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Abstract

With the rapid growth of the production and storage of large scale data sets it

is important to investigate methods to drive the cost of storage systems down. Many

energy conservation techniques have been proposed to achieve high energy efficiency

in disk systems. Unfortunately, growing evidence shows that energy-saving schemes

in disk drives usually have negative impacts on storage systems. Existing reliability

models are inadequate to estimate reliability of parallel disk systems equipped with

energy conservation techniques. To solve this problem, we firstly propose a mathe-

matical model - called MINT - to evaluate the reliability of a parallel disk system

where energy-saving mechanisms are implemented. In this dissertation, MINT is

focused on modeling the reliability impacts of two well-known energy-saving tech-

niques - the Popular Disk Concentration technique (PDC) and the Massive Array of

Idle Disks (MAID). Different from MAID and PDC which store a complete file on

the same disk, the Redundancy Array of Inexpensive Disks (RAID) stripes file into

several parts and stores them on different disks to ensure higher parallelism, hence

higher I/O performance. However, RAID faces more challenges on energy efficiency

and reliability issues. In order to evaluate the reliability of power-aware RAID, we

then develop a Weibull-based model–MREED. In this dissertation, we use MREED

to model the reliability impacts of a famous energy efficiency storage mechanism– the

Power-Aware RAID (PARAID). Thirdly, we focus on validation of two models–MINT

and MREED. It is challenging to validate the accuracy of reliability models, since we

are unable to watch certain energy-efficiency systems for a couple of decades due to

its time consuming and experimental costs. We introduce validated storage system

simulator–DiskSim–to determine if our model and DiskSim agree with one another.
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In our validation process, we compare a file access trace in a real-world file system.

Last part of of this dissertation focuses on improvement of energy-efficient parallel

storage systems. We propose a strategy–Disk Swapping–to improve disk reliability

by alternating disks storing data that is frequently accessed with disks holding less

accessed data. In this part, we focus on studying reliability improvement of PDC

and MAID. At last, we further improve disk reliability by introducing multiple disk

swapping strategy.
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Chapter 1

Introduction

Due to current trends in computing we are facing the so called data explosion.

As the use of computers to help day-to-day tasks has increased, we also face a side

effect of generating large amounts of data. This data must be stored on some sort

of medium and currently hard disk drives have become the most common storage

medium. Large scale storage systems are being developed and installed routinely

and there is a significant amount of energy that must be consumed to operate these

storage systems. Many energy conservation techniques have been proposed to achieve

high energy efficiency in disk systems. Unfortunately, growing evidence shows that

energy-saving schemes in disk drives usually have negative impacts on storage systems.

The reliability models are inadequate to estimate reliability of parallel disk systems

equipped with energy conservation techniques. To solve this problem, we propose

mathematical models to evaluate the reliability of parallel disk systems where energy-

saving mechanisms are implemented. Furthermore, we propose a strategy to improve

energy-efficient parallel disk systems reliability.

This chapter continues by developing the problem statement clearly in Sec-

tion 1.1. Section 1.2 presents the scope of the research Section 1.3 summarizes the

main contributions of the dissertation. Finally Section 1.4 outlines the organization

of the dissertation.

1.1 Problem Statement

The number of large-scale parallel I/O systems is increasing in todays high-

performance data-intensive computing systems due to the storage space required to
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contain the massive amount of data. Typical examples of data-intensive applications

requiring large-scale parallel I/O systems include; long running simulations [27], re-

mote sensing applications [83] and biological sequence analysis [39]. As the size of a

parallel I/O system grows, the energy consumed by the I/O system often becomes a

large part of the total cost of ownership [62][91][100]. Reducing the energy costs of

operating these large-scale disk I/O systems often becomes one of the most important

design issues. It is known that disk systems can account for nearly 27% of the total

energy consumption in a data center [37]. Even worse, the push for disk I/O systems

to have larger capacities and speedier response times have driven energy consumption

rates upward.

Existing energy conservation techniques can yield significant energy savings in

disks. While several energy conservation schemes like cache-based energy saving

approaches normally have marginal impact on disk reliability, many energy-saving

schemes (e.g., dynamic power management and workload skew techniques) inevitably

have noticeable adverse impacts on storage systems [12][90]. For example, dynamic

power management (DPM) techniques save energy by using frequent disk spin-downs

and spin-ups, which in turn can shorten disk lifetime [22][34][46], redundancy tech-

niques [60] [102][82][89], workload skew [54][38][98], and multi-speed settings [32][76].

Unlike DPM, workload-skew techniques such as MAID [19] and PDC [58] move popu-

lar data sets to a subset of disks arrays acting as workhorses, which are kept busy in a

way that other disks can be turned into the standby mode to save energy. Compared

with disks storing cold data, disks archiving hot data inherently have higher risk of

breaking down.

It is often challenging to improve both reliability and energy efficiency of storage

systems, because little attention has been paid to evaluating reliability impacts of

power management strategies on storage systems. Many excellent reliability models
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have been proposed for disk systems (see, for example, [17] and [80]). However, ex-

isting disk reliability models are inadequate for evaluating reliability of disk systems

epuipped with energy-saving mechanisms. For example, Shah and Elerath conducted

a series of reliability analyses using field failure data of several drive models from

various disk drive manufacturers [72]. Hughes and Murray investigated SATA disk

drive reliability factors that bear on storage system performance [35]. They not only

studied SATA drive operating failure rates, but also proposed approaches to improv-

ing reliability of storage systems comprised of multiple SATA disks [35]. Reliability

models that do not consider energy-saving mechanisms are quite inaccurate when it

comes to the estimation of reliability of energy-efficient disk systems. Our goal is to

quantitatively investigate the reliability of parallel disk systems employing a variety

energy conservation schemes using a novel mathematical model.

1.2 Research Scope

Our research focuses on models to evaluate reliability of energy-efficient parallel

storage systems. We start the modeling process by capturing the behaviors of parallel

disk systems coupled with power management optimization policies. Let us first

make use of data access patterns as input parameters, which are used to estimate

each disk’s utilization and power-state transition frequency. Then, we derive each

disk’s reliability in terms of annual failure rate from the disk’s utilization, operating

temperature as well as power-state transition frequency. These parameters are key

reliability-affecting factors in addition to disk ages. Finally, we calculate the reliability

of the parallel disk system in accordance with the annual failure rate of each disk in

the system.

This work is accomplished through the use of models and simulations. We present

two models to help us model reliability of two different types of energy efficiency

disk systems–ordinary disk arrays and RAID, which equipped with data striping
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techniques. We model the utilization of disk serving requests and also the state

transition changes and their impact on the reliability of the disk system. Using

these models we developed our own simulator which we used to evaluate reliability

of disk systems quickly. Our models are validated by making changes to the DiskSim

simulation environment . Finally we develop a prototype implementation of a virtual

file system that supports our reliability models for energy efficiency disk systems and

also develop a prototype technique that improves reliability of parallel storage systems

equipped with energy-saving strategies.

1.3 Contributions

The major contributions of the research presented in this dissertation follows:

1. A generic mathematical approach –MINT– to modeling reliability of energy-

efficient parallel disks coupled with power management optimization policies;

2. Two reliability models for the two well-known energy-saving schemes - Popular

Data Concentration scheme (PDC) and Massive Array of Idle Disks (MAID);

3. Intriguing impacts of PDC and MAID on the reliability of parallel disk systems;

4. A reliability model –MREED, which introduces Weibull analysis– is proposed

for energy aware data-stripping parallel storage system;

5. Validation of the access-rate-utilization model of MREED is presented;

6. The reliability of power-aware RAID-0 and RAID-5 (PARAID-0, PARAID-5)

is evaluated;

7. A prototype technique –disk swapping– is developed and implemented.

4



1.4 Organization

This dissertation is organized in the following manner:

Chapter 2 introduces related work that is briefly reviewed and contrasted against the

contributions of this dissertation.

Chapter 3 introduces MINT model for the evaluation of disk arrays equipped with

energy-saving techniques. Especially, we evaluate two well-known energy-efficient

mechanisms –PDC and MAID. Thorough simulation results are also presented in this

chapter.

Chapter 4 details MREED model for the evaluation of energy aware date-stripping

parallel storage system. The reliability of PARAID-0 is evaluated.

Chapter 5 introduces methods for the validation of our reliabilities.

Chapter 6 presents the Disk-Swapping, which is a prototype techniques that I devel-

oped to improve reliability of parallel storage systems.

Chapter 7 summarizes the main contributions of this dissertation and presents a

couple of future research directions based on the ideas contained in the dissertation.
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Chapter 2

Literature Review

This chapter briefly presents previous approaches found in the literature that are

most relevant to our research from two aspects: energy-efficient storage systems, and

reliability impacts on disks. Fig. 2.1 shows a simplified taxonomy of storage systems.

Hard Disk Storage 
Systems 

Non Parallel 
Storage Systems

Parallel
 Storage Systems

Non Energy-Aware 
Storage Systems

Energy-Aware 
Storage Systems

Reliability-Based
Research

Performance-Based
Research

Energy-Based
Research

ModelingImprovement Validation

Figure 2.1: A Simplified Taxonomy of Storage Systems Research

2.1 Hard Disk Drive Storage Systems

Introduced by IBM in 1956, a hard disk drive (HDD) is a device for storing

and retrieving digital information. Hard disk drives have been a dominant device
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for secondary storage of data in general purpose computers since the early 1960s.

Hard drives have maintained this position because advances in their recording capac-

ity, cost, reliability, and speed have kept pace with the requirements for secondary

storage [51].

The capacity of hard drives has grown exponentially over time. When hard drives

became available for personal computers (PCs), they only offered five-megabytes ca-

pacity. During the mid-1990s, the typical hard disk drive for a PC had a capacity of

about one-gigabyte [1]. In the year 2007, Hitachi firstly introduced the world’s one-

terabyte hard disk drive [5]. As of January 2012, desktop hard disk drives typically

had a capacity of 500 to 2000 gigabytes, while the largest-capacity drives were four

terabytes [8].

The latency of a disk access can therefore be broken down into three main aspects:

seek, rotational and transfer latencies. Seek latency refers to the time it takes to

position the read/write head over the proper track. The seek process involves a

mechanical transitional movement that may require an acceleration in the beginning

and a deceleration and a repositioning in the end. As a result, although disk seek times

have been reduced, short seek times have not kept up with the rates of improvement

of silicon processors. While processing rates have improved by more than an order

of magnitude, average seek times have shrunk to only half of their values of a decade

ago [11].

Rotational latency, which is delay for the rotation of a disk to bring the required

disk sector under the read-write mechanism. This characteristic is mainly relies on

rotational speed of a disk, measured in revolutions per minute (RPM). Due to elec-

tronic , mechanical as well as the manufacturing constraints, it is hard to shorten the

latency by increasing the rotational speed of disks. The RPM of a disk have tripled

in the past decades; the fastest hard disk drive was produced by Seagate in 2000 with
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RPM 15000 [3]. A study shows that it is unlikely that there will be a disk rotational

speed increase in the near future [29].

The third type of delay is transfer time, which is the time for target sectors to

pass under a read/write head. Disk transfer times are determined by the rotational

speed and storage density (in bytes/square inch). Disk areal densities continue to

increase at 50 to 55% per year, leading to dramatic increases in sustained transfer

rates, averaged at 40% per year [30].

The disk performance has been steadily improving with more pronounced gains

for large transfer access time. The maximum sustained bandwidth (MB/s) is roughly

proportional to the linear density. The compound annual growth rate (CAGR) of

bandwidth kept around 20% from the year 1996 to early 2002 and; recently, it is

more likely to fall within the range of 10 to 15%. Currently a high performance disk

drive would have a maximum sustained bandwidth of approximately 171 MB/s [47].

2.2 Parallel Storage Systems

A single disk storage system is out of its reach in terms of scientific compu-

tation, because it often requires significant computational power and involves large

amount of data. Advances in communications technology allow numbers of effectively

unbounded processing power and storage capacity to be used to solve much larger

problems than those that only handled by single machine.

RAID is an example of advanced storage technique first introduced by David

Partterson, Garth A. Gibson, and Randy Katz at the University of California, Berke-

ley in 1987 [56]. The different schemes or architectures are named by the term RAID

followed by a number (e.g., RAID-0, RAID-1). Each scheme provides a different bal-

ance between two key goals: to increase date reliability and to increase read/write

performance. Mainly, there are three RAID levels; many more variations have been

proposed.
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• RAID-0 (block-level striping without parity or mirroring) has no (or zero) re-

dundancy. It provides improved performance and additional storage without

fault tolerance. Hence simple stripe sets are normally referred to as RAID 0.

Any drive failure destroys the array, and the likelihood of failure increases with

more drives in the array [69][41].

• RAID 1 (mirroring without parity or striping), data is written identically to

multiple drives, thereby producing a ”mirrored set”; at least two drives are

required to constitute such an array. While more constituent drives may be

employed, many implementations deal with a maximum of only two. Of course,

it might be possible to use such a limited level 1 RAID to effectively mask the

limitation [45][74][31].

• RAID 5 (block-level striping with distributed parity) distributes parity along

with the data and requires all drives but one to be present to operate; data in

the array will not lost even in case of a single drive failure. Upon drive failure,

any subsequent reads can be calculated from the distributed parity such that

failed the drive can be rebuild by the end user. However, a single drive failure

results in reduced performance of the entire array until the failed drive has

been replaced and the associated data reconstructed [52][14]. RAID 5 requires

at least three disks.

The Parallel Virtual File System (PVFS) is an open source parallel file system. A

parallel file system is a type of distributed file system that distributes file data across

multiple servers and provides for concurrent access by multiple tasks of a parallel

application. PVFS was designed for large-scale cluster computing systems. PVFS

focuses on high performance access to large data sets. It consists of a server process

and a client library, both of which are written entirely of user-level code [33][77][96].
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Lustre is another parallel distributed file system, generally used for large scale

cluster computing. The name Lustre is a portmanteau word derived from Linux and

cluster. Because Lustre has high performance capabilities and open licensing, it is

often deployed in super computers [57][28][15]. At the present time, fifteen of the

top 30 supercomputers in the world have Lustre file systems installed, including the

world’s fastest TOP500 supercomputer [9], K computer [7].

Ceph is a free software distributed file system initially created by Sage Weil [86].

Ceph’s main goals are to be POSIX-compatible, and completely distributed with-

out a single point of failure. The data is seamlessly replicated, making Ceph fault

tolerant [43].

PanFS is a parallel distributed file system developed by Pansas, INC. It creates

a single pool of storage under a global namespace that provides the ability to support

multiple applications and workflows in a single storage system with optimal perfor-

mance for complex technical applications. PanFS eliminates the need for multiple

islands of storage [18][53][88].

