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Abstract  

 

 

This thesis is an investigation into the ballistic capabilities of a Tethered Satellite System 

(TSS) when the sub-satellite is released from the system. This topic is of particular interest 

because TSS could be potentially used as threats, or weapons.  There is a need to determine the 

velocity change or angular velocity that is required to cause a sub-satellite to enter an impact 

trajectory.  Once the sub-satellite enters an impact trajectory, the ground range covered by the 

new trajectory and the time to impact are determined.  A simple dumbbell model is used to 

represent the TSS in a dynamical simulation.  Changes to the velocity of the system were 

introduced at release point in the orbit in order to cause the sub-satellite to enter an impact 

trajectory toward the Earth after release from the TSS.  The parameters of the TSS that affect the 

impact trajectories are the altitude, tether length, and release point.  A comparison is then done 

for changes in these parameters in order to determine the maximum and minimum ground range 

and time to impact for the various cases studied.  An analytical solution is also developed to 

determine the maximum and minimum ranges when given a range of changes in velocity and to 

find the angular velocity and velocity change necessary for a given a set of initial conditions and 

desired impact trajectories. 
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Chapter 1: Introduction 

 This research is a conceptual study to evaluate the possible ballistic capabilities of a 

satellite that is launched from a space based platform.  While any space based platform could be 

used, the platform chosen for this study is a Tethered Satellite System (TSS).  A TSS is used as 

the platform because different release point configurations can be created having different 

velocities.  The sub-satellite of the TSS will be the object that is launched or released from the 

system.  The sub-satellite will be released from the TSS after a velocity change is placed on the 

sub-satellite.  This velocity change could be the result of an impulsive velocity change maneuver 

done by the sub-satellite or it could be the result of an increase in the angular velocity of the 

TSS.  The ballistic capabilities that will be studied are the ground range and time to impact after 

the sub-satellite is released from the system.  Different release point configurations and changes 

in the TSS parameters will be analyzed to determine the options in the available ground ranges 

and times to impact.  This chapter will discuss the history and applications of a TSS, the previous 

work done on TSS, and a more detailed problem description for this study. 

1.1 Historical Background 

 A Tethered Satellite System (TSS) is made up of two satellites connected by a cord or 

tether.  The two end bodies are called the main satellite and the sub-satellite.  The sub-satellite is 

in a lower orbit than the main satellite and is deployed from the main satellite using the tether.  

The main satellite can be a larger satellite than the sub-satellite or even a shuttle-type orbiter.  

The idea of a TSS was first introduced in 1895 by a Russian scientist by the name of Tsiolkoskii, 
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who presented the concept of a “space tower” or a space elevator.  Tsiolkoskii’s idea of a space 

tower was to have a system that would be attached to the surface of the Earth with the other end 

being in a geosynchronous orbit about the Earth.  The objective of the space tower was to allow 

an object to travel up the tower and be released once it reached the top.  At the top of the tower 

the object would be released into a geosynchronous orbit.  The idea of a space tether is attributed 

to Tsiolkovskii because of his proposal for the space tower.
7
   

In 1965 the idea of a TSS was put to the test by NASA during the Gemini XI and Gemini 

XII missions.  In Gemini XI, the sub-satellite was connected to the upper stage and both the sub-

satellite and the upper stage swung around the center of mass of the system and generated an 

artificial gravity.
7
  The Gemini XII mission was designed to test the gravity-gradient stabilization 

of a TSS.
17

  Both the Gemini XI and Gemini XII missions verified the assumptions and 

calculations done by scientists thereby, proving that tethered satellites could be useful.  Issac 

Artsutanov, was the first person to propose a nonsynchronous sky hook.  This sky hook was a 

rotation tethered system that would approach Earth’s surface with a zero relative velocity at the 

perigee of the tethered system’s orbit.
3
   

Despite the missions and the ideas presented in the 1960s the “Era of TSS” did not begin 

until the 1970s when Mario Grossi and Giuseppe Colombo proposed their idea for a skyhook to 

NASA and the Italian Space Agency.
7
  Grossi was from the Smithsonian Astrophysical 

Observatory and Colombo was working at the University of Padua in Italy.  The skyhook 

proposal involved a small satellite that could be deployed from a shuttle orbiter along a twenty to 

one hundred kilometer tether.  The small satellite could then help with exploration and data 

collection of the Earth’s upper atmosphere.
18

  This proposal by Grossi and Colombo generated 

interest in TSS for NASA and the Italian Space Agency.   
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The interest generated by the proposal by Grossi and Colombo resulted in NASA and the 

Italian Space Agency formally agreeing to collaborate on TSS projects.  While several short 

tethered experiments were conducted on the shuttle during the 1980s, it was not until 1992 that 

the first major joint project between the two agencies was launched.
18

  The satellite was called 

the TSS-1 and was launched from the Atlantis orbiter.  The TSS-1 was the first test of a TSS in 

space.
7
  The purpose of the TSS-1 mission was to study the electro-dynamic properties of the 

Earth’s ionosphere.  This required that the tether be made of an electrically conducting 

material.
18

  However, during the mission the reeling mechanism for the tether and sub-satellite 

malfunctioned.  This caused the tether to stop its deployment.  In other words the tether did not 

deploy from the shuttle to its full length.
7
  Despite this malfunction the TSS-1 mission proved 

that a satellite could be deployed and controlled.  The mission also showed that a TSS could be 

easily controlled and showed that the system was more stable than predicted.
5
 

The Small Expendable Deployment System 1 (SEDS-1) and the Plasma Motor Generator 

(PMG) missions were conducted during 1993.  The SEDS-1 successfully demonstrated the 

downward free-reeling deployment of the sub-satellite in a TSS.  The PMG’s mission was to 

investigate the possibility of using an electrically conducting tether to generate power that could 

be used to create thrust for the TSS.  This was the first example of propulsion for a system that 

did not require any propellant. A year later the SEDS-2 was deployed and remained in orbit for 

five days until space debris or a micro-meteorite severed the tether.
7
  The purpose for deploying 

the SEDS-2 was to study long term tether dynamics.
18

  Even though the tether was severed, the 

SEDS-2 mission collected useful data. 

In 1995 and 1996 three more missions were launched to further study the dynamics and 

applications of TSS.  These missions were the OEDIPUS-C, the TSS-1R, and the Tether Physics 
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and Survivability Experiment (TiPS).  The OEDIPUS-C system was made up of two rocket 

payloads and was launched in 1995.  After the system reached the apogee of the TSS orbit, the 

tether was intentionally cut in order to study a post-apogee trajectory.
18

  The TSS-1R and TiPS 

systems were launched in 1996.  The TSS-1R is named because it is the re-launch of the TSS-1 

mission.  During this launch the tether was not severed and the mission was able to prove that a 

tether could be used to create a high voltage charge as it passes through the Earth’s ionosphere.
7
  

The TiPS satellite was launched by the Naval Research Laboratory.
18

  The system consisted of 

two small satellites rather than a shuttle orbiter and satellite combination.  The TiPS satellite 

remained in space for several years and provided enough data to further study tether satellite 

dynamics and orbital motion.
7
 

The last TSS mission launched in the 1990s was the Advanced Tether Experiment 

(ATEx).  The Naval Research Laboratory launched the ATEx system with a goal to demonstrate 

TSS stability, control, and attitude determination of the two end bodies.  The plan behind the 

mission was to deploy the sub-satellite and tether out to 6 km over the course of three and a half 

days; however, after only eighteen minutes of deployment the ATEx system was jettisoned from 

the main satellite.  The reason behind the jettison of the ATEx was because the tether angle 

sensor detected that an out-of-limits condition had been reached and automatically jettisoned the 

system.  It is believed that the condition was detected due to a thermal expansion of the tether.
7,18

 

Very few tether missions have been launched in the 21
st
 century.  Some missions were 

proposed but later cancelled.  One successful launch was the PICOSat in 2001.  The PICOSat 

consisted of a small TSS that had a mass less than a kilogram.  In 2002 the Propulsive Small 

Expendable Deployer System (ProSEDS) was proposed.  This system was a propulsive 

experiment that was designed to test the ability of a TSS to draw energy from the magnetic field 
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of the Earth and then use that energy as an electric thruster to raise or lower the TSS’s orbit.
7
  

Work was done on the ProSEDS until NASA cancelled the project due to the fact that key 

parameters in the performance of the TSS could not be met.
27

 

1.2 TSS Applications 

TSS applications can be broken into three categories:  space transportation, electrically 

conducting tethers, and atmospheric exploration. The first application that will be discussed is 

the space transportation category, which focuses on the movement of the satellite system.  A TSS 

can be used to put a satellite into a higher or lower orbit than the original orbit without the use of 

boosters.  The system can also be used to return a discarded payload to the Earth and help during 

the docking process of a shuttle to a space station.  These applications can be done because 

energy and momentum exchange occurs between the main satellite and the sub-satellite during 

the deployment of the sub-satellite.  This same momentum and energy exchange can also help 

with controlling the attitude of the main satellite.
18

  A TSS could be used to perform aero-

braking when approaching a planet.  Aero-breaking occurs when the sub-satellite is deployed 

into the planet’s atmosphere where atmospheric drag would affect the satellite.  When 

aerodynamic drag is exerted on the sub-satellite, the system will theoretically decrease to a 

capture speed from the approach speed before deployment.  This decrease in the satellite speed is 

caused by the tension in the tether instead of using a propulsive maneuver to slow down the 

satellite.
7
   

 Since the space transportation application for TSS deals with movement of all or part of 

the system, fuel savings and artificial gravity could be a result.
18

  The fuel savings are beneficial 

for obvious reasons.  The benefit from artificial gravity may not be as obvious.  Artificial gravity 

is created by the spin rate of a spacecraft rotating about its center of mass.  However, in order for 
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a shuttle orbiter to generate enough artificial gravity the required spin rate would be too high for 

the crew of the shuttle to withstand.  When a TSS is used to create an artificial gravity, the spin 

rate of the system is at an acceptable level for the crew.
7
   

The second category of TSS applications is electrically conducting tethers, which allows 

for the transportation of energy.  In this case the energy is in the form of electricity that is 

generated from the Earth’s magnetic field.  The electricity will produce a current along the tether 

which will create a force that can move the TSS into a higher or lower orbit.  In other words the 

force generated by the electric current can be used instead of propellant in a propulsive maneuver 

to change the trajectory of the TSS.  If the tether can conduct electricity, it can also be used as an 

antenna for the system, which can transmit electromagnetic waves in the direction that the tether 

is pointed.
18

  There are two main benefits to using a conducting tether.  The first one is reduced 

cost.  If the conducting tether can provide a force to move the satellite system, the amount of fuel 

needed for the mission is reduced and the fuel cost will be reduced as well.  The second benefit is 

that there is a reduced risk of a chemical propellant contaminating any external part of the TSS.
7
  

While fuel will always be needed on the TSS, a conducting tether can reduce the amount the 

system carries; thereby, decreasing the risk and cost of the mission. 

The final category of tether applications is atmospheric exploration.  In atmospheric 

exploration an instrument is deployed into the Earth’s atmosphere from a large spacecraft, like 

the shuttle orbiter.  A TSS is a great system for atmospheric exploration because the tether can be 

extended into areas of the upper atmosphere that are too “rarified” for the aircraft and too dense 

for shuttle orbiters or other large spacecraft.  One use of tethers for atmospheric exploration is 

the gathering of physical, meteorological, and environmental data over a long course of time.  

The tethers could also be used for surveillance and measurements of the Earth’s magnetic and 
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electric fields.  Perhaps the most useful application for tethers in atmospheric exploration is the 

lowering of a model into the atmosphere for high-speed and high altitude aircraft.  Wind tunnels 

are normally used to determine the characteristics of an aircraft design; however, high altitudes 

and high speeds are harder to replicate inside a wind tunnel.  Overall, the tether can be used to 

collect data for a variety of experiments in atmospheric exploration.
18

 

Atmospheric exploration is an area of great interest, especially when it comes to how the 

sun interacts with the Earth’s atmosphere.  The peak area for this interaction occurs anywhere at 

or below a four hundred kilometer altitude above the Earth.  This region contains the maximum 

gradient in electron content and temperature in the Earth’s atmosphere.  The higher areas of this 

segment are hard to reach with an aircraft and difficult to maintain for long periods of time for a 

large spacecraft.  By extending a tether into this region long term data can be collected.  It’s 

important to note that once the scientific community has an understanding on how to use TSS to 

study the Earth’s atmosphere this application can be extended to other planets.
7
 

1.3 Previous Research 

TSS research has mainly focused on the orbit determination and the identification of TSS 

throughout the years.  Some researchers have studied the dynamics and attitude of tethered 

satellites and there has been some research done that looks at the impact trajectory of the sub-

satellite and the new orbital elements of the trajectory for the sub-satellite once it has been 

released from the system; however, there has not been an effort, to this writer’s knowledge, to 

determine what can cause an impact trajectory and what will lead to a maximum range with the 

best time to impact for the sub-satellite.  That being said this section will still discuss some 

previous research that has helped to formulate the problem and model development for this 

research as well as for research studying impacting trajectories. 
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 In 1983 Hoots, Roehrich, and Szebehely published a study that focused on TSS analysis 

and the effect of the tether on both satellites.  The authors discussed the effect of the tether on the 

speed of the satellites in the system.  The tether causes the sub-satellite to have a lower velocity 

than its expected circular velocity without the tether and the main satellite actually has a higher 

velocity than its circular velocity without the tether.  Hoots, Roehrich, and Szebehely also 

determined the conditions for impact after the sub-satellite is released from the TSS and define 

how to modify the gravitational constant in order to make the Keplerian acceleration valid while 

the tether remains intact.  The authors also pointed out the problem of detecting a TSS system 

and what it does to detection programs, such as the one used by North American Aerospace 

Defense Command, NORAD.
13

 

 Several papers have also been published concerning the modeling, orbit determination, 

and quick identification of TSS.  Qualls and Cicci
24

 published a paper in 2007 that studied the 

modifications of classic preliminary orbit determination methods to distinguish between a 

tethered satellite and an untethered satellite.  It was determined that the Herrick – Gibbs Method 

and the true anomaly iteration technique provided the most accurate results in determining if the 

object in question was tethered or not.
24

  Rossi, Cicci and Cochran Jr.
25

 published a paper in 

2004 that discussed an analytical study of the dynamics of a TSS to determine the conditions for 

periodic motions about the equilibrium state of the system.  It was determined that when only the 

gravitational and oblateness forces were placed on the system that the periodic motion of the 

TSS depended on the physical characteristics of the tether; however, if the aerodynamic drag was 

placed on the system, the drag must be bounded in order to create a periodic motion.
25

  A paper 

was published by Lovell, Cho, Cochran Jr., and Cicci
19

 in 2003, that examined the factors that 

caused the bodies of a TSS to behave differently and how each of the factors creates a 
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discrepancy in the determination of a satellite re-entry.  The authors determined that the tether 

force and the librational motion of the system were key factors that caused a tethered satellite to 

appear to be on a re – entry course.
19

 In 2002, Cicci, Cochran Jr, Qualls, and Lovell
9
 published a 

paper that provided a methodology to perform an identification, orbit determination, and orbit 

prediction of a TSS.  For the identification of a TSS preliminary orbit determination methods 

were used and ridge – type estimation methods were used for the orbit determination of the TSS.  

The authors used a TSS dynamic model for the long term orbit prediction of the TSS.
9
  Another 

paper would be published by Cicci, Qualls, and Lovell in 2001.
8
  This paper discussed the use of 

ridge – type estimation methods to identify a TSS when a “small arc” of observational data was 

available.
8
  The final paper to be discussed by this group of authors was published in 1998 by 

Cho, Cochran, Jr., and Cicci.
6
  In this paper a perturbed two – body model was used for the TSS 

during orbit determination.  The orbit determination was done using only the observations from 

one of the satellites in the system.  The characteristics of the perturbed motion on the TSS was 

studied using this data.
6
 

 Another key author in TSS studies is A. K. Misra.  Misra
21

 published a paper in 2008 

titled “Dynamics and Control of Tethered Satellite Systems.”  In this paper Misra studies the 

nonlinear roll and pitch motions on a TSS.  Misra found that the aerodynamic drag produced 

librational motion on the TSS and that electrodynamic forces would affect the pitch and roll of 

the TSS; therefore, the drag and electrodyanmic forces would change the stability of the TSS.
21

  

Modi, Gilardi, and Misra
22

 published a paper in 1998 that studied the attitude control of a TSS.  

The authors used an Nth order lagrangian formulation to study the attitude control of space 

platform based TSS and used a Liapunov method for the control of the system.  The Liapunov 

control was found to be effective in stabilizing the TSS.
22
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 Curtis Hilton Stanley wrote his Master’s thesis at the University of Colorado at Colorado 

Springs about apparent impacting trajectories, identification, and orbit determination of TSS in 

2010.  Stanley defines an apparent trajectory as being the “trajectory that an end mass would 

follow if not tethered.”  If the apparent trajectory would intersect the Earth, then it becomes an 

apparent impact trajectory. He looked at circular and elliptical orbits with and without librational 

motion to determine the apparent impacting trajectory and used batch filters to determine the 

trajectory of the satellite and identify the sub-satellite as being a part of a TSS.  Stanley’s 

research focused on determining the minimum tether length needed to create an apparent 

impacting trajectory and simulating a ballistic missile trajectory along with the apparent 

impacting trajectory to form a comparison between the two.  Once the comparison was 

determined he could use that knowledge to have a program identify an object as being a ballistic 

missile or a satellite attached to a TSS.  Stanley never looked into an actual impacting trajectory 

and the range that the end mass could obtain once released from a TSS.
28 

 In 1994 Naigang, Dun, Yuhua, and Naiming
23

 discussed the calculation of the orbital 

elements for the sub-satellite after it is released from the TSS.  The purpose behind this 

discussion is the momentum transfer between the two satellites that could place a payload in a 

higher orbit about the Earth.  The orbital elements are calculated from position and velocity 

vectors, which are determined using the pitch angle, roll angle, magnitude of the position, the 

true anomaly, and their derivatives.  The authors then compare the orbital elements before 

release to those after the release of the satellite.  They found that the change in the right 

ascension and the inclination angle of the sub-satellite after release is small because of the small 

roll rate present in their examples.  The authors also note that the biggest change is found in the 

semi-major axis.
23 
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 Nammi Jo Choe and Thomas Alan Lovell did research into the orbit determination and 

detection of TSS and state estimation of TSS, respectively.  Choe looked at a two satellite TSS 

and a three satellite TSS in 2003.  She also developed a basic model for the TSS by assuming a 

massless tether and representing the end satellites as point masses.  An algorithm was developed 

by Choe to detect the TSS systems.  Once the TSS was detected, Choe used an estimation 

process to determine the orbit of the system over the orbital period of the systems.  The process 

developed by Choe allowed for the detection, state estimation, and calculation of tether 

parameters for a two and three body TSS.
7
  Lovell used a “batch-type differential corrections 

filtering scheme” or a gradient based algorithm and a genetic algorithm to determine the state 

estimation of a TSS.  He then compared the two techniques in order to determine which one had 

better accuracy, speed, and robustness of the two algorithms.  His research showed that the 

genetic algorithm could give an accurate solution over short periods of data.  Since long term 

filters such as the gradient based method depend on the initial approximation, Lovell suggested 

that a hybrid approach be used.  This hybrid approach would use the genetic algorithm to 

determine the initial approximation and the gradient based method would be used to solve for the 

estimation of the state.
18 

 Research addressing TSS dynamics includes the study of perturbed motion, constrained 

dynamics, attitude and control, librational motion, and stability of the TSS.  Sungki Cho
5
 

analyzed the perturbed motion of TSS and used filters to identify the perturbed motion of the 

satellite system in 1999.  The perturbed motion of one detected satellite could be used to identify 

the satellite as part of a TSS.  Cho used a least squares batch filter in order to identify the satellite 

as a member of a TSS and to determine the motion of the system.
5
  In 2001 Peter Beda used 

Lagrange’s equations to define the equations of motion for the TSS.  He then put a constraint on 
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the system to make sure that the tether length remained constant.  The equations of motion and 

the control constraint were then used in a numerical simulation to determine the attitude of a 

TSS.
2
  Aaron Schutte and Brian Dooley

26
 developed a control law for the constrained motion of 

a TSS.  This control law or constraint equations could then be used to simplify the modeling and 

simulation of a TSS.
26

   

An extended rigid body model of a TSS was used by Insu Chang, Sang-Young Park, and 

Kyu-Hong Choi
4
 in 2010 to study the attitude and control of a TSS.  In order to simulate this, the 

authors used a state-dependent Riccati equation to model the nonlinear attitude control of a TSS.  

