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Abstract

A competition graph is a simple graph G that correlates to a digraph D in the following

way.

V (G) = V (D) and

E(G) =
{
{u, v} | there exists x ∈ V (D) for which {(u, x), (v, x)} ⊆ E(D)

}
.

Competition graphs were originally created in 1968 by Biologist Joel Cohen. In this paper

we discuss four things. First, the use of linear algebra is considered with connection to

competition graphs. Second, we generalize the idea of the competition graph into the m-

step competition graph, and characterize Pn as an m-step competition graph. Third, we

begin to characterize disjoint unions of graphs as m-step competition graphs. And last, we

explore what happens if we treat m-step competition graphs as an infinite sequence, called

a competition sequence.

ii



Acknowledgments

I’d like to thank all of the professors on my committee. Especially my main advisor,

Dr. Chris Rodger.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Binary Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 m-Step Competition Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Unions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



List of Figures

1.1 Competition Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Economic Competition Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 G with clique cover number 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 m-step Competition Graph Example . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The adjecency matrix A(D) of a directed graph D . . . . . . . . . . . . . . . . 5

2.2 m-step Digraph Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Neighborhood Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Use of adjacency matrices with k = i = 2 . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Ci(D) = Sn for all i ∈ Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Digraphs D for which C(D) = P7 . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Example where n ≡ 1(mod k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 Example where n ≡ 2(mod k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 A C6 graph with 3 pendant vertices. . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Union of 3 different disjoint C4 graphs . . . . . . . . . . . . . . . . . . . . . . . 14

3.8 Union of 4 different disjoint C4 graphs and 2 disjoint C5 graphs . . . . . . . . . 16

v



3.9 Digraphs for which C2(D) is the graph above . . . . . . . . . . . . . . . . . . . 16

3.10 Block diagonal adjacency matrix for D for which Cm∗i(D) =
m⋃

i=1

(G) . . . . . . . 17

4.1 Competition Sequence of D. Ci = Kn for all i ≥ 5 . . . . . . . . . . . . . . . . 18

4.2 Pictoral example for Final Graph Kn . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Pictoral example for Final Graph Kn . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Example of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Construction of the primitive set . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.6 Digraph D who’s final graph is G satisfying all maximal cliques having at least

one vertex not in any other maximal clique. . . . . . . . . . . . . . . . . . . . . 23

4.7 Digraph D who’s Final Graph does not satisfy every maximal clique having at

least one vertex not in any other maximal clique . . . . . . . . . . . . . . . . . 23

5.1 C(D) = C(Dt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 C(D) = C(Dt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 C(D) 6= C(Dt) and C(D) 6= C(Dt) . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



Chapter 1

Introduction

This thesis concerns competition graphs. The Competition Graph G = C(D) corre-

sponding to the directed graph D is the simple graph defined in the following way.

V (G) = V (D) and

E(G) =
{
{u, v} | there exists x ∈ V (D) for which {(u, x), (v, x)} ⊆ E(D)

}
.

C(D)D

Figure 1.1: Competition Graph

The concept of competition graphs was first introduced by Joel Cohen[5]. Joel Cohen

was a biologist, and his use for competition graphs was to model food webs. The digraph D

would model a food web, and the arcs in this digraph modeled predator/prey relationships.

The edges in the competition graph modeled two animals that shared prey. Due to this origin,

when discussing competition graphs, we often refer to vertices as predators and prey. Vertex

x preys on vertex y if (x, y) ∈ E(D). Moreover, there are a few assumptions made about

digraphs D because of this application. First, digraphs must be loopless because animals

do not prey upon themselves. Secondly, all digraphs D must be acyclic because cycles do

not occur naturally in the wilderness. It is worth noting, that both of these phenomena
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have actually occurred in natural food webs, but they are not very common. Moreover,

another possible use for competition graphs is economic graphs. In this case, the digraph

D models asset liability relationships in economic systems. Because of this, we must change

the definition of the digraph slightly in this model.

E(G) =
{
{u, v} | there exists x ∈ V (D) for which {(x, v), (x, v)} ∈ E(D)

}

D C(Dt)

Figure 1.2: Economic Competition Graph

It is clear to see that this is equivalent to C(Dt) where Dt is the digraph with all arcs

reversed in D. However, early study of competition graphs kept these generalizations in

place. For some of the early work in competition graphs see[12, 10, 5]. The major question

in the early study of competition graphs was which simple graphs G could be realized as

competition graphs? That is to say, given a simple graph G, does there exist a digraph D

for which C(D) = G. It turns out that adding isolated vertices will eventually make it so.

