 
 
Drought Forecasting for Small to Mid-sized Communities of the Southeast 
United States 
 
by 
 
Vaishali Sharda 
 
 
 
 
A dissertation submitted to the Graduate Faculty of 
Auburn University 
in partial fulfillment of the 
requirements for the Degree of 
Doctor of Philosophy 
 
Auburn, Alabama 
May 7, 2012 
 
 
 
 
Keywords: drought, forecasting, climate variability, El Ni?o Southern Oscillation (ENSO), 
watershed modeling, system dynamics 
 
Copyright 2012 by Vaishali Sharda 
 
 
Approved by 
 
Puneet Srivastava, Chair, Associate Professor of Biosystems Engineering 
Keith T Ingram, Associate Research Scientist of Agricultural and Biological Engineering, 
University of Florida 
Latif Kalin, Associate Professor, School of Forestry and Wildlife Sciences  
Xing Fang, Associate Professor of Civil Engineering  
ii 
 
1  
 
Most of the climate variability in the Southeast United States has been attributed to El Ni?o 
Southern Oscillation (ENSO) and this climate variability has resulted in increased the stress on 
water resources of the region and drought is one of the most expensive outcomes of this 
climate variability. Drought is a major concern for small to mid-size communities in the 
Southeast as it poses a serious risk to the performance of water supply systems of such 
communities and may cause short term failures. In response, this study was undertaken to 
study the impact of ENSO on precipitation and streamflows and to develop a Community Water 
Deficit Index (CWDI) for forecasting drought in small to mid-size communities. The usefulness 
and value of this drought forecast information for water resource managers was then assessed. 
Results indicated a significant relationship between ENSO and precipitation and streamflow 
with dry conditions during winter months being associated with La Ni?a in the southern climate 
divisions of Alabama. It was found that this information can provide a basis for the water 
resource managers in Alabama to incorporate ENSO related climate variability in their decision-
making. During a low precipitation and high temperature ENSO phase (La Ni?a), the loss of soil 
moisture through evaporation increases the dynamic demand of water due to increase in 
outdoor water use by the residents (lawn irrigation etc.). System Dynamics modeling software 
STELLA TM was used to develop a model addressing the relationship between water supply and
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demand of a community and the CWDI was estimated as ratio of available storage and desired 
level of water storage in the reservoir of the community. The index was tested in two small to 
mid-size communities in the region and it demonstrated skill in monitoring and forecasting 
drought. Impact of climate variability on water demand of the community and how the 
knowledge of this forecast allows mitigation of negative impacts were studied. A multiple linear 
regression approach was used to predict per capita water demand based on daily precipitation, 
daily maximum temperature, and a one-day lag variable to account for temporal persistence in 
time series of water use. It was found that there is considerable accuracy in predicting water 
use based on climatic variables (R2 values ranging from 0.62 ? 0.84). The model was run using 
historical data to estimate volumetric and cost savings associated with the use of this drought 
forecast information and it was found that considerable savings could be made by using CWDI 
to plan ahead thus minimizing the drought vulnerability of community water systems.  
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1.1 MOTIVATION 
 Only 2.5% of the earth?s 1386 million cubic kilometers of water is freshwater, and only about 
33% of this freshwater is available for human use. In spite of this determinate supply of water, 
total water consumption for human use has increased almost three-fold in the last 50 years and 
it is estimated that by 2025, five out of eight people will be living in conditions of water scarcity 
(Postel et al. 1996). This is the scenario without considering the effects of climate variability or 
change on the natural water resources.  
Natural climate variability has significant impact on society?particularly water 
resources and agriculture. To minimize potential adverse consequences of natural climate 
