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Abstract

Sheared flows arising from spatially inhomogeneous, transverse electric fields are common

phenomena found in space, laboratory, and fusion plasmas. These flows are a source of free energy

that can drive or suppress instabilities. In space plasmas, numerous observations of electrostatic

and electromagnetic instabilities at various scale lengths have been made. By contrast, in fusion

plasmas, edge localized sheared flows provide a barrier against cross field particle transport and

the presence of these flows are associated with enhanced confinement regimes (H-mode). Under-

standing how these flows provide enhanced confinement is of critical importance to current and

future fusion experiments. This work is an experimental investigation of sheared flow generation

and the corresponding response of the plasma in a stellarator type fusion device.

This work is performed in the Compact Toroidal Hybrid (CTH) stellarator device. The CTH

stellarator is a five field period continuously wound stellarator run with 100ms long plasmas. Pri-

mary plasma generation and heating is provided through Electron Cyclotron Resonance Heating

(ECRH) with a secondary Ohmic heating system. Flow experiments are performed by modifying

the radial electric field by inserting a biased electrode past the last closed flux surface. Plasma

parameters are measured using a Triple Probe. Plasma flows are measured using a Gundestrup

Probe.

Flows in CTH are studied by examining the effects that three dimensional geometries have

on fluid flows. The interpretation of probe measurements in highly shaped fields is achieved by

transforming laboratory space positions to magnetic flux coordinate space positions. Biasing ex-

periments will modify the edge electric fields, measure the induced flows, demonstrate the role

electric fields play inducing flows and measure the enhancement or degradation of plasma stabil-

ity in the presence of these flows. Instabilities that arise will be identified by examining various

parameter scales to narrow down the vast spectrum of plasma instabilities.
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The flux surface plotted is the s = 0.5 surface. . . . . . . . . . . . . . . . . . . . . . 25

2.4 Single particle trajectory with Es = 10. Red: |E| = 200V
m , Green: |E| = 112.5V

m ,

Blue: |E| = 25V
m . Initial particle position s = 0.5, u = 0, v = π. v0 = 1000ms ẑ. The
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Chapter 1

Introduction

The standard of living in the modern western world is made possible through the generation

of abundant energy mainly in the form of electricity. Electricity right now is generated by various

non-renewable means such as coal, oil, natural gas and nuclear and renewable sources such as

wind, solar and hydro power. Each system has its strengths and weaknesses. Coal, oil and natural

gas represent relatively cheap energy sources with a mature technological basis that enables power

plants that are simple to build and operate, and allow continuous generation of electricity. However,

they come at a cost of environmental damage via the generation of harmful chemicals and the

generation of greenhouse gases during normal operation. Moreover, these sources all have a finite

fuel supply that at current consumption levels could be depleted within the next century.

The current generation of renewable energy technologies, particularly wind and solar, are

clean forms of energy avoiding the generation of harmful chemicals and greenhouse gases. Fur-

ther more, energy is extracted from resources with little danger of being depleted on short time

scales. However these sources are often dependent on local climate and weather conditions such

as wind patterns and cloud cover which may vary. These technologies are still relatively immature

and expensive compared to fossil fuels. As such, these sources cannot be solely relied upon for

continuous industrial scale production of electrical power.

There are two forms of energy production where the properties of matter at the atomic level can

be leveraged. One form is nuclear fission where energy is generated from the break up and decay of

heavy elements. Developed during the 1950s, nuclear fission power accounts for 19.6% of power

generated in the United States today2. However, fears over safety and nuclear proliferation have

resulted in a reluctance to rely on fission as a future energy source. The second form of nuclear
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energy, fusion, is an actively researched energy source with the goal of safe clean abundant energy

generation.

1.1 Fusion

Fusion is a process where by lighter nuclei combine to form heavier nuclei. This fusion of

particles is accompanied by a release of energy. In the sun naturally occurring deuterium-deuterium

(D = H2)

D +D → T (1.01MeV) + p(3.02MeV) (1.1a)

D +D → He3 (0.82MeV) + n(2.45MeV) (1.1b)

powers the sun in equal amounts.

In order for two particles to fuse however, the nuclei must overcome the Coulomb repulsion.

Classically the Coulomb barrier is on the order of 1MeV. However quantum mechanics allows for

particles of lower incident energies to tunnel through this barrier. Figure 1.1 show various fusion

cross sections for several fusion reactions1. The fusion cross-section represents the probability of

an incident particle, of a certain energy, to overcome the Coulomb barrier.

While there are many possible fusion reactions, the particular process of interest for controlled

fusion is the deuterium-tritium (DT, T = H3) reaction defined as,

D + T → He4 (3.5MeV) + n (14.1MeV) (1.2)

where a 3.5MeV α particle and a 14.1MeV neutron are produced. This process has the highest fu-

sion cross-section at low incident energies. However it still requires plasmas with thermal energies

in the range of 10 keV.

This presents a challenge to a fusion power plant as plasmas in this range can cause damage

to a vessel created to contain it. Aside from stars which use gravity to confine the hot plasma, there

are two types of fusion confinement methodologies employed today. Inertial confinement, where

2
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12 1.3 Some important fusion reactions

Table 1.2 Fusion reactions: cross sections at centre-of-mass energy of 10 keV and
100 keV, maximum cross-section σmax and location of the maximum εmax. Values
in parentheses are estimated theoretically; all others are measured data.

Reaction σ (10 keV)
(barn)

σ (100 keV)
(barn)

σmax
(barn)

εmax
(keV)

D + T → α + n 2.72 × 10−2 3.43 5.0 64
D + D → T + p 2.81 × 10−4 3.3 × 10−2 0.096 1250
D + D → 3He + n 2.78 × 10−4 3.7 × 10−2 0.11 1750
T + T → α + 2n 7.90 × 10−4 3.4 × 10−2 0.16 1000

D + 3He → α + p 2.2 × 10−7 0.1 0.9 250
p + 6Li → α + 3He 6 × 10−10 7 × 10−3 0.22 1500
p + 11B → 3α (4.6 × 10−17) 3 × 10−4 1.2 550

p + p → D + e+ + ν (3.6 × 10−26) (4.4 × 10−25)

p + 12C → 13N + γ (1.9 × 10−26) 2.0 × 10−10 1.0 × 10−4 400
12C + 12C (all branches) (5.0 × 10−103)

Fig. 1.3 Fusion cross sections versus
centre-of-mass energy for reactions of
interest to controlled fusion energy. The
curve labelled DD represents the sum of
the cross sections of the various branches
of the reaction. Centre-of-mass kinetic energy (keV)
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1.3.1 Main controlled fusion fuels
First, we consider the reactions between the hydrogen isotopes deuterium
and tritium, which are most important for controlled fusion research. Due
to Z = 1, these hydrogen reactions have relatively small values of εG
and hence relatively large tunnel penetrability. They also have a relatively
large S.

Figure 1.1: Fusion cross-sections for various fusion reactions1.

3



typically focused high power lasers are used to compress the fusion fuel, is outside the scope of

this dissertation. The type of fusion confinement related to the work in this dissertation is magnetic

confinement, where magnetic fields are used to hold the plasma.

1.2 Magnetic Confinement

A charged particle in a magnetic field experiences the Lorentz force given by

Fm = qv ×B (1.3)

where Fm force of the magnetic field (B) on a charged particle. q is the electric charge and v is the

velocity of the charged particle. For a particle moving perpendicular to a magnetic field line, the

Lorentz force produces a force pulling the particle toward that field line. This causes the particle

to orbit around the magnetic field line with a characteristic frequency called the gyro frequency

Ωα =
|q|B
m

(1.4)

at a characteristic radius known as the Larmor radius,

ρL =
mv⊥
|q|B

(1.5)

where m is the mass of a charged particle and v⊥ is the component of the particle velocity per-

pendicular to the magnetic field vector B. In the absence of collisions, this orbital motion traps

the particle on the magnetic field line. An infinitely long magnetic field would confine a particle

indefinitely however, this configuration is impossible to build. Therefore magnetic confinement

research is tasked with challenge of developing a “finite” magnetic configuration that can confine

a thermonuclear plasma with minimal losses.
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Figure 1.2: A torus. The blue arrow points in the toroidal direction. The red arrow points in the
poloidal direction. The drawing on the right shows the major radius R, minor radius r and the
directions of increasing toroidal ϕ and poloidal θ angle.

1.2.1 Toroidal Devices

In an attempt to produce an “infinitely long” magnetic field, consider a configuration in which

the field lines are curved back onto themselves avoiding contact with a vessel wall. This leads to

the most common geometry of magnetic confinement devices, the torus is shown in Figure 1.2. The

geometry of a torus is decried by a major radius measured from the central core to the center of the

machine. The angle ϕ sweeps a direction the long way around the torus or the toroidal direction.

In this dissertation, the angle ϕ is measured counterclockwise as seen from looking down on the

top of the torus.

The minor radius (r) is measured from the end of the major radius (R). The angle θ sweeps

a direction the short way around the torus or the poloidal direction. At any toroidal cross-section,

the angle θ is measured counterclockwise. That is, the outboard side is at an angle of θ = 0 with

inboard side at θ = π. The top and bottom are located at θ = π
2
and θ = 3π

2
respectively.

The curvature of the magnetic lines causes a larger magnetic field strength to be produced on

the inboard side, where the magnetic field lines become compressed, as compared to the outboard
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side. This gradient in the magnetic field introduces a particle drift given by3

v∇B = ±v⊥rL
2

B ×∇B

B2
(1.6)

where rL is the Larmor radius defined by equation 1.5. The ± is determined by the sign of the

charge of a particle. In addition this curvature causes a drift defined by

vR =
mv2∥
qB2

Rc ×B

R2
c

(1.7)

whereRc is a radius of curvature. Because these two drifts are additive, particles in a purely toroidal

magnetic field will acquire a vertical drift and eventually intersect the vessel wall.

To nullify the inherent vertical drift of charged particles in a purely toroidal magnetic field, a

poloidal component is added to the magnetic field. This component creates a twisting of the field

lines and produces a helical-toroidal trajectory of the magnetic field line. A consequence of this

magnetic geometry, is that a particle traveling along a field line that is drifting up on the outboard

side, will begin to drift down as the field line curves down on the inboard side. Moreover, the

addition of the poloidal magnetic field leads to the generation of magnetic flux surfaces.

Modern magnetic fusion devices vary in the production of magnetic fields from configura-

tions where magnetic fields are produced entirely from external coils to configurations where the

magnetic field is generated by a combination of external and induced currents in the plasma itself.

This dissertation will focus on measurements performed on a stellarator, a toroidal fusion configu-

ration in which the magnetic field is produced entirely by external coils. However, a number of the

phenomena observed in the work have also been reported in tokamaks, a current-carrying toroidal

plasma configuration. Because of data from both tokamak and stellarator devices will be discussed

in this work, a brief description of each device is given.
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Tokamak

The tokamak is a device producing a toroidally symmetric magnetic geometry with nested

magnetic surfaces. In tokamaks, the poloidal component to the magnetic field is provided by a

toroidally driven plasma current induced by a transformer. The degree of “twist” of the magnetic

field in a tokamak is parameterized by the safety factor q, the ratio of the number of times amagnetic

field line traverses toroidally per the number of times that a magnetic field line traversed poloidally.

In addition to providing a poloidal twist, the driven plasma current has the added benefit of heating

the plasma. The simplicity of the design lead to rapid early advances in tokamak performance. By

1968 it was revealed at the Novosibirsk Conference that the Russian T-3 tokamak was achieving

electron temperatures of 100 eV with energy confinement times of 2 − 4 ms, well ahead of its

contemporary devices4. Today the tokamak is dominant device for advanced fusion concepts and

is the configuration that has been chosen for the ITER project.

The presence of plasma current, while allowing the tokamak to achieve high temperatures and

densities, is also a tremendous reserve of free energy that can drive a wide range of magnetohy-

drodynamic (MHD) instabilities. The most dangerous of these is an event known as a disruption

in which there is a global reordering of the plasma and a complete loss of confinement. These

disruptions can have a detrimental, even damaging effect on devices as hot dense plasma crashes

into the vessel wall. One focus of current tokamak research is on the detection and mitigation of

disruptions.

Typical methods of driving plasma currents involve a large central transformer. By ramping

up the current in the transformer, a current is induced in the plasma. However, this limits the length

of time plasma current can be sustained. This makes the tokamak an inherently pulsed device and

to date there are no operating steady state tokamaks.

Stellarator

In contrast to tokamaks, the magnetic fields in a stellarator are generated completely from

external magnetic coils. The degree of “twist” in stellarators is parameterized by the rotational
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transform ῑ. This parameter is related to the safety factor in tokamaks as ῑ = q−1. A mathematical

definition of ῑ will be provided in Appendix B.1.

In stellarators, there is no need to drive a high plasma current. This makes stellarators resistant

to current driven instabilities and disruptions. The lack of a transformer to drive a plasma current

means that the stellarator is inherently a steady state device. However, historically the stellarator

suffered poor confinement brought about by a “rippled” magnetic field. Along a field line, the mag-

netic field strength varies on short length scales. This has the effect of producing small magnetic

wells that a particle can become trapped in. If a particle becomes trapped in these magnetic wells

the gradient and curvature drifts (equations 1.6 and 1.7) will cause the particles to eventually drift

to the wall.

Modern stellarator research is focused on magnetic topologies that minimize these magnetic

ripples. In order to achieve this, complex three-dimensional magnetic coils are required. However,

the complexity of these coils needed to create the three-dimensional magnetic fields, presents a

design challenge compared to the tokamak’s simpler design. In order to achieve good confinement

and nested stellarator magnetic surfaces, tight tolerances and minimization of external magnetic

perturbations are necessary. This along with lack of a simple efficient heating mechanism has

resulted in the stellarator not achieving the same level of performance as the tokamaks until the

1980’s4. Still today the highest performing stellarators still fall short of the highest performing

tokamaks5.

As of 2012, the largest stellarator currently in operation is the Large Helical Device (LHD)

in Japan. LHD is a non-optimized configuration with superconducting coils. In Germany, the

Wendelstine 7-X (W7-X) stellarator is currently under construction6. W7-X is an optimized stel-

larator configuration with superconducting coils designed to study a fully optimized configura-

tion, where magnetic fields have been carefully designed to minimize particle loses. In the United

States, there are two operating stellarators. The Helically Symmetric eXperiment (HSX)7 located

at University of Wisconsin in Madison, Wisconsin. HSX is designed to demonstrate and study

quasi-helical symmetry, where the trapping of particles due to the stellarator ripple is reduced. The
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second operating stellarator, and focus of this dissertation, is the Compact Toroidal Hybrid (CTH)

located at Auburn University in Auburn, Alabama.

1.3 The CTH Device

The CTH device is a five field period continuously wound stellarator. The hybrid nature comes

from the inclusion of toroidal field (TF) coils and ohmic heating (OH) coils. The presence of these

features allow the CTH device to be operated in a spectrum from stellarator-like with high vacuum

rotational transforms ῑ, to a more tokamak-like low vacuum ῑ. The OH also has the added benefit

of providing plasma heating. CTH was designed to allow the superposition of three-dimensional

magnetic fields and current driven poloidal fields, for the purposes of understanding the limits

where the traditional stability of the stellarator breaks down as it becomes more tokamak like.

1.3.1 Magnets

CTH’s magnetic field is produced from seven sets of coils. Figure 1.3 shows a diagram of

the major coil sets. The Helical Field (HF) coil provides the main toroidal and poloidal fields but

does not provide the entire vertical field magnitude required for equilibrium. The HF coil is a

continuously wound helical coil using a l = 2, m = 5 winding law. This means that this coil

wraps the vacuum vessel five times poloidally and rejoins itself after traversing the vacuum vessel

twice toroidally. The helical portion of the HF coils is connected in series to a set of vertical coils

mounted above and below the helical winding. The rest of the vertical field is provided by the Trim

Vertical Field (TVF) coils. Figure 1.4 shows various nested flux surface cross-sections produced

by the HF and TVF coils.

The Ohmic Heating (OH) coils are a set of inductive coils, mounted in the center of the torus,

used to drive a plasma current. A rapidly changing field in this coil set, induces a toroidal plasma

current. This current heats the plasma and creates a poloidal magnetic fields like a tokamak. Since

fields produces by this coil set are constantly changing, magnetic diagnostics will pick up its signal.

To minimize this effect, this coil set is designed in such a way that it does not provide significant
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Vacuum Vessel

HF Coil

TVF Coil

OH Coil

Helical Coil Frame

TF Coil

SVF Coil

Figure 1.3: Schematic of the CTH device showing the Vacuum Vessel, Helical Coil Frame and
various Coil sets.

field within the vacuum vessel. This coil set is powered by a capacitor bank. For this dissertation

the OH system was not used. All results are presented in plasmas without plasma current.

The remaining coil sets are for varying the basic stellarator magnetic fields. The Toroidal

Field (TF) coils are a set of ten coils that produce a toroidal field. On a tokamak, this coil set would

produce the main magnetic field. These coils allow adjustment from stellarator like high ῑ to a more

tokamak like low ῑ by adding or subtracting from the toroidal component of the HF coils.

The Shaping Vertical Field (SVF) coils provide a quadrupole field for controlling the vertical

elongation of the plasmas. Radial Field (RF) coils shifts the vertical position of the plasma. Error

Correction Coils (ECC) are a set of fifteen coils wrapped around horizontal and vertical ports.

These coils provide a local radial field to correct for local asymmetries in the magnetic field.
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Figure 1.4: Various flux surfaces produced from the HF and TVF coils. Shaded regions shows
magnetic field resonances for the various heating systems.
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1.3.2 Mission of CTH

For all toroidal fusion devices, there remains a number of outstanding physics issues to be

addressed before a true fusion power plant can be built. Among the critical issues are the interaction

of the plasmawith the surroundingwalls, development of global, predictivemodels of the behaviors

of thermonuclear “burning” plasma, and, of particular relevance to this dissertation, the control of

particle transport and instabilities in the plasma.

Major projects completed and currently ongoing on CTH involve mapping and reconstructing

the equilibrium magnetic fields. Mapping of the magnetic field performed by Peterson et al.8,

who developed a model of the magnetic field. It was show how the presence of magnetic errors

can be enhanced or reduced through the use of external coils. Work modeling the magnetic fields

was built upon by B.A. Stevenson for use in performing plasma equilibrium reconstructions from

diagnostic measurements9. This dissertation builds upon this previous work for interpretation of

probe measurements.

The ability to accurately model the magnetic field and reconstruct the plasma equilibrium,

plays a vital role in the primary mission of CTH. The hybrid nature of CTH was produced to

study the effects of plasma disruptions in stellarators with significant plasma current. The general

shape and structure of CTH stellarator fields are varied to see the effects it has on current driven

disruptions. The goal is to map out the boundaries where the stability of the stellarator design

begins to break down as plasma current becomes the dominant effect. These studies are aimed at

addressing the central questions of the CTH research program on disruption effects in stellarators.

1.4 Flows in Plasmas

Some 30 years ago, studies performed on the ASDEX tokamak in Germany discovered an

enhanced confinement regime of a toroidal plasma10. This regime, referred to as the “High” con-

finement (H-Mode), was characterized by an increase in density and temperature accompanied by

a decrease in transport to the walls11. This regime exists as a common mode achievable on most

large tokamaks12–16 and stellarators17,18.
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Extensive electric field measurements11,19 of H-mode edge electric fields, show the generation

of a radially inward (negative) electric field from the ambipolar diffusion of ions and electrons in the

edge plasma. This negative electric field is consistent across various fusion devices that achieve H-

mode. This negative electric field is sheared over a distance of∼ 3 cm in the plasma edge. Sheared

electric fields drive a sheared perpendicular flow in the plasma20–23. This sheared flow is credited

with the formation of a particle transport barrier24–26 and can reduce the large scale turbulence27–29

in the plasma. In general, sheared flows are thought to be stabilizing in fusion plasmas.

By contrast, in space and laboratory plasmas, sheared flows are a source of free energy that

can drive a wide spectrum of plasma instabilities30. The instability mode that can be generated

varies based the direction of flow shear and on the scale sizes of the system. Specifically, the size

of the ion Larmor radius (ρi) to the size of the shear layer (L), plays an important condition on the

instability generated. When ρi ≫ L, instabilities with frequencies greater than the ion cyclotron

frequency (Ωci) may be generated. When ρi ∼ L, instabilities with frequencies on the order the

ion cyclotron frequency may be generated. When ρi ≪ L, instabilities with frequencies much less

than the ion cyclotron frequency may be generated. Extensive experiments in the generation and

suppression of these various instabilities has been performed extensively in laboratory plasmas31,32.

In general, for space and laboratory plasmas, sheared flows are thought to be destabilizing.

While negative electric fields produce stabilizing flows in the edge of fusion plasmas, the

generation of radially outward (positive) electric fields have been observed to produce destabilizing

effects33. Reports range from the generation of a bifurcation of the plasma edge, to the complete

loss in particle confinement. In order to achieve the goal of fusion as a viable power source, the

optimal operation condition must be achieved. As such, extensive research in to operational mode

that show a degradation in performance are not extensively explored.