One naturally asks, if G could not be realized as a competition graph, how many isolated

vertices must you add to make G realizable as a competition graph? This number of isolated

vertices required is known as the Competition Number. The competition number of a simple

graph G actually has been fully characterized, but we must introduce two definitions before

we can state that result.

C lique: A C lique is a complete induced subgraph H of a simple graph G.

C lique Cover: A C lique Cover is a set of cliques in G with the property that every edge

in G lies in at least one clique.
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C lique Cover Number: The C lique Cover Number, ψ(G), of a graph G is the minimum

number of cliques required for which G can be covered with ψ(G) cliques.

G Clique 1 Clique 2

v1 v1v2

v3 v4

v5

v2

v3 v4 v4

v2

v5

Figure 1.3: G with clique cover number 2

Theorem 1 The competition number of a graph is min{0 , ψ(G)− |V (G)|+ 2}.

This theorem will be more clear when the application of linear algebra to competition graphs

is discussed.

Theorem 1 essentially ended the discussion on competition graphs themselves, but also led

to the discussion of generalizations of competition graphs. There are many generalizations

of competition graphs, but we are only concerned with two in this thesis.

The first generalization is to allow loops and cycles in the digraph D. However, this leads

to a fairly obvious generalization of the previous theorem

Theorem 2 The competition number of a graph is min{0 , ψ(G) − |V (G)|} if loops and

cycles are allowed in D.

The second generalization is much more exciting. This generalization was first introduced

in [4]. If instead of looking at 1-step neighbors for competition, look at the more general

m-step competition graph G = Cm(D) of a digraph D. This changes the definition in the

following way.

E(G) =
{
{u, v} | there exists x ∈ V (D) for which there exist walks

of length exactly m from both u and v to x
}

3



D

C2(D)

C3(D)

Figure 1.4: m-step Competition Graph Example

This will be the main topic of this thesis. Chapter 2 will introduce the linear algebra

approach to this problem. Chapter 3 will discuss results characterizing paths and cycles

as m-step competition graphs. Chapter 4 will introduce competition graphs as an infinite

sequence. Chapter 5 will discuss further work to be done.
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Chapter 2

Binary Linear Algebra

There are two approaches to the study of competition graphs: standard graph theory,

and a linear algebra approach. In this chapter we introduce the linear algebra approach.

When using linear algebra, it is appropriate to work over the boolean quasi-field B. B is a

quasi-field with the only elements being 0 and 1 in which addition and multiplication are

defined as usual except that 1 + 1 = 1. So for this entire chapter, assume all math is in B.

Adjacency Matrix: For any directed graph D, the adjacency matrix A = A(D) is the

|V (D)| × |V (D)| boolean matrix in which (vi, vj) ∈ E(D) if and only if Ai,j = 1.

D



0 1 1
0 0 1
0 0 1




A = A(D)

Figure 2.1: The adjecency matrix A(D) of a directed graph D

m-step digraph: An m-step digraph Dm of a directed graph D is a digraph for which

(vi, vj) ∈ E(Dm) if and only if there exists a directed walk of length m from vi to vj in D.

D D2 D3

Figure 2.2: m-step Digraph Example

Obviously the adjacency matrix allows any digraph to be represented by a matrix, and

therefore changes any graph theory problem into a linear algebra problem. However, this is
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only useful if some good properties hold. The following results are well known and can be

found in most graph theory texts.

Observation 1 Am is the adjacency matrix of Dm

Observation 2 Two digraphs D1 and D2 with adjacency matrices A1 and A2 respectively

are isomorphic if and only if A1 and A2 are isomorphic.

There are also many more nice properties that hold. We will not delve deeply into the

subject, but primitive and prime matrices have shown to be very useful in the study of

competition graphs.

Primitive Matrix: A matrix A is said to be primitive if there exists an integer m for

which Am = J where J is the all 1s matrix.

Prime Matrix: A matrix A is said to be prime if A = B ∗C implies that either B or C

is a permutation matrix.

For more work on prime and primitive matrices, see [7, 13, 6]. There is a very nice

algorithm that will take A, the adjacency matrix of a digraph D, and transform it into C(A)

the adjacency matrix of C(D). First we must notice that if vi, vj, . . . all prey upon a vertex

x, then these vertices will all be in competition. Therefore vi, vj, . . . will form a clique in

C(D). We will need the definition of neighborhoods to state this formally.

