

Imprinting Community College Computer Science Education
with Software Engineering Principles

by

Jacqueline Holliday Hundley

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 7, 2012

Keywords: computer science, software engineering, CS1/CS2,
curriculum, higher education, community college

Copyright 2012 by Jacqueline Holliday Hundley

Approved by

David Umpress, Chair, Associate Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering

Dean Hendrix, Associate Professor of Computer Science and Software Engineering

ii

Abstract

Although the two-year curriculum guide includes coverage of all eight software engineering core

topics, the computer science courses taught in Alabama community colleges limit student exposure to the

programming, or coding, phase of the software development lifecycle and offer little experience in

requirements analysis, design, testing, and maintenance. We proposed that some software engineering

principles can be incorporated into the introductory-level of the computer science curriculum. Our vision

is to give community college students a broader exposure to the software development lifecycle. For

those students who plan to transfer to a baccalaureate program subsequent to their community college

education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer

science and software engineering degrees. For those students who plan to move from the community

college to a programming career, our vision is to equip them with the foundational knowledge and skills

required by the software industry.

To accomplish our goals, we developed curriculum modules for teaching seven of the software

engineering knowledge areas within current computer science introductory-level courses. Each module

was designed to be self-supported with suggested learning objectives, teaching outline, software tool

support, teaching activities, and other material to assist the instructor in using it.

iii

Acknowledgements

I would like to take this opportunity to express my sincere appreciation to my family for their

support and encouragement through my pursuit of this PhD degree.

I offer a special thanks to my advisory committee chair, Dr. David A. Umphress, for his

guidance and encouragement throughout the development of this research. I thank my committee

members, Dr. James H. Cross and Dr. Dean Hendrix for their assistance and input into this thesis work.

I want to extand an appreciation to the graduate students in the Teaching Software Engineering

course for their contributions during the class and participation in the faculty workshop.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Tables .. vii

List of Figures .. ix

List of Acronyms .. x

1 Introduction .. 1

2 Background .. 6

2.1 Computing .. 6

2.2 Software Engineering Principles [Pressman 2010].. 9

2.3 Industry and Software Engineering .. 15

2.4 Curriculum Guidelines ... 19

2.4.1 Computing Curricula 2001: Computer Science [Chang, et al. 2001] 19

2.4.2 Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer
Science [Campbell, R. (chair) et al. 2003] .. 21

2.4.3 Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering [Le Blance and Sobel 2004] 24

2.4.4 Computing Curricula 2005: Guidelines for Associate-Degree Transfer Curriculum in
Software Engineering [Campbell, et al. 2005] .. 25

2.4.5 Computing Curricula 2005: Overview Report on Computing Curricula [Shackelford, et
al. 2005]... 26

2.4.6 Computer Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley
and McGettrick 2008] ... 28

2.4.7 Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in
Computer Science [Hawthorne, et al 2009] .. 29

2.4.8 The Guide to the Software Engineering Body of Knowledge [Tripp, et al. 2004] 33

v

2.5 Software Development Tools .. 34

2.5.1 Professional Integrated Design Environment.. 36

2.5.2 Pedagogical Integrated Design Environments .. 39

2.5.3 Microworlds .. 43

3 Community Colleges .. 46

3.1 Higher Education and Community College Demographics ... 47

3.2 STEM in Community Colleges .. 48

3.3 Alabama Community College System ... 49

3.4 Alabama Articulation and General Studies Committee ... 50

3.5 Alabama Community College Computer Science Curricula ... 52

4 SIGCSE 2011 Birds-of-a-Feather: Introducing Software Engineering Principles in the First Two
Years of Computer Science Education... 59

5 Survey of Software Engineering Principles and Concepts... 63

5.1 Survey Results.. 64

5.1.1 Software Engineering Knowledge Area Results ... 64

5.1.2 Integrated Development Environment and Programming Language Results 71

5.1.3 Other Results ... 71

5.2 Survey Results Summary ... 72

6 Teaching Software Engineering Course ... 75

7 Teaching Software Engineering Principles in Introductory Computer Sciences Courses Workshop . 77

8 Curriculum modules ... 79

8.1 Software Process Curriculum Module ... 80

9 Conclusion and Future Work ... 96

9.1 Summary of Research .. 96

9.2 Future work .. 100

References ... 102

Appendix A ... 110

vi

SWEBOK Software Engineering Knowledge Areas (KAs) .. 111

Bloom's Taxonomy Levels ... 115

Appendix B ... 116

Alabama Public Community Colleges’ Reference Information. .. 117

Alabama Public 4-year Universities’ Reference Information. ... 122

Appendix C ... 124

Survey of Usage of Software Engineering Principles and Concepts ... 125

Appendix D ... 133

Teaching Software Engineering ... 134

Appendix E ... 138

Software Process Curriculum Module ... 139

Software Testing Curriculum Module ... 151

Software Construction Curriculum Module ... 162

Software Design Curriculum Module .. 169

Software Quality Curriculum Module.. 189

Software Requirements Engineering Curriculum Module ... 197

Software Configuration Management Curriculum Module ... 207

vii

List of Tables

Table 2.1 General principles of software engineering [Hooker 1996] ... 9

Table 2.2 Core principles that guide process [Pressman 2010] .. 10

Table 2.3 Core principles that guide practice [Pressman 2010] ... 10

Table 2.4 Communication principles [Pressman 2010] .. 11

Table 2.5 Planning principles [Pressman 2010] ... 11

Table 2.6 Modeling principles [Ambler and Jefferies 2002] ... 12

Table 2.7 Operational principles [Pressman 2010] .. 12

Table 2.8 Design principles [Pressman 2010] .. 13

Table 2.9 Coding principles [Pressman 2010] .. 13

Table 2.10 Testing principles [Pressman 2010] ... 14

Table 2.11 Deployment principles [Davis 1995] .. 15

Table 2.12 Software engineering technical skills ... 17

Table 2.13 Software engineering soft skills ... 19

Table 2.14 Software engineering core topics and coverage hours ... 20

Table 2.15 Software engineering unit coverage hours in CS2001 introductory tracks 22

Table 2.16 Software engineering unit coverage hours in CC2003 [Campbell, et al. 2003] 23

Table 2.17 Computer science associate-degree program outcomes [Hawthorne 2009] 30

Table 2.18 Program outcomes and supporting coursework [Hawthorne 2009] ... 31

Table 2.19 Computer science sequence topics [Hawthorne 2009] ... 32

Table 2.20. The SWEBOK Knowledge Areas ... 34

Table 2.21. Core capabilities of rational products and services [Rational 2009] 38

viii

Table 2.22. Software engineering curriculum and software development environments 45

Table 3.1. Percentages of postsecondary enrollment increase ... 46

Table 3.2. Alabama new undergraduate transfers summary ... 47

Table 3.3. CIS courses in community college catalogs related to software engineering 54

Table 3.4. Concepts, Techniques, and Requirements in CIS Course Numbers and Descriptions.............. 56

Table 3.5. Area V required CIS courses for transfer to four-year university ... 58

Table 5.1. Results of Wilcoxon signed rank test (p values) ... 74

ix

List of Figures

Figure 2.1 Computer Science [Shackelford, et al. 2005]. ... 27

Figure 2.2 Software Engineering [Shackelford, et al. 2005]. ... 27

Figure 4.1. SIGCSE 2011 Birds-of-a-feather small group results .. 61

Figure 4.2. SIGCSE 2011 Birds-of-a-feather large group discussion... 62

Figure 5.1. Software engineering knowledge areas included in the survey and education objectives in all
programs ... 65

Figure 5.2. Software engineering knowledge areas included in the survey and education objectives for the
programs that teach the principle .. 66

Figure 5.3. Software engineering terms and concepts included in the survey and education objectives in
all programs .. 67

Figure 5.4. Software engineering terms and concepts included in the survey and education objectives in
programs that teach the concept ... 68

Figure 5.5. Integrated development environments (IDEs) used in respondents’ programs 69

Figure 5.6. Computer programming languages taught in respondents’ programs 70

Figure 5.7. Where do two-year graduates go .. 71

Figure 5.8. Other jobs for two-year graduates .. 71

Figure 5.9. Two-year respondents familiarity with curriculum guides .. 72

Figure 5.10. Four-year respondents familiarity with curriculum guides .. 72

Figure 8.1-15. Software process curriculum module ... 81-95

x

List of Acronyms

AACC American Association of Community Colleges

ACCS Alabama Community College System

ACHE Alabama Commission on Higher Education

ACHE Alabama Commission on Higher Education

ACM Association for Computing Machinery

ACMTYC ACM Two-Year College Education Committee

ADPE Alabama Department of Postsecondary Education

AGSC Alabama Articulation and General Studies Committee

API Application Programming Interface

CASE Computer-Aided Software Engineering

CC2003 Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer
Science [Campbell, R. (chair) et al. 2003]

CC2005 Computing Curricula 2005: Guidelines for Associate-Degree Transfer Curriculum in
Software Engineering [Campbell, et al. 2005]

CC2009 Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in
Computer Science [Hawthorne, et al 2009]

CIS Computer Information Science

CS2001 Computing Curricula 2001: Computer Science [Chang, et al. 2001]

CS2008 Computer Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley and
McGettrick 2008]

CSD Control Structure Diagram

CVS Concurrent Versions System

GAO U.S. Government Accountability Office

GSAC [AGSC] General Studies Academic Committees

IDE Integrated Design Environment

IEEE Institute for Electrical and Electronic Engineers

IEEE-CS Computer Society of the Institute for Electrical and Electronic Engineers

KA Knowledge Area

xi

PAC [AGSC] Pre-Professional Academic Committees

SE2004 Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering [Le Blanc, et al. 2004]

SEEK Software Engineering Education Knowledge

SPAC State Planning Advisory Council, Alabama Commission on Higher Education

STARS [Alabama] Statewide Transfer and Articulation Reporting System

STEM Science, Technology, Engineering, and Mathematics

SWEBOK The Guide to the Software Engineering Body of Knowledge [Trip, et al. 2004]

SWECC Software Engineering Coordinating Committee

UML Unified Modeling Language

1

1 Introduction

Every year, software disasters cost the United States billions of dollars. Statistics indicated that 40-50%

of programs contain nontrivial failures [Stiller and LeBlance 2002, Boehm 2006]. In many cases, the

causes of failure originate with a misunderstanding of requirements; mismatches in system design and

implementation; overly ambitious development and implementation plans; unrealistic expectations; bad

project planning; and indecisive customers [Pfleeger 1998, Burgess 1995]. Other failures of software

projects can be linked to the lack of version control, thorough unit testing, or proper monitoring of daily

progress and activities [Hunt and Thomas 2004].

The failures noted above imply a lack of an adequate procedure to assess the problem and design

the solution. Software engineering strives “to deliver on-time, high-quality, operational software that

contains functions and features that meet the needs of all stakeholders.” Guidelines are needed to

successfully produce a software product of this caliber. During the past fifty years, the principles of the

software engineering discipline have been developed and provide guidelines for a solid approach to

software engineering. [Pressman 2010]

In the computer science curriculum, students receive considerable experience in the

programming, or coding, phase of the software lifecycle [Pressman 2010]. Their projects are usually

limited to small problems in which there is little need for requirements analysis, design, testing, and

maintenance [Myers 2000]. Students are taught to write computer programs, but few can develop large

software systems [Long 2008]. In contrast, industry needs software engineers equipped with skills that go

2

well beyond the coding activity. It needs engineers that can use procedures, paradigms, tools, and

techniques to produce quality software products [Pfleege and Altee 2006].

The Joint Task Force on Computing Curricula of the Computer Society of the Institute for

Electrical and Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM)

joint task force produced Computing Curricula 2001: Computer Science [Chang, et al. 2001] to outline

curricular guidelines for undergraduate programs in computer science. Additional volumes of this report

present undergraduate curricula for specific disciplines including Software Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering [Le Blanc, et al.

2004], which presents a set of curriculum recommendations for baccalaureate software engineering

programs. Because of rapid changes in the field of computer science, an ACM and IEEE-CS Interim

Review Task Force was formed to conduct an interim review of CS2001. The document resulting from

the review is Computer Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley and

McGettrick 2008].

Curricula guides are also available for associate-degree programs designed for students planning

to transfer into baccalaureate programs. Computing Curricula 2003: Guidelines for Associate-Degree

Curricula in Computer Science [Campbell, et al. 2003] and Computing Curricula 2005: Guidelines for

Associate-Degree Transfer Curriculum in Software Engineering [Campbell, et al. 2005] were developed

by the ACM Two-Year College Education Committee and Joint Task Force on Computing Curricula of

IEEE-CS and ACM. In 2009, the ACM Two-Year College Education Committee (ACMTYC) developed

Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science

[Hawthorne, et al. 2009].

The existence of software engineering curriculum guidelines reinforces the need for teaching

software engineering principles in two- and four-year undergraduate programs. The problem with adding

a software engineering curriculum to two- and four-year computer science programs is resources.

3

Because there is overlap of material in computer science and software engineering curriculum guidelines,

it may be possible to include software engineering in an existing computer science program with little or

no additional resources.

The use of software tools and programming environments can enhance the teaching and learning

of software engineering and computer science skills and principles. There are many programming tools

available for teaching introductory-level computer science courses. Professional integrated development

environments (IDEs) support the teaching of software engineering principles in all phases of the software

development life cycle. However, many instructors feel that the number of features in professional level

IDEs is a distraction for students, the learning curve is too steep, and they are too costly. Other IDEs are

designed specifically for pedagogical purposes. The disadvantage of these is their application is limited

to one or a few phases of the software lifecycle. [Burch 2009, Chen and Marx 2005]

Community colleges’ open-door admission policies, reduced costs, convenient campus locations,

and comprehensive course offerings offer a diverse population of students an alternative to the traditional

four-year universities. Over the past 40 years, public community college enrollment has increased at a

much faster rate than at the public four-year universities, with the percentage of women enrolled in

community colleges surpassing that of men. Because of the low cost and accessibility, racial and ethnic

minorities have become an increasing proportion of all students enrolled at community colleges [Kasper

2002]. In the time of a recession, community colleges experience an abnormal increase in student

enrollment as unemployed workers seek to continue their education or change career fields [Tirrell-

Wysocki 2009].

The Computer Information Science (CIS) courses listed in the computer science programs of the

Alabama public community college catalogs use the same course numbering system; however, the same

course number represents multiple course names and descriptions in various catalogs. In short, students

are not guaranteed that courses with the same number and title will convey the same computer science

4

concepts, much less complementary engineering concepts. This situation also hinders a smooth transfer

from community college program to the junior year of a baccalaureate program at a four-year university.

We proposed that some software engineering principles can be incorporated into the

introductory-level of the computer science curriculum. Our vision is to give community college students

a broader exposure to the software development lifecycle. For those students who plan to transfer to a

baccalaureate program subsequent to their community college education, our vision is to prepare them

sufficiently to move seamlessly into mainstream computer science and software engineering degrees.

For those students who plan to move from the community college to a programming career, our vision is

to equip them with the foundational knowledge and skills required by the software industry.

By placing our emphasis on the Alabama public community college system, we sought a broader

impact by taking our efforts to the institutions that provide open and low cost education to those who are

underrepresented in the general computer science student population in higher education. This research

offers further the exposure of women and minorities to STEM areas of study. This research, also, assists

with articulation between the two- and four-year public institutions in the region.

This research seeks intellectual merit through emphasizing the incorporation of software

engineering principles required by industry into the introductory-level of curriculum where this

knowledge can mature and better benefit the students throughout the curriculum and into the work force.

It provides guidance to the faculty of the community colleges through application of this educational

experience.

In the following chapters, we provide information relating to the examination of the background

material and the proposed goals and plans for this research. Chapter 2 provides discussions on the

computing field of study, the purpose of using software engineering principles, the need for software

engineering knowledge in industry, the curriculum guides for computer science and software

engineering, and the software development tools. Chapter 3 presents the influence of community colleges

5

in higher education and discusses the Alabama community college system and curriculum. In chapter 4,

we presents ideas collected from faculty from two- and four-year computer science programs while in a

SIGCSE 2011 Birds-of-a-Feather session. This discussion assisted in determining topics that were later

included in a online survey. The survey was used to collect information about which software

engineering principles and concepts are currently being taught in the Alabama public colleges and

universities. The survey findings are reported in Chapter 5, and a copy of the survey is presented in

Appendix C. In Chapter 6, we describe a special topics graduate course, Teaching Software Engineering,

which examined software engineering from an instructional perspective. During this course, students

were exposed to explaining fundamental software engineering concept to those new to the field. The

information collected during the literature search, SIGCSE 2011 Birds-of-a-Feather session, and special

topics course assisted the creation of curriculum modules for teaching software engineering at the

introductory-level. Chapter 5 presents the Software Process Curriculum Module as a sample teaching

modules. All of the modules can be found in Appendix D. At the end of the Teaching Software

Engineering course, a faculty workshop was held to present the teaching to modules to local area faculty

who teach introductory-level computer science. During the workshop, attendees were asked to evaluate

the modules. The result of the evaluations is presented in Chapter 7. In Chapter 8 this research is A

summary of this research is presented in Chapter 8 as well as ideas for further work and studies that will

enhanced and continue this research.

6

2Background

2.1 Computing

Computing is one of the most significant advancements of the twentieth century. It is a product of human

ingenuity and provides unlimited intellectual challenges. Computing promotes innovations and creativity

that require a disciplined approach to problem solving. Although its important components are invisible

to the naked eye, computing has been applied to a diverse range of applications and has become a

significant part of everyday life. [QAA 2000]

The Association for Computing Machinery (ACM) categorizes the computing discipline into five

sub-disciplines: computer science, information systems, software engineering, computer engineering, and

information technology [Hawthorne, et al. 2009]. The activities of these topics are often misunderstood

and the names misused. Titles such as programmer, computer scientist, system analyst, and software

engineer are often used for positions with the same job description. This confusion is reflected in

academia, where there is little consistency in naming departments, curricula, and courses. Many lay

people do not understand the field of computing, and students chose to study computing without fully

understanding what it is. Computer science is a valid field of study, but does it provide the graduates with

the knowledge and skill that are needed in industry?

Computer science tends to be the generic term for computing [Vaughn 2000]. Many consider

programming to be the core of computer science; however, it is only one of four core practices of

computer science along with systems thinking, modeling, and innovation [Denning 2004].

7

Computer science offers a comprehensive foundation that allows graduates to adapt to new

technologies and new ideas. Through its theoretical and algorithmic foundations, computer science

includes the developments of robotics, computer vision, intelligent systems, bioinformatics, and many

other areas. The work of computer scientists can be divided into three categories: (1) designing and

implementing software (programmers who keep up with new approaches), (2) devising new ways to use

computers (researchers who work with other scientists to develop practical and intelligent robots, to use

databases to create new knowledge, or to use computers to help decipher DNA), and (3) developing

effective ways to solve computing problems (determine the best performance possible and develop new

approaches that provide better performance). [Shackelford, et al. 2005]

In the computer science curriculum, students receive considerable experience in the

programming, or coding, phase of the software lifecycle [Pressman 2010]. Their projects are usually

limited small “systems” offering little experience in requirements analysis, design, testing, and

maintenance [Myers 2000]. Many graduates can write computer programs, but few can develop large

software systems [Long 2008].

The introduction of integrated circuit computers enabled software to be much larger and more

complex causing what some called a “software crisis” [Sommerville 2004]. Software systems continue to

grow quickly in size and complexity with their success becoming a factor of lives as well as economics.

To produce these systems, procedures and guidelines are needed to translate requirements into working

systems, to assess and manage risk, to systematically locate and eliminate errors, to organize and manage

development teams, and to satisfy customers. In 1968, the recognition of an engineering process led to a

new discipline, software engineering. [Denning 2004]

“Engineering disciplines are concerned with the construction of devices that can be relied upon

to perform a function. …[A]n engineer approaches a design task with a collection of techniques, tools,

and previous designs which make it possible to create reasonably reliable devices at reasonable cost with

8

a reasonable amount of effort.” [Richard Karp in Denning 1989] Software engineering refers to the

discipline application of engineering, scientific, and mathematical principles to the economical

production of quality software [Gibbs 1989].

Software engineering is the part of computing concerned with a system view of software and all

phases of the software lifecycle as well as general design and architecture issues of the system that

contains the software [Werth and Werth 1991]. Software engineers aim to develop and maintain software

systems that (1) behave reliably and efficiently; (2) are affordable; and (3) satisfy all the customers'

requirements [Shackelford, et al. 2005]. They build on and apply the body of knowledge found in the

computer science curriculum; but they also need additional education in some or all of the following

areas: software development process, software project management, requirements analysis, technical

communication, computer engineering, systems engineering, embedded and real-time systems,

configuration management, quality assurance, formality, performance analysis, metrics, standards,

verification and validation, security, human factors and specialized applications domains. [Gibbs 1989]

The body of knowledge needed in software engineering programs differs from that of computer

science programs. The goal of software engineering programs should be that of an engineer constructing

a useful artifact rather than that of a scientist discovering or refining new knowledge. [Mitchell 2004]

Brooks [1995] puts it this way: “The scientist builds to learn; the engineer learns in order to build.”

Computer science is a science [Werth and Werth 1991, Mitchell 2004, Mead, et. al. 2000],

meaning it is concerned with the underlying theories and methods of computers and software systems;

software engineering is concerned with the practical problems of producing software. Real, complex

problems often require more than the theories of computer science. There has been concern in industry

and some application areas that the gap between academic computer science and the actual needs of

industry has become too great; and computer science programs do not provide the fundamental

knowledge needed for long-term professional growth. [Lewis 1989, Parnas 1990]

9

2.2 Software Engineering Principles [Pressman 2010]

During the past fifty years, much knowledge has been collected from experience gained through the

observation of thousands of software projects. From this knowledge, the principles of the software

engineering discipline have been developed providing guidelines for a solid approach to software

engineering. Some may view principles as common sense; however, documenting them allows all

software project development teams to benefit from the knowledge of others. Roger Pressman included a

comprehensive list of software engineering principles in the seventh edition of Software Engineering: A

Practitioner’s Approach [Pressman 2010]. This list is used in the following discussion of the software

engineering principles.

Software engineering principles provide guidance at different levels of abstraction. Some, as

shown in Table 2.1, focus on software engineering as a whole, and others focus on a general framework

activity or specific actions and tasks. The generality of the principles presented in Tables 2.1, 2.2, and 2.3

shows how the development of good software begins long before where traditional computer science

courses start, coding.

Table 2.1 General principles of software engineering [Hooker 1996]

1. Remember that a software system exists to provide value to its user.
2. Keep designs as simple as possible but no simpler.
3. Attain a clear vision to ensure the success of a software project.
4. Always specify, design, and implement knowing someone else will have to

understand what you are doing.
5. Never design yourself into a corner; consider the “what if.”
6. Planning ahead for reuse reduces the cost and increases the value of both the

reusable components and the system into which they are incorporated.
7. Placing clear, complete thought before action almost always produces better

results.

The primary levels of core principles guide the application of software process and the execution

of effective software. Core principles, shown in Table 2.2, can be applied to any type software process

model: linear or iterative, prescriptive or agile. They help establish a philosophy that will guide a

software team through the activities necessary to produce a working software product.

10

Table 2.2 Core principles that guide process [Pressman 2010]

1. Be agile. Emphasize economy at every step.
2. Focus on quality at every step.
3. Be ready to adapt.
4. Build an effective team.
5. Establish mechanisms for communication and coordination.
6. Manage change.
7. Assess risk.
8. Create work products that provide value for others.
9. Use an appropriate process model [Davis 1995].

At the practice level, there are core principles that guide the technical work. These principles

apply regardless of the analysis and design methods; construction techniques; or verification and

validation approach used. The core principles establish rules and values that will guide the problem

analysis; solution design, implementation and testing; and product deployment. Table 2.3 lists a set of

core principles that are fundamental to the practice of software engineering.

Table 2.3 Core principles that guide practice [Pressman 2010]

1. Divide and conquer, or separation of concerns.
2. Understand the use of abstraction.
3. Strive for consistency.
4. Focus on the transfer of information.
5. Build software that exhibits effective modularity
6. Look for patterns.
7. Represent the problem and its solution from a number of different perspectives,

when possible.

A refinement of the general process and practice principles guide generic framework activities of

the software process. The following tables present the core principles at a lower level of abstraction for

each framework activity. These are not exhaustive lists of software engineering principles, but they are a

good representation of the type of principles that are necessary to achieve quality products.

Good communication is a top priority for good software development. Knowing a customer’s

problem may not be obvious. Through the careful communication of technical peers, team, customers,

11

stakeholders, and project managers, the true problem can be established. Table 2.4 presents some of the

principles that apply to communication during a software project.

Table 2.4 Communication principles [Pressman 2010]

1. Listen.
2. Prepare before you communicate.
3. Designate an activity facilitator.
4. Communicate face-to-face for best results.
5. Take notes and document decisions.
6. Create a glossary and index [Davis 1995].
7. Strive for collaboration.
8. Stay focused; modularize your discussion.
9. Draw a picture, if something is unclear.
10. (a) Move on, once you agree to something. (b) Move on, if you can’t agree to

something. (c) Move on, if a feature or function is unclear and cannot be clarified
at the moment.

11. Negotiate not compete. It works best when both parties win.

After defining the overall goals and objectives, a plan for how these goals and objects will be

met is necessary. To develop an effective plan, everyone on the software team should participate. The

plan, or road map, to the solution of a problem is where the real work of software development begins.

No matter which approach of planning is used the principles in Table 2.5 apply.

Table 2.5 Planning principles [Pressman 2010]

1. Understand the scope of the project.
2. Involve stakeholders in the planning activity.
3. Recognize that planning is iterative.
4. Estimate based on what you know.
5. Consider risk as you define the plan.
6. Be realistic.
7. Adjust granularity as you define the plan.
8. Define how you intend to ensure quality.
9. Describe how you intend to accommodate change.
10. Track the plan frequently and make adjustments as required.

Models are used to ensure the understanding of the requirements and the product to be built. The

models must represent (1) the information that the software manipulates, (2) the architecture and

functions that manipulate the information, (3) the features and functions that enable the information, (4)

the users’ desired features, and (5) the behavior of the system. Models should describe software from the

12

customers’ and the technical points of view. In software engineering, there are two classes of models.

Requirement models represent the customer requirements in three domains: information, functional, and

behavioral. Design models represent the software characteristics: the architecture, the user interface, and

component-level detail. Principles for the modeling of actions and tasks presented in Table 2.6 are

appropriate for all types of process modeling.

Table 2.6 Modeling principles [Ambler and Jefferies 2002]

1. Create models that lead to the primary goal, software.
2. Travel light—don’t create more models than you need.
3. Strive to produce the simplest model that will describe the problem or the

software.
4. Build models in a way that makes them amenable to change.
5. Be able to state an explicit purpose for each model that is created.
6. Adapt the models you develop to the system at hand.
7. Try to build useful models, but forget about building perfect models.
8. Don’t become dogmatic about the syntax of the model. If it communicates content

successfully, representation is secondary.
9. Be concerned when your instincts tell you a model isn’t right even though it seems

okay on paper.
10. Get feedback as soon as you can.

There are a variety of analysis modeling notations and heuristics that have been developed to

assist in identifying requirements problems and causes and how to overcome them. Table 2.7 presents a

set of operational principles that applies to any analysis method.

Table 2.7 Operational principles [Pressman 2010]

1. The information domain of a problem must be represented and understood.
2. The functions that the software performs must be defined.
3. The behavior of the software (as a consequence of external events) must be

represented.
4. The models that depict information, function, and behavior must be partitioned in

a manner that uncovers detail in a layered (or hierarchical) fashion.
5. The analysis task should move from essential information toward implementation

detail.

13

Table 2.8 Design principles [Pressman 2010]

1. Evaluate design alternatives [Davis 1995].
2. Design should be traceable to the requirements model.
3. Always consider the architecture of the system to be built.
4. Design of data is an important as design of processing functions.
5. Design interfaces (both internal and external) with care.
6. Adjust user interface design to the needs of the end user. However, in every case it

should stress ease of use.
7. Create functionally independent component-level design.
8. Construct components such that they are loosely coupled to one another and the

external environment.
9. Design representations (models) should be easily understandable.
10. Develop the design iteratively. With each iteration, the designer should strive for

greater simplicity.

Table 2.9 Coding principles [Pressman 2010]

Preparation principles

1. Understand the problem you are trying to solve.
2. Understand basic design principles and concepts.
3. Pick a programming language that meets the needs of the software to be built

and the environment in which it will operate.
4. Use different language for different phases, if needed for optimization of the

system [Davis 1995].
5. Select a programming environment that provides tools that will make your

work easier.
6. Create a set of unit tests that will be applied once the component is

completed.

Programming Principles

1. Constrain your algorithms by following structured programming practice.
2. Consider the use of pair programming.
3. Select data structure that will meet the needs of the design.
4. Understand the software architecture and create interfaces that are consistent

with it.
5. Keep conditional logic as simple as possible.
6. Create nested loops in a way that makes them easily testable.
7. Select meaningful variable names and follow other local coding standards.
8. Write code that is self-documenting.
9. Create a visual layout (e.g., indentation and blank lines) that aids

understanding.

Validation Principles

1. Conduct a code walkthrough when appropriate.
2. Perform unit tests and correct errors you’ve uncovered.
3. Refactor the code.

14

Design models represent an overview of the whole system from a variety of views. They must

include both the factors observed by the user and the factors that are important to software engineers. A

set of design principles is shown in Table 2.8.

Coding and testing are software construction activities that produce working and deliverable

software. Coding may be directly created source code, automatically generated source code using a

design component, or automatically generated executable code. Fundamental coding principles,

presented in Table 2.9, are associated with all programming style, languages, and methods.

Testing is performed at several levels during software construction: (1) unit testing at the

component level, (2) integration testing as more components are added, (3) validation testing to

determine if the system meets the requirements, and (4) acceptance testing by the customer. Successful

testing will not only uncover errors, but it will demonstrate that the software functions seem to be

working according to the specifications and that the behavioral and performance requirements seem to be

met. A set of testing principles is listed in Table 2.10.

Table 2.10 Testing principles [Pressman 2010]

1. All tests should be traceable to customer requirements.
2. Tests should be planned long before testing begins.
3. The Pareto principle applies to software testing.
4. Testing should begin “in the small” and progress toward testing “in the large.”
5. Exhaustive testing is not possible.

The deployment activity of software development contains three actions: delivery, support, and

feedback. Because process models are incremental, there may be several product deployments. Each

delivery of a software increment represents an important milestone for a software project and should be

accompanied by the appropriate support to enable proper feedback. The feedback is used to modify the

functions, features, and approaches before continuing to the next step. Table 2.11 lists key principles that

should be followed as the team prepares to deliver and increment.

15

Table 2.11 Deployment principles [Davis 1995]

1. Customer expectations for the software must be managed.
2. A complete delivery package should be assembled and tested.
3. A support regime must be established before the software is delivered.
4. Appropriate instructional materials must be provided to end users.
5. Delivery should be delayed until errors have been corrected. (McConnell 1996).

2.3 Industry and Software Engineering

With the rapid growth of the software industry, there is an increasing importance that software

development results in more products with fewer errors [Tilley and Wong 1993]. Because software

systems are becoming larger and more complex, a defined process is essential in ensuring that the true

goals, objectives, and requirements of a software system are not missed or misinterpreted. IEEE defines

software engineering as “the application of a systematic disciplined, quantifiable approach to the

development, operation, and maintenance of software” [Le Blanc, et al. 2004].

To apply the processes and procedures required for successful software development, one needs

the appropriate skills. As a result of this literature survey, software engineering skills required by

industry for successful software development have been identified. Behind these skills are software

engineering principles that guide the tasks and activities. Lists of these technical and soft skills are

presented in Tables 2.12 and 2.13 along with an indication of which software engineering principles

guide the application of the skill.

Core software engineering principles (Table 2.3) at the general, process, and practice levels

provide guidelines for software engineering are skills such as communication, teamwork, ethics,

documentation, flexibility, critically thinking, problem solving, abstraction, project management, data

management estimation, etc. As the process moves through the lifecycle, the previously mentioned skills

continue to be used with more specific ones others added as needed. Communication (Table 2.4), both

verbal and visual, continues to play a major part at all phases. Effective communication among the

16

customers, users, development team and other stakeholders is necessary to produce the system goals,

objectives and requirements from which all other work evolves. It is through communication that the

iterative deployment and feedback at one phase can be applied to the next phase of development.

Only after the overall goals and objectives have been established does the planning begin.

Planning principles (Table 2.5) guide scheduling, cost estimating, abstraction adjustment, quality

assurance, change management, requirements tracking, process management, configuration management,

metrics and measurement selection, etc. From the plans, models can be developed. Modeling principles

(Table 2.6) apply to skills such as model selection, data management, creativity, algorithm development,

design tradeoffs, relational database systems, interfaces, etc. The operational principles (Table 2.7)

influence software architecture and design, interfaces, data management, process management, etc.

Teamwork, problem solving, conceptualization, creativity, algorithm development, flexibility,

abstraction and concretization, software architecture, prototypes, interfaces, design tradeoff, etc. are

skills that apply to the design phase. The design principles (Table 2.8) provide guidance for all design

views relevant to users and software engineers.

Missing from the discussion of software engineering skills and principles thus far is coding.

Coding is where novice software developers think the process begins. In an industry setting, software

systems are large and complex and ignore the lifecycle phases prior to coding can be, and has been,

disastrous. Yet, it is this phase that many community colleges and universities emphasize, almost to the

exclusion of all others.

Many of the previous skills continue to be use at the coding phases. These and additional skills

are guided by three levels of coding principles (Table 2.9): preparation, programming, and validation.

Some of the skills used during the coding phases are programming language selection, integrated

development environment selection, software development aids, teamwork, interfaces, software

17

architecture, data management, documentation, prototypes, code verification and validating, and unit

testing.

Testing principles (Table 2.10) apply to test making and application as well as other skills such

as defect tracking, metrics and measurement, and visual monitoring of the progress are guided by a set of

testing principles. Deployment principles (Table 2.11) guide product deployment which can, or should,

take place integrally during the development process. At each delivery, a package should be assemble

and tested.

Table 2.12 Software engineering technical skills

[Conn 2002, Crnkovic, et al. 2003, Johnson and Jones 2006, Kornecki, et al. 2003,
Lang 1999, Long 2008, Reifer 2005, Tilley and Wong 1993, Veraat et al. 1997]

Software Engineering
Technical Skills

G
en

er
al

Pr
oc

es
s

Pr
ac

tic
e

C
om

m
un

ic
at

io
n

Pl
an

M
od

el

O
pe

ra
tio

na
l

D
es

ig
n

C
od

in
g

Te
st

in
g

D
ep

lo
ym

en
t

Abstraction, concretization x x x x
Artifacts x
CASE x x x x x x
Change management x x
Code testing x x x
Code v & v x x x
Configuration management x
Cost estimating x x
Data management x x x
Defect tracking x
Design documents x x x
Develop algorithms x x x x x x
Documentation x x x x x x x x x x x
Estimation x x x
Implementation x x x
Integrated development environment x
Language x
Life cycle models x
Maintenance x
Metrics & measurement x
Perform design tradeoffs x x
Process management x x
Process tools x
Product development x x
Project management x x x x
Project tracking x x

18

Prototypes x x
Relational database systems x
Requirements engineering x x x x
Requirements tracking tools x
Scheduling x x x
Software architecture x x
Software design x x x x x
Software development aids x x
Specify interfaces x x x
System analysis x x
Visual modeling x x x
Visual monitoring x x

Table 2.13 Software engineering soft skills
[Bailey and Stefaniak 2002, Conn 2002, Crnkovic, et al. 2003, Lang 1999,

Long 2008, Reifer 2005, Veraat et al. 1997]

Software Engineering Soft Skills

G
en

er
al

Pr
oc

es
s

Pr
ac

tic
e

C
om

m
un

ic
at

io
n

Pl
an

M
od

el

O
pe

ra
tio

na
l

D
es

ig
n

C
od

in
g

Te
st

in
g

D
ep

lo
ym

en
t

Candor x x
Commitment x x
Communicate with people from other

engineering disciplines x x x

Communication x x x x x x x x X x x
Conceptual skills x x x x x
Continuous improvement x x x
Creating and managing change x x
Creativity x x x x x x x x X x x
Critical thinking x x x x x x x x X x x
Flexibility x x x x
Interface with user x x x x
Manage people x x
Marketing and sales
Monitor ethical responsibility of team x x
Organization and business knowledge x x
Problem solving x x x x x
Role modeling abilities x x
Sense of ethics x x x x
Strategic management x x
Strong interpersonal skills x x x
Teamwork x x x X

19

2.4 Curriculum Guidelines

Computing Curricula 2001: Computer Science [Chang, et al. 2001] is the final report of Joint Task Force

on Computing Curricula of the Computer Society of the Institute for Electrical and Electronic Engineers

(IEEE-CS) and the Association for Computing Machinery (ACM). This volume of the report outlines

curricular guidelines for undergraduate programs in computer science. Given the breadth of computing,

the task force recommended that the report consist of additional volumes for specific disciplines,

including computer engineering, software engineering, and information systems. In 2004, Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering [Le Blanc, et al. 2004] was published. This volume presents a set of curriculum

recommendations for baccalaureate software engineering programs. As the result of the increasingly fast

changing field of computer science, a ACM and IEE Computer Society Interim Review Task Force was

formed to conduct an interim review of CS2001. The document resulting from the review is Computer

Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley and McGettrick 2008].

Other curriculum guidelines include volumes for associate-degree programs designed for

students planning to transfer into baccalaureate programs. Computing Curricula 2003: Guidelines for

Associate-Degree Curricula in Computer Science [Campbell, et al. 2003] and Computing Curricula

2005: Guidelines for Associate-Degree Transfer Curriculum in Software Engineering [Campbell, et al.