A numerical integration was used to determine the stability of the system using the Riccati 

equation.  The TSS was found to be asymptotically stable when using the Riccati equation to 

model the nonlinearities in the system.
4
  Joshua Ellis and Christopher Hall

11
 also studied the 

stability of a TSS by looking at the system’s out of plane librations.  Equations of motion were 

developed by Ellis and Hall to model the in-plane and out-of-plane librations of the TSS.  The 

eigenvalues for the librational motions were then used to determine the stable and unstable areas 

of motion for a TSS.
11

   

In 2008 Kosei Ishimura and Ken Higuchi
15

 wrote a paper that described the coupling 

between the pitch, axial vibration, and orbital motion of TSS.  The authors looked at the effects 

of these motions on the eigenvalues and eigenvectors.  Ishimura and Higuchi also looked into the 

influence of the mass ratio and natural frequency on the characteristics of the system, specifically 

the eigenvalues.  The natural frequency was found to have the greatest influence on the coupling 

between the pitch, axial vibration, and orbital motion while the mass ratio was found to influence 

the pitch motion and found to affect the value for the eigenvalues and eigenvectors.
15

  Also in 

2008, Hao Wen, Dongping P. Jin, and Haiyan Y. Hu
29

 discussed the relative advances in the 
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dynamics and control of TSS and provided a comprehensive look at all the advances in TSS 

dynamics and control.  Some of the topics discussed are controls for tether deployment and 

retrieval of the sub-satellite, further studies into producing artificial gravity with a tethered 

system, re-entry and rendezvous missions assisted by a tether, and stability of a TSS.  Some of 

the studies discussed by Wen, Jin, and Hu focused on a two satellite tethered system, while 

others looked at three or more satellites tethered together.
29

   

The majority of the research conducted concerning TSS focused on constraints and 

attitude and control and dynamics of tethered systems.  Only a few studies have discussed impact 

trajectories.  Stanley’s
28

 focus was on the apparent impacting trajectory of a sub-satellite without 

being cut from the TSS.  He compared this apparent impacting trajectory with a typical ballistic 

missile trajectory.  This information was then used to identify a tethered satellite, when only one 

end of the tethered satellite was detected.  After the sub-satellite was identified as part of a TSS, 

Stanley focused on the orbit determination of a TSS.  Naigang, Dun, Yuhua, and Naiming
23

 

focused on the changes in the orbital elements after the sub-satellite was released from a TSS 

with librational motion.  All the information found in the research stated above was used to help 

formulate the best model and equations of motion for this study. 

1.4 Problem Description 

The purpose of this study is to determine the possible ballistic capabilities of a satellite 

launched from a space based platform.  For the purposes of this study a TSS was chosen for the 

launching platform because it can be used to release the satellite with different release 

configurations.  The sub-satellite of the TSS will be released from the system after a velocity 

change is placed on the sub-satellite.  There are two methods to create such a velocity change on 

the sub-satellite:  an impulsive velocity change maneuver and an increase in the angular velocity 
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of the system.  The impulsive velocity change is achieved when the sub-satellite produces a 

thrust in a certain direction.  The resulting velocity change from the thrust maneuver will affect 

the velocity of the sub-satellite and may result in an impact trajectory after the sub-satellite is 

released from the TSS.  For the increase in the angular velocity of the system, the sub-satellite 

and the main satellite will produce a thrust that would cause the TSS to rotate faster.  This 

increase in the rotation of the system will affect the velocity of both satellites and may cause the 

sub-satellite to impact the Earth after it is released from the system.  If an impact does occur, the 

range covered by the sub-satellite’s impacting trajectory and the time it takes for the sub-satellite 

to impact the Earth after launch will be calculated.  Range is used to describe the ground range 

covered by the sub-satellite after it is released from the TSS.  The range and time to impact are 

the ballistic capabilities that will be analyzed in this study. 

Changes in the parameters of the space based platform, or the TSS, are also analyzed to 

determine how they might affect the capabilities of the sub-satellite after release.  The 

parameters that are investigated are the altitude of the main satellite and the tether length because 

both of these parameters will affect the launching position of the sub-satellite relative to the 

Earth.  For each combination of parameters an impulsive velocity change maneuver is placed on 

the sub-satellite and it is released from the system.  If the sub-satellite impacts the Earth, the 

range and time to impact of the impacting trajectory are calculated in order to determine the 

impact of the changing on the ballistic capabilities of the sub-satellite. 

            This research takes a threat analysis point of view for a satellite launched from a space 

based platform.  Using the TSS as the platform, the sub-satellite will be placed in different 

release configurations with various altitudes, tether lengths, and velocity changes placed on the 

sub-satellite before it is released.  For each velocity change evaluated, a corresponding angular 
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velocity of the TSS is calculated which would produce such a velocity change.  The ballistic 

capabilities for different cases are then compared in order to determine a range of ballistic 

capabilities for each configuration. 
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Chapter 2: Relevant Theory Used in TSS Analysis 

There are many ways to model a TSS with different coordinate systems and assumptions.  

Basic effects caused by the tether on the end bodies will be discussed before developing a 

detailed model for the TSS.  After the detailed model is defined, the equations of motion and 

perturbation effects will be introduced.  Since rotational motion is included in the model, attitude 

control parameters will be used to assist with the transformations between the body coordinate 

system and the inertial coordinate system.  Orbital elements will be described since the elements 

will be used to determine if the trajectory of the sub-satellite after release will impact the Earth.  

Finally, discussions of rigid body dynamics, the integration method used to model the TSS, and 

orbital mechanics will be presented.  In the discussion that follows, it will be assumed that the 

center of mass of the TSS will move in a circular orbit. 

2.1 Tethered Satellite System Dynamics  

 The tether in the system exerts a force on both the main satellite and the sub-satellite.  

This force leads to a change in the velocities of both of the satellites.  Depending on the position 

of the mass, the tether will either increase or decrease the velocity of each satellite to a point 

where it is greater than or less than the satellite’s untethered circular velocity.  For this 

discussion the set-up for the TSS is shown in Figure 2.1.  The main satellite generally has a mass 

equal to or larger than the sub-satellite.  Hoots, Roehrich, and Szebehely
13

 discussed the effects 

of the tether on the masses and developed equations for the velocity of both masses and the 

center of mass in their study.  The first step was to determine the location of the center of mass.  
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Once the position of the center of mass was determined, the equation for circular velocity was 

then used to find the circular velocity for the center of mass.
13 

 

Figure 2.1: Tethered Satellite System Model 

 

For a circular orbit, the position vector of the center of mass relative to the center of the Earth 

and the circular velocity of the center of mass are calculated using equation (1) and equation (2), 

respectively.
 13 
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The variables    and    are the mass of the sub-satellite and the main satellite, respectively. 

The magnitude of the position vectors of the sub-satellite and the main satellite are   and   ,  μ is 

the gravitational parameter, and the magnitude of the position vector of the center of mass is    . 

 In order to find the velocities of the end masses the mean motion of the center of mass 

must first be calculated.  Equation (3) defines the mean motion as a function of the gravitational 

constant and the position of the center of mass.
13

  

    √
 

   
                                                                                 

Once the mean motion is calculated, the velocities of the end masses can be found as a function 

of the mean motion and the position of each mass.  Equation (4) and Equation (5) define the 

equations used to obtain the velocity of the main satellite and the sub-satellite, respectively.
13

 

                                                                                         

                                                                                         

Equation (3) can then be substituted into equations (4) and (5) to give equations (6) and (7) for 

the velocities of the main satellite and the sub-satellite, repectively.
13 
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 When the satellites are not connected by a tether, both the main satellite and sub-satellite 

have a circular velocity that is defined similar to the circular velocity of the center of mass given 
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by equation (2).  The actual velocities of the satellites when connected with the tether and the 

unconnected circular velocity of the satellites can then be compared.  For the situation shown in 

Figure 2.1, Hoots, Roehrich, and Szebehely
13

 determined that the actual velocity of the main 

satellite when tethered is larger than the circular velocity of the main satellite when it is not 

tethered.  The sub-satellite’s actual velocity when tethered was found to be smaller than the 

circular velocity the sub-satellite has when not tethered.  This means that when the two masses 

are put together in a TSS formation the main satellite’s mass will speed up, while the mass of the 

sub-satellite will be slowed down relative to their untethered circular velocities.
13

  

 In order to model a TSS a set of coordinate systems needs to be defined before the 

equations of motion can be determined.  An inertial coordinate system will be used to describe 

the motion of the system, and will be selected to be the geocentric equatorial coordinate system.  

The geocentric - equatorial coordinate, Earth – centered Inertial, or ECI system is depicted in 

Figure 2.2. 

 

Figure 2.2: Geocentric Equatorial Coordinate System 
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The origin of the geocentric equatorial system is fixed at the center of the Earth.  The positive X-

direction points in the vernal equinox direction.  The positive Z axis goes through the North Pole 

and the positive Y axis is ninety degrees from the positive X and Z axes, such that the XY plane 

lies in the Earth’s equatorial plane.   ,̅  ,̅ and  ̅ are the unit vectors for the X, Y, and Z axes, 

respectively.
1
  The TSS is also depicted in Figure 2.2.  The end masses are considered to be point 

masses and the tether is assumed to be a massless, rigid tether.  The position vector for the main 

satellite and the sub-satellite are  ̅  and  ̅ , respectively, while the position vector,  ̅  , represents 

the position of the center of mass of the TSS.  The fourth vector,  ̅ , in Figure 2.2 is the tether 

length vector or the position of    relative to   .  

 Since the end masses are naturally rotating about the center of mass in a counter - 

clockwise rotation about the positive X – axis due to the gravity gradient affect, a body 

coordinate system will be needed in order to determine the position of the end masses relative to 

the center of mass of the system.  This position will then be transformed into the inertial 

coordinate system.  Figure 2.3 shows the body coordinate system for the TSS.  The fixed 

coordinate system now has an origin located at the center of mass of the TSS.  The X2, Y2, and 

Z2 coordinate system is the body coordinate system after a rotation about the X axis.  The TSS 

rotates about the center of mass; therefore, the body coordinate system will rotate about the X 

axis.  This means that the X2 axis will line up with the X axis and an angle will be created 

between the Y and Y2 axes and the Z and Z2 axes.  The unit vectors for the body fixed coordinate 

system are   ̅,   ̅, and  ̅ , which correspond to the X2, Y2, and Z2 axes, respectively.  The rotation 

angle, φ, represents the angle between the fixed coordinate system and the body coordinate 

system caused by the angular velocity.  The two vectors in Figure 2.3 represent the distances 
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from the center of mass to the end bodies.  The position vector of    relative to the center of 

mass of the system is  ̅  .  The vector,  ̅  , is the position vector of    relative to the center of 

mass.  Both vectors are expressed in body components.  The rotation angle can be used to 

express the vectors in the geocentric equatorial system by creating a direction cosine matrix and 

using attitude dynamics.  This methodology will be discussed after the introduction of the 

equations of motion. 

 

Figure 2.3: Body Fixed Coordinate System for a Negative φ 

 

2.1.1 Equations of Motion  

 As stated earlier the end satellites will be modeled as two point masses and the tether will 

be modeled as a massless, rigid tether.  It was also mentioned earlier that due to the tether force 

only the center of mass of the system can be modeled using Keplarian motion.  Therefore, the 
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TSS will be considered as a rigid body in this study.  In this section the equations of motion for 

the center of mass of the system will be determined using two-body forces.  The position and 

velocity of the two end masses will be determined using rigid body dynamics. 

The equations of motion of a spacecraft relative to the Earth are well-known and can be 

written as 

 
 

   
  ̅     ̈̅                                                                            

where 

                                                                               

Equation (8) is also known as the Keplarian acceleration of the system.  Since equation (8) is a 

vector, it has  ,̅  ,̅ and  ̅ components.  This means that there are a total of three scalar equations 

that can be used to describe the motion of the system.  These final equations of motion are 

expressed in equations (10) through (12). 

 
 

   
       ̈                                                                          

 
 

   
       ̈                                                                          

 
 

   
       ̈                                                                          

These equations can be used to find the velocity and position components of the center of mass 

of the TSS using numerical integration; however, the position and velocity of the end masses 

have yet to be determined.  In order to find the position of the end masses, the attitude dynamics 

of the TSS must be considered. 
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2.2 Attitude Dynamics Using Euler Parameters 

 According to Hughes
14

, spacecraft attitude dynamics is an applied science that aims to 

understand and predict spacecraft orientation and how the orientation evolves over time.  The 

part of attitude dynamics that this research utilizes is the determination of equations to describe 

rotational motion and the differential equations that govern the motion equations.  There are 

many ways to represent the attitude dynamics of a spacecraft.  In this text, the Euler parameters 

are chosen because they have no singularities at any orientation; however, the disadvantage of 

the Euler parameters is that they lack uniqueness. In other words, a positive Euler parameter can 

describe the same attitude orientation as a negative Euler parameter.  The Euler parameters are 

then placed into a direction cosine matrix, which describes the rotation of the system and allows 

for a transformation between two coordinate systems.
14

  In this case the direction cosine matrix 

will allow for the transformation of the body coordinate system into the fixed geocentric 

equatorial coordinate system. 

 Euler’s theorem states that any rigid body orientation can be achieved by a single rotation 

about the principal axis,  ̅, through a principal angle, φ.  The principal axis and angle can be 

determined by examining the eigenvalues and eigenvectors of the direction cosine matrix.  The 

principal axis is a vector made up of three components.  If the principal axis and angle are 

known, the Euler parameters can be found.  Equations (13) through (16) define the four Euler 

parameters in terms of the principal axis and angle.
14
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The fourth Euler parameter is labeled using the symbol   .
14

 

 The direction cosine matrix, C, is a 3x3 matrix and can be expressed in terms of the four 

Euler parameters. 
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If the Euler parameters are not known but a direction cosine matrix is known, the Euler 

parameters can be found using the elements from the direction cosine matrix.  This must be done 

in a series of steps.  The first step is to calculate the squared values of each of the Euler 

parameters. 
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Where, 

     [ ]                                                                       
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The second step is to determine the largest squared value from equation (18) through (22).  Once 

that is determined, take the square root of the largest value in order to find one of the Euler 

parameters.  Finally, the remaining three Euler parameters can be determined using the three of 

the following equations.
14 

      
 

 
                                                                            

      
 

 
                                                                            

      
 

 
                                                                            

      
 

 
                                                                            

      
 

 
                                                                            

      
 

 
                                                                            

For example, the value for    was found in step two.  In order to find the other three Euler 

parameters equation (21) can be used to find   , equation (28) can be sued to find   , and 

equation (27) can be used to find   .
14

 

 The Euler parameters will change with time and the introduction of an angular velocity.  

In order to do this kinematics are introduced into the rotational motion equations.  The motion of 

the Euler parameters can be described using the first derivative of the parameters.  The first 

derivative of the Euler parameters is a function of the angular velocity and the original Euler 

parameters.  The first order derivatives are expressed in matrix format in equation (29).
14
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The   ,   , and   variables are the X, Y, and Z-components of the angular velocity.
14

  Now 

that the rotational motion equations have been defined, the position and velocity of the end 

masses in the TSS can be determined using rigid body dynamics. 

2.3 Rigid Body Dynamics 

 Since the TSS will be modeled as a rigid body, the center of mass is the only point on the 

TSS that can be modeled using Keplarian motion.  This means that the position and velocity of 

the main satellite and the sub-satellite must be calculated using rigid body dynamics.  According 

to Ginsberg
12

 the motion of a rigid body is a “superposition of a translation and a pure rotation.”  

For the translational motion all points on the rigid body follow the movement of an arbitrary 

point on the body.
12

  The arbitrary point for the TSS is the center of mass of the system.  In 

Figure 2.3, the X, Y, Z coordinate system is placed at the center of mass of the TSS because 

when there is no angular velocity on the system the body coordinate system will line up with the 

geocentric equatorial system.   

Another important note is that the position vectors between the center of mass and the 

two end masses will have constant components relative to the moving reference frame.
12

  The 

moving reference frame in this case is the body fixed coordinate system; however, the final result 

needs to be expressed in terms of the geocentric equatorial coordinate system.  The position of 

the center of mass is already expressed in terms of the geocentric equatorial coordinate system; 

therefore, all that is left to do is to convert the position vectors between the center of mass and 
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the two end masses into geocentric equatorial components.  This is done by multiplying the 

direction cosine matrix by the vector of the distance between the center of mass and the end 

masses. 

 ̅        [ ] ̅                                                                              

 ̅        [ ] ̅                                                                              

Equations (30) and (31) give the position vector from the center of mass to the sub-satellite and 

to the main satellite, respectively, in geocentric equatorial coordinates.  The next two equations 

express the position of the sub-satellite and the main satellite in geocentric equatorial coordinates 

using the relative position equation.
20

 

 ̅    ̅     ̅                                                                       

 ̅    ̅     ̅                                                                       

At this point, the disadvantage to using Euler parameters needs to be considered.  Recall that the 

Euler parameters have a lack of uniqueness and the negative Euler parameters could describe the 

same position as positive Euler parameters.  The sign on the position vectors from the center of 

mass to the end masses must be checked to make sure that the addition and subtraction of the 

distances matches up with the model. 