While this project is in a broad sense connected to the study of H-Mode, it is not an investiga-

tion of enhanced confinement regimes. This work considers the plasma response to the generation

of edge electric fields and is compared to instability regimes characterized by the size of the ion

Larmor radius compared to the electric field scale length, and the instability frequency compared
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to the size of the ion cyclotron frequency. Furthermore, building upon the previous work on equi-

librium reconstruction in CTH, this project shows how it is possible to use a magnetic field based

“Flux” coordinate system to understand diagnostic and flow measurements in highly shaped three-

dimensional fields. As such, it extends the work on flows and edge biasing performed on the

TEXTOR, CASTOR and T-10 tokamaks33, and Compact Auburn Torsatron (CAT) and the TJ-II

stellarators34,35.

1.5 Outline of Dissertation

In Chapter 2, an overview of theoretical models necessary to interpret experimental results of

this work is presented. Section 2.1 discusses zeroth order flows in the VMEC coordinate system. Sec-

tion 2.2 presents a simulation code developed to interpret the complex particle and fluid behavior.

Section 2.3 discusses the role sheared flows have in driving plasma instabilities.

In Chapter 3 a description and the theory of operation of all the experimental hardware is

presented. Section 3.1 presents an overview of the CTH device with key emphasis on key systems

utilized through out this dissertation. This section also provides the theory and design of diagnostic

systems used for experimental measurements. Section 3.3.1 provides a description of the biasing

probe used to modify the edge electric fields and induce a flow in the plasma.

In Chapter 4, the results of various edge biasing experiments will be discussed. The generation

of edge electric fields through the use of edge biasing will be verified in the CTH device. Plasma

flows parallel and perpendicular to the magnetic fields will be measured. Comparisons of measured

flows will show good agreement with theoretical calculations of flows. An instability mode driven

by the presence of edge flows will be identified.
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Chapter 2

Theory

Electric fields and pressure gradients transverse to the magnetic field can drive plasma flows.

In slab plasma geometries these drifts take the form3

v =
E ×B

B ·B
(2.1)

v = −∇P ×B

qnB ·B
(2.2)

for E × B and diamagnetic drifts, respectively, where n is the plasma density. When electric

fields and density gradients are spatially inhomogeneous, a nonuniform or sheared flow layer in

the plasma results.

However, a purely cartesian formulation of flows is complicated by the three-dimensional

magnetic fields produced by stellarators. Figure 2.1 shows the three dimensional magnetic surfaces

produced by the CTH device. Magnetic fields lines, shown in white, wrap around the torus lying

on surfaces of constant magnetic flux. The cross-sectional shape of these surfaces varies by the

toroidal angle, as show previously in Figure 1.4.

Electric field and pressure gradients, the primary drivers of perpendicular plasma flows, are

assumed to point in the direction perpendicular to the magnetic surfaces assuming certain plasma

quantities are constant on a flux surface. The validity of these assumptions will be demonstrated

in Section 3.5.2. For this section, electric field will be assumed to point in the direction normal to

a magnetic surface.

In Cartesian coordinates, magnetic and electric fields are fully three dimensional. To reduce

the dimensionality of these components, a coordinate system based around magnetic surfaces is

employed. In this coordinate system, the magnetic field lines become straight lines on surfaces
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Figure 2.1: Diagram of nested flux surfaces produced from equilibrium reconstruction in the CTH
device. Surface color represents |B| between 0.75 T (Red) and 0.25 T (Blue). White lines represent
magnetic field lines.
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forming concentric cylinders. Electric fields and pressure gradients point in a single radial direction

normal to a magnetic surface. The resulting perpendicular flows are limited to these surfaces of

constant magnetic flux as well.

While this coordinate system reduces the dimensionality of parameters relevant to plasma

flows, it comes at the cost of being no longer orthonormal. A formulation of the mathematical

concepts necessary for working in generalized coordinates is provided in Appendix A. One such

magnetic coordinate system is the coordinate system used by the Variational Moments Equilibrium

Code (VMEC)36,37. On CTH, VMEC is used by the V3FIT38 code to reconstruct the equilibrium mag-

netic surfaces after each pulse. This coordinate system, overviewed in Appendix B, is used through

out this dissertation.

2.1 Plasma Flows

As was discussed in Section 1.4, the presence of plasma flows is an important characteristic of

enhanced confinement regimes. For the studies performed on CTH, the contributions of the electric

field driven (E ×B) and pressure driven (e.g., diamagnetic, −∇P ×B) drifts are considered as

the main drivers of plasma flow. A simple Cartesian model of these drifts fails to take into account

geometric corrections. Even simple cylindrical models require geometric corrections compared

to Cartesian solutions. In order to account for geometric corrections to the plasma drifts, a fluid

approach is employed in the flux coordinate frame.

The ion fluid momentum equation including pressure gradients is39

(
∂

∂t
+ v · ∇

)
v =

e

mi

(E + v ×B)− ∇P

ni

(2.3)

Cross field transport will be assumed to be primarily diffusive in nature, and the velocity vector of

a fluid element is assumed to take the form of

v = vu (s, u, v) eu + vv (s, u, v) ev (2.4)
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The magnetic fieldB is defined using the covariant basis as

B = Bu (s, u, v) eu +Bv (s, u, v) ev (2.5)

Plasma potential and plasma pressure and assumed to be flux surface constant quantities. Taking

the dot product of velocity with the gradient operator becomes

v · ∇ = vu
∂

∂u
+ vu

∂

∂v
(2.6)

As a reminder, in generalized coordinates, basis vector can be function of their coordinates. When

taking the derivative of a vector quantity, the change in basis vector must also be accounted for.

Substituting in all components using the generalized definition of the cross product, the momentum

equation becomes

gsuv
u∂v

u

∂u
+ gsvv

u∂v
v

∂u
+ (vu)2

∂eu

∂u
· es + vuvv

∂ev

∂u
· es

+gsuv
v ∂v

u

∂v
+ gsvv

v ∂v
v

∂v
+ vuvv

∂eu

∂v
· es + (vv)2

∂ev

∂v
· es

=
e

mi

[
− ∂

∂s
Φp + J (vuBv − vvBu)

]
− 1

ni

∂

∂s
P

(2.7a)

guuv
u∂v

u

∂u
+ guvv

u∂v
v

∂u
+ (vu)2

∂eu

∂u
· eu + vuvv

∂ev

∂u
· eu

+guuv
v ∂v

u

∂v
+ guvv

v ∂v
v

∂v
+ vuvv

∂eu

∂v
· eu + (vv)2

∂ev

∂v
· eu = 0

(2.7b)

guvv
u∂v

u

∂u
+ gvvv

u∂v
v

∂u
+ (vu)2

∂eu

∂u
· ev + vuvv

∂ev

∂u
· ev

+guvv
v ∂v

u

∂v
+ gvvv

v ∂v
v

∂v
+ vuvv

∂eu

∂v
· ev + (vv)2

∂ev

∂v
· ev = 0

(2.7c)

for the es, eu and ev basis vectors respectively. In Equation 2.7a, J is the Jacobian,Φp is the plasma

potential, P is the fluid pressure. Components containing elements of the form ∂vu
i

∂uj represent the

contribution to drift due to magnetic field gradients. Components containing elements of the form
∂eui
∂uj represent the contribution to the drift due to field line curvature. These elements represent

changes in the direction of the basis vectors and can be found in simpler coordinate systems such

18



as cylindrical coordinates. The remaining terms represent the combined E × B and −∇P × B

drifts.

However, these coupled differential equations are too complex to solve analytically. If we ex-

pand the major and minor radii of our toroidal system to infinity, the coordinates become Cartesian

as the terms ∂eui
∂uj → 0. By ignoring magnetic field gradient and curvature effects, ∂vu

i

∂uj = 0 and
∂eui
∂uj = 0, equation 2.7 reduces to a simplified form.

0 =
e

mi

[
− ∂

∂s
Φp + J (vuBv − vvBu)

]
− 1

ni

∂

∂s
P (2.8)

These components represent the E ×B and −∇P ×B. The solution to this equation is the same

as the Cartesian solution.

v =
E ×B

B ·B
− ∇Pi ×B

eniB ·B
(2.9)

This does not represent a complete solution but is an appropriate approximation for systems where

E×B and−∇P ×B are large compared to curvature and gradient drifts. In Section 4.3, this will

be shown to be a justifiable assumption for plasmas produced in CTH.

2.2 Particle Trajectory Code

As a need to understand the fluid and single particle motion of the plasma, a single particle

code has been developed. The goal of this code is to understand the full motion of the particles

incorporating all guiding center drift motions. With the advent of high performance computing and

highly parallel processors it is possible to examine large numbers of single particle motions in a

reasonable computational time. The source code is available on the CTH archive server.

The simplestmethod to perform a single particlemotion calculation is in Cartesian coordinates.

The trajectory code algorithm follows the following basic sequence at each time step. The particle

position is converted from (x, y, z) coordinates to (s, u, v) coordinates. Themagnetic fields, electric

fields and any other parameters that are a function of (s, u, v) are computed. Those parameters are

used to calculate the total force acting on a particle in Cartesian coordinates. Using the computed
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force model, the particles position and velocity are modified, time is advanced and the algorithm

repeats. It should be noted that since all forces acting on the particles are conservative, there are

no collisional effects taken into account. This means that time can be advanced forward as well as

reversed.

2.2.1 Transformation of Coordinate Systems

This code and the dissertation as a whole, makes extensive use of two coordinate systems.

A laboratory space cylindrical (r, ϕ, z) coordinate system and a flux surface space (s, u, v) coor-

dinate system. It is important to understand how positions and vectors are transformed between

the two spaces. Moving from a flux surface space position to lab space is performed analytically.

Formulas for the transformation of vector quantities and R (s, u, v) and Z (s, u, v) are provided in

Appendices A and B. However, in order convert from (r, ϕ, z) coordinates to (s, u, v) coordinates,

a two-dimensional root finding must be performed. The flux surface positions of s and u are found

at the minimum of the following function

f (s, u) = (R (s, u)−R0)
2 + (Z (s, u)− Z0)

2 (2.10)

where R (s, u) and Z (s, u) have the v = ϕ coordinate fixed. R0 and Z0 are the laboratory frame

coordinates that the (s, u, v) coordinates are being converted from. Once in cylindrical coordinates,

the position is converted to Cartesian coordinates using analytical means.

2.2.2 Newton’s Method In Optimization

To convert from (r, ϕ, z) space to (s, u, v) space efficiently, equation 2.10 is minimized using

Newton’s Method40. This method expands upon normal gradient descent methods by taking into

account second derivatives to aid in faster convergence. Gradient descent methods work to find

the minimum of a function by continuously moving parameters “downhill”. That is, at each step

the gradient of a function f(xi) is determined to find a direction of decreasing slope such that
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Figure 2.2: Plots showing the path of convergence for both gradient descent (Red) and Newton’s
method (Blue) for the function f (x, y) = x2 + 2y2.

f(xi+1) < f(xi). Newton’s method refines this approach to find a “steeper” path to follow for

quicker convergence. Figure 2.2 shows the path taken by the gradient descent (Red Line) and

Newton’s method (Blue Line) for the function f (x, y) = x2 + 2y2. Newton’s method takes one

step while the gradient descent took ten.

Starting at an initial point x0 the function 2.10 can be minimized iteratively until the function

is below a given threshold value. At each iteration xi, the next value is found by

xi+1 = xi − γ [Hf (xi)]
−1∇f (xi) (2.11)
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where [Hf (x)]−1 is the inverse of the Hessian matrix. The Hessian matrix is a matrix of second

derivatives of the objective function. For this system the Hessian matrix becomes

Hf (xi) =

 ∂2

∂s2
f (s, u)

∂

∂s

∂

∂u
f (s, u)

∂

∂s

∂

∂u
f (s, u)

∂2

∂u2
f (s, u)

 (2.12)

where f (s, u) is the function to be minimized. The value of γ is initially chosen to be one, but

subject to the Wolfe conditions40 which means that at each iteration, γ is chosen so that f (xi+1) <

f (xi). If a value of γ cannot be found to meet this condition, the function has failed to converge. In

Figure 2.2, γ = 1 for Newton’s method and γ = 0.2 for the gradient descent to insure convergence.

Once the function 2.10 has dropped close to machine precision, a good enough convergence has

been achieved.

Newton’s method requires the computation of both the first and second derivatives ofR (s, u)

and Z (s, u). Partial derivatives of R (s, u) and Z (s, u) with respect to u can be performed ana-

lytically. However, partial derivatives with respect to the s coordinate must be interpolated. As

such, a cubic spline interpolation40 was chosen. This type of interpolation provides continuous and

smooth function and first derivative and a continuous second derivative. Interpolated points are

mirrored about the s = 0 point to ensure that the first derivatives are zero at that point.

2.2.3 Runge-Kutta

The equations of motion of the particles can be defined as,

v̇ = F (x,v, t) (2.13)

ẋ = v (2.14)

where v is the velocity and F (x,v, t) is the net force acting on a particle. To solve this system of

differential equations, the particle code uses a fourth order Runge-Kutta40 (RK4) method. At each
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time step

vi+1 = vi +
1

6
(k1 + 2 (k2 + k3) + k4) (2.15)

xi+1 = xi +
1

6
(l1 + 2 (l2 + l3) + l4) (2.16)

where the coefficients are defined by

k1 =
1

m
F (xi,vi, t) dt (2.17a)

k2 =
1

m
F

(
xi +

1

2
l1,vi +

1

2
k1, t+

1

2
dt

)
dt (2.17b)

k3 =
1

m
F

(
xi +

1

2
l2,vi +

1

2
k2, t+

1

2
dt

)
dt (2.17c)

k4 =
1

m
F (xi + l3,vi + k3, t+ dt) dt (2.17d)

l1 = vidt (2.18a)

l2 =

(
vi +

1

2
k1

)
dt (2.18b)

l3 =

(
vi +

1

2
k2

)
dt (2.18c)

l4 = (vi + k3) dt (2.18d)

andm is the particle mass. These coefficients act as sub steps at each time step dt and help correct

for computational errors. The time step is adapted at each calculation step to be 1
10
the gyro period of

the particle. This allows accurate modeling of the full gyromotion at all places within the magnetic

field.

2.2.4 Forces

This code has been architected using the same modular force model as the Auburn University

DEMON code41. This modularity allows the creation of new forces without altering the underlying
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solvers. The modularity is achieved by using object oriented programing techniques. A generic

force class defines an interface that all forces conform to. The RK4 algorithm, acts on this generic

force interface so the specifics of a particular force are hidden.

Each force is created as a subclass of the force class. Each specific force is responsible for

adding its contribution to the total force acting on a particle for a particular RK4 sub step. Extra

code associated with a particular force maybe add however that will have no affect or will be

hidden from the RK4 solver. Various forces acting on the particles in CTH are, the Lorentz force

contribution of the magnetic field and the force contribution of the electric field. Density gradient

effects cannot be modeled because, diamagnetic drifts are not guiding center drifts.

Magnetic Force

The magnetic force acting on a charged particle is defined as

Fm (v) = qv ×B (2.19)

where q is the net charge of a particle. The magnetic field vector is obtained at a specified (s, u, v)

position in the form of equation 2.5 and transformed into the laboratory frame. This force provides

the primary mechanism of gyromotion of the particle.

As shown in Section 1.2.1, the toroidal geometry of the device contributes to vertical drifts of

particles. In addition themagnetic field structure in CTH is highly nonuniform. The helical winding

of the magnet coils leads to troughs and peaks in the magnetic field strength. These localized

magnetic wells can trap particles as they mirror back and forth between the peaks. This trapping

along with a previously mentioned particle drifts will cause the particles to eventually drift out of

the core plasma.

In Figure 2.3, the trajectory of a single particle started from s = 0.5, u = 0, v = π (mid-plane

of a side port on the CTH device) is plotted. The particle is launched with an initial velocity of

v = 1000ẑm
s . The s = 0.5 flux surface is also plotted with the colors representing the magnitude
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Figure 2.3: Single particle trajectory magnetic field only. Red: |B| = 0.75 T, Green: |B| = 0.5 T,
Blue: |B| = 0.25 T. Initial particle position s = 0.5, u = 0, v = π. v0 = 1000ms ẑ. The flux
surface plotted is the s = 0.5 surface.

of the magnetic field strength |B|. Blue represents weak magnetic field strengths |B| = 0.25 T.

Red represents strong magnetic field strengths |B| = 0.75 T with green in between. Figure 2.3

shows the particle trapped in one of the mirror fields of CTH. The curvature and gradient drifts

cause the particle to leave the s = 0.5 surface and eventually drift beyond the LCFS.

Electric Forces

At the beginning of this chapter, plasma potential was assumed to be constant on a surface of

magnetic flux. Using this assumption, electric field forces are defined to be

F E = qEs (s) e
s = −q

∂

∂s
Φp (s) e

s (2.20)
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Figure 2.4: Single particle trajectory with Es = 10. Red: |E| = 200V
m , Green: |E| = 112.5V

m ,
Blue: |E| = 25V

m . Initial particle position s = 0.5, u = 0, v = π. v0 = 1000ms ẑ. The flux surface
plotted is the s = 0.5 surface.

where q is the particle charge. Electric forces are defined either by defining a functional form of

Es (s) directly or by spline interpolatingΦp profiles from probemeasurements. While pressure gra-

dients were also assumed to be constant on a surface of magnetic flux, drifts arising from pressure

gradients cannot be simulated in a single particle code as these are fluid drifts and do not change

the guiding center motion.

In Figure 2.4, the trajectory of a single particle started from s = 0.5, u = 0, v = π is plotted in

the same manner as Figure 2.3 with the addition of a uniform Ese
s. Again the particle is launched

with an initial velocity of v = 1000ẑm
s . The s = 0.5 flux surface is also plotted with colors

representing the |E|. Blue represents weak electric field strengths |E| = 25V
m . Red represents

strong electric field strengths |E| = 200V
m with green in between. Figure 2.4 shows that the particle

remains confined to a particular flux surface. Also the particle is no longer trapped in the mirror

fields.

Plasma parameter profile measurements may also be used to define the electric field. From

measured profiles of Φp or Φf , data positions are transformed into (s, u, v) coordinates. Again
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assuming that a flux surface is an electric equipotential, a spline interpolation is used to fit the data

points as a function of s. The profile is constrained to be symmetric about the magnetic axis. This

insures that the electric field drops to zero at the magnetic axis. Electric fields can be transformed

back into the laboratory frame at any position within the last closed flux surface. By measuring the

potential profiles at any place, the electric field structure can be determined everywhere.

Simulation Results

The effect that electric fields and induced poloidal drifts is immediately apparent. In the

pure magnetic field only simulations, particles remained trapped within the magnetic wells. These

trapped particles eventually drift out of the plasma by a combination of gradient and curvature drifts

(Equations 1.6 and 1.7).

Under the influence of an electric field, the induced poloidal drift moves the particle to the

inboard side of the magnetic field where the gradient and curvature drifts push the particle back

onto a magnetic surface. As a result, the particle remains confined within the plasma. The electric

field also allows the particle to escape from the mirror traps between the high field regions.

These simulations can only provide a single particle view of the plasma. Collective fluid

effects such as viscosity, diamagnetic drifts and plasma fluctuations, cannot be modeled in a single

particle code. However this code is useful for providing insights into the complex motions of

particles in the three dimensional fields.

2.3 Fluctuating Flows

When electric fields and pressure gradients are spatially inhomogeneous, a nonuniform or

sheared flows can arise. In Section 1.4, sheared flows were discussed as having different effects

on the stability of the plasma depending on the plasma environment. In fusion plasmas, radially

inward (negative) electric fields produce sheared flows that reduce particle losses and damp large

scale plasma fluctuations. In space plasmas, the presence of sheared flows is a source of free energy

that can drive a wide range of plasma instabilities.
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Figure 2. A hierarchy of microinstabilities that can be triggered by velocity shear. Note only the 
instabilities investigated by us are listed. In principle, many other waves may be excited by velocity shear. 

•, -• 12 mho, we see that the total power available is around 
1.2 to 30 ergs cm -2 s-• which is orders of magnitude larger 
than necessary. Thus, even if a very small fraction of the 
total available energy can be dissipated by the instabilities 
leading to ion energization, then ion upwelling can easily be 
sustained. Now the question is whether the instability mech- 
anism we suggest is efiScient enough to accomplish this. We 
return to this point later. 

Since the waves discussed above are sustained by velocity 
shear and there is strong observational correlation of ion 
heating to velocity shear, it is highly probable that these 
waves play an important role in energizing the ions. A 
primary focus of this investigation is to explore, quantify, 
and establish this possibility. In the following we report our 
preliminary results. Our theory depends on an interplay 
between macroprocesses and microprocesses. We achieve 
this by coupling the outcome of a two-dimensional fluid code 

I ß ß 

with a 2•-d•mens•onal particle code. We find that the cou- 
pling of macroprocesses and microdynamics can explain a 
number of observed features such as low-altitude energiza- 
tion, formation of hot tails, and density morphology. 

2. Model 

For the purpose of this study we assume an ideal iono- 
sphere (two species, no collision, etc.) but focus on to the 
important effects due to velocity shear. As low-frequency 
waves (such as the KH instability [Keskinen et al., 1988; 
Theilhaber and Birdsall, 1989]) evolve, they steepen and 
generate stressed regions with large shear frequency % 

self-consistently. We define the shear frequency, % = 
]dV/dx]max "• Vø/L, where V ø and L are the peak and the 
scale size of the flow velocity. It is a measure of the 
magnitude of velocity shear. Large to s is self-consistently 
generated by the density gradient [Romero et al., 1990]. It is 
found that as the density gradient scale size approaches an 
ion gyroradius, the self-consistent % can become compara- 
ble to the lower hybrid frequency [Romero et al., 1992b; 
Romero and Ganguli, 1993]. As % becomes large enough to 
resonate with various normal frequencies of the system, it 
can trigger high-frequency shear-driven waves as described 
below. Interestingly, in a recent laboratory experiment 
[Huang et al., 1992], it is shown that nonlinear evolution of 
the low-frequency Kelvin-Helmholtz mode can seed high- 
frequency noise. 