2005] were developed by the ACM Two-Year College Education Committee and Joint Task Force on

Computing Curricula of IEEE-CS and ACM. In 2009, the ACM Two-Year College Education Committee

(ACMTYC) developed Computing Curricula 2009: Guidelines for Associate-Degree Transfer

Curriculum in Computer Science [Hawthorne, et al. 2009].

2.4.1 Computing Curricula 2001: Computer Science [Chang, et al. 2001]

Computing Curricula 2001: Computer Science (CS2001) presents a set of recommendations for

undergraduate programs in computer science. In addition to curriculum models and course descriptions,

20

this report identifies the body of knowledge appropriated for undergraduate computer sciences programs

and a set of learning objectives for each of the units in the body of knowledge.

Multiple approaches to the structure of the introductory computer science courses have been

developed through the years. Because introductory programs differ in goals, structure, resources, and

audiences, the CS2001 Task Force acknowledged that there is no one-size-fits-all approach for all

institutions and did not recommend an approach. This report presents three implementations of a

programming-first model and three of an alternative paradigm. The programming-first implementations

are imperative-first, objects-first, and function-first. The three alternative methods are breadth-first,

algorithms-first, and hardware-first. All of these approaches have proven successful in the more

traditional two-semester packaging, and the C2001 Task Force believes that the three-semester

implementations will achieve similar levels of success. Although the role of programming in introductory

computer science education is still a topic of debate, the programming-first model continues to be used in

the majority of institutions, and the CS2001 Task Forces expects it to remain dominant for the

foreseeable future.

Table 2.14 Software engineering core topics and coverage hours
[1 Chang, et al. 2001, 2 Campbell, et al. 2003]

Software Engineering Core Topics

1 CS2001
4-year

Minimum Core
Hours

2 CC2003
2-year

Coverage Time
(Hours)

SE1. Software design 8 3-7
SE2. Using APIs 5 1-2
SE3. Software tools and environments 3 0-2
SE4. Software processes 2 0-1
SE5. Software requirements and specifications 4 0-1
SE6. Software validation 3 0-2
SE7. Software evolution 3 0-1
SE8. Software project management 3 0-1
 31 4-17

Another controversy in designing introductory computer science curricula is the length of the

sequence. The CS2001 Task Force endorses a three-course introductory sequence; however, it recognizes

21

that it and the traditional two-course sequence have advantages for being used in a particular institution’s

program. Two- and three-course introductory sequences were developed for the imperative-first and

objects-first tracks. TShe functional-first, algorithms-first, and hardware-first approaches exists only in

the two-semester form. If the approach proves popular, it may be appropriate to consider a three-semester

implementation. The task force proposed two implementations of a breadth-first approach. The first is

simply to include an overview course (CS100B) before a more conventional programming sequence. The

second is to expand the introductory curriculum into a three-semester sequence (CS101B-102B-103B) so

that there is time for the additional topics.

CS2001 recognizes Software Engineering as a computer science body of knowledge core topic

with a minimum coverage of 31 core hours, i.e., in-class hours. Table 2.14 lists the core units for the

Software Engineering Body of Knowledge with the teaching topics and minimum core coverage time for

each. Table 2.15 shows the coverage of the software engineering core hours by each of the six

introductory course sequences.

2.4.2 Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer

Science [Campbell, R. (chair) et al. 2003]

Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer Science (CC2003)

shares goals and outcomes with CS2001. This report focuses on associate-degree computer science

programs designed for students who intend to transfer into baccalaureate programs by presenting

guidelines to enable students to transfer as smoothly as possible. The report promotes articulation by

enabling a topical comparison by using this report together with CS2001.

22

Table 2.15 Software engineering unit coverage hours in CS2001 introductory tracks
[Chang, et al. 2001]

Software Engineering Unit No. 1 2 3 4 5 6 7 8

Min. coverage hours

Total
hrs

31 8 5 3 2 4 3 3 3

Imperative-first
CS101I Programming Fundamentals

13
3 2 1

CS102I Object-Oriented Paradigm 1 2 1 1 1
CS103I Data Structures and Algorithms 1
CS111I Introduction to Programming

11
2 1 1 1

CS112I Data Abstraction 2 2 2

Objects-first
CS101O Intro. to Object-Oriented Programming

13
 1 1

CS102O Objects and Data Abstraction 3 1 1 1 1
CS103O Algorithms and Data Structures 1 3
CS111O Object-Oriented Programming

10
2 1 2

CS112O Object-Oriented Design and Methodology 2 1 1 1

Functional-first
CS111F Intro. to Functional Programming

10
1 1

CS112F Objects and Algorithms 3 2 1 1 1

Breadth-first
CS100B Preview of Computer Science

10

CS101B Intro. to Computer Science
CS102B Algorithms and Programming Techniques 2 1 1 1
CS103B Principles of Object-Oriented Design 2 2 1

Algorithms-first
CS111A Intro. to Algorithms and Applications

11
2 1

CS112A Programming Methodology 2 2 2 1 1

Hardware-first
CS111H Intro. to the Computer

10
2 1 1

CS112H Object-Oriented Programming Techniques 2 2 1 1

23

Table 2.16 Software engineering unit coverage hours in CC2003 [Campbell, et al. 2003]
Software Engineering Unit No. 1 2 3 4 5 6 7 8

Coverage hours

Total
hrs

4-17 3-7 1-2 1-2 0-2 0-1 0-2 0-1 0-1

Imperative-first
CS101I Programming Fundamentals

16
3 2 1

CS102I Object-Oriented Paradigm 1 2 1 1 1
CS103I Data Structures and Algorithms 1 1

Objects-first
CS101O Intro. to Object-Oriented Programming

15
 1 1

CS102O Objects and Data Abstraction 3 2 1 1 1 1
CS103O Algorithms and Data Structures 3 1

Breadth-first
CS101B Computing Science I

3

CS102B Computing Science II 2
CS103B Computing Science III 1

The Software Engineering Body of Knowledge units, shown in Table 2.14, recommended for the

two-year college programs are the same as the core units recommended in CS2001. The CC2003

coverage time of each unit is given as a range and determined by the instructional paradigm and the

chosen electives. [Chang, et al. 2001, Campbell, et al. 2003]

The introductory courses in CC2003 are implemented in three approaches: imperative- first,

objects-first, and breadth-first. Each three-course sequence is fundamentally equivalent to the

corresponding sequence in CS2001. Each is designed to be at least equivalent to the corresponding two-

course sequence in CS2001. The differences in the courses are the additional time and preparatory

material provided in the two-year college setting, as shown in Table 2.16.

24

2.4.3 Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs

in Software Engineering [Le Blance and Sobel 2004]

Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering (SE2004) presents guidance for a baccalaureate software engineering education program. It

contains the body of Software Engineering Education Knowledge (SEEK) and a curriculum describing

how this knowledge can be taught. SEEK provides the foundation of the educational units that make up a

software engineering curriculum. Although SE2004 concentrates on knowledge and pedagogy associated

with a software engineering curriculum, there is overlap with material contained in other computing

curriculum reports and guidance for the incorporation of software engineering in other disciplines.

Many software engineering topics require maturity. Introducing material early allows for

subsequent reinforcing and expanding in later courses. Rather than the details of specific tools, the

underlying principles of software engineering should be emphasized. A software engineering program

must allow its graduates to feel confident in their ability when entering the workforce.

SE2004 presents two sequences for the introductory-level of the software engineering

curriculum: software engineering-first and computer science-first. The computer science-first approach is

the more common, but there are advantages and disadvantages for both approaches. The software

engineering-first approach allows the student to focus on a problem and the way it can be solved without

thinking primarily in terms of code. It also gives an early idea of what software engineering is. The

computer science-first allows students to begin practicing their programming skills early. Most textbooks

are written for teaching computer science-first. Another factor to consider is that students who know little

about computers and programming may have trouble grasping software engineering concepts during the

first year.

Although undergraduate software engineering and computer science degrees differ, the

introductory-levels have much in common. The SE2004 computer science-first sequence begins with

25

CS101I Programming Fundamentals, CS102I The Object-Oriented Paradigm, and CS103I Data

Structures and Algorithm. Other courses in CS2001 can be substituted for these. The first year of the

software engineering-first sequence contains SE101 Introduction to Software Engineering and

Computing 1 and SE102 Software Engineering and Computing 2.

2.4.4 Computing Curricula 2005: Guidelines for Associate-Degree Transfer Curriculum in

Software Engineering [Campbell, et al. 2005]

Computing Curricula 2005: Guidelines for Associate-Degree Transfer Curriculum in Software

Engineering (CC2005) provides guidelines for an associate-degree software engineering curriculum

designed for students intending to transfer into software engineering baccalaureate programs. It is

specifically designed to promote articulation of curricula for two-year colleges and baccalaureate

institutions. CS2001, CC2003, and SE2004 provide the foundation for this work. This report is based on

the computer science-first approach for the following reasons: (1) students with limited knowledge of

programming may not have the necessary background for the study of software engineering concepts; (2)

the current guidelines for foundation computer science curricula include concepts and programming

paradigm that must be mastered; and (3) the software engineering curriculum track can be implemented

easily for those institutions with computer science curricula based on current ACM standards.

This report indentifies two of the three introductory computer science paradigms presented in

CC2003 as being appropriate in an associate degree software engineering curriculum: imperative-first

and objects-first. By using SE2004’s SE201 Introduction to Software Engineering as a suggested second-

year elective, the software engineering track adapts well into the computer science transfer degree

program.

26

2.4.5 Computing Curricula 2005: Overview Report on Computing Curricula [Shackelford, et

al. 2005]

In addition to the set of reports that cover the computing-related disciplines, CS2001 requested an

Overview Report to summarize the content of the discipline-specific reports. This report provides the

perspective needed to understand the major computing disciplines and how the undergraduate degree

programs compare and complement each other. Computing Curricula 2005: Overview Report on

Computing Curricula (CC2005-Overview), summarizes the body of knowledge of the undergraduate

programs in each of the major computing disciplines (computer engineering, computer science,

information systems, information technology, and software engineering), highlights their commonalities

and differences, and describes the performance characteristics of graduates from each kind of program.

Computer science and software engineering degree programs have many courses in common.

While computer science students are exposed to software reliability and maintenance, software

engineering students focus on software reliability and quality during the complete software development

cycle. Engineering knowledge and experience are applied to develop software that is correct, genuinely

useful, and usable by the customer. Figures 2.1 and 2.2 are graphical representations of the computer

science and software engineering disciplines, respectively. The shaded area of Figure 2.1 shows that

computer scientists are concerned with the whole spectrum of computing from the software that enables

devices to work and to the information systems that help organizations to operate. The fact that the

shaded area narrows and stops before reaching the right edge indicates that computer scientists create the

capabilities, but they do not manage the deployment of them. The shaded area in Figure 2.2 shows that

software engineers cover software development from the conception to the deployment as they oversee

large software system development. The vertical range shows that software engineers develop software

infrastructure and design and develop information systems that are appropriate to the client's

organization.

27

Figure 2.1 Computer Science [Shackelford, et al. 2005].

28

Figure 2.2 Software Engineering [Shackelford, et al. 2005

2.4.6 Computer Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley and

McGettrick 2008]

As the result of the increasingly fast changing field of computer science, an Interim Review Task Force

(RTF) was form to conduct an interim review of CS2001. The CS2008 Review Task Force is a joint task

force of the ACM and IEEE Computer Society. The document resulting from the review is Computer

Science Curriculum 2008: An Interim Revision of the CS 2001 (CS2008). Released in December 2008,

this report includes an update of the CS2001 body of knowledge as well as a commentary on resent

developments and trends in the computer science discipline. The RTF was directed to solicit and consider

feedback from the industrial, the two- and four-year academic communities, and individuals.

Some of the relevant trends found to influence the evolution of computer science were (1) the

emergence of security as a major area of concern, (2) the growing relevance of concurrency, (3) the

persistent nature of net-centric computing, and (4) the stronger development of the concept of systems

issues. There were no changes made to the set of software engineering core topics listed in CS2001.

29

However, changes were made to individual knowledge areas to reflect the greater emphasis on security

and the updating of net-centric computing. There is also a more detailed list of topics and learning

objects for each knowledge area.

This report addresses the debate of programming languages and paradigms. Although the RTF

was divided in its agreement with the SIGPLAN proposal [SIGPLAN 2008], it did agree that students

need to be exposed to more than one programming paradigm. The task force did not agree that the

functional programming paradigm needed to be required in all undergraduate computer science curricula.

Rather, the RTF chose to add a new requirement in Chapter 9 (“Completing the Curriculum”) of the

CS2001 report. This requirement recognized that, because professionals frequently used different

programming languages, students must recognize the benefits of learning and applying new programming

languages. Therefore, the committee recommended that all students must learn to program in more than

one paradigm. The choice of the secondary paradigm would depend on the character and educational

goals of the institution.

Another concern addressed by the RTF was the enrollment and retention crisis in computing.

This issue was considered important enough to warrant a new chapter, “Reflections on the Computing

Crisis,” to address (1) finding new and better ways of teaching computer programming and (2) trying to

present computing in a perspective that would motivate and inspire students.

2.4.7 Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in

Computer Science [Hawthorne, et al 2009]

The ACM Two-Year College Education Committee (ACMTYC) developed a set of curriculum

guidelines that provide guidance for associate-degree programs that are similar to those in the ACM

Computing Curricula Series for baccalaureate programs. Computing Curricula 2009: Guidelines for

Associate-Degree Transfer Curriculum in Computer Science (CC2009) provides discussion on

articulation as the key consideration when designing courses and programs that facilitate transfers by

30

student between two- and four-year institutions. Efficient and effective articulation requires well-defined

courses and program outcomes as well as meaningful communication and cooperation between

institutions and faculty.

The computer science associate-degree transfer program calls for a blended approach with

object-oriented programming emphasized in the latter part of CS1. CS1 includes algorithms and

fundamental programming constructs consistent with the Bohm-Jacopini theory for procedural

programming. Ethics and professionalism, security, and software engineering principles are presented in

CS1 using the breadth-first approach. These topics are covered deeper throughout the CS1-CS2-CS3

series. Software engineering principles are essential in the curriculum to ensure a disciplined, controlled

approach to software evolution and reuse. The coverage of security topics include encapsulation in CS1,

exception handling in CS2, and developing attack-resistant code in CS3. The third emphasis,

professionalism and ethics, begins in CS1 by examining the computing and ethical conduct and

individual behaviors. CS2 continues with consideration of societal impacts of computing. In CS3,

students begin to internalize the importance of professional and ethical behavior.

Table 2.17 Computer science associate-degree program outcomes [Hawthorne 2009]
Group 1 – Critical thinking, problem solving, and theoretical foundations

O
ut

co
m

es
 A. An ability to apply knowledge of computing and mathematics appropriate to the discipline.

B. An ability to think critically and apply the scientific method.
C. An ability to analyze a problem and craft an appropriate algorithmic solution.
D. An ability to design, implement and evaluate an appropriate and secure computer-based

system, process, component, or program to satisfy required specifications.

Group 2 – Communication and interpersonal skills

O
ut

co
m

es
 A. An ability to read and interpret technical information, as well as listen effectively to,

communicate orally with, and write clearly for a wide range of audiences.
B. An ability to function effectively as a member of a team to accomplish common goals.

Group 3 – Professionalism and ethics, social awareness and global perspective

31

O
ut

co
m

es
 A. An ability to engage in continuous learning as well as research and assess new ideas and

information to provide the capabilities for lifelong learning.
B. An ability to exhibit professional, legal and ethical behavior.
C. An ability to demonstrate social awareness, respect for privacy and responsible conduct.
D. An ability to analyze the global impact of computing on individuals, organizations, and

society.

The ACMTYC recommends that the entire CS1-CS2-CS3 core sequence presented in this report

be completed at the same educational institution with the programs of study having well-defined exit-

points. Two- and four-year institutions are advised to work together to design compatible and consistent

programs of study that enable students to transfer easily from associate-degree programs into

baccalaureate-degree programs.

Clearly defined program outcomes at the course and program levels are essential to developing

effective articulation agreements. CC2009 developed three groups of outcomes, shown in Table 2.17,

which students should demonstrate upon successful completion of the computer science associate-degree

program. In addition to the program outcomes, CC2009 defines an assessment rubric for the student

learning outcomes for each of the three core CS courses.

Table 2.18 Program outcomes and supporting coursework [Hawthorne 2009]

Program
Outcomes

Critical thinking,
problem solving, and

theoretical foundations

Communications
and

interpersonal skills

Professionalism and ethics,
social awareness and

global perspective

Group 1 Group 2 Group 3
A B C D A B A B C D

CS1 x x x x x x x x
CS2 x x x x x x x x x
CS3 x x x x x x x x x x

Discrete
Structures x x x x x x

Calculus I x x x x

The ACMTYC recommends that an associate-degree transfer curriculum in computer science

includes a core computer science sequence, CS1-CS2-CS3, and foundational mathematics courses. Table

32

2.18 summarizes the program outcomes and identifies the underlying support provided by the CS core

sequence and the foundational mathematics courses.

In CS1, students develop fundamental programming skills using a language that supports an

object-oriented approach. In CS2 and CS3 students continue with the students developing intermediate

and advance programming skills using a language that supports an object-oriented language. It is

recommended that each core computer science course has 42 minimum contacts hours. The course topics

for each of the core computer science course are listed in Table 2.19 along with the recommended hours

per topic heading.

Table 2.19 Computer science sequence topics [Hawthorne 2009]
CS Core Sequence Topic Headings

with recommended hours per topic in () ACM Computing Ontology
Topic Classifiers CS 1 CS 2 CS 3

Social &
historical context of

computing (1)

Ethical conduct (1) Professionalism (1) Ethical Social;
History Computing

Programming languages
(1)

Event-driven
programming (4)

 Programming Languages

IDE & software tools (2) Programming Languages

Fundamental programming
constructs (11)

Intermediate
programming constructs

(3)

Recursion (7) Programming Fundamentals;
Programming Languages

Machine level
representation of data (1)

 Computer Hardware
Organization

33

Fundamental algorithms &
problem-solving (6)

Intermediate computing
algorithms (5)

Formal computing
algorithms (8)

Algorithms Complexity;
Discrete Structures

 Object-oriented design
& modeling (5)

Software reuse Conceptual Modeling;
Information Topics

Object-oriented principles
(6)

Object-oriented
programming (7)

 Programming Languages

Fundamental Data
Structures (6)

Intermediate data
structures (7)

Canonical data structures
(7)

Programming Languages;
Algorithms Complexity

Secure code (2) Software assurance (3) Software & information
assurance (3)

Security Topics

Overview of
operating systems (1)

 Concurrency (2) Computing & Network
Systems

Human-computer
interaction (1)

Human-computer
interaction (2)

Human-computer
interaction (2)

User Interface; Graphics,
Visualization, Multimedia

 Simple database
integration (1)

 Information Topics

Program development (3) Software development
(4)

Software engineering (4) Software Engineering

 Basic algorithmic analysis
(3)

Algorithms Complexity

 Algorithmic strategies (3) Algorithms Complexity

2.4.8 The Guide to the Software Engineering Body of Knowledge [Tripp, et al. 2004]

The Guide to the Software Engineering Body of Knowledge (SWEBOK) is the result of a project initiated by the

Software Engineering Coordinating Committee (SWECC), a joint effort of IEEE-CS and ACM. The objectives of

this guide are to (1) promote a worldwide, consistent view of software engineering; (2) set the boundary of software

engineering with respect to other disciplines such as computer science, project management, computer engineering,

and mathematics; (3) determine the contents of the software engineering body of knowledge; (4) provide a topical

access to the software engineering body of knowledge, and (5) provide a foundation for curriculum development and

individual certification and licensing material.

SWEBOK centers on organizing the software engineering body of knowledge into ten Knowledge Areas

(KAs) which are listed in Table 2.20. Each KA is divided into subtopics that were selected with consideration to (1)

compatible with major schools of thought, (2) breakdowns generally found in industry, and (3) breakdowns in

software engineering literature and standards. The topics descriptions convey what is needed to understand the

34

generally accepted nature of the topics and are not related to particular application domains, business uses,

management philosophies, development methods, etc.

Table 2.20 The SWEBOK Knowledge Areas
[Tripp, et al. 2004]

Software requirements
Software design
Software construction
Software testing
Software maintenance
Software configuration management
Software engineering management
Software engineering process
Software engineering tools and methods
Software quality

Each KA subtopic has been identified with a proposed Bloom’s taxonomy level appropriate for a

“generalist” software engineer graduate with four years of knowledge. Bloom’s taxonomy [Bloom 1956]

is a well-accepted and widely used classification of cognitive educational goals. An explanation of the

Bloom’s taxonomy levels and the list of the KA subtopics are presented in Appendix A. The Bloom’s

taxonomy levels were included in SWEBOK to assist with course and curricula development, university

accreditation criteria, job descriptions, software engineering process role descriptions, professional

development and training programs, etc. Because a four-year software engineering graduate lacks

management experience, the management-related topics are not given a high priority in the taxonomy

levels. SWEBOK, also, assumed that graduates would have less knowledge of life cycle topics related to

software requirements than for more technically-oriented topics like software design, software

construction, or software testing.

2.5 Software Development Tools

Software development tools and programming environments have existed since the early days of

computer programming. The demands for more complex software in less time have made tools and

environments more crucial than ever expected. All software engineers use tools. Some use stand-alone

35

tools while others use integrated collections of tools. Traditional tools are editors, compilers, and

debuggers. Today, tools are being developed to provide a broader coverage of the software engineering

lifecycle. These tools aid in requirements gathering, design, building GUIs, generating queries, defining

messages, architecture systems and connecting components, testing, version control and configuration

management, administering databases, reengineering, reverse engineering, analysis, program

visualization, and metrics gathering. Others are full-scale, process-centered software environments that

cover all, or a significant part, of the life cycle. [Harrison, et al. 2000]

The development of large, complex software systems require tools that help (1) trace connections

among products to monitor change impact analysis, (2) measure progress of product development, (3)

simulate and understand parts of a problem to select the correct solution, and (4) support reuse so we can

easily extract material from existing developments and incorporate it into current products. [Pfleeger and

Atlee 2006]

Computer-Aided Software Engineering (CASE) automates some of the software process and

provided information about the software being developed. [Sommerville 2004] The power of CASE is its

integrated environment that (1) allows smooth transfer of information from one task to another; (2)

reduces the effort required for tasks such configuration management, quality assurance, and creating

documentation; (3) increases project control through better planning, monitoring, and communication;

and (4) coordinates work effort on a large software project. [Pressman 2001]

Programming environments are a collection of tools that support coding activities and included

one or more compilers, language-sensitive editors, debuggers, and, sometimes, testing or documentation

utilities. Each of these environments supports only one software engineering activity and its artifacts,

implementation and code, respectively. The need for integrated support throughout the software

engineering lifecycle led to integrated design environments (IDE). [Harrison, et al. 2000]

36

Pedagogical programming environments should facilitate learning to program effectively and

efficiently and help students understand problem-solving strategies. For pedagogical purposes, an IDE

should satisfy several fundamental requirements: (1) assist students in writing correct syntax in a

language in which they may not be proficient; (2) provide a simple interface to the language compiler and

provide a visual flag for syntax errors; and (3) provide an alternative to command line interface for

running a program. In addition to these, an IDE used in teaching an introductory-level programming

course should (1) be simple and non-intimidating; (2) provide simple mechanisms for working around

complicated aspects of the Java language; and (3) be able to run on older, less capable hardware. [Reis

and Cartwright 2003]. A short learning curve for a new software tool or programming environment is an

important factor for integration into an educational setting [Kouznetsova 2007, Sanders and Heeler 2001,

Bouillon, et al. 2003, Reis and Cartwright 2003, Roy 2006, Boloix and Robillard 1998].

Many choices and types of programming environments are available for teaching CS1 and CS2

courses. Many instructors feel that the number of features in professional level IDEs--Eclipse, IBM

Rational, JCreator, Netbeans, Borland JBuilder, and Microsoft Visual--is a distraction for student; the

learning curve is too steep; and they are too costly. Environments have been design for specifically for

pedagogical purposes. The most prominent of these are BlueJ, DrJava, and jGRASP. [Burch 2009, Chen

and Marx 2005]

2.5.1 Professional Integrated Design Environments

Eclipse. Released by IBM in 2004, Eclipse is an open-source, professional IDE with extensible

frameworks, tools, and runtimes for building, deploying, and managing software across the software

lifecycle [Eclipse 2009]. The Eclipse plug-in architecture makes the IDE extensible for multiple

programming languages with a consistent look and feel [Czyz and Jayarman 2007].

37

Eclipse is a platform for tool integration allowing modeling, design, programming, and testing

tools to come together. Eclipse is supported by several platforms including Windows, Linux, Apple Mac

OS, and most major UNIX systems.

The Eclipse Java Development Environment (JDT) includes an editor, a debugger, and a variety

of refactoring operations. JDT contains integrated support for the Java build tool Apache Ant, a unit-

testing tool JUnit and a documentation tool JavaDoc. [D’Anjou, et al. 2005]

Eclipse does not satisfy the previously mentioned requirements for introductory programming

course, but it may be appropriate for intermediate and advanced courses [Reis and Cartwright 2003].

While Eclipse has large established usage, the availability of education material is lacking. Because of its

abundance of windows and unfamiliar concepts like perspectives, Eclipse has a steep learning curve

[Bouillon, Burger, and Zeller 2003, Reis and Cartwright 2003, Czyz and Jayarman 2007, Deugo 2008,

Rubel 2006] but, once mastered, it is a powerful development environment [Bouillon, et al. 2003, Czyz

and Jayarman 2007]. Although it is a powerful professional tool, it has better complier error messages

than BlueJ or DrJava and detects most syntax errors as the user types [Olan 2004].

NetBeans. Similar to Eclipse, the NetBeans project consists of an open-source IDE and an

application platform that enable developers to create web, enterprise, desktop, and mobile applications

using the Java platform. This IDE, also, supports JavaFX, PHP, JavaScript and Ajax, Ruby and Ruby on

Rails, Groovy and Grails, and C/C++. NetBeans is a collaborative where a team of developers can check

out, edit, debug, build, discuss, and commit code through on interface. It provides integrated file version

control through easy access to Concurrent Versions Control (CVS), Mercurial, or Subversion;

documentation via Javadoc; and unit testing with JUnit. [Netbeans 2009]

38

Table 2.21 Core capabilities of rational products and services [Rational 2009]

Architecture management:
• Design, model, develop and deliver software and systems and solutions help manage software quality throughout

the lifecycle.
• Control reuse and automation capabilities.
• Integrate with existing software development tools, like a visual modeling design tool for designing with Unified

Modeling Language (UML) and automate design-to-code translation.

Change and release management:
• Improve software delivery and lifecycle traceability, from requirements through deployment.
• Unify distributed teams, automate software assembly processes, and provide traceability across the software

development lifecycle.
• Collaborative software delivery through integrated version control and automated workflows.
• Identify code-level issues through static analysis.
• Provides version control, workspace management, and parallel development support.
• Provides flexible defect and change tracking, process automation, reporting, and lifecycle traceability for better

visibility and control of change and the development lifecycle.

Enterprise architecture management:
• Link, consolidate, and analyze information concerning strategy, business architecture, information systems, and

technology infrastructure.
• Drive reuse by collecting and maintaining current information about enterprise building blocks.

Integrated requirements management:
• Define and manage requirements.
• Provide traceability and alignment with business procedures.
• Offer best practices in requirements definition and requirements management.
• Control and manage changes to requirements.
• Measure the impact of changes as they occur.
• Demonstrate compliance by ensuring full traceability of requirements.

Product, project, and portfolio management:
• Align business goals, best practices, and projects for improved productivity and predictability.
• Automate proven governance and delivery process for consistency.
• Manage value and delivery risk across the lifecycle.

Quality management:
• Ensure software functionality, reliability, compliance, security, and performance throughout development and

production.
• Automate software functional testing, load testing, performance testing, scalability testing, run-time analysis,

memory leak detection, performance profiling, and component unit testing.

IBM Rational. The IBM Rational software architect, built on Eclipse, is a process-centered

software environment (PSEE) integrates process, tools, and automated tasks. PSEEs integrate tool

support for software artifact development and support the modeling and executing of the software

39

engineering processes that produce the artifacts. The representation of processes, their products, and their

interactions is the foundation on which modern integrated development environments, such as IBM

Rational, are built. [Harrison, et al. 2000]

IBM Rational provides an approach to iterative lifecycle management for faster and more

consistent software development. The core capabilities (Table 2.23) of Rational products and services

assists in all software development needs.

2.5.2 Pedagogical Integrated Design Environments

jGRASP. Developed by Auburn University, jGRASP is a lightweight development environment that is

implemented in Java and runs on all platforms with a Java Virtual Machine (JVM). It provides for the

automatic generation of software visualizations to improve software comprehension. The Object

Workbench, Debugger, and Interactions features are tightly integrated with the visualizations: Control

Structure Diagrams (CSDs), UML Class Diagrams, and Viewers. Each is described below:

• The Object Workbench works with the UML class diagram and CSD window, allowing the user to

create instances of classes and invoke their methods. An object on the workbench can be viewed

and changes observed as methods are invoked.

• The integrated Debugger works with the CSD window, UML window, and the Object Workbench.

Users can use the Debugger to examine their program step by step.

• The Interactions features allow the user to execute or evaluate most Java statements and expressions

as they are entered.

• Control Structure Diagrams are available for Java, C, C++, Objective-C, Ada, and VHDL to depict

control constructs, control paths, and overall structure of each program unit. The CSD window

supports editing, compiling, running, and debugging programs. [jGRASP 2009b] The jGRASP

CSD visualizes the dynamic behavior of code which allows students to quickly comprehend the

40

meaning of the program they are writing or reading. This is especially helpful in understand

nested control structures. [Buck and Stucki 2001]

• UML Class Diagrams for Java depict with arrows dependencies among classes. UML class

diagrams can be generated for Java source code from all Java class and jar files in the current

project. Class members and class dependencies can be displayed. The UML diagram assists in

understanding the dependencies among classes when using object-oriented software. [jGRASP

2009b]

• Dynamic Viewers were developed primarily for students in an introductory-level data structure and

algorithms course and help increase the accuracy and reduce the time taken to write programs

implementing [jGRASP 2009a]. The object viewers for Java include a data structure identifier

mechanism that recognizes traditional data structures objects such as stacks, queues, linked lists,

binary trees, and hash tables, and displays them in a textbook-like view. The viewers provide

dynamic visualizations of objects and primitives as the user steps through a program in debug

mode or invokes methods from an object on the workbench. When a viewer is opened, the

structure identifier attempts to automatically recognize linked lists, binary trees, and array

wrappers (list, stacks, queues, etc.) during debugging or workbench use. [jGRASP 2009b]

Available at no cost, jGRASP is currently being used in almost 300 educational institutions

world-wide including 37 high schools and districts, 48 community colleges, and 209 colleges and

universities [jGRASP 2009]. Many instructors have had positive anecdotal response to the use of these

viewers in CS1 and CS2 courses [Cross, et al. 2007].

BlueJ. BlueJ is a Java pedagogical IDE designed for teaching an object-oriented first

introductory course. Used by hundreds of educational institutions world-wide, BlueJ is based on the Blue

system, which is an integrated teaching environment and language developed at the University of Sydney

and Monash University, Australia. [Sanders 2001, BlueJ 2009]

41

Some of the characteristics of BlueJ that allow it to be a good approach for teaching

introductory-level object-oriented and data structure courses are: it is free of charge; it is easy to use with

short learning curve; it supports automatic construction of class diagrams; it allows customizable

templates for class skeletons; it has the ability to instantiate objects and test methods without a driver

program; it is an integrated debugger; it previews or creates HTML documentation (via javadoc); it can

import packages that are not created with BlueJ; and it has an automatic make utility. [Smith and Boyd

2001, Xinogalos, et al. 2007, Paterson, et al. 2005, Sanders 2001]

BlueJ eliminates the dependence on Java’s main method and console input and output. It uses

class diagrams and a graphical “workbench” to allow students to interact visually with their programs

without writing code. [Reis and Cartwright 2004, Kolling 2003]. BlueJ supports a fully integrated

environment; graphical class structure display; graphical and textual editing; built-in editor, compiler,

virtual machine, debugger, etc.; an easy-to-use interface; interactive object creation and calls; interactive

testing; and incremental application development [Sanders 2001, BlueJ 2009]. Creating an object

displays a UML object diagram in BlueJ’s object bench [Olan 2004].

Unit testing in BlueJ combines BlueJ’s interactive testing functionality with the regression

testing of JUnit. New functionality resulting from the combination of the two systems allows interactive

test sequences to be recorded automatically creating JUnit test methods for later regression testing.

[Kolling 2009]

The BlueJ support tools present a limited subset of the professional version control systems with

a significantly simplified interface. When teamwork tools are enabled, users can check out or share a

project, update from or commit changes to a repository, and obtain file status and project history. [Fisker,

et al. 2008]

BlueJ describes programs using both UML diagrams and text, which can make the environment

more complex than other pedagogical IDEs. To use BlueJ, the user must learn both Java and the

42

protocols for using the graphical programming interface. [Allen, et al. 2002] It does not scale to large

project or computations and is limited to developing small programs in introductory courses [Reis and

Cartwright 2004, Allen, et al. 2002].

DrJava. DrJava is a lightweight Java development environment which provides the ability to

interactively evaluate Java code. Developed at Rice University, DrJava is available for free under the

BSD License [DrJava 2009] and is available on multiple platforms, including Windows, Linux, and

Macintosh [Olan 2004].

DrJava’s interactions are based on a read-eval-print interpreter similar to Scheme and evaluate

Java expressions and statements interactively. Users can experiment with Java constructs by typing an

expression or statement and having it evaluated immediately, without having to write a full Java program.

The interface is text-based and requires Java syntax. [Olan 2004, Smith and Boyd 2001]

As a pedagogical IDE, DrJava’s most important benefits are its simplicity and its interactive

interface. The user interface is designed to be accessible to beginners, with clearly labeled buttons and

few distractions in a simple graphical layout. It consists of three panes: (1) a Definitions Pane used to

enter program text, (2) an OpenFiles panel listing the open files and highlighting the one selected for

display in the Definitions Pane, and (3) an Interactions Pane used to evaluate arbitrary statements and

expressions in the context of the files listed in the OpenFiles Pane. [Reis and Cartwright 2004]

When a class is compiled in the Definitions Pane, it is immediately available for use in the

Interactions Pane. An interaction can be copied into the editor providing a convenient way to move

experimental tests into a JUnit test to make them repeatable. Because each class method can be executed

independently, the Interactions Pane is an effective tool for simple testing and debugging. DrJava also

includes a source-level debugger which supports setting breakpoints and defining watches. The DrJava

compiler parses the entire file and reports all syntax errors. The editor provides automatic indentation,

parenthesis/braces matching and quotation/comment highlighting that is updated with every keystroke.

43

Other features of DrJava include built-in support for JUnit test cases; generation of Javadoc

documentation; Javadoc preview for the current document; single medium for program development –

text; and a history list of statements/expression in the Interactions Pane. [Olan 2004, Reis and Cartwright

2003] DrJava is effective on sizable projects, but the environment lacks built-in refactoring tools [Reis

and Cartwright 2003].

The first stage of a DrJava plug-in for IBM’s Eclipse is available. This plug-in provides a fully-

functional Interactions Pane and simplified user interface to Eclipse. The next stage of development will

integrate Eclipse's debugger with the Interactions Pane, allowing users to interact with their programs

while at a breakpoint. [DrJava 2009]

2.5.3 Microworlds

The objects-first strategy for teaching programming has spawned the development of a new type of

educational software tools that is intended to reduce the gap between students’ mental models and the

programming language. These software tools are programming microworlds based on a physical

metaphor. JKarelRobot, Alice, and Greenfoot are this type of software tool that are used in educational

settings. [Xingalos 2006]

JKarelRobot. Karel the Robot, created at Carnegie Mellon University, uses a simple set of

primitives and contains branching and looping structures as well as procedural abstraction. Rather than

using a traditional programming language, each program has a robot execute a task. The language is

block structured and has basic branching, looping and procedure abstraction control structures. [Barnett

2009] To aid in the comprehension the meaning of programs, especially nested control structures,

JKarelRobot supports CSDs. JKarelRobot, written in Java, is platform and language/paradigm

independent, supporting Pascal, Java, and Lisp-style environments [Buck and Stucki 2001].