 Now that the position has been found for the end masses, the velocity of the sub-satellite 

and the main satellite needs to be found using rigid body dynamics.  Ginsberg
12

 and Meriam
20

 

define the velocity as the velocity of an arbitrary point plus the relative velocity between the 

point where the velocity is to be determined and the arbitrary point.
12,20

  The arbitrary point 
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remains the center of mass of the TSS.  Equation (34) and (35) defines the velocity of the sub-

satellite and the main satellite, respectively.
12,20 

 ̅    ̅     ̅ 
  ⁄                                                                    

 ̅    ̅     ̅ 
  ⁄                                                                    

The second term on the right hand side of both equations is the relative velocity between the two 

end masses and the center of mass.  The relative velocity is defined as the angular velocity vector 

crossed with the position vector between both points.
12,20

   

 ̅ 
  ⁄    ̅     ̅                                                                   

 ̅ 
  ⁄    ̅     ̅                                                                   

The angular velocity is described in geocentric equatorial coordinates and the position vectors 

that will be used are those defined in equations (30) and (31).  Equation (36) can be substituted 

into equation (34) to get the velocity of the sub-satellite.  The velocity of the main satellite can 

be found by substituting equation (37) into equation (35). 

 ̅    ̅     ̅     ̅                                                                

 ̅    ̅     ̅     ̅                                                                

Equations (32), (33), (38), and (39) are the rigid body equations used to find the position and 

velocity of the end masses of the TSS. 

 The movement of the center of mass of the TSS and the end masses differ slightly.  The 

center of mass will move in a circular orbit.  Rossi
25

 states that if the TSS is modeled as a solid 

body it will rotate with a constant angular velocity in a counter – clockwise direction.  If the TSS 
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moves only in an orbital plane, the system will have a radial configuration or it will form a 

straight line that is tangent to the circular orbit of the center of mass.  The points of the TSS, the 

center of mass and the two end masses, must be collinear because the system is being treated as a 

rigid solid body.
25

  If there is no librational motion, the center of mass and both the end mass of 

the TSS will move in concentric circles with the lower mass always being the sub-satellite.
19

  

Kaplan
16

 states that the lower mass of the TSS will always remain in the sub-satellite position 

because of the gravity gradient on the system.  The gravity gradient will create a spin 

stabilization that will keep the system at a local vertical; therefore, the sub-satellite will always 

be below the main.
16

  The natural motion of the TSS is a rotation of the system in a counter – 

clockwise direction with the lower satellite always remaining the sub-satellite because of the 

gravity gradient. 

2.4 Orbital Elements of a Trajectory 

 At the time of the sub-satellite’s release, the orbital elements of the sub-satellite’s impact 

trajectory will be calculated.  The six orbital elements that describe an orbit are the semi-major 

axis (a), the eccentricity (e), the inclination (i), the longitude of the ascending node (Ω), the 

argument of periapsis (ω), and the true anomaly (θ).  Figure 2.4 labels some of the orbital 

elements of an orbit. 



30 

 

 

Figure 2.4:  Orbital Elements of a Trajectory
10

 

The semi-major axis defines the size of the orbit and the eccentricity defines the shape of a conic 

orbit.
1
  The other four orbital elements are the inclination, the longitude of the ascending node, 

the argument of perigee or periapsis, and the true anomaly.  The inclination is the angle between 

the  ̅ geocentric equatorial unit vector and the angular momentum vector,  ̅.  The longitude of 

the ascending node is measured counter clockwise about the Z-axis from the X-axis to the 

ascending node on the orbit.  The argument of periapsis is the angle between the ascending node 

and the periapsis or perigee point of the orbit.  The argument of periapsis is measured in the 

plane of the satellite’s orbit in the direction of travel of the satellite.  The true anomaly, ν, is 

measure from the perigee point to the position vector of the satellite.  The true anomaly is 

measured in the direction of travel of the satellite.
1
  Each of these four parameters are shown in 

the orbit depicted in Figure 2.4.
10
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The orbital elements can be determined when the position and the velocity vector are 

known for a satellite.  The eccentricity can be found by calculating the eccentricity vector. 

 ̅  ( 
  

 
  

 

 
 )  ̅   

 

 
   ̅    ̅   ̅                                                        

The magnitude of the eccentricity vector can then be found to get the eccentricity.  Equation (41) 

is used to calculate the magnitude of the eccentricity vector.
10

 

   √                                                                                 

The second orbital element that can be found is the semi-major axis.  In order to find the semi-

major axis the angular momentum must be calculated. 

 ̅    ̅     ̅                                                                          

The magnitude of the angular momentum vector can then be calculated using the same formula 

that was used to find the eccentricity vector.   

  

 
                                                                             

Equation (43) can then be rearranged to find the semi-major axis in terms of the eccentricity, the 

angular momentum, and the gravitational parameter.
10
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The inclination can then be found by using the vector properties for an angle between two 

vectors.  The two vectors that will be used are the angular momentum vector and the unit vector 

for the Z axis.
10

 

 ̅   ̅   | ̅|                                                                          

The magnitude of a unit vector is always one and the angular momentum vector dotted with the 

unit vector will lead to the Z-component of the angular momentum vector. 

                                                                                     

Equation (46) can then be arranged to find the inclination angle.
10

 

        (
  

 
)                                                                      

The inclination will always be less than or equal to one hundred and eighty degrees.   

The longitude of the ascending node can be found by forming the node vector,  ̅.  The 

node vector is a constant vector that points in the direction of the ascending node.  Equation (48) 

can be used to find the node vector.
10 

 ̅    ̅     ̅      ̅      ̅                                                                 

The node vector consists of the X and Y components of the angular momentum.  The magnitude 

of the node vector can be found in the same way that the magnitude of the eccentricity vector 

was found.  The longitude of the ascending node is the angle between the X unit vector and the 

node vector.
10
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Equation (51) can be used find the longitude of the ascending node; however, the quadrant of the 

longitude of the ascending node must be determined.  In order to find the quadrant for the 

longitude of the ascending node the Y-component for the node vector must be looked at. The test 

to determine the quadrant of the longitude of the ascending node is described in equation (52).
10

 

                  

                 
                                                               

For the case when the Y-component of the node vector is less than zero, the longitude of the 

ascending node must be recalculated.  The new longitude of the ascending node can be found in 

equation (53).
10 

                                                                                  

The argument of periapsis is the angle between the node vector and the eccentricity 

vector.  The same process to find the longitude of the ascending node and the inclination are used 

to find the argument of periapsis.
10

 

        (
 ̅     ̅

  
)                                                                    

The quadrant for the argument of periapsis must also be determined.  This time the variable that 

will be looked at to determine the quadrant is the Z-component of the eccentricity vector.  The 

test is described in Equation (55).
10
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For the case when the Z-component of the eccentricity vector is negative, the argument of 

periapsis must be subtracted from three hundred and sixty degrees.  This will result in an angle 

greater than one hundred and eighty degrees.
10

 

                                                                                 

 The final orbital element to be found is the true anomaly.  The true anomaly is the angle 

between the eccentricity vector and the position vector.  This means that the true anomaly can be 

found using the same method that was used for the previous three orbital elements.  Equation 

(57) gives the true anomaly as a function of the eccentricity vector and position vector, as well as 

their magnitudes.
10

 

        (
 ̅     ̅

  
)                                                                   

The quadrant for the true anomaly must be determined as well.  The test involves the result from 

taking the dot product of the position vector with the velocity vector.
10

 

    ̅     ̅            

    ̅     ̅            
                                                        

If the dot product is found to be negative, the true anomaly must be recalculated in order to be 

greater than one hundred and eighty degrees.  The new true anomaly for a negative dot product is 

given in equation (59).
10
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 The six orbital elements found in this section can be used to describe the trajectory of the 

sub-satellite once it is released from the TSS.  Some of the elements can be used to determine if 

the sub-satellite will impact the Earth without having to propagate the trajectory of the sub-

satellite forward in time.  The elements that are used to determine impact are the semi-major axis 

and the eccentricity vector.  These two orbital elements can be used to calculate the distance at 

the perigee point of the trajectory.  The perigee point on a trajectory is the lowest point of the 

satellite’s orbit.
10

 

                                                                                    

If the perigee point is found to be less than the radius of the Earth, then the satellite will impact 

the Earth.  Being able to determine if the sub-satellite will impact before propagating the motion 

forward in time will save computational time.  The goal of this study is to determine the impact 

capabilities of the impact trajectories after release and how different changes affect the time to 

impact and range; therefore, if the satellite does not impact the Earth, the propagation of the 

motion of the satellite does not need to be done. 

2.5 Numerical Integration Using a 4
th

 Order Runge Kutta 

 Numerical integration is used to solve ordinary differential equations.  This feature 

allows a state matrix consisting of position, velocity, and constants to be propagated forward in 

time.  Numerical integration methods use a Taylor series expansion to solve the ordinary 

differential equations.  The Euler method approximates the solution to the ordinary differential 

equations using the first-order term from the Taylor series.  The first and second terms of the 

Taylor series are used for the improved Euler method.  The Runge Kutta method used for this 

research approximates the higher derivatives using finite-difference expressions.  This means 
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that the higher derivatives do not have to be calculated from the original ordinary differential 

equation that is given.
17

  

 The approximation for the Runge Kutta is done by calculating data through a series of 

time steps from an initial time, to, to a final time, tf.  The order of the Runge Kutta method is 

determined by the number of steps used to estimate the state vector after a time step.  For this 

research a fourth order Runge Kutta is used because it is the most common version of the Runge 

Kutta method.  Equations (61) through (64) list the four steps used for the fourth order Runge 

Kutta method.
17
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The function,  , is used to find the first derivative of the state vector using the state vector,  ̅, at 

the initial time.  After the first step, step two and three are calculated after half of the time step, 

Δt, has passed.  The fourth step is calculated at the initial time plus the time step.  After each 

time step a new state vector is calculated.
17

 

 ̅           ̅      
  

 
                                                      

The four step process is continued until the final time is reached and a final state vector is 

calculated.  A Runge Kutta method can be implemented in MATLAB using a WHILE loop or a 
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for loop to get from the initial time to the final time using any time step.  Typical values for the 

final time are the orbital period of the satellite and the time for a single day.  The set-up of the 

state vector and the terms of the first derivative of the state vector are discussed in chapter three. 

2.6 Analytical Approach 

 In order to establish an analytical approach to the TSS problem more orbital mechanics 

equations must be introduced.  The energy of an orbit remains constant and can be calculated by 

using the semi-major axis or the position and velocity magnitudes of the satellite.  Both ways to 

calculate the energy of an orbit are shown in equation (66).
10

 

   
  

 
  

 

 
  

  

  
                                                                      

The trajectory equation is used to find the position of a satellite when the semi-major axis, the 

eccentricity, and the true anomaly of the satellite are known as given in equation (67). 

   
        

       
                                                                          

The energy equation and the trajectory equation will be used later in chapter 3 to find an 

analytical solution to the range and time to impact problem for the sub-satellite. 

 The next equation set will be used to find the time to impact for the analytical solutions.  

Kepler’s Equation gives the mean anomaly in terms of the eccentric anomaly, E, and the 

eccentricity.
10

 

                                                                            

The mean anomaly can be expressed in terms of the mean motion, n, and a difference in time.
10
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The difference in time stands for the time at the eccentric anomaly minus the time at perigee.  

Equations (68) and (69) can be defined at two different points, a point one and a point two, and 

combined into the differenced Kepler’s equation.
10
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The difference in time expressed in equation (71) is the time from release to impact.  Point one is 

the place in the orbit where the sub-satellite is released from the TSS and point two is the place 

in the impact trajectory of the sub-satellite where the sub-satellite impacts the Earth.  Equations 

(71), (72), and (73) can be used to find the time to impact.  Equation (73) is the same for points 

one and two.  The only value that changes is the true anomaly.  The first true anomaly 

corresponds to the true anomaly at release and the second true anomaly corresponds to the true 

anomaly at impact. 
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Chapter 3: Model and Problem Formulation 

In order to investigate this problem, a simplified model is developed for the TSS and the 

initial velocity for the center of mass of the TSS is determined.  A numerical integration method 

is used to propagate the motion of the center of mass of the system using Keplerian motion.  The 

position and velocity of the end masses is then determined relative to the center of mass.  Once 

the system successfully travels in its baseline orbit, changes into the system can be introduced.  

There are three main changes that are applied to the system:  a velocity change on the sub-

satellite, a change in the altitude of the TSS, a change in tether length of the TSS, and a change 

in the release point location.  The change in velocity is needed in order to cause the sub-satellite 

to enter an impact trajectory, while the tether length and altitude are changed in order to 

determine their effect on the range and time to impact.  As stated before, the velocity change 

placed on the sub-satellite will be a result of an impulsive velocity change maneuver or a change 

to the angular velocity of the system.  The tether is cut after the velocity change is implemented 

and the trajectory of the released mass is calculated to determine if the trajectory of the sub-

satellite impacts the Earth after release.  If the sub-satellite impacts the Earth, then the time to 

impact and the range from release to impact are calculated.  This information is then used to 

determine how the changes in the system affect the ballistic capabilities of the sub-satellite after 

release.  An analytical solution is also developed to examine situations where the sub-satellite is 

directly above, below, to the right, and to the left of the main satellite.  At each of these 

orientations the analytical solution can be used to determine the maximum and minimum ranges 

and times to impact when given a range of velocity changes.  A second set of analytical solutions 
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are also developed in order to determine an equivalent angular velocity that can be done in place 

of an impulsive velocity change.  The set-up and algorithms for the simulation and analytical 

solutions are discussed in this chapter. 

3.1 Problem Set-up of the TSS 

 Before numerical integration of the equations of motion can be performed and before an 

impact of the sub-satellite can be evaluated an initial position and velocity must be determined.  

The initial set-up of the TSS needs to be performed in such a way that the position and velocity 

of the center of mass and the end masses can be easily determined.  The initial set-up for the TSS 

is shown in Figure 3.1. 

 

Figure 3.1: Initial Set-up of the TSS for a Negative φ 
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The center of mass of the TSS is initially placed along the Z axis so that the position of each of 

the end masses can be determined from the altitude, TSS orientation, and tether length.  The 

direction of travel of the TSS is counter-clockwise about the origin of the geocentric equatorial 

coordinate system and about the positive X - axis.  The orbit for the center of mass is assumed to 

be circular in shape. 

 In order to determine the positions of the end masses and the center of mass the altitude, 

tether length, and the size of the masses must be chosen.  It’s also important to keep in mind that 

the tether itself is modeled as a massless, rigid tether.  A 10:1 ratio between the main satellite and 

the sub-satellite was selected; therefore, the mass of the main satellite was assigned a value of 

1000 kg and the sub-satellite was assigned a mass of 100 kg.  The altitude measures the height of 

the main satellite above the Earth.  The sub-satellite is then “lowered down” from the main 

satellite until the tether is completely extended.  For the baseline case the altitude was 500 km 

above the Earth’s surface with a tether length of 4 km.  The angular velocity of the system is set 

to zero.  Changes to the baseline values will be made in order to determine the effects of the 

altitude and tether length on the range and time to impact for an impact trajectory of the sub-

satellite.  The masses of the two satellites will always remain constant.   

 With the baseline values determined, the position of the end masses and the position and 

velocity of the center of mass can be determined.  In order to determine the positions of the TSS, 

the system is assumed to be completely aligned with the Z axis. In other words the rotation angle 

is zero.  Since the TSS is aligned with the Z axis of the geocentric equatorial system, the 

positions of the end masses can be determined by adding and subtracting values without having 

to worry about the other two axes directions.  The main satellite position can be calculated by 

adding the radius of the Earth to the altitude.  The tether length can then be subtracted from the 
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position of the main satellite to get the position of the sub-satellite.  The calculations for the 

position of the main satellite and for the sub-satellite are shown in equations (74) and (75), 

respectively. 

                                                                                   

                                                                                 

Both of the positions are initially in the  ̅ direction.  The position and velocity of the center of 

mass are then calculated using equations (1) and (2).  The position for the center of mass is along 

the  ̅ direction.  The velocity of the center of mass that is calculated is the circular velocity and 

is tangent to the circular orbit.  Since the TSS moves in a counter-clockwise direction, the initial 

velocity of the center of mass is in the negative   ̅direction. 

 With the position of the center of mass determined, the length between the center of mass 

and the two end masses can be calculated. For this initial case the direction of the lengths 

between the center of mass and the two end masses is in the  ̅ direction.   

                                                                                  

                                                                                  

The next step after determining the distances between the end masses and the center of mass is to 

find the four Euler parameters with the rotation angle in place.  In order to find the four Euler 

parameters a direction cosine matrix must be generated.  The direction cosine matrix for this 

instant in time and with a rotation angle can be calculated using the rotation transformation about 

an X axis.
12
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The process described in chapter 2 to find the Euler parameters from a given direction cosine 

matrix using equations (18) through (28) are used to find the Euler parameters for the initial set-

up of the TSS.  As the direction cosine matrix changes the direction of the distance between the 

end masses and the center of mass will change; however, the magnitude of the distances will 

remain constant.  In order to determine the new directions the direction cosine matrix must be 

pre-multiplied by the magnitude of the two lengths.  This process is shown in equations (30) and 

(31).  The vector components are then added or subtracted from the position of the center of 

mass to determine the new position of the end masses.  This process is shown in equations (32) 

and (33).   

 Before the numerical integration is started the velocity for the main satellite and sub-

satellite must be calculated.  Equations (38) and (39) are used to find the velocity vector for the 

sub-satellite and the main satellite, respectively.  The determination of the velocity vector and the 

determination of the position vector for the end masses will be done at each time step until the 

sub-satellite is released.  This is done in order to keep track of the position and velocity vector 

for the sub-satellite at release.  Once the position and the velocity vectors have been calculated 

the numerical integration can be started. 

 In order to do a numerical integration, the initial and final time and an initial state vector 

are needed.  The initial time for the system is set to zero and a final time is set to one day.  

Giving a day for the motion of the TSS, the release of the sub-satellite, and the motion of the 

sub-satellite allows for the determination of the time to impact and the range of an impact 
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trajectory.  The time step used for the numerical integration is five seconds; however, the time 

step is decreased later when the tether length is increased.  Before the release of the sub-satellite, 

the state vector will contain 15 terms.  The terms include the position and velocity components 

of the center of mass, the true anomaly, the four Euler parameters, the angular velocity, and the 

rotation angle. 

 ̅   

[
 
 
 
 
 
 
 
 
 
 ̅  
 ̅  
 
  

  

  

  

 ̅
 ]

 
 
 
 
 
 
 
 
 

                                                                                  

 The function in the numerical integration calculates the first derivative of the state vector.  

The derivative of the state vector is calculated in four steps as described in equations (61) 

through (64).  In order to get the derivative of the state vector the derivatives of the individual 

elements must be taken.  The first derivative of the state vector contains the velocity of the center 

of mass, the acceleration of the center of mass, the first derivative of the true anomaly, the first 

derivative of the four Euler parameters, the angular acceleration, and the derivative of the 

rotation angle.  Equation (80) gives the first derivative of the state vector. 

 ̇̅   

[
 
 
 
 
 
 
 
 
 
 ̅  
 ̅  

 ̇
  ̇

  ̇

  ̇

  ̇

 ̅
 ̇ ]
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The velocity of the center of mass is taken from the original state vector.  The first derivative of 

the velocity of the center of mass is equal to the acceleration of the center of mass.  Since the 

acceleration of the center of mass was not in the original state vector, the acceleration must be 

calculated using equations (10) through (12).  The derivative of the true anomaly must now be 

calculated. 