2.1. Velocity Shear-Driven Microinstabilities 
We first summarize the various microinstabilities that can 

be excited by velocity shear. The important parameter for 
assessing the role of transverse velocity shear in exciting 
these instabilities is the shear frequency %. If % is greater 
than the gyrofrequency of the species j, flj, then that species 
becomes effectively unmagnetized. Also, the magnitude of 
the shear frequency determines the character of the waves. 
In general, we find that as the magnitude of the shear 
frequency gets close to various natural frequencies of the 
system it leads to instabilities around these frequencies. For 
example, if % < fl i, then both the ions and the electrons are 
magnetized and the resulting shear-driven waves oscillate 
around the ion cyclotron frequency (also referred to as the 

Figure 2.5: Hierarchy of plasma instabilities driven by sheared flows30.
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Studying the effects of sheared flows in plasmas is a multifaceted problem. Figure 2.5, taken

from Ganguli et. al.30, shows a hierarchy of plasma instabilities that can be driven by sheared

flows. This hierarchy is divided into two main branches, shear in flows parallel to magnetic field

lines and shear in flows perpendicular to magnetic field lines. These two branches can further be

subdivided up based on the size of shear layer.

An exhaustive study of all possible instability regimes is beyond the scope of this dissertation.

However, as a demonstration of the effects sheared flows play in the stability or instability of the

plasma, an instability in a regime relevant to CTH plasma conditions will be discussed. For CTH

magnetic field strengths and ion species, the ion Larmor radius (Equation 1.5) is sub-millimeter

sized. Measurements of plasma potential gradients in Section 4.2, will show that CTH electric

field are on the order of a few centimeters. This places the CTH relevant conditions at the bottom

of both branches of Figure 2.5, where L ≫ ρi.

In Sections 2.1 and 2.2.4, electric fields were assumed to point normal to the magnetic sur-

faces. In Section 2.1, it was shown how this transverse electric field can drive a perpendicular

flow. Assuming that electric fields are normal to a magnetic flux surface and that induced flows

are perpendicular to a field line, it is assumed sheared flows arising in the CTH plasma will be

perpendicular to magnetic field. Derivations of electric field based on the constancy of plasma po-

tential on a flux surface to be discussed in Section 3.5.2 verifies the validity of the first assumption.

Furthermore, measurements of perpendicular flow which will be presented in Section 4.3 show the

presence of perpendicular shear in the CTH plasma.

Exploring the CTH relevant scales sizes reduces the hierarchy of CTH relevant plasma insta-

bilities to the Kelvin-Helmholtz region of Figure 2.5. Therefore, to proceed, it will be assumed

that Kelvin-Helmholtz instabilities may arise in CTH plasmas. The dispersion relation of this in-

stability will be derived and solved for various shear flow profiles. Due to nonlinear effects of the

toroidal geometry, derivations of plasma instabilities will be carried out in Cartesian coordinates

for simplicity.
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2.3.1 Kelvin-Helmholtz

The derivation of the Kelvin-Helmholtz dispersion relation presented here follows the work

presented in Guzdar et. al.57. The derivation will be begin by assuming a uniform magnetic field

pointing in the B = B0ẑ direction. The zeroth order electric field is assumed to be a function of

x pointing in the E0 (x) = E0 (x) x̂ direction. From the E-cross-B drift (Equation 2.1), a flow

perpendicular to the magnetic field is produced.

V 0 (x) = −E0 (x)

B0

ŷ (2.21)

Fluctuating quantities are assumed to take the form of a zeroth order component and a fluc-

tuating component p = p0 + p1 (x) exp [i (ky − ωt)]. Parallel wave propagation is assumed to be

large wavelength and neglected (k∥ = 0). Zeroth order plasma density will be assumed to uniform

and quasi-neutral such that ne
∼= ni = n. With these assumption the ion momentum equation is

(
∂

∂t
+ V i · ∇

)
V i =

e

mi

(E + V i ×B) (2.22)

assuming the following forms

B = B0ẑ (2.23a)

E = E0 (x) x̂−∇Φ (x) exp [i (ky − ωt)] (2.23b)

V = V0 (x) ŷ + V 1 (x) exp [i (ky − ωt)] (2.23c)

n = n0 + n1 (x) exp [i (ky − ωt)] (2.23d)

Substituting the zeroth order solutions and the form given in Equation 2.23 into Equation 2.22

and keeping only the first order terms, the first order ion flows can be solved for assuming ω ≪ Ωci.

Vi1x (x) = −i
kΦ1 (x)− ω′ ∂

∂x
Φ1 (x)

B0

[
1 +

∂
∂x

V0(x)

Ωci

] (2.24a)
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Vi1y (x) =

[(
1 +

∂
∂x

V0(x)

Ωci

)
∂
∂x
Φ1 (x)− ω′

Ωci
kΦ1 (x)

]
B0

[
1 +

∂
∂x

V0(x)

Ωci

] (2.24b)

In these equations, ω′ is the Doppler shifted frequency defined to be ω′ = ω − kV0 (x).

For the electrons, inertial terms are ignored and relevant equations for the fluctuating electron

drift are given by,

Ve1x (x) = −ik
Φ1 (x)

B0

(2.25a)

Ve1y (x) =
1

B0

∂

∂x
Φ1 (x) (2.25b)

These equations are combined using the density continuity equation for each species α.

∂nα

∂t
+∇ · nαV = 0 (2.26)

Keeping up to only first order terms, solving for the density gives

iω′nα1 (x)

nα0

=
∂

∂x
Vα1x (x) + ikVα1y (x) (2.27)

Equations 2.24 and 2.25 are substituted into Equation 2.27 for each species. These equations are

combined assuming quasi-neutrality. Combining terms of Φ1 (x), and assuming that the shearing

rate is small compared to the ion cyclotron frequency, ∂
∂x
V0 (x) ≪ Ωci, the differential form of the

Kelvin-Helmholtz instability is obtained.

∂2

∂x2
Φ1 (x)−

[
k2 −

k ∂2

∂x2V0 (x)

ω − kV0 (x)

]
Φ1 (x) = 0 (2.28)

To explore the effects of plasma stability under the effects of sheared flows, flow profiles will

be assumed to take a functional form of

V0 (x) = V0 · f
(x

L

)
(2.29)
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where L is the scale size of the shear layer. Defining the dimensionless quantities, ω̃ = ω
kV0

, x̃ = x
L

and k̃ = kL, Equation 2.28 becomes

∂2

∂x̃2
Φ1 (x̃)−

[
k̃2 −

∂2

∂x̃2f (x̃)

ω̃ − f (x̃)

]
Φ1 (x̃) = 0 (2.30)

This dispersion relation can solved by means of a numerical shooting code for various flow profile

shapes.

Shooting Code

Consider the second order differential equation of the form;

∂2

∂x2
Φ (x)− A (ω,k, x)

∂

∂x
Φ (x)−B (ω,k, x) Φ (x) = 0 (2.31)

This differential equation is solved numerically by guessing a solution, at large values of x. The

solution is assumed to be approximated at large values of x by;

Φ (x) = C1 exp (kx) + C2 exp (−kx) (2.32)

The numerical solution of the wave function is started at a position xlow such that this position is

well outside the wave region. In this region, the + solution is asymptotically approaching zero

whereas the − solution approaches infinity making it unphysical. As such, the amplitude C2 is

set to be zero. The remaining amplitude, C1, is arbitrary. Using these assumptions, the boundary

conditions at xlow become

Φ (xlow) = 0.1 (2.33a)

Φ′ (xlow) = 0.1k (2.33b)

At xhigh, this is an unphysical, growing solution. However, for certain values of ω, the coefficient

of the growing solution C1 is zero. The exponential part of the solution is eliminated and the roots
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Figure 2.6: Plot of the flow profile functions.

of the equation are found from;
Φ (xhigh)

exp (kxhigh)
= 0 (2.34)

The roots of this equation are the frequency and corresponding growth rate of the instability mode.

By solving this equation for ω at various values of k, the dispersion relation can be mapped out.

The Mathematica code implementing the shooting method is found in Appendix C.1.

Numerical Results

Figure 2.6 shows the functional forms that will be used to examine the effects that flow shear

has on the Kelvin-Helmholtz instability. All functional forms asymptotically approach a constant

at the boundaries to ensure the shear layer is isolated in space. The tanh form has the profile of two

flows moving past each other. The tanh2 form has the form of a stationary layer in a bulk plasma

flow. By contrast, the sech, sech2 and exp forms have a moving layer in a stationary bulk. Since

the curves of these three profiles are similar, it is expected that each profile will produce a similar
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Figure 2.7: Plot of the frequency of the dispersion relation.

dispersion curve. By comparing these three similar profiles it is hoped to examine how the width

of hear layer affects the mode frequency and growth rate.

Figures 2.7 and 2.8 show the frequency and growth rate dispersion relations. For all flow

profiles, there is a region of instability growth. The shape and size of the shear layer determines

the width of the instability region. As expected, the growth rate and frequency curves for the

sech, sech2 and exp forms take a similar shape. For these three profile forms, the wider the shear

layer, the smaller the instability growth. The flow profiles for the tanh2 and sech2 are inverted

with respect to each other yet their growth rate curves are the exact same. This suggests that it

is the scale size of the shear layer that determines the growth of the Kelvin-Helmholtz instability.

However, the frequency curves, of two cases, are vastly different. For the tanh2 profile, there is a

bulk flow with the shear produced by a stationary region in the center. For this shear profile, high

frequencies are associated with long wavelengths. By contrast, for the sech2 profile, the opposite is

produces. The bulk is stationary and the with the shear produced by a flowing region in the center.

For this profile, high frequencies are associated with short wavelengths.
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Figure 2.8: Plot of the growth rate of the dispersion relation.

This demonstrates some of the effects that sheared flows have on the stability of the plasma.

However, this is only a small corner in the vast region of plasma instabilities. Other shear driven in-

stabilities may have different responses to the various scale lengths and shear profiles. Furthermore

non-linear effect of the three dimensional plasma shape, may change the response of the plasma.
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Chapter 3

Experimental Device

This chapter will provide an overview of the hardware and diagnostics used in this dissertation.

An overview of the CTH device design is provided. The theory, design and operation of all major

diagnostic systems used in the project will be discussed.

Figure 3.1: Photograph of the CTH device. The large horizontal port shown on the left side of the
photo is at a toroidal angle of ϕ = 180◦. The right horizontal port is at a toroidal angle of ϕ = 252◦.
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Figure 3.2: Scaled diagram of the CTH vacuum vessel cross-section of the major and minor radii.

3.1 The Compact Toroidal Hybrid

Experiments presented in this dissertation, are performed in the purely stellarator configuration

of CTH; i.e., without the presence of driven plasma currents. As a result, this project made use of a

subset of the CTH coil set discussed in Section 1.3.1. Specifically, only the Helical Field (HF) and

Trim Vertical Field (TVF) coil sets are used; the Shaping Vertical Field (SVF), Radial Field (RF)

and Error Correction Coils (ECC) were not used for this work. For each experiment discussed, the

current setting for the active coils will be given.

3.1.1 Vacuum Vessel

The CTH vacuum vessel is a torus with a circular cross-section. CTH has major radius ofR =

0.75 m and minor radius of a = 0.26 m. Figure 3.2 shows a scaled diagram of the CTH vacuum

vessel cross-section. A feature of the magnetic field structure is the symmetry planes. These are

toroidal cross-section where the magnetic flux surfaces are vertically (up-down) symmetric. Port

placement on CTH is centered on these symmetry planes.

There are five, 18”-diameter ConFlat flanges mounted horizontally on the outboard side at 36◦

and repeating every 72◦ around the machine. Above and below the horizontal ports, are a pair of

41
2
” ConFlat ports mounted at a 45◦ angle with respect to the horizontal. Five pairs of 10” ConFlat
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Figure 3.3: Various flux surfaces produced from the HF and TVF coils for a single field period.
Symmetry planes are located at the ϕ = 0◦, ϕ = 36◦ and ϕ = 72◦. Shaded areas show the magnetic
fields resonate with the ECRH heating (Green: 17.67 GHz, Blue: 14 GHz).
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39



Vacuum Vessel
Major Radius R0 = 0.75 m
Minor Radius a = 0.26 m

Plasma Parameters
Electron Temperature† Te ∼ 5− 20 eV
Electron Density† ne ∼ 1018 m−3

Ion Cyclotron Frequency fci ∼ 10MHz
Ion Plasma Frequency fpi ∼ 150MHz
Ion Larmor Radius† ρi ∼ 0.2 mm
Ion Species Hydrogen
Plasma Beta† β ∼ 10−5

Magnetic Field Strength |B| ≤ 0.75 T

Table 3.1: CTH Operational Parameters
† ECRH only

vertical ports are mounted, on the top and bottom of the vacuum vessel, at a major radius of 0.71 m

at 0◦ and repeating every∆ϕ = 72◦. Figure 3.4 shows the mounting locations of various diagnostic

systems and vacuum infrastructure on CTH. The CTH vacuum vessel is a continuously conducting

shell made of Inconel 625 alloy with a low toroidal resistance. For this work, since, plasmas were

operated without induced plasma current, vacuum vessel currents and induced plasma current will

be assumed to be negligible.

3.1.2 Plasma Heating

The plasma is generated using three Electron Cyclotron Resonance Heating (ECRH) mi-

crowave sources providing up to 10 kW each. Two sources provide heating power at 14 GHz res-

onant with 0.5 T magnetic fields. One source provides power at 17.67 GHz resonant with 0.64 T.

Figure 3.3 shows the resonant fields at various cross-sections around CTH. The green areas repre-

sent the 17.67 GHz resonance and the blue areas represent the 14 GHz resonance. ECRH plasmas

have a maximum cutoff density∼ 4×1018 m−3. Table 3.1 shows various plasma parameters under

ECRH heating.
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3.2 Data Acquisition and Analysis

CTH data is acquired on one of two systems. The slower speed (8 kilo-samples per second)

SCXI and the higher speed (100 kilo-samples per second) DTAC systems. All of the raw data

from the diagnostics is stored in an mdsplus42 data base, a standard fusion data storage system

developed at MIT and used through out the fusion community. The raw data is stored in 16 bits

and is covered to mV by a conversion factor of 0.305185. CTH run parameters are also stored such

as timing for the ECRH supplies and the timing information for each of the data acquisition boards.

In this dissertation, ECRH drive times are used to crop acquired data down to a time interval when

the plasma is present in the CTH device.

For the majority of the experiments described in this work, measurements are made by moving

the diagnostic probes, typically in 1 cm intervals, across the plasmas, as described in Chapter 2.

Each position corresponds to a single plasma discharge or “shot”. Shots on CTH are repeated with

a repetition rate of approximate one shot every 5−6 min. A full data set typically consists of about

16 spatial positions.

During a single shot, a time series of voltage and current measurements are made. Depending

on the particular experiment being performed, the time series data is divided into subsections and

averaged. In this dissertation, time intervals chosen are typically specified by the ECRH drive

or a chosen biasing interval. Error in measurements is accounted for by calculating the standard

deviation43 of the data within the chosen time interval.

σ2 =
1

n

n∑
i

(xi − µ) (3.1)

Here µ is the mean of the collected data. After each shot, the probe is moved and this procedure is

repeated until the desired depth is reached.
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3.3 Limiters

The edge of the CTH plasma is defined by a various limiters throughout the vacuum vessel.

These limiters define the boundary between the open field lines and the scrape off layer known as

the last closed flux surface (LCFS). The other function they serve is to protect the vacuum vessel and

prevent damage to any equipment inside the vacuum vessel. Each limiter is electrically connected

to the vacuum vessel. During normal operation, the vacuum vessel is grounded.

CTH has four permanent limiters. Two limiters have a minor radius of 0.26 m. One is made of

molybdenum mounted at ϕ = 144◦ while the other is made of stainless steel mounted at ϕ = 184◦.

Two molybdenum limiter blocks with a minor radius of 0.245 m are mounted at ϕ = 300◦ and

ϕ = 358◦ respectively. A moveable carbon limiter mounted at the ϕ = 216◦ can be used to adjust

the size of the plasma. For this dissertation only the fixed limiters are used. The LCFS is determined

from the V3FIT equilibrium by calculating where the innermost flux surface intersects any of the

limiters.

3.3.1 Biasing Probe

In order to study the effects of edge electric fields and plasma rotation in the edge, it is neces-

sary to control the internal electric fields of the plasma. A typical way of modifying electric fields

involves either drawing current from or injecting current into the plasma. The CTH edge electric

fields are modified by inserting a biased electrode past the last closed flux surface and drawing

current when a bias is applied.

Design

The biasing tip is constructed of a 3
4

′′ diameter, 1′′ long 316 alloy stainless steel cylinder welded

to a 3
8

′′ diameter shaft. A cylindrical Alumina ceramic tube placed over the shaft, insures that the

probe tip is electrically isolated past the LCFS. The tip is coupled to a 1
2

′′ diameter probe shaft

mounted on a 10 cm vacuum positioner. A photograph of the assembled probe tip is shown in
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Figure 3.5: Photograph of biasing probe tip.

Figure 3.5. The probe is mounted on a vertical port just off the symmetry plane at ϕ = −3.01◦.

Figure 3.6 shows a cross-sectional diagram of the mounted probe.

When not in use, the entire probe assembly is retracted from the plasma and remains behind

the limiter. When operational, the conducting part of the biasing probe is extended past the last

closed flux surface. The insulating ceramic portion remains behind the CTH limiters. This insures

that plasma does not become electrically shorted out to the limiter. Earlier versions of the biasing

probe, that used a single conducting rod, were unsuccessful at modifying the edge electric fields.

The entire plasma would float up or down to the bias applied while potential profiles would remain

unaltered.

Bias Circuitry

The entire biasing probe assembly is biased with respect to ground using a ±100 V, ±10 A

Kepco bipolar power supply with a built in function generator. Figure 3.7 shows a circuit diagram

of the biasing setup. The probe is electrically isolated from the vacuum vessel using a ceramic
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Figure 3.7: Circuit diagram for the biasing probe.
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Channel Name Plate Designation
ACQ1962:INPUT_47 ED PB 1 Measured Bias Voltage
ACQ1962:INPUT_49 ED PB 3 Measured Bias Current

Table 3.2: The CTH mdsplus channels for the Biasing Probe.

break. The actual voltage applied and the current drawn by the probe are measured during the shot.

Current is determined from a±10 V output signal from the Kepco. The voltage is determined using

a fractional gain differential amplifier circuit.

In typical biasing experiments, the initial bias is held at 0 Vwith respect to ground. During the

course of the 100 ms long shot, a pre-programmed set of voltages, in the range of ±100 V, can be

applied to the probe. Analysis of the experimental data is often performed as a comparison between

the 0 V and non-zero biasing regions. A typical biasing scheme will start with a 0 V bias for 25 ms.

During this time period the initial plasma is still forming. As a result, the plasma parameters are

generally unstable and make a poor choice for the 0 V reference. The bias is then increased to

100 V for the next 25 ms, and decreased back down 0 V for 25 ms. Unlike the initial 0 V bias, in

this time period, the plasma conditions remain relatively steady. Finally the bias is decreased to

−100 V. A typical biasing waveform is shown in Figure 3.8.

Data Analysis

Raw measured voltage and current data is collected throughout the entire CTH shot on the

DTAC system. Table 3.2 shows the mdsplus database entries for the Biasing Probe. Raw data is

converted to voltage and currents by

Vreal = Raw
0.305185

1000mVV
36.66 V+ 0.61V (3.2a)

Ireal = Raw
0.305185

1000mVV
1.3

A
V

(3.2b)
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Figure 3.8: Raw voltage and current data for the biasing probe for a single shot.

It is unnecessary to zero out data on this probe because voltage offsets of the circuit are measured a

priori and taken into account in Equation 3.2a. Figure 3.8 shows processed biasing probe data for

a typical biasing process.
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3.4 Diagnostics

CTH has an extensive array of plasma diagnostics. Figure 3.4 shows the mounting locations

of various plasma diagnostics. The majority of CTH diagnostics are magnetic diagnostics. There

are a wide variety of magnetic pickup coils located throughout the inside and outside of the vacuum

vessel. These diagnostics detect fluctuations in the magnetic field particularly magnetohydrody-

namic instabilities in the presence of plasma current. A Hall effect probe allows in-situ measure-

ments of the non-fluctuating magnetic field. All of the magnetic diagnostic systems are discussed

extensively in work by Stevenson9. The line averaged density is measured through the use of an

interferometer. CTH also contains various hard and soft X-ray diagnostics. However in the absence

of plasma current, and the low value of plasma β ∼ 10−5, the usefulness of these diagnostics is di-

minished. This dissertation will focus on measurements primarily from two, in-situ probe systems

that will measure the plasma parameters and detect flows in the plasma.

Because this work relies on probe measurements taken at different locations within the CTH

vacuum vessel, it is essential to have a good reconstruction of the evolution of the magnetic sur-

faces during each shot. This is accomplished by using the V3FIT equilibrium reconstruction code38.

