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Abstract

This dissertation addresses two common problems in image acquisition. We first in-

troduce an adaptive image acquisition methodology by replacing the traditional birefringent

filter with slight out-of-focus blur generated by the camera lens. The optimal defocus setting

is automatically adapted to the power spectrum of the scene. A criterion to estimate recon-

struction errors without the baseband knowledge of the scene is developed in this work. An

optimal Wiener filter then recovers the captured scene and yields sharper images with re-

duced aliasing. The numerical and visual results for gray-scale images show that our method

is superior to current acquisition methods.

The extension of the defocusing method to color image acquisition involves an extra

demosaicking step. By designing a multichannel Wiener filter on the luminance and chromi-

nance domain, we simplified the reconstruction of this problem. The error criterion defined

for color acquisition is also improved on searching the optimal defocusing settings for the

input scene. The acquired color filter array (CFA) image with the optimal amount of blur is

reconstructed by a joint deblurring and demosaicking method. The simulation results show

the defocusing acquisition achieves better image quality with fewer aliasing artifacts than

the traditional acquisition method with or without an anti-aliasing filter.

An optimization of the spectral sensitivities of the Bayer CFA pattern is the other area

we propose to address. Due to the nature of the optical sensor used in cameras, a CFA

pattern is placed over the sensor to distinguish light spectra with different wavelengths. A

multichannel Wiener filter is selected to determine the optimal sensitivity function for each

color channel. We further optimize the green sensitivities for different noise levels. Simulation

results show that the CFA with optimal spectral sensitivity functions delivers images with

smaller color difference and better visual quality than the CFA with fixed sensitivities.
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Chapter 1

Introduction

1.1 Statement of the Problem

The emergence of digital cameras has changed the ways we acquire, reproduce, and

transmit images. Film is being replaced by optical sensors, such as Charge-Coupled De-

vice (CCD) or Complementary Metal Oxide Semiconductor (CMOS) sensors. Instead of

using chemical solutions to develop films, digital cameras apply signal processing methods

to transform the electric charges recorded by the optical sensors into images. A typical dig-

ital camera pipeline is shown in Fig. 1.1 which includes the traditional optical components

used in film cameras, such as a lens, anti-aliasing filter (AA), infrared blocking filter (IR),

aperture and focus control unit. The signal processing steps involve preprocessing, white

balance, demosaicking, color transform, post-processing and compression steps [1].

Color 
Transformation

Compression/
Display

White 
balance DemosaickingPre-

processing
Post-

processing

CFALens

AAIR Sensor

Figure 1.1: The typical processing pipeline of digital cameras.

Because of the complexity of camera design, scientists and engineers often separate

these subsystem from each other and optimize their performance individually. Although

some design parameters can be fine-tuned after finishing each design and combining them
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together, the entire camera pipeline cannot deliver the best image quality this way. It

is unquestionable that mutually designing two or more subsystems increases the freedom

but involves more difficulty in the process. However, the improvement in the end-to-end

performance makes this procedure an attractive design methodology in current research. An

introduction on each subsystem of the camera pipeline is provided in this section before we

discuss the joint design methodology.

The optical part of digital cameras has a similar structure as film cameras do. Light

reflected by the object surfaces passes through the camera lens and aperture which controls

the amount of the incoming light. The optical sensor inside the camera records the intensity

of light at each spatial location by counting the number of photons and transforming to

electrical charges. Since optical sensors respond to infrared light but not the human eye, an

IR blocking filter is placed between the aperture and the sensor to block infrared light. An

optical AA filter can be found in front of the sensor in mid- to high-level cameras to limit

the bandwidth of the scene.

To sense the visible spectrum, digital cameras have to acquire at least three different

energies of light with different wavelengths (normally red, green and blue bands). The

cameras using three sensors generally offer excellent image quality, but they are much more

expensive. Instead of using the three-sensor technique, most consumer cameras use a single

sensor chip with a CFA layered over it [1]. Consequently, each sensor cell is only sensitive to

the red, green or blue (RGB) channel, and the other two primary colors are missing at each

cell. This kind of configuration needs an extra processing step to recover the missing colors

in the camera pipeline, which is called demosaicking.

The output of the camera sensor after the analog-to-digital converter becomes a two-

dimensional raw image or raw data. In order to transform a raw image to a color image,

digital cameras have to perform a series of processes then stores the image in its memory or

display the image on its screen. The first step is the preprocessing step. In this step, “hot”

pixels, which are defective photosites of the optical sensor, are corrected. Their intensity

2



value are replaced by an estimated value from their neighboring pixels. Another problem

addressed in this step is dark current noise compensation. Dark current is a small current

caused by the thermal movement of electrons inside the sensor. A simple technique to

compensate the dark current noise is to subtract a mean dark-current image from the raw

image according to the exposure time.

White balance is another important step for a digital camera to generate color images

which faithfully represent the continuous scenes. Our eyes can easily identify a “white”

point from a scene regardless of the illumination. However, digital cameras have no ability

to find such a point without a reference. Since different light sources have different spectral

responses, the reflected spectra by objects in the scene are different. For example, a piece

of white paper appears yellowish under tungsten lighting while the “true” color of the paper

shows up under natural sunlight. A solution to deal with the white balance problem is to

scale the color channels of a raw image by the ratios of their mean values. This technique

is based on the assumption that each color channel in a well balanced image has the same

mean. More advanced techniques on automatically performing white balance in camera have

been proposed in [2, 3, 4]. However, the photographer must still customize the white balance

for scenes under complex lighting conditions.

After the preprocessing and white balance steps, demosaicking aims to reconstruct the

full-resolution RGB image from a mosaicked CFA image. Instead of reconstructing the red,

green, and blue color channels separately, most demosaicking approaches mutually recover

them. Simple demosaicking algorithms linearly interpolate CFA images with the help of edge

information extracted from mosaicked data. This kind of technique is more suitable for the

real-time process inside cameras because it requires less computation. To further improve

the performance of demosaicking, recent algorithms combine traditional techniques with

nonlinear techniques which can exploit the inter- and intra-channel correlation more fully

than linear techniques. Conversely, a fuller understanding of demosaicking helps to design
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more efficient CFA patterns. Designing CFA patterns with various spatial patterns and

improved spectral sensitivity functions has also attracted research interest recently [5, 6, 7].

Color transformation projects the full-color image from the RGB color space of a camera

to the CIEXYZ color space through a set of matching functions. The camera RGB color space

is a device-dependent space. Without a color correction after acquisition, the images obtained

by different cameras appear slightly different from each other. The standard CIEXYZ color

space matches the way that the human visual system (HVS) perceives color scenes. After

the images are transformed to the CIEXYZ space, they can be mapped to the rendered color

space for display and storage purpose. The sRGB color space is the most commonly used

RGB color space in digital cameras and has become a cross-platform standard for monitors

and printers [8]. The number of bits used to represent a single pixel value is reduced from 12

bits to 8 bits during the transformation from CIEXYZ space to rendered sRGB space. This

reduction relieves the computational burden in the following post-processing and compression

steps.

Post-processing in cameras deals with the artifacts introduced in the previous steps,

such as demosaicking. Demoaicking algorithms tend to create zipper effects and false-color

errors along the edges. To correct these errors, images can be treated using spatial operations

on the chrominance channels after a transform from sRGB space to luminance/chrominance

space. Since the HVS is sensitive to the fine structure and edges in the image, a sharpening

process also can be found in most cameras. A typical sharpening algorithm calculates the

gradient of horizontal and vertical directions of the image. A weighted sum of these two

gradients is then added to the original image to improve the sharpness of the image. It is

worth noting that any high-frequency errors, such as noise, are amplified by the sharpening

process.

Image compression is the last step of a typical camera pipeline before the captured

images can be stored in camera memories. Because the main energy of natural images is

concentrated in the low-spatial-frequency areas, a lossy compression can discard part of the

4



high-frequency information of the image without a significant quality drop. Based on the

discrete cosine transform (DCT), JPEG is the most popular compression algorithm used in

cameras. JPEG compression is performed in the luminance/chrominance space to further

improve the efficiency. Images are divided into 8 × 8 small patches and the algorithm is

applied on them to simplify the hardware implementation. JPEG2000 was built on the

wavelet transform, which provides the same image quality with a higher compression rate

than JPEG standard [9]. Although JPEG2000 is much more complicated than JPEG, camera

manufacturers are starting to put this technique into cameras as hardware improves.

1.2 Scope of the Dissertation

From the discussion in the previous section, one can see that the performance of the

camera system could be improved if multiple subsystems in the pipeline are designed jointly.

A number of research efforts have taken this approach in the past few years. Zhang et al.

proposed a joint demosaicking-denoising scheme via a linear minimum mean square-error

estimation [10]. The optical side of camera design can also be improved by incorporating the

image processing techniques used in the pipeline. Robinson and Stork presented a design

methodology for the camera lens by optimizing with a Wiener filter the final output image

of the camera rather than the optical image of the lens [11]. Similar design techniques were

introduced for CFA pattern design to improve the demosaicking results in the reconstruction

step [5, 12, 13, 14, 15]. We follow the joint design concept in this dissertation and advance

the capability of the camera system.

The primary contribution of this dissertation is the introduction of image reconstruction

techniques to help the acquisition of the camera. The unique sampling process in single-

sensor cameras raises the problem of image demosaicking. The distortion caused by the

spatial anti-aliasing filter is another concern in the reconstruction step. The designs of anti-

aliasing filter and CFA pattern benefits from image demosaicking or deblurring techniques.
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The strategies to incorporate the acquisition and reconstruction are discussed in detail in

this dissertation.

Chapter 2 provides an overview of the anti-aliasing filter and CFA pattern used in single-

sensor cameras. Deblurring and demosaicking are two image processing techniques related to

these two optical filters. Two types of blur forms and the Bayer CFA pattern are discussed

in detail. Common deblurring and demosaicking algorithms are introduced in this chapter.

Some background knowledge on trichromacy and color matching functions assists us to build

a foundation on color imaging. A few color spaces are also presented in the last section of

Chapter 2.

An adaptive acquisition approach by auto-defocusing for grayscale image is presented

in Chapter 3. The commonly used birefringent filter is replaced by the out-of-focus blur

generated by the camera lens. We formulated a Wiener filter with consideration of the

aliasing component to recover the baseband image. An initial acquisition is required to

estimate the power spectra of the baseband image and the aliasing component. An error

criterion based on the Wiener filter helps the camera to control the lens and generate the

optimal amount of blur. The corresponding Wiener filter then restores the final acquired

image and delivers images with fewer aliasing artifacts.

Chapter 4 is an extension of the acquisition method introduced in Chapter 3 to single-

sensor cameras. To include the unique demosaicking process of such a camera, a multichannel

Wiener filter is designed to evaluate the entire reconstruction error. Since the red, green

and blue channels of a color image are highly correlated, a Wiener filter is formulated in

the luminance and chrominance domain rather than the RGB domain. This formulation

simplifies the design and implementation of the multichannel Wiener filter. A new error

criterion for color image acquisition is presented in this chapter to estimate the optimal

defocus setting. In the last section of this chapter, a joint demosaicking and deblurring

method is introduced to restore the captured CFA image.
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An optimization of the spectral sensitivities of the Bayer CFA pattern is presented in

Chapter 5. We introduce a multispectral imaging model and formulate a model-based Wiener

filter with both spatial and spectral correlations. Inspired by the hardware improvement in

digital tunable filters, we optimize the green channel sensitivity for various noise levels after

deriving the sensitivity functions for the red and blue channels. Since the CIEXYZ color

space represents the human visual system, the reconstructed images are compared with the

images acquired by the CIECYZ standard matching functions in the CIELAB color space.

Chapter 6 summarizes the contributions of this dissertation. Conclusions are drawn for

each design method. A number of practical issues related to the camera design are discussed.

Future work about joint design methodology is also covered in this chapter.
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Chapter 2

Background

A number of fundamentals about optical filters and related image processing methods

are provided in this chapter. Two types of optical filters in cameras are introduced in

the first section. The analysis of these filters lays the foundation for the corresponding

image processing problems. Common image deblurring techniques used to compensate the

distortion and CFA image demosaicking methods are described after that. Finally, the

concept of the spectral sensitivity function of a camera and a number of color spaces are

presented in the last section of this chapter.

2.1 Two Optical Filters

Three kinds of optical filters can be found in normal digital cameras. They are an

infrared filter, and anti-aliasing filter and a color filter array. The infrared filter blocks

infrared light which cannot be perceived by the human visual system but can be detected

by optical sensors. Since this spectral filter normally has no effect on the subsequent camera

pipeline, only the other two optical sensors are considered in this section. The anti-aliasing

filter is located between the lens and the sensor to bandlimit the spatial frequency of the

scene, while the color filter array makes it possible to acquire color images with single-sensor

cameras.

2.1.1 Anti-aliasing Filter

Continuous scenes must be sampled spatially at each pixel location of an optical sensor

when digital cameras acquire images. If the scene contains frequencies higher than the

Nyquist baseband of the optical sensor, this sampling produces aliasing artifacts in the
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Figure 2.1: A birefringent filter and its frequency response.

spatial domain during the reconstruction process. Such artifacts are often called Moiré

patterns. Most digital cameras apply an optical anti-aliasing filter, which has a lowpass

frequency response, on top of the sensor to limit these artifacts.

One commonly used anti-aliasing filter is the four-spot birefringent filter [16]. By care-

fully designing the thickness of the crystal plate, the input light beam can be separated

into four beams and then detected by four neighboring photosites of the sensor. However,

the frequency response of this filter is not an ideal lowpass filter but a two-dimensional sinc

function. Fig. 2.1.1 shows a typical birefringent filter with its frequency response. The wide

transition band and the large sidelobes in the stopband of this filter make it sub-optimal.

The distortion in the baseband signal introduces blur, which makes the images less appeal-

ing. Although a follow-up image enhancement step can reduce the baseband distortion, it

is impossible to remove the existing aliasing artifacts without some information from the

original scene. Furthermore, the thickness of the birefringent crystal is fixed by the size of

the sensor cells [17], which makes it difficult to design a compact camera.

Much work in optical engineering has been devoted to optimizing the optical transfer

function of the birefringent filter [18, 19, 20]. To reduce the design burden in optical design,

we consider an alternative acquisition approach without using the birefringent filter. Because

of the lowpass characteristics of out-of-focus blur, one can replace the traditional anti-aliasing

filter with slight out-of-focus blur generated by the camera lens. A blurred image is captured

during the image acquisition with the optimal focus setting found by the camera. A Wiener
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filter corresponding to the optimal focus setting then recovers the captured image. Our

method seeks to balance the baseband distortion and noise amplification with the error due

to aliasing artifacts during the acquisition.

2.1.2 Color Filter Array

The design of a color filter array is based on the way that the HVS perceives colors [21].

Three types of cone cells exist in our retina to sense short, medium, or long wavelength light

and discern color (Fig. 2.2(a)). In addition, the HVS has another kind of cell called rods.

Rod cells are better for low-light vision but can only sense the intensity of light. Based on

the fact that human eyes are more sensitive to the green spectrum, Bayer designed a CFA

pattern in 1976 that has become the most commonly used CFA pattern today. In the Bayer

CFA, half of the sensor cells measure the green channel and one quarter of the sensor cells

measure red and blue channels (Fig. 2.2(b)). Obviously, the Bayer CFA simplifies the human

retina mosaic by using a periodic 2× 2 pattern rather than a random structure.

(a) Human eye mosaic pattern (b) Bayer CFA pattern

Figure 2.2: The mosaic patterns in human eyes and the Bayer CFA.

Other types of CFA patters are available for camera design. One group of them is called

pure-color CFA patterns. Like the Bayer CFA pattern, pure-color CFA patterns are only

constructed with red, green and blue. Their size varies from 2 × 2 to 8 × 8. In order to

detect more light energy, some patterns include transparent (white) cells that are sensitive
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to all colors of light. These patterns are usually called RGBW patterns. RGBW patterns

normally provide higher signal-to-noise ratio than ordinary ones, but need special treatment

in the following demosaicking steps. Fig. 2.3 (a)–(d) shows four well-studied pure-color CFA

patterns, which are Bayer [22], Yamanaka [23] Lukac [24] and Kodak panchromatic [25].

Inspired by the amplitude modulation concept, Hirakawa and Wolfe [6] proposed a

spatio-spectral CFA design methodology to reduce the risk of aliasing among color channels.

Fig. 2.3 (e)–(h) shows four CFA patterns designed by their method. It should be noted that

these patterns are polychromatic. In other word, their spectral sensitivity function have been

changed from the traditional RGB spectral frequencies to other frequencies. However, a huge

advantage of these patterns is that they simplify the demosaicking problem by changing the

most difficult part into a relatively easy hardware problem. The CFA images captured by

these patterns can be recovered by a set of simple finite impulse response (FIR) filters which

can be easily implemented into digital cameras [26].

(a) Bayer[22] (b) Yamanaka[23] (c) Lukac[24] (d) Kodak[25]

(e) Pattern A (f) Pattern B (g) Pattern C (h) Pattern D

Figure 2.3: Examples of existing pure-color CFA patterns and new patterns designed by
Hirakawa [6].
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2.2 Image Deblurring

Two well-known blur forms in digital camera design are out-of-focus blur and the sensor-

size effect. Out-of-focus blur is caused by inaccurate lens focus during image acquisition.

This type of blur is often called disk blur or circular blur because of its point spread function

(PSF), which is given by the following equation:

h(x, y;R) =


1

πR2 , if
√
x2 + y2 ≤ R,

0, elsewhere.

(2.1)

Another type of blur is introduced by the non-ideal optical sensor since the continuous scene

is not sampled by a two-dimensional impulse array. An averaging filter or a Gaussian filter

can be used to model the sensor-size effect, such as:

h(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 (2.2)

Due to the size difference of sensor cells from camera to camera and the technology used in

manufacturing, a more accurate model of this effect has to be determined by an actual test

on each specific camera.

Image deblurring algorithms have been well studied since 1960s. Normally, knowledge

of the degradation form is required or is estimated by blur identification techniques [27, 28,

29, 30, 31, 32]. A commonly used image formation model for this problem is given by

y = Hf + u (2.3)

where the vector y is the blurred image and matrix H is the PSF of the blur. The vectors f

and u are the original image and the additive noise. The appearance of noise in the image

formation equation makes the deblurring an ill-posed problem. A simple inverse filter tends
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to amplify the noise at the frequency locations where the response of the blur is small. Wiener

filtering or regularized inverse filtering generally are more effective with low complexity.

Recently, restoration methods using multiple image processing techniques have been pro-

posed to provide results that are superior to traditional methods. Katkovnik et al. presented

a novel nonparametric regression method by applying a local polynomial approximation of

the image and the paradigm of intersection confidence intervals [33]. Chen et al. proposed a

two-step algorithm which restores the degraded image with a simple Wiener filter followed

by a modified bilateral filter [34, 35]. Joint deblurring and demosaicking CFA images has

also attracted some research interest. Menon and Calvagno designed a regularization ap-

proach to adaptively recover the full-color image from the blurred CFA image [36]. Two

basic deblurring techniques are discussed in the two following sections.