Lovell’s procedure
18

 is used to determine the first derivative of the true anomaly using 

the position and velocity of the center of mass.  The first step is to calculate the magnitude of the 

angular momentum in geocentric coordinates and polar coordinates.  Equation (81) gives the 

magnitude of the angular momentum for geocentric coordinates.
18

 

   | ̅   ̅|   √                                                            

Lovell then finds the magnitude of the angular momentum in terms of the body fixed coordinate 

system expressed in polar coordinates.  Equation (82) gives the magnitude for the angular 

momentum using the body fixed coordinates assigned earlier in chapter two.
18

 

   | ̅   ̅|   |  ̅     ̇ ̅    ̇ ̅  |     ̇                                             

The angular momentum of an orbit remains constant and the magnitude will always be the same 

value no matter what coordinate system is used to express the components.  The next step is to 

set equation (81) and (82) equal to each other and solve for the first derivative of the true 

anomaly.  The solution is given below. 

 ̇   
√                                      
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The X, Y, and Z components from the position vector and the velocity vector can be taken from 

any position or velocity vector.  For this case the components will come from the position and 

velocity vector of the center of mass, so that the true anomaly of the system can be tracked. 

 The first derivatives of the Euler parameters, the angular acceleration, and the first 

derivative of the rotation angle now have to be determined.  The derivatives of the four Euler 

parameters are calculated using equation (29).  The angular acceleration and angular velocity for 

all cases is kept at zero. The derivative of the rotation angle is equal to the angular velocity.  The 

equivalent angular velocity needed to replace the impulsive velocity change for impact is in the 

negative or positive X2 – direction of the body coordinate system, which is parallel to the X – 

direction of the ECI coordinate system.  Since the study is focused on the in-plane motion of the 

sub-satellite, rotation of the TSS about the Y2 and Z2 axes is zero.  This means that the Y2 and Z2 

components of the equivalent angular velocity will be zero. 

 This process is continued within a loop until the point that the sub-satellite is released.  

Prior to release an impulsive velocity change is done by the sub-satellite.  After the velocity 

change, the sub-satellite is released from the system at the desired configuration and the release 

point position and velocity of the sub-satellite are calculated as described below. 

 ̅       ̅     ̅                                                                    

The term on the left hand side of equation (84) stands for the velocity of the sub-satellite at 

release.  An equivalent angular velocity that could cause impact can then be calculated by setting 

equation (84) equal to equation (38). 

 ̅      ̅     ̅     ̅                                                                    
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The angular velocity in the X - direction can then be solved for using equation (85).  There are 

two ways to calculate the angular velocity in the X - Direction.  If the velocity of the sub-satellite 

changes in the Y-direction, equation (86) is used; and equation (87) is used to find the angular 

velocity when the velocity changes in the Z-direction. 

    
           

           
                                                                

   
           

        
                                                                 

Equations (86) and (87) can then be solved for the velocity change of the sub-satellite.  The 

velocity change is expressed in vector form in equation (88). 

  ̅   ̅   ̅                                                                        

From equation (88), it can be seen that the velocity change of the sub-satellite is related to the 

angular velocity of the system.  This is why an impulsive velocity change or a change in the 

angular velocity can lead to the same ballistic capabilities of the sub-satellite. 

Before a new numerical integration is done for the sub-satellite only, the orbital elements 

of the sub-satellite’s impact trajectory are calculated in order to determine if the sub-satellite will 

impact the earth.  Since the position and velocity vectors of the sub-satellite have been calculated 

the orbital elements can be calculated using the process discussed in section 2.4.  Equation (60) 

is then used to calculate the perigee position of the sub-satellite along its impact trajectory.  If the 

perigee position of the sub-satellite is greater than the radius of the Earth, the sub-satellite will 

not impact the earth and the program breaks out of the loop to begin a new test from the 

beginning.  This is done in order to save computational time.  When the perigee position is found 
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to be less than the radius of the Earth, a new state vector is created in order to model the motion 

of the sub-satellite after release from the system. 

 The state vector for the sub-satellite after release is smaller than the state vector needed 

for the TSS.  The Euler parameters are no longer needed to model the sub-satellite, since the sub-

satellite is considered to be a point mass.  There is also no rotation angle for the sub-satellite 

because all vectors can now be expressed in terms of the geocentric coordinates only.  The new 

state vector that will be used in a 4
th

 order Runge Kutta is expressed in equation (89). 

 ̅   [
 ̅ 
 ̅ 

]                                                                                 

The first derivative of the state vector is then calculated for the numerical integration. 

 ̇̅   [
 ̅ 

 ̅ 
]                                                                                

The velocity vector is taken from the original state vector.  The acceleration of the sub-satellite 

can be calculated using the same equations as before by replacing the position and acceleration 

center of mass values with the position and acceleration of the sub-satellite.  

 
 

  
      ̈                                                                             

 
 

  
      ̈                                                                             

 
 

  
      ̈                                                                             

 The state vector for the sub-satellite is then propagated forward in time using the 

numerical integration.  This is done until impact occurs or a full day goes by.  After a full day 
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goes by, the simulation stops because a day to reach an impact point is too long of a travel time 

for a threat.  When the magnitude of the position vector is equal to or less than the radius of the 

Earth, impact of the sub-satellite will occur.  When this happens, the program breaks out of the 

loop and completes the numerical integration.   

Before the range and time to impact can be calculated, the true anomaly at impact and the 

true anomaly at release must be calculated using the eccentricity and the semi-major axis from 

the impact trajectory.  The first step is to take the trajectory equation in equation (67) and solve 

for the true anomaly. 

           (
          

   
)                                                        

The magnitude for the position of the sub-satellite in equation (94) is dependent upon the true 

anomaly that is trying to be found.  If equation (94) is used to find the true anomaly at impact 

than the position of the sub-satellite is equal to the radius of the Earth. 

           (
          

   
)                                                     

Equation (95) may give a true anomaly at impact that is less than the true anomaly at release.  

Since impact occurs after the true anomaly at release, the true anomaly at impact must be greater 

than the true anomaly at release.  This change can be done by following the test in equation (96). 

             

            
                                                                         

With the true anomaly at impact in the correct quadrant, the range and time to impact can be 

calculated using the following equations. 
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     (|          |)                                                                    

                                                                                         

The angle for the arc length in equation (97) is the absolute value of the true anomaly at impact 

minus the true anomaly at release.  The time to impact subtracts the time at release from the final 

time when impact occurs.  The impact of the sub-satellite can take longer than a day depending 

on the type of changes that are placed on the system.  Usually an impact that takes longer than a 

day means that the impact trajectory of the sub-satellite is hyperbolic.  If the impact takes longer 

than a day, the program continues to run until the end of the day but will not calculate the range 

or time to impact because the sub-satellite has not impacted yet.  For the range and time to 

impact to be calculated the total time for the numerical integration to run must be increased.  

With this test complete the process can be continued with new altitude and tether length values.  

The changes placed on the system to create an impact trajectory will be discussed in the next 

section. 

3.2 Changes Applied to the System to Create Impact of Sub-Satellite 

 For this research two configurations are chosen for the sub-satellite upon release during 

the numerical simulation.  These configurations were chosen to model possible real world 

scenarios for releasing the sub-satellite from the TSS.  The first configuration of the sub-satellite 

at release will have the sub-satellite located below the main satellite with a rotation angle of -0.5 

radians.  The second configuration will place the sub-satellite above the main satellite using a 

rotation angle of about -3.6416 radians.  The rotation angle is depicted in figure 3.1 and 

measures the position of the sub-satellite from the vertical Z – axis.  The rotation angle also 
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keeps the sub-satellite in a leading position.  More points can be chosen and the program can be 

easily changed to reflect the new configuration or configurations of the sub-satellite at release. 

 Simply releasing the sub-satellite from the TSS by cutting the tether does not always 

create an impact trajectory.  In order to create impact trajectories an impulsive velocity change of 

the sub-satellite or a change in the angular velocity of the system must be introduced prior to the 

time of release.  The change in velocity of the sub-satellite is increased or decreased in the Z 

direction or the Y direction.  All changes in velocity are tested within the program because a 

velocity change in the positive Y direction may cause the impact of the sub-satellite to occur at a 

small velocity change, while a large change in velocity in the negative Z direction may be 

needed in order to cause an impact.  In order to get the change in the sub-satellite velocity to 

occur, a thrust force is generated by the sub-satellite.  The thrust force is not modeled in the 

program because the research is not concerned with how the velocity change occurs, but on what 

is the minimum velocity change needed to cause impact and how the velocity change will affect 

the range and time to impact for the sub-satellite system.  It is also important to note that a 

change in velocity still may not cause the sub-satellite to impact.  The test for impact is done 

because of the fact that an impact still may not occur even with a large velocity change.  If a 

change in velocity is not done on the sub-satellite, a change in the angular velocity can be placed 

on the system prior to the time of release in order to create an impact.  This angular velocity is 

produced by the main satellite and sub-satellite generating a thrust that would cause the TSS to 

rotate about the center of mass.  Once again, the thrust changes are not modeled. 

 The velocity of the sub-satellite can also be changed by introducing a velocity change in 

the X direction; however, this case is not investigated because the motion of the TSS is restricted 

to the Y-Z plane.  Introducing a change in the X direction will cause out of plane librational 
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motion that will need to be accounted for.  While the out of plane librational motion can be 

introduced into the program, it will severely complicate the program and the set-up or model of 

the TSS.  One of the goals of this research is to investigate the impact of the changes in altitude, 

tether length, and angular velocity using a simplified model for the TSS.  For this reason velocity 

changes in the X direction on the sub-satellite are not considered in this research.   

3.3 Variations to the Problem Set-up   

 The changes in the velocity of the sub-satellite discussed in the previous section will help 

to lead to an impact and will affect the range and time to impact for the sub-satellite.  The main 

properties of the TSS that will be changed are the altitude and the tether length of the system.  

When a change in the velocity of the sub-satellite leads to an impact, changes in the altitude and 

tether length will be analyzed in order to determine if these changes lead to an increase or a 

decrease in the range and time to impact. 

 The altitude that is being changed is the altitude for the main satellite.  In this case the 

tether length of the TSS is kept constant at four kilometers.  The range of the altitude goes from 

five hundred kilometers to fifteen hundred kilometers.  The minimum value of five hundred 

kilometers was chosen because the drag force due to the Earth’s atmosphere does not have to be 

taken into account at this point.  As the altitude of a satellite decreases and gets closer to the 

Earth, the atmospheric drag must be taken into account.  The altitude is increased in increments 

of fifty kilometers.  At each altitude the program is run as discussed in section 3.1 in order to 

determine the range and time to impact for the sub-satellite after release.  The increase in altitude 

should lead to an increase in the range and time to impact because the sub-satellite is located at a 

higher position at release.  
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 The range of values used for the tether length is one kilometer to one hundred kilometers.  

Three kilometers are used as the increment change from one kilometer to one hundred 

kilometers.  For this case the altitude is held constant at a value of five hundred kilometers. The 

tether length can either increase or decrease the range and time to impact of the sub-satellite 

depending on the location of the sub-satellite relative to the main satellite at the point of release.  

For example, if the sub-satellite is located above the main satellite, an increase in the tether 

length should lead to an increase in the range and time to impact.  On the other hand, if the sub-

satellite is located below the main satellite, an increase in the tether length should decrease the 

range and time to impact of the sub-satellite.    

3.4 Analytical Solutions 

 This section discusses the formulation of equations and algorithms for the analytical 

solution to the impact problem of a sub-satellite after it is released from a TSS.  The first 

analytical solution that is determined can be used to find the range and time to impact given 

initial conditions for the TSS.  The second analytical solution solves the problem backwards.  In 

other words, given the range, true anomaly at impact, and some other initial conditions find the 

change in the angular velocity of the TSS or the impulsive velocity change needed in order to 

achieve the desired range at impact.  The reason behind the analytical approach is to force the 

sub-satellite to be directly below, above, to the right, or to the left of the main satellite.  The set 

up for the four cases are depicted in figure 3.2, which is located before the next section.   

 The position of the center of mass, the main satellite, and the sub-satellite must be 

determined for each case.  Each position component can be described in terms of the radius of 

the Earth, the altitude of the main satellite, and the tether length.  The position of the main 

satellite will always be in the positive Z – direction and equal to the radius of the Earth plus the 
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altitude. Table 3.1 gives the position of the sub-satellite for each of the four cases. Case A, B, C, 

and D correspond to when the sub-satellite is located above, below, to the right, and to the left of 

the main satellite, respectively. In table 3.1 the components of the sub-satellite position are given 

for each case.  The X-component of the sub-satellite position vector is always equal to zero 

because the orbital motion is kept in the Y-Z plane.   

Table 3.1 Sub-satellite Position Components for Cases A - D 

Case X-Component (km) Y-Component (km) Z-Component (km) 

A 0 0 Re + H + Lt 

B 0 0 Re + H - Lt 

C 0  Lt Re + H 

D 0  - Lt Re + H 

 

 

Figure 3.2 Analytical Cases 
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3.4.1 Equations to Find the Range and Time to Impact 

 For this set of analytical equations the goal is to find expressions for the range and time 

to impact.  It is assumed that the altitude of the main satellite, the length of the tether, the angular 

velocity of the TSS, and the impulsive velocity change of the sub-satellite are known.  The 

angular velocity can have three components in the X2, Y2, and Z2 – directions; however, the Y2 

and Z2 – components of the angular velocity are equal to zero because the trajectory of the TSS 

remains in the Y-Z plane.  For all cases an impulsive velocity change is placed on the sub-

satellite; therefore, the angular velocity in the X2 or X direction will also be zero .  Since the only 

known values are the altitude, tether length, angular velocity, and the velocity change of the sub-

satellite, the range and time to impact must be functions of these four known values for the given 

mass ratio. 

 In order to find the range the true anomaly at impact and the true anomaly at release, 

equation (97) must be expressed in terms of the four known variables.  Since the radius of the 

Earth is a constant and the magnitude of the position vector is a function of the altitude, the 

tether length, and the radius of the Earth, the semi-major axis and the eccentricity of the 

impacting trajectory must now be expressed in terms of the four known values.  The energy 

equation, or equation (66), can be used to find the semi-major axis. 

   
  

     
   

  
  

                                                                       

Equation (43) can then be used to solve for the eccentricity. 

   √   
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Equation (99) can then be substituted into equation (100). 

   √   
        

     

    
                                                          

Equation (102) expresses the angular momentum of the sub-satellite’s impact trajectory. 

    ̅   ̅   | ̅|| ̅|                                                             

The point of release for the sub-satellite is located at the point near the apogee of the impact 

trajectory, where the flight path angle is zero.  The angular momentum can now be expressed in 

terms of the magnitudes of the position and velocity vectors of the sub-satellite after release. 

                                                                                      

The velocity of the sub-satellite can be written as 

 ̅    ̅     ̅    ̅    ̅                                                          

The velocity of the center of mass can be found by using equation (2).  The angular velocity only 

has a single vector component. 

 ̅        ̅                                                                        

The velocity vector for the sub-satellite can be written as 

 ̅  [                  ]   ̅  [         (        )]  ̅                     

The final step is to calculate the magnitude of the sub-satellite velocity at release.  A change in 

velocity can then be added to the velocity of the sub-satellite to get the velocity at release, as 
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shown in equation (84).  The magnitude of the sub-satellite velocity can then be found by taking 

the square root of the components squared. 

 Now that all the terms have been found for the true anomaly the range equation can be 

defined.  The true anomaly at release is assumed to be one hundred and eighty degrees.  

Equations (99), (101), and (102) are substituted into equation (95) to get the true anomaly at the 

impact point.  The true anomaly at the impact point is then substituted into equation (97).  The 

range formula given in equation (107) is now a function of the altitude, tether length, angular 

velocity, and velocity change of the sub-satellite.   

    (|     (
          

   
)   |)                                            

Where, 

  
  

     
   

  
  

                                                                    

   √  
          

  
                                                                

 In order to get the time to impact for the impact trajectory, the time at release and the 

time at impact must be calculated.  The time at release can then be found by taking half of the 

orbital period, given by 

      
 

 
   √
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Since the true anomaly at impact is known, it can be substituted into equation (73) to get the 

eccentric anomaly at impact.  The time at impact can then be found by using equations (68) and 

(69), giving 

         
             

√
 
  

                                                       

The initial time in equation (111) is equal to zero because it is the time at perigee. 

     
             

√
 
  

                                                           

This same method can be used to find the time at release if the true anomaly at release is not 

equal to one hundred and eighty degrees.  The true anomaly at release would be used in equation 

(73) to find the eccentric anomaly at release. 

The time to impact can now be found by subtracting the time at impact from the time at 

release, as 

                                                                                  

 Another method can be used to find the position of the sub-satellite if the center of mass 

position and velocity vector, and the rotational angle are known in addition to the other values.  

The position vector between the center of mass and the sub-satellite is defined in equation (114). 

 ̅              ̅            ̅                                               

Substituting into equation (32) gives 
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 ̅  (            )   ̅                  ̅                                   

which has a magnitude of 

   √                                                                    

For the case when the angular momentum of the sub-satellite is 

 ̅  (    ̅      ̅)  (       ̅         ̅)                                              

Equation (117) can then be simplified to 

 ̅  (                   )  ̅                                                           

Having the magnitude of  

  √                                                                                  

Equation (116) and (119) can then be used in the second method to find the range and time to 

impact, when the center of mass position and velocity vector, and the rotational angle are known.  

3.4.2 Algorithm to Find the Range and Time to Impact 

 Since all the equations are defined for the analytical solution to find the range and time to 

impact, an algorithm can be developed for use in a computer program, such as MATLAB, or for 

use in a hand calculation of the results.  Remember that the known values for this algorithm are 

the altitude of the main satellite, the tether length, the angular velocity, and the impulsive 

velocity change of the sub-satellite.  The algorithm is listed in step format beginning on the next 

page. 
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Step 1: Calculate the position of the sub-satellite at release, position of the main satellite, and the 

position of the center of mass.  The position of the sub-satellite is calculated using table 3.1 and 

the position of the center of mass is calculated using 

 ̅    
 ̅      ̅   

      
                                                                              

Step 2: Calculate the velocity of the center of mass using 

      √
 

   
                                                                                     

Step 3: Calculate the velocity of the sub-satellite at release using  

 ̅  [                  ]   ̅  [         (        )]  ̅                      

 ̅       ̅     ̅                                                                        

Step 4:  Calculate the semi-major axis using  

   
  

     
   

  
  

                                                                         

Step 5: Calculate the angular momentum using 

                                                                                      

Step 6: Calculate the eccentricity using  

   √   
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Step 7: Calculate the perigee position using  

                                                                                   

and test for impact using equation (119). 

                            

                  
                                                        

Step 8: Calculate true anomaly at impact using 

           (
          

   
)                                                     

And assign the true anomaly at release value using equation (121).  