2.3 Energy-Efficient Parallel Disk Systems.

Hard disk drives (HDD) are made up of various electrical, electronic, and me-

chanical components [97]. An array of techniques were developed to save energy in

single HDDs. Energy dissipation in disk drives can be reduced at the I/O level (e.g.,

dynamic power management [23][46] and multi-speed disks [34]), the operating sys-

tem level (e.g., power-aware caching/prefetching [102][76]), and the application level

(e.g. software DMP [75] and cooperative I/O [87]).

Existing energy-saving techniques for parallel disk systems often rely on one of the

two basic ideas - power management and workload skew. Power management schemes

conserve energy by turning disks into standby after a period of idle time. Although

multi-speed disks are not widely adopted in storage systems, power management
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has been successfully extended to address the energy-saving issues in multi-speed

disks [34][32][42]. The basic idea of workload skew is to concentrate I/O workloads

from a large number of parallel disks into a small subset of disks allowing other disks

to be placed in the standby mode [58][19][66][59].

2.4 Reliability Impacts of Power Management on Disks.

Recent studies show that both power management and workload skew schemes

inherently impose adverse reliability impacts on disk systems [12][90]. For example,

the power management schemes are likely to result in a huge number of disk spin-

downs and spin-ups that can significantly reduce the lifespan of hard disks.

The workload skew techniques dynamically migrates frequently accessed data

to a subset of disks [65] [49], which inherently have higher risk of breaking down

than other disks usually being kept standby. Disks storing popular data tend to

have high failure rates due to extremely unbalanced workload. Thus, the popular

data disks have a strong likelihood to become a reliability bottleneck. The design of

our MINT, presented in this dissertation, is orthogonal to the aforementioned energy

saving studies (see Section 3.2), because MINT is focused on reliability impacts of

the power management and workload skew schemes in parallel disks.

2.5 Reliability Models of Disk Systems.

Amalfunction of any components in a hard disk drive could lead to a failure of the

disk. Reliability - one of the key characteristics of disks - can be measured in terms of

mean-time-between-failure (MTBF). Disk manufacturers usually investigate MTBFs

of disks either by laboratory testing or mathematical modeling. Although disk drive

manufacturers claim that MTBF of most disks is more than 1 million hours [71],

users have experienced a much lower MTBF from their field data [25]. More impor-

tantly, it is challenging to measure MTBF because of a wide range of contributing
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factors including disk age, utilization, temperature, and power-state transition fre-

quency [36][24][63].

A handful of reliability models have been successfully developed for storage sys-

tems. For example, Pâris et. al investigated an approach to computing both average

failure rate and mean time to failure in distributed storage systems [55]; Elerath and

Pecht proposed a flexible model for estimating reliability of RAID storage [26]; and

Xin et. al developed a model to study disk infant mortality [93]. Unlike these re-

liability models tailored for conventional parallel and distributed disk systems, our

MINT model proposed in Chapter 3 pays special attention to reliability of parallel

disk systems coupled with energy-saving mechanisms.

2.6 Validation of Models.

Model validation means substantiation that a computerized model within its

domain of applicability prossess a satisfactory range of accuracy consistent with the

intended application of the model [70]. Major ways to validate models include Histor-

ical Methodes, extreme condition test, and Comparison to Other Models [67][13][48].

For example, R.E. Brown et. al validated their distributions system reliability models

by adjusting default component reliability parameters so that predicted results match

historical results. [16]. In Extreme Condition Tests, the model structure and outputs

should be plausible for any extreme and unlikely combination of levels of factors in

the system. We developed a trace-driven simulation model using the Berkeley Web

Trace [2] as a reference model to compare with our MINT model for the validation

purpose. The major reason that we used a Web trace is that our research pays more

attention to read-intensive I/O activities and Web workloads impose higher read load

than write load [64][79][44].
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2.7 Reliability Improvements

Storage clusters consisting of thousands of disk drives are widely employed be-

cause of their large capacity and high I/O throughput. However, the reliability of

large storage clusters is far worse than that of smaller storage systems due to the

increased number of storage nodes. RAID technology is no longer sufficient to guar-

antee high data reliability for large-scale storage cluster systems, because disk rebuild

time lengthens as disk capacity grows [95]. Researchers developed various methods to

improve reliability of storage clusters. For example, Xie et. al developed a novel data

reconstruction strategy, called multi-level caching-based reconstruction optimization

(MICRO), which can be applied to RAID-structured mobile storage systems. MICRO

can noticeably shorten reconstruction times and user response times while saving en-

ergy [92]; Xin et. al presented fast recovery mechanism (FARM), a distributed recov-

ery approach that exploits excess disk capacity and reduces data recovery time [94];

Zhang et. al proposed a fast and efficient reverse lookup scheme named Group-based

Shifted Declustering (G-SD) layout that is able to locate the whole content of the

failed node [101].
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Chapter 3

MINT: A Reliability Modeling Framework for Energy-Efficient Parallel Disk Systems

Many energy conservation techniques have been proposed to achieve high energy

efficiency in disk systems. Unfortunately, growing evidence shows that energy-saving

schemes in disk drives usually have negative impacts on storage systems. Exist-

ing reliability models are inadequate to estimate reliability of parallel disk systems

equipped with energy conservation techniques. To solve this problem, we propose

a mathematical model - called MINT - to evaluate the reliability of a parallel disk

system where energy-saving mechanisms are implemented. In this paper, we focus

on modeling the reliability impacts of two well-known energy-saving techniques - the

Popular Disk Concentration technique (PDC) and the Massive Array of Idle Disks

(MAID). We started this research by investigating how PDC and MAID affect the

utilization and power-state transition frequency of each disk in a parallel disk system.

We then model the annual failure rate of each disk as a function of the disk’s uti-

lization, power-state transition frequency as well as operating temperature, because

these parameters are key reliability-affecting factors in addition to disk ages. Next,

the reliability of a parallel disk system can be derived from the annual failure rate of

each disk in the parallel disk system. Finally, we used MINT to study the reliability of

a parallel disk system equipped with the PDC and MAID techniques. Experimental

results show that PDC is more reliable than MAID when disk workload is low. In

contrast, the reliability of MAID is higher than that of PDC under relatively high

I/O load.
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3.1 Motivations

Parallel disk systems, providing high-performance data-processing capacity, are

of great value to large-scale parallel computers [4]. A parallel disk system comprised

of an array of independent disks can be built from low-cost commodity hardware

components. In the past few decades, parallel disk systems have increasingly become

popular for data-intensive applications running on massively parallel computing plat-

forms [81].

Existing energy conservation techniques can yield significant energy savings in

disks. While several energy conservation schemes like cache-based energy saving

approaches normally have marginal impact on disk reliability, many energy-saving

schemes (e.g., dynamic power management and workload skew techniques) inevitably

have noticeable adverse impacts on storage systems [12][90]. For example, dynamic

power management (DPM) techniques save energy by using frequent disk spin-downs

and spin-ups, which in turn can shorten disk lifetime [22] [34] [46], redundancy

techniques [60] [102] [82] [89], workload skew [54] [38] [98], and multi-speed set-

tings [32] [76]. Unlike DPM, workload-skew techniques such as MAID [19] and

PDC [58] move popular data sets to a subset of disks arrays acting as workhorses,

which are kept busy in a way that other disks can be turned into the standby mode

to save energy. Compared with disks storing cold data, disks archiving hot data

inherently have higher risk of breaking down.

Unfortunately, it is often difficult for storage researchers to improve reliability of

energy-efficient disk systems. One of the main reasons lies in the challenge that every

disk energy-saving research faces today, how to evaluate reliability impacts of power

management strategies on disk systems. Although reliability of disk systems can

be estimated by simulating the behaviors of energy-saving algorithms, there is lack

of fast and accurate methodology to evaluate reliability of modern storage systems

with high-energy efficiency. To address this problem, we developed a mathematical

15



reliability model called MINT to estimate the reliability of a parallel disk system that

employs a variety of reliability-affecting energy conservation techniques [99].

In this paper, we first study the reliability of a parallel disk system equipped with

a well-known energy-saving scheme— the MAID [19] technique. I/O load skewing

techniques like MAID inherently affect reliability of parallel disks because of two

reasons: First, disks storing popular data tend to have high I/O utilization than

disks storing cold data. Second, disks with higher utilization are likely to have higher

risk of breaking down. To address the adverse impact of load skewing techniques on

disk reliability, a disk swapping strategy was proposed to improve disk reliability in

MAID by switching the roles of data disks and cache disks. We evaluate impacts of

the disk swapping scheme on the reliability of MAID-based parallel disk systems.

In this paper, our contributions are as follows:

1. We studied a model for Massive Array of Idle Disks (MAID) based on Mathe-

matical Reliability Models for Energy-efficient Parallel Disk System (MINT) [99];

2. We built single disk swapping and multiple disk swapping mechanisms to im-

prove reliability of various load skewing techniques.

3. We studied the impacts of the disk swapping schemes on the reliability of MAID.

The remainder of this paper is organized as follows. Section 3.2 outlines the

design and implementation of the MINT reliability modeling framework, which relies

on disk utilization, temperature, and power-state transition frequency. Section 3.3

presents reliability models for MAID and PDC schemes along with the preliminary

results.
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3.2 The MINT Reliability Model

3.2.1 Framework

Fig. 3.1 depicts the framework of the MINT reliability model for parallel disk

systems with energy conservation schemes. MINT is composed of a single disk relia-

bility model, a system-level reliability model, and three reliability-affecting factors -

temperature, disk state transition frequency (hereinafter referred to as frequency) and

utilization. Many energy-saving schemes (e.g., PDC [58] and MAID [19]) inherently

affect reliability-related factors like disk utilization and transition frequency. Given

an energy optimization mechanism, MINT first transfers data access patterns into the

two reliability-affecting factors - frequency and utilization. The single-disk reliability

model can derive individual disk’s annual failure rate from utilization, power-state

transition frequency, age, and temperature. Each disk’s reliability is used as input

to the system-level reliability model that estimates the annual failure rate of parallel

disk systems.

For simplicity without losing generality, we consider four reliability-related fac-

tors in MINT. This assumption does not necessarily indicate that disk utilization,

age, temperature, and power-state transitions are the only parameters affecting disk

reliability. Other factors having impacts on reliability include handling, humidity,

voltage variation, vintage, duty cycle, and altitude [25]. If a new factor has to be

integrated into MINT, we can extend the single reliability model described in Section

3.2.5. Since the infant mortality phenomena is out the scope of this study, we pay

attention to disks that are more than one year old.

3.2.2 Impacts of Utilization on Disk Annual Failure Rate

Disk utilization can be characterized as the fraction of active time of a disk drive

out of its total powered-on-time [61]. In our single disk reliability model, the impacts
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Figure 3.1: The Framework of the MINT Reliability Model
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Figure 3.2: Utilization Impacts on AFR (by Google)

of disk utilization on reliability is good way of providing a baseline characterization of

disk annual failure rate (AFR). Using field failure data collected by Google, shows the

impact of utilization on AFR across the different age groups. Pinheiro et al. studied

the impact of utilization on AFR accross different disk age groups. Pinheiro et al.

categorized disk utilization in three levels - low, medium, and high. Fig. 3.2 shows

AFRs of disks whose ages are 3 months, 6 months, 1 year, 2 years, 3 years, 4 years,

and 5 years under the three utilization levels. Since the single-disk reliability model

needs a baseline AFR derived from a numerical value of utilization, we make use of

the polynomial curve-fitting technique to model the baseline value of a single disk’s

AFR as a function of utilization. Thus, the baseline value (i.e., BaseV alue in Eq.

4.1) of AFR for a disk can be calculated from the disk’s utilization. For example,

Fig. 3.3 shows the AFR value of a 3-year old disk as a function of its utilization. The

curve plotted in Fig. 3.3 can be modeled as a utilization-reliability function described

as Eq. 3.1 below:
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Figure 3.3: 3-Year-Old HDD Utilization Impacts on AFR

R(u) =4.167e−7u4 − 7.5e−5u3 + 5.968e−3u2−

− 2.575e−1u+ 9.3, for all u ∈ [0, 100]

(3.1)

where R(u) represents the AFR value as a function of a certain disk utilization u.

With Eq. 3.1 in place, one can readily derive annual failure rate of a disk if its age

and utilization are given. For example, for a 3-year old disk with 50% utilization

(i.e., u = 50%), we can obtain the AFR value of this disk as R(u) = 4.8%. Fig. 3.3

suggests that unlike the conclusions drawn in a previous study (see [78]), a low disk

utilization does not necessarily lead to low AFR. For instance, given a 3-year old disk,

the AFR value under 30% utilization is even higher than AFR under 80% utilization.
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3.2.3 Impacts of Temperature on Disk Annual Failure Rate

Temperature is often considered as the most important environmental factor

affecting disk reliability. Field failure data of disks in a Google data center (see Fig.

3.4) shows that in most cases when temperatures are higher than 35◦C, increasing

temperatures lead to an increase in disk annual failure rates. On the other hand,

Fig. 3.4 indicates that in the low and middle temperature ranges, the failure rates

decreases when temperature increases [61].

Growing evidence shows that disk reliability should reflect disk drives operat-

ing under environmental conditions like temperature [25]. Since temperature (e.g.,

meaured 1/2” from the case) apparently affect disk reliability, the temperature can be

considered as a multiplier (hereinafter referred to as temperature factor) to baseline

failure rates where environmental factors are integrted [25]. Given a temperature, one

must decide the corresponding temperature factor (see TemperatureFactor in Eq.

4.1) that can be multiplied to the base failure rates. Using Google’s field failure data

plotted in 3.4, we attempted to calculate temperature factors under various temper-

atures ranges for disks with different ages. More specifically, Fig. 3.4 shows annual

failure rates of disks whose ages are from 3-month to 4-year old. For disk drives whose

ages fall in each age range, we model the temperature factor as a function of drive

temperature. Thus, six temperature-factor functions must be derived.

Now we explain how to determine a temperature facotr for each temperature

under each age range. Let us choose 25◦C as the base temperature value, because

room temperatures of data centers in many cases are set as 25◦C controlled by cooling

systems. Thus, the temperature factor is 1 when temperature is set to the base

temperature - 25◦C. Let T denote the average temperature, we define the temperature

factor for temperature T as T/25 if T is larger than 25◦C. When T exceeds 45◦C,

the temperature factor becomes a constant (i.e., 1.8 = 45/25). Due to space limit,

we only show how temperature affects the temperature factor of a 3-year old disk in
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Figure 3.4: Average Drive Temperature Impacts on AFR
(by Google)

Fig. 3.4. Note that the temperature-factor functions for disks in other age ranges can

be modeled in a similar way. Fig. 3.5 shows the temperature-factor function derived

from Fig. 3.4 for 3-year old disks. We can observe from Fig. 3.4 that AFRs increase

to 215% of the base value when the temperature is between 40 to 45◦C.

