of the three ellipsoid axis lengths, which is equal to the volume of an ellipsoid with axes 

lengths 𝜎𝑣1, 𝜎𝑣2, and 𝜎𝑣3 times the same constant as for the Maxwellian volume.  The product of 

the ellipsoid axis lengths is equal to the square root of the determinant of the velocity space 

covariance matrix.  By comparing the volumes of the distributions across the cloud structure we 

can see that the two distributions describe very different regions of velocity space.   

 Figure 4.9 shows a scatter plot of the velocity space volume calculated with each model 

for all of the locations in the cloud; the horizontal axis shows the volume calculated from the 

Maxwellian model and the vertical axis indicates the volume found assuming the tri-normal 

model.  Figure 4.9 (b) shows a closer view of the region in Figure 4.9 (a) enclosed by the black 

rectangle.  The Figure shows that the ratio of the volumes lies, more or less, on a line of slope 

0.71, meaning that, on average, the Maxwellian model of the velocity space overestimates the 

velocity space volume by approximately 29%.   
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Figure 4.10:  Scatter plots showing the variance of the velocity space for the two models.  The blue dots indicate 𝜎12, 

the red dots show 𝜎22, and 𝜎32 is displayed as black.  The lines indicate linear fits to the three sets of points.  (a) Plot 

showing the entire parameter space.  (b) Plot showing the region indicated by the black box in (a).  The error bars 

are representative. 

4.3.2.2:  Variance ratios 

 The second geometrical comparison looks at the variance values of the tri-normal model 

and the Maxwellian distribution scalar variance.  The scatter plot in Figure 4.10 shows the 

Maxwellian model's variance (𝜎𝑚2 ) on the horizontal axis and the three principal axis variance 

values from the tri-normal model on the vertical axis (𝜎12 is blue, 𝜎22 is red, and 𝜎32 is black).  If 

the velocity space were spherically symmetric the three points from each volume element would 

have the same value and would all lie on a line of slope 1.  The data were fit to a line, the slope 

values (ratios) were found to be 1.77, 0.90, and 0.33, for the principal axis 1, 2, and 3 points, 

respectively.  The large circles in Figure 4.10 (b) indicate the values for the volume element 

discussed in Section 4.2.  The fact that the ratios of the tri-normal distribution variance values are 

not the same as the Maxwellian distribution variance is a clear reflection of the fact that the 

velocity space of the dust component is highly anisotropic.  The error bars shown in Figure 4.10 

(b) are representative.  It is noted that the uncertainty in the 𝜎12 values is smaller than for 𝜎22 or 

𝜎32 because the algorithm that is used to find the eigenvalues calculates 𝜎12 first; the uncertainty 

in the calculation of 𝜎12 is propagated into the results for the other variance values. 
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4.3.2.3:  Geometrical connection 

 The velocity space volume ratio and variance anisotropy discussed above can be 

combined to give a more complete representation of the difference between the two models.  As 

noted above, the Maxwellian model overestimates the volume of velocity space occupied by the 

dust component.  The geometrical picture of these distributions as ellipsoids and spheres 

provides an explanation of this discrepancy.  The ratio of the velocity space volume occupied by 

the tri-normal and the Maxwellian models is the ratio of Equations 4.17 and 4.16,: 

 𝑅 =
VolTN
Vol𝑚

=
𝜎𝑣1𝜎𝑣2𝜎𝑣3

𝜎𝑚3
 4.18 

When combined with the knowledge that the variance of the Maxwellian distribution is the 

average value of the tri-normal distribution's variance values the ratio can be written in terms of 

two dimensionless axis length values, a and b: 

 

𝑎 ≡ 𝜎𝑣1 𝜎𝑚⁄  

𝑏 ≡ 𝜎𝑣2 𝜎𝑚⁄  

𝑅 = 𝑎𝑏�3 − 𝑎2 − 𝑏2 

4.19 

The ratio R is plotted in Figure 4.11 (a), the black curves are at constant values of the volume 

ratio (the vertical axis) and are spaced by 0.15 (the largest of which is at 0.90).  The same 

function and contours are shown in Figures 4.11 (b) and (c).  The maximum value of the volume 

ratio is one, which occurs when a = b = 1 (i.e. in the limit where the ellipsoidal surface becomes 

a sphere).  Geometrically, this means that if one has some length L to divide up between the axes 

of an ellipsoid, the ellipsoid with the largest volume will be obtained when L is distributed 

amongst the three axes evenly.  This means that the Maxwellian distribution describes the 

velocity space which has the largest possible volume, given a set average velocity variance (in  
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Figure 4.11:  Plots showing the ratio of the volume of an ellipsoid to the volume of a sphere whose radius is the 

average value of the length of the three ellipsoid axes.  (a) Plots of the volume ratio value (vertical, colored) as a 

function of the lengths of the two longest ellipsoid axis lengths, normalized to the spherical radius (“a” and “b”).  

The red dot (towards the back of the structure) indicates the location of the velocity space for the volume element 

discussed in Section 4.2 in this parameter space.  (b) A two dimensional plot of the same function as (a).  The 

additional black points indicate the location of the velocity spaces for all volume elements from the measurements.  

(c)  A closer view of (b). 

Chapter 5 we will see that the average velocity variance is directly proportional to the energy 

density; the two models give identical energy densities within some configuration space volume, 

by having the same average axis length, but occupy very different volumes of velocity space).  

The black points indicated in Figures 4.11 (b) and (c) show the data from the different volume 

elements in the dust cloud in this normalized space (the red dot represents the volume element 
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discussed in Section 4.2).  The bulk of the data lie in a group near the second black contour 

which is at 75% of the maximum volume ratio, this is in general agreement with the slope of 

0.71 from the volume ratio comparison, seen in Figure 4.9.  This type of visualization is 

convenient because it allows one to see the degree to which the velocity space is anisotropic, 

semi-quantitatively, in terms of three dimensionless quantities for each volume element (a, b, and 

R). 

4.4:  The dust component phase space distribution 

 The spatially resolved phase space distribution has now been measured for the dust 

component and the process of finding the various model parameters has been described.  In 

Section 4.3 we arrived at the conclusion that the velocity space component of phase space must 

be modeled with the tri-normal probability distribution function.  In this section the parameters 

required to specify the PSD (the number density scalar field, drift velocity vector field, and 

velocity space covariance tensor field) are shown as a function of position for the entire dust 

cloud structure.  These parameter fields have not previously been measured in such a system and 

show the phase space of the dust cloud in unprecedented detail.  Additionally, a semi-

quantitative understanding of the magnitude and spatial variation of the PSD parameter fields is 

required before proceeding to the discussion of the fluid and transport quantities in Chapter 5. 

4.4.1:  The number density 

 The process used to find the dust number density, as discussed for a single volume 

element in Section 4.2.1, was repeated for all of the volume elements across the dust cloud in 

which the dust component was observed.  The spatial distribution of the number density is shown 

in Figure 4.12.  The histogram at the top of the figure shows the number of volume elements 
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Figure 4.12:  The dust number density distribution.  The histogram at the top of the figure shows all of the volume 

elements across the cloud, the colors indicate the magnitude of the number density for the plots of constant 𝑥� cross 

sections of the dust cloud.  The frame at the top left (x=52.91 cm) shows the number density of the cross section as 

viewed from beneath the anode looking towards the service end of 3DPX (similar to the vantage point of the 

photograph in Figure 3.2 (b)).  The other cross sections shown, moving left to right (and top to bottom) in the figure, 

are viewed from the same vantage point below the anode moving through the dust cloud away from the anode.  The 

side of the 3DPX chamber with the large window through which the PIV images are recorded is on the right side of 

the cross section plots. 

with a given number density and indicates the color scale used in the plots of the scalar fields 

shown below the histogram.  The plots of the spatially resolved dust number density in Figure 

4.12 show planes of constant 𝑥�, as viewed from beneath the anode looking away from the PIV 
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Figure 4.13:  Schematic view illustrating the orientation used for figures of scalar field quantities.  The cuboids 

show the volume elements occupied by the dust component of the plasma and are colored by number density (as in 

Figure 4.12).  (a) View showing the location of the dust cloud in relation to the anode (the brown disk) and the dust 

tray (the gray surface at the bottom).  This view is equivalent to looking through the large window on the 

experimental section of 3DPX (see Figure 3.1 (a)).  (b) Closer view of the structure from the same vantage point as 

part (a).  The translucent gray, vertically oriented, planes show and identify the absolute and relative locations of 

several easily identifiable cross sections found in all plots of scalar field quantities within this dissertation. 

laser towards the service end of 3DPX.  The relative locations of the planes seen in Figure 4.12 

are shown in Figure 4.13.  Figure 4.13 (a) shows a view of the dust cloud as seen by an observer 

looking through the large window in 3DPX (as in Figure 3.1 (a)).  Figure 4.13 (b) shows the 

volume elements in the cloud (colored by number density as in Figure 4.12 (a)) from the same 

vantage point as in 4.13 (a) only closer, also indicated are the locations of several easily 

identifiable cross sections used in the plots of scalar field quantities.  All scalar field quantities 

within this dissertation show the same cross sections of the cloud that are indicated here.   

 Returning to Figure 4.12, it can be seen that the number density varies fairly continuously 

across the dust cloud structure.  The cloud features a region of slightly higher number density 
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near it's center (and slightly to the right, at higher 𝑧̂ values) which decreases towards the outer 

boundary of the cloud.  Although the densities across the structure are all within, approximately, 

an order of magnitude of one another the variation is clearly non-zero and has a regular structure.  

It is also noted that although this dust cloud is quite large compared to other clouds observed 

within 3DPX, the total volume of the dust cloud (~5 × 10−6 𝑚3) is still less than one percent of 

the experimental volume that is accessible with the PIV diagnostic (~9 × 10−4 𝑚3).  Thus, if we 

were to make the standard assumption that the dust component is infinite and homogenous across 

the entire volume the resulting number density would be on the order of 107 m-3, which clearly 

demonstrates the importance the retaining information about the spatial distribution. 