                                                                                     

The true anomaly at impact must then be placed in the correct quadrant using  

             

            
                                                                       

Step 9: Calculate the range using  

     (|          |)                                                                 

Note: Step eight and nine can be combined into one step by using  

    (|     (
          

   
)   |)                                            

Where, 
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   √  
          

  
                                                                

Step 10: Calculate the time at release using 

      
 

 
   √

  

 
                                                                    

Step 11: Calculating the eccentric anomaly at impact using 

        [(
   

   
)

 
 ⁄

   (
 

 
)]                                                      

Step 12: Calculating the time at impact using  

     
             

√
 
  

                                                           

If the true anomaly at release is much less than or much greater than one hundred and eight 

degrees use equation (122) to find the time at impact. 

                                                                         

Step 13: Calculate the time to impact. If the true anomaly at impact was found to already be 

greater than the true anomaly at release use 
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If the true anomaly at impact was changed in step 8, use equation (123) to calculate the time to 

impact. This eliminates the issue caused by a negative eccentric anomaly.  

                                                                               

If the true anomaly at release is much less than or much greater than one hundred and eight 

degrees use equations (122) and (113) to find the time to impact. 

 If the center of mass position and velocity vectors and the rotational angle are known in 

addition to the other values, some steps in the algorithm will change. The changes to the 

algorithm are listed below. 

Step 1: Calculate the length between the center of mass and the sub-satellite using 

                                                                                ) 

Then calculate the position of the sub-satellite at release using  

 ̅  (            )   ̅                  ̅                                   

Step two can then be omitted.  

Step 5: Calculate the angular momentum using equation (119). 

  √                                                                                  

Step 8: Calculate the true anomaly at release using  

           (
          

   
)                                                        
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The final steps remain the same for this set of given values.   

3.4.3 Equations to Find the Velocity Change and Angular Velocity 

 In this section equations are developed to find the impulsive velocity change of the sub-

satellite and the equivalent angular velocity of the TSS needed to cause an impact if an impulsive 

velocity change is not to be placed on the system given a set of known values.  Five known 

values are needed for each solution.  Four of the known values remain the same for each 

solution.  These are the range, the true anomaly at impact, the altitude, and the tether length.  The 

fifth known value depends upon what is being solved for.  If the velocity change of the sub-

satellite is to be determined, the angular velocity of the TSS must be known.  When the change 

in the angular velocity of the TSS is being solved for, the velocity change of the sub-satellite 

caused by the angular velocity must be known.  Since the known values have changed the 

equations found in section 3.4.1 need to be rearranged to find the velocity change and the change 

angular velocity. 

 With this analytical solution the assumption that the point of release is located at the 

apogee of the impact trajectory no longer holds.  This means that the true anomaly at release 

must be determined.  This is done by first getting rid of the absolute value in equation (97) by 

multiply the left hand side by a negative one and then solving for the true anomaly at the release 

point for the sub-satellite. 
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The next step is to use the true anomaly at impact to find the semi-major axis of the impacting 

trajectory in terms of the eccentricity of the impacting trajectory.  This is done by solving for the 

semi-major axis in equation (99). 

  
             

    
                                                              

Equation (126) is then substituted into equation (94). 

           (
  (          )     

   
)                                           

Equation (127) is then used to solve for the eccentricity of the impact trajectory. 

  
     

                   
                                                        

 Two different equations must be developed for finding the impulsive velocity change of 

the sub-satellite and for finding the change in angular velocity of the TSS.  In order to find the 

velocity change of the sub-satellite when given an angular velocity, equation (38) must be 

substituted into equation (84). 

 ̅      ̅     ̅   ̅     ̅     ̅      ̅                                        

Since the angular velocity of the TSS is assumed to be zero when an impulsive velocity change 

is applied, the cross product in equation (129) is dropped and the velocity change can be solved 

for by using equations (130) and (131). 
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The equivalent angular velocity for a velocity change of the sub-satellite can be found using 

equations (86) and (87) depending upon the direction of the velocity change.  

3.4.4 Algorithm to Find the Velocity Change and Angular Velocity 

 The algorithm to find the impulsive velocity change of the sub-satellite and the algorithm 

to find the change in the angular velocity of the TSS to cause an impact of the sub-satellite given 

a set of known parameters vary slightly.  The first algorithm that will be looked at is the 

algorithm to solve for the impulsive velocity change of the sub-satellite.   

Step 1 – 6: Same as the steps discussed in section 3.4.2. 

Step 7: Calculate the velocity change using equation (130) or equation (131). 

                                                                             

                                                                               

If the velocity change calculated is reasonable, then the algorithm can be stopped.  If the velocity 

change is not reasonable, the altitude or tether length must be increases for decreased to reach a 

reasonable value. 

 The second algorithm that will be looked at is the algorithm to solve for the equivalent 

angular velocity change of the sub-satellite.   

Step 1 – 6: Same as the steps discussed in section 3.4.2. 

Step 7: Calculate the equivalent angular velocity using equation (86) or equation (87). 
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If the angular velocity change calculated is reasonable, then the algorithm can be stopped.  If the 

angular velocity change is not reasonable, the altitude or tether length must be increases for 

decreased to reach a reasonable value. The effects of the change in altitude and tether length on 

the angular velocity and on the velocity change of the sub-satellite are shown in chapter four. 
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Chapter 4: Results for Analytical Solutions 

The cases that will be considered for this chapter are cases A through D, which were 

described in chapter three, section four.  Case A and B are when the sub-satellite is located 

directly above and directly below the main satellite, while Case C and D are when the sub-

satellite is located immediately to the right, in the direction opposite the velocity vector, and 

immediately to the left, in the same direction as the velocity vector, of the main satellite.  The 

first section of this chapter will discuss the ground range and the time to impact found by using 

the algorithm discussed in chapter three, section 3.2.  The second section discusses the results 

when the algorithm discussed in chapter three, section 3.4 is used to find the impulsive velocity 

change and the change in the angular velocity of the TSS. 

4.1 Analytical Results for the Range and Time to Impact 

 For this case the altitude, tether length and the impulsive velocity change are known and 

are used to calculate the ground range and time to impact.  For the results presented here, the 

altitude and tether length are kept constant, while the impulsive velocity change is increased 

from zero kilometers per second to six kilometers per second.  Three different set-ups for the 

altitude and the tether length are evaluated.  The three set-ups are a five hundred kilometer 

altitude and a four kilometer tether length, an eight hundred kilometer altitude and a four 

kilometer tether length, and a five hundred kilometer tether length and a forty kilometer tether.  

These three set-ups are used in order to investigate the results obtained by increasing the altitude 

and increasing the tether length. 
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4.1.1 Case A Results 

 The position of the TSS at the point of release was shown in figure 3.2.  In this situation 

the velocity of the sub-satellite is directed solely in the negative Y – direction and it is assumed 

any impulsive velocity change that takes place must be done in the positive Y – direction to 

create impact.  The trends for the ground range and the time to impact as the magnitude of the 

impulsive velocity change increases hold for all three set-ups. 

 

Figure 4.1: Ground Range vs. +ΔV1y for Case A 
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Figure 4.2: Time to Impact vs. +ΔV1y Increases for Case A 

A minimum impulsive velocity change in the positive Y – direction is required in order to 

create an impact trajectory for each of the three set-ups.  The minimum impulsive velocity 

needed to create an impact point changes when the altitude is increased to eight hundred 

kilometers; however, a change in the tether length does not result in a change to the minimum 

impulsive velocity change needed for an impact trajectory.  The minimum impulsive velocity 

change values needed for the three set-ups are listed in table 4.1. 

Table 4.1: Minimum Impulsive Velocity Change Needed for Case A 

Altitude (km) Tether Length (km) 

Minimum Velocity Change needed in 

+ Y - direction (km/s) 

500 4 0.2 

800 4 0.3 

500 40 0.2 

 

 The maximum ground range and time to impact occur at the minimum impulsive velocity 
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velocity change.  Depending upon the altitude and the tether length the value for the ground 

range and time to impact could increase or decrease.  For these three cases an increase in the 

tether length to a value of forty kilometers, results in the largest increase in the ground range and 

the time to impact.  The increase in the altitude to eight hundred kilometers results in a small 

decrease in the ground range and time to impact.  These effects are shown in figures 4.1 and 4.2.  

The next two tables list the actual maximum and minimum values for the ground range and time 

to impact for each of the set-ups.   The maximum values occur at the minimum impulsive 

velocity change placed on the sub-satellite for the three cases listed. 

Table 4.2 Maximum Ground Range and Time to Impact for Case A 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 13065.3 1793.5 

800 4 13220.3 1899.3 

500 40 15165.6 2077.0 

 

The maximum value for the ground range and the time to impact occur when the tether length 

increases to forty kilometers and the velocity change is 0.2 kilometers per second in the positive 

Y – direction.  The increase in altitude leads to an increase in the ground range and the time to 

impact, but an increased velocity change is needed in order to create an impact point at the 

higher altitude.  This results in the smaller increase to the ground range and time to impact. 

Table 4.3: Minimum Ground Range and Time to Impact for Case A 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 549.9 349.8 

800 4 636.5 456.4 

500 40 570.1 363.8 
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The minimum values for the ground range and time to impact occur when the maximum 

impulsive velocity change is placed on the sub-satellite.  For Cases A through D this maximum 

velocity change is six kilometers per second in the positive Y – direction.  As the velocity change 

increases the ground range and the time to impact are decreased.  The true minimum value 

comes from the first set-up, where the altitude is five hundred kilometers and the tether length is 

four kilometers.  This time the increase in altitude results in a higher minimum value for the 

ground range and time to impact.  The third set-up serves as a midpoint for the minimum values 

that can be obtained. 

4.1.2 Case B Results 

 For case B, the sub-satellite is located below the main satellite.  The center of mass, main 

satellite, and sub-satellite have a velocity solely in the negative Y – direction.  In order to cause 

the sub-satellite to enter an impact trajectory, the impulsive velocity change of the sub-satellite 

must be in the positive Y – direction.  The ground range and time to impact decrease as the 

impulsive velocity change in the positive Y – direction is increase.  The decrease in the ground 

range and the time to impact as the impulsive velocity change increases are shown in figures 4.3 

and 4.4 on the next page. 
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Figure 4.3: Ground Range vs. +ΔV1y for Case B 

 
 

Figure 4.4: Time to Impact vs. +ΔV1y for Case B 
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Table 4.4: Minimum Impulsive Velocity Change Needed for Case B 

Altitude (km) Tether Length (km) 

Minimum Velocity Change needed in 

+ Y - direction (km/s) 

500 4 0.2 

800 4 0.3 

500 40 0.2 

 

The maximum and minimum ground range and time to impact occur at the minimum impulsive 

velocity change and the maximum impulsive velocity change of six kilometers per second, 

respectively.  An increase in the altitude leads to a larger increase in the ground range and time 

to impact, than an increase in the tether length. 

Table 4.5: Maximum Ground Range and Time to Impact for Case B 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 12696.5 1743.2 

800 4 12980.0 1865.2 

500 40 11279.4 1548.9 

 

The maximum ground range and time to impact occur when the altitude is increased because as 

the altitude increases the sub-satellite moves further away from the surface of the Earth.  The 

lowest maximum value occurs when the tether length is increased, because the sub-satellite gets 

closer to the surface of the Earth as the tether increases.  If the altitude is increased further, the 

ground range and time to impact should also increase; however, if the tether length increases 

instead, the ground range and time to impact will decrease.   
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Table 4.6: Minimum Ground Range and Time to Impact for Case B 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 545.3 346.7 

800 4 633.1 453.7 

500 40 524.3 332.4 

 

The minimum values for the ground range and the time to impact are affected by the increase in 

the altitude and tether length in the same way that the maximum values are affected.  The largest 

ground range and time to impact happens when the altitude increases, while the true minimum 

occurs when the tether length is increased.  The ground range and time to impact calculated for 

case B in all set-ups is less than the ground range and time to impact calculated in case A. 

4.1.3 Case C Results 

 The sub-satellite is located immediately to the right of the main satellite.  In this position 

the sub-satellite’s velocity is only in the negative Y – direction; therefore, an impulsive velocity 

change in the positive Y – direction is needed in order to create an impact for the sub-satellite.  

As the impulsive velocity change in the positive Y – direction is increased, the ground range and 

the time to impact decrease.  The trends mentioned above can be seen in figures 4.5 and 4.6 on 

the next page. 
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Figure 4.5: Ground Range vs. +ΔV1y for Case C 

 
 

Figure 4.6: Time to Impact vs. +ΔV1y for Case C 

The minimum impulsive velocity change needed to create the first impact trajectory for each set-
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Table 4.7: Minimum Impulsive Velocity Change Needed for Case C 

Altitude (km) Tether Length (km) 

Minimum Velocity Change needed 

in + Y - direction (km/s) 

500 4 0.2 

800 4 0.3 

500 40 0.2 

 

The maximum ground range and time to impact will occur at the minimum impulsive velocity 

changes listed in table 4.7 for each set-up.  When the impulsive velocity change reaches the 

maximum value of six kilometers per second, the ground range and time to impact will be at 

their minimum values.  The maximum and minimum values are listed for the ground range and 

time to impact below in table 4.8 and table 4.9. 

Table 4.8: Maximum Ground Range and Time to Impact for Case C 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 12945.5 1758.1 

800 4 13140.0 1875.6 

500 40 13535.9 1667.9 

 

Table 4.9: Minimum Ground Range and Time to Impact for Case C 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 547.8 348.2 

800 4 635.0 455.0 

500 40 549.4 347.2 

 

The largest maximum value that is obtained for case C occurs when the tether is increased, 

because an increase in the tether length places the sub-satellite further away from the impact 
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point. The largest minimum value for case C occurs when the altitude is increased because the 

altitude places the sub-satellite in a higher orbit.  

4.1.4 Case D Results 

 The position of the sub-satellite for case D is directly to the left main satellite.  In this set-

up the velocity of the main satellite, the center of mass, and the sub-satellite is only in the 

negative Y – direction; therefore, the impulsive velocity change needs to be in the positive Y – 

direction in order to cause the sub-satellite to enter an impact trajectory.  The ground range and 

time to impact for all three set-ups decreases as the impulsive velocity change in the positive Y – 

direction increases.  The change in ground range is shown below, while the change in the time to 

impact is shown in figure 4.8 on the next page. 

 

Figure 4.7: Ground Range vs. +ΔV1y for Case D 
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Figure 4.8: Time to Impact vs. +ΔV1y for Case D 
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Table 4.11: Maximum Ground Range and Time to Impact for Case D 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 12945.5 1758.1 

800 4 13140.2 1875.6 

500 40 13535.1 1667.9 

 

Table 4.12: Minimum Ground Range and Time to Impact for Case D 

Altitude 

(km) 

Tether Length 

(km) 

Ground Range 

(km) 

Time to Impact 

(s) 

500 4 547.8 348.2 

800 4 635.0 455.0 

500 40 549.4 347.2 

 

The values for the maximum and minimum ground range and time to impact are the same as the 

values in case C.  The only difference is the position vector of the sub-satellite in both cases; 

therefore, the trajectories are only shifted over because of the sub-satellite’s orientation with the 

main satellite.   

4.2 Analytical Results for the Impulsive Velocity Change and the Angular Velocity 

 In this section it is assumed that the altitude, tether length, ground range, and true 

anomaly at impact are known.  The algorithm discussed in chapter three, section 3.4 is used to 

get the results in this section.  Two scenarios are looked at to use the analytical results to find the 

impulsive velocity change and change in angular velocity of the TSS at different altitudes and 

tether lengths.  The first scenario sets the ground range at fifteen hundred kilometers with a true 

anomaly at impact of two hundred and forty degrees or 4.1888 radians.  The second scenario sets 

the ground range at three thousand kilometers with a true anomaly at impact of two hundred and 

forty degrees.  As each scenario is looked at, case A and B are placed on the same plot because 
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in both situations the velocity of the sub-satellite and the impulsive velocity change are along the 

Y – axis, while case C and D are placed on the same plot.  For all cases the velocity of the sub-

satellite is in the negative Y – direction and the impulsive velocity change is in the positive Y – 

direction.   

4.2.1 Ground Range of 1500 km and           

 The impulsive velocity change and the equivalent change in angular velocity of the TSS 

were first found for case A and case B.  The altitude starts at five hundred kilometers and is then 

increased to fifteen hundred kilometers in increments of one hundred kilometers.  As the altitude 

increases the impulsive velocity change and the change in angular velocity of the TSS needed to 

reach a ground range of fifteen hundred kilometers decreases in magnitude.  The impulsive 

velocity change for case A and B are slightly different as the altitude increases and are in the 

same direction.  For case A the change in angular velocity must be in the negative X – direction 

to cause a clockwise rotation of the TSS to create the same velocity change.  The change in 

angular velocity must be in the positive direction for case B to cause a counter-clockwise 

rotation.  The plots of the impulsive velocity change and the change in angular velocity as a 

function of changing altitude are shown on the next page and are followed by a table that gives 

specific values for the velocity change and the angular velocity at three different altitudes. 
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Figure 4.9 Velocity Change vs. Altitude for Case A and B; R = 1500 km and θimp = 240° 

 
 

Figure 4.10 Angular Velocity vs. Altitude for Case A and B; R = 1500 km and θimp = 240° 
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Table 4.13 Impulsive Velocity Change and Angular Velocity at Three Altitudes for Case A and 

B When R = 1500 km and θimp = 240° 

 
Case A Case B 

Altitude 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

500 0.6048 -0.1663 0.5981 0.1645 

1000 0.5012 -0.1378 0.5025 0.1382 

1500 0.0681 -0.0187 0.0731 0.0201 

 

From table 4.13 it can be seen that the values for the impulsive velocity change and the 

magnitude of the change in angular velocity differ slightly, because of the placement of the sub-

satellite with respect to the main satellite. For both cases as the altitude increases the required 

impulsive velocity change and change in angular velocity of the system is decreased.  

 The next change that is placed on case A and B is an increase in the tether length.  The 

tether length starts at four kilometers and is increased to one hundred and fourteen kilometers in 

increments of ten kilometers.  As the tether length increases the impulsive velocity change of the 

sub-satellite is decreased for case B, while the impulsive velocity change increases for case A.  

The magnitude of the equivalent angular velocity needed to reach the same ground range and 

true anomaly at impact decreases as the tether length increases.  These trends are shown in 

figures 4.11 and 4.12.  The plots are then followed by a table that lists specific impulsive velocity 

changes and angular velocities that are needed to achieve the desired ground range and impact 

point. 
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Figure 4.11 Velocity Change vs. Tether Length for Case A and B; R = 1500 km and θimp = 270° 

 
 

Figure 4.12 Angular Velocity vs. Tether Length for Case A and B; R = 1500 km and θimp = 240° 
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Table 4.14: Impulsive Velocity Change and Angular velocity at Three Tether Lengths for Case A 

and B When R = 1500 km and θimp = 240° 

 
Case A Case B 

Tether 

Length 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

4 0.6048 -0.1663 0.5981 0.1645 

54 0.6431 -0.0131 0.5515 0.0112 

114 0.6804 -0.0066 0.4856 0.0047 

 

The impulsive velocity changes increase for case A as the tether length increases because the 

sub-satellite is located above the main satellite.  The impulsive velocity change decreases for 

case B because the sub-satellite is located below the main satellite.  The change in angular 

velocity of the TSS needed to create the same ground range and impact point in case A and B 

decrease because the increase in tether length is a larger value than the velocity change.   