N+(x) = {v | (x, v) ∈ E(D)}

N−(x) = {v | (v, x) ∈ E(D)}

N−(v) N+(v)
v

Figure 2.3: Neighborhood Example
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It follows directly that all vertices in N−(x) will form a clique in C(D) for all x ∈ V (D).

This totally exhausts all edges in C(D). This leads to the following algorithmic construction

for C(A), the adjacency matrix for C(D).

1. Start with the 0 matrix

2. Find all vertices in N−(v1) = {vi1 , vi2 , . . .}

3. Replace the submatrix M [{i1, i2, . . .}, {v1, v2, . . .}] with the J matrix.

4. Repeat step 2 for all vi ∈ V (D)

5. Take the resulting matrix and subtract I.
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Chapter 3

m-Step Competition Graph

This chapter will discuss results achieved regarding paths and cycles charterized as m-

step competition graphs. We will also discuss unions of isomorphic graphs characterized

as m-step competition graphs. We start with some general widely known results regarding

m-step competition graphs.

Proposition 1 Cm(D) = C(Dm)

The following result appeared in [4]. This result is most easily seen by using the information

introduced in the previous linear algebra chapter, as is the following result.

Corollary 1 If G is an m-step competition graph, then G is also a k-step competition graph

if k divides m.

This follows directly from the observation that Cm(D) = Ck(Di) where m = k ∗ i, which is

portrayed nicely using adjacency matrices. Let A be the adjacency matrix of the digraph

D for which Cm(D) = G. Then Ai is the adjacency matrix of a digraph Di for which

Ck(Di) = G.

A A A A = A4

A2 A2 = A4

× × ×

×
Figure 3.1: Use of adjacency matrices with k = i = 2

Theorem 3 Let G be a triangle-free graph on n vertices. If G is an m-step competition

graph for m > n, then G is Sn(the star graph with n vertices.)
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Theorem 3 was proved in [8]. Without going into details, it was proved that such graphs

must have a ”star forcing structure” through a beautiful induction technique. See Figure

3.2 for an example of a digraph D for which Cm(D) = Sn for all values of m.

D C(D) = Sn

Figure 3.2: Ci(D) = Sn for all i ∈ Z

Lemma 1 Pn is an n− 1 and an n− 2 competition graph.

Pn is the (n − 1)-step and (n − 2)-step competition graph of the following directed graphs

respectively defined by

n− 1




V (D) = {vi | 1 ≤ i ≤ n}

E(D) = {(vi, vi+1), (vn−1, v1) | 1 ≤ i ≤ n}

n− 2




V (D) = {vi | 1 ≤ i ≤ n}

E(D) = {(vi, vi+1), (vn−1, v1), (vn−2, vn) | 1 ≤ i ≤ n}

See Figure 3.3 for an example of P7

Theorem 4 Pn is a k-step competition graph if n ≡ 1(mod k) or n ≡ 2(mod k).

The proof is actually very simple. It uses the previous observation along with Corollary 1.

However, I wish to go a little more into detail, as well as give some direct construction of

these graphs.
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D1 such that C6 = P7

D2 such that C5 = P7

Figure 3.3: Digraphs D for which C(D) = P7

The first construction utilizes linear algebra. If n ≡ 1(mod k), obtain the adjacency

matrix A from the first digraph presented in Observation 1. Since n ≡ 1(mod k), there

exists an integer i for which k ∗ i = n− 1. Cn−1(D) = Ck(Di) by Corollary 1. Ai will be the

adjacency matrix of Di for which Ck(Di) = Pn. If n ≡ 2(mod k), use the second digraph

from Observation 1, and proceed likewise. See Figure 3.4 for an example for P7.

D1 such that C6 = P7



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

1 0 0 0 0 0 0




A

D2 such that C3 = P7 A2



0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

1 1 0 0 0 0 0

0 1 0 0 0 0 0




Figure 3.4: Example where n ≡ 1(mod k).

The second construction is a direct Graph Theory construction. Let k ∗ i = n − 1 or

k ∗ i = n− 2. The following is a construction for a digraph for which Ci(D) = Pn.
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D1 such that C4 = P6 


0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1 0 0 0 0 1

1 0 0 0 0 0




A

D2 such that C2 = P6



0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1 0 0 0 0 1

1 1 0 0 0 0

0 1 0 0 0 0




A2

Figure 3.5: Example where n ≡ 2(mod k).