4.4.2:  The drift velocity 

 The drift (mean) velocity vector of the dust component was also calculated within all 

volume elements of the cloud structure.  Figure 4.14 (a) shows the view of the structure from the 

same point that was shown in Figure 4.13 (a) and indicates the views for the vector field plots in 

parts (c), (e), and (f), the vantage point for the view of the vector field in part (d) is the same as 

in (a), except from a point that is closer to the cloud.  The detailed structure of the vector field 

can be difficult to see, viewing the vector field from several different perspectives allows the 

information to be seen more clearly.  All plots of vector field quantities within this dissertation 

are from the four vantage points seen in Figure 4.14 (c) through (f) and appear in the same order 

in all figures. 
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Figure 4.14:  Spatial distribution of the drift velocity vectors.  (a) A view from the top of the PIV camera window, 
showing the drift vector directions and the cloud orientation with respect to the anode (shown in brown at the top) 
and dust tray (the gray surface at the bottom of the plot).  The view in part (a) is the same as that in Figure 4.13.  The 
figure also indicates the vantage points for the plots in parts (c), (e), and (f).  (b) Histogram of the magnitude of the 
drift vectors.  The histogram shows the distribution of drift velocity vector magnitude and indicates the color scale 
of the vectors shown below.  The plots of the vectors show the magnitude and orientation of the drift velocity 
vectors measured within the dust cloud.   (c) View from the anode.  (d) View from the same vantage point as in (a).  
(e) View from below the anode, near the dust tray surface.  (f) View from the bottom of the PIV camera window. 
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Figure 4.15:  Spatial distribution of the drift velocity vector magnitude.  The histogram at the top of the figure shows 

the magnitudes of the drift velocity vectors and the color scale used in the plots below.  The frames below the 

histogram show the magnitude of the drift velocity as a function of position, with the same color scheme as the 

vectors plotted in Figure 4.13.  The vantage point is the same as in Figure 4.12. 

 The drift velocity vectors are colored according to magnitude, as indicated by the 

histogram in Figure 4.14 (b).  The field can be seen to vary in both magnitude and direction in all 

three spatial dimensions.  The variation of the drift velocity magnitude can be seen more clearly 

in Figure 4.15, which shows the magnitude as a scalar field on the same planes of constant 𝑥� as 

in Figure 4.12.  By taking both of the figures into account it can be seen that the drift velocity 

field has a, generally, larger magnitude at lower 𝑧̂ values (towards the "back" of the chamber, or  
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Figure 4.16:  Spatial distribution of the velocity space standard deviation values along the 𝑣�𝑥 direction.  The 

histogram shown at the top of the figure indicates the color scale used in the plots of constant 𝑥� which are shown 

below. 

on the left side of the scalar field plots) and at higher 𝑥� values (at points further away from the 

anode).  It can also be seen that in the regions where the magnitude of the drift velocity is highest 

the vector field has a negative 𝑦� (vertical) component, which will be important in Chapter 5. 

4.4.3:  The velocity space covariance tensor, laboratory coordinate system 

 The final component required for the specification of the PSD is the velocity covariance 

tensor, Σ
⇄

.  In the general laboratory coordinate system there are six parameters in the covariance  
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Figure 4.17:  Spatial distribution of the velocity space standard deviation values along the 𝑣�𝑦 direction.  The 

histogram shown at the top of the figure indicates the color scale used in the plots of constant 𝑥� which are shown 

below. 

tensor (Equation 2.14):  Three standard deviation values and three correlation factors.  The 

process for calculating these parameters within a single volume element was described in Section 

4.2.2.5.  Figures 4.16, 4.17, and 4.18 show the spatial distribution of the standard deviation 

values 𝜎𝑣𝑥, 𝜎𝑣𝑦, and 𝜎𝑣𝑧, respectively, for planes of constant 𝑥�.  In the figures it can be seen that 

𝜎𝑣𝑥 and 𝜎𝑣𝑦 have approximately the same spatial distribution, while the distribution of 𝜎𝑣𝑧 shows 

much more spatial variation and a broader distribution of values.  In all three cases the  
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Figure 4.18:  Spatial distribution of the velocity space standard deviation values along the 𝑣�𝑧 direction.  The 

histogram shown at the top of the figure indicates the color scale used in the plots of constant 𝑥� which are shown 

below. 

parameters can be seen to have lower values in the center of the cloud structure and higher 

values towards the edges of cloud.  In the case of 𝜎𝑣𝑧 the higher standard deviation values are 

found towards the back of the cloud (at smaller 𝑧̂ values) and at higher 𝑥� values. 

4.4.4:  The velocity space covariance tensor, principal axis coordinate system 

 The correlation values were not shown in the previous section because without the 

corresponding standard deviation values they are of limited utility.  The information gained with  
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Figure 4.19:  Spatial distribution of the velocity space standard deviation values along the 𝑣�1 direction (the largest of 

the standard deviation values in the principal axis coordinate system).  The histogram shown at the top of the figure 

indicates the color scale used in the plots of constant 𝑥� which are shown below. 

the inclusion of the correlation is seen most easily by rotating the velocity space coordinate 

system in each volume element to the local principal axis basis set.  The details of the rotation 

process are discussed in Section 2.2.3; briefly, the rotation is to the coordinate system where the 

covariance tensor is diagonal.  In the principal axis system the shape of the velocity space is 

completely specified by the three standard deviation values along the principal axis basis set 

directions, 𝜎𝑣1, 𝜎𝑣2, and 𝜎𝑣3.  The spatial distributions of the principal axis standard deviation  
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Figure 4.20:  Spatial distribution of the velocity space standard deviation values along the 𝑣�2 direction (the second 

largest of the standard deviation values in the principal axis coordinate system).  The histogram shown at the top of 

the figure indicates the color scale used in the plots of constant 𝑥� which are shown below. 

values are plotted as scalar fields in Figures 4.19, 4.20, and 4.21.  The variation of the standard 

deviation values is apparent in all three plots, as opposed to the case of the laboratory coordinate 

system, where the variation was almost entirely confined to 𝜎𝑣𝑧.  The standard deviation scalar 

field plots show the magnitude and the spatial variation of the velocity space width.   

 To gain a complete view of the information stored in the covariance tensor field the 

magnitudes of the standard deviation values must be accompanied by their corresponding  



112 
 

 

Figure 4.21:  Spatial distribution of the velocity space standard deviation values along the 𝑣�3 direction (the smallest 

of the standard deviation values in the principal axis coordinate system).  The histogram shown at the top of the 

figure indicates the color scale used in the plots of constant 𝑥� which are shown below. 

orientation, in the form of the principal axis basis set directions.  Each tensor element comes with 

two unit vectors (there is no “positive” or “negative” direction, the ellipsoids are 

morphologically identical under complete inversion of the Cartesian basis set) which means that, 

in principal, each of the lines that are plotted should have an arrow on both ends, these are 

omitted here for visual simplicity.  These coordinate system axial directions are plotted in 

Figures 4.22, 4.23, and 4.24.  Figure 4.22 shows the spatial variation of the 𝑣�1 orientation as a 

function of position across the dust cloud structure.  In the plots of 𝑣�1 the color scale indicates  
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Figure 4.22:  Views of the ݒො1 vector directions throughout the cloud volume.  The color scheme is indicated in (a) 
and shows the angle the axial direction makes with the vertical.    (b) View from the anode.  (c) View from the same 
vantage point as in (a).  (d) View from below the anode, near the dust tray surface.  (e) View from the bottom of the 
PIV camera window. 

the angle between the first principal axis and the vertical, ݕො, direction, as shown in the histogram 

in Figure 4.22 (a).  The orientation of the first principal axis has a regular structure while  
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Figure 4.23:  Views of the ݒො2 vector directions throughout the cloud volume.  The color scheme is indicated in (a) 
and shows the angle between the ݒො2 axis and the ̂ݖ direction.  (b) View from the anode.  (c) View from the same 
vantage point as in (a).  (d) View from below the anode, near the dust tray surface.  (e) View from the bottom of the 
PIV camera window. 

featuring non-zero spatial variation.  It is noted that the first principal axis is along the direction 

that exhibits the largest velocity space standard deviation; if one were to simply look at the plots 

of the velocity space standard deviation values in the laboratory coordinate system (Figures 4.16,  
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Figure 4.24:  Views of the ݒොଷ vector directions throughout the cloud volume.  The color scheme is indicated in (a) 
and shows the angle between the ݒො3 axis and the ̂ݖ direction.  (b) View from the anode.  (c) View from the same 
vantage point as in (a).  (d) View from below the anode, near the dust tray surface.  (e) View from the bottom of the 
PIV camera window. 

4.17, and 4.18) the expectation would be that this direction would be parallel to ̂ݖ.  However, 

examination of Figure 4.22 indicates that the direction of largest velocity variance is generally  
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not in the 𝑧̂ direction, the inclusion of the off-diagonal terms in the covariance tensor is the only 

way in which this direction can be identified. 

 Figure 4.23 shows the spatial orientation and variation of the second principal axis, 𝑣�2.  

The color shows the angle between the orientation of 𝑣�2 and the 𝑧̂ axis (for an easier comparison 

with 𝑣�3).  The majority of the cloud features a nominally uniform 𝑣�2 direction, except in the 

region colored blue.  In this region 𝑣�2 is aligned, more or less, with the 𝑧̂ direction.  The very 

qualitative explanation for the deviation of the direction of 𝑣�2 orientation in this region is that the 

region with blue coloration in Figure 4.23 is the only part of the cloud directly below the anode.  

It can also be seen, in Figure 4.20, that this region features lower values of 𝜎𝑣2 than the rest of 

the cloud.  The orientation of the third principal axis is shown in Figure 4.24, the color scheme is 

the same as in the plots of the second principal axis direction.  Examination of the 𝑣�3 orientation 

shows the same interesting structure seen in the plots of 𝑣�2. 

 The myriad plots in this section are an attempt to show the variation of a tensor field with 

six independent parameters on a three dimensional spatial array; the large amount of information 

that must be specified in each volume element precludes a simple, compact, representation.  By 

combining the standard deviation magnitude scalar fields (Figures 4.19, 4.20 and 4.21) with the 

orientation of the velocity space coordinate systems (Figures 4.22 - 4.24) one can gain a basic 

qualitative mental picture of the spatially varying velocity space covariance tensor field. 
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Chapter 5:  Transport and Thermal Properties of the Dust Component 

 In Chapter four the process of measuring and constructing the spatially resolved phase 

space distribution for the dust component of a plasma was described in detail.  The process led to 

three field quantities (the number density scalar field, the drift velocity vector field, and the 

velocity space covariance tensor field) that, together, describe the properties of the dust fluid as a 

function of position.  The parameter fields, shown in Section 4.4, are quite interesting in their 

own right, but the true power of the diagnostic, data analysis, and velocity space model 

improvements introduced in this dissertation is the ability to take the information for the 

individual volume elements and use it to ascertain some of the more general thermodynamic and 

transport properties of the dust component.  The new measurement capacity gives the ability to 

see the internal structure of the dust component with unprecedented detail.   