V3FIT uses the three-dimensional equilibrium code VMEC to reconstruct the plasma equilibrium. The

calculated equilibrium is compared to plasma diagnostics and input parameters are adjusted. This

procedure is repeated until the equilibrium reconstruction and plasma diagnostics agree. Recon-

structed equilibria are plotted to show the size, shape and position of the plasma. This dissertation

makes extensive use of reconstructed equilibrium attained from V3FIT to facilitate comparison of

probe measurements in different areas of the plasma. A description of how this comparison is made

is given in Section 3.5. As part of this research project, I was responsible for interfacing the CTH

data acquisition system with the V3FIT code. This was achieved by building a client server system

that has been successfully operating for over three years. A copy of the server source code and

LabVIEW client interface is available on the CTH archive server.
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3.4.1 Triple Probe

General plasma parameters are obtained bymeans of the instantaneous triple probe based upon

the Chen and Sekiguchi design39. A triple probe is a three tipped Langmuir probe that uses a fixed

bias. The nature of the fixed bias allows a simplified analysis, and a fast time response. In essence,

this Langmuir probe technique allows real time in-situ measurements of electron temperature Te,

electron density ne and floating potential Φf , and an estimation of plasma potential Φp. Electric

fields can be estimated by taking the gradient of either the Φf or Φp profiles.

Theory

The current flowing through any biased Langmuir probe can be written as the sum of the

electron and ion current as follows:39

In = Ie exp
[

e

kbTe

(Φn − Φp)

]
− Isat (3.3)

where kb is Boltzmann’s constant, Te is the electron temperature and Φp is the plasma space po-

tential or plasma potential. The total current flowing through a probe tip n is the combined current

contribution from the electrons Ie, scaled by the probe tip bias potential Φn, and the contribution

from the ion saturation current Isat. Unbiased, each probe tip, when isolated from ground, will

charge to the floating potential Φf and no net current will be collected by the probe.

The triple probe is arranged such that one tip (probe tip 2) remains electrically floating. There-

for, Equation 3.3 as applied to probe tip 2 becomes

Ie exp
(
− e

kbTe

Φp

)
= Isat exp

(
− e

kbTe

Φf

)
(3.4)

A fixed bias is applied between probe tips 1 and 3 such that probe tip 1 is based positively with

respect to probe tip 3. Probe tip 1will reach some potential aboveΦf , labeledΦ1, and starts drawing

current. Since probe tip 1 is biased with respect to probe tip 3, the current entering probe tip 1must
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equal the current exiting probe tip 3. Probe tip 3 will acquire a potential lower than Φf , labeled Φ3.

The key criterion of the instantaneous triple probe is that the potential applied between probe tips

1 and 3 is sufficiently large to force tip 3 to remain in ion saturation. Combining Equations 3.3 and

3.4, the current flowing through probe tips 1 and 3 respectively is

I1 = −I = Isat exp
[

e

kbTe

(Φ1 − Φf )

]
− Isat (3.5)

I3 = I = −Isat (3.6)

where I = −I1 = I3.

Having obtained expression for the current flowing through each probe tip the various plasma

parameters can be solved for. Combining Equations 3.5 and 3.6, Te can be solved for.

kbTe

e
=

Φ1 − Φf

ln (2)
(3.7)

It should be noted that this expression is only valid when bias between probe tips 1 and 3 is suffi-

ciently large that probe tip 3 reaches ion saturation. Placing Equation 3.7 into 3.5 and combining

it with Equation 3.6, the electron density can be solved for:

Isat = ene

√
kbTe

mi

(3.8)

ne =
I

eA

√
mi

kbTe

exp
(
1

2

)
(3.9)

Here, I , is the net current flowing through probe tips 1 and 3, A is the probe tip area, andmi is the

ion mass. Combining all of these results, Equation 3.4 can be used to estimate Φp.

Φp =
kbTe

2e

[
ln
(

mi

2πme

)
+ 1

]
+ Φf (3.10)
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Figure 3.9: Photograph of triple probe tip.

Design

The probe tip is constructed from three, 1 mm diameter tungsten wires inserted through a four

bore alumina ceramic tube. A photograph of the probe tip is shown in Figure 3.9. The ceramic

tube is long enough such that the probe tips can reach to the mid-plane with any metal pieces left

in the shadow of the limiter. Each probe tip is exposed 2 − 3 mm. triple probe theory assumes

all probe tip have equal areas so each tip is exposed the same length. The ceramic tip is coupled

to a 1
2

′′ diameter 316 alloy stainless steel probe shaft ending to an expanded 11
2

′′ tube with 23
4

′′

ConFlat vacuum flanges. Three Kapton coated ultra high vacuum (UHV) wires are connected to

the tungsten wires and feed through the probe shaft. Wires connected to tips 1 and 3 are a twisted

pair to avoid induced current pickup. All probe wires are connected to a three BNC vacuum feed

through.

The triple probe is mounted on the center of a top vertical port at ϕ = 72◦. Figure 3.10 shows

a cross-sectional diagram of the mounted probe. A 1′ extension holds a welded bellows and probe

drive away from the vacuum vessel to avoid magnetic perturbations by the electric stepper motor.

A welded bellows, with a 3
4

′′ inner diameter and a 14′′ throw, is mounted to a 20′′ travel probe drive.

A stepper motor and fine threaded worm drive allows precise probe positioning within 0.005 mm.

The flange that mounts the probe shaft to the bellows is rotatable allowing the probe tips to be

adjusted so that no tips are shadowed in the toroidal direction. A photograph of the assembled

probe drive system with probe mounted is shown in Figure 3.11. When fully retracted, the probe
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Figure 3.10: CTH cross-section of the triple probe mounted at 72◦. The probe is drawn at the full
travel position.
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Figure 3.11: Photograph of probe drive system and bellows.
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Figure 3.12: Simplified triple probe circuit diagram.

is contained within a 316 alloy stainless steel shell to prevent contamination of the tips during

discharge cleaning and titanium gettering.

Measurement Circuitry

In its simplest form, all of the triple probe parameters can be obtained from three measure-

ments. Figure 3.12 shows a simple circuit diagram for the triple probe. The potential difference
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Figure 3.13: First op amp circuit for Triple Probe. This consists of two inverting amplifiers to
measure potential differences, and a unity gain differential amplifier measuring the voltage drop
across a shunt resistor to measure current. All op amps are powered by a ±12 V power supply.

between probe tip P2 and ground measures the floating potential Φf directly. The potential differ-

ence measured between probes tips P1 and P2 is related to the electron temperature Te by Equation

3.7. The electron plasma density ne, is determined from the current (I) flowing through probe tips

P1 and P3 using Equation 3.9. It is important to note that this circuit does not provide a current

path to ground. All three tips must remain electrically floating in order for the triple probe analysis

to be performed.

To prevent a current path to ground and to provide a scaled and buffered±10 V signal for the

DTAC cards, two op amp circuits are built. Figure 3.13 shows the circuit diagram for the first of the

probe circuits. The Φf and the potential between P1 and ground (Φ1) are measured by means of a
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Channel Name Description
ACQ1962:INPUT_44 MK PB 1 Φ1

ACQ1962:INPUT_45 MK PB 2 Φf

ACQ1962:INPUT_46 MK PB 3 Isat

Table 3.3: The CTH mdsplus channels for the Triple Probe.

fractional gain inverting amplifier44. Resistor values are chosen to provide a divide by ten scaling.

The potential difference between P2 and P1 (Φf − Φ1) is subtracted in software. Current flowing

through the circuit is measured by unity gain differential amplifier44 across a shunt resistor. A

100 Ω, 75 Ω or 50 Ω shunt is used depending on plasma conditions. Differential amplifier resistors

are chosen to be 1MΩ 1% resistors. All op amps are powered by a ±12 V power supply and are

generic 741 models. While the triple probe was able to make measurements of plasma parameters

during positive biasing, during negative biasing, the circuit shown in Figure 3.13 suffered from

common mode rejection44 problems.

Data Analysis

Raw potential and current data is collected throughout the entire CTH data shot on the DTAC

systems. Table 3.3 shows a table of the mdsplus database entries for the Triple Probe. Raw data is

converted to voltages and currents by

Vreal = Raw ∗ 0.305185−Gain

1000mVV
(3.11a)

Ireal = Raw ∗ 0.305185
1× 107 µAA
1000mVV ∗R

(3.11b)

where Gain is the value of the signal divider and R is the value of the shunt resistor. Channels 1

and 2 are converted using Equation 3.11a. Channel 3 is converted using Equation 3.11b. Since the

probe tips are electrically floating, it cannot be predetermined what values channels 1 and 2 should

have when there is no plasma present. However the probe should not be drawing current when

there is no plasma. In the absence of short circuits, any current offsets in the signal, when there is
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Figure 3.14: Raw voltage and current data for the triple probe for a single shot.

no plasma, should be the result potential offsets in the measurement circuits. The initial value of

the current signal is measured and used to offset the total signal in software.

Figure 3.14 shows the raw voltage and current data for a single shot. The Φf and Φ1 are used

to calculate Te at each data point using Equation 3.7. Data points where Φf is measured as a higher

potential than Φ1 calculate as a negative temperature. This can occur when the difference between

Φf and Φ1 are within the noise signal or when plasma parameters are rapidly changing such as

during the transition between biasing regions. This occurs relatively infrequently in the regions of

interest of this dissertation. As such these data points are considered invalid and removed from the

analysis.
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Figure 3.15: Analyzed triple probe data for a single shot.

Once Te is calculated, it is combined into Equation 3.9 along with the measured current to

measure ne. Current should only ever flow in one direction. Areas that display negative current

are indicative of local electron density being too small for the circuit to detect. Finally electron

temperature and floating potential are combined to calculate the plasma potential at each data point

using Equation 3.10. Figure 3.15 shows the analyzed time data. Profiles of plasma parameters are

acquired by the method outlined in Section 3.2.

From the triple probe data, electric fields and density gradients can be calculated. Electric

fields can be calculated from the average Φp in one of two ways. The first way involves taking

a finite difference of the s coordinate in (s, u, v) space using triple probe positions. The second
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Figure 3.16: Es calculated from triple probe Φp data in Flux surface space between the biasing
probe (orange) and LCFS (vertical dashed line).

method involves taking a spline interpolation40 in flux surface space assuming that data is axisym-

metric. In other words, the spline is interpolated across the entire plasma column in flux surface

space to ensure that first derivative is zero at s = 0. The electric field is then calculated taking

the first derivative of the resulting spline function. In either case, Es is calculated from Equation

3.23. The vector is transformed back into lab space (r, ϕ, z) to findE. Electron pressure gradients

are calculated from Te and ne in the same manner. For ion pressure gradients, quasi-neutrality is

invoked, ne = ni, and the ion temperature is assumed to be cold Ti ≤ 1 eV. Figure 3.16 shows a

measured Es profile in CTH.

3.4.2 Gundestrup Probe

In order to study the effects of edge flows on plasma stability, a localized measurement of the

plasma flow is required. A Gundestrup probe is a multidirectional variant of a Mach probe. Mach

Probes are used to measure plasma flows. A Mach probe consists of two tips, one faces upstream

and the other faces downstream. Since the upstream tip leaves a wake downstream, the two tips

collect unequal ion saturation currents. The ratio of the upstream to the downstream currents will

be shown to be related to the Mach number of the plasma flow. Here, the Mach number,M = v
cs
,

is defined as the ratio of the plasma flow velocity, v, to the plasma sound speed, cs. The sound
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speed is defined as45:

cs =

√
ZkbTe + kbTi

mi

(3.12)

where Z is the ionization state of the plasma. For these experiments on CTH, the plasma is made

from hydrogen and therefore Z = 1.

The Gundestrup probe can resolve not only speed but also the general direction of plasma flow

in a two dimensional plane. Sheared flows can be studied by moving the probe to different spatial

locations and measuring changes in speed and/or direction. The primary objective of this work is

to measure the changes in flow induced by modifying the edge electric field over the course of a

plasma shot.

Theory

Strong electric fields or sharp density gradients, such as the edges of stellarators and toka-

maks, induce a poloidal flow perpendicular to a magnetic field line. In order to understand the

Mach probe theory in these conditions it is necessary to look beyond the diffusion as a primary

mechanism. A purely convective treatment is more appropriate. From both isothermal fluid and

kinetic solutions45,46 the ratio of ion flux to opposing plates in a plasma is given for subsonic flows

by

R =
Iup
Idown

= exp

[(
M∥ −M⊥ cot η

)
Mc

]
(3.13)

where R is the ratio of the upstream to downstream collected currents. The angle between the

magnetic field vector and the tangent of a plate surface is η and M∥ and M⊥ are the parallel and

perpendicular Mach numbers respectively. For cold ion plasmas, the calibration factor, Mc ∼ 1
2
,

will be the value assumed in this dissertation45.

To extend this formulation from a single pair of plates to a Gundestrup Probe, the values of

M∥ andM⊥ are solved for using a χ2 minimization technique.

χ2 =
∑[

RM

(
M∥,M⊥, η

)
−RE

]2 (3.14)
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The modeled current ratio RM is taken from the right hand side of Equation 3.13. To aid the

minimization algorithm and prevent numerical instabilities, Equations 3.13 and 3.14 are combined

and rewritten into the equivalent form

χ2 =
∑
n

(
M∥ sin ηn −M⊥ cos ηn −Mc sin ηn lnRn

)2 (3.15)

and summed over each plate pair.

The value η is determined by

η = θprobe − θB +
π

2
(3.16)

where θprobe is the angle between the plate normal and the horizontal. The angle, θB, is the an-

gle between the magnetic field vector and the horizontal in the plane of the probe. This angle is

determined by

θB = tan−1 B · ϕ̂× n̂

B · ϕ̂
(3.17)

where ϕ̂ is the unit vector in the toroidal direction and n̂ is the unit vector pointing in the direction

of the probe shaft.

Design

The Gundestrup probe in this work consists of six tips biased into ion saturation Isat. Each

probe tip has a corresponding tip mounted on the opposite side of the probe arranged in such away

that its collection area only faces one area of the plasma and shadowed from plasma flows on the

opposite side. Six identical probe tips are mounted on an AX05 grade boron nitride core. Each

probe tip is created from a single 1” diameter, 2” long, 316 alloy stainless steel rod. A 3
4
” diameter

step is cut 1
8
of an inch down from the top. A 1

2
” diameter bore is drilled through the center. This

piece is then cut lengthwise every 60◦ producing six identical probe tips with an electrical gap the

width of a saw blade between the tips.
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Figure 3.17: Photograph of the Gundestrup probe with the Alumina shield pulled back.
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Mounting Screws

Figure 3.18: Scale diagram of the assembled Gundestrup probe tip.
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The boron nitride core is turned down from a 1” diameter stock billet. A 1
8
” long, 1” diameter

cap is left in place at one end with the rest of core turned down to a 1
2
” diameter. This cap confines

signal pickup to just the poloidal and toroidal directions. A 1” long section is turned down to mate

with the similar probe shaft used for the Triple Probe. The six probe tips screwed into the boron

nitride core using 4−40 1
4
” inch flat head screws. This screw size sets the constraint on the number

of possible probe tips for a given probe diameter. Six kapton insulated UHV wires are spot welded

to a notch cut out of the bottom of the probe tips. A 1” OD, 3
4
” ID Alumina tube is placed over the

probe tips so that only a 1
8
” section of the probe tip is left exposed. Total exposed area for each tip

is A ∼ 84.5 mm2. A photograph of the assembled probe tip with the Alumina shield pulled back

is shown in Figure 3.17.

Two ∼ 1” long slots are milled into opposite sides of the probe shaft. This allows venting of

the probe shaft and a hole to feed through wires. The six wires are run down the length of the probe

shaft to a six pin feed through. The boron nitride core is held in place with a setscrew. A 1” long, 1”

diameter coupler 316 alloy stainless steel coupler hold the alumina tube press fit against the boron

nitride core and probe tips. There is a 1
2
” long section turned down to a 3

4
” diameter to mate with

the center of the alumina tube. Four holes drilled lengthwise allow venting and the collar is held in

place with two set screws.

The Gundestrup probe is mounted on 36◦ horizontal port. Figure 3.19 shows a cross-sectional

diagram of the mounted probe. The center of this port lies along a symmetry plane. The probe

is mounted above the mid plane at a θ = 14.04◦ angle above the mid-plane such that, when fully

extended, the probe tip reaches the center of the vacuum vessel. Like the Triple Probe, the probe

shaft is mounted onto a bellows. The bellows are mounted to a 1′ long extension from plasma

chamber in the same manner as the Triple Probe. A 41
2
” to 23

4
” zero length reducing flange adapts

the probe system to the CTH port. Inside the chamber, a 11
2
” diameter 316 alloy stainless steel tube

with a flapped door prevents contamination of the electrodes during discharge cleaning. A teflon

collar around the probe shaft inside the 1′ long extension, prevents the probe from sagging. The
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Figure 3.19: CTH cross-section of the Gundestrup probe mounted at 36◦. The probe is drawn at
the full travel position.
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Figure 3.20: Scale diagram overlaying the deviation of a curved tip to a flat tip.

bellows are mounted to a 20” stepper motor driven probe drive in the same manner as the Triple

Probe.

As built, each probe plate has a curved surface. The Gundestrup probe theory presented in

this Section assumes flat plates. To quantify the applicability of this theory to the “as built” probe,

the ratio of probe areas and the ratio of the surface normals will be examined. Figure 3.20 shows
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Figure 3.21: Op amp circuit diagram for a single Gundestrup probe tip. A complete Gundestrup
probe circuit contains six identical circuits.

a scale diagram overlapping a flat plate to an as built curved plate. Taking the ratio of a flat plate

surface area to a curved plate surface area

wr

wr π
3

=
3

π
∼ 95% (3.18)

where w is the probe plate width and r is the probe radius. On a curved probe, the normal unit

vector will deviate from the direction of the normal on a flat plate. Taking the component of the

curved plate normal in the direction of flat plate normal at the point of highest deviation is

n̂c · n̂f = cos
π

6
∼ 87% (3.19)

where n̂c and n̂f are the unit vectors in the normal direction of the curves and flat plates respec-

tively. These results suggest that modeling the as built plates as flat is reasonable for this Gunde-

strup Probe.
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Channel Name Plate Designation
ACQ1962:INPUT_77 Probe 1 A
ACQ1962:INPUT_78 Probe 2 B
ACQ1962:INPUT_79 Probe 3 C
ACQ1962:INPUT_91 Probe 4 D
ACQ1962:INPUT_81 Probe 5 E
ACQ1962:INPUT_82 Probe 6 F

Table 3.4: The CTH mdsplus channels for the Gundestrup Probe.

Measurement Circuitry

Current drawn from each Gundestrup probe plate is measured through a unity gain differential

amplifier circuit across a shunt resistor. Figure 3.21 shows a diagram of a measurement circuit

for a single tip. Each probe circuit contains six identical circuits. Each probe tip is biased 200 V

negatively with respect to ground to place each probe tip into ion saturation. Because each circuit

is biased to−200 V, normal op amps cannot be used. The Analog Devices AD629 is used to avoid

problems with common mode rejection44. For conditions in CTH, it is found that a shunt resistor

of 50 Ω is works best for keeping signals within a ±10 V range. All op amps are powered with a

±12 V power supply with 0.1 µF filtering capacitors.

Data Analysis

The raw measured current data is collected throughout the entire CTH data shot on the DTAC

system. Table 3.4 shows a table of the mdsplus database entries for the Gundestrup Probe. Raw

data is converted to current using

Ireal = Raw ∗ 0.305185
1× 107 µAA
1000mVV ∗R

(3.20)

where R is the value of the shunt resistor. For measurements presented in this dissertation, shunt

resistors of 50 Ω are used. Since the Gundestrup probe is based on ratios of the collected currents,

it is not strictly necessary to convert the raw signal to the actual current. None of the probe tips
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Figure 3.22: Parallel and Perpendicular Mach numbers, χ2 values, and the raw currents measured
from the Gundestrup probe for a single shot.

should be drawing current when there is no plasma present. In the absence of short circuits, any

current offsets in the signal when there is no plasma should be the result of potential offsets in the

measurement circuits. The initial value of the current signal is measured and used to offset the total

signal in software for each channel.

Figure 3.22 shows the raw current data for a single shot, the measured parallel (M∥) and per-

pendicular (M⊥) Mach numbers and the χ2 for signifying how close to the exact value fitted data

reached. The ratios of currents collected on channels A : D, B : E and C : F are used to findM∥

and M⊥ by minimizing Equation 3.15 for each data point. For each shot, a V3FIT reconstruction
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is performed from values averaged over the shot length. The magnetic field vector at each Gun-

destrup probe position is used to calculate the pitch angle between the magnetic field vector and

the Gundestrup probe plate normal vector. Profiles of M∥ and M⊥ are obtained from the method

outlined in Section 3.2.

3.5 Probe Measurements

To compare probe measurements from different areas of the plasma, a common framework

must be employed. In fusion plasmas with closed magnetic surfaces, various plasma parameters

are assumed to be constant over a magnetic flux surface. This makes the s coordinate, as discussed

in appendix B, a natural value for normalizing probe positions. Each probe position is converted

from lab space (r, ϕ, z) position to VMEC flux surface space (s, u, v) position using an average V3FIT

reconstructed equilibrium for each time interval using the method discussed in Section 2.2.1. In

this dissertation all profile data is presented as a function of the VMEC coordinate s position.