 Now the effect of increasing altitude and tether length will be investigated for cases C 

and D. The change in angular velocity of the TSS for both cases was found to be zero because an 

impulsive change in velocity in the positive Y – direction on the sub-satellite will not lead to a 

rotation of the TSS.  A change in velocity in the positive or negative Z – direction will lead to a 

rotation.  For a ground range of fifteen hundred kilometers and a true anomaly of two hundred 

and forty degrees, the increase in altitude will results in a decrease of the magnitude of the 

velocity change. 
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Figure 4.13 Velocity Change vs. Altitude for Case C and D; R = 1500 km and θimp = 240° 

Table 4.15: Impulsive Velocity Change and Angular Velocity at Three Altitudes for Case C and 

D When R = 1500 km and θimp = 270° 

 
Case C Case D 

Altitude 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

500 0.6015 N/A 0.6015 N/A 

1000 0.5019 N/A 0.5019 N/A 

1500 0.0706 N/A 0.0706 N/A 

 

At each altitude the magnitude of the impulsive velocity change is the same for each case.  This 

similarity occurs because the sub-satellite in case C and D has the same altitude as the main 

satellite. 

 The increasing tether length for case C and D leads to an increase in the magnitude of the 

impulsive velocity change.  The change in angular velocity is still equal to zero because of the 

reasons explained for the changing altitude.  Three values for impulsive velocity change and 
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change in angular velocity are shown in table 4.16 for both cases at an altitude of five hundred 

kilometers, one thousand kilometers, and fifteen hundred kilometers. 

 

Figure 4.14 Velocity Change vs. Tether Length for Case C and D; R = 1500 km and θimp = 240°  

Table 4.16: Impulsive Velocity Change and Angular Velocity at Three Tether Lengths for Case 

C and D When R = 1500 km and θimp = 240° 

 
Case C Case D 

Tether 

Length 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

4 0.6015 N/A 0.6015 N/A 

54 0.6017 N/A 0.6017 N/A 

114 0.6023 N/A 0.6023 N/A 

 

4.2.2 Ground Range of 3000 km and           
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length.  As in the previous section, the first two cases that will be looked at are case A and B and 

the first change that will be investigated is the increase in the altitude of the main satellite.  The 

increase in altitude leads to an increase in the magnitude of the impulsive velocity change and 

change in angular velocity for both cases.  The impulsive velocity change and change in angular 

velocity of the TSS as a function of altitude are shown in figures 4.15 and 4.16. 

 

Figure 4.15 Velocity Change vs. Altitude for Case A and B; R = 3000 km and θimp = 240° 

 

 
Figure 4.16 Angular Velocity vs. Altitude for Case A and B; R = 3000 km and θimp = 240° 
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Table 4.17: Impulsive Velocity Change and Angular Velocity at Three Altitudes for Case A and 

B When R = 3000 km and θimp = 240° 

 
Case A Case B 

Altitude 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

500 0.5968 -0.1641 0.5857 0.1611 

1000 0.9200 -0.2530 0.9128 0.2510 

1500 1.0687 -0.2939 1.0641 0.2926 

 

With this ground range the increase in altitude leads to an increase in the impulsive velocity 

change because a greater velocity change is needed in order to create an impact at a higher 

altitude and to achieve a greater ground range.  As the velocity change increases, the change in 

angular velocity increases as well because a larger equivalent angular velocity is needed to create 

the same impact point.  The angular velocity for case A is negative because the angular velocity 

of the system needs to be in the negative X – direction in order to create a clockwise rotation.  

The angular velocity is positive in order to create a counter-clockwise rotation for case B. 

 The increase in tether length will also affect the impulsive velocity change and the 

change in angular velocity for case A and B.  The impulsive velocity change placed on the sub-

satellite at release decreases with the increasing tether length for case B; however, the impulsive 

velocity change increases with increase tether length in case A.  The increase in tether length 

also causes the change in angular velocity of the TSS to decrease in magnitude.  This decrease in 

angular velocity is a result of the increase in the distance between the center of mass and the sub-

satellite.  As the distance increases the amount of rotation or angular velocity that is required to 

place the TSS in the proper orientation to cause the sub-satellite to enter an impact trajectory 

decreases.  The impulsive velocity change and change in angular velocity as a function of 

increasing tether length are shown in figures 4.17 and 4.18. 
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Figure 4.17 Velocity Change vs. Tether Length Case A and B; R = 3000 km and θimp = 240° 

 

 
 

Figure 4.18 Angular Velocity vs. Tether Length for Case A and B; R = 3000 km and θimp = 240° 
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Table 4.18: Impulsive Velocity Change and Angular Velocity at Three Tether Lengths for Case 

A and B When R = 3000 km and θimp = 240° 

 
Case A Case B 

Tether 

Length 

(km) 

Velocity Change 

(km/s) 

Angular Velocity 

(rads/s) 

Velocity Change 

(km/s) 

Angular Velocity 

(rads/s) 

4 0.5968 -0.1641 0.5857 0.1611 

54 0.6642 -0.0135 0.5149 0.0105 

114 0.7414 -0.0072 0.4260 0.0041 

 

The impulsive velocity change for case A increases with increasing tether length because the 

sub-satellite is placed in a higher orbit away from the Earth.  The impulsive velocity change for 

case B decreases with increasing tether length because the sub-satellite is lowered into an orbit 

closer to the Earth.  The change in angular velocity of the TSS needed for impact decreases with 

increasing tether length.  The magnitudes of the angular velocities differ between the two cases 

because of the different impulsive velocity changes.  The angular velocity in case A is in the 

negative X – direction because a clockwise rotation is needed for impact. 

 The increase in altitude and increase in tether length will now be applied to case C and D.  

From the previous case in section 4.2.1, it is expected that the results for case C and D for each 

change should be equal in magnitude and direction.  The first parameter that will be increased on 

case C and D is the altitude.  As the altitude increases the impulsive velocity change required for 

the sub-satellite to reach a ground range of three thousand kilometers at a true anomaly at impact 

of two hundred and forty degrees increase as well.  The change in angular velocity remains at 

zero because the impulsive velocity change direction in the positive Y – direction does not create 

a rotation on the system.  Figure 4.19 shows the impulsive velocity change as a function of the 
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increase in altitude, and is followed by a table that list specific impulsive velocity change and 

change in angular velocity values for three altitudes. 

 

Figure 4.19 Velocity Change vs. Altitude for Case C and D; R = 3000 km and θimp = 240° 

Table 4.19: Impulsive Velocity Change and Angular Velocity at Three Altitudes for Case C and 

D When R = 3000 km and θimp = 240° 

 
Case C Case D 

Altitude 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

500 0.5912 N/A 0.5912 N/A 

1000 0.9164 N/A 0.9164 N/A 

1500 1.0664 N/A 1.0664 N/A 

 

As expected the magnitudes and directions of the impulsive velocity change are equal between 

the two cases.  This is a result of the placement of the sub-satellite in the same orbit height as the 

main satellite at release.  The larger ground range causes the impulsive velocity change to 

increase in order to reach the desired impact. 
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 The last change that will be looked at is the increase in the tether length for case C and D.  

As the tether length increases the impulsive velocity change increases.  The change in angular 

velocity of the TSS is once again zero because of the direction of the velocity change.  The 

increase in the impulsive velocity change as a function of the tether length is shown below.  

Table 4.20 lists the values for the impulsive velocity change and the change in angular velocity 

at a tether length of four kilometers, fifty-four kilometers, and one hundred and fourteen 

kilometers.  The table can be found on the next page. 

 

 

Figure 4.20 Velocity Change vs. Tether Length for Case C and D; R = 3000 km and θimp = 240° 
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Table 4.20: Impulsive Velocity Change and Angular Velocity at Three Tether Lengths for case C 

and D When R = 3000 km and θimp = 240° 

 
Case C Case D 

Tether 

Length 

(km) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

Velocity Change 

(km/s) 

Angular 

Velocity (rads/s) 

4 0.5912 N/A 0.5912 N/A 

54 0.5916 N/A 0.5916 N/A 

114 0.5926 N/A 0.5926 N/A 

 

The impulsive velocity change for both case C and D have the same magnitudes and directions 

because the sub-satellite for both cases is located at the same orbit height as the main satellite.   
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Chapter 5: Results for Numerical Integration Simulation 

The process discussed in section 3.1 is now implemented with the changes discussed in 

sections two and three in chapter three.  Three different impulsive velocity changes were chosen 

for the two different release configurations.  For each configuration and impulsive velocity 

change the effect of changes in altitude and tether length were investigated.  The first 

configuration corresponds to when the sub-satellite is below the main satellite.  The second 

configuration corresponds to when the sub-satellite is above the main satellite.  For each change 

in altitude and tether length three values are chosen to discuss in detail after the general trend is 

introduced.  For the change in altitude the tether length is kept constant at four kilometers.  The 

altitude is kept at five hundred kilometers when the tether length is changed.  A range of 

impulsive velocity changes are then looked at to determine the minimum impulsive velocity 

change needed to impact and the change in angular velocity of the TSS needed to impact.  For 

the range of impulsive velocity changes the altitude is kept at five hundred kilometers and the 

tether length is kept at four kilometers.  For all cases and release points the rotation angle is -0.5 

radians because it is a good mid-range oscillation that will keep the sub-satellite leading the 

system.  Some sample results for the numerical integration simulation can be found in Appendix 

A. 

 

 



96 

 

5.1 Results for First Configuration or Case 1 

 Three values were chosen for the impulsive velocity change of the sub-satellite as shown 

in table 5.1.  An impulsive velocity change in the negative Y-direction was not chosen because 

the velocity change would only increase the sub-satellite velocity and an impact trajectory would 

not be created. 

Table 5.1: Impulsive Velocity Changes for Case 1 

  
Velocity 

Change (km/s) 

     1.0 

     N/A 

     1.0 

     -3.0 

 

5.1.1 Impulsive Velocity Change of 1.0 km/s in the Positive Y-Direction 

 The first change that will be looked at is the change in altitude.  Remember that the 

altitude defines the height above the Earth for the main satellite and the sub-satellite is a distance 

away from the main satellite equal to the tether length. 

 

Figure 5.1 Ground Range vs. Altitude for ΔV1y = 1.0 km/s in Case 1 
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For the first configuration an increase in the altitude of the main satellite leads to an increase in 

the range.  This makes sense because as the altitude is increased the sub-satellite is in a higher 

orbit and it travels for a longer time before impact is reached.  The time increase can be seen in 

Figure 5.2.  As the orbit of the sub-satellite gets higher the ground range covered by the sub-

satellite in its impact trajectory will increase as well.   

 

Figure 5.2 Time to Impact vs. Altitude for ΔV1y = 1.0 km/s in Case 1 

An altitude of five hundred kilometers, one thousand kilometers, and one thousand five hundred 

kilometers are looked at in more detail.  Table 5.2 lists the ground range covered by the sub-

satellite after release and the time to impact. 

Table 5.2 Range and Impact Time for          km/s at three Altitudes for Configuration 1 

Altitude (km) Ground Range (km) Time to Impact (s) 

500 4505.7 700 

1000 6377.7 1055 

1500 7822.9 1370 
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The lowest ground range and time to impact happen at an altitude of five hundred kilometers, 

while the maximum for each happens at an altitude of one thousand five hundred kilometers.  To 

achieve maximum ground range covered by the sub-satellite with a constant tether length and 

impulsive velocity change the altitude should be increased.  If a minimum ground range is 

needed the altitude should be decreased.  The next three figures show the trajectory for the sub-

satellite after release at the three altitude values and illustrate how the range and time to impact 

increase as the altitude increases.   

 

Figure 5.3 Trajectory at 500 km Altitude for ΔV1y = 1.0 km/s in Case 1 
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Figure 5.4 Trajectory at 1000 km Altitude for ΔV1y = 1.0 km/s in Case 1 

 

 
 

Figure 5.5 Trajectory at 1500 km Altitude for ΔV1y = 1.0 km/s in Case 1 
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Increasing the tether length also affects the time to impact and the ground range covered 

by the sub-satellite after release.  As the tether length increases the ground range and the time to 

impact decrease as well.  This is due to the fact that the sub-satellite is located below the main 

satellite. 

 

Figure 5.6 Ground Range vs. Tether Length for ΔV1y = 1.0 km/s in Case 1 

 

 
Figure 5.7 Time to Impact vs. Tether Length for ΔV1y = 1.0 km/s in Case 1 
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A tether length of four kilometers, fifty-five kilometers, and one hundred kilometers are 

examined in more detail.  The ground range and time to impact for these three cases can be 

found in table 5.3. 

Table 5.3: Range and Impact Time for          km/s at Three Tether Lengths for Case 1 

Tether Length 

(km) Ground Range (km) Time to Impact (s) 

4 4505.7 699 

55 4297.5 665 

100 4110.8 635 

 

The maximum range and time to impact occur when the tether length is shorter.  If a 

shorter ground range or time to impact is desired, an increase in tether length can achieve the 

desired results instead of decreasing the altitude.  Figure 5.3 shows the impact trajectory of the 

sub-satellite at an altitude of five hundred kilometers and a tether length of four kilometers.  The 

next two figures show the impact trajectories of the sub-satellite for the other two tether lengths.  

The changes in the impact trajectory of the sub-satellite after release are small.  The sub-satellite 

travels along a similar impact trajectory path for each tether length; however, as the tether 

increases the point of impact moves closer to the point of release.  This movement of the impact 

point results in a decrease of the ground range and time to impact of the sub-satellite. 
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Figure 5.8 Trajectory at 55 km Tether Length for ΔV1y = 1.0 km/s for Case 1 

 

 
 

Figure 5.9 Trajectory at 100 km Tether Length for ΔV1y = 1.0 km/s for Case 1 
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 Finally, the impulsive velocity change of the sub-satellite is increased while the altitude 

and tether length are kept constant at five hundred kilometers and four kilometers, respectively.  

The effect of the impulsive velocity change increase on the ground range and time to impact can 

be determined by inspecting figures 5.10 and 5.11. 

 

Figure 5.10 Ground Range vs. +ΔV1y for Case 1 

 
Figure 5.11 Time to Impact vs. +ΔV1y for Case 1 
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As the impulsive velocity change is increased the ground range and the time to impact 

decreases because the larger the impulsive velocity change is the smaller the impact orbit will be.  

In other words the point of impact will move closer to the release point.  The minimum 

impulsive velocity change needed to cause an impact was 0.2 km/s in the positive Y-direction.  

The maximum and minimum values for the ground range and time to impact are shown in table 

5.4. 

Table 5.4 Maximum and Minimum Values as       Increases for Case 1 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to Impact 

(s) 

0.2 12746.8 1755 

3 1924.3 430 

6 545.6 350 

 

 

While an impulsive velocity change of six kilometers achieves the shortest ground range and 

time to impact, the fuel needed to achieve this impulsive velocity change and impact values will 

be greater than the fuel needed to achieve impact at the lowest impulsive velocity change.  It is 

important to remember that there are trade-offs when selecting an impulsive velocity change.  

5.1.2 Impulsive Velocity Change of 1.0 km/s in the Positive Z – Direction  

 For this impulsive velocity change, an increase in the altitude will also lead to an increase 

in the ground range covered by the sub-satellite at release and the time to impact.  This matches 

with the results found in the previous section.  The increase of the ground range and time to 

impact can be seen in figures 5.12 and 5.13.  The maximum and minimum values for the ground 

range and time to impact are listed in table 5.5. 
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Figure 5.12 Ground Range vs. Altitude for ΔV1z = 1.0 km/s in Case 1 

 
Figure 5.13 Time to impact vs. Altitude for ΔV1z = 1.0 km/s in Case 1 
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kilometers, and eight hundred and fifty kilometers will be looked at in more detail. 
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Table 5.5 Range and Impact Time for          km/s at Three Altitudes for Case 1 

 

Altitude (km) 

Ground Range 

(km) Time to Impact (s) 

500 24015.7 3920 

650 25498.6 4235 

850 28753.9 4825 

 

The ground range and time to impact are larger than the values in the previous section in table 

4.2 because the sub-satellite is lofted up higher in its impact trajectory.  Another way to phrase it 

is that the angle of the sub-satellite’s impact trajectory at release is greater than the angle for the 

impact trajectory at release when the velocity change in the positive Y – Direction was done.  As 

the altitude is increased the impact trajectory of the sub-satellite becomes longer and the point of 

impact moves further around the Earth.  The impact trajectories for the sub-satellite at an altitude 

of five hundred kilometers, six hundred and fifty kilometers, and eight hundred and fifty 

kilometers can be seen in figures 5.14, 5.15, and 5.16. 

 

Figure 5.14 Trajectory at 500 km Altitude for ΔV1z = 1.0 km/s in Case 1 
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Figure 5.15 Trajectory at 650 km Altitude for ΔV1z = 1.0 km/s in Case 1 

 
5.16 Trajectory at 850 km Altitude for ΔV1z = 1.0 km/s in Case 1 

 An increasing tether length for an impulsive velocity change in the positive Z – direction 

has the same impact on the ground range and time to impact as it did when the impulsive 
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velocity change was in the positive Y – direction.  Both values decrease as the tether length 

increases; therefore, the maximum ground range and time to impact will occur at the smallest 

tether length and the minimum ground and time to impact will occur at the largest tether length 

value.  The decrease in ground range and time to impact can be seen in figures 5.17 and 5.18.  A 

list of ground ranges and times to impact are given in table 5.6. 

 

Figure 5.17 Ground Range vs. Tether Length for ΔV1z = 1.0 km/s in Case 1 

21500

22000

22500

23000

23500

24000

24500

0 20 40 60 80 100 120

G
ro

u
n

d
 R

an
ge

, R
 (

km
) 

Tether Length, Lt (km) 



109 

 

 
 

Figure 5.18 Time to Impact vs. Tether Length for ΔV1z = 1.0 km/s in Case 1 

 

Table 5.6 Range and Impact Time for          km/s at Three Tether Lengths for Case 1 

 

Tether Length (km) 

Ground Range 

(km) Time to Impact (s) 

4 24015.7 3920 

55 22804.3 3700 

100 21821.4 3520 

 

The ground range and time to impact for an impulsive velocity change in the positive Z – 

direction is greater than the ground range and time to impact for an impulsive velocity change in 

the positive Y – direction for an increasing tether length because of the lofted trajectory.  Figure 

5.14 shows the impact trajectory for an altitude of 500 km and a tether length of 4 km.  The other 

two impact trajectories are shown in figures 5.19 and 5.20. 
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Figure 5.19 Trajectory at 55 km Tether Length for ΔV1z = 1.0 km/s in Case 1 

 
Figure 5.20 Trajectory at 100 km Tether Length for ΔV1z = 1.0 km/s in Case 1 

 Figures 5.21 to 5.22 show the decrease of the ground range and the increase of the time to 

impact as the impulsive velocity change is increased. 
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Figure 5.21 Ground Range vs. +ΔV1z for Case 1 

 

 
 

Figure 5.22 Time to Impact vs. +ΔV1z for Case 1 
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shows the impact trajectory for an impulsive velocity change of three kilometers per second.  

The sub-satellite is lofted higher after it is released from the TSS with an impulsive velocity 

change of three kilometers per second in the positive Z – direction than it is when the impulsive 

velocity change is one kilometer per second.    