3.2.4 Power-State Transition Frequency

To conserve energy in single disks, power management policies turn idle disks

from the active state into standby. The disk power-state transition frequency (or

frequency for short) is often measured as the number of power-state transitions (i.e.,

from active to standby or vice versa) per month. The reliability of an individual disk

is affected by power-state transitions and; therefore, the increase in failure rate as

a function of power-state transition frequency has to be added to a baseline failure

rate (see Eq. 4.1 in Section 3.2.5). We define an increase in AFR due to power-state
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Figure 3.5: Temperature-Factor Function of 3-Year-Old HDDs

transitions as power-state transition frequency adder (frequency adder for short).

The frequency adder is modeled by combining the disk spindle start/stop failure rate

adders described by IDEMA [78] and the PRESS model [90]. Again, we focus on

3-year old disk drives. Fig. 3.6 demonstrates frequency adder values as a function of

power-state transition frequency. Fig. 3.6 shows that high frequency leads to a high

frequency adder to be added into the base AFR value. We used the quadratic curve

fitting technique to model the frequency adder function (see Eq. (4.2)) plotted in

Fig. 3.6.

R(f) = 1.51e−6f 2 − 1.09e−5f + 1.39e−2, f ∈ [0, 100] (3.2)

where f is a power-state transition frequency, R(f) represents an adder to the base

AFR value. For example, suppose the transition frequency is 300 per month, the base

AFR value needs to be increase by 1.33%.
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Figure 3.6: Impacts of Transition Frequency on Frequency adder of 3-Year-Old
HDDs

3.2.5 Single Disk Reliability Model

Single-disk reliability can not be accurately described by one valued parame-

ter, because the disk drive reliability is affected by multiple factors (see Sections

3.2.2,3.2.3, and 3.2.4). Though recent studies attempted to consider multiple reliabil-

ity factors (see, for example, PRESS [90]), few of prior studies investigated the details

of combining the multiple reliability factors. We model the single-disk reliability in

terms of annual failure rate (AFR) in the following three steps. We first compute a

baseline AFR as a function of disk utilization. We then use temperature factor as

a multiplier to the baseline AFR. Finally, we add a power-state transition frequency

adder to the baseline value of AFR. Hence, the failure rate R of an individual disk
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can be expressed as:

R =α×BaseV alue× TemperatureFactor+

+ β × FrequencyAdder

(3.3)

where BaseV alue is the baseline failure rate derived from disk utilization (see Sec-

tion 3.2.2), TemperatureFactor is the temperature factor (or temperature multiplier;

see Section 3.2.3), FrequencyAdder is the power-state transition frequency adder to

the base AFR (see Section 3.2.4), and α and β are two coefficients to reliability R.

If reliability R is more sensitive to frequency than to utilization and temperature,

then β must be greater than α. Otherwise, β is smaller than α. In either cases,

α and β can be set in accordance with R’s sensitivities to utilization, temperature,

and frequency. In our experiments, we assume that all the three reliability-related

factors are equally important (i.e., α=β=1). Ideally, extensive field tests allow us to

analyze and test the two coefficients. Although α and β are not fully evaluated by

field testing, reliability results are valid because of the following two reasons: first, we

have used the same values of α and β to evaluate impacts of the two energy-saving

schemes on disk reliability (see Section 3.3.1); second, the failure-rate trend of a disk

when α and β are set to 1 are very similar to those of the same disk when the values

of α and β do not equal to 1.

With Eq. 4.1 in place, we can analyze a disk’s reliability in turns of annual

failure rate (AFR). Fig. 3.7 shows AFR of a three-year-old disk when its utilization

is in the range between 20% and 80%. We observe from Fig. 3.7 that increasing

temperature from 35◦C to 40◦C gives rise to a significant increase in AFR. Unlike

temperature, power-state transition frequency in the range of a few hundreds per

month has marginal impact on AFR. It is expected that when transition frequency

is extremely high, AFR becomes more sensitive to frequency than to temperature.
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3.3 Reliability Models for MAID and PDC

3.3.1 MAID- Massive Array of Idle Disks

Background

The MAID (Massive Arrays of Idle Disks) technique - developed by Colarelli and

Grunwald - aims to reduce energy consumption of large disk arrays while maintaining

acceptable I/O performance [19]. MAID relies on data temporal locality to place

replicas of active files on a subset of cache disks, thereby allowing other disks to spin

down. Fig. 3.8 shows that MAID maintains two types of disks - cache disks and

data disks. Popular files are copied from data disks into cache disks, where the LRU

policy is implemented to manage data replacement in cache disks. Replaced data is

discarded by a cache disk if the data is clean; dirty data has to be written back to

the corresponding data disk. To prevent cache disk from being overly loaded, MAID
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avoids copying data to cache disks that have reached their maximum bandwidth.

Three components integrated in the MAID model include: (1) a power management

policy that switches idle disks into the standby mode if the disks are sitting idle for

a certain period of time; (2) a data placement module that either linearly places

successive blocks on a disk drive or uniformly distributes data blocks across multiple

drives; (3) a cache disk controller that determines the number of disks performing as

cache disks [19].

Modeling Utilization of Disks in MAID

Recall that the annual failure rate of each disk can be calculated using disk age,

utilization, operating temperature as well as power-state transition frequency. To

model reliability of a disk array equipped with MAID, we have to first address the

issue of modeling disk utilization used to calculate base annual failure rates. In this

subsection, we develop a utilization model capturing behaviors of a MAID-based disk
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array. The utilization model takes file access patterns as an input and calculates the

utilization of each disk in the disk array.

Disk utilization is computed as the fraction of active time of a disk drive out of

its total powered-on-time. Now we describe a generic way of modeling the utilization

of a disk drive. Let us consider a sequence of I/O accesses with N I/O phases. We

denote Ti as the length or duration of the ith I/O phase. Without loss of generality,

we assume that a file access pattern in an I/O phase remains unchanged. The file

access pattern, however, may vary in different phases. The relative length or weight

of the ith phase is expressed as Wi = Ti/T where T =
∑N

i=1 Ti is the total length of

all the I/O phases. Suppose the utilization of a disk in the ith phase is ρi, we can

write the overall utilization ρ of the disk as the weighted sum of the utilization in all

the I/O phases. Thus, we have

ρ =
N
∑

i=1

(Wi × ρi) =
N
∑

i=1

(
Ti

T
× ρi) (3.4)

Let Fi = (fi1, fi2, ..., fini
) be a set of ni files residing in the disk in the ith phase.

The utilization ρi (see Eq. 4.5) of the disk in phase i is contributed by I/O accesses

to each file in set Fi. Thus, ρi in Eq. 4.5 can be written as:

ρi =

ni
∑

j=1

(λij × sij) (3.5)

where λij is the file access rate of file fij in Fi and sij is the mean service time of file

fij. Note that I/O accesses to each file in set Fi are modeled as a Poisson process;

file access rate and service time in each phase i are given a priori. We assume that

there are n hard drives with k phases. In the l-th phase, let fijl be the j-th file on
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the i-th disk, where i ∈ (1, 2, · · · , n), j ∈ (1, 2, · · · ,mi), l ∈ (1, 2, · · · k). We have:

F1l = {f11l, f12l, · · · , f1m1l}

...

Fnl = {fn1l, fn2l, · · · fnmnl} (3.6)

where mi is the number of files on the ith disk and Fil is the total files on the same

disk. Since frequently accessed files are duplicated to cache disks, we model below an

updated file placement after copying the frequently accessed files.

F ′

1l =
{

f ′

11l, f
′

12l, · · · , f
′

1m′

1l

}

...

F ′

nl =
{

f ′

n1l, f
′

n2l, · · · , f
′

nm′

nl

}

(3.7)

where m′

iis the number of the files on the i-th disk, f ′

ijl is the j-th file at the l-th

phase and F ′

il is the set of files on the same disk after the files are copied. We can

calculate the utilization for jth file in the lth phase on the ith disk as ρijl = λijl × t.

We assume that ρi1l ≥ ρi2l ≥ · · · ≥ ρim1l, meaning that files are placed in a descending

order of utilization. After the frequently accessed files are copied to the cache disks,

we denote the updated utilization contributed by files including copied ones as ρ′i1l ≥

ρ′i2l ≥ · · · ≥ ρ′im1l
. It is intuitive that the utilization of disk i should be smaller than

1. When a disk reaches its maximum utilization, the disk also reaches its maximum

bandwidth denoted as Bi. For both cache and data disks, we express the utilization
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for ith disk in phase l as:

ρ′il =
I/Otime+ Copying time

T

=

m′

i
∑

j=1

ρ′ijl +
Copying time

T
(3.8)

where T is the time interval of the lth I/O phase. The first and second items on the

bottom-line on the right-hand side of Eq. 3.8 are the utilizations caused by accessing

files and duplicating files from data disks to cache disks, respectively.

Since files on cache disks are duplicated from data disks, frequently accessed

files must be copied from data disks and written down to cache disks. As such, we

must consider disk utilization incurred by the data duplication process. To quantify

utilization overhead caused by data replicas, we define a set FM out
il of files copied

from the ith data disk to cache disks in phase l. Similarly, we define a set FM in
il of

files copied to the ith cache disk from data disks in phase l.

With respect to the ith data disk, the utilization ρ′il−data in phase l is the sum of

utilization caused by accessing files on the data disk and reading files to be duplicated

to cache disks. Thus, ρ′il−data can be written as:

ρ′il−data =

m′

i
∑

j=1

ρ′ijl +

∑

j∈FM out
il

tijl

T
(3.9)

where the first and second items on the right-hand side of Eq. 3.9 are the utilizations

of accessing files and reading files from the data disk to make replicas on cache disks,

respectively.

When it comes to the ith cache disk, the utilization ρ′il−cache in phase l is the

sum of utilization contributed by accessed files and written file replicas to cache disks.
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Thus, ρ′il−data can be written as:

ρ′il−cache =

m′

i
∑

j=1

ρ′ijl +

∑

j∈FM in
il

tijl

T
(3.10)

where the first and second items on the right-hand side of Eq. 3.10 are the utilizations

of accessing files and writing files to the cache disk to make replicas, respectively.

Modeling Power-State Transition Frequency for MAID

Eq. 4.1 in Section 3.2.5 shows that the power-state transition frequency adder

is an important factor to model disk annual failure rate. The number of power-state

transitions largely depends on I/O workload conditions in addition to the behaviors

of MAID. In this subsection, we derive the number of power-state transitions from

file access patterns.

We define the TBE as the disk break-even time - the minimum idle time required

to compensate the cost of entering the disk standby mode (TBE values are usually

anywhere between 10 to 15 seconds). Given file access patterns of the ith phase for

a disk, we need to calculate the number τi of idle periods that are larger than the

break-even time TBE. The number of power-state transitions during phase i is 2τi,

because there is a spin-down at the beginning of each large idle time and a spin-up by

the end of the idle time. For an access pattern with N I/O phases, the total number

of power-state transitions τ can be expressed as: τ = 2×
∑N

i=1 τi.

We model a workload condition where I/O burstiness can be leveraged by the

dynamic power management policy to turn idle disks into the standby mode to save

energy. To model I/O burstiness, we assume the first I/O requests of files within an

access phase are arriving in a short period of time, within which disks are too busy

to be switched into standby. After the period of high I/O load, there is an increasing

number of opportunities to place disks into the standby mode. This workload model
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allows MAID to achieve high energy efficiency at the cost of disk reliability, because

the workload model leads to a large number of power-state transitions.

To conduct a stress test on reliability of MAID, we assume that the first requests

of files on a disk arrive at the same time. For the first few time units, the workloads are

so high that no data disks can be turned into standby. As the I/O load is descreasing,

some data disks may be switched to standby when idle time intervals are larger than

TBE. In this workload model, MAID can achieve the best energy efficiency with the

worst reliability in terms of the number of power-state transitions.

3.3.2 PDC- Popular Disk Concentration

Background

The PDC (Popular Data Concentration) technique proposed by Pinheiro and

Bianchini migrates frequently accessed data to a subset of disks in a disk array [58].

Fig. 3.9 demonstrates the basic idea behind PDC: the most popular files are stored

in the far left disk, while the least popular files are stored in the far right disk. PDC

can rely on file popularity and migration to conserve energy in disk arrays, because

several network servers exhibit I/O loads with highly skewed data access patterns.

The migrations of popular files to a subset of disks can skew disk I/O load towards this

subset, offering other disk more opportunities to be switched to standby to conserve

energy. To void performance degradation of disks storing popular data, PDC aims to

migrate data onto a disk until its load is approaching the maximum bandwidth.

The main difference between MAID and PDC is that MAID makes data replicas

on cache disks, whereas PDC lays data out across disk arrays without generating any

replicas. If one of the cache disks fails in MAID, files residing in the failed cache disks

can be found in the corresponding data disks. In contrast, any failed disk in PDC

can inevitably lead to data loss. Although PDC tends to have lower reliability than
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Figure 3.9: PDC System Structure

MAID, PDC does not need to trade disk capacity for improved energy efficiency and

I/O performance.

Modeling Utilization of Disks in PDC

Since frequently accessed files are periodically migrated to a subset of disks in a

disk array, we have to take into account disk utilization incurred by file migrations.

Hence, the ith disk’s utilization ρ′il during phase l is computed as the sum of the uti-

lization contributed by accessing files residing in disk i and the utilization introduced

by migrating files to/from disk i. Thus, we can express utilization ρ′il as:

ρ′il =

m′

i
∑

j=1

ρ′ijl +
Migration time

T
(3.11)
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where T is the time interval of I/O phase l. The first and second items on the right-

hand side of Eq. 3.11 are the utilizations caused by accessing files and duplicating

files from data disks to cache disks, respectively.

To quantify utilization introduced by the file migration process (see the second

item on the bottom-line on the right-hand side of Eq. 3.11), we define two set of

files for the ith disk in the lth I/O phase. The first set FM out
il contains all the files

migrated from disk i to other disks during the lth phase. Similarly, the second set

FM in
il consists of files migrated from other disks to disk i in phase l.

Now we can formally express the utilization of disk i in phase l using the two file

sets FM out
il and FM in

il . Thus,

ρ′il =

m′

i
∑

j=1

ρ′ijl +

∑

j∈FM
il

tijl

Tl

(3.12)

where the second item on the right-hand side of Eq. 3.12 is the utilization incurred

by (1) migrating files in set FM out
il from disk i to other disks and (2) migrating files

in set FM in
il from other disks to disk i during phase l.

Modeling Power-State Transition Frequency for PDC

We used the same way described in Section 3.3.1 to model power-state transition

frequency for PDC. Unlike MAID, PDC allows each disk to receive migrated data

from other disks. In light of PDC, disks storing the most popular files are most likely

to be kept in the active mode.

3.3.3 Results Evaluation

Experimental Setup

We developed a simulator to validate the reliability models for MAID and PDC.