V (D) = vi | 1 ≤ i ≤ n

E(D) =





(vi, vi+k) 1 ≤ i ≤ n

(vn−i, vn−i+k+1) 1 ≤ i ≤ k

(vn−1−k, vn) if n ≡ 2(mod m)

This begs the question: could Theorem 4 be strengthened to an if and only if statement?

If not, what are some other values that work? That is a good question.

Theorem 5 Pn is a k-step competition graph if and only if n ≡ 1(mod k) or n ≡ 2(mod k).

The only if part of this statement was proved in [1].

The proof relies heavily on two definitions.

Anomaly: In Section 2, we learned that the columns of the adjacency matrix will create

cliques in C(D). Since Pn has clique cover number n− 1, there is a bijective function from

the cliques of Pn to n − 1 of the columns of A. The other column is referred to as the

anomoly.

Leaf: Since Cm(D) = Pn, There are only two vertices with degree 1. These vertices, l1

and l2, are known as the leaves of a graph. The proof is very long, but the basic construction
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is to force a certain structure on any digraph D for which Cm(D) = Pn by using these basic

lemmas.

1. Every vertex except maybe α has exactly 2 m-step predators.

2. Every vertex has a 1-step prey, and every vertex except maybe α has a 1-step predator.

3. If a pair of vertices share 2 m-step prey, one of these prey is α.

4. No vertex has 3 m-step predators.

5. If a vertex has 3 m-step prey, one of those prey is α.

6. If x has only one m-step prey, then x is a leaf.

7. If N i(u) ⊆ N i(v) for any i ≤ m then u is a leaf.

8. If every m-step predator of x is also an m-step predator of y, then either x or y is α.

9. If two vertices share a k-step prey, they will share an m-step prey as well.

These statements are proved as follows.

1. These 2 m-step predators correspond to the cliques of Pn.

2. If x had no 1-step prey, x would not be in competition with any other vertex. If x has

no 1-step predator, then it wouldn’t have 2 m-step predators.

3. All vertices correspond to different cliques in the graph. Since these 2 m-step prey

create the same clique, one of them is not needed in the bijective function from the

cliques to the vertices. Pick either column and call it α.

4. This follows because Cm(D) is triangle free.

5. If none were α, Cm(D) would have a claw.

6. A more generalized concept will be proved in (7).

12



7. u is adjacent to v in Cm(D). If u was adjacent to another vertex w, then v would be

adjacent to w creating a triangle in Cm(D).

8. Use a similar observation to that in (3).

9. If two vertices share a k-step prey, that prey has a 1-step prey. By induction, the two

vertices will share an m-step prey as well.

3.1 Unions

The next section will cover taking the union of k different isomorphic graphs. We start

with the Cn graph.

Theorem 6 The spiked cycle is an m-step competition graph if and only if m = 1.

This includes Cn itself. See Figure 3.6 an example of a spiked cycle with 3 pendant vertices.

Figure 3.6: A C6 graph with 3 pendant vertices.

This was proved in [4]. The proof is influenced heavily by linear algebra. Using some

results from [6], it can be found that any such digraph D for which C(D) is a spiked cycle

must have a prime adjacency matrix.

This statement can be generalized to the union of m different cycles. For the following

theorem, take
m⋃

i=1

(Cn) to mean the union of m vertex-disjoint Cn graphs.

Theorem 7
m⋃

i=1

(Cn) is a k-step competition graph if and only if k divides m.

13



3⋃

i=1
C4

Figure 3.7: Union of 3 different disjoint C4 graphs

Since Cm(D) will need to be
k⋃

i=1

Cn, we know a few things about D. Since the clique

cover number of
k⋃

i=1

Cn is k ∗ n, we know there is a bijective function from every vertex in D

to the cliques in Cm(D). This leads to the following observations.

1. For every vertex v, d+(v) ≥ 1.

2. For every vertex v, d+(v) ≤ 2.

3. For every vertex v, d−(v) ≤ 1.

4. For every vertex v, d−(v) ≥ 2.

5. If N+(u) ⊆ N+(v) then u = v.

For (1), since every vertex is in competition in Cm(D), every vertex must have an

outgoing edge, else it would not be in competition. For (3), if a vertex had no in-degree,

then it would have no m-step predators, contradicting the bijection from the edges to the

vertices. For (2), if a vertex v had out degree 3 or higher, then it would have 3 or more

out degree neighbors in D. This would create a claw in Cm(D). For (4), if a vertex v had

in-degree 3 or higher, there would be a triangle in Cm(D). For (5), u will be in competition

with v in Cm(D). If u was in competition with another vertex w, v would be in competition

with w too causing a triangle in Cm(D). So u can only be in competition with v, which is a

contradiction of the cycle structure.