2.2.1 Frequency-Domain methods

The image formation model defined in Eq. (2.3) indicates that matrix H is a circulant

matrix with circulant blocks. The frequency-domain methods takes the advantage that a

Fourier transform diagonalize such matrices which reduces the computational cost dramati-

cally. A general restoration algorithm can be described as

F̂ (ωm, ωn) =
H∗(ωm, ωn)

|H(ωm, ωn)|2 + λ|L(ωm, ωn)|2
Y (ωm, ωn) (2.4)

where H(ωm, ωn) is the frequency response of the blur. The terms F̂ (ωm, ωn) and Y (ωm, ωn)

represent the discrete Fourier transform (DFT) coefficients of the reconstructed and observed

images. The term L(ωm, ωn) normally is a highpass filter to encourage a smooth solution

while λ controls the degree of smoothness.

Wiener filtering is a special case of Eq. (2.4) where the term λ|L(ωm, ωn)|2 is replaced

by the ratio of noise spectrum Su(ωm, ωn) to the power spectrum of the original image
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Sf (ωm, ωn), such as

W (ωm, ωn) =
H∗(ωm, ωn)

|H(ωm, ωn)|2 + Su(ωm,ωn)
Sf (ωm,ωn)

. (2.5)

Since white Gaussian noise normally is assumed in this problem, the noise spectrum is a

constant. Modeling the power spectrum Sf (ωm, ωn) from the degraded image becomes a

critical step for Wiener filtering.

2.2.2 Iterative Methods

Iterative methods update the restored image according to the solution of previous steps.

A general algorithm is given by:

f̂k+1 = f̂k + αkrk, (2.6)

where f̂k+1 and f̂k are the restored results at k + 1 and k steps. The solution is refined

by the correction vector rk and speed of convergence is controlled by the scalar αk. The

implementations of iterative methods can be chosen from many optimization algorithms,

such as the steepest descent or the conjugate gradient methods. A joint deblurring and

demosaicking method using the steepest descent algorithm is introduced in Chapter 4.

While iterative methods generally provide superior image quality than other methods,

the computational cost is a major drawback. The real-time processing inside the camera

cannot afford the time and power demands of iterative methods. As a result, these methods

are more useful as off-camera techniques. In fact, a single- or multi-step sharpening process

can be found in cameras to enhance the output image. Since image enhancement is beyond

the scope of this dissertation, sharpening is not described here.

2.3 Color Filter Array Demosaicking

The CFA samples a natural scene during the image acquisition procedure, which yields

an infinite periodic spectrum in the frequency domain. Since natural images generally are not

bandlimited, it is impossible to reconstruct the original image from the CFA data perfectly.
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The demosaicking process takes the CFA image as an input and recovers the full-color image

as shown in Fig. 2.3. An intuitive solution of the problem is to interpolate each color

channel independently with traditional image processing techniques. However, this approach

is sub-optimal since the inter-channel dependencies have been completely ignored. Advanced

demosaicking algorithms normally utilize the information gained from other channels to assist

the current channel interpolation.

Figure 2.4: The process of color image demosaicking.

2.3.1 Spatial-Domain Demosaicking

The first group of demosaicking algorithms is the spatial-domain method. Most spatial-

domain demosaicking approaches sequentially process the CFA image. This strategy first

interpolates the green channel, then recovers red/blue channels subsequently using the in-

formation from the reconstructed green channel. The reason for this strategy is that the

sampling rate of the green channel is two times higher than the red/blue channels. Con-

sequently, the green channel normally contains more high-frequency information than the

other two. The overall performance of sequential approaches is mostly dependent on the first

step due to the error propagation from the first step to the second step [37]. As a result, a

large amount of research effort has concentrated on how to enhance the quality of the green

channel.
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G 71 R 72 G 73 R 74 G 75 R 76 G 77

Figure 2.5: A 7× 7 window of Bayer CFA.

Like the gray-scale image interpolation case, edge-directed estimation is the most com-

monly used technique in the demosaicking process. The interpolation direction is usually

determined by the first-order or second-order derivatives. The calculation of derivatives can

be performed in either a subsampled channel or the CFA image. Referring to Fig. 2.5, let

∆H = |G33 + G35| and ∆V = |G24 − G44|, then a simple edge-directed estimation for the

missing green sample G34 is:

G34 =


(G33 +G35)/2, if ∆H < ∆V

(G24 +G44)/2, if ∆H > ∆V

(G24 +G44 +G33 +G35)/4, otherwise

(2.7)

Rather than using only two interpolation directions (horizontal or vertical), some methods

use four directions [38] or even twelve directions [39] to acquire a more accurate estimate of

the green channel. The Primary-Consistent-Soft-Decision (PCSD) framework [40] proposed

by Wu and Zhang combines the directional estimates by testing interpolation hypotheses via

an optimal statistical technique. Instead of selecting two sets of estimates, they achieved

better results by fusing two directional Linear Minimum Mean Square-Error Estimation

(LMMSE) estimates [41].
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To recover the red and blue channels, a number of demosaicking algorithms assume that

the ratio of green and red/blue is a constant in a local region of the CFA image. The first

demosaicking algorithm built on this assumption was proposed by Cok in 1987 [42]. In this

method, the missing red/blue pixels are calculated using four available neighboring red/blue

pixels. For example, assuming all green samples have been recovered in Fig. 2.5, the red

pixel R43 and the blue pixel B34 can be estimated as follows:

R43 = G43 ×
1

4

(
R32

G32

+
R34

G34

+
R52

G52

+
R54

G54

)
B34 = G34 ×

1

4

(
B23

G23

+
R25

G25

+
R43

G43

+
R45

G45

) (2.8)

In [38], Kimmel further improved Cok’s method by using a weighted sum to estimate both

the missing green and red/blue samples.

Another set of demosaicking methods estimates the color differences between the green

channel and the red/blue channel. In the algorithm developed by Laroche and Prescott,

the missing red/blue value is the sum of the color differences and the corresponding green

pixel [43]. Referring to Fig. 2.5, the red pixels R33, R42 and R43 are reconstructed by:

R33 =
1

2
× [(R32 −G32) + (R34 −G34)] +G33

R42 =
1

2
× [(R32 −G32) + (R52 −G52)] +G42

R43 =
1

4
× [(R32 −G32) + (R34 −G34) + (R52 −G52) + (R54 −G54)] +G43

(2.9)

An improved method can be found in [44], where the second derivatives of green samples

are used to estimate the red/blue channel. In [45], the variances of the color differences of

a number of directions are taken into account to remove artifacts from green samples. Su

optimized the color differences interpolation using a low-complexity iterative algorithm [46].

Novel demosaicking methods normally integrate the first three techniques with other

signal processing or statistical tools. In [47], Buades et al. designed a demosaicking algorithm

with an image denoising tool called non-local means filtering [48]. Hirakawa and Parks
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applied the local homogeneity as an indicator other than edge information to select final

values from horizontally and vertically interpolated estimates [49]. Gunturk et al. formulated

an alternating-projections scheme based on the assumption that edges occur simultaneously

in different color channels [50]. Ferradans et al. estimated image edges with a level-set-based

geometric method [51]. Mairal et al. presented an image restoration algorithm by assuming

that natural images have a sparse decomposition over a redundant dictionary in [52].

2.3.2 Frequency-Domain Techniques

Traditional digital signal processing (DSP) tools, such as FIR filters or wavelets, can be

extended to the image demosaicking problem. Fig. 2.6 shows a typical spectrum of a CFA

image sampled by the Bayer pattern. It is composed of one luminance component (L) and

two chrominance components (C1 and C2). Because of the sampling pattern of the Bayer

CFA, C1 is modulated to the location (π, π) while C2 is modulated to (0, π) and (π, 0). After

obtaining the luminance and chrominance components, one can recover the desired full-color

image by a simple linear transformation.

Frequency-domain demosaicking methods normally suffer from false color artifacts or

zipper effect due to the spectrum overlaps among L, C1 and C2 components. Glotzbach et al.

made the first effort to cancel such overlaps by combining the results from different type

of filters [53]. Alleysson et al. proposed a linear frequency-domain techniques where the

luminance component was recovered by a 5 × 5 lowpass filter [54]. In their later work [55],

a well-designed 11 × 11 filter replaced the previous one, and the frequency response of this

filter is shown in Fig. 2.7(a).

Another adaptive frequency-domain method was presented by Lian et al. [56]. The

luminance component at available green pixels is first reconstructed by a simple 5×5 lowpass

filter (shown in Fig. 2.7(b)), then refined iteratively. An adaptive filter is also used in

each iteration to compensate the loss of high-frequency signals caused by the initial bilinear

interpolation. For example, referring Fig. 2.5, a 3× 3 filter to estimate the luminance at R34
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Figure 2.6: Spatial-frequency representation of a CFA image captured by the Bayer pattern.

is defined as follows: 
0 w1 0

w4 0 w2

0 w3 0

 (2.10)

where the filter coefficients wi are constructed using the following equations between red

channel and luminance channel:

1

w1

= 1 + |R34 −R36|+ |L35 − L33|

1

w2

= 1 + |R34 −R14|+ |L44 − L24|

1

w3

= 1 + |R34 −R32|+ |L35 − L33|

1

w4

= 1 + |R34 −R54|+ |L44 − L24|

(2.11)

19



−1
0

1

−1

0

1
0

0.5

1

F
x

F
y

M
a
g
n
it
u
d
e

(a) Alleysson’s filter[55]

−1
0

1

−1

0

1
0

0.5

1

F
x

F
y

M
a
g
n
it
u
d
e

(b) Lian’s filter[56]

Figure 2.7: The frequency responses of the lowpass filters designed by Alleysson and Lian.

The estimated full-resolution luminance is then applied as a reference to interpolate sub-

sampled red, green and blue images.

Recently, a method proposed by Dubois [57] focused on compensating the frequency

response of linear filters by adaptively filtering the luminance component or chrominance

components. In a local range of a CFA image, the high-frequency signal of luminance only

overlaps with one of the spectrum copies of chrominance C2 (either centered at (π, 0) or

(0, π)). In his work, C1 and two sets of C2 components were estimated by three 21 × 21

high-pass filters. The luminance component was recovered by subtracting the estimated

chrominance components from the CFA image. The order of the filters was further reduced

to 11× 11 using a least-squares design and achieved comparable results [58].

2.4 Color Fundamentals

Color is a perception of the human eye. We sense the light spectrum reflected by an

object, process this information with our neural system and finally form the color sensation.

Based on this fact, color is related to the light spectrum of the radiation and the reflectance

of the object. There are two types of photoreceptors in the human eye—rod cells and cone

cells. The monochromatic rod cell is mainly responsible for low-light conditions. Cone cells

are for color vision and can be categorized into three groups according to their sensitivity
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peaks in the spectral-frequency domain. This section introduces the concepts of trichromacy

and color matching functions. Perceptually uniform color spaces are also discussed.

2.4.1 Trichromacy and Color Matching Functions

Trichromacy is a scheme to represent colors using three independent color primaries.

Grassmann stated that a color can be defined in a three-dimensional linear space [59]. In

fact, a color defined by three values (r, g, b) can be computed with linear functions of the

form

r =

∫ ∞
0

r0(λ)I(λ)dλ

g =

∫ ∞
0

g0(λ)I(λ)dλ

b =

∫ ∞
0

b0(λ)I(λ)dλ

(2.12)

where I(λ) describes the power distribution of the incident radiation. The functions r0(λ),

g0(λ) and b0(λ) are known as color matching functions, and they form a particular color

space. Since the visible range of the human eye is between 360 nm and 830 nm, most color

spaces are defined in this range by reducing the infinite integrals in Eq. (2.12) to finite ones.

A pure color with the tristimulus values, rp, gp and bp at wavelength λp, can be acquired

with a line spectrum

I(λ) = δ(λ− λp) (2.13)

Based on the experimental results of Wright [60] and Guild [61], and the relationships in

Eq. (2.12) and (2.13), the Commission Internationale de l’Eclairage (CIE) defined a set of

standard color matching functions. Fig. 2.8(a) shows the values of the CIERGB matching

functions. These functions show the amounts of primaries, which are the three pure colors

at 700 nm, 546.1 nm and 435 nm, required to match the monochromatic test primary.

To eliminate the negative values in the CIERGB matching functions, a set of equivalent

matching function was defined by CIE. These functions are known as CIEXYZ color matching
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functions and are depicted in Fig. 2.8(b). The transform between CIEXYZ and CIERGB is

given by 
X

Y

Z

 =
1

0.17697


0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99



R

G

B

 (2.14)
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Figure 2.8: The two sets of CIE1931 standard color matching functions.

A number of RGB color spaces are defined based on the CIEXYZ color space. The

standard RGB (sRGB) color space is the one commonly used in digital cameras [8]. The

linear transform from XYZ space to sRGB space is defined by


Rs

Gs

Bs

 =


3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570



X

Y

Z

 (2.15)

Adobe RGB color space is another space which was designed for color printers. Recently,

RGB color spaces with wide gamut were developed to improve the color reproduction on

displays, such as ProPhoto RGB color space and Adobe Wide Gamut RGB. Since their

definitions are beyond the scope of this dissertation, they are not discussed here.
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Another important concept in color imaging is the illuminant, since different illuminants

change the tristimulus values. The color temperature of the illuminant affects the white

balance process of cameras. CIE defined a series of illuminants to simulate the lighting

conditions of the real world. The most commonly used one is the D65 illuminant, which

corresponds to sunlight under a clear sky. The spectrum distribution of D65 is in Fig. 2.9

and its color temperature is about 6504 K. Other iluminants, such as D50, D55, D75 and

incandescent bulbs, are available for various purposes.
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wavelength (nm)

Figure 2.9: The spectrum power distribution of illuminant D65.

2.4.2 Uniform Color Space

A fixed color difference in the CIEXYZ space is not perceptually uniform over the whole

space, which makes it impossible to accurately compare two colors in this space. CIE defined

two color spaces, CIELUV and CIELAB, to solve this problem. CIELUV space is designed

for color television, while CIELAB space is often used in digital cameras. Both spaces are

constructed by a nonlinear transform from CIEXYZ color space. The transform from XYZ
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to LAB is given by

L∗ = 116f(
Y

Yn
)− 16

a∗ = 500

[
f(
X

Xn

)− f(
Y

Yn
)

]
b∗ = 200

[
f(
Y

Yn
)− f(

Z

Zn
)

] (2.16)

where Xn, Yn and Zn are the D65 white point point values in the CIEXYZ color space. The

function f(x) is defined as follows,

f(x) =


7.787x+ 16

116
, 0 ≤ x ≤ 0.008856,

x
1
3 , 0.008856 ≤ x ≤ 1.

(2.17)

The perceptual difference between two colors in CIELAB space can be computed by the

Euclidean distance between them.

To incorporate the spatial information in the observed image, the S-CIELAB color space

was proposed by Zhang and Wandell as a spatial extension to the CIELAB color space [62].

An input image is first transformed to another domain which is defined by the luminance,

red-green and blue-yellow channels. This linear transformation is defined by


O1

O2

O3

 =


0.279 0.72 −0.107

−0.449 0.29 −0.077

0.086 −0.59 0.501



X

Y

Z

 (2.18)

Each color channel is then filtered by a 2D Gaussian kernel whose bandwidth is derived by

a series of experiments to simulate the lowpass characteristic of the HVS. The results of this

process are transformed to CIELAB space by an inverse transform of Eq. (2.16). Since the

spatial response of the HVS is included in S-CIELAB space, the color difference calculated

in this space is more perceptually uniform than the one computed in the CIELAB space.
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Chapter 3

Grayscale Image Defocusing Acquisition

3.1 Introduction

A digital camera acquires images by spatially sampling continuous scenes at each pixel

location of an optical sensor. This sampling produces aliasing artifacts in the spatial domain

during the reconstruction process, where Moiré patterns and other artifacts can be observed.

Most digital cameras apply an optical anti-aliasing (AA) filter on top of the sensor using a

birefringent crystal to limit these artifacts. Such a filter has a lowpass characteristic and

reduces the energy of the input scene at frequencies higher than the Nyquist baseband of

the optical sensors.

Lyot first introduced the theory of using birefringent crystal plates and polarizers to

build spectral optical filters in 1933 [63], but his work is not available anymore. Evans

revisited this idea in 1949 [16]. Instead of using birefringent crystals to construct a spectrum

filter, Sato et al. invented a spatial-frequency filter using two double refraction plates and

a quarter-wave plate [64], as shown in Fig. 3.1. The first refraction plate A horizontally

separates the light beam into two beams that are linearly polarized. These two beams

are then transformed to circularly polarized beams by the quarter-wave retarder B. The

second refraction plate C splits the two beams again vertically into four beams. By carefully

designing the thickness of the refraction plates, the four light beams can be detected by four

neighboring photosites of the sensor. This commonly used anti-aliasing filter is often called

the four-spot birefringent filter.

The thickness of the four-spot filter is determined by the crystal birefringence, the

pitch of the sensor, and the angle α between the crystal optical axis and the plate surface

normal. Normally, the two refraction plates are cut to make α equal to 45◦, which ensures
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Figure 3.1: A light path of the four-spot birefringent filter.

the maximum separation among four light beams. To reduce the thickness of the four-spot

filter, Kessler et al. introduced another design to construct this optical lowpass filter [17].

It is obvious that the point spread function (PSF) of the four-spot filter is a two-

dimensional rectangular function with the width the same as the pixel pitch. The frequency

response of this filter is not an ideal lowpass filter but a two-dimensional sinc function, as

illustrated in Fig. 3.2(a). Although the four-spot filter has the ability to attenuate the high-

frequency energy, the wide transition band and the large sidelobes in the stopband of this

filter make it sub-optimal. The distortion in the baseband signal results in blurry images

and makes them less appealing. Although a follow-up image-enhancement step can reduce

the baseband distortion, this step may also enhance aliasing energy in the baseband. It

is impossible to remove the existing aliasing artifacts without some information from the

original scene.

We consider an alternative acquisition approach without using the birefringent filter

in this dissertation, building on preliminary work reported in [65]. Because of the lowpass

characteristics of out-of-focus blur, one can replace the traditional anti-aliasing filter with

slight out-of-focus blur generated by the camera lens. A blurred image is captured during

the image acquisition with the optimal defocus setting found by the camera. A Wiener

filter corresponding to the optimal defocus setting then recovers the captured image. In
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previous work we have shown that this approach balances the baseband distortion and noise

amplification error and the error due to aliasing artifacts during the acquisition. One equiv-

alent anti-aliasing filter designed by our approach is shown in Fig. 3.2(b). It has a narrower

transition band, and the responses in the baseband and stopband are close to ideal.
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(a) Four-spot birefringent filter
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(b) Proposed Wiener approach

Figure 3.2: Comparison of the frequency responses of different anti-aliasing filters. The
horizontal and vertical frequencies have been normalized by the sampling frequency.

This chapter is organized as follows. The normal imaging model and the proposed

defocus acquisition approach are presented in Sec. 3.2. The optimal reconstruction Wiener

filter for the defocused image is defined in Sec. 3.3. The criterion to adaptively identify the

optimal defocus setting is presented in Sec. 3.4. We summarize our proposed acquisition

approach in Sec. 3.5. Simulation results are reported in Sec. 3.6. Finally, we discuss the

practical issues and our future work and draw some conclusions in Sec. 3.7.