 

Figure 5.23 Lofted Trajectory at ΔV1z = 3.0 km/s for Case 1 

  The minimum impulsive velocity change needed to cause impact was 0.6 km/s in the 

positive Y-direction.  The maximum and minimum values for the ground range and time to 

impact are shown in table 5.7 on the next page. 
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Table 5.7 Maximum and Minimum Values as      Increases for Case 1 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to Impact 

(s) 

0.6 28675.1 4270 

3 21282.8 5600 

6 20654.0 22965 

 

For an impulsive velocity change in the positive Z – direction a smaller ground range can be 

achieved by increasing the impulsive velocity change; however, the time to impact will increase 

as the impulsive velocity change becomes greater than three kilometers per second. 

5.1.3 Impulsive Velocity Change of 3.0 km/s in the Negative Z – Direction 

 The third impulsive velocity change investigated in this section is higher than the 

previous two sections because a larger impulsive velocity change in the negative Z – Direction 

was needed in order to create impacts at higher altitudes.  During this altitude range the ground 

range covered by the sub-satellite during its impact trajectory and the time to impact increases 

because of reasons explained in the previous two sections.  Figures 5.24 and 5.25 show the 

increasing trend of the ground range and time to impact as the altitude of the sub-satellite 

increases. The values for the ground range and time to impact for three altitudes are given in 

table 5.8. 
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Figure 5.24 Ground Range vs. Altitude for ΔV1z = -3.0 km/s in Case 1 

 
 

Figure 5.25 Time to Impact vs. Altitude for ΔV1z = -3.0 km/s in Case 1 
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The ground range and time to impact are lower than the ground range and time to impact that 

were calculated in the previous section.  The time to impact is significantly smaller because of 

the steep descent of the impact trajectory caused by the large impulsive velocity change in the 

negative Z - direction.  The large impulsive change in velocity in the negative Z – direction, 

causes the sub-satellite to enter a very small orbit that will send the sub-satellite into the Earth 

quicker than the other impulsive velocity changes. The impact trajectories can be seen in the next 

three figures. 

 

Figure 5.26 Trajectory at 500 km Altitude for ΔV1z = -3.0 km/s in Case 1 
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Figure 5.27 Trajectory at 1000 km Altitude for ΔV1z = -3.0 km/s in Case 1 

 
 

Figure 5.28 Trajectory at 1500 km Altitude for ΔV1z = -3.0 km/s in Case 1 

 An impact is found for all values of the tether length from one kilometer to one hundred 

kilometers.  As the tether length is increased for this impulsive change in velocity the ground 
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range and the time to impact decrease.  These two trends can be seen in Figures 5.29 and 5.30.  

Table 5.9 gives specific values for three tether lengths. 

 

Figure 5.29 Ground Range vs. Tether Length for ΔV1z = -3.0 km/s in Case 1 

 

 
Figure 5.30 Time to Impact vs. Tether Length for ΔV1z = -3.0 km/s in Case 1 
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Table 5.9 Range and Impact Time for           km/s at Three Tether Lengths for Case 1 

Tether Length (km) 

Ground Range 

(km) Time to Impact (s) 

4 21297.8 167 

55 21080.4 152.5 

100 20884.8 140 

 

The decrease in ground range and time to impact are caused by the impact trajectory of the sub-

satellite after release.  The impact point of the sub-satellite slowly moves closer to the release 

point; however, the impact trajectory becomes steeper as the tether length increases.  This 

increase in the steepness of the impact trajectory leads to the decrease in time that is seen in 

figure 5.30.  The impact trajectory of the sub-satellite with a four kilometer tether length is 

shown in figure 5.26.  The impact trajectory for the sub-satellite with a fifty – five kilometer 

tether length and a one hundred kilometer tether length are shown in figure 5.31 and 5.32. 

 

Figure 5.31 Trajectory at 55 km Tether Length for ΔV1z = -3.0 km/s in Case 1 



119 

 

 
 

Figure 5.32 Trajectory at 100 km Tether Length for ΔV1z = -3.0 km/s in Case 1 

 When the impulsive velocity change placed on the sub-satellite is increased in the 

negative Z – direction, the ground range and the time to impact are decreased.  This decrease 

occurs because the impulsive velocity change increase results in a steeper descent toward the 

impact point and the movement of the impact point is toward the point of release.  Figures 5.33 

and 5.34 show ground range and time to impact as a function of the impulsive velocity change 

increase and are located on the next page.   
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Figure 5.33 Ground Range vs. –ΔV1z for Case 1 

 
 

Figure 5.34 Time to Impact vs. –ΔV1z for Case 1 
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kilometers per second.  The maximum and minimum values for the ground range and time to 

impact are shown in table 5.10. 

Table 5.10: Maximum and Minimum Values as –ΔV1z Increases for Case 1 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to 

Impact (s) 

-0.6 28929.6 1160 

-3 21297.8 170 

-6 20667.6 85 

 

5.1.4 Comparison between Velocity Changes for First Configuration 

 For the first configuration point a small impulsive velocity change in the positive Y and Z 

– directions leads to an impact trajectory; however, a minimum value of 0.6 kilometers per 

second in the negative Z – direction is needed to create the first impact point when the altitude is 

at five hundred kilometers and the tether length is at four kilometers.  If the altitude is increased, 

the minimum impulsive velocity change needed in the positive Z – direction has to increase as 

well in order to achieve an impact at an altitude greater than eight hundred and fifty kilometers.  

The other two impulsive velocity changes do not require a further increase in order to achieve an 

impact trajectory for the altitudes tested in the simulation.   

 The impulsive velocity changes in the Y and Z – directions responded to changes in 

altitude and tether length in the same way.  The range and time to impact increased for an 

increasing altitude and decreased for an increasing tether length.  The tether length decreased the 

range in both cases by less than two hundred kilometers.  An increase in the altitude for an 

impulsive velocity change in the positive Z – direction lead to a greater increase in the range 

when compared to the increase found in the range for an impulsive velocity change in the 



122 

 

positive Y – direction; therefore, if the objective is to have the longest range increasing the 

altitude and having an impulsive velocity change in the positive Z – direction will lead to the 

maximum range that can be achieved for this configuration.  The minimum range can be 

achieved by increasing the tether length and implementing an impulsive velocity change in the 

positive Y – direction. 

 Another way to decrease the range in all three examples is to increase the impulsive 

velocity change.  As the impulsive velocity change gets higher the range and time to impact 

decrease for a change in the positive Y – direction and for a change in the negative Z – direction.  

For the case when the impulsive velocity change is increased in the positive Z – direction, the 

range decreases but the time to impact starts to increase again after an impulsive velocity change 

of three kilometers per second.  This occurs because the impact trajectory of the sub-satellite 

becomes lofted.  As the sub-satellite is lofted into a higher orbit, the time it takes to impact the 

Earth will increase but the range may remain the same or slightly decrease.  For this attempt in 

decreasing range, it is better to increase the impulsive velocity change in the positive Y – 

direction or in the negative Z – direction; however, having an impulsive velocity change of six 

kilometers in either direction will require a lot more fuel than changing the tether length or 

altitude of the TSS. 

5.2 Results for Second Configuration or Case 2 

 For the second configuration, the sub-satellite is located above the main satellite.  This is 

similar to case A for the analytical solutions.  The three impulsive velocity changes that were 

applied to the sub-satellite in the second configuration are shown in table 5.11 on the next page. 
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Table 5.11: Impulsive Velocity Changes for Case 2 

  
Velocity 

Change (km/s) 

     1.0 

     -1.5 

     N/A 

     1.0 

 

An impulsive velocity change in the positive Y – direction is not investigated because the 

velocity of the sub-satellite is in the positive Y – direction; therefore, an increase in the velocity 

in the positive Y – direction will only increase the size of the sub-satellite trajectory after release 

and its perigee point, which will not result in an impact of the sub-satellite. 

5.2.1 Impulsive Velocity Change of 1.0 km/s in the Positive Z – Direction 

 For an increase in the altitude, the ground range covered by the impact trajectory and the 

time to impact increases; however, at altitudes greater than eight hundred and fifty kilometers the 

sub-satellite does not impact the Earth.  This means that a greater impulsive velocity change in 

the positive Z – direction is needed in order to create an impact trajectory. The ground range and 

time to impact as a function of altitude are shown in figures 5.35 and 5.36.  The figures are then 

followed by a table that lists the ground range and time to impact for an altitude of five hundred 

kilometers, six hundred and fifty kilometers, and eight hundred and fifty kilometers. 
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Figure 4.35 Ground Range vs. Altitude for ΔV1z = 1.0 km/s in Case 2 

 

 
 

Figure 4.36 Time to Impact vs. Altitude for ΔV1z = 1.0 km/s in Case 2 
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Table 5.12 Ground Range and Impact Time for ΔV1z = 1.0 km/s at Three Altitudes for Case 2 

Altitude (km) 

Ground Range 

(km) Time to Impact (s) 

500 24210.6 3955 

650 25730.4 4275 

850 29736.1 4955 

  

The impact trajectory of the sub-satellite is lofted until a maximum apogee is reached and then it 

begins its return toward the Earth.  The increase in the ground range is caused by the movement 

of the impact point further away from the release point as the altitude increases.  The increase in 

the time to impact is caused by the fact that as the altitude increases the area of the impact 

trajectory that is lofted increases as well.  The impact trajectories for a five hundred kilometer 

altitude, a six hundred and fifty kilometer altitude, and an eight hundred and fifty kilometer 

altitude are shown below. 

 

Figure 5.37 Trajectory at 500 km Altitude for ΔV1z = 1.0 km/s in Case 2 
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Figure 5.38 Trajectory at 650 km Altitude for ΔV1z = 1.0 km/s in Case 2 

 
 

Figure 5.39 Trajectory at 850 km Altitude for ΔV1z = 1.0 km/s in Case 2 
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 The next change that is looked at for this impulsive velocity change is an increase in the 

tether length.  The time to impact and the ground range increase as the tether length becomes 

longer.  This means that the minimum range that can be achieved will occur at the shortest tether 

length, while the maximum range will occur at the longest length that the tether can reach.  The 

increasing trends for the range and time to impact are shown in figures 5.40 and 5.41. 

 

Figure 5.40 Ground Range vs. Tether Length for ΔV1z = 1.0 km/s in Case 2 
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Figure 5.41 Time to Impact vs. Tether Length for ΔV1z = 1.0 km/s in Case 2 

A list of ground ranges and times to impact for a tether length of four kilometers, fifty-five 

kilometers, and one hundred kilometers is given in table 5.29. 

Table 5.13 Range and Impact Time for ΔV1z = 1.0 km/s at Three Tether Lengths for Case 3 

Tether Length (km) 

Ground Range 

(km) Time to Impact (s) 

4 24210.6 3955 

55 25495.2 4180 

100 26800.6 4400 

 

The increase in tether length causes the ground range to increase because the point of impact 

moves further away from the point of release and the height of the sub-satellite is increasing.  

This same change in the impact point also causes an increase in the time to impact because if the 

impact point moves further away from the release point the time to get to an impact will increase.  

The impact trajectory at a four kilometer tether length is shown in figure 5.37.  The other two 

impact trajectories are shown in the figures below. 
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Figure 5.42 Trajectory at 55 km Tether Length for ΔV1z = 1.0 km/s in Case 2 

 
 

Figure 5.43 Trajectory at 100 km Tether Length for ΔV1z = 1.0 km/s in Case 2 

 The last change that is looked at in order to cause an impact trajectory is the increase of 

the magnitude for the impulsive velocity change while keeping the altitude and tether length 
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constant at five hundred kilometers and four kilometers.  The effect of the increase in the 

impulsive velocity change on the ground range and time to impact are shown in figures 5.44 to 

5.45. 

 

Figure 5.44 Ground Range vs. +ΔV1z for Case 2 

 
 

Figure 5.45 Time to Impact vs. +ΔV1z for Case 2 
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The increase in the time to impact is caused by the lofted trajectory after the sub-satellite release.  

Figure 5.46 shows the lofted trajectory of the sub-satellite when an impulsive velocity change of 

three kilometers per second in the positive Z – direction is placed on the system. 

 

Figure 5.46 Lofted Trajectory at ΔV1z = 1.0 km/s for Case 2 

 

The ground range decreases because the impact point moves closer to the release point.    The 

minimum impulsive velocity change in the positive Z – direction that was needed to cause an 

impact at a five hundred kilometer altitude and a tether length of four kilometers was 0.7 

kilometers per second.  The ground range and time to impact achieved during the minimum 

impulsive velocity change, a velocity change of 3.0 kilometers per second, and a velocity change 

of 6.0 kilometers per second are listed in table 5.14 
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Table 5.14 Maximum and Minimum Values as +ΔV1z Increases for Case 3 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to Impact 

(s) 

0.7 26743.1 4090 

3 21344.7 5625 

6 20690.8 23140 

 

5.2.2 Impulsive Velocity Change of 1.5 km/s in the Negative Z – Direction 

 For an impulsive velocity change of 1.5 kilometers per second in the negative Z – 

direction an increase in the altitude leads to an increase in the range and time to impact; however, 

no impact trajectory is created at altitudes greater than thirteen hundred kilometers.  A minimum 

impulsive velocity change of three kilometers per second in the negative Z – direction is required 

to have an impact at all altitudes that are tested.  The increase in the range and time to impact as 

the altitude is increased for a velocity change of 1.5 kilometers per second our shown in figures 

5.47 and 5.48. 

 

Figure 5.47 Ground Range vs. Altitude for ΔV1z = -1.5 km/s in Case 2 
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Figure 5.48 Time to Impact vs. Altitude for ΔV1z = -1.5 km/s in Case 2 

Since an impact trajectory does not occur at altitudes greater than thirteen hundred 

kilometers, the results for an impact trajectory at five hundred kilometers, one thousand 

kilometers, and thirteen hundred kilometers will be examined in more detail.  A list of the ground 

range and time to impact achieved at these three altitude values are given in table 5.15. 

Table 5.15 Range and Impact Time for ΔV1z = -1.5 km/s at Three Altitudes for Case 2 

Altitude (km) 

Ground Range 

(km) Time to Impact (s) 

500 22683.8 345 

650 25665.0 760 

800 28841.2 1180 

 

The small time to impact is caused by the steep impact trajectory of the sub-satellite after release.  

The impact trajectories of the sub-satellite at the three different altitudes are shown in figures 

5.49 to 5.51.   
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Figure 5.49 Trajectory at 500 km Altitude for ΔV1z = -1.5 km/s in Case 2 

 
 

Figure 5.50 Trajectory at 1000 km Altitude for ΔV1z = -1.5 km/s in Case 2 
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Figure 5.51 Trajectory at 1300 km Altitude for ΔV1z = -1.5 km/s in Case 2 

After inspecting the impact trajectory figures, it can be deduced that as the altitude increases the 

point of impact of the sub-satellite moves further along the surface of the Earth.  This movement 

of the impact point results in an increase in the ground range.  The increase of the time to impact 

is a direct result of the increase of the altitude of the TSS. 

 Even though an impact trajectory cannot be obtained for all altitudes, an impact trajectory 

can still be found for all the tested tether lengths.  The trends for an impulsive velocity change of 

1.5 kilometers per second in the negative Z – direction are shown in figures 5.52 and 5.53. 
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Figure 5.52 Ground Range vs. Tether Length for ΔV1z = -1.5 km/s in Case 2 

 
Figure 5.53 Time to Impact vs. Tether Length for ΔV1z = -1.5 km/s in Case 2 

Since the ground range and time to impact increase as the tether length increases, the maximum 
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Table 5.16 Range and Impact Time for ΔV1z = -1.5 km/s at Three Tether Lengths for Case 2 

Tether Length (km) 

Ground Range 

(km) Time to Impact (s) 

4 22683.8 344.5 

55 23144.0 366.5 

100 23540.6 385.5 

 

The cause behind the increase in ground range and time to impact as the tether length increases 

can be found by examining the impact trajectories at each tether length.  The impact trajectory 

for the four kilometer tether length and five hundred kilometer case is shown in figure 5.49.  The 

other two impact trajectories also have an altitude of five hundred kilometers. The impact 

trajectories for these other two tether length values are shown below. 

 

Figure 5.54 Trajectory at 55 km Tether Length for ΔV1z = -1.5 km/s in Case 2 
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Figure 5.55 Trajectory at 100 km Tether Length for ΔV1z = -1.5 km/s in Case 2 

The increase in range is caused by the movement of the impact point further along the Earth’s 

surface, while the time to impact is increased because the orbit is at a higher position.  As the 

position or height of the orbit increases so will the time to impact. 

 The final change that is looked at in this section is an increase in the impulsive velocity 

change.  The altitude and tether length are kept constant at five hundred kilometers and four 

kilometers, respectively.  As the magnitude of the impulsive velocity change is increased in the 

negative Z – direction, the ground range and time to impact decrease.  The decrease in the 

ground range and the time to impact can be seen in figures 5.56 through 5.57. 



139 

 

 

Figure 5.56 Ground Range vs. –ΔV1z for Case 2 

 

 
 

Figure 5.57 Time to Impact vs. –ΔV1z for Case 2 
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0.7 kilometers per second in the negative Z – direction is needed.  Table 5.17 list values for the 

ground range and time to impact for three impulsive velocity changes. 

Table 5.17 Maximum and Minimum Values as –ΔV1z Increases for Case 2 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to Impact 

(s) 

-0.7 26663.4 860 

-3 21329.7 170 

-6 20677.2 85 

 

5.2.3 Impulsive Velocity Change of 1.0 km/s in the Positive Y – Direction 

 The ground range and time to impact increase as the altitude is increased and the tether 

length is kept constant at four kilometers with an impulsive velocity change of one kilometer per 

second in the positive Y – direction.  The results for the ground range and time to impact as the 

altitude increases are shown below. 

 

Figure 5.58 Ground Range vs. Altitude for ΔV1y = 1.0 km/s in Case 2 
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Figure 5.59 Time to Impact vs. Altitude for ΔV1y = 1.0 km/s in Case 2 

Altitudes of five hundred kilometers, one thousand kilometers, and fifteen hundred kilometers 

are examined in more detail.  The values for the ground range and time to impact at these 

altitudes are listed in table 5.18. 

Table 5.18: Range and Impact Time for ΔV1y = 1.0 km/s at Three Altitudes for Case 2 

Altitude (km) 

Ground Range 

(km) Time to Impact (s) 

500 4544.8 705 

1000 6412.0 1060 

1500 7856.0 1375 

 

The range and time to impact achieved with this impulsive velocity change are less than the 

ground range and time to impact calculated for different altitudes for the other two impulsive 

velocity changes.  This is a result of the type of impact trajectory that is created after the velocity 

change is put into place and the sub-satellite is released from the TSS.  The impact trajectory of 

the sub-satellite at each altitude is shown on the next two pages. 
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Figure 5.60 Trajectory at 500 km Altitude for ΔV1y = 1.0 km/s in Case 2 

 
 

Figure 5.61 Trajectory at 1000 km Altitude for ΔV1y = 1.0 km/s in Case 2 
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Figure 5.62 Trajectory at 1500 km Altitude for ΔV1y = 1.0 km/s in Case 2 

From the impact trajectories depicted in figure 5.60 through 5.62, it can be concluded that the 

ground range increases because as the altitude increases the release point occurs earlier in the 

TSS orbit and the impact point occurs further on the surface of the Earth.  The increase in the 

time to impact happens because the impact trajectory is placed on a higher orbit that requires 

more time to travel around in order to get to the impact point. 