variability, they must be identified, quantified, and understood. It is important to assess the 
climate's sensitivity to a variety of factors, particularly time scales that are of most concern to 
human beings and may vary from inter-annual to centuries. Many information sources, 
including instrumental records, visual observations, and paleoclimate data, bear witness to 
substantial variability in the earth's climate on time scales from years to centuries. To 
determine how climate variations, whether natural or anthropogenic, alter the occurrences, 
intensities, and locations of extreme events, is one of the highest priorities for decision makers. 
Since the hydrological cycle is linked closely to variations in climate, citizens and water resource 
managers both will have to deal with new challenges associated with both water quantity and 
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quality. Natural climate variations, such as El Ni?o Southern Oscillation and the North Atlantic 
Oscillation, can significantly alter the behavior of extreme events, including droughts, 
hurricanes, floods, and cold waves (Intergovernmental Panel on Climate Change, IPCC 2001). As 
of now, there is limited understanding of the physical mechanisms that produce and maintain 
natural climate cycles, the extent to which these interact with each other, and how they may be 
changed in the future by anthropogenic climate changes. These changes make it difficult to 
efficiently adapt current societal practices, such as maintaining a municipal water supply, while 
continuing to provide clean and safe drinking water to an ever increasing population. 
 Global municipal water use over the past few decades has increased due to population 
growth (Bates et al., 2008). Water supply shortages depend on water availability and demand, 
which in turn depend on the physical, hydrologic, and climatological characteristics of the 
system. Water supply systems vary dramatically throughout the US and this variability impacts 
the appropriate management responses. During the past decade, the Southeast USA has 
experienced several severe droughts that have resulted in loss of agricultural productivity, 
increased wildfires, imposition of municipal water use restrictions , and conflicts among 
different water use sectors. The Southeast often suffers from the low surface water availability 
during summer months because of intra-annual climate variability, very high evapotranspiration 
rate, and increased demand by ever growing urban centers. Identifying the onset of a drought 
can be elusive, requiring detection of diminutions of supplies, escalations in demand, or both.  
It is difficult to say exactly what climate change effects will be, as climate signals are chaotic and 
noisy, encompassing annual, inter-annual, decadal, or much longer periods of variability. For 
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both short and middle term risk management planning, inter-annual modes of climate 
variability and their seasonal expression are of interest. In this dissertation, the focus is on 
isolating, modeling and forecasting the effects of climate variability on hydrology in the 
southeastern United States. Variability for the purpose of this study is defined as fluctuations in 
climate from the monthly to seasonal and multi-annual scale, and will be quantified via 
standard climate indices.  
1.2 EL NI?O SOUTHERN OSCILLATION (ENSO) 
El Ni?o?Southern Oscillation (ENSO) phenomenon results from the interaction between 
large-scale ocean and atmospheric circulation processes in the equatorial Pacific Ocean and is 
one of the major factors influencing climate variations and has been linked to climate 
anomalies throughout the world. El Ni?o is the name given to the appearance of warm water in 
the Pacific Ocean off the coast of Equatorial South America and since fishermen usually first 
detected this ocean warming toward the end of December; it derives its name from the 
celebration of the birth of the Christ Child. The ENSO maintains an irregular 2-7 year periodicity 
that gives it a level of predictability, yet retains some variability in its occurrence, magnitude 
and climate consequences around the world (Cane, 2005). The term 'Southern Oscillation' was 