 A number of fluid quantities that have previously been inaccessible are now available 

with the PSD measurement process described in Chapter 4.  Section 5.1 discusses the derivation 

of the fluid transport equations starting from the Boltzmann equation and with the assumption 

that the velocity space is tri-normal.  The results of the derivations are three transport equations:  

The continuity equation, the momentum equation, and the energy equation.  The terms that 

appear within each of the three transport equations (and have been measured) will be discussed, 

semi-quantitatively, in Sections 5.2 – 5.4.  Examination of the spatial distribution and magnitude 

of the various densities and flux rates that appear in the transport equations allows one to see the 

influence of each individual thermodynamic and transport mechanisms that were measured.  
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Section 5.5 contains further discussion of the results from earlier in the chapter.  Specifically, 

Section 5.5.1 highlights the fact that the dust component is in a state of dynamic force-balanced 

equilibrium.  Section 5.5.2 discusses the difference in the functional form of the thermal heat 

flux vector that one obtains when using the tri-normal velocity space distribution, as opposed to 

the canonical Maxwellian velocity space distribution. 

5.1:  The fluid transport equations 

 The fluid equations that govern the thermodynamic and transport properties of the dust 

fluid come from the Boltzmann equation45.  The standard textbook derivations of the transport 

equations33,46–48 are tied at their core to the assumption that the velocity space can be described 

with the spherically symmetric Maxwellian distribution function (with perturbations, in the most 

general cases).  We have seen that the standard velocity space distribution model does a 

relatively poor job of describing the system in question, so we must re-derive the transport 

equations from the beginning.  It is noted that in the analysis given here we are interested in the 

quantities for which the parameters are experimentally measured, current technological and 

diagnostic limitations preclude detailed knowledge of the ion, electron, and neutral population 

distributions; because of this experimental inaccessibility all collision terms are omitted.  

Additionally, the electric field structure and dust grain charge distribution are both unknown in 

the experimental system, leading to the omission of terms related to the electrostatic force that 

would normally appear in such derivations.  The ignored terms are, presumably, important 

mechanisms in the system but because any analysis that includes such terms would be 

overwhelmingly dominated by their uncertainties the omission is justifiable.  All of the analysis 

discussed here is based on the PSD measurements described in the preceding chapters, as a result 

of the wealth of information obtained through the PSD measurements we can learn a great deal  
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Integral form Result 

∫ fd d3v 𝑛𝑑 

∫ v𝑖fd d3v ndui 

∫ 𝑣𝑖2fd d3v nd(ui2 + σvi
2 ) 

∫ v𝑖v𝑗fd d3v nd(uiuj + ρvivjσviσvj) 

∫ 𝑣𝑖3fd d3v ndui(ui2 + 3σvi
2 ) 

∫ 𝑣𝑖2𝑣𝑗fd d3v nd(2 ui ρvivjσviσvj + uj(σvi
2 + σvj

2 )) 

∫ v𝑖v𝑗𝑣𝑘fd d3v nd(uiujuk + ukρvivjσviσvj + ujρvivkσviσvk + uiρvjvkσvjσvk) 

Table 5.1:  Velocity space integral results with the tri-normal velocity distribution function. 

about the dust component even while we neglect several of the important mechanisms acting on 

the system. 

 The first three velocity space moments of the Boltzmann equation give rise to equations 

that govern density, momentum, and energy transport balances in the plasma fluid.  With the 

omission of collisions the Boltzmann equation reduces to the Vlasov equation: 

 0 =
𝜕𝑓𝑑
𝜕𝑡

+ v�⃑ · 𝛻𝑟𝑓𝑑 +
𝐹⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 5.1 

where fd is the dust component PSD, 𝐹⃑ is the vector describing any external forces that act on the 

dust fluid, and where ∇𝑟 and ∇𝑣 are the gradient operators in configuration and velocity space, 

respectively.  In what follows the force vector is the sum of the gravitational force and an 

omnibus "other" force, 𝐹⃑𝑜𝑡ℎ𝑒𝑟, which act on the dust component: 

 𝐹⃑ = −𝑚𝑑𝑔 𝑦� + 𝐹⃑𝑜𝑡ℎ𝑒𝑟 5.2 

where 𝑔 ≡ +9.8 𝑚/𝑠𝑒𝑐2.  To assist with some of the velocity space integration that follows 

several particularly useful results are given in Table 5.1. 
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 The continuity equation is obtained through the zeroth velocity space moment of the 

Vlasov equation:  We multiply Equation 5.1 by 𝑣⃑0 and integrate over the infinite three 

dimensional velocity space (all integration limits over velocity space are omitted in this section 

but should understood to cover the full infinite range): 

 0 = ∫
𝜕𝑓𝑑
𝜕𝑡

𝑑3𝑣 + ∫ v�⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 + ∫
𝐹⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 5.3 

The derivation procedure for the continuity equation follows the standard recipe, the detailed 

steps of which can be found in any plasma physics textbook.  The result is the continuity 

equation: 

 𝜕𝑛𝑑
𝜕𝑡

= −𝛻𝑟 · (𝑛𝑑 𝑢�⃑ ). 5.4 

 The momentum equation comes from the first velocity space moment of the Vlasov 

equation.  In order to arrive at an equation that describes the rate of change of momentum density 

we multiply Equation 5.1 by 𝑚𝑑 𝑣⃑ and integrate: 

 0 = ∫ (𝑚𝑑v�⃑ )
𝜕𝑓𝑑
𝜕𝑡

𝑑3𝑣 + ∫ (𝑚𝑑v�⃑ )v�⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 + ∫ (𝑚𝑑v�⃑ )
𝐹⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 5.5 

The first term on the right hand side ("RHS") of Equation 5.5 gives the standard expression for 

the time rate of change for the fluid's momentum density: 

 ∫ (𝑚𝑑v�⃑ )
𝜕𝑓𝑑
𝜕𝑡

𝑑3𝑣 =
𝜕
𝜕𝑡

(𝑚𝑑𝑛𝑑𝑢�⃑ ) 5.6 

The second term on the RHS of 5.5 is simplified by noting that the spatial gradient of v�⃑  is zero, 

this allows the term to be re-written, with the help of trivial vector identities, as: 

 ∫ (𝑚𝑑v�⃑ )v�⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 = 𝛻𝑟 · �𝑚𝑑∫ v�⃑ ⊗ v�⃑ 𝑓𝑑 𝑑3𝑣� 5.7 
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Where 𝑣⃑⨂𝑣⃑ indicates the outer product of 𝑣⃑ with itself, resulting in a rank two tensor quantity.  

The integrals can be carried out as in Table 5.1 or, directly, with Equation 2.6: 

 ∫ (𝑚𝑑𝑣⃑)𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 = 𝛻𝑟 · (2𝑃
⇄

+ 𝑛𝑑𝑚𝑑𝑢�⃑ ⊗ 𝑢�⃑ )  

where the pressure tensor is defined as: 

 𝑃
⇄

=
1
2
𝑛𝑑𝑚𝑑𝛴

⇄
 5.9 

The remaining term in Equation 5.5 is simplified using the standard application of integration by 

parts, the result is: 

 ∫ (𝑚𝑑v�⃑ )
F�⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 = 𝑚𝑑𝑛𝑑𝑔 y� − 𝑛𝑑F�⃑ other 5.10 

Equations 5.6, 5.8, and 5.10 are then re-inserted into Equation 5.5, slight algebraic manipulation 

gives the momentum equation: 

 𝜕
𝜕𝑡

(𝑚𝑑𝑛𝑑𝑢�⃑ ) = −2𝛻𝑟 · 𝑃
⇄
− 𝛻𝑟 · (𝑛𝑑𝑚𝑑𝑢�⃑ ⊗ 𝑢�⃑ ) −𝑚𝑑𝑛𝑑𝑔 y� + 𝑛𝑑𝐹⃑other 5.11 

 The final fluid equation of interest is the energy equation.  There are two forms of the 

energy equation, the scalar and the rank two tensor versions.  The scalar energy equation is 

obtained by multiplying the Equation 5.1 by the scalar quantity: 

  1
2
𝑚𝑑𝑣⃑ · 𝑣⃑ =

1
2
𝑚𝑑(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2) =

1
2
𝑚𝑑𝑣2  

and integrating over velocity space.  The tensor form is found by multiplying by the tensor 

quantity: 
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1
2
𝑚𝑑𝑣⃑ ⊗ 𝑣⃑ =

1
2
𝑚𝑑 �

𝑣𝑥2 𝑣𝑥𝑣𝑦 𝑣𝑥𝑣𝑧
𝑣𝑥𝑣𝑦 𝑣𝑦2 𝑣𝑦𝑣𝑧
𝑣𝑥𝑣𝑧 𝑣𝑦𝑣𝑧 𝑣𝑧2

�  

We will restrict our attention to the scalar version.  The energy transport equation is then: 

 

0 = ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

𝜕𝑓𝑑
𝜕𝑡

𝑑3𝑣 + ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑� 𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 + 

∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

𝐹⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 

5.12 

The first term on the right hand side is very similar to the integration in Equation 5.8, the result 

is: 

 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

𝜕𝑓𝑑
𝜕𝑡

𝑑3𝑣 =
𝜕
𝜕𝑡
�Tr �𝑃

⇄
�� +

𝜕
𝜕𝑡
�

1
2
𝑚𝑑𝑛𝑑𝑢2� 5.13 

Where Tr(𝑃
⇄

) is the trace of the pressure tensor and 𝑢2 = 𝑢𝑥2 + 𝑢𝑦2 + 𝑢𝑧2 (which is the trace of the 

tensor formed by the outer product of the drift velocity with itself).  The second term on the RHS 

of 5.12 is where we see the biggest difference with the new velocity distribution model, the terms 

that appear here also have the largest notational variation in the literature, so we proceed with 

caution: 