3.2 Problem Formulation

As described in the previous section, the sub-optimal response of the birefringent anti-

aliasing filter results in blurry images with artifacts that cannot be removed by the post-

processing step of digital cameras. Much effort has been invested in the past thirty years to

optimize the design of the birefringent filter. However, the complexity of the optical design

and the limitation of the birefringent materials slow down the pace of innovation on the

optical research side. We begin with the definition of the normal imaging model followed by

our proposed defocusing acquisition.
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3.2.1 Normal Imaging Model

In the frequency domain, let F (Ωx,Ωy) be the spectrum of a continuous scene as viewed

by the camera. If a lowpass anti-aliasing filter H(Ωx,Ωy) is applied before the camera sensor,

the representation of the sampled signal Fd(Ωx,Ωy) is as follows [66]:

Fd(Ωx,Ωy) =
1

∆x∆y

∞∑
k=−∞

∞∑
l=−∞

H

(
Ωx −

2π

∆x

k,Ωy −
2π

∆y

l

)
F

(
Ωx −

2π

∆x

k,Ωy −
2π

∆y

l

)
(3.1)

where ∆x and ∆y are sampling intervals in the horizontal and vertical directions. Let Fb

be the baseband signal of the scene. Then Fb = F for |Ωx| < 2π
∆x

and |Ωy| < 2π
∆y

, and zero

otherwise, and denote this support as I. In other words, Fb contains frequency content with

frequencies smaller than the Nyquist rate. In the following context, we assume ∆x = ∆y = 1

for simplicity. It is possible to recover the baseband signal Fb without distortion and aliasing

using an ideal lowpass filter even if the continuous scene F is not bandlimited. For the

non-ideal case, such as using a four-spot birefringent filter Ha, perfect recovery of Fb is not

generally possible.

In the spatial domain, if we take the sensor-size effect hs into account, the corresponding

baseband PSF of the equivalent anti-aliasing filter h is a convolution of hs and the four-spot

filter ha. The normal imaging model can be represented by the following equation:

y[m,n] = h[m,n] ∗ fb[m,n] + fa[m,n;h] + u[m,n] (3.2)

where y[m,n] (0 ≤ m ≤M−1, 0 ≤ n ≤ N−1) is the sampled image captured by the camera,

fb[m,n] is a baseband image without any aliasing, fa[m,n;h] is the aliasing component

filtered by the stopband response of the blur, and u is additive noise. Here, “∗” represents

a two-dimensional convolution.

In practical imaging devices equipped with CMOS sensors, the noise u[m,n] can be mod-

eled as a mixture of independent Gaussian noise and signal-dependent noise [67], expressed
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as the following equation:

u[m,n] = (k0 + k1 (h[m,n] ∗ fb[m,n] + fa[m,n;h])) η[m,n] (3.3)

where k0 and k1 are constants and η[m,n] follows a standard normal distribution. In most

image reconstruction research work, the noise is modeled as independent Gaussian noise

that is the special case k1 = 0 of Eq. (3.3). Rather than choosing the same independent

model, we use the signal-dependent model in the acquisition side to describe the real-world

application more accurately. But we assume signal-independent noise in the formulation of

the reconstruction filter and the searching criterion in Sec. 3.3 and 3.4 for simplification.

The reconstructed image f̂b[m,n] will be estimated from the acquired image y[m,n]. It

is evident that this is an ill-posed problem because of the aliasing artifact and the appear-

ance of noise. One can choose a popular deconvolution approach such as regularization or

Wiener filtering to recover the baseband image fb[m,n]. However, since the knowledge of

the continuous scene is absent, it is impossible to identify the aliasing in the captured image

y[m,n] by any reconstruction method.

3.2.2 Defocusing Acquisition

The diversity of real-world scenes and the appearance of noise mean that a fixed bire-

fringent anti-aliasing filter may not be the best choice for every scene. For example, a small

amount of blur is enough to reduce the artifacts caused by aliasing for a scene with large flat

regions or plain backgrounds. On the contrary, a scene with a large amount of high-frequency

energy, such as patterns, needs to be blurred further. Because of the lowpass characteristic

of out-of-focus blur, a practical method is to automatically defocus a camera lens with the

desired blur level to bandlimit the spectrum F instead of using a fixed birefringent filter.

The normal imaging model defined in Eq. (3.2) becomes the defocusing imaging model as
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follows:

y[m,n] = ho[m,n] ∗ hs[m,n] ∗ fb[m,n] + fa[m,n;ho, hs] + u[m,n] (3.4)

where ho[m,n] is the baseband PSF of the out-of-focus blur. The frequency representation

of this imaging model can be expressed as follows,

Y (ωm, ωn) = H(ωm, ωn)Fb(ωm, ωn) + Fa(ωm, ωn;H) + U(ωm, ωn). (3.5)

To solve an image reconstruction problem, we normally seek to recover an estimate F̂b

to minimize the reconstruction error:

ε2 = E
{
‖Fb − F̂b‖2

}
(3.6)

However, consistently better results can be obtained if we adapt the amount of the out-of-

focus blur generated by the camera lens according to the scene and noise level. According

to the imaging model defined in Eq. (3.4), the amount of out-of-focus blur needed for a

particular scene is determined by the energy level of frequencies higher than the Nyquist

rate of the camera fa. Although the camera cannot capture fa, a method to estimate it

using a captured image is presented in Sec. 3.3. For example, if the energy of fa of an

input scene is zero, there is no need to add out-of-focus blur during the acquisition. That

is, ho[m,n] = 1. When a scene contains a large amount of high-frequency energy, such

as texture patterns, the energy level of fa is large. In this case, a large amount of blur

is required to suppress the artifacts caused by fa. Non-ideal anti-aliasing filters trade off

baseband distortion with aliasing. A similar tradeoff is made in determining the degree of

defocus.

The adaptive defocusing acquisition is followed by a reconstruction process. By adjust-

ing the defocus, we seek the optimal tradeoff between baseband distortion and aliasing after
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the reconstruction step is applied. In addition, we must take into account noise amplifica-

tion error that is introduced in the reconstruction step. The equivalent anti-aliasing filter

in our proposed approach is the combination of the out-of-focus blur and the reconstruction

filter. Since statistical information about the original scene is required by the subsequent

reconstruction step, we capture and then estimate statistical information about the input

scene during the acquisition and pass it to the reconstruction. By using this information,

the proposed approach generally achieves better estimated images, with less aliasing and

sharper edges.

3.3 Optimal Wiener Filter

To obtain the baseband estimate F̂b, a digital filter W is designed to minimize the

reconstruction error ε2. The recovered baseband image is then estimated by:

F̂b = WY (3.7)

To simplify the development of the filter in the reconstruction error expression, we assume

that the noise U and the aliasing signal Fa are uncorrelated with the baseband signal Fb.

We found in a wide variety of experiments that this assumption had little impact on the

estimated defocus setting. Furthermore, for defining the Wiener filter we assume that the

noise is stationary. As a result, W becomes a Wiener filter (linear minimum mean-square

error) with the following form [68]:

W =
H∗

|H|2 +
σ2
u+Sfa
Sfb

, (3.8)

where Sfb is the power spectrum of the baseband signal, Sfa is the power spectrum of the

aliasing component and σ2
u is the noise variance. Here, the “∗” superscript is a conjugate

operation. We treat the aliasing signal as a part of the noise in the Wiener filter, which will
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smooth out the aliasing artifacts in the captured images. Our goal is to find the optimal

defocus setting with frequency response Hopt and the corresponding Wiener filter Wopt that

minimizes the reconstructed error ε2 for each specific continuous scene with a certain noise

level.

Normally, the standard deviation of the additive noise is known or can be readily es-

timated from the captured image. However, we have no information about the baseband

signal Fb and the aliasing signal Fa. The Wiener filter that we defined depends on statis-

tics of these components to balance the aliasing suppression and noise amplification. To

estimate the unknown power spectra Sfb and Sfa , an image Y0 is initially captured with a

large amount of out-of-focus blur H0. We then assume that the aliasing component Fa is

sufficiently suppressed in this image so that it can be ignored. The initial image can be

described as follows:

Y0 ≈ H0Fb + U (3.9)

Therefore, one can approximate the expected power spectrum of the initial image by:

Sy0 ≈ E
{
|H0Fb + U |2

}
(3.10)

Applying the uncorrelated assumption between the baseband image and the noise, the above

equation can be rewritten as follows:

Sy0 ≈ E
{
|H0Fb|2

}
+ σ2

u

= |H0|2 Sfb0 + σ2
u

(3.11)

The expected power spectrum of the initial baseband image Sfb0 can be derived by solving

the above equation:

Sfb0 ≈
Sy0 − σ2

u

|H0|2
(3.12)
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Using the periodogram estimate Ŝy0 = |Y0|2, we obtain:

Ŝfb0 =
|Y0|2 − σ2

u

|H0|2
(3.13)

Because the autocorrelation functions and the power spectral density form a Fourier

transform duality pair, we can estimate the power spectra of the baseband image and aliasing

component from the autocorrelation function of the continuous scene. The generic autocor-

relation function we chose is a general decaying-exponential model as follows [69]:

Φf (x, y) = βe−
√
ax2+by2+cxy + f̄ 2 (3.14)

where β is a scale factor and f̄ is the mean of the continuous scene f . The parameters

a, b and c obey the conditions a > 0, b > 0 and |c| ≤
√
ab. To generate the two power

spectra using this generic model, we first obtain the observed autocorrelation function of the

baseband signal by taking an inverse Fourier transform of the estimated power spectrum of

the baseband image:

Φb[m,n] = F−1{Ŝfb0(ωm, ωn)} (3.15)

Assume that there exists a positive integer R which satisfies Ωfmax < min{R π
∆x
, R π

∆y
},

where Ωfmax is the highest frequency content in the continuous scene. In other words, if the

sampling frequency of the camera is increased by a factor of R, no aliasing is introduced by

the sampling. Let ΦfR be the autocorrelation function of the observed image with the higher

sampling rate. We fit the observed autocorrelation function Φb at the spatial location [m,n]

to the location [mR,nR] of the autocorrelation function ΦfR .

To simplify the fitting process, we only select data inside a spatial support Ψ from the

autocorrelation function to fit the model. The spatial region Ψ is limited to [−q, q]× [−q, q].

The parameters a, b and c can be estimated using a closed-form solution [70]. If the condition

|c| ≤
√
ab cannot be satisfied during the fitting process, we set parameter a = b and c = 0.
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The anisotropic model in Eq. (3.14) then degenerates to an isotropic model as follows:

Φf (x, y) = βe−a
√
x2+y2 + f̄ 2 (3.16)

The power spectrum of the continuous scene SfR(ωm, ωn) can be acquired by taking

a Fourier transform of ΦfR [m,n]. We estimate the power spectra of the baseband signal

fb and the aliasing component fa according to the ratio of the sampling rate R. More

precisely, the estimated power spectrum of the baseband signal Sfb(ωm, ωn) = SfR(ωm, ωn)

for |ωm| < π
R

and |ωn| < π
R

, while the estimated power spectrum of the aliasing signal Sfa is

the remaining part of SfR multiplied by the squared frequency response of the out-of-focus

blur, then overlapped together according to the ratio R.

3.4 Optimal Defocusing

As discussed in Sec. 3.2.2, the out-of-focus blur that minimizes the reconstruction error

ε2 = E
{
‖Fb − F̂b‖2

}
is taken to be the optimal defocus setting Hopt. The Wiener filter

corresponding to Hopt is the optimal reconstruction Wiener filter Wopt. Since the Wiener

filter balances the noise amplification and deblurring in the reconstruction step, the additive

noise plays a crucial role in determining the optimal defocus settings. More specifically, the

Wiener filter tends to choose a smaller amount of blur for a scene with a high noise level to

achieve the minimum reconstruction error.

Fig. 3.3 shows the true reconstruction error ε2 defined in Eq. (3.6) vs. PSF radius of

one test scene at different noise levels. The blur radii corresponding to the minimum point

of the reconstruction error is the optimal defocusing. It is evident that an optimal PSF

(generally non-zero) radius exists and decreases with an increase of the noise variance. In

our simulation, the optimal PSF radius is around 1.5 pixels for most test scenes when the

noise energy is small (k0 = 1). When the additive noise level is high, such as k0 ≥ 8, the
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Figure 3.3: Blur radius vs. reconstruction error ε2 defined in Eq. (3.6) of the Barbara scene
at different noise levels. The additive noise parameters are (k0, k1) = (8, 0) , (4, 0), (2, 0)
and (1, 0). The corresponding blur radius of the minimum reconstruction error (optimal
defocusing) increases with a decrease of noise level.

noise amplification error dominates in the Wiener reconstruction. As a result, the optimal

PSF radius is reduced to zero for all the test scenes at that noise level.

Searching the optimal defocus setting using the true reconstruction error curves shown

in Fig. 3.3 requires little effort from the camera. However, since the baseband signal Fb

is unknown, calculating the reconstruction error directly is impossible. Furthermore, it is

impractical for a digital camera to capture a set of images with different focus settings for the

same scene while tracking the reconstruction error. An alternative approach to approximate

the reconstruction error ε is preferred.

We propose a criterion to monitor the true ε2 using an approximation ε̂2. Consider a

captured image Y with out-of-focus blur H. The expected power spectrum of the estimated

baseband image F̂b can be represented by:

Sf̂b = E
{
|F̂b|2

}
= E

{
|WY |2

}
≈ |WY |2 (3.17)
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Using the imaging model formulated in Eq. (3.5) in the equation above and assuming that

the aliasing component and noise are uncorrelated with the baseband signal, we can express

Sf̂b as

Sf̂b = E
{
|W (HFb + Fa + U)|2

}
≈ E

{
|WHFb|2

}
+ E

{
|WFa|2

}
+ E

{
|WU |2

}
= |WH|2 Sfb + E

{
|WFa|2

}
+ E

{
|WU |2

} (3.18)

Combining Eq. (3.17) with Eq. (3.18) and rearranging the result, we have:

E
{
|WFa|2

}
+ E

{
|WU |2

}
≈ |WY |2 − |WH|2 Sfb (3.19)

Using the imaging model defined in Sec. 3.2.2, the true reconstruction error ε2 can be ex-

pressed as follows:

ε2 = E
{
‖Fb − F̂b‖2

}
= E

{
‖(1−WH)Fb −WFa −WU‖2} (3.20)

We must approximate the true reconstruction error ε2 with computable quantities. Ap-

plying Eq. (3.19) and again assuming the baseband signal Fb is uncorrelated with the aliasing

signal Fa and noise U , one can approximate the above equation as follows:

ε2 ≈ E
{
‖(1−WH)Fb‖2}+ E

{
‖WFa‖2}+ E

{
‖WU‖2} (3.21)

≈
∑
ωm∈I

∑
ωn∈I

[
|1−WH|2 Sfb + |WY |2 − |WH|2 Sfb

]
=
∑
ωm∈I

∑
ωn∈I

[(
|1−WH|2 − |WH|2

)
Sfb + |WY |2

]
=
∑
ωm∈I

∑
ωn∈I

[
(1− 2<{WH})Sfb + |WY |2

]
,

where <{·} denotes the real part of a complex number. Approximating both Sfb and |WY |2

with the estimated power spectrum Ŝfb0 of the initial image derived in Eq. (3.13), we have
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the estimate reconstruction error ε̂2:

ε̂2 ≈
∑
ωm∈I

∑
ωn∈I

[
(2− 2<{WH}) Ŝfb0

]
. (3.22)

The out-of-focus blur Ĥopt and the corresponding Wiener filter Ŵopt which result in the

minimum ε̂2 value are considered to be the optimal defocus setting. An adaptive acquisition

can be accomplished by capturing the scene using the out-of-focus blur Ĥopt and recovering

it by Ŵopt. The curves in Fig. 3.4 depict the true and estimated reconstruction errors vs.

the PSF radius for two test scenes. It is evident that our criterion tracks the true optimal

defocus setting as expected.

This criterion is automatically adapted to the power spectrum of the scene, which is

estimated via the initially captured image. Without mechanically moving the actual lens, a

digital camera can evaluate the reconstruction error for a specific scene using a look-up table

which defines the PSF of the lens as a function of radius. Because only the initial image

y0 needs to be captured to find the optimal defocus setting, this criterion is appealing for

real-time applications.
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Figure 3.4: Comparison of the true (––) and estimated (– –) reconstruction errors ε2 (vertical
axis) vs. the PSF radius r (horizontal axis) for different noise levels. The true and estimated
optimal blur radii were labeled by “◦” and “C”.
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3.5 Summary
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Figure 3.5: The flowchart of adaptive auto-defocusing approach.

We summarize our adaptive acquisition approach in this section. A flowchart of our

proposed method is shown in Fig. 3.5. In particular, the algorithm can be described by the

following steps.

1. Initial focusing. Search the optimal focus setting for a continuous scene by the

autofocus system of the camera. The same focusing process can be found in digital

cameras equipped with an autofocus lens.

2. Initial acquisition. Move the lens to the out-of-focus position and generate the initial

blur H0. Capture the initial image Y0 with this defocus setting.

3. Searching optimal defocusing. Perform the following sub-steps after the initial

acquisition.

(a) Estimate Sfa and Sfb. Compute the observed baseband power spectrum Ŝfb0 using

Eq. (3.12). Fit the estimated autocorrelation function to a decaying-exponential
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model with a higher sampling frequency. Derive the power spectra Sfa and Sfb

from the Fourier transform of the autocorrelation of the continuous scene.

(b) Construct Wiener filter. For the different defocus settings defined in the look-

up table of the camera, construct Wiener filters using Eq. (3.8). Search for the

minimum of estimated reconstruction error using the criterion in Eq. (3.22). The

corresponding PSF Hopt is the optimal defocus setting.

4. Final acquisition. Move the lens again to generate the optimal out-of-focus blur

Hopt, and capture the final image Yopt.

5. Reconstruction. Recover the final image Yopt with the Wiener filter Wopt correspond-

ing to the optimal PSF Hopt.

3.6 Simulation and Results

In this section, we present some experimental results to verify the defocusing acquisition

and evaluate the performance of the criterion we proposed in Sec. 3.4. We chose 100 grayscale

images and considered them as continuous scenes. In particular, our image library contains

the following four databases. Images No. 1–24 are the twenty-four test images from the

Kodak PhotoCD set [71]. Images No. 25–54 are the thirty original test images from the

content-based strategies of image quality (CSIQ) database [72]. Images No. 55–64 are from

the image and video-communication (IVC) database for subjective quality assessment [73].

The remaining thirty-six images were taken by a Nikon D90 digital single-lens reflex (DSLR)

camera. These color images were converted to grayscale images and cropped to size 512 ×

512. The intensity values of these natural images are between 0 and 255. Each image was

subsampled by a factor of R in both directions to model the sampling processing.

Each resulting image acquired by the proposed approach was evaluated by comparing

it to the baseband image. In addition to reporting mean square error (MSE), we report the

performance of our proposed approach with the structural similarity (SSIM) index value [74].
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(a) Baseband image (b) w/o Anti-aliasing

(c) w/ Anti-aliasing (d) Defocusing acquisition

Figure 3.6: Cropped Barbara images acquired by three different methods. The additive noise
parameters are (k0, k1) = (1, 0.1) and the downsampling rate R = 2.

The structural-similarity-based image quality assessment depends on the image structure,

which more accurately represents the human visual system. Since traditional measures of

image quality, such as MSE, do not always correspond well to subjective quality, SSIM can

be used as a complementary approach to evaluate the image quality. The source code of

SSIM assessment used was downloaded from the authors’ website.

We conducted simulation experiments as follows. The downsampling rate R was set

to 2 and 4. A 2 × 2 averaging filter was added in the process as the sensor-size effect for

the R = 2 case. A 4 × 4 averaging filter was chosen for the same purpose in the other

case. The same filter as the sensor-size effect was used to simulate the four-spot birefringent
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filter in different downsampling cases. The baseband image for each scene was calculated

using an ideal lowpass filter. Since the PSF of out-of-focus blur is close to circular [75], we

implemented defocusing using a circular blur with different radii r. The spatial region Ψ

defined in Sec. 3.3 was set to [−4, 4]× [−4, 4] to match the autocorrelation model. The initial

image y0 was acquired using blur with r = 1.5 pixels. The blur radius at the minimum point

of ε̂2 is the estimated optimal blur radius r̂opt.