It is possible to partition the vertices into two sets. V2 = {v | d+(v) = 2} and V1 = {v |

d+(v) = 1}. It is also possible to decompose V1 even further into

14



V1,i = {v | d+(v) = 1 And the shortest walk from v to some vertex u ∈ V2 has length i}.

For emotionally satisfying reasons call V1,0 = V2. Clearly v ∈ V1,i can only be adjacent to

some vertex u ∈ V1,i−1. But how many of these V1,i are non-empty? And how big are they?

This leads to the following observations.

a. V1,i = ∅ for all i ≥ m.

b. v ∈ V2 may only be adjacent to some vertex u ∈ V1,m−1.

c. |V1,i| = |V1,j| for all 0 ≤ i, j ≤ m− 1.

For (a), if i ≥ m, then v would only have 1 m-step neighbor, contradicting the cycle

structure. For (b), suppose v ∈ V2 was adjacent to some v ∈ V1,i for i < m − 1. Then, by

(5), v would have 3 m-step neighbors, contradicting (2). For (c), without loss of generality,

we can assume |V1,i| 6= |V1,i−1|. There are two cases.

Case 1: |V1,i| > |V1,i−1|. In this case, two vertices must be adjacent to the same vertex

by the pigeon hole principle, but this contradicts (5).

Case 2: |V1,i| < |V1,i−1|. In this case, there must be one vertex in V1,i−1 with in-degree

0, contradicting (3).

Due to the cyclic nature of D, v ∈ V1,i can only be in competition to some other u ∈ V1,i
in Cm(D). Moreover, these graphs will all be isomorphic. Therefore m must clearly divide

the number of cycles there are, which is k.

This proof can be expanded a little bit in the following way. Let
k⋃

i=1

mk⋃

i=1

(Cni
) be the

disjoint union of m1 Cn1 graphs, m2 Cn2 graphs and so on.

Corollary 2
k⋃

i=1

mk⋃

i=1

(Cni
) is a j-step competition graph if and only if j divides

g = GCD(m1, . . . ,mk).
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This theorem follows directly from the proof above. The digraph constraints are the same

from above. See Figure 3.8 for an example of this.

2⋃

i=1
C5

GCD(4,2) = 2

4⋃

i=1
C4

Figure 3.8: Union of 4 different disjoint C4 graphs and 2 disjoint C5 graphs

Figure 3.9: Digraphs for which C2(D) is the graph above

The next step is to generalize this theorem to spiked n cycles. Instead, let’s generalize

to any graph G as best we can.

Theorem 8 Let G be any j-step competition graph.
m⋃

i=1

(G) is a k-step competition graph if

k divides m * j.

The proof involves the construction of a diagonal matrix A that is the adjacency matrix

of a digraph D for which Cm∗j(D) =
m⋃

i=1

(G). This construction along with Corollary 1 proves

the theorem. In this digraph, let A be the adjacency matrix of DG for which Cj(DG) = G.

Also let n = |V (G)|.
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A =




0n A 0n . . . . . . 0n
0n 0n In 0n . . . 0n
... ... ... . . . . . . . . .
... ... ... . . . . . . . . .
... ... ... . . . . . . . . .
In 0n . . . . . . . . . 0n




Am∗i =




Am 0n . . . . . . . . . 0n
0n Am 0n . . . . . . 0n
... ... ... . . . . . . . . .
... ... ... . . . . . . . . .
... ... ... . . . . . . . . .
0n . . . . . . . . . 0n Am




n ∗m

n ∗m

n ∗m

n ∗m

Figure 3.10: Block diagonal adjacency matrix for D for which Cm∗i(D) =
m⋃

i=1

(G)
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Chapter 4

Completion

So far competition graphs have been restricted to one value m. Let us now observe

an infinite sequence of competition graphs. This sequence C(D), C2(D), . . . is called the the

C ompetition Sequence of a graph D. Sometimes, for a certain value k, G = Ck = Ck+1 = . . ..

This G is called the F inal Graph of the Competition Sequence. A generalized idea of this,

known as a competition index, was introduced and studied in [3, 2, 11].

Competition Index: When you look at the competition sequence of a digraph D, the

length between the first repeated graphs in the sequence is known as the index of D.

The final graph is a special where competition index = 1.