It might be unfair to compare the reliability of MAID and PDC using the same
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number of disks, since MAID trades extra cache disks for high energy efficiency. To

make fair comparison, we considered two system configurations for MAID. The first

configuration referred to as MAID-1 employs existing disks in a parallel disk system as

cache disks to store frequently accessed data. Thus, the first configuration of MAID

improves energy efficiency of the parallel disk system at the cost of capacity. In

contrast, the second configuration— called MAID-2—needs extra disks to be added

to the disk system to serve as cache disks.

Our experiments were started by evaluating the reliability of PDC as well as

MAID-1 and MAID-2. Then, we studied the reliability impacts of the proposed

disk-swapping strategies on both PDC and MAID. We simulated PDC, MAID-1, and

MAID-2 along with the disk-swapping strategies in two parallel disk systems described

in Table 6.1. For the MAID-1 configuration, there are 5 cache disks and 15 data disks.

In the disk system for the MAID-2 configuration, there are 5 cache disks and 20 data

disks. As for the case of PDC, we fixed the number of disks to 20. Thus, we studied

MAID-2 and PDC using a parallel disk system with 20 disks; we used a similar disk

system with totally 25 disks to investigate MAID-1. We varied the file access rate in

the range between 0 to 106 times per month. The average file size considered in our

experiments is 300KB. The base operating temperature is set to 35◦C. In this study,

we focused on read-only workload. Nevertheless, the MINT model should be readily

extended to capture the characteristics of read/write workloads.

Table 3.1: The characteristics of the simulated parallel disk system used to evaluate
the reliability of PDC, MAID-1, and MAID-2.

Energy-efficiency
Scheme

Number of Disks
File Access Rate
(No. per month)

File Size
(KB)

PDC
20 data

(20 in total)
0˜106 300

MAID-1
15 data+5 cache
(20 in total)

0˜106 300

MAID-2
20 data+5 cache
(25 in total)

0˜106 300
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Figure 3.10: Utilization Comparison of the PDC and MAID
Access Rate(up to 500/month) Impacts on Utilization

Preliminary Results

In terms of utilization, when the file access rate of the files increase, represented

in Fig. 3.10, the utilization of both PDC and MAID increase also. However, other

than increasing as smoothly as that of MAID reaching nearly 50%, the utilization

of PDC increases sharply hitting nearly 90%. The main reason is that PDC will be

busy with migrating data in and out of the disks according to the popularity of the

data. When the file access rate increases, which leads to more files migrating upward

to the more popular disks while others migrating downward to the lease popular

disks, the PDC system needs to spend more utilization to deal with the inner data

migration in addition to the requests themselves. On the other hand, after copying

the popular data to cache disks, there is no need for data disks to handle the requests

in MAID any more. The increase of the curve is mainly influence by the utilization

of cache disks in MAID. As one step further, Fig. 3.11 shows the annual failure rates
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Figure 3.11: AFR Comparison of the PDC and MAID
Access Rate Impacts on AFR(Temperature=35◦C)

of MAID1, MAID2, and PDC. We observe from Fig. 3.11 that the AFR value of

PDC keeps increasing from 5.6% to 8.3% when the file access rate is larger than

150. We attribute this trend to high disk utilization due to data migrations. More

interestingly, if the file access rate is lower than 150, AFR of PDC slightly reduces

from 5.9% to 5.6% when the access rate is increased from 5 to 150. This result can be

explained by the nature of the utilization function that is concave rather than linear.

The concave nature of the utilization function is consistent with the empirical results

reported in [61]. When the file access rate 150, the disk utilization is approximately

50%, which is the turing point of the utilization function.

Unlike PDC, MAID’s AFR continues to decrease from 6.3% to 5.8% with the

increasing file access rate. This declining trend might be explained by two reasons.

First, increasing the file access rates reduces the number of power-state transitions.
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Figure 3.12: Utilization Comparison of the PDC and MAID
Access Rate(up to 1000/month) Impacts on Utilization

Second, the range of the disk utilization is close to 40%, which is in the declining part

of the curve.

When the access rate is extended to 1000 per month, as shown in Fig. 3.12, the

utilization of PDC gets close to 90% while those of MAID keep rising. The reason

that utilization of MAID-1 grows faster than that of MAID-2 is because that when

the method of weighted sum is adopted, the less number of disk is the more each disk

weights more. As the systems utilization changed, the AFR will change accordingly.

One important observation from Fig. 3.13 and Fig. 3.14 is that when access rate is

higher than 700 times per month, the AFR of MAID-1 is getting higher than that

of MAID-2. The reason is that the utiliaztion of MAID-1 keeps rising up over 60%,

observed from Fig. 3.12, when access rate is higher than 700 times per month. And

according to Fig. 3.3, the AFR will stop to rise up after utilization goes higher than

60%. Hence, we can predict that after access rate hit 900 per month, the AFR of
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Figure 3.13: Utilization Comparison of the PDC and MAID
Access Rate(up to 1000/month) Impacts on AFR(Temperature=35◦C)
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Figure 3.14: Utilization Comparison of the PDC and MAID
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Figure 3.15: AFR Comparison of the PDC and MAID
Temperature Impacts on AFR (Access Rate= 200/month)

MAID-2 will be expected to stop to rise up. When we fix the access rate at 200 times

per month and vary the temperature from 25◦C to 45◦C, as shown in Fig. 3.15, it

is easy to see that as the temperature grows up, the AFR of all three systems goes

down at the range of 25◦C to 30◦C, and goes up at the range of 30◦C to 45◦C. It

is all according to the trend derived from Google [61]. Further, we notice that the

AFR of PDC is lower than that of MAID. And when the temperature grows up, the

AFR of MAID grows faster than that of PDC. On the contrary, when access rate is

fixed at 450 times per month, as shown in Fig. 3.16, observation is that the AFR

of PDC grows higher and faster than that of MAID. The two main reasons for these

opposite results are utilization and frequency. As access rate is 200 times per month,

even thought the utilization of PDC is higher than that of MAID, it still stays in

the descending part of the utilization curve. From Fig. 3.3, it is obvious that higher

utilization leads to lower AFR in the recession part of the curve. When access rate
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Figure 3.16: AFR Comparison of the PDC and MAID
Temperature Impacts on AFR (Access Rate= 450/month)

is 450 times per month, the utilization of PDC is approaching 90% because of the

data migration, which is way higher than that of MAID as shown in Fig. 3.10. At

this moment PDC stays in the ascending part of the utilization curve while MAID is

about reaching the rock-bottom of the curve. Also, as the adder factor, the frequency

makes the utilization of PDC grows even faster.

3.4 Summary

In recognition that existing disk reliability models cannot be used to evaluate

reliability of energy-efficient disk systems, we propose a new model called MINT

to evaluate the reliability of a disk array equipped with reliability-affecting energy

conservation techniques. We first model the impacts of disk utilization and power-

state transition frequency on reliability of each disk in a disk array. We then derive
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the reliability of an individual disk from its utilization, age, temperature, and power-

state transition frequency. Finally, we use MINT to study the reliability of disk

arrays coupled with the MAID (Massive Array of Idle Disks) technique and the PDC

(Popular Disk Concentration technique) technique.
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Chapter 4

MREED: Reliability Analysis of An Energy-Aware RAID System

We develop a mathematical model– MREED– to quantitatively evaluate the

failure rate of energy-efficient parallel storage systems. The Power-Aware Redundant

Array of Inexpensive Disk (PARAID) aims to reduce energy use of commodity server-

class disks without specialized hardware. The goal of PARAID is to skewed striping

pattern to adapt to the system load by changing the number of powered disks. By

spinning down disks during light workloads, PARAID can reduce power consumption,

while still meeting performance demands. We show that MREED can be used to es-

timate a five-disk PARAID-0 system. We validate the accuracy of MREED using the

DiskSim simulator. Our approach shows that MREED can rely on file access pattern

to estimate system utilization correctly. Furthermore, even thought PARAID may

achieve reasonable reliability, our model shows that PARAID’s reliability is affected

by data locality.

4.1 Motivations

Existing reliability models for conventional parallel and distributed disk systems

do not consider energy-saving issues or data-stripping mechanisms. In this paper, we

first study the reliability of a parallel disk system equipped with the PARAID [85]

technique by employing the Mathematical Reliability model for Energy- Efficient

RAID system called MREED. As a mathematical model, MREED shows its advan-

tage of presenting the reliability trend of energy-aware storage systems. However,

it is challenging to validate the MREED model. To address the correctness issue of

MREED, we validate the access-rate-utilization model, which converts file access rate
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to utilization of the storage system, in MREED. Finally, we study impacts of the I/O

load skewing technique –gear shifting – on the reliability of PARAID, a well known

energy-aware data stripping storage system.

Existing energy conservation techniques can yield significant energy savings in

disks. While several energy conservation schemes like cache-based energy-saving

approaches normally have marginal impact on disk reliability, many energy-saving

schemes (e.g., dynamic power management and workload skew techniques) inevitably

have noticeable adverse impacts on storage systems [12][90]. For example, dynamic

power management (DPM) techniques save energy by using frequent disk spin-downs

and spin-ups, which in turn can shorten disk lifetime [22][34][46], redundancy tech-

niques [60][102][82][89], workload skew [54][38][98], and multi-speed settings [32][76].

We pay attention on the reliability issue of RAID systems, existing energy conserva-

tion techniques can not be applied for RAID systems for the following reasons:

• Conventional RAIDs balance I/O load across all disks in the array for maximized

disk parallelisms and performance, meaning that all disks are spinning even

under a light load. No opportunity is offered to spin down any of disks;

• Server class disks are not designed for frequent power cycles, which significantly

reduce life expectancy;

• Server systems cannot rely on caching and dynamic power management because

the servers are too busy to have long idle time.

In this paper, our contributions are summaries as follows:

1. We propose a reliability model MREED for Power-Aware RAID (i.e., an energy

aware data-stripping parallel storage system);

2. We introduce Weibull distribution analysis to MREED. Using the utilization of

a storage system as an input, we can estimate and forecast the annual failure

rate (a.k.a, AFR) of this system;
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3. We validate the access-rate-utilization model of MREED;

4. We study the impacts of the gear-shifting schemes on the reliability of PARAID.

We study impacts of the I/O load skewing technique especially on PARAID-0,

which is an energy-aware RAID-0 system. Experimental results shows that gear-

shifting affects reliability of parallel disks due to two reasons: First, disks working at

all gears tend to have high I/O utilization than disks that only works at high gears.

Second, disks with high utilization are likely to have high risk of breaking down.

The remainder of this paper is organized as follows. Section 4.2 presents the

overview of the MREED model. In Section 4.3, we apply MREED model to quanti-

tatively estimate the reliability of PARAID. Section 4.4 presents experimental results

and performance evaluation. Finally, Section 6.4 concludes the paper with discus-

sions.

4.2 The MREED Modeling Framework

4.2.1 Overview

MREED is a framework developed to model reliability of parallel disk systems

employing energy conservation techniques. In the MREED framework, we evaluate

the reliability impacts of a specific energy-saving technique - the Power-Aware RAID.

One critical module in MREED is to model the impact of energy-efficient schemes

on the utilization and power-state transition frequency of each disk in a parallel disk

system. Another important module developed in MREED is to calculate the annual

failure rate of each disk as a function of the disk’s utilization, power-state transition

frequency. Given the annual failure rate of each disk in the parallel disk system,

MREED is able to derive the reliability of an energy-efficient parallel disk system.

As such, we used MREED to study the reliability of a parallel disk system equipped

with the PARAID technique.
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Fig. 4.1 outlines the MREED reliability modeling framework. MREED is com-

posed of a Weibull-based disk reliability model, a system-level reliability model,

and three reliability-affecting factors—temperature, power state transition frequency

(hereinafter referred to as transition frequency or frequency) and utilization. Many

energy-saving schemes inherently affect reliability-related factors like disk utilization

and transition frequency. Given an energy optimization mechanism (e.g., PARAID [85]),

MREED first converts data access patterns into the two reliability-affecting factors—

frequency and utilization. The Weibull-based disk reliability model can derive in-

dividual disk’s possibility of failure from utilization and power-on hours per year

because these parameters are key reliability-affecting factors. Each disk’s reliability

is used as input to the system-level reliability model that evaluates the annual failure

rate of parallel disk systems.

For simplicity without losing generality, we considered in MREED three reliability-

related factors, namely: disk utilization, temperature, and power-state transitions.

This assumption does not necessarily indicate by any means that there are only three

parameters affecting disk reliability. Other factors having impacts on reliability in-

clude: handling, humidity, voltage variation, vintage, duty cycle, and altitude [25]. If

a new factor has to be taken into account, one can extend the single reliability model

by integrating the new factor with other reliability-affecting factors in MREED. Since

the infant mortality phenomenon is out the scope of this study, we pay attention to

disks that are no less than one year old.

The single-disk reliability can not be accurately described by one valued param-

eter because the disk drive reliability is affected by multiple factors. There are three

major factors that affect disk reliability.

1. Disk Utilization can be characterized as the fraction of active time of a disk drive

out of its total powered-on-time. The baseline value (i.e. RBase V alue in Eq. 4.1)

of AFR for a disk, which is derived from the Weibull distribution analysis, can
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Figure 4.1: Overview of the MREED reliability modeling methodology

be calculated from the disk’s utilization. The details will be discussed in the

subsection 4.2.2;

2. Temperature, which acts as a multiplier to base failure rates in the MREED

model. The temperature factor shown in the Table 4.1 was reported by Seagate

Storage Group in Longmont, Colorado [20]. From the Table 4.1, we observe

that as the temperature rises, the derating factor and the MTBF show clear
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decreasing. In our research, we will use the Derating Factor(DF) as the Tem-

perature Factor(i.e. TemperatureFacotr in Eq. 4.1) of AFR. For example, at

30◦C, the DF value is 0.78, which indicates that the AFR at this temperature

is 22% higher than the AFR at 25◦C. The main reason that we only use partial

Table 4.1: Temperature Factor

Temperature
(◦C)

Acceleration
Factor

Derating
Factor

Adjusted
MTBF

25 1.0000 1.00 232,140
26 1.0507 0.95 220,553
30 1.2763 0.78 181,069
34 1.5425 0.65 150,891
38 1.8552 0.54 125,356
42 2.2208 0.45 104,463
46 2.6465 0.38 88,123

data from the report (25◦C ∼ 46◦C) is that we believe the cooling systems will

prevent the temperature keeping higher than 46◦C for long.

3. Power-State Transition Frequency, which is measured as the number of power-

state transition (i.e. from active to standby or vice versa) per month. The

reliability of an individual disk is affected by power-state transitions and, there-

fore, the increase in failure rate as a function of power-state transition frequency

has to be added to a baseline failure rate (see Eq. 4.1 in the next subsection).