Both the cropped Barbara images and a portion of No. 8 test image shown in Fig. 3.6

and 3.7 depict various acquisition methods. The input images were downsampled by 2

and corrupted by signal-dependent noise with parameters (k0, k1) = (2, 0.1). Visual results

are noticeably improved compared to the image acquired without any anti-aliasing filter,

especially in regions with high-frequency patterns, such as the pants in the Barbara image.

In Fig. 3.7(d), the diagonal Moiré patterns on the window shutters were completely removed

by our approach. Although the aliasing artifacts in the image acquired by the four-spot

birefringent filter have been greatly reduced, the edges are blurrier than the image acquired

by the proposed method. Fig. 3.8 shows that similar performance also can be achieved when

using a higher downsampling rate, such as R = 4.

Table 3.1 reports the performance of different acquisition approaches for different noise

levels with k0 ∈ {1, 2, 4, 8} and k1 ∈ {0, 0.2}. The average MSE over 100 test scenes shows

that the proposed acquisition method outperforms traditional methods (with or without an

anti-aliasing filter) at different noise levels. Images acquired without an anti-aliasing filter

have lower MSE values than images acquired with an anti-aliasing filter. The reason is that

the distortion produced by the anti-aliasing filter is increased more than the aliasing artifact

is reduced in terms of MSE.

The average SSIM index values of different acquisition approaches over 100 test scenes

are shown in Table 3.2. We chose the same noise levels used in Table 3.1. The SSIM index

value is designed to be in the range from 0 to 1. The larger SSIM index value indicates two

images are more similar to each other. In this test, we compare the result images acquired by
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(a) Baseband image (b) w/o Anti-aliasing

(c) w/ Anti-aliasing (d) Defocusing acquisition

Figure 3.7: Portion of No. 8 images captured by by three different methods. The additive
noise parameters are (k0, k1) = (2, 0.1) and the downsampling rate R = 2.

different approaches with the true baseband image. The average SSIM index values confirm

that a better performance can be achieved using our proposed acquisition method.

To verify the accuracy of the criterion derived in Sec. 3.4, we compared the optimal

radius r̂opt estimated using this criterion with the true ropt for different scenes and noise

levels. The mean absolute difference |ropt − r̂opt| in Table 3.3 for the downsampling-by-2

experiment is less than 0.35 pixels and the corresponding MSE loss ∆MSE is less than 1.7,

which demonstrate that the algorithm we have proposed is robust with respect to various

noise levels. When a higher downsampling rate is used (R = 4), the differences |ropt − r̂opt|
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(a) Baseband image (b) w/o Anti-aliasing

(c) w/ Anti-aliasing (d) Defocusing acquisition

Figure 3.8: The comparison of captured Barbara image with downsampling rate R = 4 by
three different methods. The additive noise parameters are (k0, k1) = (2, 0.1).

increase for lower noise levels, when k0 = 2 and 1. But the MSE losses are still small

compared to the MSE improvement in Table 3.1.

The performance of our criterion drops for a few test scenes. Fig. 3.9 shows the true

and estimate reconstruction error plots for one (No. 8 test scene) of these counterexamples.

The estimated optimal blur radius r̂opt is 0.3 pixels using our criterion, but the true value

ropt is 0.8 pixels for this test scene. However, the MSE loss caused by the mis-estimate is

less than 1 and our method still results in a better MSE value than the traditional methods

(proposed: 12.4, w/o AA: 13.5, w/ AA: 12.7). The marginal improvement of our method

is due to less high-frequency content in this scene compared to others. The cropped result
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Table 3.1: Image acquisition methods compared using average MSE over 100 test scenes with
different noise levels. The downsampling rate are R = 2, 4 and the additive noise settings
are (k0, k1) = (8, 0), (8, 0.2), (4, 0), (4, 0.2), (2, 0), (2, 0.2), (1, 0), (1, 0.2).

Rate (k0, k1) w/o AA w/ AA Proposed

R = 2

(8, 0) 89.1 89.2 68.8
(8, 0.2) 90.5 90.7 69.5

(4, 0) 41.1 41.2 36.7
(4, 0.2) 41.8 41.9 37.3

(2, 0) 29.1 29.2 21.2
(2, 0.2) 29.4 29.6 21.9

(1, 0) 26.1 26.2 13.2
(1, 0.2) 26.3 26.4 14.1

R = 4

(8, 0) 96.6 100.6 80.1
(8, 0.2) 98.0 102.1 81.1

(4, 0) 48.5 52.6 43.0
(4, 0.2) 49.3 53.3 43.7

(2, 0) 36.5 40.6 26.0
(2, 0.2) 36.9 41.0 26.9

(1, 0) 33.5 37.6 16.2
(1, 0.2) 33.7 37.7 17.1

images of No. 3 test scene acquired by different methods are shown in Fig. 3.10. The visual

inspection of these images confirms the conclusion drawn from the numerical analysis.

3.7 Conclusion and Discussion

In this chapter, an adaptive image acquisition approach has been introduced. A new

imaging model of defocusing acquisition has been defined that considers both aliasing and

noise. A criterion to estimate the optimal defocus setting for a specific scene was derived. The

model-based Wiener filter is used to minimize the end-to-end reconstruction error during the

acquisition. Both the Wiener filter and the criterion are adapted to the power spectrum of

the input scene. Numerical and visual results show that the proposed approach outperforms

traditional acquisition methods with or without a fixed anti-aliasing filter. The proposed

approach is robust with respect to various noise levels, and it is practical in some cases to

replace the commonly used four-spot birefringent filter with this method.
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Table 3.2: Image acquisition methods compared using average SSIM index value over 100
test scenes with different noise levels. The downsampling rate are R = 2, 4 and the additive
noise settings are (k0, k1) = (8, 0), (8, 0.2), (4, 0), (4, 0.2), (2, 0), (2, 0.2), (1, 0), (1, 0.2).

Rate (k0, k1) w/o AA w/ AA Proposed

R = 2

(8, 0) 0.7599 0.7649 0.8426
(8, 0.2) 0.7567 0.7519 0.8412

(4, 0) 0.8940 0.8927 0.9120
(4, 0.2) 0.8911 0.8895 0.9103

(2, 0) 0.9467 0.9467 0.9489
(2, 0.2) 0.9447 0.9446 0.9470

(1, 0) 0.9620 0.9624 0.9677
(1, 0.2) 0.9609 0.9613 0.9658

R = 4

(8, 0) 0.7968 0.7891 0.8496
(8, 0.2) 0.7946 0.7867 0.8483

(4, 0) 0.9062 0.9018 0.9156
(4, 0.2) 0.9037 0.8996 0.9138

(2, 0) 0.9468 0.9441 0.9517
(2, 0.2) 0.9453 0.9426 0.9498

(1, 0) 0.9585 0.9562 0.9688
(1, 0.2) 0.9577 0.9553 0.9671

In comparison with the traditional birefringent filter, images captured by our proposed

approach have fewer artifacts. Furthermore, our approach is adaptive to input scenes and

minimizes the reconstruction error to achieve better image quality, while the birefringent

filter is fixed for every scene. By replacing the birefringent filter with our approach, digital

cameras will be lighter and cost less. The downside of our approach is the longer acquisition

time caused by the searching of the optimal defocus setting and the final lens movement,

though this should be only a small addition to the overhead required for autofocusing. For the

color imaging case, chromatic aberration of the lens affects the choice of the optimal defocus

setting. Also, single-sensor cameras use Bayer color filter arrays to acquire color images.

The extra demosaicking process increases the complexity of our proposed approach.
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Table 3.3: Evaluations of the criteria in Sec. 3.4 over 100 test scenes with different downsam-
pling rate R = 2, 4 and noise levels (k0, k1) = (8, 0), (8, 0.2), (4, 0), (4, 0.2), (2, 0), (2, 0.2),
(1, 0), (1, 0.2). The unit of mean absolute difference |ropt − r̂opt| is pixels.

Rate (k0, k1) |ropt − r̂opt| ∆MSE

R = 2

(8, 0) 0.12 0.26
(8, 0.2) 0.10 0.20

(4, 0) 0.36 1.07
(4, 0.2) 0.34 0.99

(2, 0) 0.22 0.75
(2, 0.2) 0.23 0.80

(1, 0) 0.11 0.32
(1, 0.2) 0.14 0.48

R = 4

(8, 0) 0.01 0.05
(8, 0.2) 0.01 0.05

(4, 0) 0.21 1.42
(4, 0.2) 0.20 1.34

(2, 0) 0.32 1.86
(2, 0.2) 0.33 1.95

(1, 0) 0.20 0.97
(1, 0.2) 0.21 1.06
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Figure 3.9: Comparison of the true and estimated reconstruction error of No. 3 test scene.
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(a) Baseband image (b) w/o Anti-aliasing

(c) w/ Anti-aliasing (d) Defocusing acquisition

Figure 3.10: Comparison of captured No. 3 image with downsampling rate R = 2 by three
different methods. The additive noise parameters are (k0, k1) = (2, 0).
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Chapter 4

Color Image Defocusing Acquisition

An extension of the defocusing acquisition from grayscale imaging to color imaging is

presented in this chapter for more practical applications. Color cameras acquire at least

three channels at different wavelengths to reproduce a color scene. Each channel could be

treated as a grayscale image. The extension of the color defocusing acquisition for multi-

sensor cameras, whose sensors are dedicated to each light spectrum, is straightforward. One

solution is to choose one color plane, such as the green, and find the optimal focus setting

for the other two color planes. Because most digital cameras sample a multi-spectrum of

light with a single sensor and a color filter, we must consider the extra demosaicking process

during the acquisition. As a result, the single-channel Wiener filter we defined in Chapter 3

is extended to a multichannel reconstruction filter. In this section, for simplicity we only

investigate the defocusing acquisition for cameras equipped with the most commonly used

CFA pattern — the Bayer pattern.

As described in Chapter 2, Bayer CFA sampling generates spectrum copies in the fre-

quency domain. A multichannel Wiener filter in the RGB domain is difficult to implement

because the sampling rate of green is two times higher than the sampling rate of red or

blue. The high cross-correlation among channels makes the multichannel Wiener filter not

diagonalizable by a Fourier transform. A color imaging model in the RGB domain with a

multichannel Wiener filter is presented this chapter first. After analyzing the drawbacks of

this model, we designed another imaging model with a simplified Wiener filter in the lumi-

nance/chrominance domain. An error criterion is formulated to enable the camera find the

optimal defocusing setting according to the scene.
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4.1 Problem Formulation in RGB Domain

Most color imaging models for demosaicking are defined in the RGB domain. The color

defocusing acquisition involves out-of-focus blur in the imaging step. On the reconstruc-

tion side, a joint deblurring and demosaicking is required to accomplish the degraded CFA

restoration. We first formulated this problem in the RGB domain and designed a Wiener

filter with a fast implementation method. However, the spectral correlation depends signif-

icantly on the input scene, which makes it difficult to build an adaptive algorithm on this

model. Although this model deals with this particular problem unsuccessfully, it could be a

solution for other non-adaptive applications. We present it in this section for this purpose.

4.1.1 RGB Color Imaging Model

Consider a camera with an m0 × n0 sensor array that samples three color channels at

each pixel location according to the Bayer pattern and denote N = m0 × n0. Let vectors

fr, fg and fb ∈ RN×1 be the baseband images of the red, green and blue channels, and the

corresponding aliasing components are described by the vectors far, fag and fab ∈ RN×1. The

four mosaicked color images yr, yg1 , yg2 and yb ∈ RN/4×1 shown in Fig. 4.1 can be represented

by the following equations:

yr =DrHrfr +DrHarfar + ur

yg1 =Dg1Hgfg +Dg1Hagfag + ug1

yg2 =Dg2Hgfg +Dg2Hagfag + ug2

yb =DbHbfb +DbHabfab + ub

(4.1)

The terms Dr, Dg1 , Dg2 and Db ∈ RN/4×N are row-deficient identity matrices with missing

rows corresponding to missing color samples removed by the color filter array. Hr, Hg and

Hb ∈ RN×N are circulant matrices that describe the baseband response of the out-of-focus

blur in different color planes, assuming periodic boundaries of the image. Similarly, the
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corresponding stopband responses of the out-of-focus blur are represented by the matrices

Har, Hag and Hab ∈ RN×N . The vectors ur, ug1 , ug2 and ub ∈ RN/4×1 represent the additive

noise in distinct channels.

yr yg2 ybyg1y

Figure 4.1: Bayer CFA and four subsampled images.

One can describe the above imaging model as a single linear equation as follows:

y = DHf +DHafa + u, (4.2)

where the acquired CFA image y ∈ RN×1 and the additive noise u ∈ RN×1 are of the

forms y = [yTr , y
T
g1
, yTg2 , y

T
b ]T and u = [uTr , u

T
g1
, uTg2 , u

T
b ]T . The baseband image f and passband

image fa ∈ R4N×1 have the forms f = [fTr , f
T
g , f

T
g , f

T
b ]T and fa = [fTar, f

T
ag, f

T
ag, f

T
ab]

T . The

block diagonal matrices D, H and Ha have the forms: D = diag(Dr, Dg1 , Dg2 , Db), H =

diag(Hr, Hg, Hg, Hb) and Ha = diag(Har, Hag, Hag, Hab). To simplify the problem, we assume

that the responses of the out-of-focus blur generated by the camera lens is identical in

different color channels. Consequently, the baseband responses of the blur are the same;

that is, Hr = Hg = Hb. Similarly, we have Har = Hag = Hab for the stopband responses of

the blur. The extension to the case of different responses is straightforward.

In the normal image reconstruction problem, the goal is to recover the baseband image f

from the noisy CFA image y. However, we intend to seek the optimal out-of-focus blur with

responses H and Ha that automatically adapts to the input scene during the acquisition.

The reconstruction filter corresponding to the optimal blur achieves the optimal acquisition

by means of linearly minimizing the reconstruction errors.
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4.1.2 Multichannel Wiener Filter in RGB Domain

The estimate of the baseband color image f̂ is recovered by a multichannel Wiener filter

W , where f̂ = Wy. The multichannel Wiener filter W (linear minimum mean-square error)

is given by the following form:

W = E
{
fyT

}
E
{
yyT
}−1

. (4.3)

Assuming the wide-sense stationarity of the signal and noise and applying Eq. (4.2), one can

rewrite the above equation as follows:

W =
(
RfH

TDT +RffaH
T
a D

T +Rfu

) (
DHRfH

TDT +DHRffaH
T
a D

T +DHRfu

+DHaRfafH
TDT +DHaRfaH

T
a D

T +DHaRfau +RufH
TDT +RufaH

T
a D

T +Ru

)−1

(4.4)

Normally, the additive noise u and aliasing component fa are small compared to the baseband

signal f . We further assume that they are uncorrelated with each other; that is, Rffa =

Rfu = Rfaf = Rfau = Ruf = Rufa = 0. The simplified multichannel Wiener filter is described

as follows:

W = RfH
TDT

[
DHRfH

TDT +DHaRfaH
T
a D

T +Ru

]−1
(4.5)

The autocorrelation matrices Rf and Rfa ∈ R4N×4N have the same structure. Both of

them contain the spatial and spectral correlation coefficients of the scene, which essentially

describes a three-dimensional correlation (2D spatial correlation and 1D spectral correlation)

in a two-dimensional matrix. A common model of matrix Rf is discussed here, while the

model of Rfa can be derived using the same method.

If we assume that the spatial and spectral correlation are separable, Rf can be described

by a Kronecker product as follows:

Rf = r ⊗R (4.6)
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where R ∈ RN×N is the spatial autocorrelation matrix of each color plane. The spectral

correlation matrix r ∈ R4×4 has the following form:

r =



rrr rrg1 rrg2 rrb

rg1r rg1g1 rg1g2 rg1b

rg2r rg2g1 rg2g2 rg2b

rbr rbg1 rbg2 rbb


(4.7)

where the constant rij, i, j ∈ {r, g1, g2, b} defines the spectral correlation between channel

i and j. If we assume the signal is periodic in the spatial domain, R becomes a circulant

matrix. We have rrr = rg1g1 = rg2g2 = rbb = rg1g2 = rg2g1 = 1. To simplify the spectral

correlation, we use a constant α, 0 < α < 1, to model the dependence among the three

channels. In particular, rrg1 = rrg2 = rg1r = rg1b = rg2r = rg2b = rbg1 = rbg2 = α. Because

red and blue channels are approximately twice as far apart in spectral wavelength, they are

less correlated. We set rrb = rbr = α2. As a result, the spectral correlation matrix r is of the

form:

r =



1 α α α2

α 1 1 α

α 1 1 α

α2 α α 1


. (4.8)

By treating the two greens at different sampling locations as two color channels, the matrix

r formulated in Eq. (4.8) becomes a singular matrix. An extra regularization step is required

to deal with this problem in the Wiener reconstruction.

The spatial autocorrelation matrix R contains the coefficients of the autocorrelation

function as in the grayscale case. We assume that the spatial autocorrelation follows the

same decaying exponential function and use this model to construct it. The elements of the

spatial correlation matrix R are defined by Eq. (3.14) as in Sec. 3.3. The parameters of the
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generic model can be estimated from the subsampled green channel of the initially captured

CFA image.

4.1.3 Fast Implementation of Multichannel Wiener Filter

The direct implementation of the multichannel Wiener filter defined in Eq. (4.5) requires

an inversion of the N ×N matrix (DHRfH
TDT + DHaRfaH

T
a D

T + Ru), which involves a

huge amount of computational effort even for a small image. A possible diagonalization or

sparse transformation of this matrix is desired. Because the Fourier transform diagonalizes

the circulant block R, we can take advantage of the Fast Fourier Transform (FFT) algorithm

and solve the linear equations in the spatial-frequency domain. Define two transformation

matrices F ∈ RN×N and F̄ ∈ R4N×4N with the forms F = diag(Fs,Fs,Fs,Fs) and F̄ =

diag(Fb,Fb,Fb,Fb), where blocks Fs ∈ RN/4×N/4 and Fb ∈ RN×N are 2D DFT matrices.