The coils necessary to create stellarator magnetic field topologies, place constraints on the

shape of vacuum vessels and the placement of diagnostic access ports. This, along with space con-

straints and competition for port access with other diagnostic and vacuum infrastructure, can lead

to mounting plasma diagnostics in locations where interpretation of measurements is challenging.

To illustrate this, the measurement positions of two probe systems are overlaid on top of the

CTH magnetic surfaces in Figure 3.23. At the toroidal angle of 36◦, the Gundestrup probe is

mounted on a horizontal port pitched at a downward angle of 14◦. At the toroidal angle of 72◦,

the triple probe is mounted on a vertical port offset from the center of the vacuum vessel by 4 cm.

Both probes have a maximum travel extent of 26 cm. However, because of their mounting loca-

tions, movement directions and differences in the shape of the magnetic flux surfaces, these probes

sample different regions of the plasma.

When changing the positions of both probes by an equal distance in laboratory space, an un-

equal number of flux surfaces are traversed. Consider the triple probe path of the right side of

Figure 3.23, for the first portion of probe travel defined from z = 0.26 m to z = 0.15 m (Region 1,
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Figure 3.23: Probe path for the CTH Gundestrup (Left) and Triple (Right) probes. The red box
marks the region where the probe travel is perpendicular to the magnetic surfaces (Region 1). The
blue box marks the region where the probe travel is parallel to the magnetic surfaces (Region 2).

red box), the probe moves mainly perpendicular to the magnetic surfaces. However, for the second

portion of probe travel defined by z = 0.1 m to z = 0 m (Region 2, blue box), the probe moves

mainly parallel to the magnetic surfaces. That is, a 1 cm change in probe position in Region 1

crosses a greater number of magnetic surfaces than a 1 cm change in position of Region 2. More-

over, spatial features in the measured profiles by these two probes will not line up correctly when

plotted solely as a function of probe position.

Moreover, when trying to determine vector quantities such as the electric field in laboratory

space, only the component of that quantity in the direction of the diagnostic travel can be deter-

mined from one dimensional measurements. On CTH, the only possible location where a diagnostic

could be mounted in a position allowing for diagnostic travel perpendicular to the magnetic flux

surfaces is at the ϕ = 36◦ symmetry plane along the mid-plane and subsequent symmetry planes

ever ∆ϕ = 72◦. The lack of poloidal or toroidal symmetry in the stellarator magnetic surfaces,

means that measurements obtained from a region where the direction of probe travel is orthogonal

to the magnetic surfaces, are only valid for that specific location and at matching locations in each

67



0.49 0.60 0.70 0.80 0.90 1.01
-0.26

-0.20
-0.15
-0.10
-0.05
-0.00
0.05
0.10
0.15
0.20

0.26 Phi=0.00˚

R (m)

Z
 (

m
)

0.49 0.60 0.70 0.80 0.90 1.01
-0.26

-0.20
-0.15
-0.10
-0.05
-0.00
0.05
0.10
0.15
0.20

0.26 Phi=18.00˚

R (m)

Z
 (

m
)

0.49 0.60 0.70 0.80 0.90 1.01
-0.26

-0.20
-0.15
-0.10
-0.05
-0.00
0.05
0.10
0.15
0.20

0.26 Phi=36.00˚

R (m)

Z
 (

m
)

0.49 0.60 0.70 0.80 0.90 1.01
-0.26

-0.20
-0.15
-0.10
-0.05
-0.00
0.05
0.10
0.15
0.20

0.26 Phi=54.00˚

R (m)

Z
 (

m
)

Figure 3.24: Simulated probe positions along the mid-plane.

field period. At different locations within the plasma, the magnetic surfaces expand and compress

altering the electric field structure.

3.5.1 Simulated Diagnostics

The position of an in-situmeasurement can be transformed into flux surface space. To compare

plasma profiles, it is natural to use the most radial-like flux coordinate s as many plasma parameters

can be assumed to be constant along a magnetic field line. To demonstrate the use of transforming
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Figure 3.25: An arbitrary flux surface constant quantity plotted as a function of both major radius
and flux surface s position. In laboratory space flux surface constant quantities do not align with
probe positions.

laboratory space (r, ϕ, z) measurement positions to flux surface space (s, u, v) space for data analy-

sis, Figure 3.24 shows four measurement paths all utilizing the same (r, z) coordinates at different

toroidal angles. These toroidal cross-sections are chosen for uniform spacing within a field period

and do not represent real diagnostic positions.

A simulated flux surface constant quantity takes the form of;

A (s) =

 A0 (1− |s|) |s| < 1

0 |s| > 1
(3.21)
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Figure 3.25 shows a plot of the simulated flux surface constant quantity in both laboratory space

(r, ϕ, z) and flux surface space (s, u, v) coordinates for a typical ECRH pulse on CTH for each of

the four probe paths. The laboratory space (r, ϕ, z) position of each probe position is converted into

flux surface space (s, u, v) position by themethod outlined in Section 2.2.1 using spline interpolated

VMEC quantities.

Since the quantity is constant on a flux surface, when plotted as function of s, all probes

measure the same profile even though the flux surface probe s positions do not align. When plotted

as a function of measurement position however, measured profiles show deviations. The location

of the last closed flux surface (s = 1) in laboratory space, shown where the quantity A becomes

zero, does not align. The toroidal angles of (ϕ = 18◦ and ϕ = 52◦) are antisymmetric about the

mid-plane on either side of the symmetry planes of (ϕ = 0◦ and ϕ = 36◦). The probe positions of

(ϕ = 18◦ and ϕ = 54◦) represent a special case where laboratory space measurements align.

3.5.2 Extrapolating Global Parameters

In fusion devices, nested flux surfaces are defined as surfaces of constant pressure where the

magnetic pressure balances the plasma pressure. Figure 2.1 shows the nested magnetic surfaces in

the CTH device. It is further assumed that a flux surface is a surface of constant electric potential.

This implies that the plasma pressure P and plasma potential Φp are only functions of the s coordi-

nate. While this is clearly true for the pressure (because it is the inherent assumption for computing

the equilibrium), it remains to be verified for the electric potential.

A test of this assumption cane done by considering the path taken by the triple probe. As noted

in Region 2 of Figure 3.24, the motion of the triple probe is mostly parallel to the magnetic surfaces.

This means that the u position of the probe is changing, while the s position nearly constant. If

plasma potential is a flux surface constant quality, the triple probe should measure the same value

regardless of u position.

Figure 3.26, shows a plot of the plasma potential as a function of the real space position of

the probe. The last four positions correspond to the movement of the probe at approximately a
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Figure 3.26: Plot comparing the change in plasma potential (Φp) to the change in flux surface space
s position as a function of position. This shows Φp is a flux surface constant quantity.
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constant value of s. In this region, the variation of δΦp

⟨Φp⟩ = 1.2%, while δs
⟨s⟩ = 10.9%. From this, it is

concluded that modeling the flux surfaces as equipotential surfaces is a reasonable approximation.

This implies that the plasma pressure P and the plasma potential Φp are only functions of the s

coordinate. This section will focus on deriving the electric field. However, all methods discussed

apply equally to gradients in the plasma fluid pressure.

The generalized gradient operator is defined to be

∇Φ =
∂Φ

∂ui
ei (3.22)

using the contravariant basis vectors. The electric field can now be defined as

E = −∇Φp (s) = −es ∂

∂s
Φ (s) = Es (s) e

s (3.23)

The contravariant basis vector of the electric field and related to the covariant basis vectors of the

magnetic field (Equation 2.5) by

ei · ej = δji (3.24)

This means thatE points in a direction normal to a magnetic surface and is orthogonal toB. Since

Φp is constant on a flux surface, the covariant electric field components (Es) is also constant on

a flux surface. As a consequence, by measuring a profile of Φp at any arbitrary position in any

arbitrary direction, the total E can be determined everywhere within the s extent of the measured

profile. Derivatives of flux surface constant quantities can be obtained by taking a finite difference

in s or through a cubic spline interpolation. Both methods will be used throughout this dissertation.

The method used will be identified for each measurement presented.

As a simple example of calculating the electric field, consider a modeled electric potential of

the form in Equation 3.21. From the definition of the electric field (Equation 3.23), the value of
∂
∂s
Φ (s) is also only a function of the s coordinate and thus constant on a flux surface. Figure 3.27

shows the progression from a flux surface space potential to a laboratory space electric field. As a
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Figure 3.27: Starting from a potential profile (black Φ (s) = 0 V, yellow Φ (s) = 10 V), the flux
surface spaceEs (redEs (s) = 10arb.) can be obtained. |E| (blue |E| = 0 V

m
, red = |E| = 240 V

m
) is

obtained by converting Es to laboratory space using the contravariant basis vectors at any (s, u, v)
position. All cross sections are plotted from s = 0.02 to s = 1.

reminder, the flux surface space vector components do not carry the same units as the laboratory

space counterparts.

Figure 3.28 shows various plots of electric field quantities measured at the probe positions in

Fig 3.24 for a potential of the form of Equation 3.21. Figure 3.28a shows the magnitude of the

gradient of potential in flux surface space (Es). The quantity Es represents a flux surface constant

quantity. In Figure 3.28b Es is transformed back into laboratory space providing the complete

electric field vector at each probe position. Figure 3.28c shows the difference between calculating

the total electric field from the flux surface constant Es quantity and measuring the electric field

directly from finite difference in probe position at the ϕ = 18◦ probe path. The deviation in these

two methods arises from the fact that probe travel is not in the direction of the electric field.
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Figure 3.28: a) Plot of Es measured at each probe position. b) Plot of |E| calculated from Es. c)
Difference between electric field calculated from Es quantity and the taking a finite difference of
direct probe data at ϕ = 18◦.

Direct probe measurements can only measure the component of the electric field in the direc-

tion of the probe travel. However, by transforming potential profiles into flux surface space, the

flux surface constant quantity Es can be obtained. As a consequence, by measuring a potential

profile anywhere, the full electric field vector can now be determined everywhere in the plasma.

Figure 3.27 shows the magnitude of the electric field at the toroidal cross-sections shown in Figure

3.24. The red shaded areas shown represent regions of strong electric field. The blue shaded re-

gions represent areas of weak electric field. On right side (CTH outboard), the magnetic surfaces

become highly compressed and resultant electric fields become strong. Toward the magnetic axis,

the surfaces expand and electric fields become weak.

The methods developed here will be used for determination of the full electric field and pres-

sure gradient vectors. It has been shown how these vectors are orthogonal to the magnetic fields.

The presence of electric fields and pressure gradients transverse to a magnetic field will induce a

flow perpendicular to both. Understanding the electric fields and pressure gradients is important

for understanding plasma flow.
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Chapter 4

Results

To study the effect of driven plasma rotation on plasma stability, edge biasing experiments

have been performed on the CTH device. The goals of edge biasing experiments are to: modify

the edge electric field, measure an induced perpendicular flow, demonstrate the role electric field

plays inducing flows andmeasure the enhancement or suppression of plasma instabilities associated

with these flows. This chapter will discuss various edge bias experiments performed in ECRH only

plasmas in the CTH device.

4.1 Edge Biasing Experiments

All edge biasing experiments are performed by inserting the Biasing probe described in Section

3.3.1 past the last closed flux surface. Various biasing schemes are employed over the course of

a shot. In each case, when the bias voltage is set to 0 V, this condition will be considered the

reference or baseline against which all other biasing conditions are compared to.

For each shot, data is collected from the triple probe andGundestrup Probe. Between shots, the

probes are moved in 1 cm steps into the plasma as described in Sections 3.4.1 and 3.4.2. The triple

probe data is used to determine the plasma parameters. Electric fields will be measured from the

Φp by taking the gradient in flux surface space as described in Section A.1.4 and transformed back

into the laboratory frame. The pressure gradient is determined from Te and ne in the same manner.

Parallel and perpendicular flows are measured by scanning the Gundestrup Probe, as described in

Section 3.4.2.

Two main experiments are described in this study. The first, Experiment A, is a high input

heating power run in which all three ECRH power supplies are used to generate the plasma. The

second, Experiment B, is a lower power run in which only one of the ECRH power supplies is used.
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Shot Numbers 11081821− 11081837
HF Current 4500 A
TVF Current 750 A
RF 1 Power 4 kW
RF 2 Power 4 kW
RF 3 Power 6 kW

Table 4.1: CTH run parameters for biasing experiment A.

Shot Numbers 11090828− 11090832, 11090834− 11090850
HF Current 4600 A
TVF Current 650 A
RF 2 Power 6 kW

Table 4.2: CTH run parameters for biasing experiment B.

The overall operating parameters foreach of these cases are given is Table 4.1, for Experiment A,

Table 4.2, for Experiment B.

4.1.1 Data Analysis

Each shot is divided into a number of time slices, typically 4 or 5. At each time slice, the

magnet coil currents are averaged over this time interval and V3FIT is run to produce a wout file

for that shot number and time interval. V3FIT is configured to calculate the plasma equilibrium

on 100 flux surface s positions. This is done to minimize errors in interpolated values between

calculated flux surfaces. Appendix B details the various quantities that can be calculated from the

V3FIT reconstruction. The reconstruction is used to obtain a model of the magnetic field structure.

This model is used to transform probe positions using the procedures outlined in Chapter 3 and

Appendices A and B, and to determine flows in the plasma.

Probe Data

Triple probe and Gundestrup probe data are analyzed and averaged for each shot number and

time slice. The method of finding time slice averaged data error analysis is outlined in Section 3.2.

Triple probe and Gundestrup analyses are outlined in Sections 3.4.1 and 3.4.2 respectively.
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Figure 4.1: An exaggerated view of the intersection of the Gundestrup probe tip (black bar) with
the curved flux surface (red line). The magnetic field direction (purple) is pointing into the paper
and the orange line shows the direction of the probe shaft. The Gundestrup probe only measures
the projection of the flow (blue line) in the plane of the probe tips (dashed blue line).

The error in the flux surface space probe position (s), is estimated by converting the maximum

extents of the probe tips from laboratory space to flux surface space. For the triple probe, the probe

tip is ∼ 3 mm long. The maximum and minimum s values are calculated by taking the ±1.5 mm

of the probe position and converting that into flux surface space. The complete measurement tip of

the Gundestrup probe is a 1” diameter cylinder 1
8
” in length. To estimate the error, eight positions

on the inward and outward face of the tip are sampled and converted into flux surface space. The

maximum and minimum s extent in flux surface space of these sampled positions are used to esti-

mate the resulting spatial error. Since the Gundestrup probe tip is physically bigger than the triple

probe tip, it is expected that Gundestrup probe position error will be greater than the corresponding

triple probe error.

Electric field and pressure gradients are determined from the triple probe using the procedure

outlined in Section 3.4.1. The resulting profiles values of the flux surface space electric field (Es)
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and pressure gradient (∇P ) are interpolated to the Gundestrup probe s positions. The contributions

to the plasma flows by the E-cross-B (E × B) and diamagnetic (−∇P × B) drift are estimated

from Equation 2.9. However, these flows cannot be directly compared to Gundestrup probe mea-

surements.

The component of the total drift representing the perpendicular flow in the plane of the Gun-

derstrup Probe is estimated using

v⊥ = v · b̂× n̂p (4.1)

where b̂ is the unit vector in the direction of the magnetic field and n̂p is the unit vector pointing

in the direction of the Gundestrup probe shaft. The local sound speed is calculated from Equation

3.12, at each Gundestrup probe s position, using either a linear interpolation or spline interpolation

of Te and assuming a Ti value of ∼ 1 eV. Since Ti is on the order of ∼ 10% of Te it is expected

that, errors in Ti estimation will produce errors in cs on the order of ∼ 10%. Normalizing the

perpendicular flow to the sound speed allows a direct comparison toM⊥.

Biasing Probe and LCFS Positions

In order to interpret the profile measurements, the positions of the LCFS and the biasing probe

must be converted in the flux surface s coordinate as well. Under normal V3FIT operation the

limiter positions are provided as a fitting input parameter. This makes the s = 1 surface the LCFS.

However to allow probe measurements to extend into the scrape off layer, the CTH limiter input

is artificially expanded beyond the wavelength limiters. In ECRH only plasmas, the low values of

plasma β makes it reasonable to assume that vacuum surfaces and plasma surfaces are the same.

To interpret the probe positions, it becomes necessary to determine the location of the physical

limiters which determine the location of the LCFS. This is achieved by performing a search for

where the innermost flux surface intersects any of the wavelength limiters. This search is performed

for each time slice of all CTH shots. These positions are averaged together. The standard deviation

is calculated to account for any error caused by shifts in the plasma position between shots.

78



The biasing probe position is directly transformed into flux surface space. The transformation

is performed for each probe position for each time slice. The bottom center (r = 0.712 m, ϕ =

−3.07◦, z = 0.165 m) and 1” (r = 0.712 m, ϕ = −3.07◦, z = 0.187 m) above that position of the

bias probe tip are used as the lab space positions of the biasing probe. The transformed s positions

are averaged together. Errors in the position arising from shifts in the plasma position shot to shot

are accounted by calculating the standard deviation of the biasing probe s positions.

4.2 Plasma Parameters During Biasing

In this section, the measurements from the two experimental configurations described in tables

4.1 (Experiment A) and 4.2 (Experiment B) are presented. Figures 4.2 to Figures 4.4 present the

results from experiment A. Figures 4.5 to Figures 4.7 present the results from experiment B. In

each figure, three plots are given. As discussed throughout this dissertation, it is essential to be

able to make a direct comparison between the different systems. As such, all probe spatial data is

presented as a function of the VMEC flux coordinate s.

Plot (a) in each figure summarizes the measurements from the triple probe and Gundestrup

Probe. The top plot presents the parallel (M∥) and perpendicular (M⊥) Mach number measured

from the Gundestrup Probe. The remaining four plots are electron temperature (Te), electron den-

sity (ne), floating potential (Φf ) and plasma potential (Φp) measured from the triple probe. It is

important to note that in flux surface space, the triple probe and Gundestrup probe reach different

depths into the plasma. In each plot, the projected extent of the biasing probe in flux coordinates

is shown as an orange strip. The LCFS is shown as a vertical dashed line.

Plot (b) in each figure, compares the measuredM⊥ to the theoretical calculation of the plasma

drift. Electric fields and pressure gradients are measured from triple probe data. This limits the-

oretical flow calculation to the depth of the triple probe. In each plot, the projected extent of the

biasing probe in flux coordinates is again shown as an orange strip and the LCFS is shown as a

vertical dashed line.
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For plot (c), in each of the following figures, shows the time evolution of the applied biasing

voltage and resulting current measured off the biasing probe. The experimental data is analyzed

during the three time intervals when the probe is at 100 V, 0 V and −100 V. The shaded area

represents the time interval used for each figure. It is noted that during the initial 0 V biasing

phase, the plasma is still forming in the CTH vacuum vessel. As a result plasma conditions are

somewhat unstable. The second 0 V biasing phase is used as the comparison case for these studies

as described in Section 3.3.1.
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Figure 4.2: Data for experiment A from time interval 1.62 s−1.64 s. a) From Top to Bottom: Mach
Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ), Plasma
Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and current.
The orange shaded region represents the extent of the biasing probe tip. The vertical dashed dotted
linemarks the LCFS. The shaded region in the lower right corner marks the time interval that profile
data is averaged over.
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Figure 4.3: Data for experiment A from time interval 1.64 s−1.66 s. a) From Top to Bottom: Mach
Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ), Plasma
Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and current.
The orange shaded region represents the extent of the biasing probe tip. The vertical dashed dotted
linemarks the LCFS. The shaded region in the lower right corner marks the time interval that profile
data is averaged over.
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Figure 4.4: Data for experiment A from time interval 1.66 s−1.68 s. a) From Top to Bottom: Mach
Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ), Plasma
Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and current.
The orange shaded region represents the extent of the biasing probe tip. The vertical dashed dotted
linemarks the LCFS. The shaded region in the lower right corner marks the time interval that profile
data is averaged over.
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Figure 4.5: Data for experiment B from time interval 1.625 s − 1.65 s. a) From Top to Bottom:
Mach Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ),
Plasma Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and
current. The orange shaded region represents the extent of the biasing probe tip. The vertical
dashed dotted line marks the LCFS. The shaded region in the lower right corner marks the time
interval that profile data is averaged over.
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Figure 4.6: Data for experiment B from time interval 1.65 s − 1.675 s. a) From Top to Bottom:
Mach Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ),
Plasma Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and
current. The orange shaded region represents the extent of the biasing probe tip. The vertical
dashed dotted line marks the LCFS. The shaded region in the lower right corner marks the time
interval that profile data is averaged over.
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Figure 4.7: Data for experiment B from time interval 1.675s−1.7 s. a) From Top to Bottom: Mach
Number (M ), Electron Temperature (Te), Electron Density (ne), Floating Potential (Φf ), Plasma
Potential (Φp). b) Measured and calculated values of M⊥. c) Measured bias voltage and current.
The orange shaded region represents the extent of the biasing probe tip. The vertical dashed dotted
linemarks the LCFS. The shaded region in the lower right corner marks the time interval that profile
data is averaged over.
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Electric fields are established by gradients in the plasma potential (Φp). For positive biases,

figures 4.2a and 4.5a, experiment A was not able to establish an electric field. The plasma potential

Φp profiles (a) bottom plot) show a flat profile. By contrast, experiment B does generate a signif-

icant electric field. For 0 V biases, it is expected that there should be no electric fields since the

biasing probe is fixed at the same potential as the CTH vacuum vessel. Φp profiles remain flat for

both experiments as seen in figures 4.3a and 4.6a. Negative biases, figures 4.4a and 4.7a, show

the opposite effect that positive biases show. In Experiment A, negative biases produce a radially

inward (negative) electric field. In Experiment B, negative biases could not produce a significant

electric field.