 An increase in the tether length of the TSS affects the ground range and time to impact of 

the impact trajectory after the sub-satellite is released from the system.  For a constant impulsive 

velocity change of one kilometer per second in the positive Y – direction, an increase in tether 

length leads to an increase in the ground range and time to impact. 
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Figure 5.63 Ground Range vs. Tether Length for ΔV1y = 1.0 km/s in Case 2 

 
 

Figure 5.64 Time to Impact vs. Tether Length for ΔV1y = 1.0 km/s in Case 2 

The list of the ground range and the time to impact at three tether lengths are listed in 

table 5.19 on the next page. 
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Table 5.19 Range and Impact Time for ΔV1y = 1.0 km/s at Three Tether Lengths for Case 2 

Tether Length (km) 

Ground Range 

(km) Time to Impact (s) 

4 4544.8 703 

55 4839.0 729 

100 5103.0 752 

 

 

The ground range and time to impact are increased because an increase in the tether length 

causes the sub-satellite to be in a slightly higher orbit, which in turn causes the impact trajectory 

to start from a higher point and move the impact point further along the Earth’s surface.  In order 

to see if this is true the impact trajectories must be examined.  The impact trajectory of the sub-

satellite at a four kilometer tether length is shown in figure 5.60.  The impact trajectories for the 

other two tether lengths are shown below.  As the tether length increases the height in the impact 

trajectories are increased.  This increase is what results in the increase in the time to impact 

shown in table 5.37.   The plot of the impact trajectories also show that the impact point of the 

sub-satellite travels forward along the surface of the Earth.  The movement of the impact point is 

not significantly large; therefore, a small increase in the ground range results from the increase of 

the tether length. 
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Figure 5.65 Trajectory at 55 km Tether Length for ΔV1y = 1.0 km/s in Case 2 

 
 

Figure 5.66 Trajectory at 100 km Tether Length for ΔV1y = 1.0 km/s in Case 2 
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 An increase of the magnitude of the impulsive velocity change in the positive Y – 

direction will also lead to a change in the ground range and time to impact.  The increase in the 

impulsive velocity change results in a decrease of the ground range and the time to impact.  This 

happens because the impact trajectory of the sub-satellite after release decreases in size as the 

impulsive velocity change increases; therefore, the sub-satellite will impact the Earth sooner at 

higher impulsive velocity changes.  The effect of the impulsive velocity change on the ground 

range and time to impact values are shown in figures 5.67 through figures 5.68. 

 

Figure 5.67 Ground Range vs. +ΔV1y for Case 2 
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Figure 5.68 Time to Impact vs. +ΔV1y for Case 2 

The minimum impulsive velocity change in the positive Y – direction that is needed to create an 

impact trajectory for the second configuration is 0.2 kilometers per second.  Note that this is the 

minimum impulsive velocity change needed when the altitude of the main satellite is five 

hundred kilometers and the tether length is kept at four kilometers.  A maximum impulsive 

velocity change of six kilometers per second in the positive Y – direction is place on the system; 

therefore, the minimum time to impact and the minimum ground range will occur at this 

maximum impulsive velocity change.  Values of the ground range and time to impact are listed 

in the table below. 

Table 5.20: Maximum and Minimum Values at +ΔV1y Increases for Case 2 

Velocity 

Change 

(km/s) 

Ground Range 

(km) 

Time to Impact 

(s) 

0.2 13058.2 1785 

3 1938.1 435 

6 549.4 350 
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5.2.4 Comparison between Velocity Changes For Second Configuration 

 The impulsive velocity changes that are placed on the sub-satellite result in different 

values for the ground range and the time to impact.  For the second configuration an impulsive 

velocity change placed in the positive Z – direction will result in the maximum ground range and 

time to impact for the sub-satellite.  These values for ground range and time to impact can be 

further increased by increasing the altitude and the tether length; however, a larger impulsive 

velocity change in the positive Z – direction will be needed to cause an impact trajectory at 

altitudes above eight hundred and fifty kilometers.  For the case of an impulsive velocity change 

in the positive Z – direction, the tether length can be increased in order to increase the ground 

range without needing an increase in the magnitude of the impulsive velocity change.  In order to 

save on fuel, the increase in tether length is the better way to achieve a longer ground range for 

this impulsive velocity change direction. 

 An impulsive velocity change in the positive Y – direction results in the minimum ground 

range and time to impact for the second configuration.  The ground ranges achieved with this 

impulsive velocity change can be increased by placing the TSS in a higher altitude or by 

increases the tether length.  The increase in altitude leads to a larger increase for the ground 

range, while the increase in tether length has a smaller effect on the ground range and time to 

impact.  In this case, the method used to increase the ground range depends upon how big of an 

increase is needed in order to reach the desired impact point. 

 As at any release point, the magnitude of the impulsive velocity change can be increased 

in order to achieve a lower ground range.  The time to impact will also decrease with the ground 

range when the impulsive velocity change is in the negative Z – direction or the positive Y – 

direction.  When an impulsive velocity change is placed in the positive Z – direction, the time to 
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impact will increase because the sub-satellite is lofted into a higher orbit upon release.  In other 

words, one has to consider the tradeoff of an increase in the time to impact in order to achieve a 

shorter ground range.   Overall, impact trajectories will result at these impulsive velocity changes 

for the second configuration; however, which impulsive velocity change to be used depends 

upon if a maximum or minimum ground range is desired.   

5.3 Comparison between the Analytical Results and the Simulation Results 

 In order to compare the analytical approach and the simulation results the algorithm to 

find the ground range and time to impact for the analytical calculation is used.  The first 

configuration from the simulation is compared to case B from the analytical solution because 

both have the sub-satellite below the main satellite.  Case A from the analytical solution is then 

compared to the second configuration from the simulation because both have the sub-satellite 

located above the main satellite.  For each comparison an impulsive velocity change of one 

kilometer per second and six kilometers per second in the positive Y – direction will be placed 

on the sub-satellite. 

 The first comparison will be done using the first release configuration.  The impulsive 

velocity change that is used for the simulation and the analytical calculations is one kilometer per 

second in the positive Y – direction.  The ground range and time to impact calculated by the 

simulation and the analytical approach are listed in table 5.21. 

Table 5.21: Results for Configuration 1 and Case B with ΔV1y = 1.0 km/s 

 

Ground Range (km) Time to Impact (s) 

Simulation 4.5057232E+03 700 

Analytical 4.4980330E+03 696.98 
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The percent error and the difference between the simulation value and the analytical value for the 

ground range and time to impact are calculated and listed below. 

Table 5.22 Comparison of Results for Configuration 1 and Case B with ΔV1y = 1.0 km/s 

 

Ground Range (km) Time to Impact (s) 

% Error 0.17068 0.43108 

Difference 7.69028 3.01755 

 

The percent error between the two ground ranges is less than one percent and the actual 

difference is about 7.7 kilometers.  The percent error for the time to impact is also less than one 

percent but the actual difference between the two times is about 3.02 seconds with the time to 

impact from the simulation being the greater value.   

 The next comparison will be done at the second configuration with an impulsive velocity 

change of 6.0 kilometers per second in the positive Y – direction. The calculated values for the 

ground range and time to impact for both methods are listed below. 

Table 5.23: Results for Configuration 1 and Case B with ΔV1y = 6.0 km/s 

 

Ground Range (km) Time to Impact (s) 

Simulation 5.4562965E+02 350 

Analytical 5.4529027E+02 346.72 

 

The percent error and the direct difference between the ground ranges and times to impact are 

given in table 5.24 on the next page. 
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Table 5.24 Comparison of Results for Configuration 1 and Case B with ΔV1y = 6.0 km/s 

 

Ground Range (km) Time to Impact (s) 

% Error 0.062201 0.936190 

Difference 0.339384 3.276665 

 

The percent error for the ground range and the time to impact are less than one.  The difference 

between the ground ranges is 0.34 kilometers and the difference between the times is about 3.28 

seconds.  So far the analytical solution is giving similar results to those from the simulation. 

 The third comparison is done with the second configuration and an impulsive velocity 

change placed on the sub-satellite of one kilometer per second in the positive Y – direction.  The 

simulation results and the analytical approach results are listed below in table 5.25. 

Table 5.25: Results for Configuration 2 and Case A with ΔV1y = 1.0 km/s 

 

Ground Range (km) Time to Impact (s) 

Simulation 4.5448026E+03 705 

Analytical 4.5458193E+03 704.69 

 

The analytical result for the ground range is greater than the ground range obtained from the 

simulation results.  The time to impact calculated during the simulation is greater than the time to 

impact calculated by the analytical approach.  The actual difference between the simulation 

values and the analytical values and the percent error are listed below. 

Table 5.26: Comparison of Results for Configuration 2 and Case A with ΔV1y = 1.0 km/s 

 

Ground Range (km) Time to Impact (s) 

% Error 0.02237 0.04446 

Difference 1.01666 0.31343 
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The percent errors between the ground ranges and the times to impact are less than one percent.  

This is the same trend that has been seen in the past two comparisons.  The difference between 

the ground range determined by the simulation and the ground range calculated using the 

analytical approach is about one kilometer. The difference between the times to impact is about 

0.313 seconds.   

 The final comparison will be done with the second configuration and an impulsive 

velocity change of 6.0 kilometers per second in the positive Y – direction. 

Table 5.27: Results for Configuration 2 and Case A with ΔV1y = 6.0 km/s 

 

Ground Range (km) Time to Impact (s) 

Simulation 5.4939447E+02 350 

Analytical 5.4986409E+02 349.86 

 

The ground range calculated by the analytical approach is slightly larger than the ground range 

calculated by the simulation.  The percent error and the actual difference between the two values 

are presented in table 5.28. 

Table 5.28: Comparison of Results for Configuration 2 and Case A with ΔV1y = 6.0 km/s 

 

Ground Range (km) Time to Impact (s) 

% Error 0.08548 0.04084 

Difference 0.46964 0.14295 

 

The percent error between the two ground ranges and the percent error between the two times to 

impact is less than one percent.  The difference between the two ground ranges was about 0.45 

kilometers.  The time to impact calculated by the simulation is greater than the time to impact 

that was calculated using the simulation approach by almost 0.14 seconds. 
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 More comparisons are not shown in this write up because the results have a percent error 

of less than one percent.  The maximum difference between the times was found to be about 3.3 

seconds, while the maximum difference for the ground ranges was 7.7 kilometers.  The errors 

between the simulation and the analytical approach are caused by the rotation angle that is 

introduced into the simulation in order to keep the sub-satellite in a leading position.  Overall the 

analytical approach provides a good estimate of what the time to impact and ground range will 

be after the sub-satellite release.  A simulation should still be run in order to determine the 

impact trajectory after the sub-satellite is released and to place the impulsive velocity change in 

different directions on the sub-satellite. 
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Chapter 6: Conclusions and Future Work 

The altitude, tether length, and the impulsive velocity change have been varied to 

determine the type of ground range and time to impact that can be achieved.  The effects of the 

altitude, tether length, and impulsive velocity change on the ground range and time to impact 

were investigated using a numerical simulation approach and an analytical approach.  The 

increase in altitude caused the ground range and time to impact to increase for all configurations 

and impulsive velocity changes.  If the sub-satellite is located below the main satellite, an 

increase in tether length will cause the ground range and time to impact to decrease; however, if 

the sub-satellite is located above the main satellite, an increase in the tether length will result in 

an increase in the ground range and time to impact.  An increase in the impulsive velocity change 

on the sub-satellite will always cause the ground range and the time to impact to decrease; 

however, there are a few occasions where the time to impact will increase because of the lofted 

impact trajectory.  The changes in altitude and tether length are the better methods to increase or 

decrease the ground range and time to impact because an increase in an impulsive velocity 

change will result in a greater fuel usage.  The analytical solutions were found to follow these 

exact same trends for a sub-satellite located above or below the main satellite.  For the cases 

when a sub-satellite had the same altitude as the main satellite, the increase in altitude resulted in 

an increase in the ground range and time to impact, while an increase in the tether length resulted 

in an increase to the ground range and a decrease to the time to impact. 
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 The final part of this research was to compare the analytical solution to the numerical 

simulation by comparing the ground range and the time to impact.  The percent error between the 

ground ranges and times to impact for the analytical solution and the numerical solution was 

found to always be less than one percent.  The percent errors and differences between the two 

approaches are caused by the fact that a rotation angle was introduced into the simulation in 

order to model the fact that the sub-satellite is leading the main satellite.  The analytical approach 

can be used to provide an initial estimate of the ground range and time to impact; however, the 

numerical simulation should be used in order to track the trajectory of the sub-satellite before 

and after its release from the TSS. 

 In order to improve the ground range and time to impact calculated in the numerical 

simulation a more detailed model of the TSS should be put into place for future research.  The 

effect of the Earth’s oblateness and the aerodynamic drag on the satellites can be added to the 

simulation.  The aerodynamic drag will impact the movement of the sub-satellite as it gets closer 

to the Earth’s surface.  The inclusion of the gravitational gradient in the model will keep the TSS 

in a natural orbital motion where the sub-satellite will remain in a lower orbit than the main 

satellite at all times.  By adding the above three conditions to the model that is being used in the 

numerical simulation, the movement of the TSS will be model more accurately and the 

simulation will provide a more accurate result for the position of the sub-satellite at release.  If 

the effects of the Earth’s oblateness and the effects of the aerodynamic drag are placed on the 

sub-satellite after release, a more accurate model for the movement of the sub-satellite after 

release will be in place and more precise ground ranges and times to impact can be calculated. 
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Appendix A: Sample Results from Numerical Integration 

Table A.1: Simulation Results as Altitude Increases for Case 1 at ΔV1y = 1.0 km/s 

Altitude 

(km) Time to Impact (s) Ground Range (km)  

500 700 4505.723 

550 740 4726.313 

600 775 4937.022 

650 815 5139.085 

700 850 5333.504 

750 885 5521.106 

800 920 5702.580 

850 955 5878.512 

900 990 6049.402 

950 1020 6215.682 

1000 1055 6377.728 

1050 1085 6535.871 

1100 1120 6690.403 

1150 1150 6841.584 

1200 1180 6989.646 

1250 1215 7134.797 

1300 1245 7277.226 

1350 1275 7417.105 

1400 1305 7554.589 

1450 1340 7689.820 

1500 1370 7822.930 
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Table A.2: Simulation Results as Tether Length Increases for Case 1 at ΔV1y = 1.0 km/s 

Tether 

Length 

(km) Time to Impact (s) Ground Range (km)  

1 701 4517.880 

4 699 4505.723 

7 697 4493.558 

10 695 4481.383 

13 693 4469.199 

16 691 4457.006 

19 689 4444.803 

22 687 4432.590 

25 685 4420.367 

28 683 4408.133 

31 681 4395.889 

34 679 4383.634 

37 677 4371.369 

40 675 4359.092 

43 673 4346.803 

46 671 4334.502 

49 669 4322.190 

52 667 4309.865 

55 665 4297.528 

58 663 4285.178 

61 661 4272.815 

64 659 4260.439 

67 657 4248.049 

70 655 4235.645 

73 653 4223.227 

76 651 4210.795 

79 649 4198.348 

82 647 4185.886 

85 645 4173.409 

88 643 4160.917 

91 641 4148.408 

94 639 4135.884 

97 637 4123.343 

100 635 4110.786 
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Table A.3: Simulation Results as +ΔV1y Increases for Case 1 

Velocity 

Change 

(km/s) Time to Impact (s) Ground Range (km)  

0     

0.1     

0.2 1755 12746.853 

0.3 1335 9553.004 

0.4 1130 7953.634 

0.5 1000 6929.881 

0.6 905 6197.195 

0.7 840 5636.828 

0.8 785 5188.739 

0.9 740 4818.745 

1 700 4505.723 

1.1 670 4235.805 

1.2 640 3999.452 

1.3 620 3789.851 

1.4 595 3601.989 

1.5 580 3432.081 

1.6 560 3277.210 

1.7 545 3135.081 

1.8 530 3003.864 

1.9 520 2882.078 

2 510 2768.509 

2.1 500 2662.151 

2.2 490 2562.160 

2.3 480 2467.828 

2.4 470 2378.548 

2.5 465 2293.802 

2.6 455 2213.141 

2.7 450 2136.178 

2.8 440 2062.572 

2.9 435 1992.024 

3 430 1924.271 
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Appendix B: Sample Results from Analytical Solutions 

Table B.1: Analytical Results as Altitude Increases for Case A When R = 1500 km and θimp = 

240° 

Altitude (km) 

Velocity Change in the Y 

(km/s) Angular Velocity (rads/s) 

500 0.60484 -0.16633 

600 0.62511 -0.17191 

700 0.62185 -0.17101 

800 0.59824 -0.16452 

900 0.55718 -0.15322 

1000 0.50120 -0.13783 

1100 0.43258 -0.11896 

1200 0.35332 -0.09716 

1300 0.26517 -0.07292 

1400 0.16966 -0.04666 

1500 0.06812 -0.01873 
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Table B.2: Analytical Results as Tether Length Increases for Case A When R = 1500 km and 

θimp = 240° 

Tether Length (km) 

Velocity Change in the Y 

(km/s) Angular Velocity (rads/s) 

4 0.60484 -0.16633 

14 0.61305 -0.04817 

24 0.62098 -0.02846 

34 0.62864 -0.02034 

44 0.63602 -0.01590 

54 0.64314 -0.01310 

64 0.64999 -0.01117 

74 0.65658 -0.00976 

84 0.66292 -0.00868 

94 0.66900 -0.00783 

104 0.67483 -0.00714 

114 0.68041 -0.00657 
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Table B.3: Analytical Results as ΔV1y Increases for Case A When H = 500 km and Lt = 4 km 

Velocity 

Change 

(km/s) Ground Range (km) Time to Impact (s) 

0     

0.1     

0.2 13065.345 1793.531 

0.3 9700.880 1355.315 

0.4 8053.841 1142.390 

0.5 7007.363 1008.651 

0.6 6261.278 914.513 

0.7 5692.005 843.645 

0.8 5237.520 787.848 

0.9 4862.674 742.480 

1 4545.819 704.687 

1.1 4272.780 672.600 

1.2 4033.819 644.941 

1.3 3821.997 620.798 

1.4 3632.213 599.504 

1.5 3460.618 580.556 

1.6 3304.248 563.568 

1.7 3160.775 548.237 

1.8 3028.342 534.322 

1.9 2905.447 521.628 

2 2790.860 509.997 

2.1 2683.561 499.298 

2.2 2582.698 489.421 

2.3 2487.551 480.274 

2.4 2397.508 471.778 

2.5 2312.045 463.867 

2.6 2230.707 456.484 

2.7 2153.102 449.579 

2.8 2078.887 443.108 

2.9 2007.758 437.034 

3 1939.451 431.323 

 