The definition of the 2D DFT matrix is given in Appendix A. Since the DFT is unitary, we

have FFH = I and F̄F̄H = I, where the superscript H represents the Hermitian transpose

operation. Applying matrix identities to Eq. (4.5), one can express the spatial-frequency

domain representation of the multichannel Wiener filter as follows:

W = RfH
TDTFH

[
FDF̄H S̄F̄DTFH + FDF̄H S̄aF̄DTFH + Su

]−1F (4.9)

The matrices S̄ = F̄HRfH
T F̄H , S̄a = F̄HRfaH

T F̄H and Su = FRuFH are the filtered

power spectra of the baseband image and aliasing component and the noise spectrum, respec-

tively. It is worth noting that S̄ and S̄a are power spectrum only in the spatial-frequency

domain. In the white Gaussian noise or small dependent-noise case, we can approximate

the noise power spectrum with Su ≈ Nσ2IN , where σ is the standard deviation of the

additive noise and IN is the identity matrix. Because the matrices FDF̄H S̄F̄DTFH and

FDF̄H S̄aF̄DTFH have identical structure, we only present the fast implementation method

for the first matrix here and the other can be treated the same way.
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Similar to the autocorrelation matrix defined in Eq. (4.8), one can decouple the power

spectrum matrix S̄ to the spatial spectrum S and the spectral correlation matrix r with a

Kronecker product:

S̄ = r ⊗ S (4.10)

where S is a diagonal matrix that captures the spatial power spectrum. Let K̄ denote the

matrix FDF̄H S̄F̄DTFH . We can again isolate the spectral autocorrelation matrix from K̄:

K̄ = r ⊗K. (4.11)

The matrix K describes the spectrum overlaps introduced by the Bayer CFA sampling and

has the following structure:

K =



Krr Krg1 Krg2 Krb

Kg1r Kg1g1 Kg1g2 Kg1b

Kg2r Kg2g1 Kg2g2 Kg2b

Kbr Kbg1 Kbg2 Kbb


(4.12)

where Kij = FSDiFHN SFNDT
j FHS (i, j ∈ {r, g1, g2, b}). The matrix K has a great deal

of symmetry. Particularly, we have the following identities: Krr = Kg1g1 = Kg2g2 = Kbb,

Krg1 = KH
g1r

, Krg2 = KH
g2r

, Krb = KH
br , Kg1g2 = KH

g2g1
, Kg1b = KH

bg1
, Kg2b = KH

bg2
, Krg1 = Kg2b,

Kg1r = Kbg2 , Krg2 = Kg1b, and Kg2r = Kbg1 . As expected, each block Kij of matrix K is a

diagonal matrix. The details are presented in Appendix B.

We intend to explore the sparsity of matrix K̄ to reduce the computational cost of

the proposed multichannel Wiener filter. For an appropriately defined permutation matrix

P ∈ RN×N , one can transform the block matrix K̄ with diagonal blocks to a block-diagonal

matrix Q as follows:

Q = PK̄P−1 = diag(Q1, Q1, . . . , QN
4

) (4.13)
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Each block Qi (i = 1, 2, · · · , N
4

) is a 4× 4 matrix. The matrix inversion of the matrix K̄ can

be implemented as,

K̄−1 = P−1Q−1P (4.14)

where Q−1 = diag(Q−1
1 , Q−1

2 , · · · , Q−1
N
4

). As a result, we transform an N×N matrix inversion

into N
4

4 × 4 matrix inversions. The computational complexity is reduced from O(N3) to

O(N).

4.2 Problem Formulation in LC1C2 Domain

One major concern of formulating the color acquisition in the RGB domain is the ac-

curacy of modeling the spectral correlations among channels. We presented a simple 4 × 4

matrix to capture such information in the previous section. The Wiener filter built on this

model is significantly simplified using this procedure. But this RGB model cannot precisely

represent the various spectral correlations of different scenes. A more complicated model

could improve the reconstruction results but involves more computational effort. To avoid

the dilemma in the RGB domain, we introduce a color imaging model in the LC1C2 domain

which not only brings down the magnitude of cross-channel correlations but simplifies the

implementation as well.

4.2.1 Frequency-Domain Representation of Bayer CFA Image

Let us consider an m0×n0 Bayer CFA image y and the m0×n0×3 true image with three

channels fr, fg and fb. The CFA image y can be described as a sum of three subsampled

images f̄r, f̄g and f̄b as shown in Fig. 4.2. If we denote (m,n) as pixel coordinates and set

the origin at the upper-left corner of the images, the CFA image can be mathematically

expressed as follows [57]:

y(m,n) = f̄r(m,n) + f̄g(m,n) + f̄b(m,n) (4.15)
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where the subsampled images f̄r, f̄g and f̄b are given by:

f̄r(m,n) = 0.25fr(m,n)(1 + (−1)m)(1− (−1)n)

f̄g(m,n) = 0.50fg(m,n)(1 + (−1)m+n)

f̄b(m,n) = 0.25fb(m,n)(1− (−1)m)(1 + (−1)n)

(4.16)

m

n
(0,0)

Figure 4.2: Bayer CFA and three subsampled images.

To acquire the frequency-domain representation of a CFA image, Eq. (4.15) can be

further written as follows:

y(m,n) = fL(m,n) + fC1(m,n)(−1)m+n − fC2(m,n)(−1)m + fC2(m,n)(−1)n (4.17)

where fL is the luminance channel of the true color image. The terms fC1 and fC2 represent

the two chrominance channels. In fact, L, C1 and C2 are three components of a new color

space. The linear transform between RGB and LC1C2 is given by:


fL

fC1

fC2

 =


0.25 0.5 0.25

−0.25 0.5 −0.25

−0.25 0 0.25



fr

fg

fb

 (4.18)
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The Fourier transform of Eq. (4.17) leads to the frequency-domain expression of a CFA

image

F (ωm, ωn) = FL(ωm, ωn) +FC1(ωm−π, ωn−π)−FC2(ωm−π, ωn) +FC2(ωm, ωn−π) (4.19)

According to Eq. (4.19), a Bayer CFA image can be expressed as a luminance component

FL, one modulated chrominance component of FC1 at frequency (π, π) and two modulated

chrominance components of FC2 at frequencies (π, 0) and (0, π).

4.2.2 LC1C2 Color Imaging Model

The color imaging model with consideration of blur and noise can be acquired similarly

as Eq. (4.17). Using matrix-vector notation, the acquisition model with aliasing components

in the LC1C2 domain is given by:

y = AHf + AHafa + u (4.20)

where y ∈ RN×1 is the degraded CFA image and the term u ∈ RN×1 represents additive

noise. The baseband image f and aliasing component fa ∈ R4N×1 have the forms f =

[fL
T , fmnC1

T , fmC2

T , fnC2

T ]
T

and fa = [faL
T , fmnaC1

T , fmaC2

T , fnaC2

T ]
T

, where the vectors f ji and f jai,

i ∈ {L,C1, C2}, j ∈ {mn,m, n} are the luminance and chrominance images described in

Eq. (4.17). Particularly, we have the following relations for the baseband images:

fL : fL(m,n)

fmnC1
: fC1(m,n)(−1)m+n

fmC2
: − fC2(m,n)(−1)m

fnC2
: fC2(m,n)(−1)n

(4.21)
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The aliasing components have similar relations. The block matrices A have the form A =

[IN , IN , IN , IN ], where IN is the identity matrix.

The matrices H = diag(H,Hmn, Hm, Hn) and Ha = diag(Ha, H
mn
a , Hm

a , H
n
a ) are two

block diagonal matrices which contain the baseband PSF and stopband PSF of the out-of-

focus blur for all the channels. Each block represents the PSF of the blur for the correspond-

ing channel. Since the chrominance channels are modulated, the blurs for the chrominance

channels have the same kind of modulation. In particular, Hmn and Hmn
a are modulated

to (π, π), Hm and Hm
a are modulated to (π, 0), and Hm and Hm

a are modulated to (0, π).

Fig. 4.3. An imaging model in the frequency domain can be obtained by taking a Fourier

transform of Eq. (4.20), which has the following form:

Y = AHF +AHaFa + U (4.22)

where the terms A, H, Ha, F , Fa and U are the corresponding Fourier transforms of terms

in Eq. (4.20).

To simplify the imaging model, we assume that the PSF of the out-of-focus blur gener-

ated by the camera lens is identical in different color channels. Under this assumption, H,

Hmn, Hm and Hn have the same responses except the center frequencies. The same rela-

tionship exists for the stopband responses of the blur. The simulation results in Chapter 3

show that the signal-dependent noise has little impact on the choice of focus setting. Rather

than choosing a similar noise model here as in the grayscale case, a white Gaussian noise

model is selected for the color acquisition.

4.2.3 Multichannel Wiener Filter in LC1C2 Domain

A similar procedure as we used in Sec. 4.1.2 is applied here to derive the multichannel

Wiener filter in the LC1C2 domain. Assuming that the signal and noise are wide-sense sta-

tionary, and applying the imaging model Eq. (4.20) on the Wiener filter definition Eq. (4.3),
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Figure 4.3: Four baseband responses of out-of-focus blur at blur radius r = 1.5 pixels. The
horizontal and vertical frequencies have been normalized by the sampling frequency.

the Wiener filter W in the modulated LC1C2 domain is given by:

W = RfH
TAT

(
AHRfH

TAT + AHaRfaH
T
a A

T +Ru

)−1
(4.23)

The cross-correlations among the baseband image f , aliasing component fa and noise u are

set to zero in Eq. (4.23) under the assumption that they are uncorrelated with each other;

that is, Rffa = Rfu = Rfaf = Rfau = Ruf = Rufa = 0.

Unlike the autocorrelation matrices in the Wiener filter formulated in RGB domain,

Rf and Rfa ∈ R4N×4N here are diagonal matrices rather than block diagonal matrices. In

the RGB formulation, since the color channels of scenes are highly correlated, the cross-

correlation cannot be ignored. A 4 × 4 matrix is chosen to model the cross-correlation
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in that case. However, the correlation among luminance and two chrominance channels is

reduced because chrominance channels essentially are differences among RGB channels. In

fact, by defining the Wiener filter on the luminance and modulated chrominance channels,

the cross-correlations are reduced even further. This is true for both baseband images and

aliasing components.

The cross-correlations among RGB, LC1C2 and modulated LC1C2 channels of a typical

color image are depicted in Fig. 4.4. The mean values of RGB channels of the image were

subtracted to ensure the cross-correlations are at the same level. The magnitude of cross-

correlations in the LC1C2 domain is 20 times smaller than the values of cross-correlations in

the RGB domain. If two chrominance channels C1 and C2 are modulated to (π, π) and (π, 0)

or (0, π), on which the Wiener filter is modeled, the cross-channel correlations are reduced

4000 times. It is reasonable to assume these channels are uncorrelated with each other.

Since the prior information of the input scene is unknown, a similar strategy to the

grayscale case must be chosen to estimate the autocorrelation matrix Rf and Rfa . During

the simulation, we found that the FFT algorithm generated edge artifacts when transforming

autocorrelation functions to power spectra. This effect has a negative impact on the Wiener

filter due to the modulation of C1 and C2 channels. Particularly, the edge artifacts with the

high-frequency characteristic of the C1 and C2 channels are modulated to the low-frequency

locations, which affects the power spectrum of the luminance component. To avoid this

problem, rather than modeling the autocorrelation, we estimate the power spectra of L, C1

and C2 channels directly.

The frequency expression of the multichannel Wiener can be derived by taking a Fourier

transform of Eq. (4.23):

W = SfHHAH
(
AHSfHHAH +AHaSfaHH

a AH + Su
)−1

(4.24)

61



−200

0

200

−200

0

200

0

0.02

0.04

0.06

0.08

mn

(a) Green-red correlation

−200

0

200

−200

0

200

0

0.02

0.04

0.06

0.08

mn

(b) Green-blue correlation

−200

0

200

−200

0

200

0

0.02

0.04

0.06

0.08

mn

(c) Red-blue correlation

−200
0

200

−200

0

200

0

2

4

x 10
−3

mn

(d) L-C1 correlation

−200
0

200

−200

0

200

0

2

4

x 10
−3

mn

(e) L-C2 correlation

−200
0

200

−200

0

200

0

2

4

x 10
−3

mn

(f) C1-C2 correlation

−200
0

200

−200

0

200

0

1

2

x 10
−5

mn

(g) L-C1
mn correlation

−200
0

200

−200

0

200

0

1

2

x 10
−5

mn

(h) L-C2
m correlation

−200
0

200

−200

0

200

0

1

2

x 10
−5

mn

(i) C1
mn-C2

m correlation

Figure 4.4: The absolute magnitude of cross-channel correlations in RGB, LC1C2 and mod-
ulated LC1C2 domain for one color scene. Note the different vertical scales on each row of
the figure.

The diagonal matrices Sf , Sfa and Su are power spectra of the baseband image, aliasing

component and noise. Here, the “H” superscript represents the Hermitian transpose opera-

tion.

The unknown power spectrum Sf contains the baseband power spectrum SfL for the

luminance channel and three baseband spectra SfmnC1
, SfmC2

and SfnC2
for the modulated

chrominance channels. The spectra of the aliasing components of corresponding channels

are recorded in the matrix Sf . To estimate Sf and Sfa , we use a similar method to the one in

the grayscale case. A CFA image Y0 is initially captured with a large amount of out-of-focus
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blur H0 and described as follows:

Y0 ≈ AH0F + U (4.25)

By assuming that the aliasing component Fa is sufficiently suppressed in this image, we

ignore it in the above equation. In order to estimate the power spectra, the blurred initial

full-color image has to be recovered first by a state-of-art demosaicking method, such as:

FH0 =MY0 (4.26)

where the termM represents a demosaicking operation. The corresponding image F̄H0 in the

LC1C2 domain can be obtained by transforming FH0 using the relation defined in Eq. (4.18).

Since H0 is a diagonal matrix, the expected power spectrum of the initial baseband image

Sf0 can be derived by the inverse filtering method:

Sf0 ≈
SfH0

− σ2
u

|H0|2
(4.27)

Using the periodogram estimate ŜfH0
= |F̄H0|2, we obtain:

Ŝf0 =
|F̄H0|2 − σ2

u

|H0|2
(4.28)

An isotropic autocorrelation model is chosen here to formulate the power spectral model

for images [76], which is given by:

Rf (τx, τy) = e−α
√
τ2x+τ2y (4.29)

where the parameter α > 0 defines the decay rate. The autocorrelation function and the

power spectral density form a Fourier transform pair. By taking a Fourier transform of
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Eq. (4.29), we have the power spectral density model for images as follows:

S(Ωx,Ωy) = 2πcα(α2 + Ω2
x + Ω2

y)
−3/2 (4.30)

where c is a scale factor.

To estimate the power spectra of baseband image and aliasing components, we assume

that there exists a positive integer R which satisfies Ωfmax < min{R π
∆x
, R π

∆y
}, where Ωfmax

is the highest frequency content in the continuous scene. In other words, if the sampling

frequency of the camera is increased by a factor of R, no aliasing is introduced by the

sampling. The parameters c and α in Eq. (4.30) can be estimated by fitting the result of

Eq. (4.28) in the generic power spectral density model. As the same time, we can change the

sampling frequency to obtain the estimated power spectra S̄fL , S̄fC1
and S̄fC2

of L, C1 and

C2 channels. The spectra of baseband and aliasing components can be separated according

to the ratio of sampling frequency R. The estimated spectra S̄fmnC1
, S̄fmC2

and S̄fnC2
can be

acquired by applying the modulation defined in Eq.(4.21).

An estimated spectrum along with the actual spectrum of the luminance channel for

one test scene is shown in Fig. 4.5 in log-magnitude. The statistics of the original scene were

captured by the power spectral density model. Advanced power spectral density models

could be used for a more accurate estimate. Since the topic is beyond the scope of this

dissertation and this model performs adequately, other power spectral density models for

images are not covered here.

4.3 Error Criterion

In Sec. 3.4, we derived an error criterion to enable the camera to find the optimal defocus

setting for a particular scene. A similar criterion is introduced here for adaptive defocus color

imaging. We start by analyzing of the true reconstruction error by Wiener filtering in the
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Figure 4.5: The true power spectral density and the estimated power spectral density of one
test scene.

frequency domain, which is given by:

ε2 = E{‖F − F̂‖2} (4.31)

where the vector F̂ is the estimated baseband image by Wiener filtering: F̂ = WY . Applying

the imaging model Eq. (4.22), one can describe the reconstruction error ε2 further by:

ε2 =E{‖F −WAHF −WAHaFa −WU‖2}

=E{(F −WAHF −WAHaFa −WU)(F −WAHF −WAHaFa −WU)H}

= tr
{
Sf − SfHHAHWH −WAHSf

+W [AHSfHHAH +AHaSfaHH
a AH + Su]W

H
}

(4.32)

Assume that the estimated power spectrum matrices S̄f and S̄fa in the Wiener filter are

approximately equal to the true power spectra; that is, S̄f ≈ Sf and S̄fa ≈ Sfa . Then the

estimated reconstruction error can be simplified by applying the Wiener filter expression

Eq. (4.24) in the above equation:

ε̂2 ≈tr
{
Sf − SfHHAHWH −WAHSf + SfHHAHWH

}
=tr {Sf −WAHSf}

(4.33)
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Originally, we chose the initially estimated power spectrum Ŝf0 defined in Eq. (4.28)

to approximate the true power spectrum Sf , but the estimated reconstruction error were

not accurate enough. The error criterion can be improved by changing Ŝf0 to the power

spectrum S̄f estimated by the generic model, which is given by:

ε̂2 ≈ tr
{
S̄f −WAHS̄f

}
(4.34)

Fig. 4.6 depicts the true and estimated reconstruction errors vs. the PSF radius for two test

scenes. It is evident that our criterion tracks the true optimal defocus setting as expected.
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Figure 4.6: Comparison of the true (––) and estimated (– –) reconstruction errors ε2 (vertical
axis) vs. the PSF radius r (horizontal axis) for different noise levels. The true and estimated
optimal blur radii were labeled by “×”.

67



4.4 Joint Deblurring and Demosaicking

The image captured with the “optimal” defocus setting is a Bayer CFA image degraded

by the out-of-focus blur and noise. We present an iterative approach to recover a full-

color image from a blurred CFA acquisition [77]. The CFA image with known blur is first

reconstructed by a state-of-the-art demosaicking algorithm. In each iteration, we recover a

full-color estimate using a least-squares regularization approach. The iterative restoration is

implemented by a steepest descent method, and the residue of each iteration is used for our

stopping criterion.

The underlying true-color image g is acquired with blur H and additive noise u

g = Hf + u (4.35)

The CFA image y and the true-color image g have the relation:

y = Dg (4.36)

where D is the Bayer CFA sampling matrix. The aliasing component is omitted here for

simplification. Define a least-squares function

J = ‖g −Hf‖2 + λ‖Lf‖2 (4.37)

where ‖ · ‖ represents the l2 norm, λ is the regularization coefficient and L is a highpass

filter. The constrained least-squares estimate f̂ minimizes the above equation:

f̂ = argmin
f̂

{
‖g −Hf‖2 + λ‖Lf‖2

}
(4.38)
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The most common choice of L is a discrete Laplacian kernel, which has the following form:

L =


0 1 0

1 −4 1

0 1 0

 (4.39)

The first term in (4.37) is normally called the data fidelity term, and the second term

forces the smoothness of the solution. The regularization coefficient λ controls the degree

of the penalty and is expected to be small. The choice of the optimal λ for different blur

and noise is beyond the scope of this dissertation. In the simulation, λ is chosen to be a

constant, and we determine its value by trial-and-error while monitoring the reconstruction

errors of the result images.