Karel can only exist at discrete coordinates in a discrete 2D world. The abstract notion of the

state of variables is replaced with the state of the world that Karel occupies. JKarelRobot expands on the

44

Karel the Robot language and environment (1) to support more directly the primitive levels of cognitive

development and (2) to teach more concepts and support more of the curriculum. JKarelRobot allows

students to learn programming concepts without the syntactical baggage or the complexities of a real

programming environment. It does so at the cost of only supporting the single metaphor of manipulating

a robot on a 2D gridded space. [Buck and Stucki 2001]

Greenfoot. Greenfoot is a free programming environment that is suitable for novice

programmers. It is a tool for modeling and simulating single objects on a 2D space. Greenfoot contains

the typical elements of a integrated development environment: source code editor, class browser,

compilation, execution control, and debugger. The greenfoot framework (1) makes it easy to create

representations of objects and (2) controls the execution of a simulation loop. Greenfoot can visualize

and directly interact with objects from a Greenfoot scenario. [Greenfoot 2009] In contrast to some

microworld’s single scenario, Greenfoot provides an interactive microworld meta-framework which

allows multiple scenarios and iconic objects in the world. The Greenfoot runtime and compiler uses

standard Java, and Greenfoot classes are standard Java classes. The Greenfoot implementation is based

on the BlueJ system and many BlueJ tools are available in Greenfoot. [Henriksen and Kolling 2004]

Alice. Alice is a free 3D programming environment created at Carnegie Mellon University to be

students’ first exposure to object-oriented programming. Students can learn fundamental programming

concepts while populating a virtual world with 3D objects and creating animated movies and simple

video games. Its interactive interface allows students to drag and drop tiles that represent tokens of a

programming language and immediately see how their animated programs run. [Alice 2009] Alice is built

on top of the Python programming language and uses many Python features. Alice functions and

decisions are supported through the underlying Python language. [Cooper 2000]

45

Table 2.22 Software engineering curriculum and software development environments

Software Development Environments

CC2001 Software Engineering Core Areas of Study

Professional Pedagogical

Ec
lip

se

N
et

B
ea

ns

R
at

io
na

l

jG
R

A
SP

B
lu

eJ

D
rJ

av
a

M
ic

ro
-w

or
ld

s

SE1. Software design x* x x

SE2. Using APIs x x x x x x x

SE3. Software tools and environments x x x x x x x

SE4. Software processes x

SE5. Software requirements and specifications x

SE6. Software validation x x x x x

SE7. Software evolution x x

SE8. Software project management x x x x

* The software development environment covers at least part of the curriculum topics in the core area of
study.

46

3 Community Colleges

Community colleges are a 100-year-old American invention that put publicly funded higher education at

close-to-home facilities. Since their beginning, they have been inclusive institutions welcoming all who

desire to learn, regardless of wealth, heritage, or previous academic experience. [AACC 2009, Kasper

2002] Making higher education available to the maximum number of people continues at 1,173 public

and independent community colleges with branch campuses bringing the number to about 1,600 across

the United States. [AACC 2009]

Table 3.1 Percentages of postsecondary enrollment increase
[1ACHE 2009a, 2GAO 2007]

1Alabama

1999 to 2007
2United States

2000-01 to 2006-07
 4-yr 2-yr Average
Female 21.4% 18.1% 19.7% na

African Am 24.2% 15.1% 19.7% 15.0%

White/ non-Hisp 9.0% 9.1% 9.1% 3.0%

Am Indian/ Alaskan Native 17.9% 21.6% 19.8% na

Asian/ Pacific Island 43.3% 45.2% 44.2% 15.0%

Hispanic 97.3% 107.5% 102.4% 25.0%

Total enroll 16.2% 11.9% 14.0% *22.5%

* Average of
21.0% 4-yr and
24.0% 2-yr

Community colleges have become an important part of postsecondary education in the United

States. Over the past 40 years, public community college enrollment has increased at a much faster rate

than at the public four-year universities, with the percentage of women enrolled in community colleges

47

surpassing that of men. Because of the low cost and accessibility, racial and ethnic minorities have

become an increasing proportion of all students enrolled at community colleges. [Kasper 2002] In the

time of a recession, community colleges experience an abnormal increase in student enrollment as

unemployed workers seek to continue their education or change career fields [Tirrell-Wysocki 2009].

Table 3.2 Alabama new undergraduate transfers summary
[ACHE 2008a]

Fall AL Public
2yr to 4yr

Enrollment
Increase Percent Increase

2008 6001 400 7.1%

2007 5601 640 12.9%

2006 4961 449 10.0%

2005 4512 -85 -1.8%

2004 4597 243 5.6%

2003 4354 206 5.0%

2002 4148 -157 -3.6%

2001 4305 436 11.3%

2000 3869 236 6.5%

1999 3633 Not available Not Available

Increase 1999-2008 2368 65.2%

3.1 Higher Education and Community College Demographics

The November 2007 U.S. Government Accountability Office (GAO) report on higher education in the

United States indicateded that, for the 2006-2007 academic year, the public two-year colleges’ share of

new enrollment was 47% compared with 24% for the four-year universities. During the decade prior to

the 2006-2007 academic year, public two-year college enrollment increased by 24% and four-year by

21%. There was also a shift toward two-year colleges for some minority groups. For public two-year

colleges, the Hispanic enrollment increased by 4% and Black students 3%. These two groups' enrollment

in public four-year universities decreased 2% and 3%, respectively. The changes in enrollment for other

minority groups were less than 2%. For 2006-2007, the percentages of students by race who were

48

enrolled in a two-year college were: Hispanic 58%, Black 50%, Asian/Pacific Islander 50%, Alaskan

Native 50%, and White/non-Hispanic 43%. [GAO 2007] Table 3.1 presents the increases in higher

education enrollment by gender and race that was experienced in higher education in Alabama and the

U.S. over the past decade.

In Alabama, the percentage of students who begin their college education in a two-year

institution and transfer to a four-year university has increased greatly over the past decade, as shown in

Table 3.2 [ACHE 2008a].

3.2 STEM in Community Colleges

The lack of American students qualified to fill professional careers in basic science, technology,

engineering, and mathematics has been identified as a danger to our country over the next quarter

century. The American education system needs to produce significantly more scientists and engineers,

including four times the current number of computer scientists, to meet anticipated demand. [USCNS/21

2001] The STEM (Science, Technology, Engineering, and Mathematics) Education Coalition along with

federal and state education systems are in a heightened state of concern for the need to inspire young

people, especially those from underrepresented or disadvantaged groups, to pursue careers in STEM

fields [STEM 2009]. In the 1999-2000 academic year, computer and information science was the seventh

most popular field of study for community college associate degrees. During the decade preceding 1999-

2000, the number of associate degrees awarded by community colleges increased 21%. One of the fastest

growing fields of study for associate degrees was computer and information science with an increase of

93%. [Kasper 2002] During the 16 years of the National Science Foundation’s Advanced Technological

Education (ATE) program, of those who earned bachelors and/or masters degrees in STEM disciplines,

roughly 44% got started on their undergraduate studies at a community college [Navarro, et al. 2008].

One of the top priorities of the State Plan for Alabama Higher Education 2009-2014 is to increase the

49

number of graduates in STEM from Alabama colleges and universities. This initiative includes working

with two-year schools to prepare more students to transfer into four-year STEM programs. [SPAC 2009]

3.3 Alabama Community College System

The Alabama Community College System (ACCS) consists of 22 comprehensive public community

colleges and four public technical colleges; Athens State University; and workforce development

initiatives such as the Alabama Industrial Development Training Institute and the Alabama Technology

Network. The ACCS ensures access to education through statewide geographical locations, open

enrollment, and low-cost tuition. It provides general education and other collegiate programs at the

freshman and sophomore levels to prepare students for transfer to four-year institutions to complete

baccalaureate degrees. [ACCS 2009a]

The Alabama Commission on Higher Education (ACHE) is the state agency responsible for

statewide planning and coordination of higher education in Alabama. This includes on- and off-campus

instruction programs as well as nonresident institutions1 operating in Alabama. [ACHE 2009b] The

responsibilities of the ACHE include (1) approval of new units of instruction including new institutions,

mergers, branch campuses, colleges, schools, division, and departments; (2) approval of all new

academic programs; (3) facilitating the planning for higher education including the development of a

statewide plan; (4) reviewing and making recommendations concerning existing programs; (5) collecting

and compiling information concerning higher education in Alabama; and (6) conducting studies on

1 Non-resident institutions are defined as postsecondary institutions or corporations with main

campuses or headquarters located outside the state that offer educational programs in Alabama

[ACHE 1975].

50

higher education issues and making recommendation to the institutions, the Legislature, and the

Governor. [ACHE 2009c]

3.4 Alabama Articulation and General Studies Committee

A part of the ACHE, the Alabama Articulation and General Studies Committee (AGSC) was created to

oversee articulation between public institutions of higher education. The AGSC developed and

implemented a statewide general studies and articulation program that facilitates the transferability of

coursework among Alabama community colleges and universities. The AGSC was charged by the 1994

Alabama legislature with four tasks:

1) Develop a statewide freshman- and sophomore level general studies curriculum for all public

colleges and universities.

2) Develop a statewide articulation agreement for the transfer of freshmen and sophomore year credit

among all public institutions of higher education in Alabama.

3) Examine the need for a uniform course numbering system, course titles, and course descriptions.

4) Resolve problems concerning the administartion and interpretation of the articulation agreement of

the general studies curricula.

The AGSC has completed charges 1) and 2). A uniformed numbering system for the whole state

was determined not to be needed at this time. The fourth charge is an ongoing responsibility of the

committee. [AGSC 2009a]

 The AGSC oversees the Statewide Transfer and Articulation Reporting System (STARS), a

web-based database where students, advisors, faculty, and administrators can obtain the most current

AGSC approved information. STARS allows students in Alabama public two-year colleges to obtain a

transfer guide/agreement for the major of their choice. This guide/agreement directs the student through

the first two years of coursework and prevents loss of credit hours upon transfer to the selected Alabama

public four-year university.

51

The AGSC course structure for the freshman and sophomore years is divided into four areas of

general studies: (I) written composition; (II) humanities; (III) natural science and mathematics; and (IV)

history, social science, and behaviorial science. A fifth area of study contains pre-professional, pre-

major, and elective courses that prepare students for transfer to a baccalaureate program at a four-year

university. Prospective transfer students earn 41 semester hours in Areas I-IV of general studies and 19-

23 semester hours in Area V. It is in Area V where a student begins a computer science program of study.

One or more computer science courses are required by the two-year program with the remaining hours in

Area V being determined by the institution to which the student plans to transfer. [AGSC 2009b]

The AGSC has two groups of academic committees, the General Studies Academic Committees

(GSACs) and the Pre-Professional Academic Committees (PACs) [AGSC 2009c]. There is a GSAC for

each of the 21 general studies disciplines in Areas I-IV. Each GSAC is responsible for the review and

recommendation for approval and disapproval of new courses in the two- and four-year institutions. For

each field of study in Area V, a PAC is responsible for the annual review of the discipline templates as

well as the consideration of proposals from institutions for the development of new templates. Templates

are used to establish degree requirements for Areas I-V for each major offered through STARS. Once a

template is ratified by the AGSC, the STARS office creates a transfer guide based on the specific

requirements listed in the ratified template. [AGSC 2009d]

Community college students are encouraged to use STARS to ensure that they are taking the

courses necessary to continue to the Alabama four-year university of their choice. Each community

college website has information about and a link to STARS as well as contact information to assist with

the transfer process. In addition, each university offers an Area V webpage which contains initial

information about its transfer requirements as well as contact information for transfer assistance. To

obtain a STARS Guide, students provide the name of the community college they are currently attending,

the area of concentration in which they would like to study, and two universities they would like to

52

attend. Correct information is necessary to ensure that a student has the correct guide. The guide

identifies the courses and hours needed in each area (Area I-Area V) to transfer from a specific

community college to a specific university. Not following the guide may result in the university rejecting

credits. [STARS 2009b] The Alabama Commission on Higher Education 2008 Accountability Report

[ACHE 2008b] communicated that the AGSC continues to give priority (1) to reviewing the

approved/ratified course and templates; (2) to the education of administrators, faculty, parents,

legislators, and the general public about STARS; and (3) to improve four-year institutions Area V

webpage to better assist in the transfer of students from two-year to four-year institutions.

3.5 Alabama Community College Computer Science Curricula

Nineteen of the Alabama public community colleges offer an associate and/or applied associate degree in

computer science which prepare students for the work environment or for transfer to a four-year

institution. Each of these institution’s Area V STARS transfer guide includes one or more Computer

Information Science (CIS) courses which are required for a student wanting to transfer to an Alabama

public four-year university. The four-year university that is listed in a student’s transfer guide will

specify the additional CIS, and possible other discipline, courses that a student is required to take at the

community college prior to transferring to its institution. The links for the community colleges’ STARS

transfer guides and the universities’ Area V are presented in Appendix B.

The creation and approval of the CIS courses for the Alabama community colleage system are

the responsibility of the AGSC. Course directories are available for each accademic discipline of

program. The course directory provides the course number, title and course description for each approve

course to create consistancy among the community colleges. [ACCS 2009c] A standardized syllabus is

available for most courses [ADPE 2005].

From the course catalogs of Alabama community colleges, we obtained information on the

computer science curriculum, the CIS courses taught, and the CIS course prerequisites (Appendix B).

53

The CIS courses offered and required for a computer science degree and the prerequisites vary by the

community college. Although these courses have the same CIS course numbers in each community

college catalog, some course numbers represent courses with different titles and course descriptions. For

the purpose of this research, only the CIS courses related to software engineering and software

development and design were selected for review. They are listed in Table 3.3., where the various course

names are given for each course number. The number of community colleges using a course name in

their catalog and the number listing the course as a degree requirement are indicated. The course

descriptions are summarized in Table 3.4. Note that there are multiple course descriptions given for CIS

251, 252, and 255.

The Alabama Department of Post Secondary Education, which represents Alabama's public two-

year college system, provides standardized syllabi. A review of the available CIS syllabi found that some

contained incorrect information and inconsistencies. Of particular interest to this research is that the

syllabi for CIS 251 C++ Programming and CIS 255 Java Programming do not mention object-oriented

programming [ADPE 2005].

The inconsistances in the CIS courses offered by Alabama public community colleges are

evident in the course descriptions shown in Table 3.4. CIS 251 is listed as a required course in Area V of

four four-year universities; yet, it has three different course descriptions from the community college

catalogs. The differences in the course descriptions and computer science curricula offered at the

community colleges convey significant inconsistancy among institutions. This can put some students at a

disadvantage in the workplace, but, more in line with this research, students can be at a disadvantage

when entering a baccalaureate program at a public four-year university.

Although the CIS course numbers are consistent in the community college catalogs, the

corresponding course numbers in the four-year university Area V requirements, shown in Table 3.5, are

most likely not the same number. A student is dependent on a STARS Tranfer Guide to provide the

54

connectivity of a course taught at a community college with the cooresponding course needed at the four-

year institution. It should be noted that in most cases the Area V webpages indicate that assistance of an

advisor at the community college or university is needed to ensure that a tranfer guide is complete and

correct.

Table 3.3 CIS courses in community college catalogs related to software engineering
 and software development and design

CIS
No.

Course Title(s)
All 3 semester hours Cat Deg

Req Prerequisite Transfer
Code

110 Intro to Computer Logic & Programming 15 7 Varies by college C
150 Computer Program Logic

Intro to Computer Logic & Programming
 1
 1

-
-

Varies by college

185 Computer Ethics 6 2 Varies by college C
191 Intro to Computer Programming

Intro to Programming Concepts
Intro to Computer Programming Concepts
Intro to Computer Science

 1
 1
 5
 3

-
-
1
-

Varies by college B

192 Advanced Computer Programming Concepts 4 - Varies by college C
201 Intro to Computer Programming

Intro to Computer Programming Concepts
 1
 2

1
1

Varies by college C

211 Basic Programming 1 1
212 Visual Basic

Visual Basic Programming
Visual Basic Programming (VisualBasic.net)

 4
 16
 1

2
6
1

Varies by college B

213 Advanced Visual Basic Programming
Adv Visual Basic Prog(Adv VisualBasic.net)

 15
 1

3
1

Varies by college C

251 C Programming
C++ Programming
C++ Programming Language

 4
 13
 1

1
7
1

Varies by college B

252 Advanced C Programming
Advanced C++ Programming

 2
 9

2
2

Varies by college

C

255 JAVA Programming 14 4 Varies by college B
256 Advance JAVA 6 1 Varies by college C
281 System Analysis & Design 10 4 Varies by college C
285 Object-Oriented Programming 9 3 Varies by college B

Transfer Code Code A: AGSC-approved transfer courses in Areas I-IV that are common to all institutions.
Code B: Area V deemed appropriate to the degree and pre-major requirements of individual

students.
Code C: Potential Area V transfer courses subject to approval by respective receiving

institutions.
Cat (Catalog) Number of community colleges with course in catalog
Deg Req (Degree requirement) Number of community colleges with course as a degree requirement

The first computer science courses taught in a computer science baccalaureate curriculum are

usually a programming course using a specific programming language. From the catalogs of the four-year

55

universities (Appendix B), some programs specify C++, some specify Java, and others do not specify a

language. In Table 3.4, CIS 285 is described as an object-oriented programming course, and CIS 191 is

described as structured programming course. Neither of these courses indicate a programming language

in the community college course descriptions. Inconsistency in this type of information and the Area V

course numbers listed in Table 3.5 that universities that teach using Java or C++ do not specifically list

the corresponding community college course in their Area V.

Through the creation of the Articulation and General Studies Committee and STARS, the

Alabama Commision of Higher Education has laid the ground work for a smooth transistion from a two-

year community college program to a four-year baccalaureate program. However, as noted in the

previous discussion, there are significant inconsistencies in course numbering, titles, and descriptions

that can interfere with an effective articulation system.

56

Table 3.4 Concepts, Techniques, and Requirements in CIS Course Numbers and Descriptions
(Alabama Community College Course Catalogs. See Appendex A.)

110 Logic, design, and design solving techniques
Flowcharts, structure charts, and pseudocode

150 Logic, design, and design solving techniques
Flowcharts, structure charts, and pseudocode

185 Computer ethics issues

191 Algorithm approach to problem solving via design
and implementation of programs in selected
programming languages

Structured programming techniques: input/output,
conditional statements, loops, files, arrays,
structures, simple data structures

Write programs

192 Algorithm specifications
Structured programming
Data representation
Searching and sorting
Recursion
Simple data structures
Language description
Problem testing
Develop problem solving skills
Programming projects

201 Fundamental programming concepts
Problem solving and algorithms
Design tools
Programming structures
Variable data types and definitions
Modularization
Selected program languages
Develop programs

211 Intro to BASIC programming lanuage
File processing
Internal sorts
Data structures
Programming projects

212 BASIC program using graphical user interface
Graphical user interface
Advanced file handling
Simulation
Programming projects

213 Continuation of BASIC programming with
emphasis on understanding techniques and
procedures for developing projects using an
object oriented language

251 (Course number has multiple descriptions.)
Intro to C programming languageAlgorithm

approach to problem solvingStructure
programmingUsing functions and macrosSimple
data structuresFile input and
outputProgramming projects

Intro to C++ programming lang.
Object-oriented programming
Problem solving and design
Control structures
User interface construction
Document and program testing
Intro to C++ programming language
First course in problem solving
Program style
Algorithm
Data structuring
Modularization
Programming projects

57

Table 3.4. (cont.). Concepts, Techniques, and Requirements in CIS Course Descriptions
with CIS Course Numbers

252 (Course number has multiple descriptions.)
Continue C programming
Improvement of application and systems

programming
Memory management
C library functions
Debugging
Portability and reusable code
Programming projects
Advanced object-oriented programming
Advanced program development in context of an

object-oriented language
Object-oriented analysis, encapsulation,

polymorphism (operator and function
overloading), information hiding, abstract data
types, reuse, dynamic memory allocation, and
file manipulation

Develop hierarchical class structure
Implementation of an object-oriented software

system
Introduce the C++ programming language
Problem solving and design, control structures,

objects and events, user interface construction,
documentation and program testing

Continue C++ programming
Improvement of application and systems

programming
Memory management,
C library functions
Debugging
Portability and reusable code
Programming projects

255 (Course number has multiple descriptions.)
Intro to the Java programming language
Object-oriented programming
Webpage applet development
Class definitions
Threads, events, and exceptions
Programming projects
Intro to Java programming language
Hands-on programming assignments
Java program structures
Java’s built-in class libraries
Data types, control structures, and object-oriented

programming

256 Advanced Java programming language
Sun’s Swing GUI components, JDBC, JavaBeans,

RMI, servlets, and Java media framework
Programming projects

281 Study of contemporary theory and systems and
design
Investigating, analyzing, designing, implementing,

and documenting computer systems
Programming projects

285 Advanced object-oriented programming in the
context of an object-oriented language, such as
C++ or Java [Note: Not all include the
language list.]

Object-oriented analysis and design,
encapsulation, inheritance, polymorphism
(operator and function overloading),
information hiding, abstract data types, reuse,
dynamic memory allocation and file
manipulation

Develop a hierarchical class structure necessary to
the implementation of an object-oriented
software system

58

Table 3.5 Area V required CIS courses for transfer to four-year university
 Area V Website

Provider BS Degree Area V Required Courses

 STAR's Transfer
Guide

CS CIS 251 or 285
CIS 251 - C Programming (3sh)
CIS 285 - OOP (3sh)

ASU Alabama State U CS CSC 210, 211 or 447
CSC 210 - Intro to CS (3sh)
CSC 211 - Programming Concepts, Standards, & Methods (4sh)
CSC 447 - OOP (4sh)

Athens CS prereq courses
Microcomputing Apps (3sh)
C++ Programming (3sh)
Computer Programming courses (6sh)

AU Auburn U CS, SE see Engineering Articulation Guide
AUM Auburn U

Montgomery
Math(CS) CSCI 1200, 2000

CSCI 1200 - Scientific Prog
CSCI 2000 - Structured Prog

JSU CS CS 201, 230, 231 [CIS 146, 201, 251] (3sh)
CS 201 - Intro to Information Tech [CIS 146]
CS 230 - Fund. Of Computing [CIS 201]
CS 231 - Computer Programming I [CIS 251]

Troy Troy U CS CIS 146 (3sh)
UA U of Alabama CS CS 114, 116 [CIS 191, 193]

CIS 191 - Intro to Computer Programming (3sh)
CIS 193 - Intro to Computer Programming Lab (1sh)

UAB U of Alabama, B'ham CIS CIS 285 - OOP (3sh)
UAH U of Alabama,

Huntsville
CS CIS 285 or 251 - Intro to C++ Programming (3sh)

CIS 285 - OOP
CIS 251 - C Programming

UNA U of North Alabama CS CS 155 [CIS 191 or 251] (3sh)
CIS 191 - Intro to Computer Programming
CIS 251 - C Programming

USA U of South Alabama CS CIS 115 [CIS 197 or 211 or 212] (3sh)
CIS 197 - Adv Commercial Software
CIS 211 - Programming Concepts, Standards, & Methods
CIS 212 - Intro to Visual Basic

59

4 SIGCSE 2011 Birds-of-a-Feather: Introducing Software Engineering Principles in

the First Two Years of Computer Science Education

The purpose of the Birds-of-a-Feather session was to identify and discuss software engineering concepts

that can be pushed down into the introductory-levels, CS1 and CS2. For this discussion, CS1 and CS2

referred to the first two courses in the introductory sequence of computer science. CS1 and CS2 were

further defined by a list of suggested teaching topics for each course. [Hundley 2011]

The eleven participants in the session included three faculty from two-year academic institutions,

seven from four-year institutions, and one non-academic participant from around the United States. Small

groups were formed by the length of the computer science program, i.e., two- or four-year.

Two sets of wall charts, one for two-year and one for four-year, with the identifying teaching

topics printed at the top were used to collect information for the large group discussion. The groups were

asked to discuss one course level, CS1 or CS2, at a time and record their ideas for software engineering

concepts that might be used.

There were one two-year and two four-year faculty groups that brainstormed about what software

engineering principles and concepts could be taught in CS1 and CS2. Each four-year groups’ responses

were listed separately with duplicate ideas marked with a checkmark on the four-year second part of the

first year chart. The information from the wall charts is presented in Figure 4.1.

At the end of the allotted time, the large group discussed the topics written on each wall chart

and the pros and cons of how each topic may be used in teaching CS1 and CS2. At the bottom of the

Figure 4.1, the “During Discussion” sections list topics and clarifications from the large group

60

discussion. The group agreed that testing and conventions were the top priority topics to include CS1 and

CS2. Figure 4.2 shows some of the comments made during the large group discussion.

The participants of this session expressed much interest in what and how software engineering

principles can be introduced early in the computer science curriculum. During the discussion, several

software engineering principles and concept that can be introduced at the introductory-level were

identified. The principles and concept list on the wall sheets (Figure 4.1) were used when designing

online survey that was sent to two- and four-year faculty in Alabama public community colleges and

universities. The information collected was also considered to determine which software engineering

knowledge areas to include in the set of teaching modules.

61

2-year programs:
Intro course for CS students [CS1]

-I/O -control structures
-syntax -functions/methods
-foundation OO

-
follow a requirement spec
create a requirement spec?
testing, what form?
code of ethics
documentation
conventions/ standards

2-year programs:
2nd part of 1st year for CS students [CS2]
-data structures
-building fundamental algorithms

-
create requirements
testing
architectural design
documentation
following conventions

4-year programs:
Intro course for CS students [CS1]

-I/O -control structures
-syntax -functions/methods
-foundation OO

-
1st group
Assumption

starting point: not OO
Things we do now

pair programming
code reviews/ readings*
test-driven development/ unit test/ negative test
time tracking**
validation

Could do?
source code control***
tools/ collaboration

2nd group
black box test plans
documentation
presentations:

code, project plans, completed project
flow charts
pseudocode
team projects
student defined project

During discussion
*give buggy program at end of semester
**PSP
*** CS2?

4-year programs:
2nd part of 1st year for CS students [CS2]
-data structures
-building fundamental algorithms

-
1st group
performance analysis (algorithms)
testing (black-box and white-box)
interface design
documentation
design
plan
inspections (requirements, design, code)

2nd group
static analysis
UML
design process alternatives
validation
modularity => scale, complexity
program management

During discussion
basic design patterns
design check list
class diagram description
interfaces
no inheritance?
no polymorphism?

Figure 4.1. SIGCSE 2011 Birds-of-a-feather small group results

62

Prioritites from the 2-year chart:

• Easy to employ and supportable: (1) conventions, (2) documentation, and (3) test-driven development (TDD).
• An opposing view suggested TDD should be introduced early because tests do not lie, i.e. comments are lies

meaning not executable.
• Pair programming can work early but the partners must switch frequently. This can include small group

programming.

Code review:

• CS1: instructor (so students aren’t being mean to each other) provides code (with bugs); students review
improve and CS2: students review own code

• Done in industry and most new hires haven’t experienced
• Validation: students have to read each other’s code (code can’t have comments). Discuss if code satisfies

requirements

Time tracking:

• Industry basis for estimation
• Later: track time + interruptions

Source control:

• In CS2; too early in CS1 due to overload of material
• Consensus: source code control is iffy. Students use it once at submission time.

Breadth-first approach: Expose to a lot of practices at shallow level

UML: Can be introduced early in a simplified form

Engineering approach:

• CS1and CS2 are really engineering 1 and engineering 2
• Teach problem solving as engineering approach
• Engineering design allows multiple alternatives which SWE typically do not do
• Keep students away from keyboard, i.e. plan before coding

Interfaces: Introduce early

Modularity: Typically enforce modularity but students revert to giant main when not enforced

Good practices: Many software engineering practices taught later in curriculum; students ask why they weren’t

exposed to them earlier
Figure 4.2. SIGCSE 2011 Birds-of-a-feather large group discussion

63

5 Survey of Software Engineering Principles and Concepts

For the research, the preliminary information about the Alabama public community colleges’ computer

science programs was obtained from the school websites. Additional information about the two-year

programs was available on the Alabama Community College System and Alabama Articulation and

General Studies Committee websites [ACCS 2009b, AGSC 2009a]. This information is included in

Chapters 2 and 3 of this document. To collect more current and specific information about what software

engineering principles and concepts are being taught these two-year programs, an online survey was

created using Qualtrics Survey Software [Qualtrics 2011]. An invitation email containing the URL of the

survey was sent to the computer science faculty at the 19 two-year schools that have computer science

programs. To obtain comparative data, the invitation email was also sent to faculty who teach CS1/CS2

level courses in the six four-year public universities that offer a computer science program.

Because of the discrepancy of the use of CS1, CS2, and CS3 in teaching computer science,

information was requested for the first three semesters the computer science courses in the programs. The

questions centered on the educational objectives of each respondent’s school’s educational objectives for

teaching five software engineering knowledge areas and a list of software engineering terms and

concepts. The survey also collected information on the integrated development environment (IDE) and

computer programming language used during the first three semesters.

The respondents were asked about personal familiarity with the Association for Computing

Machinery (ACM), the IEEE computer Society (IEEE-CS), and/or Two Year College Education

64

Committee computer science curriculum guides. They were also asked where students who complete the

computer science go after graduations.

5.1 Survey Results

Because the responses were anonymous, it is not possible to track whether all two-year and four-year

programs are represented in the survey results. There were nine responses from four-year programs and

20 responses from two-year programs. Although the sample is small, the accumulated information does

provide insight into the Alabama state public two- and four-year computer science programs.

5.1.1 Software Engineering Knowledge Area Results

For each software engineering knowledge area and the software engineering term and concepts, the

respondents were asked to select the level of education objective expected for a student who finishes the

first two semesters of their computer science program. The Bloom’s Taxonomy was used as guide for the

education objective choices: remember, understand, and apply [Bloom and Krathwohl 1956]. The fourth

response choice was “not used in courses.” The results analysis of each software engineering knowledge

areas and the software engineering terms and concepts results is presented in two charts: (1) all responses

including “not used in teaching” (See figures 5.1 and 5.3.) and (2) only the programs that use the

software knowledge area and terms in teaching (See figures 5.2 and 5.4.).

These results are represented by horizontal bar charts to show the relative levels of the teaching

objectives used. In each figure, the responses are presented for the two- and four-year programs. The

graphs show the data with and without the “not used in courses” responses. The latter provides a better

comparison of the teaching objectives. For each item, the average for the weighted responses was used as

data for the charts.

65

Figure 5.1. Software engineering knowledge areas included in the survey and education objectives

in all programs

66

Figure 5.2. Software engineering knowledge areas included in the survey and education objectives

for the programs that teach the principle

67

Figure 5.3. Software engineering terms and concepts included in the survey and education objectives

in all programs

68

Figure 5.4. Software engineering terms and concepts included in the survey and education objectives

in programs that teach the concept

69

Figure 5.5. Integrated development environments (IDEs) used in respondents’ programs

70

Figure 5.6. Computer programming languages taught in respondents’ programs

71

5.1.2 Integrated Development Environment and Programming Language Results

The survey included a list of Integrated Development Environments (IDEs) and Programming Languages.

Each list included an “other” option with a text box for recording IDEs and languages not listed in the

survey. The choice of no IDE was also included. The respondents indicated which IDE and programming

language was used in the first, second, and third semesters of the computer programming courses.

The pie charts display the IDEs and languages used in each of the three semesters for the two-

and 4-year programs. These charts are shown in Figures 4.7 and 4.8 with lists of text responses given for

the “other”.

Figure 5.7. Where do two-year graduates go Figure 5.8. Other jobs for two-year graduates

5.1.3 Other Results

The survey asked the two-year respondents where the students who completed their computer science

program went after graduation. The responses were given as percentage for the categories: four-year

university, computer science industry, and other which included a text box. These results are presented in

a pie chart in Figure 5.7. A second pie chart, Figure 5.8, shows the proportions of the “other” option text

responses, only.

72

In the final section, the respondents recorded their familiarity with the following curriculum

guides created by the ACM, IEEE-CS, and/or Two-Year College Education Committee. These responses

are presented in Figures 5.9 and 5.10.

• Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer Science

• Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in Computer

Science

• Computing Curricula 2001: Computer Science

• Computer Science Curriculum 2008: An Interim Revision of CS-2001

Figure 5.9. Two-year respondents familiarity with curriculum guides

Figure 5.10. Four-year respondents familiarity with curriculum guides

5.2 Survey Results Summary

The samples were small and the completeness of the coverage of the two- and four-year computer science

programs in Alabama is not verifiable. The previous charts and graphs of the survey data are given to

allow the readers to extract their own conclusions from the information gathered.

73

The responses indicated that many programs do not include the teaching software engineering

principles and concepts at the introductory-level. There is a signification lack of familiarity with the

computing curricula guidelines provided by the ACM, IEEC-CS, and Two-Year College Education

Committee. This can lead to the lack of attention giving to teaching software engineering principles and

concepts in the introductory courses. The lack of familiarity could mean a lack of familiarity of terms in

the survey which could have resulted in the high number of responses of “Not Used in Course” for the

software engineering knowledge areas.

An attempt was made to extract some statistical analysis from the survey responses. Because the

data collected was determined to not be normally distributed, the Wilcoxon signed rank test was use

attempt to statistically compare the two- and four-year computer science programs. The Wilcoxon signed

rank test null hypothesis was that the population mean ranks did not differ, and the alternative hypothesis

was that the population mean ranks differ. Because of the small sample sizes, the resulting information

may or may not be conclusive.

74

Table 5.1. Results of Wilcoxon signed rank test (p values)

Usage average
including “not used”

Usage average
without “not used” Percent "not used"

All KAs and subtopics 0.0007 0.1641 0.0047
Software Design 0.0652 0.0134 0.3384
Software Process 0.9063 1.0000 0.6875
Software Evolution 0.2500 0.5000 0.2500
Software Validation 0.1250 0.4375 0.0625
Software Project Management 0.0625 0.8750 0.0625

 Terms and Concepts 0.1038 0.0617 0.3243

The computations were done using the signrank function in MATLAB which compares two

vectors of values and returns two values: the p value and 0 or 1 where 1 indicates a rejection of the null

hypothesis at the 5% significance level. Shown in Table 5.1, most of the test results did not reject the null

hypothesis. For “All KAs and subtopics” that included the “not used” response option and the percent of

respondents not using the KAs in teaching, the results rejected the null hypothesis indicating that there

was a difference in the number of two- and four-year respondents who did not include software

engineering knowledge areas in teaching. The only other difference appeared in those who included

software design in their teaching.

75

6 Teaching Software Engineering Course

A special topics graduate course, Teaching Software Engineering, was taught in Summer 2011 in the

Auburn University Computer Science and Software Engineering department. The course examined

software engineering from an instructional perspective. Its purpose was to give graduate students

exposure to explaining fundamental software engineering concepts to those new to the field and to

explore which software engineering principles can be introduced into the first two computer science

courses, CS1 and CS2.

The rationale of the course was “Postgraduate instruction traditionally focuses on developing

advanced subject specialty skills, offering research experiences, and fostering methods of disciplined

thought. Graduate students look to careers in higher education or industry but never receive training on

how to explain the complex concepts of engineering software to students, coworkers, supervisors,

subordinates, etc. This course was designed to provide insight into how to teach software engineering

concepts at the introductory-level.” See the course syllabus in Appendix D.

The course began with (1) a discussion of the difference between computer science and software

engineering [Shackelford, et al. 2005], (2) an examination of Software Engineering Body of Knowledge

Project (SWEBOK) [Tripp, 2004], and (3) an examination of model curricula for software engineering

and computer science [Campbell, et al. 2005, Hawthorn, et al. 2009, LeBlanc and Sobel 2004]. Eight

SWEBOK software engineering knowledge areas were selected for closer examination.

• Software engineering process

• Software construction

76

• Software design

• Software testing

• Software quality

• Software requirements

• Software configuration management

• Software engineering management

Each week, course participates focused on a specific knowledge area. The presentation and class

discussion were lead by a student with a video contribution from one or more distance-learning students.

The discussion began with a brief primer of the knowledge area to identify its principal elements and the

prerequisite skills required to apply it.

Outside readings were used to identify sources of information on how to explain the knowledge

area and what others have done to teach it. Emphasis was also given to identifying instructional pitfalls to

avoid when explaining the knowledge area and how to teach it in the context of the novice instructor, the

CS1/CS2 student, and the adult learner.

The availability of software tool support for teaching the material in a knowledge area was

presented and discussed via video by distance-learning student(s). Sample learning activities for teaching

the key concepts of the knowledge area in the CS1/CS2 were identified.

Artifacts from the course included teaching modules for each knowledge area. These are

explained in Chapter 5 and can been seen in Appendix E. For additional requirements, students were to

(1) contribute to a class discussion board about the material, (2) maintain a journal of teaching reflections

over the course of the semester and (3) interview an instructor and a novice student or lay person on their

respective perspectives of a software engineering knowledge area.

77

7 Teaching Software Engineering Principles in Introductory Computer

Sciences Courses Workshop

The culmination of the efforts of the Teaching Software Engineering course was a workshop for nearby

faculty who teach introductory computer science. At the workshop, students from the summer class

presented a teaching module for each knowledge area. It should be noted that because the workshop was

on Saturday, a non-class day, attendance was not required. However, the students volunteered to attend,

give the presentations, and participate in the discussions.

As each teaching module was presented, the attendees were asked to make comments and

evaluate the module using an evaluation form. Each module was rated on five different aspects:

• The module as a whole covers as much of SWEBOK guidelines as it should for teaching the CS1

and CS2 level courses.

• The outline is realistic in covering the KA for the CS1 and/or CS2 teaching level.

• The outline is usable in teaching the KA at the CS1 and/or CS2 level.

• The suggested course activities are realistic for teaching CS1 and/or CS2 students.

• The suggested course activities are usable for teaching CS1 and/or CS2 students

The evaluations for all modules were rated Strongly Agree, Agree or Neutral. Most of the

comments were positive and agreeable with the material in the modules. The teaching of software

engineering principles early was considered beneficial for the students and allowed for time students to

mature in using the skills during their academic career. Caution was expressed by some that some

modules may be too large and could interfere with the normal contents of the curriculum being taught. It

78

was suggested that some activities be used with multiple modules for more continuity and ease of

covering more without too much extra work.

The suggestions were used to edit the modules. The revised modules are presented in Chapter 8

and Appendix E of this document.

79

8 Curriculum modules

In the summer, 2011, the Computer Science and Software Engineering Department at Auburn University

offered a special topics graduate course, Teaching Software Engineering. The purpose of the course was

to examine software engineering from an instructional perspective and to give students an exposure to

explaining fundamental software engineering concepts to those new to the field. Traditionally,

postgraduate instructions focus on developing advanced subject specialty skills, offering research

experiences, and promoting methods of disciplined thought. Graduate students look to careers in higher

education or industry but do not receive training on how to explain complex concepts of engineering

software to students, coworkers, supervisors, subordinates, etc. This course was designed to provide

insight into how to teach software engineering concepts at the introductory-level.