first used by Walker (1924) to describe fluctuations in pressure between the North Australian?
Indonesian low-pressure trough and the Southeast Pacific subtropical high-pressure cell 
(Philander and Rasmusson, 1985). It is an irregular, inter-annual reversal of the gradient of 
mean sea-surface level atmospheric pressure between the eastern and western Pacific Ocean 
and is accompanied by a change in both the direction and intensity of trade winds, resulting in a 
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change in the gradient of sea-surface temperature (SST). The pressure difference between 
Easter Island in the Southeast Pacific and Djakarta, Indonesia is called the Southern Oscillation 
Index (SOI) (Walker and Bliss, 1926). This index is defined as the normalized difference in 
monthly mean pressure anomalies between Tahiti (18?S, 150?W) and Darwin (12?S, 131?E) 
(Chen, 1982). It is positive if pressure is higher than normal in the Southeast Pacific and lower 
than normal to the north of Australia; this is usually the case during non-El Ni?o years. On the 
contrary, it is negative if there is below-normal pressure in the Southeast Pacific and above-
normal pressure north of Australia.  
The exact cause of El Ni?o is not known; however, several theories have been proposed. 
Hickey (1975) suggested that it is caused by a minimum in the zonal wind stress at longitudes 
west of 120?W and a minimum in the meridional wind stress east of 120?W. He correlated the 
decrease in southeast trades near Peru with El Ni?o and concluded that it is associated with a 
decrease in the coastal upwelling of the cold subsurface waters, thus leaving relatively warm 
water at the surface. 
ENSO is comprised of three phases, a warm-El Ni?o, a cold-La Ni?a, and a Neutral phase. 
The terms ?El Ni?o? (EN) and ?La Ni?a? (LN) are used to describe respectively the warming and 
cooling of sea surface temperatures on the shores of the west coast of South America (Quinn 
1994; Aceituno 1992). Approximately one-fourth of the time, El Ni?o pattern prevails, while La 
Ni?a pattern prevails another one-fourth of the time. During the remaining half of the time, the 
pattern is classified as neutral. El Ni?o concurs with the season of weak trade winds and 
reduced upwelling in the Southern Hemisphere. During El Ni?o events, low air pressure in the 
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eastern Pacific weakens the atmospheric pressure gradient heading westward. This causes 
unusually high SSTs and increased convection in the central and eastern equatorial Pacific. 
During La Ni?a, trade winds strengthen, amplifying the SST gradient so that lower than average 
SSTs are recorded instead (Figure 1.1). The relative strength and precise oscillation of these 
warm or cool phase events depends on the strength of the mean winds, amount of heat 
generated by SST gradients from specific temperatures and humidity, how deep the 
thermocline is, and system dynamics. The theory as to why the oscillations remain between 2 
to 7 years has not yet been comprehended (Fedorov and Philander, 2001). Global climate 
patterns develop over different time scales ranging from inter annual to decadal and interact 
with each other hence becoming the driving forces behind weather across the world. ENSO also 
interacts with other global patterns, such as the Pacific Decadal Oscillation (PDO) and North 
Atlantic Oscillation (NAO), and knowledge of these interactions could lead to improved weather 
and climate forecasts. This information can be used to increase confidence in predicting 
significant climatic events including winter storms, heat waves and droughts, and hurricane 
activity. Huang et al. (1998) reported that there is a significant interaction between NAO and 
ENSO during warm ENSO events from 1900 to 1995. 
During relatively weak Ni?o3 SST anomalies, non-coherence between the NAO and ENSO 
occurs. This weakening or strengthening of NAO during a transitory or established ENSO phase 
is reportedly caused by Hadley cell variations. NAO intensification during mature ENSO phase 
leads to enhanced early winter temperature over the most northern and central Euro-Asia and 
more abundant winter snowfall over Northern Europe. When the NAO is in its negative (cold) 
 