 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑� 𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 =

1
2
𝑚𝑑∫ �

(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑥
(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑦
(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑧

� · 𝛻𝑟𝑓𝑑 𝑑3𝑣  

The spatial derivative operator can be pulled out of the integral, as in 5.7: 

 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑� 𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 =

1
2
𝑚𝑑𝛻𝑟 · ∫ �

(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑥
(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑦
(𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2)𝑣𝑧

�𝑓𝑑 𝑑3𝑣  
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The nine integrals found in the equation above can all be carried out with the results listed in 

Table 5.1, giving: 

 

∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑� 𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 = 

1
2
𝑚𝑑𝛻𝑟 ·

⎝

⎜
⎛
�
𝑢𝑥�3𝜎𝑥2 + 𝜎𝑦2 + 𝜎𝑧2� + 𝑢𝑦𝜌xy𝜎𝑥𝜎𝑦 + 𝑢𝑧𝜌xz𝜎𝑥𝜎𝑧 + 𝑢𝑥𝑢2

𝑢𝑥𝜌xy𝜎𝑥𝜎𝑦 + 𝑢𝑦�𝜎𝑥2 + 3𝜎𝑦2 + 𝜎𝑧2� + 𝑢𝑧𝜌yz𝜎𝑥𝜎𝑧 + 𝑢𝑦𝑢2

𝑢𝑥𝜌xz𝜎𝑥𝜎𝑧 + 𝑢𝑦𝜌yz𝜎𝑥𝜎𝑧 + 𝑢𝑧�𝜎𝑥2 + 𝜎𝑦2 + 3𝜎𝑧2� + 𝑢𝑧𝑢2
�𝑛𝑑

⎠

⎟
⎞

 

=
1
2
𝑚𝑑𝛻𝑟 · �𝑛𝑑 �𝑢2𝑢�⃑ + 𝑢�⃑ · 𝛴

⇄
+ 𝑢�⃑  Tr �𝛴

⇄
� + t

⇄
⋮  �𝑢�⃑ ⊗ 𝛴

⇄
��� 

5.14 

Where "⋮" indicates a triple inner product and t
⇄

 is a rank four tensor, defined as: 

 t
⇄
≡ 𝛿𝑖𝑗𝛿𝑖𝑘𝛿𝑖𝑙𝑒

^
𝑖𝑒

^
𝑖𝑒

^
𝑖𝑒

^
𝑖 5.15 

Where 𝛿 is the Kronecker delta.  Equation 5.14 is further simplified by introducing the thermal 

heat flux vector, 𝑄�⃑ : 

 𝑄�⃑ ≡
1
2
𝑚𝑑𝑛𝑑 �𝑢�⃑ · 𝛴

⇄
+ 𝑢�⃑  Tr �𝛴

⇄
� + t

⇄
⋮   �𝑢�⃑ ⊗ 𝛴

⇄
�� 5.16 

It is noted that this somewhat awkward notation is avoided in the tensor version of the energy 

equation, where the expression for the rank 3 tensor quantity for the thermal heat flux is: 

 𝑄
⇄
≡

1
2
𝑚𝑑𝑛𝑑 �𝑢�⃑ ⊗ 𝛴

⇄
+ 𝛴

⇄
⊗ 𝑢�⃑ + �𝛴

⇄
⊗ 𝑢�⃑ �

†
�  

The terms in the parenthesis of the above equation are simply the sum of all unique rank three 

combinations of the covariance tensor and the drift velocity vector.  With Equation 5.16, the 

second term in the energy equation becomes: 
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 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑� 𝑣⃑ · 𝛻𝑟𝑓𝑑 𝑑3𝑣 = 𝛻𝑟 · �

1
2
𝑚𝑑𝑛𝑑𝑢2𝑢�⃑ � + 𝛻𝑟 · 𝑄�⃑  5.17 

Which is the sum of the divergence of the thermal heat flux vector and the divergence of a 

quantity that describes a flux of heat which is entirely born from the drifting motion of the dust 

fluid.  The final term on the right hand side of Equation 5.12 describes the energy flow due to 

external forces: 

 
∫ �

1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

F�⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 =
1
2
𝐹⃑ · ∫ �𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2�𝛻𝑣𝑓𝑑 𝑑3𝑣 5.18 

This is simplified by re-writing the integrand with the product rule of partial differentiation: 

 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

F�⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 =
1
2
𝐹⃑ · ∫ �𝛻𝑣(𝑣2𝑓𝑑) − 𝑓𝑑 �

𝜕𝑣2 𝜕𝑣𝑥⁄
𝜕𝑣2 𝜕𝑣𝑦�
𝜕𝑣2 𝜕𝑣𝑧⁄

��𝑑3𝑣  

The first term of the integrand on the RHS is integrated by parts to give zero.  After the 

derivatives in the second term are taken integration yields: 

 ∫ �
1
2
𝑚𝑑𝑣⃑ · 𝑣⃑�

F�⃑
𝑚𝑑

· 𝛻𝑣𝑓𝑑 𝑑3𝑣 = −𝑛𝑑𝑢�⃑ · F�⃑ = 𝑚𝑑𝑛𝑑𝑔 𝑢𝑦 − 𝑛𝑑𝑢�⃑ · F�⃑ other 5.19 

Thus, with the results found in Equations 5.13, 5.17, and 5.19, the energy equation is given by: 

 

𝜕
𝜕𝑡
�Tr �𝑃

⇄
�� +

𝜕
𝜕𝑡
�

1
2
𝑚𝑑𝑛𝑑𝑢2� = 

−𝛻𝑟 · �
1
2
𝑚𝑑𝑛𝑑𝑢2𝑢�⃑ � − 𝛻𝑟 · Q��⃑ − 𝑚𝑑𝑛𝑑𝑔𝑢𝑦 + 𝑛𝑑𝑢�⃑ · F�⃑ other 

5.20 

 The first three moments of the Boltzmann equation have given three equations that 

govern our simplified description of the dust fluid.  Each equation has several terms which are 

both of interest and whose components have been measured.  In the discussion that follows the  
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Continuity Equation 
∂nd
∂t

= −∇r · (nd𝑢�⃑ ) 

Momentum Equation 
∂
∂t

(mdnd𝑢�⃑ ) = −2∇r · P
⇄
− ∇r · (ndmd𝑢�⃑ ⊗ 𝑢�⃑ ) − mdndg 𝑦� + nd𝐹⃑other 

Energy Equation 
∂
∂t

Tr �P
⇄
� +

∂
∂t
�

1
2

mdndu2� = −∇r · �
1
2

mdndu2𝑢�⃑ � − ∇r · 𝑄�⃑ − mdnd g uy + nd𝑢�⃑ · 𝐹⃑other 

Pressure Tensor P
⇄

=
1
2

ndmdΣ
⇄

 

𝐇𝐞𝐚𝐭 𝐅𝐥𝐮𝐱 𝐕𝐞𝐜𝐭𝐨𝐫 𝑄�⃑ ≡
1
2

mdnd �𝑢�⃑ ·Σ
⇄

+𝑢�⃑  Tr �Σ
⇄
� + t

⇄
⋮ �𝑢�⃑ ⊗ Σ

⇄
�� 

Table 5.2:  Transport equations summary. 

spatial distribution and variation of the terms that appear in these equations will be examined.  

For convenience, the important results from this section are summarized in Table 5.2. 

5.2:  The continuity equation 

 In this section terms that appear in the continuity equation are examined.  The quantities 

of interest are found on the right hand side of Equation 5.4 and are listed, for convenience, in 

Table 5.3.   

The term found within the divergence operator of the continuity equation is most easily 

examined when multiplied by the dust mass, to give units of momentum density: 

 𝑝⃑𝑑 = 𝑚𝑑𝑛𝑑𝑢�⃑  5.21 

The momentum density vector field can be seen in Figures 5.1 (see Section 4.4.2 for an 

explanation of the different views of the vector field).  The color, arrow head size, and length of 

the vectors shown in the figure are on the logarithmic scale indicated in part (a) of the figure, this 

scaling is used to allow the structure of the momentum density field to be seen more clearly.  It 

can be seen in the plots of the vector field (Figures 5.1 (b) through (d)) that the momentum 

density has a generally larger magnitude towards the "back" of the chamber (low 𝑧̂ values) and at 

higher values of 𝑥�.  The vector field is parallel to the drift velocity field, which is shown in  
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∂nd
∂t

= −∇r · (nd𝑢�⃑ ) 

Quantity Expression Units 

Momentum Density 𝑚𝑑𝑛𝑑𝑢�⃑  (kg m/sec) m- 3 

Particle Flux Rate -𝛻𝑟·(𝑛𝑑𝑢�⃑ ) sec−1𝑚−3 

Table 5.3:  Continuity equation quantities and corresponding SI units. 

Figure 4.14, but is more uniform in magnitude due to the fact that the regions of the cloud with 

higher number density (Figure 4.12) tend to have lower drift velocity. 

 The divergence of the momentum density vector field is much easier to visualize, as it is 

a scalar field.  The finite difference method is used to calculate the spatial derivative quantities 

found in this chapter, details can be found in Appendix A.  This term is particularly interesting if 

we take the result of the divergence calculation and multiply by the configuration space volume 

of each volume element.  The multiplication gives the rate of particle flux out of each element 

per unit time, meaning that positive values of this quantity correspond to a loss of particles.  The 

particle flux scalar field is shown in Figure 5.2 (see Section 4.4.1 for a description of the relative 

locations for the various cross sections that are shown), the histogram shows the color scale used 

in the scalar field plots found beneath the histogram.  The region with the largest particle flux is 

localized near the back of the cloud, roughly corresponding to the region with the highest 

momentum density magnitude, as seen in Figure 5.1. 
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Figure 5.1:  The momentum density vector field.  (a) Logarithmic histogram showing the magnitudes of the 

momentum density vectors.  The color scale used in the histogram indicates the coloration of the vectors in (b) 

through (e). 
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Figure 5.2:  Particle flux rate through each volume element in the dust cloud structure.  (a) Histogram showing the 

particle flux rates calculated throughout the dust cloud structure.  The color scale in (a) indicates the magnitude of 

particle flux rate as a function of position in the scalar field plots below.  Positive values shown in this plot indicate 

a divergent flux rate. 
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∂
∂t

(mdnd𝑢�⃑ ) = −2 ∇r · P
⇄
− ∇r · (ndmd𝑢�⃑ ⊗ 𝑢�⃑ ) − mdndg 𝑦� + nd𝐹⃑other 

Quantity Expression Units 

Drift Energy Density 1
2
𝑛𝑑𝑚𝑑𝑢�⃑ · 𝑢�⃑  J/m3 

Thermal Energy Density |P
⇄

|=
1
2

ndmdTr(Σ
⇄

) J/m3 

Gravitational Potential Energy Density mdndg y J/m3 

Drift Force Density ∇r · �
1
2

ndmd𝑢�⃑ ⊗ 𝑢�⃑ � J/m3 

Thermal Force Density 𝛻𝑟 · 𝑃
⇄

 J/m3 

Gravitational Force Density mdndg 𝑦� J/m3 

Table 5.4:  Quantities found within the momentum equation and the corresponding SI units. 