During the course, eight knowledge areas of software engineering as established in SWEBOK

[Tripp, et al. 2004] were examined. Each class was led by a student who presented and led the discussion

about the knowledge area. The leader initiated small group discussions to identify possible teaching

activities that would enhance the learning experience. Other students identified and presented automated

tools that can assist the teaching and learning of the knowledge area. The software tools were considered

with respect to functionality, acquisition expense, and effort to introduce into the classroom environment.

From the class discussions and further research, the students developed curriculum modules for

teaching a software engineering knowledge area at the introductory-level. The modules include

recommendations of which sub-topics of the knowledge area can be integrated into CS1 and CS2,

80

teaching activities to reinforce learning the topics, and suggested tools for teaching and learning. The

these modules were considered when creating the curriculum modules included in this research.

8.1 Software Process Curriculum Module

The Software Process Curriculum Module is shown in Figures 8.1-8 as an example of those produced

during the course. The additional curriculum modules are included in Appendix E. It should be noted that

the purpose of these teaching modules is to demonstrate how software engineering knowledge area and

principles can be imprinted into teaching computer science at the CS1 and CS2 levels not to replace

material and topics that are necessary in the curricula. It is hoped that the information presented in the

module will enhance the learning experience of the students.

Each module begins with a module description of and the philosophy for teaching the knowledge

area as shown in Figure 8.1. The description and subtopics are given as established by SWEBOK [Tripp,

et al. 2004]. The subtopics of the knowledge area are listed and mapped as considered being appropriate

to be introduced into CS1 and/or CS2. The philosophy explains the importance for including the

knowledge area at the introductory computer science curricula.

81

Software Process Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge area and
principles can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to
replace material and topics that are necessary in the curricula. It is hoped that the information presented in this
module will enhance the learning experience of the students.

Module Description

This module presents an introduction software process. Software engineering process refers to the technical
and managerial activities that are performed during software acquisition, development, maintenance, and
retirements. It is concerned with meta-data: definition, implementation, assessment, measurement,
management, change, and improvement. (SWEBOK)

In SWEBOK, Software Engineering Process is divided into the sub-knowledge area topics show below. This
module will provide assistance for introducing the some topics at the CS1 and CS2 levels.

Process Implementation and Change
Process Infrastructure
Software Process Management Cycle
Models for Process Implementation and Change
Practical Considerations

Process Definition
Software Life Cycle Models CS1
Software Life Cycle Processes CS1
Notations for Process Definitions
Process Adaptation
Automation

Process Assessment
Process Assessment Models
Process Assessment Methods

Process and Product Measurement
Process Measurement
Software Products Measurement CS2
Quality of Measurement Results
Software Information Models
Process Measurement Techniques

Philosophy

Software process is an integral part of software development. It can assist in learning and teaching by
providing:

• a set of steps for approaching software development
• a mechanism for accountability
• an engineering mindset of problem solving
• a factory of artifacts
• a reminder of best practices
• a communication tool

Figure 8.1. Software process curriculum module

82

The learning outcome, Figure 8.2, identifies the expected cognitive and performance skills

students can obtain from using the module to teach the knowledge area. The prerequisite knowledge

expected of the student before starting the module is provided to assist the correct placement of the

module.

Outcomes

Through the material covered in this module, students should:

• Identify a problem, define solutions, and develop algorithms to attain the optimal solution.
• Recognize that software systems can be produced according to a systematic model.
• Explain alternative ways to organize software development efforts
• Describe the software engineering process using standard metrics.

Prerequisite Knowledge

The CS1 level of subject matter presented in this module requires no computer science prerequisite. CS1
is the prerequisite for CS2 level.

Figure 8.2. Software Process Curriculum Module (continued)

 A teaching outline, Figure 8.3, is included in the curriculum module to provide a guide for

teaching the knowledge area topics and subtopics. The brief outline is an overview and a guide for

presentation slides. The annotated outline, Figure 8.4, provides more substance to assist the instructor’s

discussion about the knowledge area and the inclusion teaching activities in the curriculum module in the

teaching process.

83

Outline

1) CS1

a) Introduction
i) Software Engineering
ii) Software Process
iii) Software Process Helps
iv) A Software Engineering Process

b) A Problem Solving Approach
c) Use CS1 Activity 1

2) CS2

Recap the CS1 introduction
a) Software Metrics
b) Vocabulary

i) Measure
ii) Measurement
iii) Metrics
iv) Indicator

b) Measurable Attributes of Software Engineering
c) Measuring Individual Performance - CS2 Activity

Figure 8.3. Software process curriculum module (continued)

84

Annotated Outline
1) CS1

a) Introduction
i) Software Engineering

Applies a systematic, disciplined, quantifiable approach (or process) to the development,
operation, and maintenance of software.

ii) Software Process
The sequence of steps to develop or maintain software

iii) Software Processes Help
(1) Boost the probability of product quality
(2) Identify the principle activities of doing a job
(3) Separate routine from complex tasks
(4) Facilitate tracking and measuring performance
(5) Provide orderly mechanism for learning
(6) Establish corporate memory
(7) Create a defined baseline for improvement
(8) Put everyone on the same page

iv) A Software Engineering Process
(1) Define the function of the program
(2) Sketch out a design
(3) Pseudo code – not ready to write source code (a program), yet
(4) Discuss with all parties
(5) Modify
(6) Repeat
(7) After the design is agreed upon,

(a) Write the real program using a computer programming language
(b) Test – run the program with known data
(c) Modify – correct defects (errors)
(d) Repeat

b) A Problem Solving approach
A simple introduction to the process of software development is using a systematic approach to
problem solving.

i) Understand the problem.
Learn about the problem domain. If necessary, break a large task into multiple smaller tasks

ii) Analyze the problem requirements.
Specify input values (knowns) and required output values (unknowns). Include the units. Identify the
relevant formulae needed for computations and necessary constants values, e.g., gravity or pi.

iii) Work a hand example.
This will (1) identify the steps needed to solve the problem and (2) a set of input and resulting output
that can be used to test your software, later.

iv) Develop an algorithm to solve the problem.
Record the steps used to solve the hand example. If necessary, divide steps into multiple simpler
steps to provide a clear solution.

v) Implement the algorithm.
Now, it is time to write a computer program that follows the steps in the algorithm to solve the
problem. The statements in the algorithm can be used as comments as a guide for writing code in the
program.

vi) Test and verify the program solution.
Run the program correcting any errors that exists. Use the input values from the hand example to
verify that the solution is correct.

vii) Maintain and update the program.
This step is necessary when new requirements are added or there is a policy change that affects the
problem solution.

c) Use CS1 Activity 1 to demonstrate the problem solving approach. See the Activities section below. Note:
Activities 2 and 3 may be use later with the introduction of selection and repetition.

Figure 8.4. Software process curriculum module (continued)

85

Annotated Outline (continued)

2) CS2

a) Recap the CS1 introduction
b) Software Metrics

i) A key element of any engineering process is measurement. Measures help to better understand
the attributes of a product and to assess its quality. Unlike other engineering disciples, software
engineering is not grounded in the basic quantitative laws of physics, like voltage, mass,
velocity, or temperature. What are the measurable attributes of software engineering work
products?

ii) What are software engineering products? requirements and design models, source code, and
test cases.

c) Vocabulary
i) In software engineering, measure, measurement, and metrics are often used interchangeably.
ii) A measure provides a quantitative indication of the extent, amount, dimension, capacity, or

size of some attribute of a product or process.
iii) Measurement is the act of determining a measure.
iv) Metric is a quantitative measure of the degree to which a system, component, or process

possesses a given attribute.
v) A software engineer collects measures and develops metrics so that indicators will be obtained.

An indicator is a metric or combination of metrics that provides insight into the software
process, a software project, or the product itself

d) Measurable attributes of software engineering
i) Lines of code (LOC) and LOC per hour are metrics for planning software development

(1) What are the measurable attribute of software engineering work products? We will look at
source code because students are familiar with this product. Source code has size. If we
know the average length of a program for solving a particular type problem and the average
number of lines of code we write in an hour, we can estimate how long it would take to
produce this type product.

ii) Number and type of mistakes (defects) are also metrics to track improvement
(1) If we always wrote code with no defects, our production level of producing code would be

pretty good. But, we all make mistakes. Finding and correcting them take time and lowers
the actual number of LOC per hour.

e) Measuring Individual Performance - CS2 Activity
i) How can we improve our LOC per hour? The obvious way is to make fewer mistakes. To help

us reduce the number of mistakes, we need to note the types of mistakes that we make and try to
not make them. One way to approach reducing the number of defects in our code is to keep a
log of the defects…and how many. See the tables below for the defect log and instructions.

ii) Completing an assignment is not (usually) done in one seating without interruptions. A time log
will help you record how much time is spent in each stage. See the tables below for the time log
and instructions.

iii) Maintaining a record of LOC, time and defects, we can monitor improvement.

Figure 8.5. Software process curriculum module (continued)

The curriculum module contains a list of teaching resources in a ready-to-use state. These

resources are included in the teaching activities section of the module. The teaching techniques present

suggestion of how to convey the material found in the module, e.g. lecture, worksheets, small groups,

role play, etc.

86

Teaching Resources

Process Worksheet
Defect Recording Log
Time Recording Log

Teaching Techniques

CS1 activities

• Lecture with slides
• Blank worksheet to guide the students through the process of problem solving. Lead a class

discussion the solutions using a document camera with students providing the needed
information. Students can be asked to lead the discussion or report on their solution.

CS2 activity
• Provide a section of code with defects and lead the students in finding and typing the defects.

Figure 8.6. Software process curriculum module (continued)

A list of automated tools, Figure 8.7, that can assist in the teaching and learning of the

knowledge area included in the module. These tools were considered with respect to functionality,

acquisition expense, and effort to introduce into the classroom environment.

A glossary and bibliography, Figure 8.8, are included to clarified terms used in the module that

may be unfamiliar to the instructor and to provide the referenced material and other resource material

that may enhance the teaching of the knowledge area.

The curriculum module includes one or more teaching activities that reinforce the concepts

presented in the module. The activities are self-contained with instructions and teaching resources needed

by the instructor. The suggested course activities in the Software Process Curriculum Module are

presented in Figure 8.9-15.

87

Tool support

Process Dashboard – used with PSP

• Not User Friendly
• Describes Psp Scripts
• Does Calculations For You
• Better than using PSP manually

Eclipse Process Framework
• OpenUP process (also XP and scrum)
• Describes steps to follow
• Can attach tools to framework
• More sufficient than dashboard
• Helps enact process
• Guides you through process correctly
• Umbrella tool that walk you through a process

Figure 8.7. Software process curriculum module (continued)

The first CS1 teaching activity uses the well-known problem of solving for the real roots of a

quadratic equation. A process worksheet, Figure 5.9, shows a problem solving approach to solving this

familiar problem. After a walkthrough using this worksheet, the students can work individually on in

small groups and solve another familiar problem using the blank process worksheet, Figure 8.19. A good

problem to use is one that can grow with the following activities. The second CS1 activity, Figure 8.11,

modifies the problem presented in CS1 Activity 1 by adding restrictions to the input and introduces input

validation loops. CS1 Activity 3, Figure 8.12, expands to allow multiple sets of data input.

After students have some knowledge of problem solving, coding and types of errors, they can

work toward improving their software development skills. In the CS2 activity, Figure 8.13, the student

records the errors and time spent making corrections and time spent completing the assignment. Prior to

this activity, students need to understand the types of errors: syntax, logic and, runtime. The goal of this

activity is for student to reduce common errors by being more aware of them during the coding process.

Their progress can be track during the semester using the provided defect record log, Figure 8.15, and

time record log, Figure 8.15.

88

Glossary

Measure - provides a quantitative indication of the extent, amount, dimension, capacity, or size of some
attribute of a product or process.

Measurement - the act of determining a measure.

Metric - a quantitative measure of the degree to which a system, component, or process possesses a given
attribute.

Indicator - a metric or combination of metrics that provides insight into the software process, a software
project, or the product itself

Software life cycle - a typical sequence of phased activities that represent the various stages of
engineering through which software system passes

Software process - the network of object states and transitional events that represent the production of a
software system in a form suitable for computational encoding and processing

Bibliography

HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for Software Engineering.

Addison-Wesley, Boston.

LE BLANC, R. and SOBEL, S. (chairs) et al. 2004. Software Engineering 2004: Curriculum Guidelines

for Undergraduate Degree Programs in Software Engineering. IEEE Computer Society Press and
ACM Press (23 August 2004). Available at http://www.computer.org/
portal/cms_docs_ieeecs/ieeecs/education/cc2001/SE2004Volume.pdf

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide

to the software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer
Society Press, Los Alamitos, CA, (2004). Available at http://www.swebok.org.

Figure 8.8. Software process curriculum module (continued)

http://www.swebok.org/

89

Suggested Course Activities

No software engineering tools other than the IDE will be introduced for this series of activities.

CS1 Activity 1

First assignment is solving a problem that involves an equation. Introducing the assignment should include a class
discussion of the steps necessary to solve this problem.

To introduce a systematic problem solving strategy, talk through solving an example using the steps. Because
solving for the roots of a quadratic equation is familiar, it is a good example to use at multiple stages during the
course. These multiple stages present a sequence of activities that allows students to revisit and modify existing
code and observe how changes in requirements affect the code.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c

Work a hand example.
Results from hand calculations:
 input output
 a b c x1 x2
 1 3 -4 -4 1
 2 -4 -3 -0.58 2.58

Develop an algorithm.
Get coefficients: a, b, c.
Compute roots: x1, x2
Display results

Implement the algorithm.
This is where the program is written. The algorithm can be used comments in the program write the computer
program statements.
Using the IDE that the students use, type the program.

NOTES:
1st time, use assignment statement for input
2nd time, use user input
Later, functions can be used for each step
These is an example of design alternatives.

Test and verify the program solution.
This can be an opportunity to discuss types of errors by including errors in the program.
Compile program and correct errors.
Run program using input from hand example.
If results are not correct, review set step in algorithm and program.

Maintain and update the program.
There will probably not be a required response for this step.

Figure 8.9. Software process curriculum module (continued)

90

Process Worksheet

Understand the problem.

Analyze the problem requirements.

Work a hand example.
Show work and results from hand calculations:

Develop an algorithm.

Implement the algorithm.
This is where the program is written. Start by copying and pasting the algorithm into the IDE editor window
and marking the statements as comments. These comments will be a guide for writing the computer program
statements.

Test and verify the program solution.
This is where students will run the program to determine if it solves the problem correctly.

Maintain and update the program.
No required response for this step.

Figure 8.10. Software process curriculum module (continued)

91

CS1 Activity 2

To introduce Selection, reuse the CS1 Activity 1 example and include the restrictions on the coefficients to find the
real roots of a quadratic equation.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c
Restrictions on input:
a != 0
D >= 0

Work a hand example.
Results from hand calculations:
 input output
 a b c x1 x2
 1 3 -4 -4 1
 0 7 6 not a quad eq
 1 3 3 -sqrt, not a real root
NOTE: Sample input includes values to test restrictions

Develop an algorithm.
Get coefficients: a, b, c.
If a != 0, compute D
If D >= 0, compute roots: x1, x2
 display results

Implement the algorithm.
This is where the program is written. Start by copying and pasting the algorithm into the IDE editor window and
marking the statements as comments. These comments will be a guide for writing the computer program statements.

NOTES:
Use user input to prepare students for input validation loops, next time.
Later, functions can be used for each step

Test and verify the program solution.
This can be an opportunity to discuss types of errors by including errors in the program.
Compile program and correct errors.
Run program using input from hand example.
If results are not correct, review set step in algorithm and program.

Maintain and update the program.
There will probably not be a required response for this step.

Figure 8.11. Software process curriculum module (continued)

92

CS1 Activity 3

To introduce Repetition, reuse the CS1 Activity 2 and include the restrictions on the coefficients to find the
real roots of a quadratic equation. Ask user to re-enter invalid coefficients values.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c
Restrictions on input:
a != 0
D >= 0

Work a hand example.
Results from hand calculations:
input output
a b c x1 x2
1 3 -4 -4 1
0 7 6 not a quad eq
1 3 3 [-sqrt]
NOTE: Sample input includes values to test restrictions

Develop an algorithm.
While a == 0, get a

Get coefficient b, c
Compute D
If D < 0,

 else need new a, b, c
Compute roots: x1, x2
Display results

Design alternatives can be introduced at this stage of this example.

After giving student the steps to solving the assignment problems for the first few assignments, ask them to
write and submit their own software development plan for the assignments.

Figure 8.12. Software process curriculum module (continued)

93

CS2 Activity

After students have knowledge of problem solving, coding and types of errors, they can work on
improving their software development skills. They will record the errors and time spent making
corrections and time spent completing the assignment. Prior to this activity, students need to understand
the types of errors: syntax, logic and, runtime. The goal of this activity is for student to reduce common
errors by being more aware of them during the coding process. Progress can be track during the
semester.

The logs and instructions for using the logs used in this activity are an adaption of those found in
HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for Software Engineering.
Addison-Wesley, Boston.

DEFECT RECORDING LOG INSTRUCTIONS
Purpose This form holds the data on each defect as you find and correct it.
General Record in this log all defects found in review, compile, and test.

Record each defect separately and completely.
If you need additional space, use another copy of the form.

Column

No. Enter the defect number. For each program, this should be a sequential number starting with, for
example, 1 or 001.

Date Enter the date when the defect was found.
Type Enter the defect type from the defect type list. Use your best judgment.

Fix defect If you injected this defect while fixing another defect, record the number of the previously
improperly fixed defect.

Fix time Enter you best judgment of the time you took to fix the defect, i.e., in seconds, minutes.

Description Write a brief description of the defect that is clear enough to later remind you about the error and
help you to remember why you made it.

TIME RECORDING LOG INSTRUCTIONS

Purpose This form is for recoding the time spent doing the project.
General Record all the time you spend on the project

Record the time in minutes.
Be as accurate as possible.
If you need additional space, use another copy of the form.

Column

Date Enter the date when the entry is made.

Start Time Enter the time when you start working on a task.

Stop Time Enter the time when you stop working on the task.

Interruption Record any interruption time that was not spent on the task and the reason for the interruption.
It you have several interruptions, enter their total time.

Work Time Enter the clock time you actually spent working on the task, less the interruption time.

Comments Enter reasons for interruptions and other comments that may remind you of any unusual
circumstances regarding this activity.

Figure 8.13. Software process curriculum module (continued)

94

DEFECT RECORDING LOG*

Student ___________________________________ Total # defects _______ Start date ___________

Class ________________ Assignment # ________ Total fix time _______ End date ___________

No. Date Fix
defect

Fix
Time Descriptions

* adaption of defect log found in HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for
Software Engineering. Addison-Wesley, Boston.

Figure 8.14. Software process curriculum module (continued)

95

TIME RECORDING LOG*

Student ___________________________________ Total # time _______ Start date ___________

Class ________________ Assignment # ________ End date ___________

Work time = Stop time – Start time – Interruption
Comments may be use explain interruptions

Date Start
Time

Stop
Time

Interr-
uption

Work
Time Comments

* adaption of time log found in HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for
Software Engineering. Addison-Wesley, Boston.

Figure 8.15. Software process curriculum module (continued)

96

9 Conclusion and Future Work

9.1 Summary of Research

Software engineering strives “to deliver on-time, high-quality, operational software that contains

functions and features that meet the needs of all stakeholders.” Guidelines are needed to successfully

produce a software product of this caliber. During the past fifty years, the principles of software

engineering have been matured and provide guidelines for a solid approach to developing software

solutions. [Pressman 2010]

In the computer science curriculum, students receive considerable experience in the

programming, or coding, phase of the software lifecycle [Pressman 2010]. Their projects are usually

limited to small problems in which there is little need for requirements analysis, design, testing, and

maintenance [Myers 2000]. Students are taught to write computer programs, but few can develop large

software systems [Long 2008]. For software engineers, computers and programming languages are tools

to be used in designing and implementing a solution to a problem. They use procedures, paradigms, tools,

and techniques to produce quality software products [Pfleege and Altee 2006].

The existence of software engineering curriculum guidelines reinforces the need for teaching

software engineering principles in two- and four-year undergraduate programs. The problem with adding

a software engineering curriculum to two- and four-year computer science programs is resources.

Because there is overlap of material in computer science and software engineering curriculum guidelines,

97

it may be possible to include software engineering in an existing computer science program with little or

no additional resources.

Community colleges’ open-door admission policies, reduced costs, convenient campus locations,

and comprehensive course offerings offer a diverse population of students an alternative to the traditional

four-year universities. Over the past 40 years, public community college enrollment has increased at a

much faster rate than at the public four-year universities, with the percentage of women enrolled in

community colleges surpassing that of men. Because of the low cost and accessibility, racial and ethnic

minorities have become an increasing proportion of all students enrolled at community colleges [Kasper

2002]. In the time of a recession, community colleges experience an abnormal increase in student

enrollment as unemployed workers seek to continue their education or change career fields [Tirrell-

Wysocki 2009].

The state of Alabama has an extensive network of community colleges that provides an important

and accessible source of higher education to their communities. The goal of the computer science

programs in these institutions is to provide students with an opportunity to prepare for the work force or

transfer to a four-year computer science program. The [Alabama] Statewide Transfer and Articulation

Reporting System (STARS) is an academic planning tool between students in a community college and

the four-year universities for academic programs. STARS assists community college student in having

the prerequisites to transfer to a specific program and a specific four-year program [STARS 2009b].

The first objective of this research was to determine the state of computer science teaching in

community colleges. Information about the computer science programs in Alabama public community

colleges was collected from the schools’ websites. In the websites, we found that the CIS courses offered

and required for a computer science degree and the prerequisites vary by the community college.

Although these courses have the same CIS course numbers in each community college catalog, some

course numbers represent courses with different titles and course descriptions. This can put some

98

students at a disadvantage in the workplace, but, more in line with this research, students can be at a

disadvantage when entering a baccalaureate program at a public four-year university.

Additional information about computer science programs in Alabama state community colleges

was obtained through an online faculty survey. The survey invitation was also sent to the computer

science faculty of Alabama public four-year universities for comparison. The survey responses indicated

that many programs do not include the teaching software engineering principles and concepts at the

introductory-level. It revealed a signification lack of familiarity with the computing curricula guidelines

provided by the ACM, IEEC-CS, and Two-Year College Education Committee. This could lead to

inconsistences in what and how computer science is taught and the lack of the inclusion of software

engineering principles.

The second objective was to determine which principles and concepts of software engineering

can be pushed down into the introductory-level computer science courses and to create a curriculum for

teaching software engineering in existing introductory computer science courses. The collection of ideas

and suggestions for the curriculum began during a SIGCSE 2011 Birds-of-a-Feather session. Topics, such

as requirements, design, testing, documentation, inspection, and problem solving, were discussed as they

apply to the CS1/CS2 courses in two- and four-year computer science programs. The information

gathered during birds-of-a-feather discussion contributed to the selection of terms and concept included

in the online survey that was sent to computer science faculty in Alabama public colleges and

universities.

The third objective was to create a set of teaching modules for teaching software engineering

knowledge areas in current computer science courses. The previously collected information was

instrumental in the selection of the eight software engineering knowledge areas covered in a special

topics course, Teaching Software Engineering. The course research and discussion lead to the

99

accumulation of information used to create teaching modules for the following software engineering

knowledge areas.

• Software process

• Software testing

• Software construction

• Software design

• Software quality

• Software requirements

• Software configuration management

Each teaching module contains:

• Description of the Knowledge Area

• Philosophy…why is it important to include in CS1/2

• Teaching Outcomes

• Prerequisite Knowledge

• Teaching Outline and Annotated Outline

• Teaching Resources

• Teaching Techniques

• Tool Support

• Suggested Course Activities

• Glossary

• Bibliography

The teaching modules, which are available in Appendix E, of the document are intended to be

supplemental and not to replace the existing computer science course curricula. Each module was

designed to be self-supportive with suggested learning objectives, a teaching outline, software tool

100

support, teaching activities, and other material to assist the instructor. The teaching modules were

evaluated by faculty and graduate students from area colleges and universities during a workshop that

was held at the end of the summer course. The comments from the module evaluations were positive and

agreeable with the material in the modules with the teaching of software engineering principles early

being considered beneficial for the students and allowing for time students to mature in using the skills

during their academic career. Caution was expressed by some that some modules may be too large and

could interfere with the normal contents of the curriculum being taught. It was suggested that some

activities be used with multiple modules for more continuity and ease of covering more without too much

extra work.

9.2 Future work

The teaching modules included in this research are a beginning. Additional refinement is needed

to incorporate the suggestion of consolidating activities into multiple modules to allow for continuity and

time efficiency. A further analysis on the software tools in the modules will help identify the most

effective ones or possibly identify the need for creating a new one. Attention will be given to Computer

Science Curricula 2013: Strawman Draft (Sahami, Roach, et al., 2012) when refining the teaching

modules.

The evaluation and finalizing of the teaching modules is an ongoing process. During the

research, a voluntarily submitted list of names and email addresses was establish of faculty who

participated in the events. This list provides a means for sharing the modules and getting additional

feedback. Introducing a pilot course at a local community college and asking the instructor and students

to evaluate the course via a survey would provide information to further hone the content of the teaching

modules. Metrics need to be developed to be used by community college faculty and students to assist in

validating the teaching modules.

101

Once the content of the teaching modules is stable, it can be distributed to community college

faculty. On-site faculty workshops can be used to assist with incorporating the new curricula into the

existing courses. With the support of one or more community college programs, a grant can be written to

support ongoing community college faculty training workshops and to expand the focus of this research

by surveying community colleges outside Alabama..

102

References

AACC. 2009. About community colleges. American Association of Community Colleges. Retrieved on
15 August 2009 from http://aacc.nche.edu

ACCS. 2009a. Powers of State Board of Education. Alabama State Board of Education. Retrieved on 28
May 2009 from http://www.accs.cc/BoardCitation.aspx

ACCS. 2009b. System Overview. Alabama Community College System. Retrieved on 28 May 2009 from
http://www.accs.cc/aboutaccs.aspx

ACHE. 1975. Non-Resident Institutional Review. Alabama Commission on Higher Education. Retrieved
on 07 Novemer 2009 from http://www.ache.alabama.gov/Nonresident/ index.htm

ACHE. 2008a. Transfer/Migration Reports, 1999-2008. Alabama Commission on Higher Education.
Retrieved on 25 May 2009 from http://www.ache.alabama.gov/studentdb/ index.htm

ACHE. 2008b. Alabama Commission on Higher Education 2008 Accountability Report. Alabama
Commission on Higher Education (12 December 2008).
http://www.ache.alabama.gov/Publications/Accountability%20Report%202008.pdf

ACHE. 2009a. Institutional Student Profiles Fall 2007. Alabama Commission on Higher Education.
Alabama State Data Center, University of Alabama. Retrieved on 25 May 2009 from
http://www.ache.alabama.gov/profiles/2007%20Profiles/2007%20Institutional
%20Student%20Profile.pdf

ACHE. 2009b. Mission Statement. Alabama Commission on Higher Education. Retrived on 28 May
2009 from http://www.ache.alabama.gov/aboutus/mission.htm

ACHE. 2009c. Responsibilities. Alabama Commission on Higher Education. Retrieved on 28 May 2009
from http://www.ache.alabama.gov/aboutus/responsibilities.htm

ADPE. 2005. CIS Syllabi. Alabama Department of Postsecondary Education. Retrieved on 28 May 2009
from http://www.nacc.edu/assessment/syllabi/ComputerScience_AreaV.htm

AGSC. 2009a. What is the AGSC? Alabama Articulation and General Studies Committee. Retrieved on
28 May 2009 from http://stars.troy.edu/agsc/what_agsc.htm

103

AGSC. 2009b. Articulation and general studies committee approved general studies curriculum. Alabama
Articulation and General Studies Committee. Retrieved 28 May 2009 from
http://stars.troy.edu/agsc/what_agsc.htm#AREAS

AGSC. 2009c. AGSC Academic Committees. Alabama Articulation and General Studies Committee.
Retrieved on 28 May 2008 from http://stars.troy.edu/agsc/academic.htm

AGSC. 2009d. AGSC template ratification process. Alabama Articulation and General Studies
Committee. Retrieved from 02 June 2009 from http://stars.troy.edu/agsc/template_process.htm

ALICE. 2009. Alice. Available at www.alice.org

ALLEN, E., CARTWRIGHT, R., and STOLER, B. 2002. DrJava: a lightweight pedagogic environment
for Java. In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education (Cincinnati, Kentucky, February 27 - March 03, 2002). SIGCSE '02. ACM, New
York, NY, 137-141. DOI= http://doi.acm.org/10.1145/563340.563395

AMBLER, S., and JEFFERIES, R. 2002. Agile Modeling: Effective Practices for eXtreme Programming
and the Unified Process. Wiley, New Jersey.

ANDERSON, L. W., and KRATHWOHL, D. R. (Eds.). 2001. A Taxonomy for Learning, Teaching and
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Addison Wesley
Longman, New York.

BAILEY, J. L., and STEFANIAK, G. 2002. Preparing the information technology workforce for the new
millennium. SIGCPR Computer Personnel 20, 4 (Aug. 2002), 4-15. DOI=
http://doi.acm.org/10.1145/571475.571476

BARNETT, D. D. 2009. Karek the Robot. Available at http://home.att.net/~David.D.Barnett/karel-
home.html

BLOOM, B. S., and KRATHWOHL, D. R. 1956. Taxonomy of Educational Objectives: Handbook I:
Cognitive Domain. New York: David McKay.

BLUEJ. 2009a. BlueJ--The interactive java environment. Available at http://www.bluej.org.

BOEHM, B. 2006. A view of 20th and 21st century software engineering. In Proceeding of the 28th
International Conference on Software Engineering (Shanghai, China, May 20 - 28, 2006). ICSE
'06. ACM Press, New York, NY, 12-29. DOI= http://doi.acm.org/10.1145/1134285.1134288.

BOLOIX, G., and ROBILLARD, P. N. 1998. CASE tool learnability in a software engineering course.
IEEE Transactions on Education. 41, 3 (Aug. 1998), 185-193.

BOUILLON, P., BURGER, M., and ZELLER, A. 2003. Automated debugging in Eclipse: (at the touch
of not even a button). In Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology
Exchange (Anaheim, California, October 27 - 27, 2003). Eclipse '03. ACM, New York, NY, 1-5.
DOI= http://doi.acm.org/10.1145/965660.965661

104

BROOKS, F. P. 1995. The Mythical Man-Month: Essays on Software Engineering, Boston: Addison-
Wesley.

BUCK, D. and STUCKI, D. J. 2001 JKarelRobot: a case study in supporting levels of cognitive
development in the computer science curriculum. SIGCSE Bulletin 33, 1 (Mar. 2001), 16-20.
DOI= http://doi.acm.org/10.1145/366413.364529

BURCH, C. 2009. Jigsaw, a programming environment for Java in CS1. Journal of Computing in Small
Colleges 24, 5 (May. 2009), 37-43.

BURGESS, L. 1995. No easy way to reform the FAA. Journal of Commerce. (Oct. 30, 1995), 14.

CAMPBELL, R. (chair) et al. 2003. Computing curriculum 2003: guidelines for associate-degree
curricula in computer science. IEEE Computer Society Press and ACM Press, (December, 2002).
Available at http://www.acmtyc.org/reports/TYC_CS2003_report.pdf

CAMPBELL, R. (chair) et al. 2005. Computer curricula 2005: Guidelines for associate-degree transfer
curriculum in software engineering. IEEE Computer Society Press and ACM Press, (August,
2005). Available at http://www. acmtyc.org/reports/TYC_SE_report.pdf

CHANG, C., DENNINGS, P., et al. 2001. Computing curricula 2001: Computer science. Final report
(December 15, 2001). IEEE Computer Society Press and ACM Press (Dec. 15, 2001). Available
at http://www.acm.org/education/curric_vols/cc2001.pdf.

CHEN, Z. and MARX, D. 2005. Experiences with Eclipse IDE in programming courses. Journal of
Computing in Small Colleges 21, 2 (Dec. 2005), 104-112.

CONN, R. 2002. Developing software engineers at the C-130J software factory. IEEE Software
(Sep/Dec, 2002), 25-29.

COOPER, S., DANN, W., and PAUSCH, R. 2000. Alice: a 3-D tool for introductory programming
concepts. In Proceedings of the Fifth Annual CCSC Northeastern Conference on the Journal of
Computing in Small Colleges (Ramapo College of New Jersey, Mahwah, New Jersey, United
States). J. G. Meinke, Ed. Consortium for Computing Sciences in Colleges. Consortium for
Computing Sciences in Colleges, 107-116.

CRNKOVIC, I., LAND, R., and SJOGREN, A. 2003. Is software engineering training enough for
software engineers? In Proceedings of the 16th Conference on Software Engineering Education
and Training (20-22 March 2003). CSEET’03. 140-147. DOI=10.1109/CSEE.2003.1191371

CROSS, J. H., HENDRIX, T. D., JAIN, J., and BAROWSKI, L. A. 2007 Dynamic object viewers for
data structures. In Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (Covington, Kentucky, USA, March 07 - 11, 2007). SIGCSE '07. ACM, New York,
NY, 4-8. DOI= http://doi.acm.org/10.1145/1227310.1227316

CZYZ, J. K. and JAYARAMAN, B. 2007. Declarative and visual debugging in Eclipse. In Proceedings
of the 2007 OOPSLA Workshop on Eclipse Technology Exchange (Montreal, Quebec, Canada,
October 21 - 21, 2007). eclipse '07. ACM, New York, NY, 31-35. DOI=
http://doi.acm.org/10.1145/1328279.1328286

105

D’ANJOU, J., et al. 2005. The Java Developer’s Guide to Eclipse, 2e. Addison-Wesley, Boston, MA.

DAVIS, A. 1995. 201 Principles of Software Development. McGraw-Hill, New York, NY.

DENNING, P J., Ed. 1989. A debate on teaching computing science. Communications of the ACM 32, 12
(Dec. 1989), 1397-1414. DOI= http://doi.acm.org/10.1145/76380.76381

DENNING, P. J. 2004. The field of programmers myth. Communications of the ACM 47, 7 (July, 2004),
15-20.

DEUGO, D. 2008. Using eclipse in the classroom. SIGCSE Bulletin 40, 3 (Aug. 2008), 322-322. DOI=
http://doi.acm.org/10.1145/1597849.1384365

DRJAVA. 2009. DrJava. Available at http://www.drJava.org.

ECLIPSE. 2009. Eclipse. Available at http://www.eclipse.org.

FISHER, K., KRINTZ, C. (chairs), et al. 2008. 2008 SIGPLAN Programming Language Curriculum
Workshop Report. 2008 SIGPLAN Workshop on Programming Language Curriculum, ACM
SIGPLAN Notices 43, 11 (Nov. 2008).

FISKER, K., MCCALL, D., KÖLLING, M., and QUIG, B. 2008. Group work support for the BlueJ IDE.
In Proceedings of the 13th Annual Conference on innovation and Technology in Computer
Science Education (Madrid, Spain, June 30 - July 02, 2008). ITiCSE '08. ACM, New York, NY,
163-168. DOI= http://doi.acm.org/10.1145/1384271.1384316

GAO. 2007. Higher education: Tuition continues to rise, but patterns vary by institution type, enrollment,
and educational expenditures (GAO-08-245). U.S. Government Accountability Office report to
the Chairman, Committee on Education and Labor, House of Representatives, Washington, DC,
1-30.

GIBBS, N. E. 1989. The SEI education program: the challenge of teaching future software engineers.
Communications of the ACM 32, 5 (May 1989), 594-605.

GREENFOOT. 2009. Greenfoot. Available at http://www.Greenfoot.org.

HARRISON, W., OSSHER, H., and TARR, P. 2000. Software engineering tools and environments: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering (Limerick,
Ireland, June 04 - 11, 2000). ICSE '00. ACM Press, New York, NY, 261-277. DOI=
http://doi.acm.org/10.1145/336512.336569

HAWTHORNE, E. (chair) et al. 2009. Computing curricula 2009: Guidelines for associate-degree
transfer curriculum in computer science. ACM Two-Year College Education Committee. ACM
and IEEE Computer Society (2009). Available at http://www.acmtyc.org

HENRIKSEN, P. and KÖLLING, M. 2004. greenfoot: combining object visualisation with interaction. In
Companion To the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Vancouver, BC, CANADA, October 24 - 28, 2004).
OOPSLA '04. ACM, New York, NY, 73-82. DOI= http://doi.acm.org/10.1145/1028664.1028701

106

HOOKER, D. 1996. Seven Principles of Software Development (September 1996). Available at
http://www.c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment.

HUNDLEY, J. 2011. Birds-of-a-Feather: Introducing Software Engineering Principles in the First Two
Years of Computer Science Education. SIGCSE 2011 the 42nd ACM Technical Symposium on
Computer Science Education. Dallas TX, USA, March 09-12, 2011.

HUNT, A. and THOMAS, D. 2004. Three essential tools for stable development. CrossTalk: The Journal
of Defense Software Engineering 17, 11 (Nov. 2004). 22-25.

JGRASP. 2009a. jGRASP. Available at http://jgrasp.org

JGRASP. 2009b. Overview of JGRASP and the tutorials (2 September 2009). Available at
http://jgrasp.org/tutorials187/00_Overview.pdf

JOHNSON, D. W., and JONES, C. G. 2006. IS education: the changing complexity of relevance. Issues
in Information Systems 7, 1 (2006), 188-192.