To implement the least-squares algorithm using the steepest descent method, one can

compute the gradient of J as follows:

∇J =
d

df

(
‖g −Hf‖2 + λ‖Lf‖2

)
(4.40)

=− 2HT (g −Hf) + 2λLTLf

The estimate of the full-color image f̂k at kth iteration is:

f̂k =f̂k−1 −∇Jk−1 (4.41)

=f̂k−1 + 2HT (ĝ0 −Hf̂k−1)− 2λLTLf̂k−1

where f̂k−1 is the previous estimate. To combine the steepest descent method with a nonlinear

demosaicking algorithm M, one can embed it inside each iteration to update the current

estimate f̂k:

ŷk = Df̂k

f̂k =M(ŷk)

(4.42)
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and the initial estimate is:

f̂0 =M(y). (4.43)

In particular, with the prior knowledge of the blur H and noise u and the input CFA

image y, the joint deblurring and demosaicking approach can be described by the following

pseudo-code:

ĝ0 =M(y), f̂0 =M(y) and set H, L, α and ε.

for k = 1 to K do

Gradient: Gk−1 = −2HT (ĝ0 −Hf̂k−1) + 2λLTLf̂k−1;

Descent direction: f̂k = f̂k−1 −Gk−1;

if ‖Gk−1‖ > ε then

Subsampling: ŷk = Df̂k;

Demosaicking: f̂k =M(ŷk);

else

Stop and claim f̂k is the final estimate;

end if

end for

4.5 Simulation and Results

We present some experimental results to verify the color defocusing acquisition and eval-

uate the error criterion we introduced in Sec. 4.3. The image library contains the following

four databases. Images No. 1–24 are the twenty-four test images from the Kodak PhotoCD

set [71]. They were cropped to size 512 × 512. Images No. 25–54 are the thirty original

test images from the content-based strategies of image quality (CSIQ) database [72]. Im-

ages No. 55–64 are from the image and video-communication (IVC) database for subjective

quality assessment [73]. The remaining thirty-six images were taken by a Nikon D90 digital
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single-lens reflex (DSLR) camera and cropped to size 512 × 512. The intensity values of

these natural images are between 0 and 255. Each image was subsampled by a factor of R

in both directions to model the sampling processing.

We conducted simulation experiments as follows. The downsampling rate R was set to

2. The baseband image for each scene was calculated using an ideal lowpass filter on each

color channel then subsampled by a factor of R in both directions. Three acquisition methods

were chosen in our experiments: acquisition without an anti-aliasing filter, acquisition with

an anti-aliasing filter and defocussing acquisition. A 2× 2 averaging filter was applied first

in the “continuous” domain to simulate the sensor-size effect for all acquisition methods.

Each channel of the scene was subsampled a factor of R then sampled again with a Bayer

CFA to simulate the acquisition method without an anti-aliasing filter. For the acquisition

method with an anti-aliasing filter, each channel was subsampled a factor of R and then

filtered with a 2 × 2 averaging filter in the “discrete” domain to simulate the anti-aliasing

filter. It is worth mentioning that the sensor-size effect filter and the anti-aliasing filter were

applied in different domains. The former one was applied before the sampling, while the

latter one was used after the sampling. After the anti-aliasing step, the full-color images

were sampled according to the Bayer pattern to generate a CFA image.

For the defocussing acquisition, an out-of-focus blur with radius r was applied in the

“continuous” domain along with the sensor-size effect. The resulting full-color images were

subsampled by a factor of R followed by a Bayer CFA sampling. Since the PSF of out-of-

focus blur is close to circular [75], we implemented out-of-focus blur using a circular blur

with different radii r. The initial CFA image y0 was acquired using blur with r = 1.5 pixels

then demosaicked by the method proposed in [57]. The out-of-focus blur that generates the

minimum of the estimated reconstruction error ε̂2 is the estimated optimal defocus setting.

The demosaicking method we chose for the acquisition methods with and without an

anti-aliasing filter is the adaptive frequency-domain method introduced by Dubois [57]. The

joint deblurring and demosaicking approach described in Sec. 4.4 was selected to recover the
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true-color image for defocusing acquisition. The same demosaicking algorithm was embedded

in the joint approach for a fair comparison with the traditional acquisition methods. Each

resulting image acquired by different approaches was evaluated by comparing it to the base-

band image. The numerical evaluation was accomplished by calculating the three-channel

peak-signal-to-noise ratio PSNR3 for each method. The PSNR3 is defined by:

PSNR3 = −10 log10

[
1

2552 ×N

N∑
i=1

(
fi − f̂i

)2
]

(4.44)

where fi and f̂i, i ∈ {R,G,B} are the color channels of the baseband image and the estimated

image.

We first compared the optimal radius estimated using the error criterion formulated in

Sec. 4.3 with the true optimal radius for different scenes and noise levels. The radius error

is defined by:

∆r = r̂opt − ropt (4.45)

where ropt and r̂ are true and estimated blur radii. The average radius error ∆r over 100

test scenes in Table 4.1 is close to zero, which indicates there is no significant bias created

by the error criterion. The average absolute radius error |∆r| is less than 0.25 pixels. The

average percentage of PSNR loss ∆PSNR3 caused by the inaccurate radius estimation is less

than 0.25%.

Table 4.1: Evaluations of the criteria over 100 test scenes with noise levels σ = 8, 4, 2, 1.
The unit of the radius difference ∆r and the mean absolute difference |∆r| is pixels.

σ |∆r| ∆r ∆PSNR3 %
8 0.16 -0.057 0.24
4 0.24 0.032 0.16
2 0.16 -0.055 0.14
1 0.16 -0.095 0.04

The histogram plots shown in Fig. 4.7 demonstrate that the error criterion is robust

with respect to various noise levels. For most test scenes, the absolute blur radius errors are
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smaller than 0.3 pixel. The accuracy of the error criterion could be improved if an anisotropic

or more advanced power spectral density model were chosen in Sec. 4.2.3.
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Figure 4.7: Histogram plots of blur radius error at various noise levels.

The result images acquired by different methods of No. 56 test scene (Barbara) are shown

in Fig. 4.8. The CFA image captured by each method was corrupted by white Gaussian noise

with standard deviation σ = 1. The Moiré patterns on the pants were largely reduced by

the defocusing approach. Although the aliasing artifacts in the image acquired by the four-

spot birefringent filter have been greatly reduced, the edges are blurrier than the image

acquired by the defocusing method. The result color image reconstructed from the CFA

image acquired without an anti-aliasing filter has sharp edges but severe artifacts.
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(a) Baseband image

(b) w/o Anti-aliasing

(c) w Anti-aliasing

(d) Defocusing acquisition

Figure 4.8: Result images acquired from No. 56 scene by three different methods. The
standard deviation of additive noise σ = 1.
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A portion of reconstructed full-color images along with the baseband image of test scene

No. 1 are presented in Fig. 4.9. White Gaussian noise with standard deviation σ = 2 was

added in all the acquired CFA images. The full-color image recovered from the CFA image

captured without any anti-aliasing has a large amount of false-color artifacts on the brick

wall. The image reconstructed from the CFA image acquired with anti-aliasing looks blurry.

The high-frequency patterns are lost in this image. The visual result of defocusing acquisition

is noticeably improved compared to the image acquired without any anti-aliasing filter.

(a) Baseband image (b) w/o Anti-aliasing

(c) w/ Anti-aliasing (d) Defocusing acquisition

Figure 4.9: Cropped result images acquired from No. 1 scene by three different methods.
The standard deviation of additive noise σ = 2.

Table 4.2 records the PSNR3 results of the first 24 test scenes acquired by the three

different approaches. When the additive noise level is low (σ = 1), the defocusing approach
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provides around 1dB improvement in PSNR3 values for most test images compared to no

anti-aliasing filter. The difference between these two approaches is smaller for the larger

noise case (σ = 4). The reason is that the noise amplification error is dominant when the

noise level is high. The Wiener filter tends to choose the out-of-focus blur with smaller radii.

In that case, the defocusing approach is approximately equivalent to the acquisition without

an anti-aliasing filter. The PSNR3 values of the acquisition method with an anti-aliasing

filter are the lowest compared to the results of the other two methods.

Table 4.2: PSNR3(dB) comparison of the images captured by three acquisition approaches
for the first 24 test scenes: without an anti-aliasing filter (AA), with an anti-aliasing filter
(AA) and defocusing acquisition (DA).

No.
σ = 1 σ = 2 σ = 4

AA AA DA AA AA DA AA AA DA
1 29.00 26.95 30.31 28.86 26.86 29.91 28.28 26.51 28.91
2 32.11 31.26 32.75 31.81 31.01 32.22 30.79 30.14 31.00
3 34.45 32.94 35.22 33.97 32.59 34.36 32.43 31.41 32.59
4 33.94 32.49 34.69 33.50 32.15 33.88 32.08 31.09 32.23
5 28.04 25.32 28.91 27.92 25.26 28.53 27.50 25.02 27.69
6 30.32 28.54 31.75 30.12 28.42 31.22 29.43 27.92 29.99
7 33.37 30.49 34.10 32.96 30.27 33.42 31.71 29.55 31.83
8 26.63 24.38 27.82 26.53 24.33 27.65 26.21 24.11 26.91
9 33.23 30.18 34.26 32.83 29.97 33.46 31.59 29.27 31.80
10 33.47 30.83 34.52 33.08 30.58 33.65 31.78 29.80 31.97
11 30.80 28.85 32.00 30.58 28.71 31.48 29.78 28.19 30.20
12 33.73 31.69 35.05 33.31 31.41 34.06 31.94 30.51 32.24
13 26.96 25.21 28.31 26.87 25.15 28.04 26.52 24.91 27.18
14 28.80 27.20 29.36 28.66 27.11 29.14 28.14 26.74 28.41
15 33.42 31.48 34.17 33.04 31.20 33.53 31.77 30.32 31.97
16 34.19 32.58 35.42 33.71 32.25 34.38 32.20 31.12 32.27
17 33.29 30.85 34.28 32.91 30.63 33.47 31.69 29.82 31.83
18 30.44 28.13 31.43 30.24 28.00 30.96 29.53 27.57 29.84
19 30.34 27.05 31.86 30.15 26.97 31.28 29.40 26.57 30.02
20 32.08 29.44 33.16 31.83 29.30 32.56 31.03 28.81 31.33
21 30.00 28.01 31.22 29.82 27.91 30.75 29.13 27.46 29.57
22 31.19 29.45 32.19 30.95 29.29 31.69 30.09 28.69 30.45
23 33.73 30.90 34.33 33.33 30.67 33.59 31.94 29.87 32.01
24 29.78 27.86 30.78 29.61 27.75 30.35 28.99 27.33 29.32
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4.6 Conclusion and Discussion

We extended the adaptive image acquisition approach for the grayscale case to single-

sensor color imaging in this chapter. Single-sensor color acquisition involves a CFA demo-

saicking step in the acquisition pipeline. Rather than an imaging model in the RGB domain,

a new imaging model in the LC1C2 domain has been defined with consideration of aliasing

components and additive noise. Owing to the spatial sampling characteristic of the Bayer

CFA, the model built on the LC1C2 domain simplifies the formulation of the multichannel

Wiener filter by reducing the cross-channel correlation.

The model-based multichannel Wiener filter is used to evaluate the reconstruction er-

ror during the acquisition. An initial captured CFA image is used to estimate the power

spectrum of the continuous scene by a generic power spectral density function. Using this

procedure, both the Wiener filter and the criterion are adapted to the input scene. An esti-

mated reconstruction error criterion designed on the multichannel Wiener filter evaluates the

optimal defocus setting for a specific scene. With this focus setting, the camera then acquires

the final CFA image for the subsequent process. The final acquired CFA is reconstructed by

a joint deblurring and demosaicking approach.

Numerical and visual results show that the defocusing acquisition approach outperforms

traditional acquisition methods which capture images with or without a fixed anti-aliasing

filter. The new approach is robust with respect to various noise levels and different kinds

of scenes. The error criterion we formulated in this chapter predicts the true optimal focus

setting accurately for most test scenes. The CFA images captured by the defocusing ap-

proach and recovered by the joint method have fewer false-color artifacts. Compared to the

traditional acquisition method with an anti-aliasing filter, more high-frequency details are

conserved by the new approach. By replacing the commonly-used birefringent filter with our

defocusing approach, digital cameras will provide better visual quality.

Some practical challenges of our proposed approach remain, which we will investigate in

our future study. Real input scenes are three-dimensional, but we assume they are flat in our
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simulation. This affects the way the autofocus system controls the lens to generate a proper

amount of out-of-focus blur. However, most scenes have a region of particular interest, and

current autofocus algorithms take this into account. These regions are usually defined by

a particular object of interest, which is approximately a constant distance from the camera

and therefore yields a constant level of defocus. It is possible to apply our proposed approach

to such regions and combine it with current autofocus algorithms to achieve better image

quality. Another issue is the PSF of out-of-focus blur is approximated by circular blur, but

real out-of-focus blur is more complicated and has to be analyzed for different type of lenses.

However, regularized restorations are not very sensitive to the exact blur model, so this is

not likely to be a significant practical problem.
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Chapter 5

Spectral Sensitivity Optimization of Camera Sensor

Like the human visual system, most digital cameras acquire three different energies of

light with different wavelengths to perceive a color scene. Instead of using the multisensor

technique, most consumer cameras only have one optical sensor with a color filter array

overlayed on it. The color filter ensures that each pixel of the sensor only samples one color

of the input light, such as red, green or blue. This configuration allows the camera to capture

three-dimensional color images with a two-dimensional optical sensor, and the results are

CFA images. However, the dimension reduction from 3-D to 2-D generates spectrum overlaps

in the spatial-frequency domain, which introduces aliasing artifacts. As a consequence, the

choice of sensitivity functions for a CFA is crucial not only to the image acquisition but also

to the subsequent reconstruction step.

The optimal sensitivity functions vary for scenes under different shooting conditions.

Generally, a longer exposure time, higher ISO sensitivity or both of them is required in

low-light shooting condition. Low light levels can increase noise variance significantly. A

fixed spectral response of the CFA is not able to well balance the trade-off between the

color reproduction accuracy and the noise amplification in the color transformation step. To

solve this problem, we present an optimization procedure to select the sensitivity functions

according to the signal-to-noise ratio (SNR).

5.1 Introduction

Human eyes sense a color scene using three types of cone cells as described in Sec. 2.4.

A typical set of three sensitivity functions of the HVS is depicted in Fig. 5.1(a). Digital

cameras use a similar strategy to the HVS to reproduce color. The spectral responses of a
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Nikon D70 camera shown in Fig. 5.1(b) have shape and center spectral frequencies similar to

the HVS. These functions affect the accuracy of color reproduction of the camera. Besides

that, the appearance of noise plays an important role for optimizing the spectral sensitivity

functions [78].

(a) Human visual system

(b) Nikon D70 camera

Figure 5.1: Sensitivity functions of the HVS and a Nikon D70 camera [79].

While most demosaicking algorithms for single-sensor cameras only address the image

reconstruction side [37, 80, 81], a considerable amount of work has been done to improve the

sensitivity function selection of the color filter [12, 14, 15] on the image acquisition side. The

spatio-spectral design approach proposed by Hirakawa proves that the spectral sensitivities

of the color filter play a critical role in the color image acquisition [82]. Condat confirms that

the follow-up demosaicking algorithm benefits from the CFA design with less computational

cost or better image quality [7].

The color reproduction accuracy of a camera is determined by its sensitivity functions.

The set with large overlaps among the three channels, such as shown in Fig. 5.1, allows

more light to pass through the CFA to reach the optical sensor. This configuration helps to
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increase the signal strength and reserve more spatial information in the CFA image. In the

extreme case, a camera with three uniform sensitivity functions across the spectral-frequency

domain becomes a black and white camera. However, the strong correlation among the three

sensitivity functions amplifies the noise in the color transformation step [5, 83]. A trade-off

between quantum efficiency and color reproduction accuracy is a challenge in CFA design.

A careful design of the sensor sensitivity functions and the spatial pattern of the color

filter array reduces the burden on the demosaicking process. Most techniques in this area

optimize the sensitivity functions based on a noise-free assumption [15, 84]. The resulting

optimal sensor sensitivities are fixed without regard for the SNR, which is sub-optimal for a

high noise level. To solve this problem, we choose a multichannel Wiener filter to optimize

the sensitivity functions for the most commonly used Bayer CFA pattern. The optimizations

for other CFA patterns can be derived using a similar framework.

Owing to hardware improvements in optics, it is possible to change the normally fixed

sensitivity functions with tunable filters [85, 86]. Digital tunable filters have the capability

to generate different spectral sensitivities under the control of liquid crystal (LC) devices. In

such a filter, a stack of birefringent wave retarders determines the center spectral frequencies

of the passband in the filter. The bandwidth of each passband is tuned by the LC layer

of the filter. The wave retarder stack is disabled in the active stage to have an all-pass

characteristic. In the passive stage, the spectral response of the digital tunable filter is the

combination of its active response and the bandpass filter response generated by the wave

retarder stack. Fig. 5.2 shows the spectral response of the active and passive stages of a

typical digital tunable filter. The bandwidths of the three color channels are greatly reduced

in the passive stage.

It is possible to overlay a digital tunable filter with an arbitrary spectral response on

a normal CFA filter, which only changes the sensitivity function of the green channel in

different stages. Another hardware solution is to use the technology in the interferometric
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Figure 5.2: The spectral response of active and passive stages of a typical digital tunable
filter. The center wavelengths of the wave retarder passband are 420nm, 500nm and 580nm.

modulator display (IMOD) [87]. The IMOD-based display can generate different colors pixel-

wise via the interference of reflected light. Each pixel in the display contains one or more

subpixels which can be turned on or off by the control circuit. By combining the reflected

light of these subpixels, various color can be created at each pixel. Such a technology can be

applied on the CFA design, in which green pixels can be designed to have variable spectral

sensitivities.

To optimize the sensor sensitivities, a set of Gaussian curves with different center spec-

tral frequencies and bandwidths are selected to model the spectral sensitivity functions of

the camera. An IR blocking filter is applied on the sensitivity functions to simulate real

applications. We formulated a multichannel Wiener filter which contains both the spatial

and spectral information of the scene. Since noise plays a crucial role in both demosaicking

and color reproduction, our optimization is a two-step process. We first optimize the CFA

sensitivities for the normal shooting condition, in which the noise level is low. The solution

of this step are the default sensitivity functions of the camera.

Then we fixed the spectral sensitivities of the red and blue sensors in the second step

of the optimization. Since the green sensor has twice the sampling locations of the red or

blue sensor in the Bayer CFA pattern, we optimize the bandwidth of green sensitivity to
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the SNR of CFA images. The motivation for this scenario is that it represents a feasible

hardware implementation in which the green filter can be electronically tuned for different

lighting conditions. The optimal sensitivity functions for different noise levels are derived in

this step.

This chapter is organized as follows. The color imaging models of both the camera

and the HVS are introduced in the Sec. 5.2. The definition of sensitivity functions, color

transformation and the special case of the Bayer CFA are also described in this section. The

multichannel Wiener filter is formulated in Sec. 5.3 to linearly reconstruct the captured CFA

images by the camera sensitivity functions. We report simulation results of our optimization

on selection of sensitivity functions in Sec. 5.4. Finally, we discuss our future work and draw

some conclusions in Sec. 5.5.

5.2 Multispectral Imaging Model

Multispectral imaging is different from ordinary image acquisition and reconstruction

problems. Instead of recovering the reflectance or radiance in the spectral-frequency domain,

we intend to minimize the error between the image acquired by the camera and the image

obtained in CIEXYZ color space which truly represents the HVS. The linear transform

from the camera color space to the CIEXYZ space enables the camera to reproduce color

accurately. We introduce the two imaging models first, then describe how to connect them

by color transformation. The special imaging model of the Bayer CFA is presented at the

end of this section.

5.2.1 Camera Imaging Model

Color image formation in a camera can be described as an optical sensor recording the

reflected illuminant l(λ) incident on an object with a nonluminescent surface r(λ) [88]. The

term r(λ) denotes the reflectance of the nonluminescent surface. At each cell of the sensor,
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this process can be written as an integration over the wavelength in the visible light range

gc =

∫ λmax

λmin

pc(λ)l(λ)r(λ)dλ (5.1)

where gc denotes the captured color value. The function pc(λ), which is normally called the

sensor sensitivity, describes the combined response of the optical sensor and the spectral

transmittance of the color filter.