5.3:  The momentum equation 

 The momentum equation is equivalent to Newton's second law; it relates the time rate of 

the change in the dust component's momentum density to any forces acting on the system.  There 

are two types of quantities found within this equation whose components have been measured:  

Energy densities and their spatial derivatives, which give force densities.  A semi-quantitative 

picture of the energy density distribution is quite useful because it gives insight into the general 

spatial thermodynamic structure of the cloud and allows one to see the widely disparate 

magnitudes of energy density provided by the different terms ("mechanisms") in the momentum 

equation.  The distributions of the force density vector fields, and their magnitudes, provide 

similarly useful information. 

5.3.1:  Energy densities 

 The distribution of the energy density associated with the drift velocity is shown in 

Figure 5.3.  The color scale shown in the histogram indicates the magnitude of the energy density  
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Figure 5.3:  Drift velocity based energy density.  (a)  Histogram showing the energy density values calculated 

throughout the cloud attributable to the drift velocity.  The energy densities are shown on a logarithmic scale.  The 

average approximate thermal energy densities of the ion, electron, and neutral plasma populations are indicated on 

the histogram for scale.  The scalar field plots show the spatial distribution of the energy density using the same 

color scheme that is used in the histogram. 

in the spatial distribution plots.  The approximate thermal energy densities for the neutral (Un), 

electron ( ௘ܷష), and ion (ܷ஺௥శ) components are shown in the histogram (using the values listed in 

Table 3.1) to give context to the magnitudes of the measured drift velocity energy densities.  It is 

noted that because the three types of dust component energy density discussed in this section 

have such disparate magnitude scales the ion, electron, and neutral thermal energy densities that 

appear in the Figures are scaled by a factor which is indicated in the plots (for example, the 

thermal energy density of the electrons is ௘ܷష ൎ 7.5 ൈ 10ଵସ	ܸ݁/݉ଷ, this is many orders of 
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magnitude larger than the scale in Figure 5.3, so this value for 𝑈𝑒− is multiplied by 10−8  in 

order to have it appear on the histogram).  The scale used in the histogram is logarithmic, which 

allows easy comparison of the energy density magnitudes provided with the different 

mechanisms described in this section.  The general spatial structure of the drift velocity-based 

energy density is similar to that of the momentum density distribution, the regions on the left of 

the plots (low z values, the "back" of the chamber) have higher energy densities than in the 

portion of the cloud towards the front of the chamber.  The drift energy density distribution can 

also be seen to have a larger magnitude and higher uniformity for the larger values of x.  The 

area with the lowest drift energy density roughly corresponds to the region where the second 

principal axis direction is aligned with the 𝑧̂ direction (the blue region of Figure 4.23). 

 A quantity of great interest in the dusty plasma physics community is the density of the 

thermal energy.  The tensor variance included within the tri-normal velocity distribution function 

required a slight generalization of the standard definition for the pressure tensor, 𝑃
⇄

, given in 

Equation 5.9.  The generalization is fairly straight-forward; the use of separate ion population 

pressure values parallel and perpendicular to an external magnetic field uses the same logic, 

although the method presented here is much more general.  It is easy to see that the thermal 

energy density, defined here as the trace of the pressure tensor, corresponds to the canonical 

thermal energy density, 𝓊th = 3𝑛𝑑𝑘𝐵 𝑇 2⁄ , when the tri-normal velocity covariance tensor is 

isotropic (i.e. when the variance is equal to the square of the thermal velocity, 𝜎𝑚2 ≡ 𝑣th2 =

𝑘𝐵 𝑇 𝑚𝑑⁄ ): 
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Figure 5.4:  Thermal energy density.  (a)  Histogram showing the energy density values calculated throughout the 

cloud attributable to the width of the velocity distribution.  The energy densities are shown on a logarithmic scale 

and cover a higher range of values than in the plots of the drift velocity based energy density.  The average 

approximate thermal energy densities of the ion, electron, and neutral plasma populations are indicated on the 

histogram for scale.  The scalar field plots show the spatial distribution of the energy density using the same color 

scheme that was used in the histogram. 
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The thermal energy density is an especially convenient metric in this context due to the 

ambiguity that one encounters when applying the idea of a temperature to systems where the tri-

normal model is required to accurately describe the velocity space.  It can be seen in the figures 

within this section (Figures 5.3 – 5.5) that the various measured energy densities of the dust 

component all have values that are orders of magnitude less than or equal to the approximate 

thermal energy densities of the ion, electron, and neutral populations (except in the case of the 

gravitational potential energy of the dust fluid, which is has an average energy density 

approximately four orders of magnitude larger than the ion thermal energy density).  This type of 

information is normally discussed within the context of a dust temperature, but the application of 

a temperature based energy density metric to a fluid with a velocity space distribution that is not 

the spherically symmetric Maxwellian may not be applicable.  Coupled with the ambiguity 

surrounding the actual applicability of a “temperature” is the fact that the number density of the 

dust is many orders of magnitude less than that of the other plasma components.  Discussing 

values of thermal energy density, instead of temperatures, seems to be a more appropriate 

measure of energy content. 

The thermal energy density distribution measured for the cloud is shown in Figure 5.4.  

The color scale and approximate values for the other plasma components are, again, indicated in 

the histogram to give an idea of the scale of the dust component thermal energy density.  The 

numerical range of the energy density used in the figure is narrower, but several orders of 

magnitude higher, than those that were measured for the drift energy density.   

 The third type of energy density which is accessible through the PSD measurements is 

the gravitational potential energy density (with zero potential energy defined to be on the surface  
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Figure 5.5:  Gravitational potential energy density.   (a)  Histogram showing the gravitational potential energy 

density values calculated throughout the cloud.  The energy densities are shown on a logarithmic scale and cover a 

higher range of values than in the plots of the drift velocity or velocity distribution width based energy densities.  

The average approximate thermal energy densities of the ion, electron, and neutral plasma populations are indicated 

on the histogram for scale.  The scalar field plots show the spatial distribution of the energy density using the same 

color scheme that was used in the histogram. 

of the dust tray), the spatial distribution is shown in Figure 5.5.  The scale for these energy 

density values is the highest of the three types of energy density.  As one would expect, the 

gravitational potential energy is generally highest near the top of the cloud, except near the edges 

where the number density is low. 

 The general structure of the spatial distributions of the various energy densities is quite 

interesting by itself, but perhaps the more important application of this type of analysis is the  
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Figure 5.6:  Comparison of energy density scales.  The horizontal axis shows the gravitational potential energy 

density calculated for all volume elements in the dust cloud.  The vertical axis indicates the drift velocity based 

energy density as black points and the thermal energy density as red points.  The data are plotted logarithmically 

along both axes.  The dashed lines indicate where the data would lie if the thermal/drift energy densities were equal 

to the gravitational potential energy multiplied by the indicated power of ten.  The blue and black points found 

above the black dashed line show where the approximate locations of the ion and neutral populations in this 

parameter space. 

ability to compare the magnitudes of the three measured energy density mechanisms.  Figure 5.6 

shows the thermal (red dots) and drift (black dots) energy density values for each volume 

element in the dust cloud plotted on the vertical axis and shows the gravitational potential energy 

density plotted on the horizontal.  In the Figure it is clear that, of the three energy sources 

considered, the gravitational potential energy mechanism dominates, due to the high mass of the 

dust grains.  The values of the thermal energy density are approximately two orders of magnitude 

smaller than the gravitational potential energy, the energy density associated with the drift 

appears to be almost negligible.  The approximate values for the argon neutrals (the black dot 

labeled Arn) and the argon ions (the blue dot labeled Ar+) are also shown, the electrons are 

omitted because their gravitational potential energy density is approximately four orders of 

magnitude lower than minimum value that appears on the plot.  The average ratios of the thermal 

and drift energies for the dust component and the ratio of the thermal energy to the gravitational  
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Plasma Species Ratio Value 
Dust Drift/Gravity 9.3 × 10−7 
Dust Thermal/Gravity 1.6 × 10−2 

Neutral Thermal/Gravity 8.2 × 102 
Ion Thermal/Gravity 1.2 × 103 

Electron Thermal/Gravity 1.3 × 1011 
Table 5.5:  Average energy density ratios. 

potential energy of the ion, electron, and neutral components of the plasma are listed in Table 

5.5. 

5.3.2:  Force densities 

 The terms that actually appear in the momentum transport equation are the spatial 

derivatives of the energy density fields discussed in Section 5.3.1.  The force densities are plotted 

as both three dimensional vector fields and as scalar fields to show the magnitude.  The 

magnitudes of the force densities will be shown to have a hierarchy that is similar to that which 

was seen for the energy densities. 

 The force that is entirely associated with the drift velocity is shown as a vector field in 

Figure 5.7.  The magnitude of the vectors and the projection of the force density vector direction 

on the plane of the figure is shown in Figure 5.8, the arrows on the scalar field plots are all of the 

same length, regardless of magnitude.  The spatial distribution of the drift force density is similar 

to that of the corresponding energy, with larger values towards the back of the chamber.  The 

magnitudes of the force density range from approximately 10-10 to 10-7 N/m3. 
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Figure 5.7:  Drift force density vector field.  (a) Histogram showing the magnitude of the force density vectors 

calculated throughout the cloud attributable to the drift velocity divergence.  The forces densities are shown on a 

logarithmic scale.  The vector field plots show the spatial distribution of the drift force density using the same color 

scheme that was used in the histogram. 
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Figure 5.8:  Drift force density magnitude.  (a) Histogram showing the magnitude of the force density vectors 

calculated throughout the cloud attributable to the drift velocity divergence.  The magnitudes are shown on a 

logarithmic scale.  The scalar field plots show the spatial distribution of the drift force density magnitude using the 

same color scheme that was used in the histogram.  The arrows superimposed on the scalar field plots are all of the 

same length and are shown to indicate the direction of the vector field in the plane of the cross section.  The arrows 

colored red have a positive horizontal component and the black arrows have a negative horizontal component. 