KASPER, H. 2002. The changing role of community college. Occupational Outlook Quarterly (Winter
2002-03), 14-21.

KOLLING, M. 2009. The BlueJ tutorial, version 2.0.1 for BlueJ version 2.0.x. Maersk Institute,
University of Southern Denmark. Available at http://bluej.org/tutorial/tutorial-201.pdf

KÖLLING, M., QUIG, B. PATTERSON, A., and ROSENBERG, J. 2003. The BlueJ system and its
pedagogy," Journal of Computer Science Education, 13, 4 (December 2003), 249-268.

KORNECKI, A.J.; S. KHAJENOORI, D. GLUCH, and N. KAMELI. 2003. On a partnership between
software industry and academia. In Proceedings of the 16th Conference on Software Engineering
Education and Training (20-22 March 2003). CSEET’03. 60-69.
DOI=10.1109/CSEE.2003.1191351

KOUZNETSOVA, S. 2007. Using BlueJ and Blackjack to teach object-oriented design concepts in CS1.
Journal of Computing in Small Colleges 22, 4 (Apr. 2007), 49-55.

LANG, J. 1999. Industry expectations of new engineers: A survey to assist curriculum designers. Journal
of Engineering Education 88, 1 (Jan. 1999), 43-51.

LE BLANC, R. and SOBEL, S. (chairs) et al. 2004. Software Engineering 2004: Curriculum Guidelines
for Undergraduate Degree Programs in Software Engineering. IEEE Computer Society Press and
ACM Press (23 August 2004). Available at http://www.computer.org/
portal/cms_docs_ieeecs/ieeecs/education/cc2001/SE2004Volume.pdf

LEWIS, P. M. 1989. Information Systems is an Engineering Discipline. Communications of the ACM 32,
9 (Sept. 1989), 1045-1047.

LONG, Lyle N. 2008. The critical need for SE education CrossTalk: The Journal of Defense Software
Engineering 21, 1 (Jan 2008), 6-10.

http://www.c2.com/cgi/wiki?SevenPrinciplesOfSoftwareDevelopment

107

MCCAULEY, R. and MCGETTRICK, A. 2008. Computer Science Curriculum 2008: An Interim
Revision of the CS 2001, a report from the interim review task force. IEEE Computer Society
Press and ACM (December, 2008). Available at
http://www.acm.org//education/curricula/ComputerScience2008.pdf

MCCONNELL, S. 1996. Best Practices: Daily and Smoke Test. IEEE Software 13, 4 (July 1996), 143-
144.

MEAD, N.R., SAIEDIAN, H., RUHE, G., and BAGERT, D.J. 2000. Panel: shortages of qualified
software engineering faculty and practitioners: challenges in breaking the cycle In Proceedings
of the 2000 International Conference on Software Engineering (4-11 June 2000), 665–668.

MITCHELL, W. 2004. Is software engineering for everyone? In Proceedings of the 2nd Annual
Conference on Mid-South College Computing (Little Rock, Arkansas, April 02 - 03, 2004). ACM
International Conference Proceeding Series, vol. 61. Mid-South College Computing Conference,
Little Rock, Arkansas, 53-64.

MYERS, J. P. 2000. Software engineering throughout a traditional computer science curriculum. In
Proceedings of the Second Annual CCSC on Computing in Small Colleges Northwestern
Conference (Oregon Graduate Institute, Beaverton, Oregon, United States). Consortium for
Computing in Colleges, 31-40.

NAVARRO, D., HORN, T., and SALINGER, G. 2008. ATE centers and community colleges: Increasing
underrepresented minorities participating in STEM fields: A forum (21 November 2008).
Retrieved on 09 June 2009 from http://www.aypf.org/forumbriefs/2008/fb112108.htm

OLAN, M. 2004. Dr. J vs. the bird: Java IDE's one-on-one. Journal of Computing in Small Colleges 19, 5
(May. 2004), 44-52.

PARNAS, D. L. 1990. Education for Computing Professionals. Computer 23, 1 (Jan. 1990), 17-22. DOI=
http://dx.doi.org/10.1109/2.48796

PATERSON, J. H., HADDOW, J., BIRCH, M., and MONAGHAN, A. 2005. Using the BlueJ IDE in a
data structures course. In Proceedings of the 10th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education (Caparica, Portugal, June 27 - 29, 2005). ITiCSE
'05. ACM, New York, NY, 349-349. DOI= http://doi.acm.org/10.1145/1067445.1067548

PFLEEGER S. L. 1998. Software Engineering, Theory and Practice, Prentice-Hall, Inc., 1998.

PFLEEGER, S. L. and ALTEE, J. M. 2006. Software Engineering, Theory and Practice, Prentice-Hall,
Inc., Upper Saddle River, NJ.

PRESSMAN, R. 2001. Software Engineering: A Practitioner’s Approach, 5e. McGraw Hill, New York,
NY.

PRESSMAN, R. S. 2010. Software Engineering: A Practitioner’s Approach. 7e. McGraw-Hill, New
York, NY.

108

QAA. 2000. Quality assurance agency for higher education: A report on benchmark levels for computing.
The Quality Assurance Agency for Higher Education. Southgate House, Southgate Street,
Gloucester GL1 1UB. Available at www.qaa.ac.uk.

QUALTRICS. 2011. Qualtrics: Survey Research Suite. Available at www.qualtrics.com.

RATIONAL. 2009. IBM Rational Software. Available at http://www-01.ibm.com/software/rational/

REIFER, D. J. 2005. Educating software engineers: an industry viewpoint. SIGSOFT Software
Engineering Notes 30, 3 (May. 2005), 8-9. DOI= http://doi.acm.org/10.1145/1061874.1061876

REIS, C. and CARTWRIGHT, R. 2003. A friendly face for Eclipse. In Proceedings of the 2003
OOPSLA Workshop on Eclipse Technology Exchange (Anaheim, California, October 27 - 27,
2003). eclipse '03. ACM, New York, NY, 25-29. DOI=
http://doi.acm.org/10.1145/965660.965666

REIS, C. and CARTWRIGHT, R. 2004. Taming a professional IDE for the classroom. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science Education (Norfolk, Virginia,
USA, March 03 - 07, 2004). SIGCSE '04. ACM, New York, NY, 156-160. DOI=
http://doi.acm.org/10.1145/971300.971357

ROY, G. G. 2006. Designing and explaining programs with a literate pseudocode. Journal on
Educational Resources in Computing 6, 1 (Mar. 2006), 1. DOI=
http://doi.acm.org/10.1145/1217862.1217863

RUBEL, D. 2006. The Heart of Eclipse. Queue 4, 8 (Oct. 2006), 36-44. DOI=
http://doi.acm.org/10.1145/1165754.1165767

SAHAMI, M. (ACM Delegation chair), ROACH, S. (IEEE-CS Delegation chair), et al. 2012. Computer
Science Curricula 2013: Strawman Draft. Retrieved on March 7, 2012 from www.cs2013.org.

SANDERS, D. and HEELER, P. 2001. Introduction to BlueJ: a Java development environment for CS1
and CS2. In Proceedings of the Seventh Annual Consortium For Computing in Small Colleges
Central Plains Conference on the Journal of Computing in Small Colleges (Branson, Missouri,
United States). J. G. Meinke, Ed. Consortium for Computing Sciences in Colleges, 115-116.

SHACKELFORD, R. (chair) et al. 2005. Computing curricula 2005: Overview report on computing
curricula. IEEE Computer Society Press and Association of Computing Machinery Press (Sep.
30, 2005). Available at http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf.

SMITH, P. A. and BOYD, G. 2001. Introducing OO concepts from a class user perspective. Journal of
Computing in Small Colleges 17, 2 (Dec. 2001), 152-158.

SOMMERVILLE, I. 2004. Software Engineering, 7ed. Pearson Education Limited, Edinburgh, England.

SPAC. 2009. Forging Strategic Alliances: State Plan for Alabama Higher Education 2009-2014, Draft.
State Planning Advisory Council, Alabama Commission on Higher Education, Montgomery, AL.
Retrieved on 09 June 2009 from
http://www.highered.alabama.gov/Portals/9/Documents/COP%20handout.ppt

http://www.qaa.ac.uk/
http://doi.acm.org/10.1145/1165754.1165767

109

STARS. 2009a. What is STARS? Statewide Transfer and Articulation Reporting System. Retrieved on 28
May 2009 from http://stars.troy.edu/stars/what_stars.htm

STARS. 2009b. Statewide transfer and articulation reporting systems. Statewide Transfer and
Articulation Reporting System. Retrieved on 28 May 2009 from
http://stars.troy.edu/stars/stars.htm

STEM. 2009. STEM Education Coalition. Retrieved on 09 June 2009 from
http://www.stemedcoalition.org

STILLER, E. and LEBLANCE, C. 2002. Effective software engineering pedagogy. Journal of
Computing in Small Colleges 17, 6 (May 2002), 124-134.

TILLEY, S.R., WONG, K. 1993. Report on NWSEE '93. The 1993 [Canadian] National Workshop on
Software Engineering Education (Aug 27, 1993). Available at
www.cs.ualberta.ca/~kenw/papers/nwsee93-rep.pdf.

TIRRELL-WYSOCKI, D. 2009. Recession sending more students to community colleges. The Seattle
Times (08 February 2009). Retrieved on 09 June 2009 from http://seattletimes.
nwsource.com/html/nationworld/2008721603_apmeltdowncommunitycolleges.html

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to
the software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer
Society Press, Los Alamitos, CA, (2004). Available at http://www.swebok.org.

USCNS/21. 2001. Recapitalizing America's strengths in science and education in Road map for National
security: Imperative for change: The phase III report of the U.S. Commission on National
Security/21st century (15 February 2001), 30-46.

VERAAT, V., HILTON, M., SAMY, N., GRANT, D., and GREENING, T. 1997. Software Engineering
Education - Is It Meeting Industry Needs? Can Industry Needs Be Met? In Proceedings of
Australian Software Engineering Conference (29 Sep-2 Oct 1997). ASWEC 97, 184-187.

WERTH, J. and WERTH, L. 1991. Directions in software engineering education. In Proceedings of the
13th international Conference on Software Engineering (Austin, Texas, United States, May 13 -
17, 1991). International Conference on Software Engineering. IEEE Computer Society Press, Los
Alamitos, CA, 353-357.

XINOGALOS, S., SATRATZEMI, M., and DAGDILELIS, V. 2006. An introduction to object-oriented
programming with a didactic microworld: objectKarel. Computers & Education 47 (2006), 148-
171.

XINOGALOS, S., SATRATZEMI, M., and DAGDILELIS, V. 2007. Teaching java with BlueJ: a two-
year experience. In Proceedings of the 12th Annual SIGCSE Conference on innovation and
Technology in Computer Science Education (Dundee, Scotland, June 25 - 27, 2007). ITiCSE '07.
ACM, New York, NY, 345-345. DOI= http://doi.acm.org/10.1145/1268784.1268914

110

Appendix A

111

SWEBOK Software Engineering Knowledge Areas (KAs) [Pressman 2010]

SOFTWARE REQUIREMENTS
1. Software requirements fundamentals
Definition of software requirement C
Product and process requirements C
Functional and functional requirements C
Emergent properties C
Quantifiable requirements C
System requirements and software requirements C
2. Requirement process
Process models C
Process actors C
Process support and management C
Process quality and improvement C
3. Requirements elicitation
Requirements sources C
Elicitation techniques AP
4. Requirements analysis
Requirements classification AP
Conceptual modeling AN
Architectural design and requirements allocationAN
Requirements negotiation AP
5. Requirements specification
System definition document C
System requirements specification C
Software requirements specification AP
6. Requirements validation
Requirements reviews AP
Prototyping AP
Model validation C
Acceptance tests AP
7. Practical considerations
Iterative nature of requirements process C
Change management AP
Requirements attributes C
Requirements tracing AP
Measuring requirements AP

SOFTWARE DESIGN

1. Software design fundamentals
General design concepts C
Context of software design C
Software design process C
Enabling techniques AN
2. Key issues in software design
Concurrency AP
Control and handling of events AP
Distribution of components AP
Error and exception handling; fault tolerance AP
Interaction and presentation AP
Data persistence AP
3. Software structure and architecture
Architectural structures and viewpoints AP
Architectural styles (macro-arch patterns) AN
Design patterns (micro-architectural patterns) AN
Families of programs and frameworks C
4. Software design quality analysis and

evaluation
Quality attributes C
Quality analysis and devaluation techniques AN
Measures C
5. Software design notations
Structural descriptions (static) AP
Behavioral descriptions (dynamic) AP
6. Software design strategies and methods
General strategies AN
Function-oriented (structured) design AP
Object-oriented design AN
Data-structure centered design C
Component-based design (CBD) C
Other methods C

112

SOFTWARE CONTRUCTION

1. Software construction fundamentals
Minimizing complexity AN
Anticipating change AN
Constructing of verification AN
Standards in construction AP
2. Managing construction
Construction methods C
Construction planning AP
Construction measurement AP
3. Practical consideration
Construction design AN
Construction languages AP
Coding AN
Construction testing AP
Construction quality AN
Integration AP

SOFTWARE TESTING

1. Software testing fundamentals
Testing-related terminology C
Key issues AP
Relationships of testing to other activities C
2. Test levels
The target of the tests AP
Objectives of testing AP
3. Test techniques
Based on tester’s intuition and experience AP
Specification-based AP
Code-based AP
Fault-based AP
Usage-based AP
Based on nature of application AP
Selecting and combining techniques AP
4. Test-related measures
Evaluation of the program under test AN
Evaluation of the tests performed AN
4. Test process
Management concerns C
Test activities AP

SOFTWARE MAINTENCE

1. Software maintenance fundamentals
Definitions and terminology C
Nature of maintenance C
Need for maintenance C
Majority of maintenance costs C
Evolution of software C
Categories of maintenance AP
2. Key issues in software maintenance
Technical
 Limiting understanding C
 Testing AP
 Impact analysis AN
 Maintainability AN
Management issues
 Alignment with organizational issues C
 Staffing C
 Process issues C
 Organizational C
Maintenance cost estimation
 Cost estimation AP
 Parametric models C
 Experience AP
Software maintenance measurement AP
3. Maintenance process
Maintenance process models C
Maintenance activities
 Unique activities AP
 Supporting activities AP
4. Techniques for maintenance
Program comprehension AN
Reengineering C
Reverse engineering C

113

SOFTWARE CONFIGURATION

MANAGEMENT
1. Management of the SCM management
Organizational context for SCM C
Constraints and guidance for SCM C
Planning for SCM
 SCM organization and responsibilities AP
 SCM resources and schedules AP
 Tool selection and implementation AP
 Vendor/subcontractor control C
 Interface control C
Software configuration management plan C
Surveillance of software configuration mgmt
 SCM measures and measurement AP
 In-process audits of SCM C
2.Software configuration identification
Identifying items to be controlled
 Software configuration AP
 Software configuration items AP
 Software configuration item relationships AP
 Software versions AP
 Baseline AP
 Acquiring software configuration items AP
Software library C
3. Software configuration control
Requesting, evaluating and approving software
changes
 Software configuration control board AP
 Software change request process AP
Implementing software changes AP
Deviations and waivers C
4. Software configuration status accounting
Software configuration status information C
Software configuration status reporting AP
5. Software configuration audit
Software functional configuration audit C
Software physical configuration audit C
In-process audits of a software baseline C
6. Software release management and delivery
Software building AP
Software release management C

SOFTWARE ENGINEERING MANAGEMENT
1. Initiation and scope definition
Determination and negotiation of requirements AP
Feasibility analysis AP
Process for requirements review/revision C
2. Software project planning
Process planning C
Determine deliverables AP
Effort, schedules, and cost estimation AP
Resource allocation AP
Risk management AP
Quality management AP
Plan management C
3. Software project enactment
Implementation of plans AP
Supplier contract management C
Implementation of measurement process AP
Monitor process AN
Control process AP
Reporting AP
4. Review and evaluation
Determining satisfaction of requirements AP
Review and evaluating performance AP
5. Closure
Determining closure AP
Closure activities AP
6. Software engineering measurement
Establish and sustain measurement commitment C
Plan the measurement process C
Perform the measurement process C
Evaluate measurement C

114

SOFTWARE ENGINEERING PROCESS
1. Process implementation and change
Process infrastructure
 Software engineering process group C
 Experience factory C
Activities AP
Models for process implementation and change K
Practical considerations C
2. Process definition
Life cycle models AP
Software life cycle processes C
Notations for process definitions C
Process adaptations C
Automation C
3. Process assessment
Process assessment models C
Process assessment methods C
4. Product and process measurement
Software process measurement AP
Software product measurement
 Size measurement AP
 Structure measurement AP
 Quality measurement AP
Quality of measurement results AN
Software information models
 Model building AP
 Model implementation AP
Measurement techniques
 Analytical techniques AP
 Benchmarking techniques C

SOFTWARE ENGINEERING
TOOLS AND METHODS

1. Software tools
Software requirements tools AP
Software design tools AP
Software construction tools AP
Software testing tools AP
Software maintenance tools AP
Software engineering process tools AP
Software quality tools AP
Software configuration management tools AP
Software engineering management tools AP
Miscellaneous tool issues AP
2. Software engineering methods
Heuristic methods AP
Formal methods and notations C
Prototyping methods AP
Miscellaneous method issues C

SOFTWARE QUALITY

1. Software quality fundamentals
Software engineering culture and ethics AN
Value and costs of quality AN
Quality models and characteristics
 Software process quality AN
 Software product quality AN
Quality improvement AP
2. Software quality management process
Software quality assurance AP
Verification and validation AP
Reviews and audits
 Inspections AP
 Peer reviews AP
 Walkthroughs AP
 Testing AP
 Audits C
3. Practical considerations
Application quality requirements
 Criticality of systems C
 Dependability C
 Integrity levels of software C
Defect characterization AP
Software quality management techniques
 Static-techniques AP
 People-intensive techniques AP
 Analytic-techniques AP
 Dynamic techniques AP
Software quality measurement AP

115

BLOOM’S TAXONOMY LEVELS [Bloom 1956]

Knowledge (K): Recall data

Comprehension (C): Understanding the meaning, translation, interpolation, and interpretation of
instructions and problems; state a problem in one’s own words.

Application (AP): Use a concept in a new situation or use an abstraction unprompted; apply what was
learned in the classroom to novel situations in the workplace.

Analysis (AN): Separate material or concepts into component parts so that its organizational structure
may be understood; distinguish between facts and inferences.

Synthesis (S): Build a structure of pattern from diverse elements, put parts together to form a whole, with
emphasis on creating a new meaning or structure.

Evaluation (E): Make judgments about the value of ideas or material.

116

Appendix B

117

Alabama Public Community Colleges’ Reference Information.

 Legend
CC URL Community college web address
CC City Community college city
Dept Name Department name associated with the computer science curriculum or courses
Dept URL Department web address
Cat Name Course catalog name
Cat URL Course catalog web address
Curriculum Computer science curriculum catalog page number(s) or web address
STARS Community college web page with information about the STARS program

 Bevill State CC (BEV)
CC URL www.bscc.edu
CC City Sumiton
Dept Name Computer Science
Dept URL http://www.bscc.edu/pos_computer.php
Cat Name Course Descriptions: Computer Science (webpage)
Cat URL http://www.bscc.edu/course_computer.php

Curriculum http://www.bscc.edu/pos_computer_cr.php

STARS http://www.bscc.edu/academics.php

 Bishop State CC (BIS)
CC URL www.bishop.edu

CC City Mobile
Dept name Computer Information Systems (CIS)
Dept URL http://www.bishop.edu/business.html

Cat Name General Catalog 2008-2009
Cat URL http://www.bishop.edu/PDFs/bscat08.pdf
Curriculum pp.33-35 of catalog
STARS http://www.bishop.edu/resources.html

 Calhoun State CC (CAL)
CC URL www.calhoun.edu

CC City Decatur
Dept name Computer and Office Information Systems
Dept URL http://www.calhoun.edu/Bus_Div/cis.htm

Cat Name 2008-2009 Catalog
Cat URL http://www.calhoun.edu/Acrobat/catalog2008/Index.html
Curriculum http://www.calhoun.edu/Bus_Div/cisprograms/AS.htm

STARS http://www.calhoun.cc.al.us/Stars/index.html

http://www.bscc.edu/course_computer.php
http://www.bscc.edu/pos_computer_cr.php
http://www.bscc.edu/academics.php
http://www.bishop.edu/
http://www.bishop.edu/business.html
http://www.calhoun.edu/
http://www.calhoun.edu/Bus_Div/cis.htm
http://www.calhoun.edu/Bus_Div/cisprograms/AS.htm
http://www.calhoun.cc.al.us/Stars/index.html

118

 Central Alabama CC (CEN)
CC URL www.cacc.edu

CC City Alexander City
Dept name na
Dept URL na
Cat Name 2008-2009 General Catalog
Cat URL http://www.cacc.me/clientuploads/catalog/2008_2009_Catalog_complete.pdf
Curriculum pp. 68-72 of catalog
STARS home page menu link to stars.troy.edu

 Chattahoochee Valley CC (CVCC)
CC URL www.cv.edu

CC City Pheonix City
Dept name Computer Information Systems
Dept URL http://www.cv.edu/content/view/157/236/
Cat Name Catalog and Student Handbook 2008-2009
Cat URL http://www.cv.edu/component/option,com_wrapper/Itemid,132/

Curriculum http://cv.edu/external/catalogs/catalog_viewer.asp?109

STARS home page menu link to stars.troy.edu

 Enterprise-Ozark CC (ENT)
CC URL www.eocc.edu
CC City Enterprise
Dept name Computer and Information Science
Dept URL http://www.eocc.edu/divisions/cis_div/cis_home.html

Cat Name College Catalog and Student Handbook 2008-2009
Cat URL http://www.eocc.edu/adminoffices/registrar/catalogs/CollegeCatalog.htm
Curriculum pp. 81-82 of catalog
STARS home page menu link to stars.troy.edu

 Faulkner State CC (FSC)
CC URL www.faulknerstate.edu

CC City Bay Minette
Dept name Computer Science
Dept URL http://www.faulknerstate.edu/majors
Cat Name College Catalog and Student Handbook 2008-2009
Cat URL http://www.faulknerstate.edu/admissions/catalog0809

Curriculum pp. 78-84 of catalog
STARS p. 10-11 of catalog

http://www.cacc.edu/
http://www.cv.edu/
http://www.cv.edu/component/option,com_wrapper/Itemid,132/
http://cv.edu/external/catalogs/catalog_viewer.asp?109
http://www.eocc.edu/divisions/cis_div/cis_home.html
http://www.faulknerstate.edu/
http://www.faulknerstate.edu/admissions/catalog0809

119

 Gadsden State CC (GAD)
CC URL www.gadsdenstate.edu

CC City Gadsden
Dept name Information Technology
Dept URL http://www.gadsdenstate.edu/it/index.html
Cat Name Catalog and Student Handbook 2008-2009
Cat URL http://www.gadsdenstate.edu/catalog/catalog0809.pdf
Curriculum p. 98 of catalog
STARS http://www.gadsdenstate.edu/enrolled.html

 Jefferson State CC (JSC)
CC URL www.jeffstateonline.com

CC City Birmingham
Dept name Computer Information Systems Technology
Dept URL http://www.jeffstateonline.com/Business/index.aspx

Cat Name Catalog and Student Handbook 2008-2009
Cat URL http://www.jeffstateonline.com/Catalog/PDFs/0809JSCCCatalog.pdf
Curriculum pp. 96-98 of catalog
STARS http://www.jeffstateonline.com/stars/index.aspx

 Lawson State CC (LAW)
CC URL www.lawsonstate.edu

CC City Birmingham
Dept name Computer Science - Math Degree
Dept URL http://www.lawsonstate.edu/academics/computerscience/bit_index_computer.html
Cat Name 2007-2009 Student Catalog and Handbook
Cat URL http://www.lawsonstate.edu/catalogs/LSCC%202007-2009--

Electronic%20Student%20Catalog%20&%20Handbook.pdf
Curriculum pp. 103, 185-185 of catalog
STARS pp. 68-78 of catalog

 Lurleen B. Wallace CC (LBW)
CC URL www.lbwcc.edu

CC City Andalusia
Dept name Business-Information Technology/Social Science
Dept URL http://www.lbwcc.edu/cms/page.aspx?pageid=528
Cat Name College Catalog 2007-2009
Cat URL http://www.lbwcc.edu/cms/Storage/Files/2007-2009%20College%20Catalog.pdf

Curriculum http://www.lbwcc.edu/cms/page.aspx?pageid=446
STARS http://www.lbwcc.edu/cms/page.aspx?pageid=309

http://www.gadsdenstate.edu/
http://www.jeffstateonline.com/
http://www.jeffstateonline.com/Business/index.aspx
http://www.lawsonstate.edu/
http://www.lawsonstate.edu/catalogs/LSCC%202007-2009--Electronic%20Student%20Catalog
http://www.lawsonstate.edu/catalogs/LSCC%202007-2009--Electronic%20Student%20Catalog
http://www.lbwcc.edu/
http://www.lbwcc.edu/cms/Storage/Files/2007-2009%20College%20Catalog.pdf

120

 Northeast Alabama CC (NEC)
CC URL www.nacc.edu

CC City Rainsville
Dept name Business and Computer Science
Dept URL http://www.nacc.edu/study/business_computer_science.htm
Cat Name Catalog 2008-2009
Cat URL http://www.nacc.edu/catalog/catalog09.htm
Curriculum http://www.nacc.edu/assessment/program_requirements/AS0809_1.pdf
STARS http://www.nacc.edu/study/stars.htm

 Northwest-Shoals CC (NWS)
CC URL www.nwscc.edu

CC City Muscle Shoals
Dept name Computer Information
Dept URL http://www.nwscc.edu/cisweb/cishome.htm

Cat Name 2008-2009 Catalog and Student Handbook
Cat URL http://www.nwscc.edu/Catalog0809/catalog.html

Curriculum http://nwscc.edu/catalog0607/transfer_cis.pdf

STARS http://www.nwscc.edu/students.html

 Shelton State CC (SHC)
CC URL www.sheltonstate.edu

CC City Tuscaloosa
Dept name Business
Dept URL http://www.sheltonstate.edu/content.aspx?PageID=182
Cat Name College Catalog Fall 2007-Summer 2009
Cat URL http://www.sheltonstate.edu/userfiles/File/catalog/Fall%202007%20-

%20Summer%202009/Shelton%20College%20Catalog%2007_09.pdf
Curriculum http://www.sheltonstate.edu/userfiles/File/catalog/Fall%202007%20-

%20Summer%202009/degree%20and%20cert%20requirements.pdf
STARS http://www.sheltonstate.edu/content.aspx?PageID=139

 Snead State CC (SND)
CC URL www.snead.edu

CC City Boaz
Dept name Math and Technology
Dept URL www.snead.edu/academics/departments.asp

Cat Name Official General Catalog (May2009)
Cat URL http://www.snead.edu/ContentDocMaint/GetDocument.asp?ID=293
Curriculum pp. 95-96, 104-105 if catalog
STARS pp. 69-70 of catalog

http://www.nacc.edu/
http://www.nwscc.edu/
http://www.nwscc.edu/cisweb/cishome.htm
http://www.nwscc.edu/Catalog0809/catalog.html
http://nwscc.edu/catalog0607/transfer_cis.pdf
http://www.sheltonstate.edu/
http://www.sheltonstate.edu/userfiles/File/catalog/Fall%202007%20-%20Summer%202009/
http://www.sheltonstate.edu/userfiles/File/catalog/Fall%202007%20-%20Summer%202009/
http://www.snead.edu/
http://www.snead.edu/academics/departments.asp

121

 Southern Union State CC (SOU)
CC URL www.suscc.edu

CC City Wadley
Dept name Academic Division
Dept URL http://www.suscc.edu/SubTopicPages/InstructionalDivisions/Academic/

AcademicDivHomePage.cfm
Cat Name 2008-2009 Offical College Catalog
Cat URL http://www.suscc.edu/PDFFiles/SUcatalog2008.pdf
Curriculum pp. 142-143 of catalog
STARS link in Enrolled Students menu

 Wallace State CC Dothan (WSD)
CC URL www.wallace.edu

CC City Dothan
Dept name Educational Programs - Academic
Dept URL http://www.wallace.edu/programs/academic/
Cat Name 2008/2009 College Catalog and Student Handbook
Cat URL http://www.wallace.edu/programs/Catalog.pdf
Curriculum p. 61 of catalog
STARS http://www.wallace.edu/current_students.htm

 Wallace State CC Hanceville (WSH)
CC URL www.wallacestate.edu

CC City Hanceville
Dept name Computer Science
Dept URL http://www.wallacestate.edu/programs/academic/computer-science.html

Cat Name Catalog 2007-2008
Cat URL http://www.wallacestate.edu/fileadmin/user_upload/WallaceState/documents/

general/WSCC_2007-2008_catalog_cover.pdf
Curriculum pp. 73-75 of catalog
STARS http://www.wallacestate.edu/stars-guide.html

 Wallace State CC Selma (WSS)
CC URL www.wccs.edu

CC City Selma
Dept name Computer Information Systems (CIS)
Dept URL http://www.wccs.edu/index.php?pages/cisdept.html

Cat Name General Catalog and Student Handbook 2007-2010
Cat URL http://www.wccs.edu/files/2007-

2010%20Catalog%20as%20modified%20on%207.11.07.pdf
Curriculum p. 45 of catalog
STARS http://www.wccs.edu/index.php?pages/sss.html

http://www.suscc.edu/
http://www.suscc.edu/SubTopicPages/InstructionalDivisions/Academic/
http://www.wallace.edu/
http://www.wallacestate.edu/
http://www.wallacestate.edu/programs/academic/computer-science.html
http://www.wallacestate.edu/fileadmin/user_upload/WallaceState/documents/%20general/
http://www.wallacestate.edu/fileadmin/user_upload/WallaceState/documents/%20general/
http://www.wccs.edu/
http://www.wccs.edu/index.php?pages/cisdept.html

122

Alabama Public 4-year Universities’ Reference Information.

 Legend
Univ URL University web address
Area V University STARS Area V information web address
Catalog University course catalog web address

 Alabama A&M U (AA&MU)
Univ URL www.aamu.edu
Area V http://www.aamu.edu/Admission/STARS/transfer_info.htm
Catalog http://www.aamu.edu/acadaffairs/BULLETIN--_2008-2011.pdf

 Alabama State U (ASU)
Univ URL www.alasu.edu
Area V http://www.alasu.edu/areav/default.aspx?id=82
Catalog http://www.alasu.edu/records/applications/documentlibrary/18673%20ASU%20200

4-2006%20LR.pdf

 Athens State U (ATHENS)
Univ URL www.athens.edu
Area V http://www.athens.edu/admissions/transfer.php
Catalog http://www.athens.edu/catalog/index.html

 Auburn U (AU)
Univ URL www.auburn.edu
Area V http://www.auburn.edu/areav/engine.htm
Catalog http://www.auburn.edu/student_info/bulletin/2009_bulletin.pdf

 Auburn U Montgomery (AUM)
Univ URL www.aum.edu
Area V http://www.aum.edu/uploadedFiles/Student_Life/Student_Services/Student_Records/

Math%20MajorComputer%20Sciences.pdf
Catalog http://www.aum.edu/uploadedFiles/Academics/Catalogs/Cat_UG_Sciences_08.pdf

 Jacksonville State U (JSU)
Univ URL www.jsu.edu
Area V http://www.jsu.edu/transfer/cs_se.html
Catalog http://www.jsu.edu/depart/undergraduate/catalog/

 Troy U (TROY)
Univ URL www.troy.edu
Area V http://www.troy.edu/area5/majors/Computer%20Science.html
Catalog http://www.troy.edu/catalogs/0809undergrad/index.html

123

 U of Alabama (UA)
Univ URL www.ua.edu
Area V http://coeweb.eng.ua.edu/future_students/computerscience.htm
Catalog http://catalogs.ua.edu/catalog08/

 U of Alabama , Birmingham (UAB)
Univ URL www.uab.edu
Area V http://www.app.uab.edu/Area_V/Computer_Science.pdf
Cat http://www.catalog.uab.edu/

 U of Alabama , Huntsville (UAH)
Univ URL www.uah.edu
Area V http://www.uah.edu/main/transfer1/areaV/computerSci.html
Catalog http://www.uah.edu/main/catalogs/Cat07_09/ugCat07_09.pdf

 U of Montevallo (UM)
Univ URL www.montevallo.edu
Area V na
Catalog http://www.montevallo.edu/undergrad/

 U of North Alabama (UNA)
Univ URL www.una.edu
Area V http://www.una.edu/areav/arts-sciences/computer-science.html
Catalog http://www.una.edu/catalog/catalogs/UNACatalog2009-2010.pdf

 U of South Alabama (USA)
Univ URL www.southalabama.edu
Area V http://www.southalabama.edu/admissions/transfer/al/cs.html
Catalog http://www.southalabama.edu/bulletin/

 U of West Alabama (UWA)
Univ URL www.uwa.edu
Area V http://www.uwa.edu/academics/areas/Registrar/transfers/mathcis.aspx
Catalog http://www.uwa.edu/academics/catalog/undergraduate.aspx

124

Appendix C

125

Survey of Usage of Software Engineering Principles and Concepts

126

127

128

129

130

131

132

133

Appendix D

134

Teaching Software Engineering

Summer 2011 Special Topics Course

COMP 7976 COMP8970
3-6:30pm Wednesdays 1120 Shelby Center

INSTRUCTOR:

TEACHING ASSOCIATE:

COURSE GOALS AND OBJECTIVES: This course examines software engineering from an instructional
perspective. Its purpose is to give students an exposure to explaining fundamental software engineering concepts to
those new to the field.

PREREQUISITES:
• Graduate standing
• Familiarity with general software engineering

RATIONALE:
Postgraduate instruction traditionally focuses on developing advanced subject specialty skills, offering research
experiences, and fostering methods of disciplined thought. Graduate students look to careers in higher education or
industry but never receive training on how to explain the complex concepts of engineering software to students,
coworkers, supervisors, subordinates, etc. This course is designed to provide insight into how to teach software
engineering concepts at the introductory level.

REQUIRED RESOURCES:

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to the

software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press,
Los Alamitos, CA, (2004). Available on Blackboard and at http://www.swebok.org.

CAMPBELL, R. (chair) et al. 2005. Computer curricula 2005: Guidelines for associate-degree transfer curriculum in

software engineering. IEEE Computer Society Press and ACM Press, (August, 2005). See Blackboard.

HAWTHORNE, E. (chair) et al. 2009. Computing curricula 2009: Guidelines for associate-degree transfer

curriculum in computer science. ACM Two-Year College Education Committee. ACM and IEEE Computer
Society (2009). See Blackboard.

LE BLANC, R. and SOBEL, A. (chairs) et al. 2004. Software Engineering 2004: Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering. IEEE Computer Society Press and ACM Press
(23 August 2004). Available on Blackboard and at http://sites.computer.org/ccse/SE2004Volume.pdf

More information at ACM Committee for Computing Education in Community Colleges. http://www.acmtyc.org/

http://www.swebok.org/
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.acmtyc.org/

135

COURSE STRUCTURE:
Class 1 will entail 1) a discussion of the difference between computer science and software engineering; 2) an
examination of SWEBOK; and 3) an examination of model curricula for software engineering.

Classes 2 through 9 will be structured as follows:
Activity Desired Outcomes Responsibilities

Primer ° To bring everyone up to speed on the
knowledge area.

° To identify cardinal elements of the
knowledge area.

COMP8970 Team: Presentation.

Prerequisite
Knowledge
Graph

° To identify prerequisite skills required
to apply the knowledge area.

COMP8970 Team: Class discussion

Pedagogy ° To identify what others have done to
teach the knowledge area

° To identify where to find useful
information on how to explain the
knowledge area.

° To identify instructional pitfalls to avoid
when explaining the knowledge area.

° To place teaching the knowledge area in
the context of 1) the novice instructor,
2) the CS1/CS2 student, and 3) the
adult learner.

COMP8970 Team: Presentation

Tool Support ° To identify how automated tools can
assist carrying out the knowledge area.

° To identity available tools, to include
functionality, acquisition expenses, and
effort to inject into the classroom
environment.

COMP7976 Team: Presentation

Sample
Learning
Activities

° To propose one or more activity that
fortifies learning.

° To identify activities which can be used
in the workshop.

COMP8970 Team: Class discussion

Curriculum
Integration

° To map key knowledge area concepts
into CS1/CS2.

COMP8970 Team: Brainstorm

Reading ° To introduce the next topic and how it
can be integrated into CS1/CS2.

Instruction Team: Class discussion

Class 10 will entail planning a workshop for regional community college instructors on how fundamental software
engineering principles can be taught at the introductory level.

136

CALENDAR (subject to change):
Class Topic Class Topic
- Pre-assigned readings 29 June Software quality
25 May Introduction 6 July Software requirements
1 June SwE Process 13 July Software Configuration Managemen
8 June Software testing 20 July SwE Management
15 June Software construction 27 July Workshop planning
22 June Software design 30 July Workshop

COURSE REQUIREMENTS -- COMP8970

All of the following must be completed for a grade of B:
• Discussion Leader: Gather discussion items relating to an assigned SwE knowledge area, assign readings,

and lead the class discussion for the entire period, prepare supplemental material. Students classified
as “PHD” may be asked to lead more than one discussion depending on the number of people in the
class.

• Educational Autobiography: Prepare a 4-5 page description of your educational/professional history
describing factors you think were most influential in shaping your learning and behavior with respect to
software engineering.

• Journal of Teaching Reflections: Maintain a journal over the course of the semester that documents
reflections on material related to class. At least two entries must be written each week.