Since the visible spectrum is from 400 nm to 700 nm, we define an integer K to be the

total number of samples in this spectral range. Consider a camera with an m × n sensor

array and denote N = m× n. Let the matrix P ∈ RqN×KN has the form

P =



pT1 ⊗ IN

pT2 ⊗ IN
...

pTq ⊗ IN


(5.2)

where IN is the identity matrix with size N ×N and the vector pi ∈ RK×1, i = 1, 2, · · · , q,

is the sampled spectral sensitivity function of the ith color. The imaging model defined in

Eq. (5.1) can be extended to the entire image in a matrix-vector form:

g = PLr (5.3)

The vector r = [rT1 , r
T
2 , · · · , rTK ]T represents the reflectance of the input scene, where ri ∈

RN×1, 1 ≤ i ≤ K, contains the sampled reflectance spectrum of the ith spatial location.

The block-diagonal matrix L = diag(L1, L2, · · · , LK) records the illuminant spectra, where

Li = liIN , 1 ≤ i ≤ K, is a diagonal block. The constant li is the illuminant spectrum value

at the ith spectral sampling locations.

For simplicity we only optimize the sensitivity functions under the standard D65 illumi-

nant. Let x = Lr denote the spectral radiance of the scene under the D65 illuminant. Then
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the simplified image formation model of Eq. (5.3) is given by:

g = Px (5.4)

Most published work in the color imaging area assumes that the radiance information is

sufficiently conserved with a 10 nm sampling interval. This results in K = 31 samples for

the visible wavelength range from 400 nm to 700 nm.

5.2.2 Human Visual System Imaging Model

A digital camera matches the color sensitivity of human eyes with a set of similar

sensitivity functions as shown in Fig. 5.1. Despite the complexity of our eyes, the color

perception of the human eye has been well studied since the 1920s. To eliminate the variation

of human eyes, CIE defined the 2◦ standard observer to formulate the CIE1931 XYZ color

space followed by a slightly modified version—CIE1964 XYZ space with the 10◦ standard

observer. Since the CIEXYZ color space is closer to the human visual subspace than other

spaces [89], it is normally chosen to truly represent the scene perceived by the HVS.

The color matching functions of the CIEXYZ color space can be described by a matrix

Ā =


x̄T

ȳT

z̄T

 (5.5)

where x̄, ȳ and z̄ ∈ R31×1 are the sampled CIEXYZ color matching functions in Fig. 2.8(b).

Let f = [fTx , f
T
y , f

T
z ]T , fi ∈ RN×1, i = x, y, z, be the vector of the full-color image cap-

tured in CIEXYZ space. The following equation describes the acquisition process under the

illuminant L:

f = ALr (5.6)
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where the matrix A ∈ R3N×31N represents the projection from the scene radiances to the

CIEXYZ color space and has the form

A =


x̄T ⊗ IN

ȳT ⊗ IN

z̄T ⊗ IN

 (5.7)

A similar imaging model to the one defined in Eq. (5.4) can be derived by using a fixed

illuminant L

f = Ax (5.8)

where the vector x represents the scene radiance under the fixed illuminant D65.

5.2.3 Sensor Sensitivities and Color Transformation

Strictly speaking, the acquired image gs in Eq. (5.4) is not a color image but the pro-

jected scene radiance from the visible spectrum to the camera color space. Before this image

is transformed to CIEXYZ color space, the color difference between the image captured by

the camera and the true color image in the CIEXYZ space mainly depends on how simi-

lar the camera sensitivity function P and the CIEXYZ matching function A is. However,

no linear transform from the camera color space to the CIEXYZ space can be performed

without generating errors unless the sensor has a response which is a linear combination of

CIEXYZ standard matching functions [90, 91]. As a result, a linear transform T is chosen

to minimize the color difference between these two spaces

T = argmin
T

{
‖T̄ g − f‖2

}
(5.9)

where the block matrix T̄ has the form

T̄ = T ⊗ IN (5.10)
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The linear transform T can be considered as a reference by which the camera knows the true

color of the perceived value in the CIEXYZ space.

The color matching functions M corresponding to the camera sensitivity functions P̄ is

given by

M̄ = T P̄ (5.11)

where the color match matrix M̄ has the form

M̄ =


mT
r

mT
g

mT
b

 (5.12)

The vectors mr, mg and mb are the three color matching functions of the red, green and blue

channels. The sensitivity matrix P̄ is the special case of Eq. (5.2) when N = 1, such as

P̄ =



pT1

pT2
...

pTq


(5.13)

A traditional way to derive the transformation matrix T for a given sensitivity matrix P̄

requires prior knowledge of reflectance. A set of scenes with known reflectance are acquired

by the camera sensitivity functions and the standard CIEXYZ matching function under a

standard illuminant spectrum. The GretagMacbeth ColorChecker is normally chosen to be

the training scene for this purpose, which is shown in Fig. 5.3. Twenty-four tristimulus

values are acquired under D65 illuminant using Eq. (5.4) and (5.8) to build the matrices

Gm
s and Fm ∈ R24×3, where each row of these two matrices represents the tristimulus value

of each color patch. Each row of the linear transformation matrix T can be computed by
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Figure 5.3: The GretagMacbeth ColorChecker [92].

solving the linear equations

Gm
s T

T
i = fmi (5.14)

where Ti is the ith row of T and fmi is the ith column of Fm, i = 1, 2, 3. The color matching

functions can be derived using Eq. (5.11). Fig. 5.4 shows one set of sensitivity functions and

the corresponding color matching functions derived by this method.
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Figure 5.4: Camera sensitivity functions and the corresponding color matching functions.
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5.2.4 Imaging with Bayer Color Filter Array

To model the single-sensor acquisition in most cameras, a matrix D is used to downsam-

ple a full-color image to generate a CFA image. Assuming that the camera acquires images

with a Bayer CFA, then a noisy imaging model for this process is defined by

y = DPx+ u (5.15)

where y represents the noisy CFA image and u ∈ RN×1 is the measurement noise vector.

We treat the green channel at two different spatial sampling locations in the 2 × 2 Bayer

pattern as two different color channels. The spatial sampling matrix D has the form D =

diag(Dr, Dg, Db). The block Di, i = r, g, b, is a row-deficient identity matrix that samples

the corresponding color channel according to the Bayer CFA pattern.

5.3 Multichannel Wiener filter

The best linear minimum mean square estimate f̂ is given by the multichannel Wiener

filter

f̂ = Wy (5.16)

Applying Eq. (5.8) and (5.15), the Wiener filter W can be derived by

W =E{fyT}E{yyT}−1

=E
{
AxxTMTDT}E{DPxxTP TDT +DPxuT + uxTP TDT + uuT

}−1

=ARxP
TDT [DPRxP

TDT +DPRxu +RuxP
TDT +Ru]

−1

(5.17)

where Rx and Ru are the autocorrelation matrices of the scene radiance and noise. We

assume that the scene and noise are uncorrelated with each other; that is, Rxu = Rux = 0.
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Then the above equation can be simplified as

W = ARxP
TDT [DPRxP

TDT +Ru]
−1 (5.18)

The scene autocorrelation matrix Rx has the form

Rx =



R(1,1) R(1,2) · · · R(1,31)

R(2,1) R(2,2) · · · R(2,31)

...
...

. . .
...

R(31,1) R(31,1) · · · R(31,31)


(5.19)

whose blocks contain both the spatial and spectral correlation coefficients. In particular, the

block R(i,j) records the spatial-spectral correlation between the scene radiance at ith and jth

spectral locations, 1 ≤ i, j ≤ 31. Direct implementation of matrix Rx is difficult without any

simplification because of its large size. Assuming that the spatial and spectral correlations

are separable, one can rewrite the matrix Rx as

Rx =



r(1,1)Rs r(1,2)Rs · · · r(1,31)Rs

r(2,1)Rs r(2,2)Rs · · · r(2,31)Rs

...
...

. . .
...

r(31,1)Rs r(31,2)Rs · · · r(31,31)Rs


(5.20)

where the block Rs ∈ RN×N describes the spatial correlation of the scene and the constant

r(i,j), 1 ≤ i, j ≤ 31, denotes the spectral correlation between the ith and jth scene radiance.

Eq. (5.20) can be further written as a Kronecker product

Rx = Rr ⊗Rs (5.21)

where Rr ∈ R31×31 is the spectral correlation matrix.
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Applying Eq. (5.21), the multichannel Wiener filter can be rewritten as

W = A(Rr ⊗Rs)P
TDT [DPRxP

TDT +Ru]
−1 (5.22)

We have the identity: A(Rr⊗Rs)P
T = (ĀRrP̄

T )⊗Rs. The proof of is presented in Appendix

C. The Wiener filter can be further written as

W = [(ĀRrP̄
T )⊗Rs]D

T [DP̄RxP
TDT +Ru]

−1

= {[(ĀRrP̄
T )⊗Rs](PRxP

T )−1}{(PRxP
T )DT [DPRxP

TDT +Ru]
−1}

(5.23)

The second part of Eq. (5.23) is the linear minimum-mean-square estimator of the full-color

image g in Eq. (5.4) given the observed CFA image y. In fact, the Wiener filter

Ws = (PRxP
T )DT [DPRxP

TDT +Ru]
−1 (5.24)

linearly demosaics the CFA image y in the camera color space. The first part of Eq. (5.23)

can be rewritten as

Wr = [(ĀRrP̄
T )⊗Rs](PRxP

T )−1

= [(ĀRrP̄
T )⊗Rs][(P̄RrP̄

T )⊗Rs]
−1

(5.25)

Using the mixed-product property of the Kronecker product given in Appendix C, we have

Wr = [(ĀRrP̄
T )⊗Rs][(P̄RrP̄

T )−1 ⊗R−1
s ]

= ĀRrP̄
T (P̄RrP̄

T )−1 ⊗ IN
(5.26)

In fact, the process described in the above equation is the color matching step accomplished

by a Wiener filter. As described in Chapter 1, the color transformation is accomplished

after demosaicking. By assuming the spectral and spatial correlations are separable in the
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multichannel Wiener filter, we equivalently separate the demosaicking and color matching

step in the pipeline.

Implementing the multichannel Wiener filter in the spatial domain involves a huge

matrix inversion. A similar approach to the one introduced in Sec. 4.1.3 can be used here

with the benefit of the FFT algorithm. Assuming the scene is wide sense stationary in the

spatial-frequency domain, a Fourier transform in the spatial-frequency domain diagonalizes

the spatial correlation matrix Rs and the result is the spatial power spectrum Ss

Sx = Rr ⊗ Ss (5.27)

The multichannel Wiener filter in the spatial-frequency domain has the form

W = ASxM
TT H

[
TMSxM

TT H + Su
]−1

(5.28)

where Su represents the noise power spectrum. The transform T is the equivalent operation

in the spatial-frequency domain corresponding to the spatial sampling of the Bayer pattern.

The definition of this transform is provided in Appendix B.

The spatial power spectrum Ss can be estimated using the same method introduced in

Sec. 4.2.3. The green channel of the acquired CFA image is chosen to estimate the parameters

in the isotropic power density function model (Eq. (4.30)). Since there is no blur degradation

in the image acquisition, the inverse filtering described in Eq. (4.28) is not necessary here

for the power spectrum estimation. Based on our tests, the random process in the spectral-

frequency domain is nonstationary in general. As a result, the correlation matrix Rr is not a

Toeplitz matrix but only a symmetric matrix. Fig. 5.5 depicts the spectral correlation matrix

of a multispectral image along with a 31× 31 correlation matrix of a stationary process. To

avoid bias in the solution, we use the mean correlation matrix of the multispectral images

in the test library as prior knowledge to increase the accuracy.
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Figure 5.5: An example of the nonstationary correlation matrix of multispectral image com-
paring with the correlation matrix of stationary random process.

5.4 Simulation and Results

5.4.1 Optimization Metric

The single-sensor imaging model formulated in Eq. (5.15) is in the CIEXYZ color space,

which is not perceptually uniform. In other words, the tristimulus distance does not truly

represent the color difference between two points in the XYZ color space. Since the Y channel

of XYZ color space measures the luminance of the scene, one can use only two parameters

to represent the tristimulus values for a given Y . Define

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z
= 1− x− y

(5.29)

where X, Y and Z are tristimulus values in the CIEXYZ color space. The new color space is

known as the CIE xyY color space. Fig. 5.6 depicts the chromaticity of the CIEXYZ space
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using x and y as two axes. It is clear that the geometric distance in this plot is not linearly

related to the color difference.

Figure 5.6: The CIEXYZ color space chromaticity diagram [93]. The plot is shown in sRGB
color space.

In a perceptually uniform color space, a change of the same amount in the tristimulus

value results in a change of about the same visual difference. As described in Chapter 2, the

CIELAB color space is a perceptually uniform space. The nonlinear transform between the

CIEXYZ and CIELAB spaces is given in Eq. (2.16) and (2.17). The color difference between

two colors in CIELAB space is defined by

∆E∗ab =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 (5.30)

where (L∗1, a
∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2) are two colors in the CIELAB space. Since we evaluate the

color difference over the entire image plane, the mean color difference of all pixels is chosen

to be our error criterion.
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5.4.2 Sensitivity Function Optimization

To simplify the optimization, we assume that the camera sensor with a Bayer CFA

senses three different colors. We further assume that the three sensitivity curves of the

camera sensor have a Gaussian shape [78]

Si(λ) = exp

(
−(λ− λi)2

w2
i

)
(5.31)

where λi and wi, i = r, g, b, control the center spectral frequency and the bandwidth of the

ith channel. An IR blocking filter is applied on the three Gaussian curves to simulate a real

camera. The definition of this filter is given by [78]

fIR(λ) =


0.9, if 400 nm < λ ≤ 580 nm,

− 9
1400

λ+ 162
35
, if 580 nm < λ ≤ 720 nm,

0, elsewhere.

(5.32)

Fig. 5.7 depicts the spectral-frequency response of the IR blocking filter. The continuous
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Figure 5.7: IR blocking filter response.
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function Pi is a combination of the Gaussian curve and the IR blocking filter:

Pi(λ) = Si(λ)fIR(λ) (5.33)

The sensitivity vector pi can be acquired by sampling the corresponding curve Pi with a

10 nm interval in the visible wavelength range.

Yasuma et al. presented a multispectral image database which contains 32 images [94].

They acquired these images using a cooled CCD camera (Apogee Alta U260) for a wide

variety of real-world materials and objects. The range of wavelength is from 400 nm to

700 nm which results in 31 bands for each multispectral image. The illuminant used in the

acquisition was the CIE standard D65, and the camera was focused on the 550 nm image

band. The spatial resolution of these image is 512× 512. We chose the first sixteen images

in the library to optimize the sensitivity functions. Fig. 5.8 shows their corresponding sRGB

images acquired under D65 illuminant.

As described in Sec. 5.3, the spectral random process is not stationary. The most

commonly used decaying-exponential model is not able to capture the correlation among

spectral bands. To avoid the errors introduced by an inaccurate correlation model, we

precomputed the spectral correlation matrices of sixteen images. The mean is shown in

Fig. 5.9. We use this matrix as the spectral correlation matrix in the multispectral Wiener

filter to optimize the sensitivity functions.

We acquired the ground truth image f using the imaging model (5.8) with the standard

CIEXYZ color matching functions. For optimization purposes, the spatial power spectrum

Ss of each test image was estimated from the Y channel of image f using the isotropic power

density function model (4.30). The SNR is defined by

SNRdB = 20 log10

f̄

σ
(5.34)

where f̄ is the mean of the image f and σ is the noise standard deviation.
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Figure 5.8: The sixteen multispectral images for the optimization rendered into sRGB color
space under D65 illuminant.

To find the optimal solution for the low-noise level, we generated a series of sensitivity

functions with the center frequencies in the ranges λr = 600–700 nm, λg = 500–600 nm

and λb = 400–500 nm. The bandwidth parameters wi, i = r, g, b, is in the range of 5–

100. The CFA images were obtained by the model (5.15) with the corresponding sensitivity

functions. We fixed the SNR at 40 dB and calculated the noise variance using Eq. (5.34).

The multichannel Wiener filter in Eq. (5.28) was chosen to reconstruct the full-color images

in the CIEXYZ color space.

To speed up the optimization process, the searching steps for all the design parameters

were initially set to 20 to locate the range of the optimal solution. After that, the step of
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Figure 5.9: The average spectral correlation matrix of the first sixteen images in the library.

center frequencies is reduced to 10 nm, while the step of bandwidth is reduced to 5. We

transferred both the reconstructed image f̂ and the true image f into the CIELAB color

space to calculate the color difference between them. The sensitivity function set which

results in the minimum average color difference over the sixteen images was considered

the optimal choice. The optimal sensitivity functions we found in the first step of the

optimization are shown in Fig. 5.10(a). The center frequency and bandwidth parameters

are (λr, λg, λb) = (610, 550, 450) and (wr, wg, wb) = (50, 50, 30). The corresponding color

matching functions are depicted in Fig. 5.10(b).

The second step of optimization aimed to discover the optimal green sensitivity functions

for different noise levels. We fixed the center frequency λi, i = r, g, b, and the bandwidth

parameters wr and wb to the solution in the first optimization. This simplifies the design

scope and makes the sensitivity functions physically feasible. We tuned the green channel

bandwidth parameter wg in the range of 5–100 with a step of 5. The SNRs we optimized are

in the range of 10 dB to 35 dB with a 5 dB step. The multichannel Wiener filter and the error

metric employed in this step is the same as the one used in the first step of optimization.

The green channel sensitivity function with the minimum average color difference over the

sixteen images is the optimal green sensitivity.
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Figure 5.10: The optimal sensitivity functions and the corresponding matching functions for
40 dB SNR.

We report the optimal green bandwidth parameters wg for different SNRs in Table 5.1.

The bandwidth of green channel sensitivity function reduces as the SNR comes down. The

optimal green sensitivity is the same as the result in the first step of optimization when the

SNR is larger than 25 dB. The sensitivity functions and the matching functions shown in

Fig. 5.11 are the optimal sensitivities for the SNRs of 10 dB, 20 dB and 30 dB. Although

the sensitivity functions of the red and blue channels are the same, their matching functions

have been slightly changed by the green channel sensitivity.

Table 5.1: The optimal green channel bandwidth parameters wg for different SNRs.
SNR 10 dB 15 dB 20 dB 25 dB 30 dB
wg 20 30 40 45 50

5.4.3 Multispectral Image Reconstruction

To visually and numerically verify the performance of the optimal sensitivity functions,

we applied them on the remaining sixteen multispectral images in the library to acquire the

CFA images. Fig. 5.12 shows the corresponding sRGB images of the sixteen multispectral

images acquired under D65 illuminant. The SNRs were set to the range from 10 dB to
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Figure 5.11: The optimal sensitivity functions and corresponding matching functions for
different SNRs. The curves are labeled by “�” (10 dB), “�” (20 dB) and “◦” (30 dB).

25 dB with a 5 dB increment. At each SNR level, we obtained one CFA image using the

optimal sensitivity functions and acquired the other CFA image using the default sensitivity

functions (the optimal sensitivity function for 40 dB SNR).

The CFA images are then reconstructed by a frequency-domain demosaicking method

[57]. Assuming that the demosaicking does not change the noise variance, we applied a

single-channel Wiener filter to linearly denoise each color channel independently. The full-

color images were transferred from the camera color space to the CIEXYZ space by applying

a linear transform T on the tristimulus value of each pixel. The transformation matrix T

was calculated by the method described in Sec. 5.2.3. We calculated the color difference

between the resulting image and the image acquired directly using the CIEXYZ standard

matching functions in the CIELAB color space.