D C(D) C2(D)

C3(D) C4(D) C5(D)

Figure 4.1: Competition Sequence of D. Ci = Kn for all i ≥ 5

Observation 3 If Kn or Kn ever appears in a Competition Sequence, it will be the first

instance of the Final Graph.

If Ck(D) = Kn, every vertex is in competition with some vertex, therefore no vertex has

out-degree 0. If vertices u, and v are in competition, then there exists a vertex x for which

{(u, x), (v, x)} ⊆ E(Dk). x has a prey, call it y. Therefore {(u, y), (v, y)} ⊆ E(Dk+1).
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m Steps

m + 1 Steps

Figure 4.2: Pictoral example for Final Graph Kn

If Ck(D) = Kn, we will prove by contradiction. If u and v are in competition in Dl for

l > k. Without loss of generality we can say l = k + 1. There exists vertices u,v, and x

for which there is an l-step path from both u to x and v to x. The second vertices on each

path will be in competition in Dk. If these vertices are not unique, then u and v will be in

competition in Dk. Either way, this contradicts Ck(D) = Kn.

i steps

m steps

m + i stepsm + i steps

Figure 4.3: Pictoral example for Final Graph Kn

It’s pretty clear that a cycle-free digraph D will have Final Graph Kn. However, there

are non acyclic digraphs D with Final Graph Kn. Also, there are digraphs that have final

graphs other than Kn or Kn. One naturally asks a few questions.

1. Can we classify digraphs D with Final Graph Kn?

2. Can we classify digraphs D with final graph Kn?
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3. Can we classify simple graphs G, for which G is the Final Graph of some digraph D?

4. Can we find some upper and lower bounds for when the Final Graph will be reached?

Question four suggests another definition. The C ompletion Number of a digraph D is

the smallest integer k for which Ck(D) = G, where G is the Final Graph of D.

To answer Question 1, we must define a Primitive Graph, and a Primitive Set.

Primitive Digraph: A digraph D is primitive if there exists an integer k for which at

Dk = Kn. A digraph D is primitive if an only if its adjacency matrix is primitive.

Primitive Set: A primitive set is an induced subgraph C ⊆ D for which C is a primitive

digraph.

Lemma 2 If C(D) = Kn, there exists a vertex, ve, for which there exists an n−1 path from

every vertex v ∈ v(D) to ve.

We know that since C(D) = Kn, given any two vertices u and v, there must be a third

vertex x(maybe not distinct) for which {(u, x), (v, x)} ⊆ E(D). We will create an algorithm

that will find the vertex ve.

1. Arbitrarily label all vertices in the graph vi distinctly, call V (G) = V0.

2. Form a set V1 as follows: for every pair of vertices vi and vi+1 arbitrarily chose one

vertex v1i for which vi and vi+1 both prey upon v1i . Place v1i in V1.

3. Repeat to create Vi+1 from Vi until you reach Vn−1.

A few observations must be made. While, v1i may be equal to some v1j for some i 6= j, this

is fine because we’re finding walks, not paths or trails. Also, at every step, |Vi| = |Vi−1| − 1.

(When determining the size of these multisets, repetitions of elements are counted multiple

times). Therefore, for |V (D)| = |V0| = n, we know |Vn−1| = 1. This vertex, vn−11 = ve,

satisfies the lemma.
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. . .

. . .

v1 v2 v3 vn−1 vn

v
′
1 v

′
2 v

′
n−1

v
(n−1)
1 v

(n−1)
2

v(n)

Figure 4.4: Example of the Algorithm

Theorem 9 C(D) = Kn if and only if D contains a primitive set P . Moreover, for every

vertex v ∈ V (D) there exists a vertex p ∈ V (P ) for which (v, p) ∈ E(D).

Take the vertex from the previous lemma and call it v. We must build a primitive set,

we will start with v and N+(v). For all u ∈ N+(v), there exists a n− 1 walk from u to v. v,

N+(v) and all vertices in these walks will make the the primitive set.

v(n)

v(n)

. . .
N+(v(n−1))

v

Primitive Set

Figure 4.5: Construction of the primitive set
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We must find an integer i for which there exists a walk from any vertex u to any other

vertex w in our primitive set. Moreover, this walk may only contain vertices in the primitive

set. Since C(D) = Kn, every vertex must be adjacent to v in C(D). So therefore we know,

every vertex u ∈ V (G) must be adjacent to some vertex w ∈ N+(v). Therefore, any vertex

in our primitive set may go to N+(v) and stay there as long as it wants. We know that

you can get from any vertex u ∈ N+(v) back to v with a walk of length n − 1. Moreover,

this walk only uses vertices in our primitive set. However, we need to be able to reach any

vertex, not just v. Chose a length of 2n− 1 for these walks. All vertices in our primitive set

will be on some trail from u ∈ N+(v) to v. Moreover, this vertex can’t be the (n − 1)th or

larger vertex in this trail, because that vertex is v. Let u be the ith vetex on some trail for

i < n−1. To get to u in 2n−1 steps, walk around N+(v) for n− i steps, then follow the trail

to v in n−1 steps, then get back into N+(v) by the vertex that starts the trail containing u.