Hence, the failure rate R of an individual disk can be expressed as:

R = RBase V alue ∗ τ + α ∗RFrequency Adder (4.1)

where RBase V alue is the baseline failure rate derived from disk utilization, τ is the

temperature factor, α is a coefficient to reliability R, and RFrequency Adder is the power-

state transition frequency adder to the baseline failure rate, which can be calculated
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by Eq. 4.2 [99].

R(f) = 1.51e−6f 2 − 1.09e−5f + 1.39e−2, f ∈ [0, 500] (4.2)

where f is a power-state transition frequency, R(f) represents an adder to the base

AFR value. For example, suppose the transition frequency is 300 per month, the base

AFR value needs to be increase by 1.33%.

4.2.2 Weibull Distribution Analysis

Weibull distribution analysis is a leading method in the world for fitting life date.

The primary advantage of Weibull analysis is the ability to provide accurate failure

analysis and failure forecasts with extremely small samples [10]. It is now widely used

reliability engineering and failure analysis including mechanical, electronic, materials,

and human failures [21]. The Weibull reliability function describes the probability of

survival as a function of time, and is described as follows in Eq. 4.3:

R(t) =

∫

∞

t

β(x)(β−1)

θβ
exp[−(

x

θ
)β]dx

= exp[−(
t− β

θ
)β]

(4.3)

where β is the shape parameter or slope parameter (0 < β < ∞), and θ is the scale

parameter or characteristic life (0 < θ < ∞). Given a disk drive’s total power-on

hours per year, and the utilization calculated by Eq. 4.1, we can calculate its total

active hours during one year by Eq. 4.4

Tactive = Tpower on ∗ ρ (4.4)
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where ρ is a disk utilization. With active hours as an input along with β and θ,

we can use Eq. 4.3 to estimate its annual failure rate and MTBF (which serves as

BaseV alue in Eq. 4.1).

4.3 Reliability Model for PARAID

4.3.1 Background

Different from traditional disk array systems, RAID balances the load across all

disks in the array for maximized disk parallelism and performance [56]. In a RAID

system, all disks are spinning even under a light load. Instead of spinning down

inactive disks under a light load as MAID [19] or PDC [58] behave, PARAID exploits

unused storage to replicate and stripe data blocks in a skewed fashion, so that disks

can be organized into hierarchical overlapping sets of RAIDs. Each set contains a

different number of disks, and can serve all requests via either its data blocks or

replicated blocks. PARAID introduces a skewed striping pattern that allows RAID

devices to use just enough disks to meet the system load. Each set is analogous to

a gear in automobiles as PARAID has aggregated disk bandwidth. PARAID varies

the number of powered-on disks via gear-shifting among sets of disks to reduce power

consumption [85]. The authors confirmed that PARAID system can save up to 34%

energy compared to the conventional 5-disk RAID system. However, such energy-

efficient technique may have adverse impacts on the reliability of the storage system.

The system has to spend extra disks utilization on copying data from disks that are

about to be spun down, which leads to higher risk of system failures. Furthermore,

after a gear-shifting down, less number of disks will provide the same amount of

service as it is before the gear-shifting, which pushes the power-on disks into higher

utilization range and thus makes the system even less reliable. Thirdly, due to the

data stripping technique, each single disk in the PARAID system only holds part of

files. PARAID may face absolute data lose if the number of failure disks exceeds the
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system’s failure tolerance. The reliability issue of PARAID counts much more than

conventional disk array systems. Fig. 4.2 is a PARAID system consists of four disks.

!"#$%

&'()%

&)*)+%

,+*-.%

/%

0%

1%

/% 0% 1% 2%

Figure 4.2: Framework of PARAID: skewed striping of replicated blocks in soft
state, creating 3 RAID gears over 4 disks

[85]

Fig. 4.2 shows that each disk in PARAID has two separate states– the Soft State

and RAID State. When operating in gear 3, with all four disks powered, PARAID

works as the way of conventional RAID system offering maximized disk parallelism

and performance accordingly. As I/O load decreases, PARAID down-shifts into gear

2 by spinning down the fourth disk. Before the down-shifting, the blocks stored in

the RAID states on disk 4 are copied to disk 1∼3 one by one. In this case, disk 1

holds the 1st and the 4th block of disk 4, disk 2 keeps the 2nd and the 5th block of

disk 4, and disk 3 will store the 3rd and the 6th block of disk 4. If the load keeps

decreasing, PARAID will further down-shift into gear 1 by powering down the third

disk.
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4.3.2 Modeling Utilization of Disks in PARAID

Recall that the annual failure rate of each disk can be calculated using utiliza-

tion, operating temperature as well as power-state transition frequency. To model

reliability of a disk array equipped with PARAID, we have to first address the issue

of modeling disk utilization used to calculate base annual failure rates (RBase V alue in

Eq.4.1 shown in Section 4.2). In this subsection, we develop a utilization model cap-

turing behaviors of a RAID-based disk array. The utilization model takes file access

patterns as an input and calculates the utilization of each disk in the disk array.

Disk utilization is computed as the fraction of active time of a disk drive out of

its total powered-on-time. Now we describe a generic way of modeling the utilization

of a disk drive. Let us consider a sequence of I/O accesses with L I/O phases. We

denote Tl as the length or duration of the lth I/O phase. Without loss of generality,

we assume that a file access pattern in an I/O phase remains unchanged. The file

access pattern, however, may vary in different phases. The relative length or weight

of the ith phase is expressed as Wl = Tl/T where T =
∑L

l=1 Tl is the total length of

all the I/O phases. Suppose the utilization of a disk in the lth phase is ρl, we can

write the overall utilization ρ of the disk as the weighted sum of the utilization in all

the I/O phases. Thus, we have

ρ =
L
∑

l=1

(Wl × ρl) =
L
∑

l=1

(
Tl

T
× ρl) (4.5)

Since a PARAID system requires at least two disks to achieve the minimum

I/O parallelism, the PARAID system consists of N disks has (N − 1) gears to shift.

Assume that at the GN−1th gear, in which case all N disks of the system are kept

spinning in order to offer the maximum parallelism, each single disk stores M blocks.

When disk N is spun down, all its M blocks will be separated into N − 1 sets in a

way that each of the rest N − 1 disks will handle making replicas for M blocks in
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disk N . Thus, we have:

Fout G(N−1)(N−2)
= M (4.6)

and

if mod (
Fout G(N−1)(N−2)

N − 1
= 0)

Fin G(N−1)(N−2)
=

Fout G(N−1)(N−2)

N−1

else



































Fin G(N−1)(N−2)
=

⌊

Fout G(N−1)(N−2)

N−1

⌋

+ 1

for disk 1 ∼ disk D

Fin G(N−1)(N−2)
=

⌊

Fout G(N−1)(N−2)

N−1

⌋

for rest of (N −D)disks

(4.7)

where D = mod(
Fout G(N−2)(N−3)

N−2
), Fout G(N−1)(N−2)

represents replicas of the blocks

moved out from the disk N when PARAID shifts down the gear from GN−1 to GN−2

due to the decreasing workload. Fin G(N−1)(N−2)
represents the set of replicated blocks

that moved into each of the N − 1 disks. If M can be exactly divided by N − 1, each

disk will handle M/(N − 1) blocks. Otherwise, the first remainder of M/(N − 1)

disks will handle one extra block, while each of the rest disks will handle quotient of

M/(N − 1) blocks.

Similarly, when PARAID shifts down from gear GN−2 to GN−3, we have:

Fout G(N−2)(N−3)
= M + Fin G(N−1)(N−2)

(4.8)

53



and

if mod (
Fout G(N−2)(N−3)

N − 2
= 0)

Fin G(N−2)(N−3)
=

Fout G(N−2)(N−3)

N−2

else



















































































Fin G(N−2)(N−3)
=

⌊

Fout G(N−2)(N−3)

N − 2

⌋

+ 1

=

⌊

M + Fout G(N−1)(N−2)

N − 2

⌋

+ 1

for disk 1 ∼ disk D

Fin G(N−2)(N−3)
=

⌊

Fout G(N−2)(N−3)

N − 2

⌋

=

⌊

M + Fout G(N−1)(N−2)

N − 2

⌋

for rest of (N −D)disks

(4.9)

It is noticed that the disk to be powered off needs to duplicate blocks, which were

copied during the first downshifting period of time, apart from its own M blocks.

The rest N − 2 disks move in more replicated blocks accordingly.

In general, when PARAID shifts down from gearGj toGi, where j ∈ (3, ..., N−2),

the number of blocks that the disk to be powered off must handle the following number

of reads copy out is

Fout G(j)(j−1)
=M + Fin G(N−1)(N−2)

+ Fin G(N−2)(N−3)
+

+ Fin G(N−3)(N−4)
...+ Fin G(j+1)(j)

(4.10)
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while the number of blocks that must be written to the rest j − 1 disks is expressed

as:

if mod (Fout G(j)(j−1)
/j) = 0

Fin G(j)(j−1)
= Fout G(j)(j−1)

/j

else



































Fin G(j)(j−1)
=

⌊

Fout G(j)(j−1)
/j
⌋

+ 1

for disk 1 ∼ disk mod(Fout G(j)(j−1)
/(j − 1));

Fin G(j)(j−1)
=

⌊

Fout G(j)(j−1)
/j
⌋

for rest of disks.

(4.11)

where j represents the current gear number while (j − 1) indicated the gear number

that the PARAID system is about to be shifted to, ⌊Fout G(j)(j−1)
/j⌋ returns the in-

tegral part of Fout G(j)(j−1)
. We assume that every single file has the same number of

blocks, each of which has the same size. Hence, the I/O time for accessing each single

block is the same. Now we can formally express the utilization of disk i in phase l as

follows:

For the disk to be power-off, we have:

ρpower−off =
TI/O + Tread

T
(4.12)

, while for the rest of disks, we have:

ρpower−on =
TI/O + Twrite

T
(4.13)

To improve the readability, Table 4.2 lists the notation used in our model.

55



Table 4.2: List of Notations

Parameter Description

R Total Reliability
RBase V alue Reliability of Utilization
Rfreq(f) Reliability of Power Transition Frequency f

τ Temperature Factor
α Coefficient to R
β Shape Parameter
θ Scale Parameter

Tactive Active Time
Tpower on Power-on Time

ρ Disk Utilization
Wl Relative Weight of l-th I/O phase
Fout Copy Out File
Fin Copy In File
N Number of Disks
M Number of Blocks
TI/O Service Time for I/O Requests
Tread Service Time for Reading Duplicated Files
Twrite Service Time for Writing Duplicated Files

4.4 Reliability Evaluation

4.4.1 Experimental Setup

We developed a simulator in which the PARAID-0 system (a.k.a Power-Aware

RAID Level 0) is implemented. Table 4.3 shows the parameters of configurations for

PARAID-0. We evaluate the reliability of a five-disk PARAID-0 system, in which the

highest gear of the system is 4. In order to keep the RAID-0 configuration, there are

two disks kept active at the lowest gear 1. The file access rate is generated by Poisson

distribution. The operating temperature is set to 38◦C. Furthermore, we are using

properties of Seagate hard disk drive in our simulator. The properties are also shown

in Table 4.3. Since Seagate’s disks properties are introduced to our experimental

setups, we set β = 0.55, θ = 8410332 in the Weibull analysis model, and 0.54 as the

τ , which is the temperature factor in Eq. 4.1 [20].
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Table 4.3: Experiment Parameter Setup

Disk Type SEAGATE ST3146855FC
Capacity 146 GB
Cach Size SATA 16MB

Buffer to Host Transfer Rate 4Gb/s) (MAX)
Total Number of Disks 5

File Size 100 MB
Number of Files 1000
Synthetic Trace Poisson Distribution
Time Period 24 hours
Interval Time
(Time Phase)

1 hour

Power On Hour Per Year 8760

4.4.2 Disk Utilization

We first investigate the impacts of file access rate (λ in Poisson distribution) on

utilization of PARAID-0. We set values of utilization to trigger gear-shifting are set

to 60% for gear up while 30% for gear down. The PARAID-0 is assumed to be started

at the top gear– all five disks are working . Fig. 4.3 plots the utilization comparison

of PARAID-0 and RAID-0 within 24 hours. The average access rate is set to 20 per

hour (λ = 20), which is relatively low. We observe from Fig. 4.3 that as time goes,

the utilization of RAID-0 stays stable around 22%, while that of PARAID-0 increases

twice then stays stable around 36%. Those two increasing points are caused by the

gear-down shiftings hence the decreasing the number of active disks. Even though the

utilization of PARAID-0 is 60% higher than that of RAID-0 at the end hour 24, the

energy consumption of PARAID-0 is 40% lower than that of RAID-0 since there are

only three active disks by then. Fig. 4.4 shows the utilization comparison of PARAID-

0 and RAID-0 when the average access rate is set to 80 per hour (λ = 80), which is

3 times higher than that in Fig. 4.3. From the figure we notice that the utilization

difference between PARAID-0 and RAID-0 is very vague. The major reason is that

when the access rate is relatively high enough, the utilization of PARAID-0 keeps high

(around 90% shown in Fig. 4.4) accordingly and, therefore a gear-shifting mechanism
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Low Access Rate(20 times per hour)

is not triggered. Hence at high access rate pattern, PARAID-0 behaves as similar as

the regular RAID-0 system.

4.4.3 Annual Failure Rate

Fig. 4.5 illustrates the annual failure rates (AFR) of PARAID-0 and RAID-0

based on their utilization which is derived from Fig. 4.3. Results plotted in Fig. 4.5

show that AFR values of RAID-0 keeps increasing from 4.5% to 5.46% when hour

lapses, while AFR of PARAID-0 increases by 4% at hour 2 and surges by another 8%

at hour 3. We attribute this trend to the decreasing of the number of active disks

due to gear-down shifings. Since the utilization of PARAID-0 keeps the same as that

of RAID-0 at high access rate, the AFR of the two systems are similar to each other

accordingly. However, if the power transition issue is taken into account, AFR of

PARAID-0 is different from that of RAID-0 even if their access rate are the same to
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each other. Fig. 4.6 reveals the AFR comparisons between RAID-0 and PARAID-0

starts from different gears within 24 hours. From the figure we observe that when the

access rate increases shapely if PARAID-0 is not at the top gear, AFR of the system

will suffer from the number of power transitions. Storage system at lower gear hvae

relatively poor reliability. It is mainly because that more disks needs to be spun on to

meet the needs of requests hence more number of power transitions will be counted.