 The divergence of the pressure tensor (the "thermal force density") is shown in Figures 

5.9 and 5.10.  The magnitude of the thermal force densities ranges from approximately 10-5 to 

10-4 N/m3, approximately three orders of magnitude higher than for the drift force densities.  A 

particularly interesting feature of the spatial distribution can be seen by inspecting the arrows on 

the plots of the scalar field.  At low x values the ׏ ∙ ܲ
⇄

 vector field has ݕො (vertical) components 

that are all pointing upward, as one moves towards larger values of x the magnitude of 
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Figure 5.9:  Thermal force density vector field.  (a)  Histogram showing the magnitude of the force density vectors 

calculated throughout the cloud attributable to the divergence of the velocity space distribution width and 

orientation.  The force densities are shown on a logarithmic scale.  The vector field plots show the spatial 

distribution of the thermal force density using the same color scheme that was used in the histogram. 
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Figure 5.10:  Thermal force density magnitude.  (a) Histogram showing the magnitude of the force density vectors 

calculated throughout the cloud.  The force density magnitude is shown on a logarithmic scale.  The scalar field 

plots show the spatial distribution of the thermal force density magnitude using the same color scheme that was used 

in the histogram.  The arrows superimposed on the scalar field plots are all of the same length and are shown to 

indicate the direction of the force vector field in the plane of the cross section.  The arrows colored red have a 

positive vertical component (they point upward) and the black arrows have a negative vertical component. 

thermal force density increases and the orientation changes, becoming predominantly downward.  

This behavior can also be seen in the plots of the vector field, particularly in Figures 5.9 (c) and 

(e). 

 The final force density field which can be directly computed from the PSD measurements 

is the gravitational force density.  The vector plots are omitted due to the fact that the field is  
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Figure 5.11:  Gravitational force density magnitude.  (a) Histogram showing the magnitude of the gravitational force 

density vectors calculated throughout the cloud.  The magnitude is shown on a logarithmic scale.  The scalar field 

plots show the spatial distribution of the gravitational force density magnitude using the same color scheme that was 

used in the histogram.  Arrows are omitted in this figure, as the vectors are uniformly oriented downward. 

uniform in direction (down).  The magnitude of the gravitational force density has a fairly 

narrow distribution and large values compared to the drift and thermal force densities. 

 A comparison of the magnitudes of the force densities acting on each volume element is 

shown in Figure 5.12.  The thermal and drift force density magnitudes are plotted vertically and 

the magnitude of the gravitational force density is shown on the horizontal.  In contrast to the 

comparison of the energy density magnitudes, the magnitudes of the three types of force are 

closer to one another.  In several cases the thermal force density is larger than the gravitational  
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Figure 5.12:  Comparison of force density magnitudes.  The horizontal axis shows the magnitude of the gravitational 

force density calculated for all volume elements in the dust cloud.  The vertical axis indicates the magnitude of the 

drift velocity based force densities as black points and the thermal force densities as red points.  The data are plotted 

logarithmically along both axes.  The dashed lines indicate where the data would lie if the thermal/drift force density 

magnitudes were equal to the gravitational force density multiplied by the indicated power of ten. 

force density and for almost all of the volume elements the magnitudes of the thermal and 

gravitational force densities are within three orders of magnitude of one another.  As was seen 

for the energies, the contribution from the drift is extremely low and seems to play a rather small 

role in the overall force balance.   

5.4:  The energy equation 

 The scalar energy equation gives information about the rate at which energy flows 

through each volume element in the dust cloud.  In this section the derivative terms will be 

examined, plots of the actual heat flux vector fields are omitted.  The quantities shown in this 

section are the actual values of the energy flowing into each volume element and not densities 

(as with the particle flux rate in Section 5.2).   
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Quantity Expression Units 

Drift Energy Flow Rate Density ∇r· �
1
2

mdndu2𝑢�⃑ � (J/sec)m-3 

Thermal Energy Flow Rate Density ∇r·𝑄�⃑  (J/sec)m-3 

Gravitational Potential Energy Flow Rate Density mdnd g uy (J/sec)m-3 

Table 5.6:  Quantities found within the energy transport equation and the corresponding SI units. 

Figure 5.13 shows the divergence of the flux of heat that is a result of the drifting motion 

of the dust fluid.  Positive values of the energy flow rate indicate that the "drift kinetic energy" of 

the fluid decreases as it flows through the volume element (a positive divergence value).  The 

magnitude of the drift energy flow rates are relatively low and are highly peaked about zero.  The 

spatial distribution indicates that the region with the most negative drift-mediated energy flow is 

near the back edge of the cloud, where the fluid gains energy as a result of the change in drift.   

The region with the largest positive values for the drift energy flow rate nominally 

correspond to the interface of the blue region of the cloud in Figure 5.3, where the drift energy 

density is lowest, and the remainder of the cloud where the drift energy density is higher and 

more uniform. 

 The divergence of the thermal heat flux vector, 𝑄�⃑ , is shown in Figure 5.14.  It is noted 

that the scale used in the figure is approximately four orders of magnitude wider than was used 

for the drift energy flow rate plots.  Positive values of the thermal energy flow rate are generally 

found in the interior of the cloud.  The region of the cloud at low z values (on the left of the 

scalar field cross section plots) can be seen to have a concentration of negative values, this 

indicates that the energy transport provided by pressure differences is flowing into these volume 

 



144 
 

 

Figure 5.13:  Drift velocity based kinetic energy flow rate.  (a) Histogram showing the rate of energy flow due to the 

drift velocity based mechanism.  Positive values indicate a divergence (loss) of energy for a given volume element.  

The scalar field plots use the same color scheme as in (a) and show that the majority of the energy transport due to 

this mechanism is confined to the rear of the cloud (i.e. at low z value, on the left hand side of the cross sections). 

elements (i.e. a negative divergence, or a convergence, of heat flux) as a result of the thermal 

heat flux mechanism. 

 The rate of gravitational potential energy flow is shown in Figure 5.15.  The distribution 

of this quantity is highly asymmetric about zero and is skewed towards negative values, which 

indicates that, for this cloud, gravitational potential energy flows out of the blue colored regions 

in Figure 5.15 due to the presence of the drift velocity vector field, which points down in the blue  
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Figure 5.14:  Thermal energy flow rate.  (a) Histogram showing the rate of energy flow due to the divergence of the 

heat flux vector.  Positive values indicate a divergence (loss) of energy for a given volume element.  The scalar field 

plots use the same color scheme as in (a) and show that the energy transport due to this mechanism is distributed 

throughout the cloud volume. 

region.  The reason for this can be seen by examination of the drift velocity vector field (Figure 

4.14) and its magnitude (Figure 4.15):  The magnitude of the y component of the drift velocity 

field becomes larger, but remains negative, as one moves from the low 𝑥� values to higher 𝑥� 

values.  The regions with larger vertical drift velocity magnitude can be seen to correspond to the 

regions with a higher gravitational potential energy redistribution rate.  As a dust grain drifts to a 

region that is situated lower in the cloud it loses gravitational potential energy, which must be re- 
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Figure 5.15:  Gravitational potential energy flow rate.  (a) Histogram showing the rate of gravitational potential 

energy flow.  The negative (blue) values indicate a convergence (gain) of energy for the particles within the volume 

element due to the falling motion caused by the drift velocity vector field.  The scalar field plots use the same color 

scheme as in (a) and show that the majority of the energy transport due to this mechanism is confined to the side of 

the cloud furthest from the anode (i.e. at high x values).   

deposited into some other form of energy (most likely in the form of electrostatic potential 

energy in this experimental configuration). 

5.5:  Further discussion of the transport measurements 

 The process of examining each of the individual measurable terms that appear in the 

transport equations is now complete.  The process has given a great deal of insight into the inner 

workings of the system.  Section 5.5.1 describes how the evidence we have considered to this  
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point allows one to reach the conclusion that the system is in a state of dynamic force-balanced 

equilibrium.  Section 5.5.2 discusses the thermal heat flux quantity and describes how the two 

models of velocity space result in different functional forms of the heat flux vector.  Section 

5.5.3 contains a summary. 

5.5.1:  A dynamic equilibrium 

The motivation for the first conclusion that we can draw from the transport analysis 

comes from consideration of the terms within the energy equation.  To see the combined effect 

of the measured energy flow mechanisms in the system we return to the energy equation, 5.20: 

 

𝜕
𝜕𝑡

Tr �𝑃
⇄
� +

𝜕
𝜕𝑡
�

1
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𝑚𝑑𝑛𝑑𝑢2� = 

−𝛻𝑟 · (
1
2
𝑚𝑑𝑛𝑑𝑢2𝑢�⃑ ) − 𝛻𝑟 · 𝑄�⃑ − 𝑚𝑑𝑛𝑑gu𝑦 + 𝑛𝑑𝑢�⃑ · 𝐹⃑other 

5.22 

The total measured time rate of change of energy content in each volume element is the sum of 

the terms on the right hand side of the equation (we exclude the energy flow associated with the 

"other" forces, as they are, by definition, unknown): 

 −𝛻𝑟 · (
1
2
𝑚𝑑𝑛𝑑𝑢2𝑢�⃑ ) − 𝛻𝑟 · 𝑄�⃑ − 𝑚𝑑𝑛𝑑g u𝑦  

This quantity is plotted in Figure 5.16.  It is noted that the scale in Figure 5.16 is the reverse of 

that used in the preceding plots of the energy flow rate.  If it were incorrectly assumed that there 

were no other sources of potential energy storage in the system, a positive value would indicate 

that the trace of the pressure tensor and the drift velocity based energy density, both found on the 

left hand side of Equation 5.22, would increase as a function of time.  An alternate way to think  
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Figure 5.16:  Total measured energy flow rate.  (a) Histogram showing the rate of gravitational potential energy 

flow.  The scale used in figure is the opposite of the previous plots; positive values indicate a gain of energy by the 

particles within the dust fluid as they pass through a given region of the cloud.  The scalar field plots use the same 

color scheme as in (a) and show that the majority of the measurable energy transport is confined to the rear of the 

cloud (i.e. at low z value, to the left hand side of the cross sections). 

about this is that if the energy density content within a given volume element is assumed to be 

constant in time (if the left hand side of Equation 5.22 is zero) the values of the energy flow 

indicated in Figure 5.16 are those that are provided by the forces in the system which are 

experimentally inaccessible.   