Follow this trail for i steps to reach u. All together this trail was (n− i)+(n−1)+ i = 2n−1

steps.

So C(D) = Kn implies that D has a primitive set and that every vertex will be adjacent

to some vertex in the primitive set. So therefore if Cm(D) = Kn, D will have a primitive

set, because a set will either always be primitive or never be primitive. Also, every vertex

will reach the primitive set in m steps.

Moreover, from this proof, it is easy to see that Cm(D) = Kn at most 2n − 1 steps

before the primitive set is J . So any bound for a primitive set becoming J is also a bound

for a digraph D completing to its final graph of Kn. Furthermore, we can subtract at most

2n− 1 from all natural bounds of primitive bounds.

The next observation is in regards to question three.

Observation 4 A simple graph G is the final graph of some digraph D if every maximal

clique of G has at least one vertex exclusive to that maximal clique.
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The following is a construction for D that satisfies the observation. Let Pi be the vertices

that are unique to maximal clique i. Form those vertices into a primitive set. Let vertices

in more than one maximal clique be adjacent to all Pi for which v ∈ Ki.

G =

κ1
κ2

κi

...

P1

P2

Pi

...

Cliques of G
Disjoint Primitive Sets

Vertices in more than one clique

Figure 4.6: Digraph D who’s final graph is G satisfying all maximal cliques having at least
one vertex not in any other maximal clique.

However, the only if part of this statement is false.

False Conjecture 1 A simple graph G is the final graph of some digraph D only if every

maximal clique of G has at least one vertex exclusive to that maximal clique.

See Figure 4.7 a counterexample.

D C(D) Isomorphic C(D)

Figure 4.7: Digraph D who’s Final Graph does not satisfy every maximal clique having at
least one vertex not in any other maximal clique
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This graph is also a counterexample to another conjecture about Question 2.

False Conjecture 2 If a digraph D has no primitive set, then the final graph of D is Kn.

The previous graph also disproves this statement, because the digraph from the previous

graph contains no primitive set.

There are many results on bounds for primitive graphs, and every one of those bounds is

also a natural bound for the completion number. For more information see [7, 13]. However

one would expect that the completion number would be strictly less than the primitive num-

ber. One interesting question is: given the set of graphs D that have the same competition

graph, what are the range of completion numbers of these graphs? This brings on a few

definitions

B iome: Given a simple graph G. The biome of G, BG, is the set of all digraphs D for

which C(D) = G.

C ompetition Range: Given a biome, find the completion numbers for all digraphs D

in said biome. The lower and upper bounds of these completion numbers are known as the

completion range.

Theorem 10 For Cn, the upper bound in the completion range is bn/2c. And for odd Cn

the lower bound is blog2(n)c.

From earlier theorems, we know a few things about any digraph D for which C(D) = Cn.

1. d+(v) = d−(v) = 2 for all v ∈ V (G)

2. N+(v) ⊆ N+(u) implies that u = v.

Observation 5 If d+(v) > b|V (G)|
2
c, then C(D) = Kn

Since all v are adjacent to more than half of the vertices in G, they must share at least

one vertex by the pigeon hole principle.
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Observation 6 m+ 1 ≤ |N+(v)| ∈ Dm ≤ 2m

By (1), every vertex starts off with 2 neighbors. Each of these neighbors has 2 neighbors,

so 2m is an obvious upper bound. However, by (2), these 2 neighbors must yield at least 3

2-step neighbors. Generalize this idea to get m+ 1 as a natural lower bound.

So these bounds naturally give the bounds in the theorem, but can we actually reach

these bounds? The following is a construction for a graph that will reach the upper bound

for all Cn.





V (D) = {vi | 1 ≤ i ≤ n}

E(D) =
{

(vi, vi) ∪ (vi, vi+1)
}

The following is a construction of a digraph that will reach the lower bound for odd Cn.