4.5 Summary

This paper presents a reliability model called MREED to quantitatively study

the reliability of energy-efficient parallel disk systems equipped with the PARAID

technique. Note that PARAID is a newly developed energy-saving scheme for RAID

systems. It aims to skew I/O load towards a few disks so that other disks can be

transitioned to low power states to conserve energy. I/O load skewing techniques like
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PARAID inherently affect reliability of RAID disks, because disks keep working on

low gears tend to have high failure rates, let alone the risk of failure caused by data

duplicating during the gear shifting. Furthermore, once the number of failed disks

exceeds the system’s tolerance, data in the system are lost without any chance of

being recovered. To address the model validation issue for MREED, we modified the

DiskSim simulator, which is a widely-used storage system simulator, to validate our

access-rate-utilizaiton sub-model of MREED by comparing the utilization of 5-disk

PARAID system using a real-world disk I/O trace with the utilization that calculated

from the MREED model using the same trace.

Future directions of this research can be performed in the following. First, we

will extend the MREED model to investigate reliability of different levels (e.g., level

5) of PARAID in the future which introduces parity data technique to tolerate one

disk failure. Second, we will investigate a fundamental trade-off between reliability
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and energy-efficiency in the context of energy-efficient RAID systems. A tradeoff

curve will be used as a unified framework to justify whether or not it is wise to trade

reliability for high energy efficiency. Last, we will evaluate and compare an array of

energy-saving techniques with respect to specific application domains.
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Chapter 5

Models Validation

5.1 Model Validation

5.1.1 The Validation Techniques

It is reasonable to use MINT to compare the reliability performance of different

energy-efficient storage systems, because the reliability models of the MAID and

PDC storage systems use the same experimental data. It is challenging to validate

the accuracy of the MINT modeling framework, since we are unable to watch MAID

and PDC running for a couple of decades. One way to address this problem is to

maintain and monitor a large number of MAID and PDC systems for a short period

of time (e.g., 5 to 10 years). If one can watch the MAID and PDC systems over their

entire service life, failure-rate data will be collected to validate reliability models.

Even if we can test MAID and PDC with 100 disks for five years, the sample size is

still considered small.

To address this validation problem, we verify MINT using the combination of the

following two validation techniques [68], which are practical approaches to verification

and validation of models.

• Event Validity: Events of occurrences of the model are compared to those of

the real storage system to determine if they are similar. For example, in our

validation process, we compared the file access rates in a real-world file system.

• Historical Data Validation: We first used part of the historical file access

data (i.e., file I/O traces) for building our models. Then, we relied on the

remaining data to test the models.
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Recall that MINT consists of two major components - the utilization model (see

Sections 3.3.1 and 3.3.2) and the failure-rate model. The utilization model estimates

disk utilization of the MAID and PDC systems based on I/O access rates. The failure-

rate model relies on real world failure data (see [61]) to predict the failure rate of a

disk from its utilization.

To validate MINT, we have to validate the utilization model and the failure-rate

model. Since failure rates in this study are projections based on the failure-rate model

derived from Google’s empirical analysis (see [61]), we pay attention on the validation

of the utilization model.

We performed the following six steps repeatedly to validate the utilization model

described in Sections 3.3.1 and 3.3.2.

• Step 1: We made use of the real-world I/O trace (i.e., Berkeley web trace) to

derive file access rates.

• Step 2: The file access rates are applied to our utilization model to estimate

disk utilizations of the MAID and PDC storage systems.

• Step 3: We implemented a trace replay tool, which captures the rapid evolution

of web server workloads.

• Step 4: We developed the simple MAID and PDC systems that handle I/O

requests created by the trace reply tool.

• Step 5: The utilizations of disks in the MAID and PDC storage systems are

measured.

• Step 6: We compare the measured disk utilizations from the two real storage

systems (see Step 5) with the disk utilizations derived from our models (see

Step 2).
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5.1.2 Berkeley Web Trace Replay

The Berkeley Web Trace [2] used in the model validation procedure was collected

from a web server for an online library project from January 22nd to February 23rd,

1997. The Berkeley Web Trace data represents intensive I/O activities of a real-world

system, for which MAID and PDC can conserve energy. Because I/O access rates in

this study are measured in term of number I/O per/month or No./month, we decided

to replay a one-month trace containing 33 trace files and 25205132 I/O requests.

Among all the requests, 24481520 are file accesses requesting 302519 web files. The

trace replay period is 1631753 seconds or 453.3 hours.

Table 5.1: File Access Rates of the One-Month Web Trace

File Access Rate Interval
(No./Month)

The number of files

0 ∼10 185383
10 ∼102 112203
102 ∼103 4539
103 ∼104 244
104 ∼105 113
105 ∼106 33
106 ∼107 4

Before applying file access rates into the utilization models presented in Sec-

tions 3.3.1 and 3.3.2, we performed an analysis on file access rates of the web traces.

The goal of this analysis is to determine the access rate of each web file accessed

over the one month period. Table 5.1 summarizes the distribution of file access rates

of the 12304467 web files recorded in the 33 traces. Table 5.1 indicates that a vast

majority (i.e., more than 61%) of web files were accessed less than ten times within

a month. However, there are a few web files that were accessed for more than 1000

times over a one-month period. The analysis result shows that the highest file access

rate is 3180697 No./month.
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Figure 5.1: The file access rate distribution of the one-month Berkeley web trace.
Access Rate ranges from 1 to 4.5 ∗ 104 No./month

Fig. 5.1 shows the files accesses distribution pattern using a bar chart. The

distribution pattern suggests that when the access rate increases, the number of files

that have such access rate decreases dramatically.

5.1.3 Experimental Results

Since the Utilization-AFR model, which transfers the utilization of systems to

reliability, is employing the same date from the validated Google report, we only show

the validation of Access Rate-Utilization model in this subsection.

Fig. 5.2 indicates the utilization comparison between the MINT model and Berke-

ley Web Trace-driven simulation. In order to make a clearer comparison between the

MINT model and the trace-driven simulation, we divided the utilizaiton comparison

of PDC, MAID-1 and MAID-2 separately (as shown in Fig. 5.3,Fig. 5.4 and Fig. 5.5).

From the figures, we observed that the the cures according to MINT model show a
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Figure 5.2: Impacts of file access rate on disk utilization. Access rate varies from 10
to 64 ∗ 104 No./month

similar trend to that of simulation. Furthermore, the differential rate between the

model and the simulation is around 10%.

After validating the Access Rate-Utilization sub-model, we further present the

comparison results of Access Rate-AFR between the MINT model and the simulation.

We are able to build up a Utilization-AFR sub-model of our own and insert it to our

MINT model. However, due to the lack of maintenance date recently, how to validate

the sub-model becomes a hard issue to deal with. Instead, we are using the validated

data published by Google [61] in this part. Once we get more updated data in the

future, such sub-model could be re-modified.

Fig. 5.6, Fig. 5.7, and Fig. 5.8 show the impacts of file access rate on AFR. Even

thought the trends of Access Rate-Utilization sub-model appeared similar between

the model and the simulation (as shown in Fig. 5.3,Fig. 5.4 and Fig. 5.5), there
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Figure 5.3: Impacts of file access rate on disk utilization (PDC). Access rate varies
from 10 to 64 ∗ 104 No./month
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Figure 5.4: Impacts of file access rate on disk utilization (MAID1). Access rate
varies from 10 to 64 ∗ 104 No./month
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Figure 5.5: Impacts of file access rate on disk utilization (MAID2). Access rate
varies from 10 to 64 ∗ 104 No./month

are noticeable differences between them when we discussed the AFR issue. Such

differences are mainly due to the bath-shaped curve shown in Fig. 3.3.

5.2 Validation of MREED

5.2.1 The Validation Techniques

It is challenging to validate the accuracy of the MREED modeling framework,

since we are unable to monitor PARAID running for a couple of decades. One way to

address this problem is to maintain and analyze a large number of PARAID systems

for a short period of time (e.g., 5 to 10 years). If one can track the systems over their

entire service life, failure-rate data will be collected to validate reliability models.

Even if we can test PARAID with 100 disks for five years, the sample size is small

from a validation perspective.
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Figure 5.6: Impacts of file access rate on AFR (PDC). Access rate varies from 10 to
64 ∗ 104 No./month
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Figure 5.7: Impacts of file access rate on AFR (MAID1). Access rate varies from 10
to 64 ∗ 104 No./month
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Figure 5.8: Impacts of file access rate on AFR (MAID2). Access rate varies from 10
to 64 ∗ 104 No./month

To address this validation issue, we verify MREED using the Event Validity

validation technique [68], which is a practical approach to verification and validation

of reliability models. Events of occurrences of our MREED model are compared

to those of the widely-used storage system simulator– DiskSim– to determine if our

model and DiskSim agree with one another. In our validation process, we compared

a file access trace in a real-world file system

Recall that MREED consists of two major components – a utilization model and

a failure-rate model. The utilization model estimates disk utilization of the PARAID

system based on I/O access rates. The failure-rate model relies onWeibull distribution

analysis, parameters of which were derived from a hard drive disk manufacture’s

report (see [20]) to predict the possibility of disk failure from its utilization.

To validate MREED, we have to validate the utilization model and the failure-

rate model. Since failure rates in this study are projections based on the failure-rate
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model derived from Seagate’s empirical analysis (see [20]), we pay attention to the

validation of the utilization model.

5.2.2 DiskSim Simulation

The DiskSim simulator, a powerful tool for the modeling and simulation of disk

systems, is used widely for storage systems research [40]. Recent research projects

using the DiskSim simulation environment include reducing disk I/O performance

sensitivity and conserving energy in disk systems [84]. Although DiskSim is a pow-

erful simulation tool research, there is a lack of power models in DiskSim. The

Sensitivity-Based Optimization of Disk Architecture introduced accurate power mod-

els into DiskSim, but this work was based on DiskSim 2.0 [73]. Another recent study

on DiskSim and power models is the Dempsey project [103]. We are grateful to the

author of the EEPF papar [50] who provided us with the source code of power models

developed for a newer version (i.e., version 4.0) of DiskSim. This makes it possible

for us to implement utilization and power transition models into DiskSim.

5.2.3 Simulation Framework

In order to complete our validation work via DiskSim, we integrate the following

two major components in the system.

• DiskSim Simulator: It is in charge of simulating the operations of all disks and

data blocks managements in the sytem.

• File to Block Translator: It is responsible for mapping files residing in the

storage system into block-level data.

As shown in Fig. 5.9, files are mapped into blocks before being used as inputs to

the DiskSim simulator. The file-to-block converter is critical, because data blocks

are typically managed within a single node and a higher level mechanism is needed
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to manage data across different nodes in RAID systems. In the DiskSim simulator,

Input Trace

(File Level)

File to Block Mapper

Simulate File

(Block Access)

DiskSim

(Block Level)

Figure 5.9: File to Block Level Converter Outline

we use the same disk model (which is a Seagate ST3146855LW hard disk drive), the

I/O throughput of which is significantly high than consumer level products. In order

to avoid I/O transfer throughput bottlenecks, we modify a disk architecture in the

DiskSim that each single disk has its own bus and controller (see in Fig. 5.10).

5.2.4 UMass WebSearch Trace

The UMass WebSearch Trace [6] is used in the model validation process. This

trace is obtained from the University of Massachusetts-Amherst (UMASS) website.

The trace used in our experiments is WebSearch3.trace, which contains 4,261,709 read

requests. The trace reply period is 298,715,395 milliseconds or 83 hours.
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Figure 5.10: Diagram of the Storage System Corresponding to the DiskSim Raid-0

5.2.5 Validation Results

The Utilization-AFR model transfers the utilization of systems to the reliability.

This model is employing the Weibull analysis by the same β and θ parameters (see

Section 4.2), so we only show the validation of utilization and power transition model

in this subsection.

In order to make a clearer comparison between the MREED model and the trace-

driven DiskSim simulations, we divided the comparison of utilization(see Fig. 5.11)

and power transition (see Fig. 5.12). We observe that results obtained from the

MREED model is similar to the simulation. Furthermore, the discrepancy between

the model and the simulation is below 10%.

After validating the Access Rate-Utilization sub-model, we further present the

comparison results of Access Rate-Power Transition between the MREED model and

the simulation results (as shown in Fig. 5.12). The figure shows that as time elapsed,
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Figure 5.11: Utilization Comparison Between MREED and DiskSim Simulator

the gear shifted accordingly as files access pattern changed. Fig. 5.12 illustrates that

our model performs well in estimating gear-shift events.
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Chapter 6

Improving Reliability of Energy-Efficient Parallel Storage Systems

The Massive Array of Idle Disks (MAID) technique is an effective energy saving

schemes for parallel disk systems. The goal MAID is to skew I/O load towards a few

disks so that other disks can be transitioned to low power states to conserve energy.

I/O load skewing techniques like MAID inherently affect reliability of parallel disks

because disks storing popular data tend to have high failure rates than disks storing

cold data. To achieve good tradeoffs between energy efficiency and disk reliability,

we first present a reliability model to quantitatively study the reliability of energy-

efficient parallel disk systems equipped with MAID schemes. Then, we propose a novel

strategy—disk swapping—to improve disk reliability by alternating disks storing hot

data with disks holding cold data. At Last, we further improve disk reliability by

introducing multiple disk swapping strategy. We demonstrate that our disk-swapping

strategies not only can increase the lifetime of cache disks in MAID-based parallel

disk systems, but also further reduce the failure rate of the entire system when the

multiple-disk swapping is introduced.

6.1 Introduction

Parallel disk systems, providing high-performance data-processing capacity, are

of great value to large-scale parallel computers [4]. A parallel disk system comprised

of an array of independent disks can be built from low-cost commodity hardware

components. In the past few decades, parallel disk systems have increasingly become

popular for data-intensive applications running on massively parallel computing plat-

forms [81].
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Existing energy conservation techniques can yield significant energy savings in

disks. While several energy conservation schemes like cache-based energy saving

approaches normally have marginal impact on disk reliability, many energy-saving

schemes (e.g., dynamic power management and workload skew techniques) inevitably

have noticeable adverse impacts on storage systems [12][90]. For example, dynamic

power management (DPM) techniques save energy by using frequent disk spin-downs

and spin-ups, which in turn can shorten disk lifetime [22] [34] [46], redundancy

techniques [60] [102] [82] [89], workload skew [54] [38] [98], and multi-speed set-

tings [32] [76]. Unlike DPM, workload-skew techniques such as MAID [19] and

PDC [58] move popular data sets to a subset of disks arrays acting as workhorses,

which are kept busy in a way that other disks can be turned into the standby mode

to save energy. Compared with disks storing cold data, disks archiving hot data

inherently have higher risk of breaking down.

Unfortunately, it is often difficult for storage researchers to improve reliability of

energy-efficient disk systems. One of the main reasons lies in the challenge that every

disk energy-saving research faces today, how to evaluate reliability impacts of power

management strategies on disk systems. Although reliability of disk systems can

be estimated by simulating the behaviors of energy-saving algorithms, there is lack

of fast and accurate methodology to evaluate reliability of modern storage systems

with high-energy efficiency. To address this problem, we developed a mathematical

reliability model called MINT to estimate the reliability of a parallel disk system that

employs a variety of reliability-affecting energy conservation techniques [99].