• Interviews: Interview an instructor and a novice student on their respective perspectives on an assigned
SwE knowledge area. Deliver a 10-15 minute report on your interviews to the class. Prepare a 4-5
page summary of the interviews.

• Participation: Miss no more than one class. Make at least three contributions a week to the course
discussion forum.

Additional requirements for a grade of A:
• Activity Design: Develop a curriculum module for an assigned SwE knowledge area that includes

recommendations as to what concepts can be integrated into CS1/CS2, where those concepts can be
injected into CS1/CS2, ideas for activities that reinforce the concept, at least one detailed description of
a sample reinforcing activity, suggestions for tools. The curriculum module must be suitable for the
end-of-course workshop.

COURSE REQUIREMENTS -- COMP7976

All of the following must be completed for a grade of B:
• Video Presentation: Submit a 15-25 minute prerecorded presentation on tools that support an assigned

knowledge area. Include information on tool functionality, acquisition expenses, and efforts to inject
into the classroom environment. Tool demonstrations are highly encouraged.

• Educational Autobiography: Prepare a 4-5 page description of your educational/professional history
describing factors you think were most influential in shaping your learning and behavior with respect to
software engineering.

• Journal of Teaching Reflections: Maintain a journal over the course of the semester that documents
reflections on material related to class. At least two entries must be written each week.

• Participation: Make at least three contributions a week to the course discussion forum.
Additional requirements for a grade of A:
• Interviews: Interview a trainer and a novice learner on their respective perspectives on an assigned SwE

knowledge area. Prepare a 4-5 page summary of the interviews.
• Activity Design: Develop a curriculum module for an assigned SwE knowledge area that includes

recommendations as to what concepts can be integrated into CS1/CS2, where those concepts can be
injected into CS1/CS2, ideas for activities that reinforce the concept, at least one detailed description of
a sample reinforcing activity, suggestions for tools.

137

ADDITIONAL COURSE INFORMATION:
Academic Honesty: You will be held accountable to the Academic Honesty policies described in the Tiger Cub.
Cheating will not be tolerated. Unless otherwise directed, it is considered cheating to give or receive material that is
part of an assignment solution; work so closely with someone that you ideas, solutions, and work are
indistinguishable from theirs; use, i.e., copy, the work of others as your own. This includes material copied from the
Internet.
Special Accommodations: Students needing special accommodations (for school events, personal circumstances,
disabilities, etc.) should bring that need to my attention as soon as possible, along with the appropriate written
verification.
Electronic Devices: Electronic devices such as cell phones, pagers, and alarms should be turned off or set to silent
mode throughout class. If your phone rings audibly, it is to be answered by your neighbor. Please do not text
message during class. Laptops may be used in class, but only for purposes relating to the course itself. Please do not
play games, answer e-mail, do homework, browse the web, etc. during class.
Civility Statement: Honest, open, and candid opinions are welcome; however, everyone is expected to show
respect.
Attendance: I expect you to attend all classes and to particulate in all aspects of class discussion. Only valid
university excuses will be accepted as legitimate reasons for missing class. These include illness (with a written
medical excuse); personal or family emergencies; religious holidays (with advance notice); subpoena for court
appearance (with written documentation); and university-related travel (with an official letter). Missing two or more
classes with an unexcused absence will result in a grade of “FA”.
Email policy: Please observe conventional rules of e-mail etiquette when communicating with me electronically. In
particular, please

• be courteous
• sign your e-mail
• proof-read your e-mail
• don’t expect me to pre-grade your assignments
• don’t flag e-mails as urgent unless they are truly so
• be reasonable about when you expect me to respond to e-mail. I try to respond within one business day

138

Appendix E

139

Software Process Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge area and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that the information presented in this module will enhance the
learning experience of the students.

Module Description

This module presents an introduction software process. Software engineering process refers to the technical and
managerial activities that are performed during software acquisition, development, maintenance, and retirements. It
is concerned with meta-data: definition, implementation, assessment, measurement, management, change, and
improvement. (SWEBOK)

In SWEBOK, Software Engineering Process is divided into the sub-knowledge area topics show below. This module
will provide assistance for introducing the some topics at the CS1 and CS2 levels.

Process Implementation and Change
Process Infrastructure
Software Process Management Cycle
Models for Process Implementation and Change
Practical Considerations
Process Definition
Software Life Cycle Models CS1
Software Life Cycle Processes CS1
Notations for Process Definitions
Process Adaptation
Automation
Process Assessment
Process Assessment Models
Process Assessment Methods
Process and Product Measurement
Process Measurement
Software Products Measurement CS2
Quality of Measurement Results
Software Information Models
Process Measurement Techniques

Philosophy

Software process is an integral part of software development. It can assist in learning and teaching by providing:

• a set of steps for approaching software development
• a mechanism for accountability
• an engineering mindset of problem solving
• a factory of artifacts
• a reminder of best practices
• a communication tool

140

Outcomes

Through the material covered in this module, students should:

• Identify a problem, define solutions, and develop algorithms to attain the optimal solution.
• Recognize that software systems can be produced according to a systematic model.
• Explain alternative ways to organize software development efforts
• Describe the software engineering process using standard metrics.

Prerequisite Knowledge

The CS1 level of subject matter presented in this module requires no computer science prerequisite. CS1 is the
prerequisite for CS2 level.

Outline

3) CS1

d) Introduction
i) Software Engineering
ii) Software Process
iii) Software Process Helps
iv) A Software Engineering Process

e) A Problem Solving Approach
f) Use CS1 Activity 1

4) CS2
Recap the CS1 introduction

a) Software Metrics
b) Vocabulary

i) Measure
ii) Measurement
iii) Metrics
iv) Indicator

d) Measurable Attributes of Software Engineering
e) Measuring Individual Performance - CS2 Activity

Annotated Outline

3) CS1

a) Introduction
i) Software Engineering

Applies a systematic, disciplined, quantifiable approach (or process) to the development, operation, and maintenance
of software.

ii) Software Process
The sequence of steps to develop or maintain software

iii) Software Processes Help
(1) Boost the probability of product quality
(2) Identify the principle activities of doing a job
(3) Separate routine from complex tasks
(4) Facilitate tracking and measuring performance

141

(5) Provide orderly mechanism for learning
(6) Establish corporate memory
(7) Create a defined baseline for improvement
(8) Put everyone on the same page

iv) A Software Engineering Process
(1) Define the function of the program
(2) Sketch out a design
(3) Pseudo code – not ready to write source code (a program), yet
(4) Discuss with all parties
(5) Modify
(6) Repeat
(7) After the design is agreed upon,

(a) Write the real program using a computer programming language
(b) Test – run the program with known data
(c) Modify – correct defects (errors)
(d) Repeat

b) A Problem Solving approach
A simple introduction to the process of software development is using a systematic approach to
problem solving.

i) Understand the problem.
Learn about the problem domain. If necessary, break a large task into multiple smaller tasks

ii) Analyze the problem requirements.
Specify input values (knowns) and required output values (unknowns). Include the units. Identify the
relevant formulae needed for computations and necessary constants values, e.g., gravity or pi.

iii) Work a hand example.
This will (1) identify the steps needed to solve the problem and (2) a set of input and resulting output
that can be used to test your software, later.

iv) Develop an algorithm to solve the problem.
Record the steps used to solve the hand example. If necessary, divide steps into multiple simpler steps
to provide a clear solution.

v) Implement the algorithm.
Now, it is time to write a computer program that follows the steps in the algorithm to solve the
problem. The statements in the algorithm can be used as comments as a guide for writing code in the
program.

vi) Test and verify the program solution.
Run the program correcting any errors that exists. Use the input values from the hand example to
verify that the solution is correct.

vii) Maintain and update the program.
This step is necessary when new requirements are added or there is a policy change that affects the
problem solution.

c) Use CS1 Activity 1 to demonstrate the problem solving approach. See the Activities section below. Note:
Activities 2 and 3 may be use later with the introduction of selection and repetition.

4) CS2

a) Recap the CS1 introduction
b) Software Metrics

i) A key element of any engineering process is measurement. Measures help to better understand the
attributes of a product and to assess its quality. Unlike other engineering disciples, software
engineering is not grounded in the basic quantitative laws of physics, like voltage, mass, velocity, or
temperature. What are the measurable attributes of software engineering work products?

ii) What are software engineering products? requirements and design models, source code, and test cases.
c) Vocabulary

i) In software engineering, measure, measurement, and metrics are often used interchangeably.

142

ii) A measure provides a quantitative indication of the extent, amount, dimension, capacity, or size of
some attribute of a product or process.

iii) Measurement is the act of determining a measure.
iv) Metric is a quantitative measure of the degree to which a system, component, or process possesses a

given attribute.
v) A software engineer collects measures and develops metrics so that indicators will be obtained. An

indicator is a metric or combination of metrics that provides insight into the software process, a
software project, or the product itself

d) Measurable attributes of software engineering
i) Lines of code (LOC) and LOC per hour are metrics for planning software development

(1) What are the measurable attribute of software engineering work products? We will look at source
code because students are familiar with this product. Source code has size. If we know the average
length of a program for solving a particular type problem and the average number of lines of code
we write in an hour, we can estimate how long it would take to produce this type product.

ii) Number and type of mistakes (defects) are also metrics to track improvement
(1) If we always wrote code with no defects, our production level of producing code would be pretty

good. But, we all make mistakes. Finding and correcting them take time and lowers the actual
number of LOC per hour.

e) Measuring Individual Performance - CS2 Activity
i) How can we improve our LOC per hour? The obvious way is to make fewer mistakes. To help us

reduce the number of mistakes, we need to note the types of mistakes that we make and try to not make
them. One way to approach reducing the number of defects in our code is to keep a log of the
defects…and how many. See the tables below for the defect log and instructions.

ii) Completing an assignment is not (usually) done in one seating without interruptions. A time log will
help you record how much time is spent in each stage. See the tables below for the time log and
instructions.

iii) Maintaining a record of LOC, time and defects, we can monitor improvement.

Teaching Resources

Process Worksheet
Defect Recording Log
Time Recording Log

Teaching Techniques

CS1 activities

• Lecture with slides
• Blank worksheet for students to complete individually or as a group to solve another familiar problem, like

“find the distance between two points.” Lead a class discussion the solutions using a document camera with
students providing the needed information. Students can be asked to lead the discussion or report on their
solution.

CS2 activity
• Provide a section of code with defects and lead the students in finding and typing the defects.

Tool Support

Process Dashboard – used with PSP

• Not User Friendly
• Describes Psp Scripts

143

• Does Calculations For You
• Better than using PSP manually
•

Eclipse Process Framework
• OpenUP process (also XP and scrum)
• Describes steps to follow
• Can attach tools to framework
• More sufficient than dashboard
• Helps enact process
• Guides you through process correctly
• Umbrella tool that walk you through a process

Glossary

Measure – provides a quantitative indication of the extent, amount, dimension, capacity, or size of some attribute of
a product or process.

Measurement – the act of determining a measure.

Metric – a quantitative measure of the degree to which a system, component, or process possesses a given attribute.

Indicator – a metric or combination of metrics that provides insight into the software process, a software project, or
the product itself

Software life cycle – a typical sequence of phased activities that represent the various stages of engineering through
which software system passes

Software process –
 the network of object states and transitional events that represent the production of a software system in a form
suitable for computational encoding and processing

Bibliography

HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for Software Engineering. Addison-
Wesley, Boston.

LE BLANC, R. and SOBEL, S. (chairs) et al. 2004. Software Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering. IEEE Computer Society Press and ACM Press (23
August 2004). Available at http://www.computer.org/
portal/cms_docs_ieeecs/ieeecs/education/cc2001/SE2004Volume.pdf

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to the
software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press, Los
Alamitos, CA, (2004). Available at http://www.swebok.org.

144

Suggested Course Activities

CS1 Activity 1
First assignment is solving a problem that involves an equation. Introducing the assignment should include a class
discussion of the steps necessary to solve this problem.

To introduce a systematic problem solving strategy, talk through solving an example using the steps. Because solving
for the roots of a quadratic equation is familiar, it is a good example to use at multiple stages during the course.
These multiple stages present a sequence of activities that allows students to revisit and modify existing code and
observe how changes in requirements affect the code.

No software engineering tools other than the IDE will be introduced for this series of activities.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c

Work a hand example.
Results from hand calculations:
 input output
 a b c x1 x2
 1 3 -4 -4 1
 2 -4 -3 -0.58 2.58

Develop an algorithm.
Get coefficients: a, b, c.
Compute roots: x1, x2
Display results

Implement the algorithm.
This is where the program is written. The algorithm can be used comments in the program write the computer
program statements.
Using the IDE that the students use, type the program.

NOTES:
1st time, use assignment statement for input
2nd time, use user input
Later, functions can be used for each step
These is an example of design alternatives.

Test and verify the program solution.
This can be an opportunity to discuss types of errors by including errors in the program.
Compile program and correct errors.
Run program using input from hand example.
If results are not correct, review set step in algorithm and program.

Maintain and update the program.
There will probably not be a required response for this step.

145

Process Worksheet

Understand the problem.

Analyze the problem requirements.

Work a hand example.
Show work and results from hand calculations:

Develop an algorithm.

Implement the algorithm.
This is where the program is written. Start by copying and pasting the algorithm into the IDE editor window and
marking the statements as comments. These comments will be a guide for writing the computer program statements.

Test and verify the program solution.
This is where students will run the program to determine if it solves the problem correctly.

Maintain and update the program.
No required response for this step.

146

CS1 Activity 2

To introduce Selection, reuse the CS1 Activity 1 example and include the restrictions on the coefficients to find the
real roots of a quadratic equation.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c
Restrictions on input:
a != 0
D >= 0

Work a hand example.
Results from hand calculations:
 input output
 a b c x1 x2
 1 3 -4 -4 1
 0 7 6 not a quad eq
 1 3 3 -sqrt, not a real root
NOTE: Sample input includes values to test restrictions

Develop an algorithm.
Get coefficients: a, b, c.
If a != 0, compute D
If D >= 0, compute roots: x1, x2
 display results

Implement the algorithm.
This is where the program is written. Start by copying and pasting the algorithm into the IDE editor window and
marking the statements as comments. These comments will be a guide for writing the computer program statements.

NOTES:
Use user input to prepare students for input validation loops, next time.
Later, functions can be used for each step

Test and verify the program solution.
This can be an opportunity to discuss types of errors by including errors in the program.
Compile program and correct errors.
Run program using input from hand example.
If results are not correct, review set step in algorithm and program.

Maintain and update the program.
There will probably not be a required response for this step.

147

CS1 Activity 3

To introduce Repetition, reuse the CS1 Activity 2 and include the restrictions on the coefficients to find the real roots
of a quadratic equation. Ask user to re-enter invalid coefficients values.

Understand the problem.
Find the real roots of a quadratic equation: ax2 + bx + c = 0

Analyze the problem requirements.
3 coefficients: a, b, c
Restrictions on input:
a != 0
D >= 0

Work a hand example.
Results from hand calculations:
input output
a b c x1 x2
1 3 -4 -4 1
0 7 6 not a quad eq
1 3 3 [-sqrt]
NOTE: Sample input includes values to test restrictions

Develop an algorithm.
While a == 0, get a
Get coefficient b, c
Compute D
If D < 0,
 else need new a, b, c
Compute roots: x1, x2
Display results

Design alternatives can be introduced at this stage of this example.

After giving student the steps to solving the assignment problems for the first few assignments, ask them to write and
submit their own software development plan for the assignments.

148

CS2 Activity

After students have knowledge of problem solving, coding and types of errors, they can work on improving their
software development skills. They will record the errors and time spent making corrections and time spent
completing the assignment. Prior to this activity, students need to understand the types of errors: syntax, logic and,
runtime.

The goal of this activity is for student to reduce common errors by being more aware of them during the coding
process. Progress can be track during the semester.

The logs and instructions for using the logs used in this activity are an adaption of those found in HUMPHREY, W.
2000. “The Baseline Personal Process” in A Discipline for Software Engineering. Addison-Wesley, Boston.

DEFECT RECORDING LOG INSTRUCTIONS

Purpose This form holds the data on each defect as you find and correct it.
General Record in this log all defects found in review, compile, and test.

Record each defect separately and completely.
If you need additional space, use another copy of the form.

Column

No. Enter the defect number. For each program, this should be a sequential number starting with, for example,
1 or 001.

Date Enter the date when the defect was found.

Type Enter the defect type from the defect type list. Use your best judgment.

Fix defect If you injected this defect while fixing another defect, record the number of the previously improperly fixed
defect.

Fix time Enter you best judgment of the time you took to fix the defect, i.e., in seconds, minutes.

Description Write a brief description of the defect that is clear enough to later remind you about the error and help you
to remember why you made it.

TIME RECORDING LOG INSTRUCTIONS
Purpose This form is for recoding the time spent doing the project.
General Record all the time you spend on the project

Record the time in minutes.
Be as accurate as possible.
If you need additional space, use another copy of the form.

Column
Date Enter the date when the entry is made.
Start Time Enter the time when you start working on a task.
Stop Time Enter the time when you stop working on the task.

Interruption Record any interruption time that was not spent on the task and the reason for the interruption.
It you have several interruptions, enter their total time.

Work Time Enter the clock time you actually spent working on the task, less the interruption time.

Comments Enter reasons for interruptions and other comments that may remind you of any unusual circumstances
regarding this activity.

149

DEFECT RECORDING LOG*

Student ___________________________________ Total # defects _______ Start date___________

Class ________________ Assignment # ________ Total fix time _______ End date ___________

No. Date Fix
defect

Fix
Time Descriptions

* adaption of defect log found in HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for
Software Engineering. Addison-Wesley, Boston.

150

TIME RECORDING LOG*

Student ___________________________________ Total # time _______ Start date___________

Class ________________ Assignment # ________ End date ___________

Work time = Stop time – Start time – Interruption
Comments may be use explain interruptions

Date Start
Time

Stop
Time

Interr-
uption

Work
Time Comments

* adaption of time log found in HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for
Software Engineering. Addison-Wesley, Boston.

151

Software Testing Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge area and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that the information presented in this module will enhance the
learning experience of the students.

Module Description

Contained in this module is an introduction to software testing. IEEE's SWEBOK describes software testing as "an
activity performed for evaluating product quality, and for improving it, by identifying defects and problems," which
includes verifying the behavior of a program based on an appropriately selected set of test cases.

The SWEBOK divides Software Testing into the sub-knowledge area topics listed below. This module will provide
assistance for introducing Software Testing concepts at the CS1 and CS2 levels.

Software Testing Fundamentals *
 Testing-Related Terminology
 Key issues
 Relationships of Testing to Other Activities
Test Levels *
 The Target of the Test CS1
 Objectives of Testing
Test Techniques
 Based on the Tester's Intuition and Experience CS1 and CS2
 Specification-based CS2
 Code-based CS1
 Fault-based
 Usage-based
 Based on Nature of Application
 Selecting and Combining Techniques CS1 and CS2
Test Related Measures
 Evaluation of the Program Under Test
 Evaluation of the Test Performed CS1 and CS2
Test Process
 Practical Considerations
 Test Activities CS1 and CS2

* Various concepts in the starred subsections are introduced at both the CS1 and CS2 levels.

Philosophy

Software testing is vital to the development of reliable software. Many students will test their programs in some
fashion prior to submission but will often not have the a sufficient background in software testing to find even major
faults in their final product. Teaching software testing techniques starting at the CS1 level not only increases the
quality of their software but offers the following unique pedagogical benefits:

• Increases student confidence in proving the functionality of their software
• Decreases frustration and time spent on debugging when students test individual components early on

152

• Reinforces software design principles with a focus on program testability
• Increases student comprehension of their programs by focusing on problem solving
• Familiarity with software testing gives students an edge in later classes and upon entering the workforce

Outcomes

The material covered in this module is designed to provide students with the ability to:

• Select suitable inputs in order to verify the behavior of a program.
• Identify failures early and prevent common software faults
• Design and develop software with a focus on quality and testability.
• Demonstrate knowledge in the fundamentals of testing and its role in software development.

Prerequisite Knowledge

The CS1 material in this module requires no computer science knowledge prior to entering CS1. The CS2 level
material assumes familiarity with the concepts introduced during CS1. Because the suggested course activities are
designed for varying levels of experience, each activity includes specific prerequisite knowledge requirements.

Outline

1) Early CS1
 a) Introduction
 i.) What is software testing?
 ii) Why is software testing important?
 iii) Components of software testing
 b) Calculating expected outputs
 c) Fault log
 d) CS1 Activity 1: Calculating expected outputs and fault logging

2) Advanced CS1
 a) Levels of testing
 b) Unit testing
 c) Input selection: boundary conditions
 d) CS1 Activity 2: Unit testing and input selection

3) Early CS2
 a) Review: Unit testing and input selection
 b) Automated Unit Tests
 c) Test-Driven Development
 d) CS2 Activity 1A: TDD

4) Advanced CS2
 a) Review: Automated Unit Tests
 b) Non-functional requirements
 c) Regression testing
 d) CS2 Activity 1B

153

Annotated Outline

1) Early CS1
 a) Introduction
 i.) What is software testing?

Testing evaluates and improves the quality and reliability of software by detecting and preventing
software defects.

 ii) Why is software testing important?
Testing helps to ensure software quality and reliability. Testing saves time and money; faults that
remain undetected until after the release of software are difficult to fix and can result in loss of
business, law suits, and worse. Familiarity with software testing is an essential skill for software
developers. Entire careers are centered around software testing and quality assurance.

 iii) When should testing be performed?
Testing should play a part in software development at the earliest stages of planning. It is important to
design programs for testability and to identify potential faults as early as possible. Testing should be
carried out as the software is being developed, after the software is complete, and again when the
software is released.

 b) Calculating expected outputs
An essential component of testing your software is to choose a meaningful set of input values. For each
input, the expected output should be calculated and compared against the actual output of your program.
Test inputs and expected outputs can be determined before coding a piece of software begins.

c) Fault log
When the actual output of your program does not match the expected output, the underlying fault will need
to be corrected. A fault log keeps track of the failures that occurred during testing and the solution that
was implemented to correct the underlying fault. Not only will a fault log track changes to the program, but
it can be used as a reference when similar failures occur.

 c) CS1 Activity 1: Calculating expected outputs and fault logging

2) Advanced CS1
 a) Levels of testing

Programs should be designed in individual components that can be tested before they are integrated into
the software system. Unit tests test individual components, integration tests combine components and test
them as a group, and system tests determine whether the system as a whole is functioning as expected.

 b) Unit testing
One of the benefits of dividing a program into components (classes and methods) is that each component
can be tested individually and can be tested before the other components are complete. Unit testing is the
process of testing each component individually before the completed program is tested.

 c) Input selection: boundary conditions
One method of determining effective test inputs is to determine boundary conditions. Boundary conditions
are extreme values or those near defined boundary conditions in the program's specification.

 d) CS1 Activity 2: Unit testing and input selection

3) Early CS2
 a) Review: Unit testing and input selection
 b) Automated Unit Tests

Many frameworks will compare expected outputs to a program to actual outputs and alert the programmer
if a failure has occurred. The unit tests can be coded before the component is complete and then run to
make sure the component follows the specifications. Automated unit tests can also be run again when a
change is made to ensure that the software is still functioning as expected.

 c) Test-Driven Development
During TDD, a programmer first creates unit tests that verify a component based on the specifications. The
unit tests initially fail, as the component's functionality has not yet been implemented. The component is

154

then coded and run with the tests until all tests pass. The programmer can then refactor (improve) the
component's code and rerun the unit tests to ensure that no bugs have been injected.

 d) CS2 Activity 1A: TDD

4) Advanced CS2
 a) Review: Automated Unit Tests
 b) Non-functional requirements

Functional requirements are used to determine whether a program performs a desired behavior. Non-
functional requirements specify criteria used to judge whether the operation was performed in an
acceptable manner. For example, a functional requirement may specify that a webpage loads 10 pictures
from a photo album. A non-functional requirement may specify that the action must be performed in less
than 3 seconds. If the website took 10 minutes to load 10 pictures, it has passed the functional requirement
but has not passed the non-functional requirement.

 c) Regression testing
Once components in a system are complete, they may need to be changed to satisfy a new requirement,
improve the functionality of the code, etc. Tests will then need to be run again to ensure that no faults have
been added to the code during the change.

 d) CS2 Activity 1B

Teaching Resources

Worksheets for all assignments

Teaching Techniques

CS1 Activity 1

• Lecture with slides
• Students fill out expected values on a worksheet
• Once worksheet 1 is complete and checked for correctness, students run tests on the program that they receive

and log which inputs failed. Students then determine the faults associated with each failure and make
necessary changes to the program to correct those faults. The assignment can be completed in the lab or on
their own.

CS1 Activity 2

• Lecture with slides
• In-class discussion of selection criteria and perceived advantages of unit testing

o Brainstorm: Introduce the project design to students.
 Have the class determine possible boundary conditions for each unit test and write them down on their

worksheet.
• Students then begin coding and test their code according to the conditions discussed in class. After students

submit their assignment for either manual grading or automated grading, they are scored based on how well
their program performs under various conditions.

CS2 Activity 1A
• Lecture with slides - automated unit testing & TDD
• Students create unit tests given inputs and expected outputs
• Once unit tests are complete and checked for correctness, students begin coding assignment. Once all unit tests

pass, students must refactor their code and run tests to verify correctness. Assignments are graded based on
performance in instructor-designed JUnit tests and code style.

155

CS2 Activity 1B
• Lecture with slides - Non-functional requirements and regression testing
• Students follow assignment to modify their code from Activity 1A. Existing unit tests are run to verify

correctness. Assignments are graded based on performance in instructor-designed JUnit tests and code style.

Tool Support

All IDEs listed are completely free of charge.

jGRASP

• User friendly IDE for compiling, running, and debugging code in multiple languages
• Interactions pane where students can experiment with code and test their programs without creating a separate

executable program (Java)
• Easy to configure integration with junit, Checkstyle, and Web-CAT
• Includes dynamic visualizations and animations of data structures
• Detailed tutorials in both text and video format

BlueJ

• User friendly IDE for compiling, running, and debugging code in multiple languages
• Focused on object orientation
• Tutorials for students to set up and use features
• Integration with junit
• API for creating custom plug-ins

Eclipse

• Widely-used professional IDE, but may be difficult to use for students not experienced in programming
• Includes integration with junit, Checkstyle, Web-CAT, and much more
• Vast library of custom plug-ins

Glossary

Failure –
 a situation in which a piece of software's behavior does not match its expected behavior / specifications
Fault –
 the cause of a failure in a piece of software. Also called a defect or a bug
Functional requirements –
 the desired behaviors of a system given a set of inputs
Input selection –
 narrowing down a potentially infinite set of test inputs to a subset that is effective during testing
Non-functional requirements –
 requirements for the performance of a system that are independent of specified behaviors
Testability –
 a property of a software's design that allows the software to be tested early and easily
Validation –
 ensuring that a piece of software matches what was required by the customer
Verification –
 ensuring that a piece of software performs as expected in its functional specification

156

Bibliography

ADAMS, J. "Test-driven data structures: revitalizing CS2", Proceedings of the 40th ACM technical symposium on

Computer science education - SIGCSE '09, Chattanooga, TN, USA New York, New York, USA, ACM Press,
pp. 143, 2009.

JANZEN, D. and SAIEDIAN, H. Test-Driven Learning: Intrinsic Integration of Testing into the CS/SE curriculum.

Technical Symposium on Computer Science Education (SIGCSE’06), March, 2006, Houston, TX.

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to the

software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press, Los
Alamitos, CA, (2004). Available at http://www.swebok.org.

157

Suggested Course Activities

CS1 Activity 1

Prerequisites: Students at this level are assumed to have performed basic mathematical calculations and used if
statements. The example uses a Java program in a main method, but the activity can be adapted for any
programming language. If students are familiar with object orientation, the program can be modified
accordingly.

Students must also be given a program to test that calculates BMI that includes several faults, one of which is
not identified by the tests. When students find the fault that did not cause a failure during testing, they can
answer the last question.

CS1 Activity 2

Prerequisites: Students should know how to create classes and methods / functions.

After students complete the worksheet either in class or on their own, they can create their program and run the
unit tests. Students can be asked whether any of their unit tests failed or whether any perceived benefits of
calculating boundary values before the program was created. Students can also be asked to write a program that
will use the methods to convert a dollar amount to change and prints the information to the user (at which point
system testing could be carried out).

CS2 Activity 1A & 1B

Prerequisites: Students should know how to set up JUnit tests.

158

CS 1 Activity 1: Worksheet

During this activity you will be given a program that you will verify through testing. If any failures occur during
testing, you will need to find and repair the faults (errors) in the program.

Program description: A program has been designed for a gym that will calculate a user's BMI. Users enter their
weight in pounds and their height in feet and inches. All numbers must be entered as integer values, or the program
will generate a run-time error. If the user enters a value less than or equal to 0 for weight or feet or a value less than 0
for inches, the program will print an error message and end execution. The user's BMI is then calculated according to
the following equation.

The program then displays the user's BMI rounded to 2 decimals and weight categorization as follows:

• BMI is 18.4 or below: Underweight
• BMI from 18.5 to 24.9: Optimal weight
• BMI is 30 or above: Overweight

Fill out the expected output of the program in the following test log (use a calculator for calculations). You can write
"Error Message" for all invalid input errors. Do not fill out the 'passed' column, the actual output, or the fault
description until you receive the program. Input includes the weight and height in feet and inches of the user. For
example, someone who is 5'7" 125 lbs would be in the format 125 5 7 on the worksheet.

Input * Expected Output Actual Output Passed? Fix Description

0 5 7 Error Message

125 0 4 Error Message

169 4 4 BMI = 44
Overweight

140 6 0

145 5 -1

120 5 8

160 5 2

*Input includes the weight and height in feet and inches of the user. For example, someone who is 5'7" 125 lbs would
be in the format 125 5 7 on the worksheet.

After you are finished testing: Look carefully at the code after you are finished testing. Are there any logic errors
that still exist? If so, what would you do in the future to improve the tests that are selected?

159

CS 1 Activity 2

Part 1: You will be creating unit tests for a class called DollarsToQuarters with three methods. The constructor to
the class should take a dollar amount as a double. The method's functionality is described below. Specify possible
boundary conditions for each method:

• maxQuarters: Returns an integer representing the maximum number of quarters in the dollar amount
specified in the constructor. Returns -1 if the dollar amount is less than 0.
Boundary values:

• centsLeft: Returns an integer representing the amount of change left after quarters are taken out. Returns -1
if the dollar amount is less than 0.
Boundary values:

• toString: Returns a String containing the dollar amount. The dollar amount should always be displayed with
2 decimal places and a dollar sign (example: $2.00 or $2.34). The method should return a String "Invalid
dollar amount" if the dollar amount is less than 0.
Boundary values:

Part 2: Based on your boundary values above, write unit test inputs for each method. Below you can specify the
dollar input and the output of the specified method under that condition:

maxQuarters

Input ($) Expected Output

centsLeft

Input ($) Expected Output

toString

Input ($) Expected Output

160

CS2 Activity 1A

Create a class called SimpleList that will store descriptions of inventory items. The list must be implemented using
an Array that starts with an initial capacity of 5 (size 0) and expands by 3 when necessary. The constructor should
take no parameters. The class should include the following methods:

• add(String item): adds the element to the end of the list. Returns true if the element was added (elements
with value null should not be added to the list and should result in a false value).

• size(): returns the size of the list as an integer value.
• get(int index): returns the element at the specified index as a String. Returns null if the index is invalid.
• remove(int index): removes the element at the specified index from the list and returns true if the index was

valid (in bounds of the list) and false otherwise.

Write the unit tests in JUnit prior to implementing the methods below as specified. After you have written a test set,
implement the method and run the tests. Assume that list is a variable referring to an instance of SimpleList (can be
set up in the Before method).

Method(s) Setup / Input(s) Expected output Actual output calculation
add Add the element "Item" to a list. true list.add("Item")
add Add the element null to a list. false list.add(null)
size No elements should be added to list 0 list.size()
size

Add 12 valid elements to the list 12 list.size()

get Add 8 valid elements to the list:
"1", "2", "3", "4", "5", "6", "7", "8"

get(-1)
get(0)
get(7)
get(8)

null
"1"
"8"
null

remove

Add 6 valid elements to the list:
"aa", "bb", "cc", "dd", "ee", "ff"

remove(-1)
remove(6)
remove(5)
remove(0)

false
false
true
true

remove

Add 6 valid elements to the list:
"aa", "bb", "cc", "dd", "ee", "ff"
Remove elements at indices 0, 2, and 5

size()
get(0)
get(1)
get(2)
get(3)

3
"bb"
"dd"
"ee"
null

Write 2 more tests sets that you create yourself. You may test the functionality of any of the methods. Describe your
tests below.

Method(s) Setup / Input(s) Expected output Actual output calculation

161

CS2 Activity 1B

Storing descriptions of inventory items using your SimpleList class finds that the system is running too slowly,
especially when adding a large number of items to the list. First, SimpleList will need to be modified to use a doubly
linked implementation rather than an array (your final class should NOT include any array references). In addition,
the add method must add directly to the end of the list rather than iterating through all nodes.

Because your functional requirements of SimpleList have not changed, you can use the same JUnit tests that you
used in Activity 1A after you have implemented all changes. Your program will be graded based on whether all of
your tests pass and whether the non-functional requirements above have been satisfied.

Questions:

What is the difference between functional requirements and non-functional requirements? Describe a functional
requirement and non-functional requirement presented in the activity.

Suppose that the SimpleList needs an additional method that prints out the entire list to standard out. Is this an
example of an additional non-functional or functional requirement? Explain your answer.

Describe the concept of regression testing and how it applied to this project.

162

Software Construction Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge area and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that the information presented in this module will enhance the
learning experience of the student.

Module Description

This module presents an introduction to software construction. Software construction refers to “the detailed creation
of working, meaningful software through a combination of coding, verification, unit testing, integration testing, and
debugging.” The Software Construction module is strongly related to Software Design and Software Testing. This is
because the software construction process itself involves significant software design and test activity. It also uses the
output of design and provides one of the inputs to testing. The relationship between design, construction, and testing
(if any) depends on the software life cycle processes that are used in a project. (SWEBOK)

In SWEBOK, Software Construction is divided into the sub-knowledge area topics shown below. This module will
provide assistance for introduction some topics at the CS1 and CS2 levels.

Software Construction Fundamentals
Minimizing Complexity CS1
Anticipating Change CS2
Construction for Verification
Standards in Construction CS1

Managing Construction
Construction Models
Construction Planning CS2
Construction Measurement

Practical Considerations
Construction Design
Construction Languages
Coding CS1
Construction Testing
Reuse CS2
Construction Quality
Integration

Philosophy

Corporate standards, quality assurance procedures, and software methods determine the path that software
development takes. Developing skills to construct software in an explainable and standardised format is important.
Software construction is one of the major concepts in software development in both industry and education.

Software construction can help students learn by providing them with:

1. Standards and best practices to follow during development
2. A plan of action to follow during development
3. Tools to characterize the software developed
4. Tools to aid in debugging and testing

163

Outcomes

After covering the material in this module, students should be able to:

1. Follow a standard for source code readability
2. Create construction artifacts such that complexity is minimized
3. Plan for changes to software artifacts
4. Create and explain the purpose of reusable code

Prerequisite Knowledge

For this module, we assume that there are no prerequisites for CS1 and that CS1 is the only prerequisite for CS2.

Outline

1. CS1
a. Introduction

i. Software Engineering
ii. Software Construction

iii. Reasons for Software Construction
b. Minimizing Complexity while Coding
c. Standards in the Classroom
d. Use on-going standard with peer reviews

2. CS2
a. Re-cap introduction from CS1
b. Continue on-going standard from CS1
c. Code Reuse
d. Anticipating Changes to Software
e. Modified Code Activity
f. Software construction involves team work
g. Working in a Team Environment Activity

Annotated Outline

1. CS1
a. Introduction

i. Software Engineering - applies a systematic, disciplined, quantifiable approach (or process)
to the development, operation, and maintenance of software.

ii. Software Construction – “the detailed creation of working, meaningful software through a
combination of coding, verification, unit testing, integration testing, and debugging"
(SWEBOK)

iii. Reasons for Software Construction
1. Provides standards for software development
2. Provides methods to plan ahead and smooth the software process (construction for

verification, anticipating change, integration, testing, etc.)
3. Provides a series of steps to execute during construction
4. Increases readability and understanding of software by minimizing complexity

b. Minimizing Complexity while Coding

164

i. Limits of human memory - As code becomes increasingly complex, the ability of an
individual to grasp it becomes more difficult. There are widely accepted techniques used
in order to reduce this complexity.

ii. Readability - One benefit of minimizing complexity is making the source code easier to
read. This includes a wide range of topics such as tabbing blocks of code, variable
naming conventions, and the proper use of functions.

iii. Code Modules - Grouping related lines of source code increases readability in a file.
Putting several lines into a function or grouping lines into input, calculation, and output
provides a system for easily reading through source code.

c. Standards in the Classroom
i. Standards provide a common system to perform some activity. These can be process

standards, coding standards, testing standards, etc.
ii. External standards - Some standards are written and agreed upon by general public. These

standards must be followed if you hope to integrate with real-world systems.
iii. Internal standards - Some standards are written to improve the work-flow process internally

and agreed upon typically by a particular work group. These standards are followed to
provide a common consensus on when and where to do what.

iv. Example standards - Visiting a website such as a university website will provide students
with a better visual example of external and internal standards. The website has to
conform to standards such as HTTP while having its own internal user interface standard
to make navigation of the website easier.

d. CS1 Activity 1. Use on-going standard with peer reviews.