Comparison of the scalar fields shown in Figure 5.16 to those in Figure 5.15 indicates 

that gravitational potential energy flow is the dominant measurable energy flow mechanism.  It is 
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also important to note that the gravitational mechanism is non-zero only if the drift velocity is 

included.  The preponderance of evidence to this point has, perhaps, suggested that the drifting 

motion of the dust fluid is an inconsequential component of the overall system dynamics.  The 

drift component of the energy density field for the system was an average of nearly 108 times 

smaller than the gravitational potential energy density.  The force arising from the divergence of 

the drift energy density tensor field was some six orders of magnitude smaller than the 

gravitational force.  The energy flow rates that arose purely from the drifting motion (Figure 

5.13) were found to be extremely low and peaked about zero.  However, if the drift velocity was 

naively assumed to be zero, the gravitationally mediated energy redistribution mechanism would 

also be zero, as would all other terms on the right hand side of the energy equation.  While the 

non-zero drift velocity field plays only a small role in the first two transport equations it is the 

mechanism that drives the flow of energy in the system.   

The observation of an energy flow that is the result of a non-zero and non-uniform drift 

velocity field is the characteristic sign of a system that is in a state of dynamic equilibrium.  The 

standard practice of ignoring the drift velocity in the analysis of such systems results in the 

omission of important physics.  The drift velocity field cannot be observed without the new 

method that allows the phase space distribution to be measured with spatial resolution. 

5.5.2:  The heat flux 

The tensor variance in the tri-normal model leads to a difference in the functional form of 

thermal heat flux vector, 𝑄�⃑  (this is also true if the rank two tensor version of the energy equation 

is examined, in which case the heat flux quantities are rank three tensors).  In Section 5.1 the  
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Figure 5.17:  Difference in the energy flow rates calculated using the two velocity space models.  (a) Histogram 

showing the magnitude of the differences.  (b)  Histogram showing the energy flow rate magnitude as calculated 

with the tri-normal velocity space model (red) and the associated uncertainty in the values (gray) to give an idea of 

scale to the other portions of the figure.  The scalar field plots show the spatial distribution of the difference in 

energy flow rates and show that there is minimal coherent spatial structure in the calculated differences. 

vector form of 𝑄�⃑  was derived for the tri-normal velocity space model.  The heat flux vector, in 

terms of the tri-normal velocity distribution function parameters, is given by: 

 𝑄�⃑ TN =
1
2
𝑚𝑑𝑛𝑑 �

𝑢𝑥(3𝜎𝑥2 + 𝜎𝑦2 + 𝜎𝑧2) + 𝑢𝑦𝜌xy𝜎𝑥𝜎𝑦 + 𝑢𝑧𝜌xz𝜎𝑥𝜎𝑧
𝑢𝑥𝜌xy𝜎𝑥𝜎𝑦 + 𝑢𝑦(𝜎𝑥2 + 3𝜎𝑦2 + 𝜎𝑧2) + 𝑢𝑧𝜌yz𝜎𝑥𝜎𝑧
𝑢𝑥𝜌xz𝜎𝑥𝜎𝑧 + 𝑢𝑦𝜌yz𝜎𝑥𝜎𝑧 + 𝑢𝑧(𝜎𝑥2 + 𝜎𝑦2 + 3𝜎𝑧2)

� 5.23 
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Figure 5.18:  Comparison of the magnitudes and angles of the heat flux vectors calculated with the two velocity 

space models.  (a) Percentage difference (normalized to the tri-normal model's heat flux vector magnitude) in the 

calculated vector magnitudes.  (b) Distribution of the angular orientation differences in the calculated vectors. 

The result one obtains with use of the Maxwellian model, with the same energy density and drift 

velocity, is given by: 

 𝑄�⃑ 𝑚 =
5
2
𝑚𝑑𝑛𝑑𝜎𝑚2 𝑢�⃑ =

5
6
𝑚𝑑𝑛𝑑(𝜎𝑥2 + 𝜎𝑦2 + 𝜎𝑧2)𝑢�⃑  5.24 

The two expressions for the heat flux vector result in different vector fields, as can be seen in 

Figure 5.17.  Figure 5.17 shows the difference in the energy flow rates that are found when the 

different velocity space models are used: 

 𝛥 (𝛻 · 𝑄�⃑ ) ≡ 𝛻 · 𝑄�⃑ TN − 𝛻 · 𝑄�⃑ m 5.25 

Figure 5.17 (b) shows the magnitude of the energy flow rate assuming the tri-normal model, and 

its uncertainty, for scale (see Figure 5.14 for the full spatial distribution of 𝛻 · 𝑄�⃑ TN).  The median 

uncertainty of the energy flow rate values was found to be approximately 800 eV/sec, the 

resolution for the histogram shown in 5.17 (a) is one third of this uncertainty.  The histogram 

resolution was chosen so that in the scalar field plots of  𝛥 (𝛻 · 𝑄�⃑ ) a volume element that shows 

an approximately white color has a calculated energy flow rate that is nominally the same for 

both models, within the limits of the propagated uncertainties.  The difference in the resulting 

calculated energy flow rates can be seen to be pervasive throughout the cloud structure.   
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The actual thermal heat flux vectors obtained with the different velocity space models 

also show differences.  Two convenient metrics are used to show the difference in the heat flux 

vector calculation results:  The percentage difference of the magnitudes of the vectors and the 

difference in the angle between the calculated vectors.  Figure 5.18 (a) shows a histogram of the 

percent difference in the magnitudes of the heat flux vectors obtained with each model and the 

angle between the calculated vectors for each of the volume elements is shown in the histogram 

in (b).   

5.5.3:  Summary 

 The fact that the heat flux vector field exhibits measurable differences when the more 

general model of velocity space is applied underscores the importance of modeling the velocity 

space data with the tri-normal velocity space distribution.  This is especially true when one 

considers that the dust cloud discussed in this work was specifically chosen because of the fact 

that it appeared to exhibit very little transport.  The a priori expectation was that the data 

analysis process would reveal little particle, momentum, or energy transport.  The semi-

quantitative observations discussed in this Chapter have shown, a posteriori, that these quantities 

are not zero.  Additionally, even in a case such as that described here, where the magnitude of 

the drift velocity was very small, the standard assumption that the cloud is in a static, force-free, 

equilibrium was unambiguously shown to inadequately describe the state of the cloud.  

Examination of the energy flow distribution measured within the system clearly showed that the 

equilibrium is dynamic.  The measured force density vector field showed that the gravitational 

force, a force that arises externally, dominates over the contribution of the thermal and drift 

forces that come from within the dust component itself; this indicates that the system is in a state 

of force-balanced equilibrium.  This characterization of the dust fluid as being in a state of force-
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balanced equilibrium is self-consistent with the observation of the tri-normally distributed 

velocity space.  The ellipsoidal symmetry of the tri-normal velocity space distribution was shown 

to be the direct result of a system being in a force-balanced equilibrium by Clerk-Maxwell in 

1867.   The ability to resolve, measure, and quantify the internal transport properties, even in 

cases such as this where the magnitude of the transport is relatively small, gives weight to the 

power of the diagnostic and analytic processes that have been developed, applied, and discussed 

herein. 
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Chapter 6:  Conclusions 

 The work presented in this dissertation has addressed many of the issues related to the 

characterization of weakly-coupled dusty plasma systems that had been unresolved, open, 

questions.  Broadly, this was done with a theoretical component (the application of the tri-normal 

model of the velocity space) and an experimental component (the development of spatially 

resolved phase space distribution measurements).  The combination of these developments has 

led to the ability to directly measure and deduce the transport and thermal properties for the dust 

component of such plasma systems.  Section 6.1 briefly summarizes the work that has been 

performed.  The limitations of the components of this work will be discussed in Section 6.2, 

which motivates a discussion of possible future work.  Brief concluding remarks appear in 

Section 6.3. 

6.1:  Summary 

 Perhaps the most broadly applicable of the topics that have been discussed is the 

development of the tri-normal probability distribution function as the model for the velocity 

space portion of phase space.  Section 2.2 gave an overview of both the canonical Maxwellian 

distribution and the tri-normal model, which contained a convenient method of geometric 

visualization and discussed the applicability of the tri-normal model in the context of both the 

larger hierarchy of probability distribution functions and in a historical context.  What was not 

discussed, in detail, is how the tri-normal distribution relates to that developed by Chew, 
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Goldberger, and Low34 (“CGL”), which is a widely applied simplification of the tri-normal 

model.  Briefly, in the method of CGL, and in subsequent slight generalizations, the appearance 

of an anisotropic pressure tensor comes about by expanding the Boltzmann equation (with the 

assumption that the velocity space is described by the isotropic Maxwellian distribution function) 

in powers of some small parameter, generally the ion mass to charge ratio mi/qi, along a single 

coordinate axis.  The dust mass to charge ratio is much larger than one, meaning that such a 

formulation is not applicable to dusty plasmas.  The fact that the tri-normal model can be used to 

obtain an equivalent, and indeed more general, anisotropic pressure tensor without reliance on 

such an expansion means that part of this work could certainly be of use beyond the realm of 

dusty plasmas. 

 In the narrower context of weakly-coupled dusty plasmas, the application of the tri-

normal model for the velocity space has addressed and answered several questions that were 

previously open:  Must the velocity distribution be spherically symmetric?  Is the measured 

velocity space anisotropy a real effect, or the product of uncertainty in the measurement?  What 

mechanism could produce such anisotropy?  It was shown, by explaining that the tri-normal 

distribution is "allowed" in the context of phase space based Boltzmann equation-type analysis, 

that the velocity space is not required to be spherically symmetric.  The application of Bayesian 

probability theory based statistical tests quantitatively showed that the anisotropy is real by 

taking the finite measurement error of the diagnostic into account and also showed that the tri-

normal distribution does a vastly better job of describing the observations.  The mechanism that 

brings about the anisotropy comes from the long-known fact that any three dimensional system 

that is not in a force-free equilibrium must be ellipsoidally symmetric in velocity space, as shown 

by Clerk-Maxwell in 186732. 
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 The second broad advancement was the development of a method that allows the phase 

space distribution of a weakly-coupled dust cloud to be measured with high spatial resolution.  