In this chapter, we first study the reliability of a parallel disk system equipped

with a well-known energy-saving scheme— the MAID [19] technique. I/O load skew-

ing techniques like MAID inherently affect reliability of parallel disks because of two

reasons: First, disks storing popular data tend to have high I/O utilization than disks

storing cold data. Second, disks with higher utilization are likely to have higher risk
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of breaking down. To address the adverse impact of load skewing techniques on disk

reliability, a disk swapping strategy was proposed to improve disk reliability in MAID

by switching the roles of data disks and cache disks. We evaluate impacts of the disk

swapping scheme on the reliability of MAID-based parallel disk systems.

We summarize our contributions as follows:

1. We developed a model for Massive Array of Idle Disks (MAID) based on Mathe-

matical Reliability Models for Energy-efficient Parallel Disk System (MINT) [99];

2. We built single disk swapping and multiple disk swapping mechanisms to im-

prove reliability of various load skewing techniques.

3. We studied the impacts of the disk swapping schemes on the reliability of MAID.

The remainder of this chapter is organized as follows. Section 6.2 studies single

disk swapping and multiple disks swapping strategies on MAID. Section 6.3 presents

experimental results and performance evaluation. Finally, Section 6.4 concludes the

chapter with discussions.

6.2 Improving Reliability of MAID via Disk Swapping

6.2.1 Improving Reliability of Cache Disks in MAID

Cache disks in MAID are more likely to fail than data disks due to the two

reasons. First, cache disks are always kept active to maintain short I/O response

times. Second, the utilization of cache disks is expected to be much higher than

that of data disks. From the aspect of data loss, the reliability of MAID relies on

the failure rate of data disks rather than that of cache disks. However, cache disks

tend to be a single point of failure in MAID, which if the cache disks fail, will stop

MAID from conserving energy. In addition, frequently replacing failed cache disks

can increase hardware and management costs in MAID. To address this single point
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of failure issue and make MAID cost-effective, we designed a disk swapping strategy

for enhancing the reliability of cache disks in MAID.

Fig. 6.1 shows the basic idea of the disk swapping mechanism, according to which

disks rotate to perform the cache-disk functionality. In other words, the roles of cache

disks and data disks will be periodically switched in a way that all the disks in MAID

have equal chance to perform the role of caching popular data. For example, the two

cache disks on the left-hand side in Fig. 6.1 are swapped with the two data disks on

the right-hand side after a certain period of time (see Section 6.3.3 for circumstances

under which disks should be swapped). For simplicity without losing generality, we

assume that all the data disks in MAID initially are identical in terms of reliability.

This assumption is reasonable because when a MAID system is built, all the new disks

with the same model come from the same vendor. Initially, the two cache disks in

Fig. 6.1 can be swapped with any data disk. After the initial phase of disk swapping,

the cache disks are switched their role of storing replica data with the data disks with

the lowest annual failure rate. In doing so, we ensure that cache disks are the most

reliable ones among all the disks in MAID after each disk swapping process. It is

worth noting that the goal of disk swapping is not to increase mean time to data loss,

but is to boost mean time to cache-disk failure by balancing failure rates across all

disks in MAID.

Fig. 6.2 is the logic diagram of the single disk swapping mechanism, which demon-

strates more details about the swapping. When the access rate reaches the threshold,

which is set beforehand, a data disk’s capacity will be checked. If the data disk has

enough free space to hold all the replicas that are hold by a cache disk, it will be

paired with the cache disk for swapping later. Otherwise, other data disks’ capacity

will be checked until a disk that meets the requirement. If there is no disk meets the

requirement, the disk swapping won’t be executed. This step needs to be executed

first to prevent the original data from miss-deleting on the data disk. In our research,
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Data DisksCache Disks

Figure 6.1: Disk Swapping in MAID: The two cache disks on the left-hand side are
swapped with the two data disks on the right-hand side

we assumed that the data disk’s capacity is large enough to hold all the cache data

and to keep the original data. The capacity of the cache disk will be examined when

it is paired with a data disk.

If the cache disk has enough free space to hold all the data that are hold by the

data disk, the data disk will duplicate all the cache data from the cache disk while

holding all the original data. Then the cache disk will copy the data from the data

disk and keeps all replicas of its own. On the other hand, if the cache disk does

not have enough free space to hold all the data from the data disk, all replicas it

holds will be deleted after they are duplicated to the destination releasing the space

for the data copied from the data disk. At this step, no matter the cache disk has

available capacity or not, the data needs to be transfered from cache disk first to

prevent original data from either miss-deleting or losing.

Algorithm 1 outlined below is the single-disk-swapping algorithm that switches

the roles of cache disks and data disks to improve the reliability of cache disks. The

algorithm is called single-disk-swapping because the disk swapping occurs only once

in MAID.

Disk swapping is very beneficial to MAID for two reasons. First, disk swap-

ping further improves the energy efficiency of MAID because any failed cache disk
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Figure 6.2: Logic Diagram of Disk Swapping
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Algorithm 1 The Single-Disk-Swapping Algorithm

1: Input The Access Rate of The System;
2: if The Access Rate Reaches The Threshold then
3: Check the Available Capacity of Data Disk;
4: if The Available Capacity of Data Disk Is Enough then
5: Check the Available Capacity of Cache Disk;
6: if The Available Capacity of Cache Disk Is Enough then
7: Data Disk Keeps All Original Data and Duplicates Cache Data From Cache

Disk;
Cache Disk Keeps All Replicas and Copies Data From Data Disk;

8: else
9: if The Available Capacity of Cache Disk Is NOT Enough then

10: Data Disk Keeps All Original Data and Duplicates Cache Data From
Cache Disk;
Cache Disk Deletes All Replicas and Copies Data From Data Disk;

11: end if
12: end if
13: else
14: if The Available Capacity of Data Disk Is NOT Enough then
15: while There Is A Data Disk That Has Enough Available Capacity do
16: Check the Available Capacity of Cache Disk;
17: end while
18: end if
19: end if
20: else
21: Don’t Do Swap;
22: end if
23: Disk Swap Ends;

82



can prevent MAID from effectively saving energy. Second, disk swapping reduces

maintenance cost of MAID by making cache disks less likely to fail.

6.2.2 Swapping Disks Multiple Times

Now we consider the case where disk swapping is invoked multiple times in MAID.

As described in Section 6.2.1, the single-disk-swapping mechanism improves the

reliability of the MAID system by making all disks have equal chance to perform the

role of cache disks that have high I/O workload and high utilization. The single-

disk-swapping algorithm has a major limitation, because disks are swapped only

once throughout their lifetimes. That means single-disk-swapping only affects the

reliability for a very short period of time. After each disk swapping, the utilization of

those disks with low AFRs are likely to be kept at a high level, which in turn leads to

an increasing AFR of the entire disk system. In order to improve the reliability of the

MAID system for a long time period (e.g., 1,000,000 hours or over 100 years [71]), we

address the issue of swapping disks multiple times (see multiple disk swapping shown

in Algorithm 2).

In the multiple-disk-swapping algorithm, the number of disk-swapping per month

is an important parameter affecting both reliability and performance of MAID. This

parameter can either be manually set as a constraint or be configured dynamically

according to changing workload conditions. In the static approach, the disk-swapping

mechanism is triggered after MAID has been operating for a certain number of days

regardless I/O workload. For example, if the frequency is set as three times per

month, disks will be swapped once every ten days.

In the dynamic approach, the disk-swapping function is invoked once workload

conditions (i.e., access rate) meet the configured value regardless the time intervals

between two swaps. For instance, if the access rate is set as 2∗105 Numbers per month,

the disks will be swapped every time when the access rate reaches 2 ∗ 105No./Month.
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The dynamic multiple-disk-swapping scheme ensures that disk swaps occur only when

it is necessary.

Algorithm 2 The Algorithm for Multiple Disk Swapping

1: while The Frequency of Disk Swapping Is No More Than The Given Ones do
2: Run Algorithm 1
3: end while
4: Disk Swap Ends;

6.3 Experimental Results and Evaluation

6.3.1 Experimental Setup

We developed a simulator to validate the reliability model for MAID. It might

be unfair to compare the reliability of MAID with any non-energy-efficient parallel

disks, since MAID trades extra cache disks for high energy efficiency. To make fair

comparisons, we considered a MAID system with two configurations. The first con-

figuration referred to as MAID-1 employs existing disks in a parallel disk system as

cache disks to store frequently accessed data. Thus, the first configuration of MAID

improves energy efficiency of the parallel disk system at the cost of capacity. In con-

trast, the second configuration— called MAID-2—needs extra disks to be added to

the disk system to serve as cache disks.

Our experiments were started by evaluating the reliability of the original MAID

system without disk swapping. Then, we studied the reliability impacts of the single-

disk-swapping strategy on MAID. Finally, we assessed the reliability impacts of the

multiple-disk-swapping scheme. We simulated MAID-1, and MAID-2 coupled with

the disk-swapping strategies in two parallel disk systems described in Table 6.1. For

the MAID-1 configuration, there are 5 cache disks and 15 data disks. In the disk

system for the MAID-2 configuration, there are 5 cache disks and 20 data disks. As

for the case of PDC, we fixed the number of disks to 20. Thus, we studied MAID-2
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Table 6.1: The characteristics of the simulated parallel disk system used to evaluate the

reliability of MAID-1, and MAID-2.

Energy-efficiency
Scheme

Number of Disks
File Access Rate
(No. per month)

File Size
(KB)

NONE*
20 data

(20 in total)
0˜106 300

MAID-1
15 data+5 cache
(20 in total)

0˜106 300

MAID-2
20 data+5 cache
(25 in total)

0˜106 300

Original Disk System Without Any Energy-Efficiency Scheme

and PDC using a parallel disk system with 20 disks; we used a similar disk system

with totally 25 disks to investigate MAID-1. We varied the file access rate in the

range between 0 to 106 times per month. The average file size considered in our

experiments is 300KB. The base operating temperature is set to 35◦C. In this study,

we focused on read-only workload. Nevertheless, the MINT model should be readily

extended to capture the characteristics of read/write workloads.

6.3.2 Disk Utilization

Fig. 6.3 shows that when the average file access rate increases, the utilizations of

MAID-1 and MAID-2 increase accordingly. Compared with the utilization of MAID-

2, the utilization of MAID-1 is more sensitive to the file access rate. Under low I/O

load, the utilizations of MAID-1 and MAID-2 are very close to each other. When

I/O load becomes relatively high, the utilization of MAID-1 is slightly higher than

that of MAID-2. This is mainly because the capacity of MAID-2 is larger than that

of MAID-1.

6.3.3 The Single-Disk-Swapping Strategy

A key issue of the disk-swapping strategies is to determine circumstances under

which disks should be swapped in order to improve disk system reliability. One
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Figure 6.3: Utilization Comparison of the MAID
Access Rate Impacts on AFR (No Swapping)

straightforward way to address this issue is to periodically initiate the disk-swapping

process. For example, we can swap disks in MAID once every month. Periodically

swapping disks, however, might not always enhance the reliability of parallel disk

systems. For instance, swapping disks under very light workloads cannot substantially

improve disk system reliability. In some extreme cases, swapping disks under light

workload may worsen disk reliability due to overhead of swapping. As such, our

disk-swapping strategies do not periodically swap disks. Rather, the disk-swapping

process is initiated when the average I/O access rates exceed a threshold. In our

experiments, we evaluated the impact of this access-rate threshold on the reliability

of a parallel disk system. More specifically, the threshold is set to 2 ∗ 105, 5 ∗ 105,

and 8 ∗ 105 times/month, respectively. These three values are representative values

for the threshold because when the access rate hits 5 ∗ 105, the disk utilization lies
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Figure 6.4: Utilization Comparison of the MAID
Access Rate Impacts on AFR (Threshold=2 ∗ 105)

in the range between 80% and 90% [61], which in turn ensures that AFR increases

with the increasing value of utilization (see Fig. 3.7).

Figs. 6.4, 6.5, and 6.6 reveal the annual failure rates (AFR) of MAID-1 and

MAID-2 with and without using the proposed disk-swapping strategy. The results

plotted in Figs. 6.4, 6.5, and 6.6 show that for both MAID-1 and MAID-2, the disk-

swapping process reduces the reliability of data disks in the disk system. We attribute

the reliability degradation to the following reasons. MAID-1 and MAID-2 only store

replicas of popular data; the reliability of the entire disk system is not affected by

failures of cache disks. The disk-swapping processes increase the average utilization

of data disks, thereby increasing the AFR values of data disks. Nevertheless, the

disk-swapping strategy has its own unique advantage. Disk swapping is intended to

reduce hardware maintenance cost by increasing the lifetime of cache disks. In other
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words, disk swapping is capable of extending the Mean Time To Failure or MTTF [61]

of the cache disks.

We observed from Figs. 6.4, 6.5, and 6.6 that for the MAID-based disk system

with the disk-swapping strategy, a small threshold leads to a low AFR. Compared

with the other two thresholds, the 2 ∗ 105 threshold showed in Fig. 6.4 results in the

lower AFR. The reason is that when the access rate is 2 ∗ 105 No./month, the disk

utilization is around 35% [61], which lies in the monotone decreasing area of the

curve shown in Fig. 3.7. Thus, disk swapping reduces AFR for a while until the disk

utilization reaches 60%.

6.3.4 The Multiple-Disk-Swapping Strategy

Section 6.3.3 shows that single-disk-swapping strategy can improve the reliabil-

ity of the MAID system. However, the single-disk-swapping has minimal reliability

impact in a long period of time. For example, Fig. 6.4 indicates that after swapping

cache and data disks, the failure rate of the disk system continues going up as the

access rate keeps increasing. We observed that after the first disk swap without any

consecutive disk swaps, the failure rate of disk-swapping-enabled MAID will become

close to that of non-disk-swapping MAID. Thus, disk swapping must be repeatedly

conducted under the condition that the failure rate of MAID increases.

To evaluate the multiple-disk-swapping scheme, we configured the access rate

threshold to 2 ∗ 105, 2.5 ∗ 105, and 4 ∗ 105 No./month. For example, if the threshold

is set to 2 ∗ 105, the total access rate can be as high as 8 ∗ 105, which is one of the

thresholds chosen for the single-disk-swapping strategy.