2. CS2
a. Re-cap introduction from CS1
b. Continue on-going standard from CS1
c. Code Reuse

i. Efficiency - Code reuse allows for a developer to save time by simply using source code
that's already been verified.

ii. Common Standard - Code reuse also allows for developers to conform to a specified
interface, whether it's a function, object, or something else.

d. Anticipating Changes to Software
i. External changes - Sometimes external changes will affect how you develop software. A

change to a standard or perhaps customer requirements. If software has been developed
to anticipate these changes, then adapting to the change will be easier.

ii. Compartmentalization - By isolating components of a system into smaller categories
(functions or objects typically), you can minimize the impact of a change. This allows a
developer to separate the parts of the system more likely to change from those that are
more stable and create common interfaces between them.

e. CS2 Activity 1. Modified Code Activity
f. Software construction involves team work

i. Communication
ii. Documentation

g. CS2Activity 2. Working in a Team Environment

Teaching Resources

 CS1 Activity 1
 CS2 Activity 1
Example Peer Review Document

165

Teaching Techniques

Set 1 CS1 activities:

• Lecture to convey ideas
• Weekly additions to on-going standard of skills related to normal course content

Set 1 CS2 activities:
• Lecture to convey ideas
• Simple example of code reuse - prior to CS2 activity 1
• Simple example of anticipating a code change - prior to CS2 activity 1

Tool Support

Eclipse

 Cross Platform
 Supports Various programming languages
 Open Source
 UML tool available
 http://www.eclipse.org

Netbeans
 Cross Platforms
 UML tool available
 Software Bundles

o Web and Java EE
o Ruby
o Java ME
o PHP
o Java FX
o Complete

 http://www.netbeans.org
JGrasp

 Cross Platform
 Open Source
 Runs on platform of Java Virtual Machine
 http://www.jgrasp.org

BlueJ
 Cross Platform
 Open Source
 Multilingual
 http://bluej.org

Greenfoot
 Cross Platform
 Open Source
 Combination of Framework/Development Environment

o Great for Gaming
o Can be used with Microsoft Kinect Sensor

 http://www.greenfoot.org
DrJava

 Cross Platform
 Open Source
 http://www.drjava.org

Microsoft Visio
 Uses vector graphics to create diagrams

166

 Available in three editions
 Costs (available free through MSDN Alliance)
 http://office.microsoft.com/en-us/visio/

Glossary

IDE – Integrated Development Environment, a software application that provides useful tools to computer

programmers during software development usually including a text editor, compiler, debugger, and run-time
environment

Artifact – any item created from following a software process; documentation, source code, diagrams, etc.

Standard – a set of guidelines used when creating an artifact such that it follows a well-known pattern

Peer review – the process of having a fellow co-worker or student analyze your work in order to detect flaws or point

out odd things within an artifact

Reuse – the use of existing software, or software knowledge, to build new software

Standards – a description of how procedures are to be described, how objects and activities are named, and how

processes are to be executed.

Bibliography

 BAUER, C, et al. The student view on online peer review. In Proceedings of the 14th annual ACM SIGCSE

conference on Innovation and technology in computer science education, ITiCSE ’09, page 26-30, New York,
NY, USA, 2009. ACM.

TREMBLAY, G, et al. 2007. Introducing students to professional software construction: a “software construction

and maintenance” course and its maintenance corpus. In Proceedings of the 12th annual SIGCSE conference on
Innovation and technology in computer science education, ITiCSE ’07, pages 176-180, New York, NT, USA,
2007. ACM.

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to the

software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press, Los
Alamitos, CA, (2004). Available at http://www.swebok.org.

167

Suggested Course Activities

CS1 Activity 1 - On-going Standard with Peer Reviews

Description. In software engineering, there are plenty of typical readability standards in place keep code uniform and
understandable. One of the difficulties with standards is that they can be a lot of information to take in at once.
Instead of hitting students with one large standard, this approach provides an evolving standard that can go
concurrently with normal coursework and uses minimal amount of class time.

After an assignment is turned in, the students can then perform peer reviews (BAUER, 2009) on another student's
work while basing their comments on this standard. These reviews can be performed in person or anonymously over
some other medium and they can be performed with any language or code-based homework assignment. A simple
peer review sample is located at the end of this document.

Concepts Introduced.

1. Construction Standards
2. Coding Concepts
3. Minimizing Complexity
4. Peer Review

Example Standard Items. This section is intended to provide some example standard items that can be easily
introduced in an ever-growing document that reflects the current content in the course. The format of this document
provided to the students is up to the instructor. Presentation of the document can be done briefly during class time as
a ``do this, not that" portion of class. The current state of this document should be available to students as a
reference point for applying standards to assignments. The following list contains examples of some standards that
can be applied in a CS1 course. Others can be added as the students acquire new skills.

1. Constant Naming Conventions - for constant values use all capitalized letters, `_', and/or numerical values.
Examples include DEGREES_TO_RADIANS, HOURS_IN_DAY, FEET_TO_METERS.

2. Variable Naming Convention - start all variables with a lowercase letter, use camelbacking or `_' to separate
words in a variable name. Examples include myName, my_name, tempOutside.

3. Comments - provide comments for every section of code, especially functions, objects, and the beginning of
programs

4. Separate Sections - whenever possible, separate similar lines of code into sections such as input, calculations,
and output.

5. Tabbing Conventions - offset blocks of code by an indenting, this applies to loops and conditionals in
particular. For nested loops or conditionals, indent multiple times to make the document more readable.

Sample Peer Review Document. Instructions: Review each of the following items from the class standard. Rank
your peer's compliance with the standard each of those items on a scale from 1-5 where 1 is non-compliant and 5 is
completely compliant. Also comment on places where your peer is non-compliant with line numbers and examples.

1. Constant Naming Conventions:

2. Variable Naming Conventions:

3. Comments Throughout:

4. Separation of Sections of Code:

5. Tabbing Conventions:

168

 CS2 Activity 1 - Modifying Code Activity.

Description. This activity is based on two major ideas: reusing code and anticipating changes that may need to be
made to a program. To accomplish this task, there will need to be at least two assignments, one where some task is
accomplished and then a second one where that task has to be reused or modified because of some new requirement
(Tremblay, 2007). Alternatively, you could try to make a three assignment group with the original assignment, a
reuse assignment, and a change assignment.

Concept Introduced.

1. Code Reuse
2. Anticipating Changes

Example of Code Reuse. This is based on the assumption that the CS2 course is primarily focused on data structures.
The assignment itself is relatively simply and based on the concept of queues and priority queues. This could
theoretically be done over the course one or two weeks and concurrently with the queue lectures. Consider the
following for a first assignment given to the students to demonstrate code reuse:

Assignment 1: A business is hoping to provide better automation to its customers by implementing a new line
system that will help allow customers to check in and have a seat instead of physically waiting in line. Create a
wrapper class for a queue structure called StoreLine that will have the following functions:

1. void addCustomer(string name) - puts a customer at the end of the line
2. string lookAtNext() - returns the name of the next customer in line
3. string getNextInLine() - returns the name of the next customer in line and removes that customer from the line

Include in the program a simple interface to add a customer, look at who is next in line, and get the next person in
line.

Assignment 2: Another business, after seeing what you did in assignment 1, has contacted you about making a
custom line system where certain customers are paying for priority service. They have three levels of priority: 1, 2,
and 3, where 1 is the highest priority customer. Using your unmodified StoreLine class, create another class called
PriorityLine that includes the following functions:

1. void addCustomerToLine(string name, int lineNumber) - puts a customer at the end of the line with the given
priority

2. string lookAtNext() - returns the customer of highest priority who is currently at the front of his/her line
3. string getNextInLine() - returns the customer of highest priority who is currently at the front of his/her line and

removes that customer from the line

CS2 Activity 2 – Working in a Team Environment

Working in a team environment would more closely resemble real software development. Working on design
documents and with a project management plan that the student did not developed would give the student an accurate
appreciation of the real world.

In this activity, there is a single project with two sets of requirements. The challenge is for the students to first
describe the changes to be done and then to execute them according to the plan. The students are given a completed
project for which the requirements have changed. They are instructed to determine the changes needed to meet the
new requirements. To emphasize the importance of communicating with future developers of the same software
project, it is recommended that process of modifying the problem solution be done by multiple teams of students.

Each team would accomplish a phase in the software development process. For instance, team A produces the design
document; team B enhances the document and produces the project plan; team C completes the quality assurance and
test documents; team D programs; and team E tests.

169

Software Design Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge area and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that this information presented in this module will enhance the
learning experience of the student.

Module Description

This module presents an introduction into software design. Software design refers to both (1) the process of defining
the architecture, components, interfaces, and other characteristics of a system or component and (2) the result of
[that] process. Software design must describe the software architecture – that is, how software is decomposed and
organized into components – and the interfaces between those components. It must also describe the components at
a level of detail that enable their construction (SWEBOK).

Software design is invaluable to the software engineering process as it allows to software engineer to describe in
detail how components will function and interact with one another before any actual code is written. The artifacts
produced by this process will provide a blueprint which will allow the software engineer to create a high quality end
product.

The SWEBOK divides the software design process into the sub-knowledge area topics shown below. This module
will provide assistance in introducing some of these topics into typical CS1 and CS2 level courses.

 Software Design Fundamentals

General Design Concepts CS1, CS2
The Context of Software Design CS1, CS2
The Software Design Process
Enabling Techniques

 Key Issues in Software Design
Concurrency
Control and Handling of Events CS1
Distribution of Components
Error and Exception Handling and Fault Tolerance CS1, CS2
Interaction and Presentation CS1, CS2
Data Persistence CS1

 Software Structure and Architecture
Architectural Structure and Viewpoints
Architectural Styles (Macroarchitectural Patterns)
Design Patterns (Microarchitectural Patterns) CS2
Families of Programs and Frameworks CS2

 Software Design Quality Analysis and Evaluation
Quality Attributes
Quality Analysis and Evaluation Techniques
Measures

 Software Design Notation
Structural Descriptions CS1
Behavior Descriptions (Dynamic View) CS1, CS2

 Software Design Strategies and Methods
General Strategies CS1
Function-Oriented (Structured) Design CS1

170

Object-Oriented Design CS1, CS2
Data-Structure Centered Design
Component-Based Design
Other Methods

Philosophy

Software design is a necessary part of the software engineering process. By gaining a firm grasp on basic software
design principles, the software engineering student will gain a better understanding of the overall software
engineering process in addition to being able to produce software artifacts of a higher overall quality. The earlier
that good software design principles are incorporated into a pupil’s software engineering education the sooner they
can begin to gain valuable tools and techniques that will benefit them for the rest of their professional careers. These
include but are not limited to:

1. A better understanding of how the components of a software system interact with each other
2. The ability to finitely model abstract systems
3. A communication platform for discussing design alternatives and trade-offs
4. The ability to determine what a software system must accomplish
5. The knowledge and use of practical design patterns
6. The ability to design higher quality code
7. The understanding of code reuse and how to incorporate it into their software systems
8. Basic tools to help determine the quality of a software artifact
9. Common issues that reoccur in software development

Outcomes

Through covering the material included in this module, a CS1 or CS2 student should be able to:

1. Break a given problem statement into a set of components which can accomplish the given goal
2. Determine the interfaces between these software components
3. Produce a physical artifact which displays these components and their interface
4. Be able to effectively communicate the design of a given software system
5. Analysis the strengths and weaknesses of a given design and be able to discuss these attributes with peers
6. Begin to recognize recurrent issues in software design and solutions that apply

Prerequisite Knowledge

While software design principles can begin to be incorporated into the earliest stages of a software engineering
education this module assumes that the CS1 student has a very basic understanding of an object oriented
programming language. In addition, it is assumed that the CS2 student has taken a CS1 course in which good
programming practices were enforced and where the basics of software design were covered at a very high level.

Outline

1) CS1
a. Introduction

i. What is software engineering?
ii. What is software design?

iii. Why is design important?
iv. Can we determine the quality of a design?

b. Introduction to Simple Design Tools

171

i. Pen and paper
ii. Mind map

c. Demonstration of Simple Design Artifacts (Structural)
d. Application

2) CS2

a. Recap of CS1 Knowledge
b. Behavioral Modeling

i. What is it?
ii. How does this differ from structural modeling?

iii. Why is this important?
c. Introduction to Design Patterns

i. What are design patterns?
ii. What value do they have?

iii. Simple design patterns
 Nested if statements
 Recursion
 Factory

d. Design Quality Analysis Introduction
i. Verification

ii. Validation
iii. Analysis of tradeoffs

e. Application

Annotated Outline

1) CS1
This outline is designed to be used for teaching a lesson incorporating elements of software design in the
last half of a typical CS1 course. Before approaching this topic the student should have a good grasp on
programming paradigm being used in the course.

a. Introduction

i. What is software engineering?
 Software engineering applies a systematic, disciplined, quantifiable approach (or

process) to the development, operation, and maintenance of software.
ii. What is software design?

 Software design is the both (1) the process of taking a problem and then
decomposing it into components and (2) the architecture consisting of interfaces
and components as well as the artifacts produced by this process.

 In determining the place of software design in the software engineering lifecycle,
software design should take place before any code is written but should not stop
once coding begins.

 Software design differs from both requirements analysis and software construction.
 Types of design (from SWEBOK):

o Software architectural design – top-level structure and organization and
identifying the various components.

o Software detailed design – describing each component sufficiently to allow for
its construction.

iii. Why is design important?
 Software engineering is not the only field in which design is used. Software

engineering can easily be compared to the design and building of a house or the
writing of an English research paper. If more detail/explanation is needed

172

consider the case of a model home that will be used to create an entire
neighborhood of slightly different homes.

 Design allows you to:
o practically apply the principles of abstraction by building more and more

complicated systems based on simpler ones
o decompose a system into its various components and ascribe functionality

to each
o identify areas in which the practice of code reuse can be applied
o ensure that a system is complete and will provide the functions that have

been identified in requirements analysis
o effectively communicate a design with coworkers or peers

iv. Can we determine the quality of a design?
 Discuss “ilities” and “nesses” at a high level

o Maintainability – how easy it to perform maintenance on the given
software system once it has been implemented?

o Portability – how easily can the system be moved from one platform to
another? How easily can the components of the system be reused in a
completely separate system?

o Testability – how easy will it be to test the software system once it is
implemented?

o Correctness – is the design correct? Does it meet all of the requirements
that were defined in the requirements analysis phase of the engineering
process?

o Robustness – how robust is the code where errors and failures are
concerned?

 Design reviews are a valuable tool that can be used to determine the quality of your
design. Design reviews should occur though out the entire design process and
should be done by someone qualified to complete the review. Findings from the
review can then be integrated into the rest of the design process.

b. Introduction to Simple Design Tools
i. Pen and paper

 Extremely simple and watered down version of software design
 Good for mapping out ideas of how a software system will function before

beginning to write any code
 At the CS1 level, this may be all the design that is really needed to complete many

of the problems students will be given.
 Good practice to get into, even on simply problems. It is a lot easier to change a

design on paper than it is once it has been coded.
ii. Free Mind

 Free software product which allows the students to produce designs at a very high
level.

 Good for group presentations and for discussing topics in lab.
 More information can be found in the tool support section of this module.

c. Demonstration of Simple Design Artifacts (Structural)
At this point, the students should understand the basic principles of software design.
Using a lab assignment that they have completed previously in the semester, start with the
project requirements and demonstrate how the design process would have worked for this
project. At this time, you can also introduce any standard notation or diagrams that you
would like the students to use throughout the rest of the course. Focus on the structural
aspects of design as these will be easiest for students to understand at this level. Basic
behavioral design notations may be added as well.

d. Application

173

To reinforce what has just been taught in lecture, present the students with a normal lab
assignment but incorporate aspects of software design into the assignment as well. See
the CS1 suggested activity included at the end of this module for an example of how this
can be accomplished.

2) CS2
This module is designed to be used during the first half of a typical CS2 course. For students to fully
understand the topics covered in this module a basic understanding of software design is required. In it is
assumed that a student has taken a prior CS1 course and that the topic of recursion has already been
covered in detail.

a. Recap of CS1 Knowledge

See outline above. Refresh the key topics such as what software design actually is as well
why software design is necessary and how you can judge the quality of software design.
This can most easily be accomplished using a classroom discussion if the class size allow
for it.

b. Behavioral Modeling
i. What is behavioral modeling?

 Focuses on the interaction of software components with one another as well as the
outside world

 It presents a dynamic view of software – one that allow change over time
 Some common artifacts are data flow diagrams, decision tables, flow charts, and

sequence diagrams.
ii. How does this differ from structural modeling?

 Structural modeling is static where as behavioral modeling is dynamic
 Structural modeling is concerned with the overall structure of a software system

where as behavioral modeling is concerned with how the components defined in
the structural model will interact with one another.

 Different artifacts are produced and compared to structural modeling due to the
different nature of the information being modeled.

iii. Why is this important?
All software systems have both a structure and a behavior. If the software did not
behave in some way, it would not be able to accomplish any work for the user and
would be useless. Being able to understand and design the behavior of a piece of
software is a critical component in the software engineering process.

c. Introduction to Design Patterns
i. What are design patterns?

A design pattern is a reusable strategy to meet the needs of some common problem
that arises repeatedly in software engineering. It is not code or even pseudocode.
Instead, it is a template which can be applied in any situation to solve a given
problem.

ii. What value do they have?
 By studying design patterns and having a working knowledge of them many

problems encountered when designing software can be dealt with easily and
efficiently.

 Design patterns make it easier to communicate the idea of what you are trying to
accomplish a given software design

 It is easier to understand and analyze the trade offs of various design patterns as
opposed to a “roll you own” approach.

iii. Simple design patterns
All of the following design patterns would be best explained by using a “toy”
problem that the class is familiar with. An excellent source of these would be
snippets from previous assignments that they have already completed in the current

174

CS2 course. This allows the code to be trivial to the student and allows them to focus
on the main point that you are trying to convey, what a design pattern is and how to
apply it.
 Nested if statements

The main purpose of introducing this design pattern is to show students that
they have already been using various design patterns even if they did not
realize it. Discuss the benefits and disadvantages of this pattern as well as
comparing it to other solutions to the same problem.

 Recursion
If the topic of recursion has yet to be covered in the CS2 curriculum, this
design pattern should be skipped or replaced with another pattern so that the
details of recursion do not take away from the discussion of the pattern
itself. If recursion has been covered, focus on this pattern as you did the
nested if pattern above. Show the students that they have already used
design patterns even though they were unaware of it. Discuss the cost and
pay offs of using recursion as opposed to a loop or a table. The classical
example of this would be a factorial function.

 Factory
This design pattern was chosen for its simplicity as well as the value it adds
to a software system. The factory design pattern is an object-oriented
design pattern which concerns itself with the creation of new objects. The
factory design pattern uses a concrete creator class which inherits from a
creator parent class. This concrete creator can then be used to create an
object. More information about the factory design pattern as well as other
design patterns can be found in the reference section of this module.

d. Design Quality Analysis Introduction
i. Verification

 The process of evaluating software to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase
[IEEE-STD-610]

 Checking to see if the software actually works
ii. Validation

 The process of evaluating software during or at the end of the development process
to determine whether it satisfies specified requirements [IEEE-STD-610]

 Checking to see if the software works correctly, that it meets the original project
requirements

iii. Analysis of tradeoffs
 Considering different solutions to a given problem
 What makes one solution better than another
 Things to consider

a. Time efficiency
b. Space efficiency
c. Code reuse
d. Modularity
e. Etc.

e. Application
To reinforce what has just been taught in lecture, present the students with a normal lab
assignment but incorporate aspects of software design into the assignment as well. See the
CS2 suggested activity included at the end of this module for an example of how this can be
accomplished.

Teaching Resources

175

Blank CS1 Project Assignment Worksheet
Blank CS2 Project Assignment Worksheet

Teaching Techniques

CS1

 Introductory lecture using the annotated outline included above
 In-class discussion of basic design concepts to gauge students understanding as well as any areas that might

need to be covered again
 Have students break into groups of two. Assign a simple problem and have students individually sketch a

structural design based on the notation covered in lecture. Have students exchange sketches and critique
each other’s work

 Review a solution to the design problem with the class
 Assign a programming assignment which also focuses on design in the form of the assignment included at the

end of this module.

CS2

 Introductory lecture using the annotated outline included above
 In-class discussion of basic design concepts to gauge students understanding as well as any areas that might

need to be covered again
 Assign a programming assignment which also focuses on design in the form of the assignment included at the

end of this module.
 Once the project has been submitted have individual or groups of students present the design portion of their

project to the class. They should include a description of the design, an analysis of one or more of the
tradeoffs they looked at, a description of the design pattern they researched, and any issues they ran into
during implementation of their design.

 Allow other students to ask questions of the group about their design to give them practice on communicating
about design principles.

Tool Support

Pen and Paper

While it may seem that this option need not even be mentioned, simply having students quickly sketch out
their design on paper before implementing it can add great value to a classroom assignment. In addition,
these sketches can be easily turned in to an instructor for grading. There is no software that the novice
software engineering student must learn; and there is no additional cost to either the department or the
student. This also enforces good software engineering habits by showing the student that design can be
performed for even the simplest project by using the tools on hand. By asking students to perform some
type of design on every project in a very nonintrusive way, students will begin to form the good habit of
thinking from a design perspective.

Free Mind

This is a free software product that allows students to create mind maps of a programming problem during
the software design phase. The interface and options provided in this software package are very intuitive
and can be picked up quickly. In addition, the options provided are limited so students will not be
overwhelmed. While this software product is simple, it provides all the tools needed to produce effective
design documentation at the CS1 or CS2 level. More information about Free Mind as well as downloading
the software can be found at the following url: http://freemind.sourceforge.net/wiki/ index.php/Main_Page

jGRASP

176

jGRASP is an integrated development environment with visualizations for improving software
comprehensibility. While this IDE features many nice visualizations that can be used to enhance the
educational experience in CS1 and CS2 courses the one that applies most directly to software design is the
automated UML class diagram production which the IDE can accomplish. By demoing instructional code
in jGRASP instructors can easily show students an UML representation of the software being discussed.
jGRASP, developed by Auburn University, is a free product and more information as well as the download
can be found at the following url:
http://www.jgrasp.org/

Glossary

Software Design – both the process of defining the architecture, components, interfaces, and other characteristics of
a system or component and the result of [that] process

Software Architectural Design – design of top-level structure and organization and identifying the various
components of a software system

Software Detailed Design – describing each component of a software system sufficiently to allow for its construction

Structural Modeling – static model of a software system concerned with the overall structure of the system itself

Behavioral Modeling – dynamic model of a software system concerned with how components of a software system
interact with one another and the outside world

Maintainability – the measure of how easy it to perform maintenance on the given software system once it has been
implemented

Portability – the measure of how easily a software system be moved from one platform to another or how easily the
components of the system be reused in a completely separate system

Testability – the measure of how easy will it be to test the software system during implementation

Correctness – the measure of how well a software system’s design meets the requirements defined during the
requirements analysis phase of the software engineering life cycle

Robustness – the measure of how well a software system can stand up to faults and failures

Design Pattern – a reusable strategy that meets the needs of some common problem that arises repeatedly in software
engineering

Verification – the process of evaluating software to determine whether the products of a given development phase
satisfy the conditions imposed at the start of that phase

Validation – the process of evaluating software during or at the end of the development process to determine whether
it satisfies specified requirements

Bibliography

ALLISON, C and HARRISON, N. 2007. Teaching Design Patterns: A Matter of Principle. Journal of Computing

Sciences in Colleges. 23, 1 (October 2007), 206-211.

177

GAMMA, E., HELM, R., JOHNSON, R., and VLISSIDES, J. 1995. Design Patterns Elements of Reusable Object-
Oriented Software, Indianapolis, Indiana: Addison-Wesley.

GESTWICKI, P. and SUN, F. 2008. Teaching Design Patterns Through Computer Game Development. Journal on

Educational Resources in Computing (JERIC). 8, 1 (March 2008), 1-22. [doi>10.1145/1348713.1348715]

HORSTMANN, C. 2010. Big Java 4th Edition, Hoboken, New Jersey: John Wiley and Sons Inc.

IEEE Std 610.12-1990 (R2002), IEEE Standard Glossary of Software Engineering Terminology, IEEE.

LEWIS, J. and LOFTUS, W. 2009. Java Software Solutions Foundations of Program Design 6th Edition. New

York, New York: Pearson Education Inc.

LEWIS, T., ROSSON, M., and PÉREZ-QUIÑONES, M. 2004. What do the experts say?: teaching introductory

design from an expert's perspective. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education. Norfolk, Virginia, USA, 296-300. [doi>10.1145/971300.971405]

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. Guide to the Software

Engineering Body of Knowledge Project (SWEBOK). IEEE Computer Society Press, Los Alamitos, CA.

Available at http://www.swebok.org.

WICK, M. 2005. Teaching design patterns in CS1: a closed laboratory sequence based on the game of life. In
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education. St. Louis, Missouri,
USA, 487-491. [doi>10.1145/1047344.1047499]

178

Suggested Course Activities

CS1 Activity

NAME: _________________________________

DATE: _________________________________

SECTION NUMBER:_____________________

The first three fields of this document set up the assignment for the student. The amount of documentation presented
in these fields should be determined by the compatancey level of the students in the class. For simplicity sake a
simple test explanation is included here. In an actually assignment these fields could include pseudo code, uml
diagrams, pictorial descriptions, sample input and output, method headers, or even source code provided to get the
project started. The project provided should be appropriate during the last half of a typical CS1 course.

PROJECT DESCRIPTION:
Create a program which can store information on various staff members for an company and compute a payroll
report from this information. Staff members can either be volunteer workers or employees with employees being
either hourly or salary workers. Each staff member should have an associated name, social security number, and
phone number. In addition salary employees should have a bi-weekly salary while hourly employees have an hourly
salary as well as the number of hours worked for the current pay period.

USER INPUT:
All input and output should be done from the command line. A user should be able to input a new employee or
update any of the stored information for a current employee. A simple text menu should be presented to the user with
the following options: input new employee, update current employee, display payroll information, exit program. A
detailed explanation of what input is expected should be presented for each option that is selected.

REQUIRED OUTPUT:
 The only output from this program should be a table of payroll information. This information should be displayed
in the following order staff name, social security number, phone number, current pay period salary. On exiting the
program all staff information will be lost.

IN LAB SECTION:

SOFTWARE DESIGN:
In the space provided below draw a simple diagram using the notation discussed in lecture describing the design of
your software system.

This section can be completed using the Free Mind Software described in the tool section above.

179

SOFTWARE DESIGN EVALUATION:

Swap papers with a neighbor and evaluate each other’s design based on the characteristics listed below:

Correctness:

Maintainability:

Testability:

Robustness:

EVALUATOR’S NAME:__________________________________

The level of detail provided in the comments above should be at a high level but this will force students to start
thinking with a design mind set and allow them to see other’s designs as well as practice critical thinking skills in
evaluating these designs.

SOFTWARE DESIGN EVALUATION – DESIGNER COMMENTS
In the space provided below describe what you think about your evaluator’s comments above. We the points made
valid? Will your design change in any way due to these comments? Where there any issues you completely
overlooked?

180

AT HOME SECTION:

FINAL SOFTWARE DESIGN:
Incorporating any changes mention above draw a new design diagram for this assignment in the space provided
below (if your design did not change explain why):

IMPLEMENTATION:
Implement your design in code. When complete answer the following question: Did your design change any during
implementation? If so why?

TURN IN:
Turn in all files required to compile and run your program as well as a readme file describing how to compile and
run you program. In addition turn in this worksheet in the lab session immediately following the turn in date.

A blank copy of this worksheet follows.

COURSE # - ASSIGNMENT #
Due Date

181

NAME: _________________________________

DATE: _________________________________

SECTION NUMBER:_____________________

PROJECT DESCRIPTION:

USER INPUT:

REQUIRED OUTPUT:

IN LAB SECTION:

SOFTWARE DESIGN:
In the space provided below draw a simple diagram using the notation discussed in lecture describing the design of
your software system.

182

SOFTWARE DESIGN EVALUATION:
Swap papers with a neighbor and evaluate each other’s design based on the characteristics listed below:

Correctness:

Maintainability:

Testability:

Robustness:

EVALUATOR’S NAME:__________________________________

SOFTWARE DESIGN EVALUATION – DESIGNER COMMENTS
In the space provided below describe what you think about your evaluator’s comments above. We the points made
valid? Will your design change in any way due to these comments? Where there any issues you completely
overlooked?

183

AT HOME SECTION:

FINAL SOFTWARE DESIGN:
Incorporating any changes mention above draw a new design diagram for this assignment in the space provided
below (if your design did not change explain why):

IMPLEMENTATION:
Implement your design in code. When complete answer the following question: Did your design change any during
implementation? If so why?

TURN IN:
Turn in all files required to compile and run your program as well as a readme file describing how to compile and
run you program. In addition turn in this worksheet in the lab session immediately following the turn in date.

184

CS2 Activity

NAME: _________________________________

DATE: _________________________________

SECTION NUMBER: _____________________

This assignment is set up much like the CS1 assignment to present a consistent format to the students and allow
them to understand what is being asked of them quickly. The project mentioned below should be appropriate for a
mid-semester CS2 assignment. Again any level of detail required can be provided in the sections below but for
simplicity sake in this document only a simple text description is provided.

PROJECT DESCRIPTION:
Implement a program which is able to solve a maze which is input as a text file. The program should find a solution
for the maze. How the program achieves this goal is up to you and the program only has to find one solution to the
maze, not necessarily the best solution. If no solution to the maze can be found the program should output a message
conveying this to the user.

PROGRAM INPUT:
This program should receive input from the user in the form of a text file named input.txt. The first line of the
program should be the size of the maze to be solved in the format width x height. For example if a maze of width 5
and height 7 is to be solved the first line should be 5 x 7. The next lines of the text file should contain the maze
itself. Only the following symbols are allowed to be in these lines:
S – the start of the maze
F – the finish of the maze
* – a wall (impassable) section of the maze
= – a possible path through the maze
The program should not be allowed the exit the area of the maze input in the first line and the edges of the maze
should be considered as walls. For example the following would be a valid input.txt file:

5 x 7
S * - - -
- * - - -
- * * * -
- * F - -
- * * - -
- - - - -
* * * - -

REQUIRED OUTPUT:
 If there is a path through the maze the program should output the solved maze with the path marked by the character
$. If there is no path through the maze the program should output a message convey this information to the user. For
example one valid solution to the sample input file would be:

S * - - -
$ * - - -
$ * * * -
$ * F $ -
$ * * $ -
$ $ $ $ -
* * * - -

185

SOFTWARE DESIGN:
In the space provided below draw out in detail you design strategy for this programming assignment using the
notation described in class (be sure to include cover both structural design and behavioral design):

SOFTWARE DESIGN DISCUSSION:
Answer the following questions:

1) Did you use any of the design patterns mentioned in lecture in your design? If so, which one(s) and how were
they applied? If not, do you think your design would benefit from any of these design patterns?

2) How can you validate your design before you begin implementing you code? Describe how you accomplished
this for this assignment.

3) How can you verify your design before you begin implementing you code? Describe how you accomplished this
for this assignment.

4) Analyze at least two different tradeoffs that you considered during designing your software system. Why did you
choose the option that you did? What were the other alternatives?

186

IMPLEMENTATION:
Implement your design in code. When complete answer the following question: Did your design change any during
implementation? If so why?

TURN IN:
Turn in all files required to compile and run your program as well as a readme file describing how to compile and
run you program. In addition turn in this worksheet in the lab session immediately following the turn in date.

POST PROJECT PRESENTATION:
Prepare a 15 minute presentation on you project. In this presentation include the following: your initial design, a
discussion of any design patterns used, a brief description of how you verified and validated your software system,
any problems you encountered when implementing your design, a final evaluation of the quality of your design. Be
prepared to hold a 5 minute Q&A session with the class after your presentation.

If time does not permit for each student to give a presentation this can be done in teams or as a written report
turned in with the project.

A blank copy of this worksheet follows.

187

COURSE # - ASSIGNMENT #

Due Date

NAME: _________________________________

DATE: _________________________________

SECTION NUMBER: _____________________

PROJECT DESCRIPTION:

PROGRAM INPUT:

REQUIRED OUTPUT:

SOFTWARE DESIGN:
In the space provided below draw out in detail you design strategy for this programming assignment using the
notation described in class (be sure to include cover both structural design and behavioral design):

188

SOFTWARE DESIGN DISCUSSION:
Answer the following questions:

1) Did you use any of the design patterns mentioned in lecture in your design? If so, which one(s) and how were
they applied? If not, do you think your design would benefit from any of these design patterns?

2) How can you validate your design before you begin implementing you code? Describe how you accomplished
this for this assignment.

3) How can you verify your design before you begin implementing you code? Describe how you accomplished this
for this assignment.

4) Analyze at least two different tradeoffs that you considered during designing your software system. Why did you
choose the option that you did? What were the other alternatives?

IMPLEMENTATION:
Implement your design in code. When complete answer the following question: Did your design change any during
implementation? If so why?

TURN IN:
Turn in all files required to compile and run your program as well as a readme file describing how to compile and
run you program. In addition turn in this worksheet in the lab session immediately following the turn in date.

POST PROJECT PRESENTATION:
Prepare a 15 minute presentation on you project. In this presentation include the following: your initial design, a
discussion of any design patterns used, a brief description of how you verified and validated your software system,
any problems you encountered when implementing your design, a final evaluation of the quality of your design. Be
prepared to hold a 5 minute Q&A session with the class after your presentation.

189

Software Quality Curriculum Module

Preface

The purpose of these teaching modules is to demonstrate how software engineering knowledge areas and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that the information presented in this module will enhance the
learning experience of the students.

Module Description

This module provides an introduction to software quality early in the computer science curriculum. Software quality
is interleaved throughout many of the knowledge areas and is applicable throughout the software engineering life
cycle, therefore, it makes it easily to introduce students to quality techniques in CS1 and CS2. The techniques
discussed in the software quality knowledge area is more static than dynamic, which means that it does not require
the execution of the software being evaluated (SWEBOK).

In the SWEBOK, Software quality is divided into three subareas and several topics. This module will demonstrate
how these topics can be incorporating into a CS1 and/or CS2 curriculum.

Software Quality Fundamentals
Software Engineering Culture and Ethics CS1, CS2
Value and Cost of Quality
Models and Quality Characteristics CS1, CS2
Quality Improvement CS1, CS2

Software Quality Management Processes
Software Quality Assurance CS2
Verification and Validation CS2
Review and Audits CS2

Practical Considerations
Application Quality Requirements
Defect Characterization CS2
Software Quality Management Techniques
Software Quality Measurement

Philosophy

Software Quality is define as “the degree to which a set of inherent characteristics fulfills requirements,” according
to ISO9001-00 (SWEBOK). Therefore, the use of software quality techniques throughout the software development
life cycle is crucial to the success of a software project. It is important for software quality to be integrated into the
CS1 and CS2 curriculum to assist in learning and teaching by providing the following:

• A basic understanding of software quality early in a student’s learning computer science development
• A method for assuring requirement conformance
• The role of ethics in achieving software quality
• An attitude towards value from a customer perspective
• A set of quality standards and guidelines for software quality
• Exposure to good programming practices

190

Outcomes

Though the material covered in this module, students should:

• Define software quality
• Understand the difference between Software Quality and Software Testing
• Possess an positive attitude related to quality
• Identify not only functional requirements, but quality requirements as well
• Explain the verification as well as validation processes
• Firm understanding of the process of error/defect detection, removal, and prevention

Prerequisite Knowledge

The CS1 level of subject matter presented in this module requires no computer science prerequisite. Student must be
familiar with basic word processing software. CS1 is the prerequisite for CS2.

Outline

1. CS 1
a. Introduction
b. Software Development Life Cycle
c. Software Quality (Part 1)

i. Quality Defined
ii. Benefits of Software Quality

iii. Software Quality Vocabulary
iv. Error and defect detection, removal and prevention

d. A Quality approach to software development
e. CS 1 Activity 1 Use the worksheet provided.

2. CS 2 – A more in-depth over of software quality
a. Recap of CS1 topics
b. Software Quality (Part 2)

i. Software Quality Vocabulary
ii. Notions of Software Quality

c. CS 2 Activity 1: Identify quality requirements for a project using the software quality notions above.
i. Quality Standards and Models

a. CS 2 Activity 2: Conduct a walkthrough of software development product project with the following
objectives in mind:

i. Find anomalies
ii. Improve the software product

iii. Consider alternative implementations
iv. Evaluate conformance to standards and specifications

Annotated Outline

1) CS 1

a) Software engineering applies a systematic, disciplined, quantifiable approach (or process) to the development,
operation, and maintenance of software.

b) Software Quality
i) Measure of how the characteristic of products fulfill the requirements
ii) Relevant to all phases of the software development life cycle, i.e., from identifying the problem and

requirements through developing a solution to testing and acceptance
iii) Software functional quality reflects how well it conforms to a given design based on functional

requirements or specifications.

http://en.wikipedia.org/wiki/Functional_requirements
http://en.wikipedia.org/wiki/Functional_requirements

191

iv) Software structural quality refers to how it meets non-functional requirements .
c) Error and defect detection, removal and prevention
d) Error, Defect, and Bug are often used interchangeably by developers, but have very different meanings. See

below:
i) Error: A mistake in the system under test; usually but not always a coding mistake on the part of the

developer.
ii) Defect: Nonconformance to requirements or functional / program specification
iii) Defect Characterizations

(1) Error: “A difference...between a computed result and the correct result”
(2) Fault: “An incorrect step, process, or data definition in a computer program”
(3) Failure: “The [incorrect] result of a fault”
(4) Mistake: “A human action that produces an incorrect result”

iv) Bug: A fault in a program which causes the program to perform in an unintended or unanticipated
manner.

e) CS1 Activities 1 and 2.