Previous analyses of weakly-coupled dusty plasma systems gave the following:  A single 

average number density, a single drift velocity vector (if this was not assumed zero), and a single 

velocity space distribution width characterization.  As seen in Section 4.4, these parameters vary 

as a function of position throughout dust cloud structures.  The spatial variation was evident 

before the type of analysis presented here was given, by visual inspection of dust cloud 

structures, but had not been previously explored rigorously.  This work gives a method that 

allows both the configuration and velocity space components of the PSD to be measured with 

high spatial resolution. 

 The measurement of the transport and thermodynamic quantities discussed in this work 

are new developments in the analysis of weakly-coupled dust plasma systems.  Previous work 

lacked both an adequate description of the velocity space and the spatial resolution that are 

required to ascertain this type of information.  Additionally, the systematic removal of the 

assumption that the system is in a static, force free, equilibrium had not been attempted.  The 

analysis and derivation of the equation that describes the transport of energy also revealed that 

the standard form of the heat flux vector is not applicable to systems such as the one described 

here.  Specifically, the following thermodynamic and transport quantities were previously 

unavailable:  The particle flux, the momentum density vector field, the energy density scalar (and 

tensor) fields, the force vector fields, the heat flux vector (and tensor) fields, and the scalar (and 

tensor) fields that describe the rate of energy flow.  These quantities built a semi-quantitative 

picture of the internal structure of the cloud which allowed the following conclusion to be drawn:  

The drift velocity plays an integral part in the system dynamics, because of this the cloud is in a 
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state of dynamic force-balanced equilibrium.  While many of these properties had been 

suspected in weakly-coupled dusty plasmas, they had never been explored experimentally. 

6.2:  Future work 

 The work presented here opens the door to the precise analysis of any number of 

phenomena observed within dusty plasmas.  However, there are several aspects of the process 

that could be investigated and improved.  In terms of the information measured and discussed 

here, the two areas ripest for improvement are:  A better understanding of the configuration 

space distribution of the dust grains and volumetric PIV measurements.  In this work the 

configuration space was simply modeled as a scalar field; one of the most commonly studied 

dusty plasma systems is the strongly-coupled "crystalline" system.  Such systems contain a high 

level of dust grain spatial correlation, it may be beneficial to improve the model of the 

configuration space to include such effects, especially since the transition between the strongly- 

and weakly-coupled regime is not well understood.  The stereo-PIV diagnostic has the limitation 

that it can only measure a velocity field within a thin planar laser sheet, this means that data must 

be acquired over long periods of time.  After each cross section of the cloud is measured many 

times, the PIV laser and cameras are moved and the process repeats itself.  Dust clouds must be 

present, and nominally stable, for long periods of time in order to allow the diagnostic process to 

take place (it took approximately two and a half hours to record the data for the cloud described 

above).  By acquiring volumetric measurements of the cloud, with, perhaps, tomographic, 

holographic, or plenoptic based velocimetry techniques, the velocity field of the entire cloud 

volume could be measured simultaneously, allowing the investigation of more transient 

phenomena. 
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 Knowledge of spatially resolved background plasma species parameters and the electric 

field structure within the experimental device together represent the most pressing area for 

improvement.  Average values for the background plasma parameters are known, at best, to 

within an order of magnitude and without any awareness of spatial variation.  If such information 

were available the transport equations for the combined dust, ion, electron, and neutral system 

could be used to ascertain very detailed properties relating to, for example, energy exchange 

between the plasma species.  The electric field structure is completely unknown in the device, 

this is problematic because, after gravity, the electrostatic force is presumably the most important 

mechanism that acts on the dust component. 

6.3:  Concluding remarks 

 This work has answered a number of the questions relating to the internal structure of 

weakly-coupled dusty plasma systems.  The application of the tri-normal probability distribution 

function as the model for the velocity space of the dust component allowed the observations to 

be described adequately.  The new velocity space model, coupled with the development of 

spatially resolved measurements of the PSD, unambiguously showed, for the first time, that such 

systems are in a state of dynamic force-balanced equilibrium.  The ability to draw such a 

conclusion is especially promising for future work because the dust cloud structure discussed 

here was chosen because it appeared to exhibit very little transport.  The fact that the 

improvements to the model of the velocity space and the diagnostic system allowed this 

information to be ascertained in such a case speaks volumes to the sensitivity and precision that 

is now possible in the study of these systems. 
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Appendix A:  Finite difference derivatives 

The distribution functions, 𝑓 (𝑟, 𝑣⃑), discussed in this work is measured on a discrete 

spatial array.  The form of the gradient operator that is used, primarily in Chapter 5, is described 

here.  The spatial array has regular spacing in the three configuration space dimensions, these 

spacing are ∆x, ∆y, and ∆z (∆𝑥 = ∆𝑦 = 0.171 𝑐𝑚 and ∆𝑧 = 0.200 𝑐𝑚).  If 𝑓 (𝑟0, 𝑣⃑) =

𝑓 (𝑥0,𝑦0, 𝑧0𝑣⃑) is the measured phase space distribution in the volume element located at 𝑟 = 𝑟0 

then the distribution function one unit to the right (in the 𝑥� coordinate) is given by: 

𝑓(𝑥1,𝑦0, 𝑧0, 𝑣⃑) = 𝑓(𝑥0 + ∆𝑥,𝑦0, 𝑧0, 𝑣⃑) 

The discrete partial derivative used here is the standard finite difference partial derivative: 

 𝜕𝑔 (𝑥)
𝜕𝑥

= Lim
Δx→0

𝑔 (𝑥 + Δx) − 𝑔 (𝑥 − Δx)
2 Δx

  

The spacing of the data considered here is small, so the limit is removed. 

 𝜕𝑔 (𝑥0)
𝜕𝑥

≡
𝑔 (𝑥0 + Δx) − 𝑔 (𝑥0 − Δx)

2 Δx
=
𝑔 (𝑥1) − 𝑔 (𝑥−1)

2 Δx
  

This definition of the partial derivative operator is used to for all calculations involving 

derivatives in this dissertation.  The two forms of this operator used in this text (and the gradient, 

as a simple example) are listed below. 

The gradient of the scalar quantity 𝑔(𝑟0) is calculated as: 
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 𝛻𝑟𝑔 (𝑥0,𝑦0, 𝑧0) =

⎩
⎪
⎨

⎪
⎧

1
2 ∆𝑥

(𝑔(𝑥1,𝑦0, 𝑧0) − 𝑔 (𝑥−1,𝑦0, 𝑧0))

1
2 ∆𝑦

(𝑔(𝑥0, 𝑦1, 𝑧0) − 𝑔 (𝑥0,𝑦−1, 𝑧0))

1
2 ∆𝑧

(𝑔(𝑥0,𝑦0, 𝑧1) − 𝑔 (𝑥0,𝑦0, 𝑧−1))⎭
⎪
⎬

⎪
⎫

 B.1 

The divergence of the vector field 𝑎⃑(𝑟0) = 𝑎𝑥(𝑟0)𝑥� + 𝑎𝑦(𝑟0)𝑦� + 𝑎𝑧(𝑟0)𝑧̂ is calculated as: 

 

∇ ∙ 𝑎⃑(𝑟0) = 

1
2 ∆𝑥

�𝑎𝑥(𝑥1,𝑦0, 𝑧0) − 𝑎𝑥(𝑥−1,𝑦0, 𝑧0)� 

+
1

2 ∆𝑦
�𝑎𝑦(𝑥0,𝑦1, 𝑧0) − 𝑎𝑦(𝑥0,𝑦−1, 𝑧0)� 

+
1

2 ∆𝑧
(𝑎𝑧(𝑥0,𝑦0, 𝑧1) − 𝑎𝑧 (𝑥0,𝑦0, 𝑧−1)) 

B.2 

The divergence of a symmetric rank two tensor, 𝑇
⇄

(𝑟0), is given by: 
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∇ ∙ �𝑇
⇄

(𝑟0)� = 

𝑥� �
1

2 ∆𝑥
�𝑇𝑥𝑥(𝑥1,𝑦0, 𝑧0) − 𝑇𝑥𝑥(𝑥−1,𝑦0, 𝑧0)�

+
1

2 ∆𝑦
�𝑇𝑥𝑦(𝑥0,𝑦1, 𝑧0) − 𝑇𝑥𝑦(𝑥0,𝑦−1, 𝑧0)�

+
1

2 ∆𝑧
(𝑇𝑥𝑧(𝑥0,𝑦0, 𝑧1) − 𝑇𝑥𝑧 (𝑥0,𝑦0, 𝑧−1))� 

+𝑦� �
1

2 ∆𝑥
�𝑇𝑥𝑦(𝑥1,𝑦0, 𝑧0) − 𝑇𝑥𝑦(𝑥−1,𝑦0, 𝑧0)�

+
1

2 ∆𝑦
�𝑇𝑦𝑦(𝑥0,𝑦1, 𝑧0) − 𝑇𝑦𝑦(𝑥0,𝑦−1, 𝑧0)�

+
1

2 ∆𝑧
�𝑇𝑦𝑧(𝑥0,𝑦0, 𝑧1) − 𝑇𝑦𝑧 (𝑥0,𝑦0, 𝑧−1)�� 

+𝑧̂ �
1

2 ∆𝑥
�𝑇𝑥𝑧(𝑥1,𝑦0, 𝑧0) − 𝑇𝑥𝑧(𝑥−1,𝑦0, 𝑧0)�

+
1

2 ∆𝑦
�𝑇𝑦𝑧(𝑥0,𝑦1, 𝑧0) − 𝑇𝑦𝑧(𝑥0,𝑦−1, 𝑧0)�

+
1

2 ∆𝑧
(𝑇𝑧𝑧(𝑥0,𝑦0, 𝑧1) − 𝑇𝑧𝑧 (𝑥0,𝑦0, 𝑧−1))� 

B.3 
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