Table 5.2 shows the color difference ∆E∗ab between the reconstructed CFA images, which

were captured by the fixed and the optimal sensitivity functions. Since the optimal green

sensitivity for 30 dB and 35 dB are the same as the fixed sensitivity for the 40 dB case, they

are not included in this table. Generally speaking, images with smaller color differences have

better visual quality than images with larger values. We show the smaller ∆E∗ab values of

each SNR in bold.
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Figure 5.12: The sixteen multispectral images for the reconstruction rendered into sRGB
color space under D65 illuminant.

A portion of No. 1 test image in Fig. 5.13 and the cropped No. 5 test image in Fig. 5.14

depict the reconstructed sRGB images of the CFA acquired by the fixed and optimal sensi-

tivity functions at different noise levels. The absolute difference image between the recon-

structed image and the true sRGB image is also shown in each figure. Due to the gamma

correction in the transformation from the CIEXYZ to the sRGB color space, the noise in

the low intensity regions was amplified more than the noise in the high intensity regions.

The images reconstructed from the CFA images acquired by the optimal sensitivity functions

are less noisy with accurate color reproduction, which verifies the result of our numerical

analysis.
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Table 5.2: Color difference ∆E∗ab comparison of the images captured by the fixed and the
optimal sensitivity functions at different SNR levels. The SNR levels are 10 dB, 15 dB, 20 dB
and 25 dB.

No.
10 dB 15 dB 20 dB 25 dB

fixed opt. fixed opt. fixed opt. fixed opt.
1 18.65 15.86 12.52 10.97 8.08 7.39 5.40 5.14
2 17.20 14.33 11.60 9.93 7.68 6.89 5.44 5.11
3 16.95 14.44 11.04 9.77 7.00 6.57 4.50 4.48
4 17.81 14.79 11.94 10.10 7.74 6.80 5.12 4.77
5 19.54 16.45 12.81 11.02 8.23 7.39 5.56 5.22
6 13.29 11.73 9.42 8.80 6.48 6.66 4.71 5.16
7 14.67 12.17 9.38 7.92 5.82 5.12 3.70 3.42
8 22.53 19.21 15.50 13.66 10.70 9.95 7.93 7.72
9 16.96 14.18 11.86 10.09 7.70 6.84 5.01 4.72
10 16.71 14.04 10.82 9.32 6.83 6.19 4.40 4.20
11 20.80 17.78 15.55 12.98 10.23 8.96 6.55 5.99
12 12.10 10.22 7.49 6.54 4.76 4.32 3.21 3.08
13 15.77 13.25 10.41 9.07 6.86 6.19 4.71 4.54
14 13.29 10.91 8.70 7.31 5.52 4.78 3.54 3.29
15 16.43 14.33 11.81 10.38 7.74 7.14 5.02 4.93
16 20.40 17.63 16.23 13.83 11.44 9.80 7.48 6.75

5.5 Conclusion and Discussion

In this chapter, an optimization of the sensitivity functions for the Bayer sensor is

presented. A Wiener filter with consideration of both spatial and spectral correlations is

formulated based on a multispectral imaging model. We use this Wiener filter to reconstruct

the CFA images acquired by the simulated camera sensitivity function during the optimiza-

tion. The color difference in the CIELAB color space is chosen to be the error metric. Since

a digital tunable filter makes it feasible to have a CFA with tunable spectral response, we

further optimized the green channel bandwidth according to the noise level. The reconstruc-

tion results show that the CFA images acquired by the optimal sensitivity functions can

be recovered with a smaller color difference and better visual quality than the CFA images

obtained by the fixed sensitivity function. At low SNR, the optimized sensitivity functions
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well balanced the color reproduction accuracy and noise amplification in the color transfor-

mation. As a consequence, it is possible to have a camera with tunable sensitivity functions

for different shooting conditions to improve the image quality.

Some practical issues remain in our optimization which are required to be investigated

further. There are multiple noise sources in digital cameras. Other than the Gaussian

independent noise, the signal-dependent noise in cameras follows the Poisson distribution.

Signal-dependent noise affects the multispectral imaging model and the method of formu-

lating the multichannel Wiener filter since the uncorrelated assumption may not be valid.

Also, we achieved a linear minimum-mean-squared solution in the optimization by using the

Wiener filter. However, nonlinear algorithms are generally used in the reconstruction of real

cameras. Nonlinear denoising and demosaicking algorithms may change the optimal sensi-

tivity functions. More comprehensive simulations and experiments have to be performed to

reduce errors caused by the linear model.
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(a) True sRGB image

(b) Fixed (10 dB) (c) Fixed diff. (10 dB) (d) Fixed (15 dB) (e) Fixed diff. (15 dB)

(f) Optimal (10 dB) (g) Optimal diff. (10 dB) (h) Optimal (15 dB) (i) Optimal diff. (15 dB)

Figure 5.13: The reconstructed full-color images with difference images of No. 1 multispectral
images in the sRGB color space: (b)–(e) the results using the fixed sensitivity functions; (f)–
(i) the results using the optimal sensitivity functions. The SNRs are 10 dB and 15 dB:
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(a) True sRGB image

(b) Fixed (10 dB) (c) Fixed diff. (10 dB) (d) Fixed (15 dB) (e) Fixed diff. (15 dB)

(f) Optimal (10 dB) (g) Optimal diff. (10 dB) (h) Optimal (15 dB) (i) Optimal diff. (15 dB)

Figure 5.14: The reconstructed full-color images with difference images of No. 5 multispectral
images in the sRGB color space: (b)–(e) the results using the fixed sensitivity functions; (f)–
(i) the results using the optimal sensitivity functions. The SNRs are 10 dB and 15 dB.
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Chapter 6

Summary

6.1 Summary of Results

A digital camera is a complicated imaging system in which both hardware and software

components work together to acquire images. For a long time, developers concentrated on

improving the optical image obtained by the traditional optical parts of cameras with image

processing techniques. By including both the optical and image reconstruction problems in

a single design framework, we exploit the ability of common image reconstruction techniques

to assist the system-level design of cameras. This design methodology described in this

dissertation can be extended to other parts of the image acquisition pipeline.

An adaptive image acquisition approach is first introduced in Chapter 3. A new imaging

model of defocusing acquisition is defined that considers both aliasing and noise. A criterion

to estimate the optimal focus setting for a specific scene is derived. The model-based Wiener

filter is used to minimize the end-to-end reconstruction error during the acquisition. Both

the Wiener filter and the criterion are adapted to the power spectrum of the input scene.

Numerical and visual results show that the proposed approach outperforms traditional ac-

quisition methods with or without a fixed anti-aliasing filter. The proposed approach is

robust with respect to various noise levels, and it is practical in some cases to replace the

commonly used four-spot birefringent filter with this method.

The extension of defocusing acquisition to single-sensor color cameras is presented in

Chapter 4. The CFA used in such a camera makes the reconstruction a joint demosaicking

and deconvolution problem. An imaging model built on the modulated LC1C2 domain dra-

matically suppresses the cross-channel correlation among RGB channels. As a consequence,

the multichannel Wiener filter and the error criterion are simplified without the need to
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account for these correlations. We presented results that are an improvement over a tra-

ditional anti-aliasing filter. Our approach includes a postprocessing joint deblurring and

demosaicking step. The error criterion to determine the optimal defocus setting is accurate

for different scenes and noise levels.

In Chapter 5, an optimization of camera sensor sensitivity functions was introduced. A

multichannel Wiener filter was designed to minimize the color difference between the image

captured by the camera and the true image in the CIELAB color space. We optimized the

green sensitivities for different noise levels after determining the sensitivity functions of the

red and blue channels. Simulation results show that the images captured with the optimal

sensitivity functions outperform the images captured with the fixed sensitivity functions in

terms of the color difference and visual quality.

6.2 Future Directions

A number of practical issues in this research are unresolved. In Chapter 3 and 4,

we chose a circular blur to approximate the out-of-focus blur generated by a camera lens.

However, the optical transfer function of the camera lens is much more complicated and is

not shift-invariant in general. A comprehensive characterization of the response of the real

out-of-focus blur is required to generate more accurate results by the defocusing approach.

In color defocusing acquisition, the response of out-of-focus is different in each color channel.

This difference generates chromatic aberration in the acquired images which requires a post-

processing step to correct.

The defocusing acquisition approach relies on the incorporation with the autofocus

system of a camera. Most autofocus systems use multiple separate optical sensors to find

the optimal focus point for the camera. These sensors measure the region of interest in

the scene. Using autofocus sensors to search the optimal defocus setting rather than the

main optical sensor is more feasible for this approach. A possible speedup of the defocusing
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algorithm can be accomplished. Also, a front focus or a back focus can generate the same

amount of out-of-focus blur. The choice from these two is required for real applications.

The optimization of sensitivity functions introduced in Chapter 5 also has some open

areas. We only derived the methodology to optimize the sensor with a Bayer CFA. A general

optimization for a two-by-two CFA pattern with four color channels can be derived using

a similar approach. A two-by-four or four-by-two CFA pattern optimization increases the

complexity of this algorithm but also increases the design flexibility. The choice of the spatial

sampling pattern is an important area for future research.

The choice of the measurement noise model should be investigate more in future research.

White Gaussian noise is assumed in most of this research. Although a signal-dependent noise

model was chosen in Chapter 3, the variance of the dependent part is small. However, only

amplifier noise in digital cameras can be modeled by Gaussian noise. The photon shot noise,

which follows a Poisson distribution, is the major noise source in the bright region of the

image. Future research should include the photon shot noise model which makes it more

applicable for digital cameras.
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Appendix A

2D DFT matrix

To define a two-dimensional DFT matrix, two one-dimensional DFT matrices for each

direction (horizontal and vertical) are defined as follows:

Fm =
1√
m



1 1 · · · 1

1 ω1
m · · · ωm−1

m

...
...

. . .
...

1 ωm−1
m · · · ω

(m−1)(m−1)
m


,

and

Fn =
1√
n



1 1 · · · 1

1 ω1
n · · · ωn−1

n

...
...

. . .
...

1 ωn−1
n · · · ω

(n−1)(n−1)
n


,

where ωm = e−j
2π
m and ωn = e−j

2π
n . The 2D DFT matrix is a Kronecker product of Fm and

Fn. The order of the Kronecker product depends on the method of constructing the image

vector. For example, if the image vector is formed with column order, the 2D DFT matrix

has the following structure:
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Fmn = Fn ⊗Fm

=
1√
mn



Fm Fm · · · Fm

Fm ω1
nFm · · · ωn−1

n Fm
...
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. . .

...

Fm ωn−1
n Fm · · · ω

(n−1)(n−1)
n Fm



=
1√
mn



1 1 · · · 1 · · · · · · 1 1 · · · 1

1 ω1
m · · · ωm−1
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m
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...

. . .
...

...
...

. . .
...

1 ωm−1
m · · · ω

(m−1)(m−1)
m · · · · · · 1 ωm−1

m · · · ω
(m−1)(m−1)
m

...
...

...
. . .

...
...

...

...
...

...
. . .

...
...

...

1 1 · · · 1 · · · · · · ω
(n−1)(n−1)
n ω

(n−1)(n−1)
n · · · ω

(n−1)(n−1)
n

1 ω1
m · · · ωm−1

m · · · · · · ω
(n−1)(n−1)
n ω

(n−1)(n−1)
n ω1

m · · · ω
(n−1)(n−1)
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m
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. . .
...

...
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. . .
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m · · · ω
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n ω
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.
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Appendix B

Structure of Matrix K

We define four linear transformations for four color channels in the Bayer CFA images

as: Tr = FsDrFHb , Tg1 = FsDg1FHb , Tg2 = FsDg2FHb and Tb = FsDbFHb , where Fb ∈ Rmn×mn

and Fs ∈ Rmn/4×mn/4 are 2D DFT matrices. The matrix K can be expressed as follows:

K =



TrST
H
r TrST

H
g1

TrST
H
g2

TrST
H
b

Tg1ST
H
r Tg1ST

H
g1

Tg1ST
H
g2

Tg1ST
H
b

Tg2ST
H
r Tg2ST

H
g1

Tg2ST
H
g2

Tg2ST
H
b

TbST
H
r TbST

H
g1

TbST
H
g2

TbST
H
b


, (B.1)

where the diagonal matrix S ∈ Rmn×mn is of the form: S = diag[s1, s2, · · · , smn]. Since

the sampling matrices Dr, Dg1 , Dg2 and Db are separable, one can describe them using the

Kronecker product of two one-dimensional downsampling matrices as follows:



Dr = D2n ⊗D1m

Dg1 = D1n ⊗D1m

Dg2 = D2n ⊗D2m

Db = D1n ⊗D2m

(B.2)
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For the images captured by the Bayer CFA pattern, the 1-D downsampling matrices D1m ∈

Rm/2×m and D1n ∈ Rn/2×n are of the following form:



1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 0


. (B.3)

Similarly, the structure of downsampling matrice D2m ∈ Rm/2×m and D2n ∈ Rn/2×n are given

by the following form: 

0 1 0 0 · · · 0 0

0 0 0 1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1


. (B.4)

Since the 2D DFT matrices are separable, one can apply the mixed-product property of

the Kronecker product to express each of the four linear transformations Tr, Tg1, Tg2 and Tb

using the row and column transformations. For example, the transformation of red channel

Tr can be rewritten as follows:

Tr = FsDrF
H
b

= (Fn/2 ⊗Fm/2)(D2n ⊗D1m)(FHn ⊗FHm )

= (Fn/2D2nFHn )⊗ (Fm/2D1mFHm ).

(B.5)
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Denote Trn = Fn/2D2nFHn and Trm = Fm/2D1mFHm . It is straightforward to show that they

are both sparse matrices with the following forms:

Trn =
n

2



1 ej
2π
n

(n
2

)

ej
2π
n ej

2π
n

(n
2

+1)

. . . . . .

ej
2π
n

(n
2
−1) ej

2π
n

(n−1)


n
2
×n

,

Trm =
m

2



1 1

1 1

. . . . . .

1 1


m
2
×m

.

(B.6)

One can derive similar matrices for the other three linear transformations. We list them

here for reference. For the blue channel transformation Tb = Tbn⊗Tbm, the two matrices Tbn

and Tbm have the following forms:

Tbn =
n

2



1 1

1 1

. . . . . .

1 1


n
2
×n

,

Tbm =
m

2



1 ej
2π
m

(m
2

)

ej
2π
m ej

2π
m

(m
2

+1)

. . . . . .

ej
2π
m

(m
2
−1) ej

2π
m

(m−1)


m
2
×m

.

(B.7)
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For the green1 channel transformation Tg1 = Tg1n ⊗ Tg1m, the two matrices Tg1n and Tg1m

can be described as follows:

Tg1n =
n

2



1 1

1 1

. . . . . .

1 1


n
2
×n

,

Tg1m =
m

2



1 1

1 1

. . . . . .

1 1


m
2
×m

.

(B.8)

Finally, for the green2 channel transformation Tg2 = Tg2n ⊗ Tg2m, one can express the two

matrices Tg2n and Tg2m as follows:

Tg2n =
n

2



1 ej
2π
n

(n
2

)

ej
2π
n ej

2π
n

(n
2

+1)

. . . . . .
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2π
n

(n
2
−1) ej

2π
n

(n−1)


n
2
×n

,

Tg2m =
m

2



1 ej
2π
m

(m
2
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2π
m ej

2π
m

(m
2

+1)

. . . . . .

ej
2π
m

(m
2
−1) ej

2π
m

(m−1)


m
2
×m

.

(B.9)

The diagonal elements of blocks Kij, i, j = r, g1, g2, b, can be acquired by a direct matrix

multiplication. In particular, the diagonal elements of blocks Krr, Kg1g1 , Kg2g2 and Kbb are
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as follows: 

k1 = s1 + sm
2

+1 + smn
2

+1 + smn
2

+m
2

+1

k2 = s2 + sm
2

+2 + smn
2

+2 + smn
2

+m
2

+2

...

km
2

= sm
2

+ sm + smn
2

+m
2

+ smn
2

+m

km
2

+1 = sm+1 + sm+m
2

+1 + smn
2

+m+1 + smn
2

+m+m
2

+1

...

km = sm+m
2

+ s2m + smn
2

+m+m
2

+ smn
2

+2m

...

...

kmn
4
−m

2
+1 = smn

2
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2
−m

2
+1 + smn−m+1 + smn−m

2
+1

...

kmn
4

= smn
2
−m

2
+ smn

2
+ smn−m

2
+ smn.

(B.10)
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The diagonal elements of blocks Kg1r and Kbg2 have the form:



k1 = s1 + sm
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2π
n

(n
2

)smn
2

+1 + e−j
2π
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2
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2
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For blocks Kg2r and Kbg1 , their diagonal elements can be described as follows:
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(B.12)
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The diagonal elements of the block Kbr are expressed as follows:
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Finally, the diagonal elements of the block Kg2g1 have the forms:
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Appendix C

Correlation Matrix Transformation

The sensitivity functions of a q-color sensor is given by

P̄ =



pT1

pT2
...

pTq


(C.1)

where pi ∈ R31×1, 1 ≤ i, j ≤ q, is the sensitivity function of the ith color. The corresponding

sensitivity matrix of an m× n sensor array has the form

P̄ =



pT1 ⊗ IN

pT2 ⊗ IN
...

pTq ⊗ IN


(C.2)

where IN is the identity matrix and N = m× n. Based on the assumption that the spectral

and spatial correlations of a scene are separable, the correlation matrix of the scene can

be written by a Kronecker product of the spectral correlation matrix Rr ∈ R31×31 and the

spatial correlation matrix Rs ∈ RN×N

Rx = Rr ⊗Rs (C.3)
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The transpose of a Kronecker product is the Kronecker product of two transposed ma-

trices. That is

(A⊗B)T = AT ⊗BT (C.4)

Applying Eq. (C.3) and using the above property, the correlation matrix transform is given

by

PRxP
T =



pT1 ⊗ IN

pT2 ⊗ IN
...

pTq ⊗ IN


(Rr ⊗Rs)

[
p1 ⊗ IN p2 ⊗ IN · · · pq ⊗ IN

]

=



(pT1 ⊗ IN)(Rr ⊗Rs)

(pT2 ⊗ IN)(Rr ⊗Rs)

...

(pTq ⊗ IN)(Rr ⊗Rs)


[
p1 ⊗ IN p2 ⊗ IN · · · pq ⊗ IN

]
(C.5)

The Kronecker product has a mixed-product property, which is given by the identity

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (C.6)

where A, B, C and D are matrices with the proper sizes to form the matrix products above.

Using this property, we have

PRxP
T =



(pT1Rr)⊗Rs

(pT2Rr)⊗Rs

...

(pTq Rr)⊗Rs


[
p1 ⊗ IN p2 ⊗ IN · · · pq ⊗ IN

]

= (P̄RrP̄
T )⊗Rs

(C.7)
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Similarly, the cross-correlation between the CIEXYZ color space and the camera color

space has the following transform

ARxP
T = (ĀRrP̄

T )⊗Rs (C.8)

The matrix Ā has the form

Ā =


x̄T

ȳT

x̄T

 (C.9)

whose rows are the standard color matching functions of CIEXYZ color space. The corre-

sponding color matching matrix A of an m× n sensor array has the form

Ā =


x̄T ⊗ IN

ȳT ⊗ IN

z̄T ⊗ IN

 (C.10)
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