One fundamental difference between experiments A and B is the amount of ECRH heating

power used. In Experiment B, the electron temperature (a; 4th plot from the bottom) is lower. On

average, electron temperatures in the core of the plasma were Te ∼ 15 eV for Experiment A and

Te ∼ 10 eV for Experiment B. While this is not unexpected due to the reduced inout heating power,

results show that lower electron temperatures play a pivotal role in ability to produce an electric

field direction. In the high electron temperatures of experiment A, radially inward or negative elec-

tric fields were produced under negative biasing. Significant radially outward or positive electric

fields could not be produced by positive biasing. By contrast in the lower electron temperatures

of experiment B, the opposite occurs. A positive electric field was produces from positive biasing.

However, a significant negative electric field could not be produced from negative biasing. In ei-

ther case, induced gradients in Φp are localized between the biasing limiter tip and the scrape off

layer.

4.3 Ion Flows

Flows in CTH should arise from two sources, intrinsic flows present in the plasma and flows

arising from edge biasing. The Gundestrup Probe, introduced in Section 3.4.2, can measure the

presence of flows both parallel and perpendicular to the magnetic field lines. It is expected that

electric fields induced from edge biasing will modify the perpendicular flows.
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Figure 4.8: Plot comparing flux surface space electric field (Es) with measurements of parallel and
perpendicular Mach number for experiment A.

As shown in Section 4.2, the 0 V case of both presented experiments does not show the pres-

ence of a significant edge electric field. This provides a good baseline from which to compare the

extent to which the application of a positive or negative bias leads to the generation of an electric

field. Furthermore, it will be determined whether the presence of this electric field leads to a modi-

fication of the perpendicular flow in the plasma that is localized to the region where the gradient in

the plasma potential is greatest. Cases that show the generation of edge electric fields, should show

a modification of the perpendicular flow localized to the gradient region of the plasma potential

Φp.
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Figure 4.9: Plot comparing flux surface space electric field (Es) with measurements of parallel and
perpendicular Mach number for experiment B.

Figure 4.8 compares the flux surface space electric field (Es) compared to the measured par-

allel and perpendicular Mach numbers for experiment A. For the 0 V case (dotted red line, open

boxes), the perpendicular Mach number is near zero corresponding to a nearly zero electric field.

Plasma flows in this case are dominated by parallel flows. By comparison to the positive bias

case (solid black line, open circles), the parallel flow now reverses direction. Perpendicular flows

show a negative flow in the scrape off layer however, perpendicular flows do not correspond well

to measured electric fields. For the negative bias case (dashed blue line, open triangles), shows a

significant negative perpendicular flows corresponding to a negative electric field. Parallel flow

remains unaltered from 0 V case.
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Figure 4.9 compares the flux surface space electric field (Es) compared to the measured par-

allel and perpendicular Mach numbers for experiment B. For the 0 V case (dotted red line, open

boxes), the perpendicular Mach number is near zero. Plasma flows in this case are dominated by

parallel flows. In comparison to the positive bias case (solid black line, open circles), the parallel

flow now reverses direction. Perpendicular flows show a significant positive flow corresponding

to a positive electric field. The negative bias case (dashed blue line, open triangles) shows par-

allel flows mainly unaltered from 0 V case. The perpendicular flow profile oscillates about zero

corresponding to an electric field that roughly follows the same pattern.

In both experiments positive biases show a significant change in the parallel Mach number

compared to their respective 0 V cases. The perpendicular flows for 0 V cases, where Φp profiles

are flat and corresponding electric fields are near zero, showmostly no perpendicular flow. Parallel

flows remain unaltered from the 0 V biases in both −100 V bias cases. The cases where there are

large gradients in the Φp profiles, perpendicular flows velocities show a significant deviation from

the 0 V case. Perpendicular flow direction corresponds well with the direction of the flux surface

space electric fields.

4.3.1 Comparison With Theory

In order to interpret the ion flow measurements, the two mechanisms that contribute to the

flow are considered. The first of these is the drift that arises in the plasma from the application

of the electric field; i.e. the E-cross-B drift. The second of these arises from the gradient in the

plasma pressure which is the diamagnetic drift. Both of these effects were discussed in detail in

Section 2.1. These combined drifts are solutions to the fluid equations when ignoring magnetic

field gradient and curvature drifts. The Gundestrup probe measures the ion component of the fluid

flow. Only the pressure gradients in the ion fluid impose a drift on the ions. Due to the cold ions,

diamagnetic drift effects are small compared to E-cross-B drifts (∼ 10%). As a result, it is expected

that plasma flow is dominated by the E ×B drift.
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In figures 4.2b, 4.3b and 4.4b and 4.5b, 4.6b and 4.7b, total calculated drift is overlaid on

top of measured perpendicular flows (right column, top plot). For cases of 0 V biases and cases

where there is a significant gradient in theΦp profiles, experimental and calculated data show good

agreement. The negative bias case of experiment B shows similar trends. In regions where the

flow is negative, the electric field goes negative. In regions where the flow is positive, the electric

fields is positive. However the magnitudes of electric fields produce an E-cross-B drift in excess

of the measured perpendicular flow. This error may arise from the linear interpolations and finite

difference methods used to calculate the electric fields. Only in the positive bias case of experiment

A, do both the E-cross-B drift speed and direction disagree with measured perpendicular flows.

4.4 Instabilities

One of the key features that has often been associated with flowing plasmas in fusion devices

has been the suppression of plasma instabilities47–51. This is in contrast to wide ranging studies

in laboratory and space plasma environments in which plasma flows are often the source of free

energy that gives rise to instabilities32,52–55. It is well-known that fusion plasmas are often in a

vastly different range of parameters from typical laboratory and space plasma environments. This

is an important contributor to the differences in plasma response.

However, for the experiments performed on the CTH device, the plasmas formed are generally

have a low electron temperature (Te ∼ 10 eV) and moderate electron density (ne ∼ 1018 m−3).

These conditions are comparable to many laboratory experiments. Therefore, this work reports

that during the positive bias of experiment B (t = 1.625 s : 1.65 s), there is the generation of a low

frequency oscillation. Figure 4.10, shows the oscillation on all triple probe, Gundestrup probe and

biasing probe raw signals. All signals are filtered with a bandpass pass filter between 1 kHz and

3 kHz. In further investigations of this phenomena, all probe signals will be cropped and filtered

in the same manner for spectral analysis. Figure 4.11 shows a fast Fourier transformation (FFT) of

the Φf as a function of the probe position. This mode has a frequency of f ∼ 2 kHz.
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Figure 4.10: Raw voltage and current signals on all triple probe (TP), Gundestrup probe (GP) and
biasing probe (BP) channels for shot number 11090836.

There is a broad spectrum of instabilities in the presence of sheared flows. However large

categories of instabilities can be eliminated from examination of various scale sizes. Immediately,

the investigation is limited to electrostatic branches only arising from the low value of β. Ganguli et.

al.30 provides a hierarchy of electrostatic instabilities associated with the presence of flows parallel

and perpendicular to magnetic field lines. This, however, is not an exhaustive list of instabilities but

does provide guidance in narrowing down the broad spectrum of instabilities. From Gundestrup

probe measurements, this instability appears when there is a significant perpendicular flow induced

and parallel flow is suppressed. As a result, investigations of this instability will focus on transverse

flow-driven instabilities.
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Figure 4.11: Plot of fluctuation spectrum from Φf measured from the triple probe under positive
bias.

This instability is further parameterized by the ratio of the mode frequency compared to the

ion cyclotron frequency. In the CTH device, the ion cyclotron frequency is fci ∼ 10MHz and the

observed instability frequency is fl ∼ 2 kHz where ω = 2πf ∼ 12.6 kHz such that ωr ≪ Ωci.

However, with the presence of an electric field and induced perpendicular flow, the observed fre-

quency in the laboratory frame is likely to be Doppler shifted. For measured flows, and reasonable

wavelengths, it is anticipated that the mode frequency will satisfy the condition ωr ≪ Ωci. As a

result, the investigation of possible instabilities will be limited to low frequency modes.

This regime is also characterized by the scale length of the potential gradient size to the ion

Larmor radius (L ≫ ρi). For the positive bias of experiment B, the density and potential gradients,
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Figure 4.12: Plot of triple probe path(Blue line) in flux surface space. The red line draws a radial
path from one point in the triple probe path. The orange ring shows the position of the biasing
probe and the dashed-dotted line shows the location of the LCFS.

are located between the LCFS and the Biasing probe tip L ∼ 3 cm. From Table 3.1, ρi ∼ 0.2 mm,

the condition of L ≫ ρi is also applicable.

In this regime, some common possible low frequencymodes include, Kelvin-Helmholtz30,56–58,

Rayleigh-Taylor or interchange modes57,58, drift waves30,58,59 and ion acoustic waves30,59. Some

of these modes require the presence of sheared flows as a driving mechanism while others can be

stabilized or destabilized by the presence of sheared flows. To identify the possible instability,

characteristics of the mode will be compared with experimental data. If possible, the dispersion

relation will be solved for relevant CTH parameters to determine if that instability is likely to occur.
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4.4.1 Driving Mechanism

To investigate the radial structure of the observed instability, the velocity, density and elec-

tric field gradients will be compared to the peak wave power in flux surface space at each of the

Gundestrup probe positions. Peak wave power is obtained by means of taking the FFT of each

probe signal and spatially locating the peak of the spectrum. Radial structure of the instability is

examined by means of a cross spectral analysis. The fluctuating floating potential measurement

of the triple probe is cross-correlated to the fluctuation measured on the fixed biasing probe. At

each triple probe location, the cross correlation magnitude and phase difference between the triple

and biasing probes are obtained. The radial phase difference is obtained by locating the phase at

the maximum of the cross-correlation amplitude. The phase at the first probe position is set to be

zero. The radial phase structure is accumulated from the phase difference at each probe position.

It should be noted that this does not represent the true radial structure of the plasma because, as

Figure 4.12 shows, the triple probe path is not radial in flux surface space.

To investigate possible driving mechanisms, profiles of ne, Φp andM⊥ are spline interpolated

in flux surface space. The derivative of each profile is taken with respect to s from the calculated

piecewise spline functions to construct the flux surface gradient of these quantities. The results

of this calculation are three key quantities. The first of these, the flux surface space electric field

(Es), computed from the gradient of the plasma potential (Φp). The density gradient in flux surface

space is computed from −∂ne

∂s
. Finally the flux surface space shear frequency is competed from

ωs = ∂
∂s
M⊥. These quantities are not the same as their laboratory space counterparts, however

they are instructive for comparing with the spatial profile of the wave power with these various

quantities.

Figure 4.13 shows a comparison of (from bottom to top) the wave power for each Gundestrup

probe tip, the radial phase difference of the triple probe Φf cross correlated to the biasing probe

potential, ωs, −∂ne

∂s
and Es. Wave power is peaked between the biasing probe tip and the LCFS.

Since wave power disappears inboard of the biasing probe, further investigations will concentrate

on the region from the biasing probe to the scrape off layer.
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Figure 4.13: Plot comparing measured radial wave power to potential, density, and velocity gradi-
ents in flux surface space under a positive bias. Starting from the top, flux surface space electric
field (Es) measured from the gradient in the plasma potential (Φp), flux surface space density gra-
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(
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)
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)
. Peak wave power is measured from an

FFT of Isat collected on each Gundestrup probe tip labeled A-F.
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First, we must rule out the possibility of this fluctuation coming from probe measurement

circuity. If this oscillation was present on the common ground of all probe measurement circuits,

it would be expected that all probe measurement fluctuations would be in phase. Radial profiles of

the phase change of the Φf show a radial structure of the phase. Furthermore, the change in phase

is correlated to the peak in the fluctuation power. This provides good evidence that this is most

likely a plasma effect.

The perpendicular velocity shear, i.e., shear frequency, ωs, has a local extrema at the edge

of the biasing probe and at the LCFS as shown in Figure 4.13. Profiles of perpendicular Mach

number (Figure 4.5), show the induced flow is localized between the biasing probe tip and the

LCFS. Perpendicular flows inboard of the biasing probe and in the scrape off layer are generally

quite small. Peak wave power is not strongly correlated with the peaks in the shear frequency. This

is indicative that velocity shear maybe an unlikely driving mechanism of this instability. The peak

of the wave power, however is correlated with the maxima in density gradients and electric fields.

This may be indicative of a drift wave or Rayleigh-Taylor instability58 or some intermediate mode

in-between.

4.4.2 Wavenumber

The next step in identifying, possible modes, is the identification of the wavenumber k. Un-

fortunately, due to lack of diagnostics, a true kmeasurement cannot be directly obtained. However,

insights into the wavenumber may be obtained from an examination of the first order velocity fluc-

tuations. Figure 4.14 shows the fluctuations in M∥ and M⊥ for a single data shot. At each data

point of measured saturation current,M⊥ andM∥ are obtained as a function of time.

By averaging over this region, the zeroth order flows can be calculated as described in Section

4.3. The radial plasma flow is assumed to be diffusive in nature and small compared to induced

parallel and perpendicular flows. In order to understand zeroth order flow direction, the zeroth
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Figure 4.14: Fluctuations in the measured inM⊥ andM∥ flows.

order flow is separated into its unit vector components using;

m̂0∥ =
M∥(

M2
∥ +M2

⊥

) 1
2

(4.2a)

m̂0⊥ =
M⊥(

M2
∥ +M2

⊥

) 1
2

(4.2b)

For first order velocity fluctuations, M∥ and M⊥ are filtered with the same band pass filter

used in earlier in this section. Power spectra for the parallel and perpendicular flows are measured

from the time series of Gundestrup probe data. First order Fourier amplitudes are located from the
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peak in the power spectra. Fourier amplitudes are normalized to first order unit vectors using

m̂1∥ =
M ′

∥(
M ′2

∥ +M ′2
⊥

) 1
2

(4.3a)

m̂1⊥ =
M ′

⊥(
M ′2

∥ +M ′2
⊥

) 1
2

(4.3b)

whereM ′ represents the Fourier transformed amplitudes.

Figure 4.15 shows the measured flow direction of zeroth and first order Mach numbers nor-

malized to unit vectors. In general, zeroth order flows are mostly perpendicular to the magnetic

field direction. The same holds true for the first order velocity fluctuations as well. At the peak of

the wave power for the A, B and F collecting plates, the first order velocity fluctuation are nearly

completely perpendicular. This indicated that the parallel wavenumber k∥ is small or nearly zero

indicating either long wavelengths or no propagation along the field lines.

4.4.3 Dispersion relations

To determine an instability mode requires a measurement of the dispersion relation. Normally,

this is achieved by measuring the k at various mode frequencies. A typical way of measuring the

wavenumber of an electrostatic mode is by measuring the phase difference between two probe tips.

However, an estimate of the expected wavelength is required a-priori to insure proper probe tip

spacing. If the probe tips are spaced too far apart, multiple wavelengths can occur between the

tips. If the tips are spaced two close together, the relative phase shift measured can be too small to

detect.

For flow studies on CTH, it was not known what the effects of edge biasing would produce. A

diagnostic measurement of k could not be performed until a possible wave mode is identified. It is

possible however to identify possible wavenumbers through modeling known plasma instabilities

constrained by experimental observations. When possible, the dispersion relation will be solved
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Figure 4.15: Plot comparing the parallel and perpendicular components of the zeroth and first flow
unit vectors to the peak wave power as a function of flux surface space s coordinate. Peak wave
power is measured from an FFT of Isat measured from each of the Gundestrup probe tips. Peak
wave power corresponds to the region where zeroth and first order flow directions are perpendicular
to the magnetic field direction.
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directly or k will be estimated from a model of the dispersion relation. The calculated values of k

are subject to two limits.

1. Wavenumbers must correspond to wavelengths that fit within the CTH vacuum vessel.

2. Wavenumbers must correspond to wavelengths that are larger than the size of a probe mea-

surement tip.

For the first limit, if it is assumed that the vacuum vessel acts like a waveguide, the poloidal or

toroidal circumference of the chamber would constrain the maximum wavelength. For the second

limit, if the wavelength was smaller than the probe tip, the probe would not be able to measure

a fluctuation because the that fluctuation would average out over the length of the probe. Using

these limits and the dispersion relation calculations, the wavelength will be determined from the k

value corresponding to the measured mode frequency. Possible instability modes will be accepted

or rejected based on values of k that fall within these constraints.

For the ion acoustic and drift wave modes the models for frequency and growth rate pro-

vided by Swanson59 will be used. For the Kelvin-Helmholtz we can solve the dispersion relation

directly30,57 using a shooting method described in section 2.3.1. For the dispersion relation incor-

porating all the features measured in the CTH plasma, we will solve the wave function provided

by Guzdar et. al.57 using the same shooting method. Parameters and values that will be used are

defined in Table 4.3. For simplicity, the plasma will be modeled using a slab geometry. Density

and potential profiles will be modeled as

n0 (x) = 7.45× 1017 m−3 tanh
(x

L

)
+ 7.55× 1017 m−3 (4.4)

ϕ0 (x) = 17 V tanh
(x

L

)
+ 90 V (4.5)

to qualitatively match the profiles measured in CTH. In the slab geometryB is assumed to point in

positive ẑ. To match the direction of gradients relative toB with respect to CTH, the plasma core

is assumed to be at positive x and the scrape off layer is assumed to be at negative x.
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Name Symbol Definition
Charge e 1.6× 10−19c
Permittivity of Free Space ϵ0 8.9× 10−12 Fm−1

Magnetic Field B 0.5T ẑ
Scale Length L 0.03 m
Ion Mass mi 1.7× 10−27 kg
Electron Mass me 9.1× 10−31 kg
Ion Temperature Ti 1 eV
Electron Temperature Te 10 eV

Ion Thermal Velocity vi

√
3.2× 10−19Ti

mi

Electron Thermal Velocity ve

√
3.2× 10−19Te

me

Ion Acoustic Speed cs

√
1.6× 10−19Te

mi

Density n0 (x) Equation 4.4
Potential ϕ0 (x) Equation 4.5

E ×B Drift v0 (x)
Φ′

0 (x)

B

Electron Debye Length λDe (x)

√
ϵ01.6× 10−19Te

n0 (x) e2

Ion Cyclotron Frequency Ωci
eB

mi

Table 4.3: Various parameters and definitions used for solving the dispersion relations for various
instability modes.

Ion Acoustic

For the ion acoustic wave, the frequency and growth rate are defined to be

ω2
r =

k2c2s
1 + k2λ2

De

[
1 +

3Ti

Te

(
1 + k2λ2

De

)]
(4.6)

and
ωi

ωr

= −
√
πζ3ir

1 + 3ζ−2
ir

(
exp

(
−ζ2ir

)
+

Tivi
Teve

)
(4.7)

where ζri = ωr

kvi
. The growth rate for the ion acoustic wave is negative (ωr < 0) implying this

mode is damped. Without a driving mechanism external to the plasma, this mode will not exist.
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This condition does not immediately rule out this mode as an external driving source is possible.

The ion acoustic mode does not take into account the possibility of flow. For application to CTH,

it will be assumed that if this mode exists, that it is a rotating mode whose frequency ωr is given

by ±2πfl + kv0 (x).

Solving for both positive and negative branches for the wavelength measured frequency. The

positive branch gives a k = 0.37 m−1 converted to wavelength is λ = 17 m. The negative branch

gives a k = 0.35 m−1 converted to wavelength is λ = 18 m. With a minor radius of 0.26 m these

wavelengths are too big to fit in the CTH vacuum vessel radially and poloidally. The CTH major

radius R0 = 0.75 m giving the center of the vacuum vessel a circumference of 4.71 m. If the wave

was traveling purely toroidally, the CTH vacuum vessel would be too small to contain this wave

mode. However, there is the possibility of the wave traveling along a field line. The length of a field

line can be longer than the circumference of the vacuum vessel. To estimate the smaller value of k

that can fit the CTHmagnetic field, define k∥ = nῑ
R0

where n is the toroidal mode number and ῑ is the

rotational transform. Typical ECRH plasmas in CTH are performed in plasmas where ῑ is between

ῑ = 0.22 and ῑ = 0.18. This places the boundaries of k in CTH to be between k0.22 = 0.3 m−1 and

k0.18 = 0.24−1 which correspond to wavelength of λ0.22 = 21 m and λ0.18 = 26 m respectively.

While these wavelengths are able to fit into the machine, estimates of k̂ show wave propagation

is mostly perpendicular to the magnetic field line. Evidence presented shows that the measured

instability is most likely not an ion acoustic mode.

Drift Waves

For the drift wave, the frequency and growth rate are defined to be

ωr = ω∗
e

1− λi

1 + k2
⊥ρ

2
s

(4.8)

and

ωi =
√
πω∗

e

(
k2
⊥ρ

2
s

1 + k2
⊥ρ

2
s

)2 (
1 + 2

Ti

Te

)
(4.9)
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where the drift frequency defined to be ω∗
e (x) = k⊥

1.6×10−19Te

eB

n′
0(x)

n0(x)
, ρs = cs

ωci
and λi =

k2⊥v2i
2Ωci

.