2) CS 2
a) Recap of CS1 topics
b) Software Development Products

i) Abstract and difficult to define how to measure quality
ii) CS2 Activity 1.

c) Non-functional requirements of Software Quality
i) Correctness
ii) Reliability
iii) Robustness
iv) Maintainability
v) Adaptability
vi) Testability
vii) Reusability
viii) Performance
ix) CS2 Activity 5.

d) Verification and Validation (V&V)
i) Determines whether or not the development products resulting conform to the requirements, and whether

or not the final software product fulfills the intended purpose and meets the user requirements
(1) Verification: Is the product is built correctly?
(2) Validation: Is the right product built and does it meet the intended purpose?

ii) CS2 Activity1a.
e) Walkthrough

i) An informal review of a software product.
ii) CS2 Activity 4.

Teaching Resources

Requirements Worksheet
Coding styles

Teaching Techniques

• Lecture with slides.
• Use document camera to mark errors found by students and discussion points.
• Provide a section of code with defects and lead the students in finding and typing the defects. This can be

code created by the instructor or anonymous code from a previous assignment.
• Activities maybe completed

http://en.wikipedia.org/wiki/Non-functional_requirements

192

o In class by individual students or small groups with full class discussion of findings
o As homework

• Provide blank worksheet for students to complete individually or as a group.
• Pair students for walkthrough

Tool Support

Below is a list of tools that can be used within a CS1 and or CS2 to demonstrate software techniques.
1) Automated Testing Tools

a) Eclipse Test and Performance Tools Platform (TPTP)
(1) TPTP addresses the entire test and performance life cycle, from early testing to production

application monitoring, including test editing and execution, monitoring, tracing and profiling, and
log analysis capabilities

ii) http://www.eclipse.org/tptp/
b) Jelly – Functional Testing on NetBeans platform

(1) The NetBeans Platform's extension to Jemmy is named Jelly. It provides a set of operators that are
tailored to UI components used specifically in the NetBeans Platform, such
as TopComponentOperator

ii) http://wiki.netbeans.org/JellyTools
2) Bug Tracking

a) Mantis (http://www.mantisbt.org/)
3) A mix

a) XQual Studio (XStudio)
i) A 100% Free graphical and modular test management application that handles the complete life-cycle of

your QA/testing projects from end to end: users, requirements, specifications, development projects
(scrum oriented), SUTs, tests, testplans

ii) Using a MySQL database as principal storage, XStudio allows you to schedule or run directly fully-
automated or manual tests. Because XStudio can be used with any kind of tests (C/C++, Java, C#,
Python, Perl, XUnit, VBScript, JavaScript or any proprietary systems such as QTP, AutoIt, Selenium,
VisualStudio, TestComplete, Sahi, Ranorex, Squish, TestPartner, JMeter etc.), anyone from any kind of
industry can take advantage of it

(a) http://www.xqual.com/products/xstudio.html
(b) Java Launcher already provided with download

Glossary

Quality Assurance – planned or systematic actions necessary to provide adequate confidence that a product or

service is of the type and quality needed and expected by the customer.

Product – any artifact which is the output of any process used to build the final software product

Final software and system performance
Entire system requirements specification
Software requirements specification for a software component of a system
Design module, code, test documentation, or reports produced
Error - a mistake in the system under test; usually but not always a coding mistake on the part of the
developer.
Defect - nonconformance to requirements or functional / program specification
Defect Characterizations

Bug – a fault in a program which causes the program to perform in an unintended or unanticipated manner.

Error – a mistake in the system under test; usually but not always a coding mistake on the part of the developer.

193

Defect – nonconformance to requirements or functional / program specification

Bug – a fault in a program which causes the program to perform in an unintended or unanticipated manner.

Functional vs. non-functional requirements –

Software development life cycle – a sequence of phased activities that represent the various stages of engineering

through which software development passes
Requirement analysis
Architecture design
Plan
Detailed design
Construct
Review
Refactor
Testing
Post mortem

Verification – process of determining whether or not the products of a given phase of the software development

cycle meets the implementation steps and can be traced to the incoming objectives established during the
previous phase.

Validation – process of evaluating software at the end of the software development process to ensure compliance

with software requirements.

Walkthrough – review of requirements, designs or code characterized by the author of the material under review

guiding the progression of the review.

Bibliography

HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for Software Engineering. Addison-

Wesley, Boston.

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee, 2004. Guide to the

software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press,
Los Alamitos, CA, (2004). Available at http://www.swebok.org.

SOFTWARE QUALITY. http://en.wikipedia.org/wiki/Software_quality

http://www.swebok.org/
http://en.wikipedia.org/wiki/Software_quality

194

CS1 Activities

• Lecture with slides
• These activities can be done individually or in small groups. After a specified time, discuss the students’

finding as a class. The activities may also be a lab or homework assignment.
• The scenario and code could be anonymous submissions from a previous assignment.

• Activity 1: Display a set of code with issues. Instruct the students to record the syntax and style errors found.

Start with simple standards and add at the students’ skill level increases.
6. Constant Naming Conventions:
7. Variable Naming Conventions:
8. Comments Throughout:
9. Separation of Sections of Code:
10. Tabbing Conventions:

• Activity 2: Give the students a simple scenario. Instruct them to record the functional requirements. Discuss

the functional requirements as a class. Show the students a set of code for the scenario with requirement
issues. Instruct them to review and then discuss as a class.

CS2 Activities

• Lecture with slides

• Activity 1: discussion on the two topics:
o Elements that influence the other product quality

Start the discussion of what are the common factors that influence the other product quality:
materials, design, produce process, maintenance, usability…

o Elements that influence software product quality
Introduce some basic elements that will influence software product quality: the quality of software
engineers, design, process management, usability…

• Activity 2: Include the students in determining the students in how assignment products will be validated and
verified.

• Activity 3: Revisit CS1 Activity 2 with a more complex scenario. allow them to find additional functional

requirements as well as identify requirement based on the quality concepts discussed within class

• Activity 4: Walkthrough
Introduce by conducting a sample walkthrough of a piece of code. Allow the students to discuss and point
out changes they think that needs to be made. Also, try to come up with an alternative solution for the
problem and present that solution as well.

o Assignment: Give students a set of requirements and a piece of code that follows those requirements.
Allow them to identify some quality requirements while doing a walkthrough of the piece of code
they were given. If they think the piece of code is an optimal solution, they must give evidence
based upon the quality notions above and implement a less than optimal solution. If they think it is
not an optimal solution, they must implement an optimal solution and tell why the solution they
implement is better than the one they was given. (Group or individual assignment)

o Optional Assignment: Peer review of the requirements identified by the students. Instructors can
allow the students to work in groups of three or more to peer review each other work. (If you
choose groups, each group could switch code with another group)

195

• Activity 5: Present a relativity complex scenario. Ask the students to determine the functional and non-
functional requirements and record them on the Requirements Worksheet.

• The logs and instructions for using the logs used in this activity are an adaption of those found in
HUMPHREY, W. 2000. “The Baseline Personal Process” in A Discipline for Software Engineering.
Addison-Wesley, Boston.

REQUIREMENTS WORKSHEET INSTRUCTIONS

Purpose This form is for writing both functional and non-functional requirements.
General Record on this worksheet the requirements identified for the given assignment.

Describe each requirement with as must detail an necessary. One requirement may require
multiple worksheets.

Column

Project
name Enter the assignment name provided by the instructor

Project
objective Write a brief description of the project objectives

No. Assign each requirement a sequential number.

Section If the assignment is divided into sections, record the appropriate section.

Description Write a brief description of the problem or function that needs to be implemented.
Functional
or non-
functional

Note whether the requirement is functional or non-functional.

Indentified
by Record the person who identified the requirement. This could be you, a teammate, or the instructor.

196

REQUIREMENTS WORKSHEET*

Student ___________________________________ Class ________________ Assignment # ________

Project Name: ___

Project Objective:

No. Section Descriptions F or
NF ID By

* adaption of requirements worksheet found in HUMPHREY, W. 2000. “The Baseline Personal Process” in A
Discipline for Software Engineering. Addison-Wesley, Boston.

197

Software Requirements Engineering Curriculum Module

Preface
The purpose of these teaching modules is to demonstrate how software engineering knowledge areas and principles
can be imprinted into teaching computer science at the CS1 and CS2 levels. It is not intended to replace material and
topics that are necessary in the curricula. It is hoped that the information presented in this module will enhance the
learning experience of the student.

Module Description

This module attempts to identify concepts and skills associated with software requirements engineering that can be
introduced or encouraged at the CS1 and CS2 levels. Software requirements engineering is
“... concerned with the elicitation, analysis, specification, and validation of software requirements.” Software
requirements “express the needs and constraints placed on a software product that contribute to the solution of some
real-world problem.” (SWEBOK)

The SWEBOK breaks the knowledge area of Software Requirements Engineering into seven areas of study and then
further subdivides those into topics. Here is a tree of the topics by areas of study and an indication of whether or not
we will discuss how each can be introduced at the CS1 or CS2 levels.

● Software Requirements Fundamentals
○ Definition of a Software Requirement CS1
○ Product and Process Requirements CS1
○ Functional and Non-Functional Requirements CS1
○ Emergent Properties
○ Quantifiable Requirements CS1
○ System Requirements and Software Requirements

● Requirements Process
○ Process Models
○ Process Actors
○ Process Support and Management
○ Process Quality and Improvement

● Requirements Elicitation
○ Requirements Sources CS2
○ Elicitation Techniques CS2

● Requirements Analysis
○ Requirements Classification CS1
○ Conceptual Modeling
○ Architectural Design and Requirements Allocation
○ Requirements Negotiation

● Requirements Specification
○ System Definition Document
○ System Requirements Specification
○ Software Requirements Specification CS1, CS2

● Requirements Validation
○ Requirements Reviews CS1
○ Prototyping

198

○ Model Validation
○ Acceptance Tests CS1

● Practical Considerations
○ Iterative Nature of Requirements Process CS1
○ Change Management
○ Requirements Attributes
○ Requirements Tracking CS2
○ Measuring Requirements CS1

Philosophy
Software Requirements Engineering (and Requirements Engineering in general) is often over looked in curriculum's
and can lead to students failing to understand their importance when they reach the work force as well as to the
students forming bad habits like making assumptions and allowing requirements or feature creep. The SWEBOK
points out that projects that perform poor requirements engineering processes often result in poor software.
Teaching requirements engineering prepares the students not only for a more advanced class on requirements
engineering in the future, but also provides them with skills with which to handle requirements classification,
elicitation, analysis, and negotiation in everyday assignments. This can encourage the students to analyze their
assignment and to ask questions if things aren’t clear enough rather than making assumptions. Additionally, it can
help them identify what is being asked of them for the assignments and deliver the appropriate solution, which will
lead to less frustration and less wasted time on both the educator and students.

Requirements drive the software development effort. Being able to understand the difference from a well-defined
requirement and a poorly defined requirement is an important part of a software developer’s ability.

Outcomes

The goal of this module is to provide some methods for introducing requirements engineering concepts into the CS1
and CS2 level courses. Specifically they should:

● Learn to identify requirements and classify them
● Determine how each requirement can be quantified
● Evaluate requirements using acceptance tests and measurements
● Identify requirement sources and basic requirements elicitation techniques
● Be able to explain the difference between a functional and non-functional requirement
● Learn some of the techniques for eliciting requirements
● Be able to write an unambiguous requirement
● Understand how requirements trace through the whole software lifecycle

Prerequisite Knowledge

Software Requirements Engineering requires only basic knowledge of software context. Requirements Engineering
can be introduced with only previous life experiences. Therefore, these topics should be easily conveyed and
understood by the students with no prerequisite knowledge.

199

Outline

1) CS1

a) Introduction
i) Software Engineering
ii) Software requirement

b) It is important that the whole class is on the same page as to what a requirement is. Once a basic definition of
requirement is established, it is important to include and label requirements in future assignment
descriptions. Often the problem will be presented as prose and a bullet list of deliverables. From this the
problem statement and the requirements can be identified.
i) Requirement
ii) Software Requirement
iii) Product Requirement
iv) Process Requirement
v) Functional Requirement
vi) Non-Functional Requirement
vii) Quantifiable Requirement

c) Illustrating the difference between Product/Process and Functional/Non-Functional Requirements
i) Product and process requirements
ii) Functional and non-functional requirements
iii) Well-written software requirements specification (SRS)

d) Integrating Requirements Identification and Classification into the Curriculum

2) CS2
a) Continuation of CS1 Components
b) Identify Requirement Sources and Practice Requirements Elicitation

i) Elicitation Techniques
ii) Requirements Specification revisited

c) Requirements Traceability

Annotated Outline

1) CS1

a) Introduction
i) Software Engineering

Applies a systematic, disciplined, quantifiable approach (or process) to the development, operation, and
maintenance of software.

ii) Software requirement
(1) A need or constraint place on a software product that contributes to the solution of a real-world

problem. (SWEBOK)
(2) A challenge of identifying software requirements is to find, communicate, and remember what is

really needed, in the form that clearly communicates to the customer and development team
members.

b) It is important that the whole class is on the same page as to what a requirement is. Once a basic definition of
requirement is established, it is important to include and label requirements in future assignment
descriptions. Often the problem will be presented as prose and a bullet list of deliverables. From this the
problem statement and the requirements can be identified.
i) Requirement
ii) Software Requirement
iii) Product Requirement
iv) Process Requirement

200

v) Functional Requirement
vi) Non-Functional Requirement
vii) Quantifiable Requirement

c) Illustrating the difference between Product/Process and Functional/Non-Functional Requirements
i) Another easy distinction that can be explained in class and reinforced in the description of homework

assignments is the difference between product and process requirements. Simply dividing the
assignment requirements into product and process requirements will keep the students familiar with the
words and the distinction. This same process can be used to teach the concept of Functional vs. Non-
Functional requirements.

ii) Explain difference between functional and non-functional requirements
iii) Well-written software requirements specification (SRS) (DAVIS, 1993)

(1) Should say what, not how.
(2) Correct: does what the client wants, according to specification
(3) Verifiable: can determine whether requirements have been met
(4) Unambiguous: every requirement has only one interpretation
(5) Consistent: no internal conflicts
(6) Complete: has everything designers need to create the software
(7) Understandable: stakeholders understand enough to buy into it
(8) Modifiable: requirements change

iv) See CS1 – Activity 1
d) Integrating Requirements Identification and Classification into the Curriculum

(a) To help reinforce the differences in requirements and to help teach requirements classification you can
use a simple spreadsheet to list the requirements for an assignment.

(b) See CS1 – Activity 2

2) CS2
a) Continuation of CS1 Components

Rather than introduce tones of additional topics related to requirements engineering in CS2, it would be
better to continue to provide requirements engineering components used in CS1 in the CS2 assignments,
remembering to use the same vocabulary and layout in the assignment statements to provide a sense of
familiarity.

b) Identify Requirement Sources and Practice Requirements Elicitation
Now that the students have had more than a semester of experience reading and classifying requirements,
we can approach the topic of where requirements come from in real life and touch of the topic of
requirements elicitation.
i) Elicitation Techniques

(1) Interviews
(2) Scenarios
(3) Prototypes
(4) Facilitated meeting
(5) See CS2 – Activity 1.

ii) Requirements Specification
(1) Review the qualities of a well-written SRS
(2) Revisit CS1 – Activity 1 and 2 with a more complex problem.

c) Requirements Traceability
i) Trace requirement from source to design to implementation to test
ii) Ensure that all requirements have been implemented
iii) Used to analyze adverse effects of planned software changes
iv) CS2 Activity 3 – Create RTM for programming assignment
v) See CS2 – Activity 2.

201

Teaching Resources

Requirements classification table

Teaching Techniques

CS1 Activities

• Lecture with slides
• Provide programming assignments and projects with various format of software requirements: use cases,

textual shall statements, and user stories
• Provide SRS for final programming assignment / project

CS2 Activities
• Lecture with slides
• Provide students with SRS template for creating their own SRS
• Conduct a Requirements Elicitation meeting with individual students or teams
• Conduct a Requirements Review with individual students or teams
• Provide students with a RTM template

Tool Support

Spreadsheets

Using spreadsheets you can have “on paper” exercises to help the students get used to classifying and
analyzing requirements that are given for assignments.

Google Forms
You can create a Google “Form” for free in the google docs suite, which will allow you to ask questions of
the students, survey style, and have them put into a private spreadsheet. Here is an example one I have
setup:
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtd
Hc6MQ
The results can be viewed here:
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjN
zNtdHc&hl=en_US

Microsoft Word or any word processor – used to create SRS and RTM
Easy to use

Microsoft Visio – Create Use Case Diagrams
Easy to use
Freely available with academic msdn
Exposes students to UML diagrams
Can be used for design diagrams as well

Enterprise Architect
Higher learning curve compared to Visio and Word
Not freely available. Can get a free 30 day trial. Academic License available at a reduced price
Can be used for each phase of the software development lifecycle
Can document requirements in use cases or traditional shall statements

https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/viewform?formkey=dFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc6MQ
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US
https://spreadsheets.google.com/spreadsheet/ccc?key=0AtK1DJ1zjC_kdFU5WXl4cDFMN3FZSEd5eHVjNzNtdHc&hl=en_US

202

Glossary

Using consistent and correct vocabulary when you are describing the activities is very important. This introduces
students to the vocabulary related to requirements engineering. Terms applicable to the requirements engineering are
list in the Glossary as well as being further explanation given in this outline.

Requirement - is a singular documented need of what a particular product or service should be or perform.

Software Requirement - is a requirement specifically about a piece of software or the processes specific to that
software. A property which must be exhibited by software developed to solve a particular problem.

Product Requirement - describes properties of a system or product.

Process Requirement - describe activities performed by the developing organization. For instance, process
requirements could specify specific methodologies to be followed and constraints that the organization (or class)
must obey.

Functional Requirement - describe the functionality that the system behaviors; for example, formatting some text or
modulating a signal. They are sometimes known as capabilities.

Non-Functional Requirement - describe characteristics of the system that the user cannot affect or (immediately)
perceive. Nonfunctional requirements are sometimes known as quality requirements or “ilities”, i.e. reliability,
maintainability, portability, availability, etc.

Quantifiable Requirement - Requirements that are not vague and are verifiable or measurable.

Requirements Elicitation - is concerned with where software requirements come from and how the software engineer
can collect them.

Stakeholder - Anyone who has a stake in the project, typically: Users, Customers, Market Analysts, Regulators, and
Software Engineers.

Requirements Traceability Matrix – a document in the form of a table that correlates requirements, design,
implementation and test to determine the completeness of the relationship.

Use case – description of steps or actions between a user and a software system.

Bibliography

CHANG, C., DENNINGS, P., et al. 2001. Computing curricula 2001: Computer science. Final report (December 15,

2001). IEEE Computer Society Press and ACM Press (Dec. 15, 2001). Available at
http://www.acm.org/education/curric_vols/cc2001.pdf.

DAVIS, A. 1993. Software Requirements: Objects Functions and States, Prentice-Hall Inc.

TRIPP, L. (Chair), et,al, 2004. IEEE Computer Society Professional Practices Committee. Guide to the software

engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press, Los
Alamitos, CA, 2004. Available at http://www.swebok.org.

WIKI. 2011. Requirements. Wikipedia, The Free Encyclopedia. Wikimedia Foundation, Inc. Viewed on 21 July

2011.

http://en.wikipedia.org/wiki/Ilities
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.swebok.org/

203

Suggested Course Activities

CS1 – Activity 1.

Requirements Classification Exercise Example

Then have the students go through and label each requirement as Product or Process requirement and then as a
Functional or Non-Functional requirement. This assignment can be due a few days before the assignment is due and
has the side effect of ensuring the students have read the requirements in advance of the due day and have to
comprehend them enough to classify them. I think this will increase the clarification of the assignment in the minds
of the students and help fend off procrastination. See the Requirements classification example in the Suggested
Course Activities

In this exercise the students must look at the unclassified requirements of the assignment (or a list of requirements
supplied to use this as a quiz or test question) and classify them as product or process and as functional or non-
functional.

Below is example answer key to the exercise, the students would be given the requirements only and be asked to
enter process or product in the second column and functional or non-functional in the third column.

Assignment Requirement Product or Process? Functional or Non-Functional?

Your assignment should include
usage documentation, according to
the class standards.

Process Non-Functional

Your program must be written in
Python.

Product Non-Functional

Your program must print the
message `The number is zero.`, if the
input is zero.

Product Functional

In class, present a problem scenario using a document camera, presentation slide, handout, etc.
Lead a class discussion or instruct the students to work individually or in small groups then discuss findings as a
class to:

• Identify the requirements
• Classify each requirement as a product or process and functional or non-functional

Take home assignment could requirement students to identify and classify the requirements in an assignment
scenario problem.

CS1 – Activity 2

Iterative Nature of Requirements Process

The SWEBOK repeated points out that the requirements engineering process is something that happens iteratively
over the life cycle of the project. In order to reinforce this concept you can describe how requirements in a real life
project can change often and that it is important to continually analyze and reevaluate the requirements of the
project. This can either be demonstrated in a longer project or in a series of assignments that build on each other.
The assignments below can be used to demonstrate how new requirements can affect the work you have done up
until then.

204

Interative Requirements Exercise

Here are two exercises to illustrate the iterative nature of the requirements process by iterating on the previous
assignment by only adding new requirements for the next assignment.

Assignment 1

Problem Statement

You must design a program in the course programming language that receives input from the user and print
one of three messages. You must prompt the user. If the input is a positive number then your program must exactly
output: “The number is positive.” If the input is zero: “The number is zero.” If the input is negative: “The number
is negative.”

 Along with your program you must include usage documentation that describes how to run and use your
program according to our class standard. Additionally, you are to keep track of your defects in the provided defect
log. Your program is to be submitted via the class website using the normal assignment delivery procedure.

Requirements

Process Requirements

● The assignment artifacts (Program and Documentation) must be turned in via the class website using the
normal assignment delivery procedure.

Product Requirements – Non-Functional
● Your program must be written in [course computer language].
● Your program must use the console to receive input and display messages.
● Your assignment must also contain usage documentation.

Product Requirements - Functional
● Your program must receive input from the command line, by prompting the user.
● Your program must print the message “The number is positive.”, if the input is a positive integer or decimal.
● Your program must print the message “The number is zero.”, if the input is zero.
● Your program must print the message “The number is negative.”, if the input is a positive integer or decimal.

Example Output

>>> 16<return>
The number is positive.
>>> 0.0<return>
The number is zero.
>>> -16.0<return>
The number is negative.
2)

Solution program. Python is used here.

"""Assignment 1"""

def main():
 """This function implements assignment 1"""
 while True:
 user_input = input(">>> ")
 number = float(user_input)
 if number == 0:
 print("The number is zero.")
 elif number > 0:
 print("The number is positive.")
 elif number < 0:
 print("The number is negative.")

if __name__ == '__main__':
 main()

205

Interative Requirements Exercise

Assignment 2

Problem Statement

You must design a program in the course programming language that receives input from the user and print
one of three messages. You must prompt the user. If the input is a positive number then your program must exactly
output: “The number is positive.” If the input is zero: “The number is zero.” If the input is negative: “The number
is negative.” New requirement: If the input is not a valid integer or decimal number then the message: “That is not a
number.” should be printed. Along with your program you must include usage documentation that describes how to
run and use your program according to our class standard. Your program is to be submitted via the class website
using the normal assignment delivery procedure.

Process Requirements

● The assignment artifacts (Program and Documentation) must be turned in via the class website using the
normal assignment delivery procedure.

● Defects must be logged in the provided defect log.
3) Product Requirements - Non-Functional

● Your program must be written in [course computer language].
● Your program must use the console to receive input and display messages.
● Your assignment must also contain usage documentation.

4) Product Requirements - Functional
● Your program must receive input from the command line, by prompting the user.
● Your program must print the message “The number is positive.”, if the input is a positive integer or decimal.
● Your program must print the message “The number is zero.”, if the input is zero.
● Your program must print the message “The number is negative.”, if the input is a positive integer or decimal.
● Your program must print the message “That is not a number.”, if the number is not a valid integer or decimal

number.

Example Output

>>> 16<return>
The number is positive.
>>> 0.0<return>
The number is zero.
>>> -16.0<return>
The number is negative.
>>> q<return>
That is not a number.

Solution program. Python is used here.

"""Assignment 2"""

def main():
 """This function implements assignment 2"""
 while True:
 user_input = input(">>> ")
 try:
 number = float(user_input)
 if number == 0:
 print("The number is zero.")
 elif number > 0:
 print("The number is positive.")
 elif number < 0:
 print("The number is negative.")
 except ValueError as e:
 print("That is not a number.")

if __name__ == '__main__':
 main()

206

CS2 - Activities

CS2 Activity 1

Using Requirements Elicitation for Assignment Assessment

To demonstrate requirements elicitation, the instructor plays the part of a customer who has a project scenario that
need to be solved. The students in the class play the part of developers and ask questions of the customer about the
project and develop a list of requirements.

This can also be done with pairs of students with one being the customer and the other being the developer or a
custom student and a small group of student developers.

CS2 – Activity 2

Using Requirements Measurement for Assignment Assessment

Students can be reminded of requirements and unsuspectingly taught the concept of trace-ability. Each error in their
program (or each test case they failed) is tied back to a requirement (if applicable as things like logic errors don’t
really fall apply). For example, if the student’s project failed a test case by giving a negative number to a function
where the requirement that said the input must be positive or zero then that requirement could be reference with the
error. This demonstrates that and error can be traced back to a specific requirement and reinforces the importance of
requirements.

Assignment

Students are to make a table of the requirements for an assignment scenario as in CS1 – Activity 1.
As they test the solution program, they are to record errors and the requirement that applies.

207

Software Configuration Management Curriculum Module

Preface

This teaching module is to describe some of the ground work for students to understand Software Configuration
Management. CS1 and CS2 are a great place to begin introducing SCM topics. The basic understanding of SCM
principles can helps students with their managing their home as well as any projects they encounter.

Module Description

Software Configuration Management (SCM) is emphasizes the importance of configuration control in managing
software development. It is a set of operations and tools to control your projects configuration.

The SWEBOK defines SCM as "a discipline applying technical and administrative direction and surveillance to:
identify and document the functional and physical characteristics of a configuration item, control changes to those
characteristics, record and report change processing and implementation status, and verify compliance with specified
requirements."

The SWEBOK defines the following sub-sections of Software Configuration Management:

• Management of the SCM Process
○ Organizational Context for SCM
○ Constraints and Guidance for SCM Process
○ Planning for SCM CS1
○ Software Configuration Management Plan
○ Surveillance of SCM

• Software Configuration Identification
○ Identifying Items to be Controlled CS2
○ Software Library

• Software Configuration Control
○ Requesting, Evaluating and Approving Software Changes CS1
○ Implementing Software Changes CS2
○ Deviations and Waivers

• Software Configuration Status Account
○ Software Configuration Status Information
○ Software Configuration Status Reporting

• Software Configuration Auditing
○ Software Functional Configuration Audit
○ Software Physical Configuration Audit
○ In-Process Audits of a Software Baseline

• Software Release Management and Delivery
○ Software Building
○ Software Release Management

208

Philosophy

Software Configuration Management can teach students to better manage their projects by providing:

• an integral part of the software development process in all phases of the life cycle.
• an understanding of configuration identification
• a mechanism for controlling change
• a strategy for breaking down large projects into manageable components
• an understanding of tractability on bugs and feature requests
• a strategy for adapting to changes in requirements or specifications

Outcomes

Students who have had a proper introduction to Software Configuration Management should have:

• a basic understand of the need to manage a project
• a realization that SCM extends over the entire software development life cycle
• understand the term baseline
• the ability to explain why configuration management is required
• understand the difference between discrepancies and requested changes
• the ability to form a change request and implement those changes

Prerequisite Knowledge

Some prerequisite knowledge of Software Configuration is needed. Minimal understanding of some management
processes would be helpful and knowledge of software requirements.

Outline

1) CS1

a) Introduction
i) Software Engineering
ii) Software Configuration Management

b) Configuration management as a controlling tool
c) Types of changes

i) Discrepancies
ii) Requested changes

d) Configuration identification

2) CS2
a) Review the CS1 material.
b) Version control
c) Configuration Management Planning

3) CS3+

a) Large scale group project
b) Introduction of Basic Source Management Tools

Annotated Outline

209

4) CS1

a) Introduction
i) Software Engineering

Applies a systematic, disciplined, quantifiable approach (or process) to the development, operation, and
maintenance of software.

ii) Software Configuration Management
(1) a set of operations and tools to control your projects configuration
(2) emphasizes the importance of configuration control in managing software development
(3) identifies and documents the functional and physical characteristics of a configuration item
(4) control changes to those characteristics
(5) record and report change processing and implementation status
(6) verify compliance with requirements

b) Configuration management as a controlling tool
i) Changes to one configuration can affect others.
ii) Monitoring change and its effects helps maintain integrity of the development process
iii) Change requests and discrepancy reports are evaluated before allowing the a change
iv) Provides a way to track changes and prevent changes that cause problems

c) Types of changes
i) Discrepancies

(1) Requirement errors: caused by incomplete or incorrect requirements
(2) Development errors: caused by incorrectly implementing a requirement

ii) Requested changes
(1) Unimplemented requirements: a requirement is poorly or not implemented
(2) Enhancements: additional requirements
(3) Improvements: non-functional changes to improve the product

d) Configuration identification
i) Identify the configuration items that will be affected by a change
ii) Change Request Forms

(1) Describes an a possible change to the system or a configuration item
(2) Documents the decision on whether or not the change will be implemented.
(3) CS1 – Activity 1.

5) CS2

a) Review the CS1 material.
b) Version control

i) Simultaneous update. If not monitored properly, one programmer or developer can make changes that will
cancel or not work with another’s change.

ii) Tools for version control exist.
(1) See Tool Support below.
(2) Automated tools are not used in the activities of the module. The emphasis here is to teach concept.

c) Configuration Management Planning
i) Making multiple changes to a product or system requires coordination and communication to ensure a

working product results
ii) See CS2 – Activity 1.

6) CS3+

a) Large scale group project
i) Identify someone as the configuration manager who approves change requests and managing baselines.
ii) Other students will act as programmers and be responsible for implementing changes

b) Introduction of Basic Source Management Tools
i) A basic introduction would be useful for students who are interested in managing their code from the

start. Being introduced to simple tools such as a source code management tool at the beginning of their

210

first course could help the students with their homework as well as teach them a valuable tool for their
career.

ii) See Tool Support below.

Teaching Resources

Change Request Forms

Teaching Techniques

Lecture using presentation or a document camera to introduce the material.
The CS1 activity may be done with a large group discussion in class or with individual or small group discussion
with class discussion.
The CS2 activity may be started in class with the small group discussion out of class. The final discussion will
involve everyone and should be done in a lab or class setting.

Tool support

• Source Management Tools:
○ git - A distributed version control system
○ Microsoft SourceSafe - Integrates well into Microsoft Visual Studio
○ subversion (otherwise known as svn) - A popular
○ fossil - A distributed version control system

• SCM Project Tools:
○ Redmine - A project management tool that contains multi-project support, bug tracking, feature

tracking, wiki, documentation tracking, integration with source management tools and milestone
tracking.

○ Trac - Another project management tool that contains bug tracking, feature tracking, wiki,
documentation tracking, integration with source management tools and milestone tracking.

○ fossil - A distributed project management tool that contains bug tracking, feature tracking, a wiki, and
milestone tracking within the project repository instead of in an external project.

Glossary

Baseline – the state of a configuration item that is agreed upon to be correct and will serves as the basis of future
changes

Configuration control – managing change to a configuration item

Configuration item – an object that is created as part of the software engineering development process, like
specification, design, code, and tests

Discrepancy – a software error caused by improper implementation of a requirement or failing to implement a
requirement

Enhancement – a modification to a product to improve or expand its purpose

211

Bibliography

“Fossil - About”, Fossil SCM. Website http://fossil-scm.org/

“About Git”, git - Fast Version Control System. Website http://git-scm.com/

TRIPP, L. (chair), et al. 2004. IEEE Computer Society Professional Practices Committee. 2004. Guide to the

software engineering body of knowledge Project (SWEBOK) and the Guide. IEEE Computer Society Press,
Los Alamitos, CA, (2004). Available at http://www.swebok.org.

http://fossil-scm.org/
http://fossil-scm.org/
http://fossil-scm.org/
http://fossil-scm.org/
http://fossil-scm.org/
http://fossil-scm.org/
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/
http://git-scm.com/

212

Suggested Course Activities

CS1 – Activity 1

Select a previous project or assignment that re-uses old code, documentation, tests, etc. Present change request and
ask the students to identify which configuration items will be affected. After the changes have been identified and
approved, instruct the students to implement the changes as a new assignment. Point out to the students that the
original items given as the baseline from which to work.

CS2 – Activity 1

Revisit CS1 – Activity 1. This time divide the students into groups and give each group a different change request
for the same old project or assignment. Allow each group to review the change and identify affected configuration
items. Bring all groups together into a discussion of what and where changes are needed. Remember a change can
affect multiple configuration items.

Note that multiple changes make be needed to the same configuration item and one change may affect another. Lead
the students in a discussion of which changes should be implemented first and would that change affect the
implementation of additional changes. All changes made should be documented as how they affected any of the
configuration items.

The group implementing the first change to a configuration item is given copies of the baseline (original) products.
At the acceptable end of the change, a new baseline is available for the next change and so on. Remember if
complication arise during a change implementation that cannot be resolved that the baseline is always available to
fall back on.

This illustrates the importance of configuration management. If there is no control over how and when changes are
made the changes may conflict and create a worse product than before.

213

Suggested Change Request Form (Outline)

Project Name:
Change#:
Type of Request: [Enhancement] or [Defect] or [Other]
Submitted By:
Date Submitted:

Short Description:

Full Description:

Resolution: [Fixed] or [Rejected] or [Workaround] or [In Progress]
Closed On:
Assigned To:
Severity:
Dependencies:
Fixed in Revision:

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	2 Background
	2.1 Computing
	2.2 Software Engineering Principles [Pressman 2010]
	2.3 Industry and Software Engineering
	2.4 Curriculum Guidelines
	2.4.1 Computing Curricula 2001: Computer Science [Chang, et al. 2001]
	2.4.2 Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer Science [Campbell, R. (chair) et al. 2003]
	2.4.3 Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering [Le Blance and Sobel 2004]
	2.4.4 Computing Curricula 2005: Guidelines for Associate-Degree Transfer Curriculum in Software Engineering [Campbell, et al. 2005]
	2.4.5 Computing Curricula 2005: Overview Report on Computing Curricula [Shackelford, et al. 2005]
	2.4.6 Computer Science Curriculum 2008: An Interim Revision of the CS 2001 [McCauley and McGettrick 2008]
	2.4.7 Computing Curricula 2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science [Hawthorne, et al 2009]
	2.4.8 The Guide to the Software Engineering Body of Knowledge [Tripp, et al. 2004]

	2.5 Software Development Tools
	2.5.1 Professional Integrated Design Environments
	2.5.2 Pedagogical Integrated Design Environments
	2.5.3 Microworlds

	3 Community Colleges
	3.1 Higher Education and Community College Demographics
	3.2 STEM in Community Colleges
	3.3 Alabama Community College System
	3.4 Alabama Articulation and General Studies Committee
	3.5 Alabama Community College Computer Science Curricula

	4 SIGCSE 2011 Birds-of-a-Feather: Introducing Software Engineering Principles in the First Two Years of Computer Science Education
	5 Survey of Software Engineering Principles and Concepts
	5.1 Survey Results
	5.1.1 Software Engineering Knowledge Area Results
	5.1.2 Integrated Development Environment and Programming Language Results
	5.1.3 Other Results

	5.2 Survey Results Summary

	6 Teaching Software Engineering Course
	7 Teaching Software Engineering Principles in Introductory Computer Sciences Courses Workshop
	8 Curriculum modules
	8.1 Software Process Curriculum Module

	9 Conclusion and Future Work
	9.1 Summary of Research
	9.2 Future work

	References
	Appendix A
	SWEBOK Software Engineering Knowledge Areas (KAs) [Pressman 2010]
	Appendix B
	Alabama Public Community Colleges’ Reference Information.
	Alabama Public 4-year Universities’ Reference Information.

	Appendix C
	Survey of Usage of Software Engineering Principles and Concepts
	Appendix D
	Teaching Software Engineering
	Appendix E
	Software Process Curriculum Module
	Software Testing Curriculum Module
	Software Construction Curriculum Module
	Software Design Curriculum Module
	Software Quality Curriculum Module
	Software Requirements Engineering Curriculum Module
	Outcomes
	Outline
	Spreadsheets
	Google Forms

	Glossary
	Suggested Course Activities
	CS1 – Activity 2
	The SWEBOK repeated points out that the requirements engineering process is something that happens iteratively over the life cycle of the project. In order to reinforce this concept you can describe how requirements in a real life project can change ...
	Interative Requirements Exercise
	Assignment 1
	Problem Statement
	Requirements
	Process Requirements
	Product Requirements – Non-Functional
	Product Requirements - Functional

	Example Output

	2)
	Interative Requirements Exercise
	Assignment 2
	Problem Statement
	Process Requirements
	3) Product Requirements - Non-Functional
	4) Product Requirements - Functional

	Example Output

	CS2 - Activities
	CS2 Activity 1
	CS2 – Activity 2
	Using Requirements Measurement for Assignment Assessment
	Software Configuration Management Curriculum Module

	Philosophy
	Outcomes
	Outline
	Glossary
	Bibliography
	Suggested Course Activities
	Suggested Change Request Form (Outline)