V (D) = {vi | 1 ≤ i ≤ n}

E(D) =
{

(vi, v2i) ∪ (vi, v2i+1)
}

Obviously this will reach the bound, however, is C(D) = Cn? If n is even, then C(D) will

be a perfect matching. However, when n is odd, vi will be adjacent to v
i+bn/2c and v

i+dn/2e
This is equivalent to taking bn

2
c as a generator in the group Zn, which will generate every i

because bn
2
c and n are relatively prime..
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Chapter 5

Questions

This concludes the extent of our information on the subject of competition graphs.

However there is much more work to be done. The following is a list of some interesting

questions.

1. If the clique cover number of a graph G is |V (G)|, does this imply that G can only be

realized as a 1-step competition graph?

This is true for Cn and the spiked cycle. Any proof must use a bijective function

from the vertices to the cliques of G. Forcing a prime matrix construction has been a

useful technique in previous results, and may prove to be fruitful in the future. For an

example of how this is done see [4]. For more information on prime matrices see [6].

2. Can we find a complete characterization of digraphs D for which the final graph of D

is Kn?

The original thought was that G would have Final Graph Kn if and only if D had no

primitive set. The original thought was disproved by Figure 4.7.

3. Can we make a complete characterization of graphs G for which G is the final graph

of some digraph D?

The original thought was disproved by 4.7.

4. Can we find completion range’s for more graphs?

This seems to be a very hard problem to generalize. The only result so far is Cn

5. Is Proposition 8 an only if statement as well?
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6. Can we find a complete characterization of trees as m-step competition graphs? This

seems to be a very hard problem to generalize. The proof for paths alone took more

than 10 pages to prove, and it was very specific to the exact structure of Pn.

7. Given a Biome B(G), What graphs lie within {C(Dt) | D ∈ B}.

Sometimes C(Dt) = C(D). Other times C(Dt = C(D). And rarely, C(Dt) seems to

have nothing to do with C(D) altogether. The following are examples of each of these

cases.

D C(D) Dt C(Dt)

Figure 5.1: C(D) = C(Dt)

D C(D) Dt C(Dt)

Figure 5.2: C(D) = C(Dt)
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D
C(D)

Dt C(Dt)

Figure 5.3: C(D) 6= C(Dt) and C(D) 6= C(Dt)

28



Bibliography

[1] E. Belmont, “A Complete Characterization of Paths that are m-step Competition
Graphs,” Discrete Applied Mathematics, 159 (2011), 1381–1390.

[2] H.H. Cho, H.K Kim, “Competition Indices of Strongly Connected Digraphs,” Bull.
Korean Math. Soc, 48 (2011), 637–646.

[3] H. H. Cho and H. K. Kim, “Competition indices of digraphs,” Proceedings of workshop
in combinatorics, 99 (2004), 96–107.

[4] H.H. Cho, S.-R. Kim, and Y. Nam, “The m-step competition graph of a digraph,”
Discrete Applied Mathematics, 105 (2000), 115–127.

[5] J.E. Cohen, “Food Webs and Niche Space,” Princeton University Press, (1978).

[6] D. De Caen, “Primes in the Semigroup of Boolean Matrices,” Linear Algebra and its
Applications, 37 (1981), 119.

[7] E. Robert Hartwig and Michael Neumann, “Bounds on the exponent of primitivity
which depend on the spectrum and the minimal polynomial,” Linear Algebra Appl.,
184 (1993), 103–122.

[8] G. Helleloid, “Connected triangle-free m-step competition graphs,” Discrete Applied
Mathematics, 145 (2005), 376–383.

[9] Wei Ho, “The m-step, same-step and any-step competition graphs,” Discrete Applied
Mathematics, 152 (2005), Pages 159-175.

[10] Kim A. S. Hefner, Kathryn F. Jones, Suh-Ryung Kim, J. Richard Lundgren, Fred S.
Roberts, “(i, j) competition graphs,” Discrete Applied Mathematics, 32 (1991), 241-262.

[11] H. K. Kim, “Competition indices of tournaments,” Bull. Korean Math. Soc, 45 (2008),
385–396.

[12] Suh-Ryung Kim, Terry A. McKee, Fred R. McMorris, Fred S. Roberts, “p-Competition
Numbers,” Discrete Applied Mathematics. 46 (1993), 87-92.

[13] S.W. Neufeld, “A diameter bound on the exponent of a primitive directed graph,” Linear
Algebra and its Applications, 245 (1996), 27-47.

29