Similarly to the ion acoustic wave treatment, for application to CTH, it will be assumed that if

this mode exists, that it is a rotating mode and ωr is replaced by ±2πfl + kv0 (x). For ±fi the

calculated k⊥ is 4 m−1 which corresponds to a wavelength of 1.5 m. CTH has a maximum poloidal

circumference of 1.63 m. While this wavelength is on the edge of fitting within the vacuum vessel,

this mode should not be dismissed entirely because Equations 4.8 and 4.9 were derived assuming

a non-rotating drift wave.

The growth rate for the drift wave (Equation 4.9) is positive. This means that this is a naturally

occurring instability in the presence of a density gradient. The estimated growth rate for CTH

conditions and the k⊥ = 4 m−1 is on the order of ωi ∼ 10−8. This growth rate estimate shows a

very slowly growing mode. Therefore, while the drift wave is a possible candidate, the slow growth

rate make it an unlikely candidate.

Kelvin-Helmholtz

In the appropriate limits, the generalized dispersion relations presented in Ganguli, et. al.30

and Guzdar, et. al.57 reduce to the well known Kelvin-Helmholtz dispersion relation.

∂2

∂x2
Φ (x)− k2

y +
kyv

′′
0 (x)

ω − kyv0 (x)
Φ (x) = 0 (4.10)

For this dispersion relation we can solve this directly using the shooting method presented at the

beginning of this section. Figure 4.16a shows the frequency and growth rate as a function of

wavenumber. The growth rate is peaked at about k = 30 m−1 corresponding to a wavelength

of λ = 0.21 m. The frequency associated with this peak is 15320 rads . Figure 4.16b shows a plot of

the real and imaginary parts potential fluctuation amplitude. This is peaked at about x = 0, this

roughly the same location as the peak in the velocity profile and is consistent with measurements

of the location of peak wave amplitude (Figure 4.13). At x = 0, the Doppler shifted frequency
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Figure 4.16: a) Frequency (ωr) and Growth rate (ωi) for a classical Kelvin-Helmholtz mode. b)
Normalized potential fluctuation amplitude for wavelength (Φr) and imaginary parts (Φi) for the
classical Kelvin-Helmholtz mode (k = 30 m−1 and ω = 15320 + 6075i).

in the laboratory frame becomes f = −3 kHz. This frequency is within a reasonable range of the

measured frequency shown in Figure 4.11.
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Density Gradient Modified Kelvin-Helmholtz

Deriving the generalized dispersion relation for a density gradient modified Kelvin-Helmholtz

begins by neglecting parallel wave propagation (k∥ = 0), assuming ω ≪ Ωci and the ion-neutral

collision frequency νi ≪ Ωci. The last assumption states that the ions are magnetized. Ignoring

gravity and ion-neutral collisions, the general dispersion relation becomes57

∂2

∂x2
Φ (x) + p (ω, k, x)

∂

∂x
Φ (x) + q (ω, k, x) Φ (x) = 0 (4.11)

where

p (ω, k, x) =
∂

∂x
lnn0 (x) (4.12)

and

q (ω, k, x) = −k2 +
kv0 (x)

ω − kv0 (x)

[
1

v0 (x)

∂2

∂x2
v0 (x) +

∂

∂x
ln v0 (x)

∂

∂x
lnn0 (x)

]
(4.13)

For this dispersion relation we can solve this directly using the shooting method presented at the

beginning of this section. Figure 4.17a shows the frequency and growth rate as a function of

wavenumber. The growth rate is peaked at about k = 26 m−1 corresponding to a wavelength

of λ = 0.24 m. The frequency associated with this peak is 13150 rads . Figure 4.17b shows a plot of

the real and imaginary parts potential fluctuation amplitude. This is peaked at about x = 0, this is

roughly the same location as the peak in the velocity profile and is consistent with measurements

of the location of peak wave amplitude (Figure 4.13). At x = 0, the Doppler shifted frequency

in the laboratory frame becomes f = −2.6 kHz. This frequency is within a reasonable range of

the measured frequency shown in Figure 4.11. Compared to the pure Kelvin-Helmholtz mode, the

presence of the density gradient narrows the instability region and decreases the growth rate.
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Figure 4.17: a) Frequency (ωr) and Growth rate (ωi) for a density gradient modified Kelvin-
Helmholtz mode. The presence of density gradients narrows the regions of instability growth and
decreases the growth rate compared to the pure Kelvin-Helmholtz mode. b) Normalized poten-
tial fluctuation amplitude for wavelength (Φr) and imaginary parts (Φi) for the density gradient
modified Kelvin-Helmholtz mode (k = 25 m−1 and ω = 13150 + 5050i).
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Chapter 5

Conclusions

The study of flowing plasmas is a topic that has long been of interest to the basic, space

and fusion plasma research communities. Depending upon the local plasma parameters, numerous

observations have shown that these flows can have both stabilizing and destabilizing effects on

plasmas. In the particular area of fusion energy research, strong plasma flows in the plasma edge

are known to suppress large scale turbulence, reduce the radial transport of particles and generally

provide a stabilizing influence leading to improved energy confinement in fusion devices. These

effects are strongly beneficial to the long-term development of fusion as a viable energy source.

The work presented in this dissertation summarizes a series of experiments that seek to under-

stand the role of driven plasma flows on the stability of a stellarator plasmas. While many studies

of driven plasma flows in fusion devices are focused on the transition to enhanced confinement

regimes (so-called, “H-modes”), it is reiterated that this is not the focus of this work. Instead, this

investigation has sought to gain a more fundamental understanding of the mechanisms that can

allow substantial flows to be established in the plasma, characterizing those flows, and measuring

the response of the plasma to those flows.

This work is performed using the Compact Toroidal Hybrid (CTH) stellarator device oper-

ated with ECRH generated plasmas at low to moderate plasma densities (ne ≤ 1018 m−3) and low

electron temperatures (Te ≤ 15 eV). The moderate plasma conditions these experiments were per-

formed in allow the use in-situ probe diagnostic systems. The flow in the plasma is established

by using a biased electrode to generate an electric field that is perpendicular to the magnetic flux

surfaces. As a result of the application of the electric field, quasi-poloidal flows are established

in the plasma. Experimental studies were performed to compare the behavior of the plasma in

the presence and absence of the driven flows. A series of in situ diagnostic probes, specifically a
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triple probe and a Gundestrup probe, were developed. The triple probe was used to make “instan-

taneous” measurements of the plasma parameters, i.e., the electron temperature, electron density,

floating potential and plasma potential. The Gundestrup probe was used to make “instantaneous”

measurements of the flow in the plasma.

Comparison of probe systems in the three dimensionally shaped magnetic surfaces of CTH,

was made possible through the use of the equilibrium reconstruction code VMEC. The direct, detailed

model of the magnetic field provide by VMEC, was critical for interpretation of probe measurements

and plasma flows in the CTH device. Assumptions that certain quantities such as plasma potential

and plasma pressure, are constant on a magnetic flux surface, allow localized measurements to

diagnose the global structure of the plasma. Furthermore, as a result of the plasma generated with

low values of beta (β ∼ 10−5), the vacuum magnetic flux surfaces were assumed to be unaltered

by the presence of the plasma. As a result, the equilibrium reconstruction could be extended out

past the normal edge of the plasma into the scrape off layer.

Figure 5.1 shows an overview of all biasing experiments performed. Electric fields are calcu-

lated between the LCFS and the Biasing Probe. Electron temperature is taken from the z = 0.1m

triple probe position during the zero bias time interval. The experiments performed showed that

radially outward (positive) electric fields were generated using a positive bias voltage but only in

plasmas with low electron temperatures (Te ≤ 13 eV). In plasmas with higher electron tempera-

tures (Te > 13 eV), positive bias voltages would not generate a positive electric field. By contrast,

the opposite is true for radially inward (negative) electric fields. Negative electric fields were best

generated when (Te ≥ 13 eV).

In the cases where the electric field is formed, it was noted that this electric field layer was

formed between the biased electrode and the limiter making the scale-length of the electric field

significantly larger than the ion Larmor radius. In particular, this fact is important to characterizing

the instability that is formed in the plasma. Only in the case of the low temperature plasma with

a radially outward electric field was a plasma instability observed. Under negative electric fields,

the presence of a coherent plasma instability was not found.
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Figure 5.1: Plot shows the relationship between Es and Te for all positive and negative biasing
experiments performed. Radially outward (positive) electric fields could not be generated above
13 eV electron temperatures. Below this threshold, positive electric fields drove instabilities. In-
stabilities could not be driven with negative electric fields.

Investigations of possible instability modes leads to the Kelvin-Helmholtz mode as a likely

candidate. This mode is driven by the shear in the perpendicular velocity. This mode typically

appears in a region where the ion gyroradius ρi ≪ L the scale size of shear layer and the mode fre-

quency ω ≪ Ωci is much less than the ion gyrofrequency, consistent with CTH plasma conditions.

When including the presence of the density gradient, the region of instability growth narrows and

growth rate is reduced compared to the pure Kelvin-Helmholtz mode. However, due to the lack of

a measurement of the wavenumber k, a true identification of the wave mode cannot be performed.

It is noted that the operating conditions for the CTH device for this work are similar to conditions

found in basic laboratory type plasma experiments, so perhaps the observation of instabilities of

the Kelvin-Helmholtz type are not unexpected.
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5.1 Comparisons With Other Experiments

Experiments on driven flows in plasmas have been performed extensively in laboratory plas-

mas31,32 and in fusion devices33,35,60. In many of these devices, the generation of a strong edge

plasma flows and the associated transition to higher confinement regimes, is often driven by the

presence of a radially inward (negative) electric field11,17,19,48. In these cases, the edge electric

fields are self-generated from the ambipolar diffusion of ions and electrons. The work presented in

this dissertation is more typical of edge biasing studies that have been performed on the TEXTOR,

CASTOR, T-10 and ISTTOK tokamak experiments33 and on the TJ-II stellarator experiment35,60

and Compact Auburn Torsatron (CAT)34.

5.1.1 Comparison to Tokamak Experiments

Biasing experiments on TEXTOR sought to investigate the role between E-cross-B shear and

transport barrier formation. In TEXTOR, a mushroom shaped carbon limiter was inserted past

the LCFS and biased to a maximum of 600 V. As the bias was increased, the edge electric field

increased until a bifurcation occurred. The edge electric field jumps to a high level and density

gradient is generated. A low frequency ringing of the plasma is developed. This is similar to

results shown on CTH. By contrast, the ringing on TEXTOR was assumed to be caused by the

biasing supply. In this work, extensive measurements show that the oscillation on CTH has a radial

structure in the plasma edge. On both devices, under positive biases, a strong edge electric field is

generated along with a strong density gradient and low frequency occultation induced.

Biasing experiments on CASTOR examined the sought to measure the edge E-cross-B flow

and the structure of turbulence. On CASTOR instead of biasing past the LCFS, the biasing lim-

iter was just touching the edge of the plasma and not extending into it. Flows were measured

by a Gundestrup probe and compared to calculation of E-cross-B flows made from electric field

measurements. The radial structure of the edge plasma flow show good agreement with E-cross-

B flows with diamagnetic drifts included as well. Measurements of the turbulent structure show
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a wave like mode propagating poloidally. This is similar to results obtained on CTH however,

measured electric fields on CASTOR are radially inward or negative electric field.

Biasing experiments on T-10 achieved H-mode by applying a positive bias to the plasma edge.

In a broad range of density and plasma current conditions, negative biases had no observable effect

on plasma parameters. This is consistent with the results of biasing experiments on CTH. Mea-

surements of electric field produced showed a strong shear electric field. At the edge of the biasing

electrode, a strong radially outward (positive) electric field immediately followed by a radially in-

ward (negative) electric field in the region between the limiter and the biasing electrode. It should

be noted also be noted that in CTH, there was a broadband suppression of low frequency fluctu-

ations during this phase of the experiment. The presence of the sheared electric fields suppressed

broadband fluctuations between 3− 30 kHz.

An important difference between these biasing experiments and CTH is that each of the afore-

mentioned studies were performed in tokamaks. As such, each of these experiments were are per-

formed in plasmas with ohmic heating current and with an axisymmetric plasma. Typical densities

under these conditions are ne ∼ 1019 m−3 are a factor of 10 larger and core plasma temperatures are

Te ∼ 1 keV are a factor of 100 larger than densities and temperatures on CTH under ECRH heating.

As such absolute electric fields were determined from measured values of the Φf . Comparisons

of perpendicular flows and E-cross-B flows measured from profiles of Φf have poor agreement as

compared to E-cross-B flows measured from Φp. For conditions on CTH, profiles of Φf are a poor

proxy for electric field measurements.

In TEXTOR, T-10 and CTH, the biasing electrode is inserted past the LCFS whereas on CAS-

TOR, the bias was applied to the scrape off layer only. Experiments on ISTTOK compared both

biasing regimes. It was shown that when the biasing electrode was inserted past the LCFS as per-

formed on TEXTOR, T-10 and CTH, that positive biased produced the best correlation between en-

hancement of confinement and sheared E-cross-B flows. When the bias was applied to the scrape

off layer only, it was found that negative biases decreased particle losses. While absolute com-

parison between these biasing experiments and CTH is not possible due to differences in plasma
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conditions, qualitatively, results obtained on CTH show qualitative agreement with previous results

obtained on tokamak edge biasing experiments.

5.1.2 Comparison to Stellarator Experiments

The forerunner to CTH was the smaller CAT device. Edge biasing experiments on CAT

used a heated filament to inject current into the plasma. Typical plasma densities on CAT were

ne ∼ 1016 m−3, a factor of 100 lower than CTH. Plasma temperatures were comparable to CTH

conditions under ECRH at Te ∼ 5 − 20 eV. Rotation experiments on CAT focused on a neg-

ative biases and the generation of radially outward (negative) electric fields. Measurements of

plasma flow velocity were performed with a rotatable Mach probe. Comparisons of poloidal flow

measurements and E-Cross-B flow calculations in plasmas with a low neutral pressure show good

agreement consistent with previous experiments and measurements performed on CTH. The rota-

tion experiments on CAT show a consistent increase in plasma density and temperature when in

the presence of edge biasing. Experiments on CTH did not show a significant change in electron

temperature during biasing.

TJ-II is a stellarator with a plasma cross-section that has a “C” shape. Edge biasing experi-

ments performed on TJ-II illustrate the ability of positive and negative electric fields to modify the

plasma parameters. Under negative biasing, there is a reduction of board band turbulent fluctua-

tions observed. Experiments on CTH qualitatively show as suppression of broadband fluctuations

during positive biasing. Figure 5.2 shows the change in potential fluctuation on CTH for various

biases. This is opposite of plasma response seen on TJ-II. However, plasma conditions on these

devices differ. Electron temperatures and density are a factor of 10 higher in TJ-II than the values

obtained in the CTH plasma. Both machines use a bias of ΦBias ± 100 V.

One fundamental difference between experiments performed on CAT and TJ-II is the addition

of equilibrium reconstruction for probe measurements. On CAT, all probe measurements were

performed on the mid-plane at equal field periods. Measurements on both machines do not account

for the shaped nature of the magnetic fields when interpreting data. This is made necessary on CTH,
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Figure 5.2: FFT if the fluctuations in Φf measurements at different applied biases.

due to the mounting position of probes. It has been shown in section 3.5.2 that measurements of

global electric fields and density measurements are made possible through the use of the VMEC

coordinate system provided from equilibrium reconstruction.

5.1.3 Comparison with Laboratory Experiments

Extensive work performed on linear machines shows the role that sheared flows play in the

driving and suppression of plasma instabilities. In general, laboratory experiments typically have

densities in the range of ne ∼ 1016 m−3 and temperature of about Te ∼ 5 eV. Magnetic fields

are generally in the range of B ∼ 0.1 T to 0.01 T. Under these conditions, fundamental plasma

frequencies, such as the ion cyclotron frequency, are on the order of Ωci ∼ 10 kHz and ion Larmor
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radius is on the order of ρi ∼ 1 cm for typical argon plasmas. By contrast, on CTH under ECRH

heating in hydrogen plasmas, Densities are ne ∼ 1018 m−3. Temperatures can be produced in a

comparable range. Magnetic fields are an order of magnitude higher, making Ωci ∼ 10MHz and

ρi ∼ 0.1 mm.

Experiments on the Auburn Linear Experiment for Instability studies, show that measurements

of an electrostatic ion cyclotron instability in the presence of flow shear driven by a radially inward

(negative) electric field. Measurements of mode frequency show the mode frequency on the order

of the ion cyclotron frequency. Biasing experiments performed on the Space Physics Simulation

Chamber (SPSC) show that a sheared negative radial electric field profile drives an electrostatic ion

cyclotron wave via the Inhomogeneous Energy Density Driven Instability (IEDDI) mechanism. In

both these experiments, electric fields are induced in the plasma by biasing a ring electrode. Electric

field scale-lengths generated are on the order of L ∼ 2− 5 cm which is roughly the size of the ion

gyroradius. By contrast, observed modes in CTH exist in a region where mode frequencies are

much less than Ωci and electric field scale-lengths are much larger than the ion gyroradius. As such

direct comparison of CTH fluctuation and typical laboratory experiments cannot be performed.

5.2 Future Work

There are a number of unanswered questions and experimental regimes not covered in this

dissertation. Due to limitations of experimental hardware and operational conditions, not all ex-

perimental opportunities can be explored at the moment. However, there are some possible avenues

beyond the scope of this dissertation.

5.2.1 Argon Plasmas

In CTH, lowering the ion cyclotron frequency by dropping the magnetic field strength is not

possible due to the use of electron cyclotron resonance heating as the primary method of generating

the plasma. As such, certain magnetic field strengths on the order of B ∼ 0.5 T are necessary to

make use of the first harmonic ECRH. However, the ion cyclotron frequency can be lowered by
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increasing the mass of the ions. In CTH, hydrogen plasmas have Ωci ∼ 10MHz. By changing the

ion mass to argon, the ion cyclotron frequency can be reduced to Ωci ∼ 200 kHz. The ion Larmor

radius increases to ρi ∼ 1 mm. If a similar electric field structure could be produced in argon

plasmas, as hydrogen plasmas, it maybe possible to drive an instability closer to the conditions

seen in laboratory experiments or some intermediate mode.

5.2.2 Higher Bias Voltages

Positive electric fields on CTH were only capable of producing positive electric fields in cold

plasmas. Due to limitations of the biasing power supply, biasing experiments are limited to±100 V.

The plasma could only achieve up to subsonic speeds M ∼ 0.1 − 0.2. In experiments performed

on TEXTOR, a bias of ±600 V was able to produce positive electric fields in a plasma with much

higher temperature than CTH conditions. By increasing the biasing voltage, it may simplify edge

biasing experiments by expanding the range where positive edge electric fields are produced.

5.2.3 Ohmic Heating

CTH has the unique design where the device can be operated in stellarator like condition or

near tokamak like conditions. Due to the fragility of diagnostics build for this dissertation it was

discovered early, that operation in plasmas with driven plasma currents was not possible. If a new,

more robust diagnostic can be build, CTH has the unique opportunity to bridge the gap between the

early biasing experiments on tokamak device and edge biasing experiments on stellarator devices.

5.2.4 Magnetic Shear and Islands

If the conditions of electric field generation can be achieved consistently or edge rotational

transform can be altered over the course of a single shot, then the effects of magnetic shear and

its role in enhancing or suppressing edge plasma flows and confinement can be studied. The CTH

device has a number of toroidal field coils that can alter the toroidal field and change the edge

rotational transform. If the coils currents are varied enough, a rational surface can be created in
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the edge. Measurements of plasma flows and confinement in the presence of magnetic islands is

of specific interest in stellarators devices. However, it should be noted that the diagnostic analysis

technique using VMEC, developed in chapter 2, is invalid in the presence of magnetic islands since

VMEC assume nested magnetic surfaces. Future numerical studies on CTH using the NIMROD code

maybe able to study the effects of magnetic islands.

5.2.5 Wavelength Measurements

As discussed in section 4.4 a true identification of the wave mode cannot be identified without

a measurement of the wavenumber. It has been stated in this dissertation that a density gradient

modified Kelvin-Helmholtz mode is a likely candidate for the identification of the instability mode.

Estimation of wave propagation direction and structure suggest that this instability is a real plasma

effect and not a power supply effect. By recreating the conditions to drive the instability observed

again along with a measurement of the wavenumber, it may be possible to further confirm or reject

the existence of this wavemode. Further it maybe possible to identify the structure of the turbulence

like experiments performed on the CASTOR tokamak.
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Appendix A
Generalized Coordinates

A brief overview for the development of generalized coordinates relevant to this dissertation,
is provided from the first chapter of the book “Flux Coordinates and Magnetic Field Structure”61.
In this section, a set a vectors defining the directions of our coordinate system is developed in a
generalized manner. These direction vectors will be allowed to be non-orthonormal. As a result,
definitions of common vector operations need to be redefined.

A.1 Basis Vectors

A point in three dimensional space can be specified as a vector parameterized by three inde-
pendent parameters or coordinates, ui.