Figs. 6.7, 6.8, and 6.9 reveal the annual failure rates (AFR) of MAID-1 and

MAID-2 with both a single disk swap and multiple disk swaps. The results show that

the multiple-disk-swapping process further reduces the failure rate of data disks in

the MAID system. Comparing the AFR values plotted in Figs. 6.4, 6.5, and 6.6,

89



0 1 2 3 4 5 6 7 8 9 10

x 10
5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Access Rate(per month)

A
F

R
(%

)

3−Year−Old Hard Drive

 

 
MAID−1(no swap)
MAID−2(no swap)
MAID−1(swap MTTF)
MAID−2(swap MTTF)

Figure 6.7: Utilization Comparison of the MAID
Access Rate Impacts on AFR (Multiple Threshold=2 ∗ 105)
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Figure 6.9: Utilization Comparison of the MAID
Access Rate Impacts on AFR (Multiple Threshold=4 ∗ 105)

we noticed that the failure rate of MAID with multiple disk swaps is lower than

that of the same with with a single disk swap at access rate 10 ∗ 105. As the access

rate increases, the reliability improvement achieved by the multiple-disk-swapping

scheme becomes more pronounced. The major reason behind the improvement is

that swapping disks multiple times can continue balancing I/O workload of each disk

in the MAID system in the long run. After each disk swap, if the failure rate of MAID

increases to a certain point, (see, for example, Fig. 6.3) a subsequent disk swap will

be initiated.

Figs. 6.7, 6.8, and 6.9 demonstrate that the failure rate of the multi-swapping

MADI system changes periodically. For exampple, Fig. 6.7 shows that immediately

after each disk swapping process, the failure rate of MAID increases 5% due to the

overhead caused by copying data among cache disks and data disks. Then, the failure

rate stays stable for a while until the next disk swapping occurs. We observe that at

91



the second disk swap, the cumulative access rate is 4 ∗ 105, which is the same as the

first swapping threshold shown in Fig. 6.9. The forth disk-swapping point in Fig. 6.7 is

the same as that single disk swapping threshold shown in Fig. 6.6. Comparing Fig. 6.9

and Fig. 6.6, we conclude that when access rate reaches 10∗105, the failure rate of the

multiple-disk-swapping scheme is lower than that of the single-disk-swapping scheme.

This reliability improvement is made possible by multiple disk swaps, because cache

disks and data disks are switched after the failure rates of the cache disks become

higher than those of the data disks. Repeatedly swapping cache and data disks can

well balance the failure rates of all the disks in the MAID system.

6.4 Summary

This chapter presents a reliability model to quantitatively study the reliability of

energy-efficient parallel disk systems equipped with the Massive Array of Idle Disks

(MAID) technique. Note that MAID is a well-known effective energy-saving schemes

for parallel disk systems. It aims to skew I/O load towards a few disks so that

other disks can be transitioned to low power states to conserve energy. I/O load

skewing techniques like MAID inherently affect reliability of parallel disks because

disks storing popular data tend to have high failure rates than disks storing cold data.

To address the reliability issue in MAID, we developed single disk-swapping strategies

to improve disk reliability by alternating disks storing hot data with disks holding

cold data. Additionally, we introduced multiple disk-swapping scheme to further

improve reliability of MAID. Then we quantitatively evaluated the impacts of the

disk-swapping strategies on reliability of MAID-based disk systems. We demonstrated

that the disk-swapping strategies not only can increase the lifetime of cache disks

in MAID-based parallel disk systems, but also can improve its reliability in the long

period of time by balancing the workload of cache disks and data disks then balancing

the their utilization correspondingly.
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Future directions of this research can be performed in the following. First, we

will extend the MINT model to investigate mixed read/write workloads in the future.

Second, we will investigate a fundamental trade-off between reliability and energy-

efficiency in the context of energy-efficient disk arrays. A tradeoff curve will be used

as a unified framework to justify whether or not it is worth trading reliability for high

energy efficiency. Last, we will study the most appropriate conditions under which

disk-swapping processes should be initiated.
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Chapter 7

Conclusion and Future Work

7.1 Main Contributions

7.1.1 The MINT model for parallel storage systems

In recognition that existing disk reliability models cannot be used to evaluate

reliability of energy-efficient disk systems, we propose a new model called MINT

to evaluate the reliability of a disk array equipped with reliability-affecting energy

conservation techniques. We first model the impacts of disk utilization and power-

state transition frequency on reliability of each disk in a disk array. We then derive

the reliability of an individual disk from its utilization, age, temperature, and power-

state transition frequency. Finally, we use MINT to study the reliability of disk

arrays coupled with the MAID (Massive Array of Idle Disks) technique and the PDC

(Popular Disk Concentration technique) technique.

7.1.2 The MREED model for RAID systems

We presente a reliability model called MREED to quantitatively study the relia-

bility of energy-efficient parallel disk systems equipped with the PARAID technique.

Note that PARAID is a newly developed energy-saving scheme for RAID systems. It

aims to skew I/O load towards a few disks so that other disks can be transitioned

to low power states to conserve energy. I/O load skewing techniques like PARAID

inherently affect reliability of RAID disks, because disks keep working on low gears

tend to have high failure rates, let alone the risk of failure caused by data duplicating

during the gear shifting. Furthermore, once the number of failed disks exceeds the
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systems tolerance, data in the system are lost without any chance of being recov-

ered. To address the model validation issue for MREED, we modified the DiskSim

simulator, which is a widely-used storage system simulator, to validate our access-

rate-utilizaiton sub-model of MREED by comparing the utilization of 5-disk PARAID

system using a real-world disk I/O trace with the utilization that calculated from the

MREED model using the same trace.

7.1.3 Reliability improvement of parallel storage systems

This dissertation presents a reliability model to quantitatively study the reliabil-

ity of energy-efficient parallel disk systems equipped with the Massive Array of Idle

Disks (MAID) technique. Note that MAID is a well-known effective energy-saving

schemes for parallel disk systems. It aims to skew I/O load towards a few disks so

that other disks can be transitioned to low power states to conserve energy. I/O

load skewing techniques like MAID inherently affect reliability of parallel disks be-

cause disks storing popular data tend to have high failure rates than disks storing

cold data. To address the reliability issue in MAID, we develop single disk-swapping

strategies to improve disk reliability by alternating disks storing hot data with disks

holding cold data. Additionally, we introduce multiple disk-swapping scheme to fur-

ther improve reliability of MAID. Then we quantitatively evaluate the impacts of the

disk-swapping strategies on reliability of MAID-based disk systems. We demonstrate

that the disk-swapping strategies not only can increase the lifetime of cache disks

in MAID-based parallel disk systems, but also can improve its reliability in the long

period of time by balancing the workload of cache disks and data disks then balancing

the their utilization correspondingly.
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7.2 Future Work

7.2.1 Future Directions for the Short Term

Our short-term interest will concentrate on the following two directions, which

are the extensions of my past and current research on reliability analytical model for

parallel storage systems

• Fault Tolerance Analysis for RAID Storage Systems

Although the MINT model presented in this dissertation is adequate to quantify

the reliability of energy-efficient disk arrays, MINT is insufficient to analyze

energy-ware RAID systems. We plan to investigate a more sophisticated model

that can modify data access patterns and the stripped data placement. To

reduce power, a conventional RAID system cannot simply rely on caching and

powering off disks during idle periods due to its disk parallelism–all disks are

spinning even under a light load. By varying the number of powered-on disks

via gear-shifting or switching among sets of disks (e.g. Power-Aware Redundant

Array of Inexpensive Disks), the energy consumption of a RAID system can be

reduced. However, after changing the number of active disks in the system,

the RAID level will be changed accordingly. This affects the reliability of the

system. As a further extension of this dissertation, we plan to investigate the

behavior of RAID levels in terms of gear shifting and the striped data movement

along with input data access patterns.

• Predictive Reliability Models for Storage Systems

Reliability evaluation of a disk system indicates the present liability of the

system. We argue that if one can predict the reliability of a storage system,

the system’s maintenance expenses can be reduced as disks will be replaced on

time. Risks that disks will fail before being replaced can be diminished and

the chances of purchasing new disks can be decreased. The goal of this future
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research is to build up a predictive reliability models to forecast reliability of

storage systems based on data access patterns and to provide disks maintenance

suggestions. Furthermore, such a strategy can be integrated with load balancing

schemes to ensure tow policies. First, disks reaching the end of their lifetimes

will be assigned with lighter workloads. Second, data on disks that are likely

to fail will be backed-up in right time.

7.2.2 Future Directions for the Long Term

We plan to pursue the following three long-term research goals.

• Energy-Aware Storage Systems in Data Centers

Distributed File Systems are becoming the de-facto method of data storage

for the new generation of data centers ( e.g., web applications by companies

like Google, Amazon, and Yahoo!). There are several reasons that distributed

storage mechanisms are preferred over traditional relational database systems

including scalability, availability and performance. However, the energy con-

sumption issue needs to be addressed carefully in data centers. For example, a

360-T flops supercomputer (e.g., IBM Blue Gene/L) with traditional processors

needs 2,329.60KW/h to be operated. This energy requirement is approximately

equal to the sum of 22,000 US households’ energy consumption. In addition,

high-temperature heat dissipation caused by large-scale clusters requires cool-

ing equipments (e.g., air conditioners) to control temperatures in supercomputer

and data centers.The trends in power/cooling delivery and cost highlight the

need for support in data centers for power and thermal management. In the

long term, we plan to explore schemes in utilizing platform power manage-

ment(e.g., processor frequency scaling, prefetching, caching, data management,

load balancing, etc) for data centers.
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• Reliability-Aware Parallel Virtual File System(PVFS) in High-Performance

Computing

PVFS, a popular network clustering file system, brings state-of-the-art parallel

I/O concepts to production parallel systems. It is designed to scale to petabytes

of storage and provide access rates at 100s of GB/s. While working on a PVFS-

related research project, we realized that the energy-saving may not be a central

issue for high-performance computing(HPC) systems. One of the major reasons

is that energy-efficiency schemes usually negatively affect to the main goal of

a HPC system, which aims to maximized system performance. However, the

fault-tolerant issue plays an important role in HPC systems, because any minor

defect may cause data tragedies of the entire system. Hence, we plan to develop

fault tolerant mechanism for PVFS in order to enhance availability.

• Information Assurance and Security in Cloud Storage Systems

Providing confidentiality, integrity, authenticity, privacy and availability of in-

formation are essential for the normal operation in cloud computing. Hence,

information assurance and security is a critical issue. As the last long-term

research direction, we will place emphasis on schemes of authorization and au-

thentication for cloud storage systems
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[55] J.-F. Pâris, T.J. Schwarz, and D.D.E. Long. Evaluating the reliability of storage
systems. In Proc. IEEE Int’l Symp. Reliable and Distr. Sys., 2006.

[56] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (raid). In SIGMOD ’88: Proceedings of the 1988
ACM SIGMOD international conference on Management of data, pages 109–
116, New York, NY, USA, 1988. ACM.

[57] Juan Piernas, Jarek Nieplocha, and Evan J. Felix. Evaluation of active stor-
age strategies for the lustre parallel file system. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, SC ’07, pages 28:1–28:10, New
York, NY, USA, 2007. ACM.

[58] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-
based servers. In Proc. 18th Int’l Conf. Supercomputing, 2004.

[59] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing and un-
balancing for power and performance in cluster-based systems. Proc. Workshop
Compilers and Operating Sys. for Low Power, September 2001.

[60] E. Pinheiro, R. Bianchini, and C. Dubnicki. Exploiting redundancy to conserve
energy in storage systems. In Proc. Joint Int’l Conf. Measurement and Modeling
of Computer Systems, 2006.

[61] E. Pinheiro, W.-D. Weber, and L.A. Barroso. Failure trends in a large disk
drive population. In Proc. USENIX Conf. File and Storage Tech., February
2007.

[62] Eduardo Pinheiro, Ricardo Bianchini, and Cezary Dubnicki. Exploiting redun-
dancy to conserve energy in storage systems. SIGMETRICS Perform. Eval.
Rev., 34(1):15–26, 2006.

[63] A. Polze, P. Troandger, and F. Salfner. Timely virtual machine migration for
pro-active fault tolerance. In Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011 14th IEEE International
Symposium on, pages 234 –243, march 2011.

[64] Drew Roselli, Jacob R. Lorch, and Thomas E. Anderson. A comparison of
file system workloads. In ATEC ’00: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 4–4, Berkeley, CA, USA, 2000.
USENIX Association.

103



[65] X. J. Ruan, A. Manzanares, K. Bellam, Z. L. Zong, and X. Qin. Daraw: A
new write buffer to improve parallel I/O energy-efficiency. In Proc. ACM Symp.
Applied Computing, 2009.

[66] X.-J. Ruan Run, A. Manzanares, S. Yin, Z.-L. Zong, and X. Qin. Performance
evaluation of energy-efficient parallel I/O systems with write buffer disks. In
Proc. 38th Int’l Conf. Parallel Processing, Sept. 2009.

[67] Robert G. Sargent. Verification and validation of simulation models. In WSC
’05: Proceedings of the 37th conference on Winter simulation, pages 130–143.
Winter Simulation Conference, 2005.

[68] Robert G. Sargent. Verification and validation of simulation models. In Pro-
ceedings of the 37th conference on Winter simulation, WSC ’05, pages 130–143.
Winter Simulation Conference, 2005.

[69] K. Bernhard Schiefer and Gary Valentin. Db2 universal database performance
tuning. IEEE Data Eng. Bull., 22(2):12–19, 1999.

[70] S. Schlesinger, RE. Crosbie, RE Gagne, and Innie GSd. Terminology for model
credibility. In Simulation 32, pages 103–104, 1979.

[71] B. Schroeder and G.A. Gibson. Disk failures in the real world: what does an
mttf of 1,000,000 hours mean to you? In Proc. USENIX Conf. File and Storage
Tech., page 1, 2007.

[72] S. Shah and J.G. Elerath. Reliability analysis of disk drive failure mechanisms.
In Proc. Annual Reliability and Maintainability Symp., pages 226–231, 2005.

[73] H. Shen, Mohan Kumar, S.K. Das, and Z. Wang. Energy-efficient caching and
prefetching with data consistency in mobile distributed systems. In Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th International,
page 67, april 2004.

[74] Sean M. Snyder, Shimin Chen, Panos K. Chrysanthis, and Alexandros Labrini-
dis. Qmd: exploiting flash for energy efficient disk arrays. In Proceedings of
the Seventh International Workshop on Data Management on New Hardware,
DaMoN ’11, pages 41–49, New York, NY, USA, 2011. ACM.

[75] S. W. Son, M. Kandemir, and A. Choudhary. Software-directed disk power
management for scientific applications. In Proc. IEEE Int’l Parallel and Distr.
Processing Symp., 2005.

[76] S.W. Son and M. Kandemir. Energy-aware data prefetching for multi-speed
disks. In Proc. Int’l Conf. Comp. Frontiers, 2006.

[77] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel Lang.
Server-side i/o coordination for parallel file systems. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 17:1–17:11, New York, NY, USA, 2011. ACM.

104



[78] IDEMA Standards. Specification of hard disk drive reliability. pages Document
Number R2–98.

[79] Jan Stender, Björn Kolbeck, Felix Hupfeld, Eugenio Cesario, Erich Focht,
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