R
(
u1, u2, u3

)
(A.1)

By holding one coordinate constant and allowing the other two to vary, surfaces of constant ui can
be mapped out. Varying one coordinate while holding the other two constant, maps out coordinate
curves. A coordinate curve along the direction of ui is located at the intersection of coordinate
surfaces defined by uj and uk. Figure A.1 shows the coordinate surfaces and curves for the familiar
cylindrical coordinate system. The direction tangental to a coordinate curve produces covariant
basis vectors. The direction normal to a coordinate surface produces contravariant basis vectors.
In Cartesian coordinates, these directions are the same and there is no distinction between covariant
and contravariant vectors. This will not be the case for the VMEC-coordinate system.

A.1.1 Covariant Basis

The vectors tangential to the coordinate curve (covariant basis vectors) are determined by
taking the derivative of equation A.1 with respect to each coordinate.

∂R

∂ui
= ei (A.2)

This set of vectors forms the covariant basis set of a coordinate system. It should be noted that
unlike the familiar cartesian coordinate system, the basis vectors ei are not constrained to have any
special properties such as being orthonormal or even unit-less.

A.1.2 Contravariant Basis

The vectors normal to the coordinate surface (contravariant basis vectors) are defined from
the covariant basis set as

ei =
1

J
(ej × ek) (A.3)
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Figure A.1: Coordinate curves and surfaces for the cylindrical coordinate system (ρ, θ, z). Red
ϕ = const, Green θ = const, Blue z = const. The black lines show the coordinate curves.
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for cyclic permutations of i, j and k. J is the Jacobian and is defined to be;

J = ei · ej × ek (A.4)

This set of vectors forms the contravariant basis set of a coordinate system. Again like the covariant
basis, this set of coordinates might also not be orthonormal or unit-less. In the more familiar carte-
sian coordinate system, the covariant and contravariant basis sets are equal to each other. Thus no
distinction is made between the two. However, in the generalized case, the differences between ba-
sis sets become important. Because these basis sets form reciprocal sets, the following relationship
between basis sets holds;

ei · ej = δji (A.5)

A.1.3 Metric Coefficients

A vectorD maybe defined in either basis set as

D =

{ (
D · e1

)
e1 +

(
D · e2

)
e2 +

(
D · e3

)
e3 = D1e1 +D2e2 +D3e3

(D · e1) e
1 + (D · e2) e

2 + (D · e3) e
3 = D1e

1 +D2e
2 +D3e

3 (A.6)

whereDi andDi are the contravariant and covariant components respectively of the vectorD. To
facilitate conversion between covariant and contravariant vectors, metric coefficients are defined
as

gij = ei · ej (A.7a)

gij = ei · ej (A.7b)

for the covariant and contravariant cases, respectively. When a coordinate ei or ei is orthogonal to
ej or ej respectively, the associated metric coefficient is zero. We can convert the covariant com-
ponents of a vector D to contravariant components, and vice versa, using the metric coefficients.

Di = gijD
j (A.8a)

Di = gijDj (A.8b)

In this notation there is an implied summation over repeated indices. In the same manner, the
conversion between basis vectors is

ei = gije
j (A.9a)

ei = gijej (A.9b)

for the covariant and contravariant bases vectors respectively. A curvilinear coordinate system
vector maybe transformed back in to a vector in the original coordinate system by

Dxi = GTDui (A.10)

where GT

G =

 e1 · x̂1 e1 · x̂2 e1 · x̂3

e2 · x̂1 e2 · x̂2 e2 · x̂3

e3 · x̂1 e3 · x̂2 e3 · x̂3

 (Covariant) (A.11a)
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G =

 e1 · x̂1 e1 · x̂2 e1 · x̂3

e2 · x̂1 e2 · x̂2 e2 · x̂3

e3 · x̂1 e3 · x̂2 e3 · x̂3

 (Contravariant) (A.11b)

is the transposed matrix of the covariant or contravariant basis vectors depending on whether the
Dui is defined using the covariant or contravariant basis vectors respectively.

A.1.4 Vector Operators

From equations A.5 and A.7, there are four possible variations on the dot product operator.

A ·B =


AiBjδ

i
j

AiB
jδji

gijA
iBj

gijAiBj

(A.12)

Again there is an implied summation over repeated indices. For orthogonal systems, the cross
components in the last two-forms are zero.

Unlike the dot product, there are only two natural forms of the cross product,

A×B =


J
∑
k

(
AiBj − AjBi

)
ek

1

J

∑
k

(AiBj − AjBi) ek

(A.13)

for cyclic permutations of i, j and k. The gradient operator is defined as

∇Φ =
∂Φ

∂ui
ei (A.14)

again with an implied summation over repeated indices.

A.1.5 Derivatives of Covariant and Contravariant Vectors

The MHD equations contain term of the form (A · ∇)A where the resulting differential op-
erator acts on each component of a vector A. Unlike the cartesian coordinate system, covariant
and contravariant basis vectors can be functions of their coordinates. When taking the derivative
of vector one also must account for changes in the basis vectors as well. For a vector W , the
derivative may be taken in two ways

∂W

∂uk
=


(
∂W

∂uk

)j

ej(
∂W

∂uk

)
j

ej
(A.15)
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in terms of the covariant and contravariant basis vectors. The contravariant components can now
be expanded in two ways.

(
∂W

∂uk

)j

=


∂W i

∂uk
δji +W i ∂ei

∂uk
· ej

∂Wi

∂uk
gij +Wi

∂ei

∂uk
· ej

(A.16a)

(
∂W

∂uk

)
j

=


∂Wi

∂uk
δij +Wi

∂ei

∂uk
· ej

∂W i

∂uk
gij +W i ∂ei

∂uk
· ej

(A.16b)
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Appendix B
VMEC Coordinates

VMEC is a three-dimensional MHD equilibrium solver that uses a steepest-descent moment
method36 assuming nested magnetic surfaces. For a given set of input parameters (coil currents,
pressure profile, current profile, etc.) VMEC will construct the resulting plasma equilibrium. This
equilibrium is solved in a flux coordinate system parameterized by coordinates s, u, and v. The s
coordinate is a normalized coordinate labeling a magnetic surface. The coordinate s is normalized
in such a way that s = 0 is the magnetic axis and s = 1 is the LCFS. The coordinate u represents
a poloidal like angle. The coordinate v represents the toroidal angle and is the same as ϕ in the
cylindrical coordinate system.

The output of VMEC is a file containing various parameters that can be used to describe the
magnetic field structure at any point inside the LCFS of the CTH device. A partial list of important
available parameters are provided in Table B.1. Each value is represented as a linear combination
of modes of u and v. A value A may be calculated by36;

A (s, u, v) =
∑
mn

Amnc (s) cos (mu− nv) +
∑
mn

Amns (s) sin (mu− nv) (B.1)

The coefficientsAmnc (s) andAmns (s) are defined on a grid of discrete s values. Values are defined
on either a full grid starting at s = 0 going to s = 1 at regular intervals or a half grid on s positions
between the full grid points. Any value in Table B.1 may be obtained at any u and v position for a
given s value. However, because of the discrete nature of values in the s coordinate, an interpolation
must be employed for values of s that fall between grid points.
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V alue Name Description Grid spacing
Rc (s) rmnc Radius cos components Full grid
Rs (s) rmns Radius sin components† Full grid
Zc (s) zmnc Height above the mid-plane cos components† Full grid
Zs (s) zmns Height above the mid-plane sin components Full grid
Bu

c (s) bsupumnc Contravariant magnetic field component Half grid
in eu cos components

Bu
s (s) bsupumns Contravariant magnetic field component Half grid

in eu sin components†
Bv

c (s) bsupvmnc Contravariant magnetic field component Half grid
in ev cos components

Bv
s (s) bsupvmns Contravariant magnetic field component Half grid

in ev sin components†
Bsc (s) bsubsmnc Covariant magnetic field component Half grid

in es cos components†
Bss (s) bsubsmns Covariant magnetic field component Half grid

in es sin components
Buc (s) bsubumnc Covariant magnetic field component Half grid

in eu cos components
Bus (s) bsubumns Covariant magnetic field component Half grid

in eu sin components†
Bvc (s) bsubvmnc Covariant magnetic field component Half grid

in ev cos components
Bvs (s) bsubvmns Covariant magnetic field component Half grid

in ev sin components†

Table B.1: List of VMEC Output Parameters. Parameters labelled as “asymmetric” are
present only in output files allowing for up-down asymmetry of the magnetic flux
surfaces.

† Asymmetric Only
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B.1 Basis Vectors

A position around the torus is defined in cylindrical coordinates, parameterized by flux coor-
dinates s, u and v, as

R (s, u, v) = R (s, u, v) r̂ + Z (s, u, v) ẑ (B.2)

whereR (s, u, v) andZ (s, u, v) have the form of equation B.1. When applying A.2, the derivatives
with respect to u and v can be taken analytically. However, since the coefficients are only defined
on discrete s positions, an interpolation or finite difference must be taken for these functions. Lastly
since v is equivalent to ϕ,

∂r̂

∂v
= ϕ̂ (B.3)

The covariant basis vectors for VMEC coordinate system are;

es =

[∑
mn

∂

∂s
Rmnc (s) cos (mu− nv) +

∑
mn

∂

∂s
Rmns (s) sin (mu− nv)

]
r̂

+

[∑
mn

∂

∂s
Zmnc (s) cos (mu− nv) +

∑
mn

∂

∂s
Zmns (s) sin (mu− nv)

]
ẑ

(B.4a)

eu =

[
−
∑
mn

Rmnc (s)m sin (mu− nv) +
∑
mn

Rmns (s)m cos (mu− nv)

]
r̂

−

[∑
mn

Zmnc (s)m sin (mu− nv)−
∑
mn

Zmns (s)m cos (mu− nv)

]
ẑ

(B.4b)

ev =

[∑
mn

Rmnc (s)n sin (mu− nv)−
∑
mn

Rmns (s)n cos (mu− nv)

]
r̂

+

[∑
mn

Rmnc (s) cos (mu− nv) +
∑
mn

Rmns (s) sin (mu− nv)

]
ϕ̂

+

[∑
mn

Zmnc (s)n sin (mu− nv)−
∑
mn

Zmns (s)n cos (mu− nv)

]
ẑ

(B.4c)

The contravariant basis vectors for the VMEC coordinate system are obtained through equation A.3.
Magnetic fields, in this coordinate system, can be defined as either using covariant or con-

travariant basis vectors.
B = Bueu +Bvev (B.5a)

B = Bse
s +Bue

u +Bve
v (B.5b)

When defined using equation B.5a, the field lines have no es component. Bu represents a quasi
poloidal component and Bv represents a quasi toroidal component. The magnetic field lines run
along surfaces of constant s. Thus, the surfaces defined by a constant s coordinate represent a nested
flux surface in VMEC. However, it should be noted that the es basis vector need not be orthogonal to
B and need not represent a “radial” direction. From this definition we can measure an important
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flux surface constant quantity in stellarators.

ῑ =
Bu

Bv
(B.6)

ῑ represents the measure of the twist of the field line.
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Appendix C
Computer Codes Used
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C.1 Shooting Code

Kelvin-Helmholtz

Shooting Code CTH
Introduction
Attempting to solve for a dispersion relation using CTH relivant parameters. The equation we are tying to solve is equation 6 in
Guzdar, P. N., P. Satyanarayana, J. D. Huba, and S. L. Ossakow (1982), Influence of velocity shear on the Rayleigh-Taylor
instability, Geophys. Res. Lett., 9(5), 547–550. To simplify this we start by assuming g = 0 and ignore, ion-neutral colsitions.

Initialization

ü Constants

In[1]:= b0 = 0.5;
l = 0.03;
n = 10;
me = 9.1094*^-31;

ü Fuctions

ü Density and Potential profiles.

In[5]:= f0 = 17 * Tanh@Ò ê lD + 90 &;
Plot@f0@xD, 8x, -n * l, n * l<, PlotRange Ø AllD

Out[6]=

-0.3 -0.2 -0.1 0.1 0.2 0.3

80

85

90

95

100

105

ü Drift velocity

In[7]:= ve0 = f0'@ÒD ê b0 &;

In[8]:= k = Ò2^2 - HÒ2 * ve0''@Ò3DL ê HÒ1 - Ò2 * ve0@Ò3DL &;
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ü Dopler Shifted Frequency

In[9]:= w1 = Ò1 - Ò2 * ve0@Ò3D &;

Shooting Code
Set up the functions for the shooting code. Assume solutions of the form

eky x

In[10]:= shoot@F_, w_, k_D :=
NDSolve@8F''@xD - k@w, k, xD F@xD ã 0, F@-n * lD ã 0.1, F'@-n * lD ã 0.1 * k<,

F, 8x, -n * l, n * l<D@@1DD
funct@w_?NumericQ, k_?NumericQD := F@n * lD ê Exp@k * n * lD ê. shoot@F, w, kD;
eigenValue@k_, w0_D := w ê. FindRoot@funct@w, kD, 8w, w0<D;

Plots
In[13]:= Plot@8Re@k@1 + I, 1, xDD, Im@k@1 + I, 1, xDD<, 8x, -n * l, n * l<D

Out[13]=

-0.3 -0.2 -0.1 0.1 0.2 0.3

-2000

-1000
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3000

4000
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ü Frequency and Growth Rate

In[14]:= << PlotLegends`

2   Kelvin Helmholtz.nb
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In[15]:= ModuleA8<,

ks = Table@k, 8k, 2, 65, 1<D;
ev = List@eigenValue@First@ksD, 0.4 * 2 * ve0@0D + 0.3 * 2 * ve0@0D IDD;
Do@ev = Append@ev, eigenValue@ks@@iDD, Last@evDDD, 8i, 2, Length@ksD, 1<D;
ListLinePlotA8Thread@8ks, Re@evD ê 1000<D, Thread@8ks, Im@evD ê 1000<D<,

PlotStyle -> 8Red, Blue<, Frame Ø True, LegendPosition Ø 8-0.5, 0<,
PlotLegend Ø 8Text@Style@"wr", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"wi", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
ShadowBorder Ø None, LegendBackground Ø Opacity@0D, ShadowBackground Ø Opacity@0D,
FrameLabel Ø 9TextAStyleA"k m-1", FontSize Ø 18, FontFamily Ø "Helvetica"EE,

Text@Style@"w kHz", FontSize Ø 18, FontFamily Ø "Helvetica"DD=,

FrameStyle Ø Directive@FontSize Ø 18, FontFamily Ø "Helvetica"D,
ImageSize -> 8800, 600<E

E

FindRoot::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the merit function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

Kelvin Helmholtz.nb   3
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Out[15]=

The growth rate peaks at about, ky = 26. Get the eigen value at that wave length.

In[16]:= weigen = eigenValue@30, 1 + ID

Out[16]= 15 320.7 + 6075. Â

Check the eigen function to make sure it goes to zero at the boundary.

4   Kelvin Helmholtz.nb
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In[17]:= Module@8<,
sol = F ê. shoot@F, weigen, 30D;
Plot@8Re@sol@xD ê sol@0DD, Im@sol@xD ê sol@0DD<, 8x, -n * l, n * l<, PlotRange Ø All,
PlotStyle -> 8Red, Blue<, Frame Ø True, LegendPosition Ø 8-0.5, 0<,
PlotLegend Ø 8Text@Style@"Fr", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"Fi", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
ShadowBorder Ø None, LegendBackground Ø Opacity@0D, ShadowBackground Ø Opacity@0D,
FrameLabel Ø 8Text@Style@"x m", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"FHxLêFH0L ", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
FrameStyle Ø Directive@FontSize Ø 18, FontFamily Ø "Helvetica"D,
ImageSize -> 8800, 600<D

D

Out[17]=

Kelvin Helmholtz.nb   5
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It is peaked at about, x = 0. Look at the dopler shifted frequency at that point and convert it to real frequency.

In[18]:= w1@Re@weigenD, 30, 0D ê H2 * PiL

Out[18]= -2972.9

This is inline with measured frequency. Convert the measured frequency to see if it’s fits in the machine.

In[19]:= 2.0 Pi ê 30

Out[19]= 0.20944

6   Kelvin Helmholtz.nb
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Modified Kelvin-Helmholtz

Shooting Code CTH
Introduction
Attempting to solve for a dispersion relation using CTH relivant parameters. The equation we are tying to solve is equation 6 in
Guzdar, P. N., P. Satyanarayana, J. D. Huba, and S. L. Ossakow (1982), Influence of velocity shear on the Rayleigh-Taylor
instability, Geophys. Res. Lett., 9(5), 547–550. To simplify this we start by assuming g = 0 and ignore, ion-neutral colsitions.

Initialization

ü Constants

In[1]:= e = 1.6022*^-19;
e0 = 8.8542*^-12;
b0 = 0.5;
l = 0.03;
te = 10;
ti = 1;
n = 20;
mi = 1.6737*^-27;
me = 9.1094*^-31;
Wci = e * b0 ê mi;
Wce = e * b0 ê me;
vti = Sqrt@2 * 1.60217733*^-19 * ti ê miD;
ri = vti ê Wci;

ü Fuctions

ü Density and Potential profiles.

In[14]:= n0 = 7.45*^17 * Tanh@Ò ê lD + 7.55*^17 &;
f0 = 17 * Tanh@Ò ê lD + 90 &;

ü Drift velocity

In[16]:= ve0 = f0'@ÒD ê b0 &;

ü Drift Special Functions

In[17]:= lnN = Log@n0@ÒDD &;
lnV = Log@ve0@ÒDD &;
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ü Dopler Shifted Frequency

In[19]:= w1 = Ò1 - Ò2 * ve0@Ò3D &;

ü Coffeiffients

In[20]:= p = lnN'@ÒD &;
q = -Ò2^2 + Ò2 * ve0@Ò3D ê w1@Ò1, Ò2, Ò3D Hve0''@Ò3D ê ve0@Ò3D + lnN'@Ò3D lnV'@Ò3DL &;

Shooting Code
Set up the functions for the shooting code. Assume solutions of the form

eky x

In[22]:= shoot@F_, w_, k_D :=
NDSolve@8F''@xD + p@xD F@xD + q@w, k, xD F@xD ã 0, F@-n * lD ã 0.1, F'@-n * lD ã 0.1 * k<,

F, 8x, -n * l, n * l<D@@1DD
funct@w_?NumericQ, k_?NumericQD := F@n * lD ê Exp@k * n * lD ê. shoot@F, w, kD;
eigenValue@k_, w0_D := w ê. FindRoot@funct@w, kD, 8w, w0<D;

Plots

ü Frequency and Growth Rate

In[25]:= << PlotLegends`

In[26]:= ModuleA8<,

ks = Table@k, 8k, 1, 54, 0.5<D;
ev = List@eigenValue@First@ksD, 556.946 + 304.971 IDD;
Do@ev = Append@ev, eigenValue@ks@@iDD, Last@evDDD, 8i, 2, Length@ksD, 1<D;
ListLinePlotA8Thread@8ks, Re@evD ê 1000<D, Thread@8ks, Im@evD ê 1000<D<,

PlotStyle -> 8Red, Blue<, Frame Ø True, LegendPosition Ø 8-0.5, 0<,
PlotLegend Ø 8Text@Style@"wr", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"wi", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
ShadowBorder Ø None, LegendBackground Ø Opacity@0D, ShadowBackground Ø Opacity@0D,
FrameLabel Ø 9TextAStyleA"k m-1", FontSize Ø 18, FontFamily Ø "Helvetica"EE,

Text@Style@"w kHz", FontSize Ø 18, FontFamily Ø "Helvetica"DD=,

FrameStyle Ø Directive@FontSize Ø 18, FontFamily Ø "Helvetica"D,
ImageSize -> 8800, 600<E

E

FindRoot::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the merit function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à
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FindRoot::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the merit function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

FindRoot::lstol :
The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal

but was unable to find a sufficient decrease in the merit function. You may need
more than MachinePrecision digits of working precision to meet these tolerances. à

General::stop : Further output of FindRoot::lstol will be suppressed during this calculation. à

Out[26]=

The growth rate peaks at about, ky = 26. Get the eigen value at that wave length.

InterChange.nb   3

140



In[27]:= weigen = eigenValue@26, 1 + ID

Out[27]= 13 150.6 + 5050.38 Â

Check the eigen function to make sure it goes to zero at the boundary.
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In[28]:= Module@8<,
sol = F ê. shoot@F, weigen, 26D;
Plot@8Re@sol@xD ê sol@0DD, Im@sol@xD ê sol@0DD<, 8x, -n * l, n * l<, PlotRange Ø All,
PlotStyle -> 8Red, Blue<, Frame Ø True, LegendPosition Ø 8-0.5, 0<,
PlotLegend Ø 8Text@Style@"Fr", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"Fi", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
ShadowBorder Ø None, LegendBackground Ø Opacity@0D, ShadowBackground Ø Opacity@0D,
FrameLabel Ø 8Text@Style@"x m", FontSize Ø 18, FontFamily Ø "Helvetica"DD,

Text@Style@"FHxLêFH0L ", FontSize Ø 18, FontFamily Ø "Helvetica"DD<,
FrameStyle Ø Directive@FontSize Ø 18, FontFamily Ø "Helvetica"D,
ImageSize -> 8800, 600<D

D

Out[28]=
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It is peaked at about, x = 0. Look at the dopler shifted frequency at that point and convert it to real frequency.

In[29]:= w1@Re@weigenD, 26, 0D ê H2 * PiL

Out[29]= -2596.78

This is inline with measured frequency. Convert the measured frequency to see if it’s fits in the machine.

In[30]:= 2.0 Pi ê 26

Out[30]= 0.241661

In[31]:= 26 * ri

Out[31]= 0.00751615
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