6 
 
phase, arctic air pushes further south into the United States but NAO phases can change at a 
temporal scale of 1-2 weeks and hence are not predictable. 
 
   
Figure 1.1. Neutral (left) and El Ni?o (right) conditions in the equatorial Pacific. As opposed to neutral 
conditions, during an El Ni?o event sea surface temperatures (SST) are warmer than usual, increasing convection 
of moist air into global circulation. During a La Ni?a event, cooler water decreases convection.(Source: TAO 
Diagrams). 
As far as PDO is concerned, most of the studies on its relationship with ENSO have been 
inconclusive, conflicting, or confusing. However, a study conducted by Gershunov and Barnett 
(1998) shows that the global climate patterns resulting from ENSO are moderated by PDO and 
that the resulting climate patterns interact with each other. Highly positive PDO likely results in 
a strong El Ni?o signal; similarly, highly negative PDO results in a strong La Ni?a signal. Newman 
et al. (2003) report that these two signals interact with each other at all time scales and that 
PDO prediction might improve with improvement in ENSO forecast skills.  
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1.3 ENSO INDICES  
Climate indices are researcher-created diagnostic monitoring tools that describe an 
important or significant pattern or state of a climate system and are generally represented as 
time series, with one index value representing a particular point in time. There are dozens of 
indices, which can describe any atmospheric event including monsoon precipitation, air 
pressure differences, sea surface temperatures (SSTs), hurricane activity, or solar radiation. 
Spatially averaged areas of sea surface temperatures in different parts of the world are 
particularly relevant to describing climate phenomena in specific locations, and El 
Ni?o/Southern Oscillation (ENSO) has proven to be one of the steadiest in describing low-
frequency climate variability on both regional and local scales (Ropelewski and Halpert, 1986). 
An index is typically used to define the phase and strength of ENSO; however, there are several 
classes of indicators available to characterize ENSO phases. One class of indicators focuses on 
the atmospheric component of ENSO. These indicators, for e.g. the Southern Oscillation Index 
defined by the Australian Bureau of Meteorology or the US Climate Prediction Center, are 
based on the differences of mean sea level atmospheric pressure between two locations on the 
Eastern Pacific and Western Pacific (Troup 1965; Chen 1982; Ropelewski and Jones 1987). 
Another class of indicators focuses on the oceanic component. They are based on the monthly 
anomalies of sea surface temperatures (SSTs) recorded in different sectors of the tropical 
Pacific Ocean (Rasmusson and Carpenter 1982; Glantz 2001). Typical examples of such 
indicators are the Oceanic Ni?o Index (ONI) developed by the National Oceanic and 
Atmospheric Administration or the index developed by the Japanese Meteorology Agency 
(JMA). A third set of more complex indicators are based on combinations of these different 
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factors, such as the trans-Ni?o index (TNI) (Trenberth and Stepaniak 2001) or the multivariate 
ENSO index (MEI) (Wolter and Timlin 1993). Each of these indices uses slightly different 
definitions of ENSO coordinates and phases and is most relevant to slightly different regions 
around the world. There is no agreement within the scientific community as to which index best 
defines ENSO years or the strength, timing, and duration of events. Indices that are commonly 
used to classify ENSO events include regional sea surface temperature (SST) indices (e.g., Ni?o-
1, Ni?o 2, Ni?o-3, Ni?o-4, Ni?o-3.4, Japan Meteorological Agency (JMA), and the modified JMA) 
and the surface atmospheric pressure?based Southern Oscillation index (SOI).  
 The SST indices are temperature based; using mean SSTs within different regions of the 
equatorial Pacific calculated using a 100-year SST anomaly dataset. This method allows 
reconstruction of anomalies without any gaps in the time series. Ni?o-1 and Ni?o 2 regions are 
highly responsive to seasonal and El Ni?o induced changes whereas Ni?o 3 region is much less 
responsive to continental influences than Ni?o 1 and Ni?o 2 regions. In Ni?o 4 region, changes 
in SSTs are related to longitudinal shifts of strong east-west temperature gradients along the 
equator. JMA is located within the Ni?o-3 region (4?N-4?S and 150?-90?W) and is the 5-month 
running mean of spatially averaged SST anomalies. If monthly JMA values are 0.5?C greater 
(lesser) than the long term average for 6 consecutive months, the ENSO year of October 
through the following September is categorized as El Ni?o (La Ni?a), or neutral (all other 
values). Modified JMA has similar approach to JMA with its only drawback being that the 
summer months classified according to conditions in previous October rather than the actual 
conditions. In modified JMA the episode stops as soon as the temperature conditions are no 
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longer met. Both JMA and modified JMA have similar results from September-March, however, 
significantly less (more) precipitation is recorded during El Ni?o (La Ni?a) episodes. 
Prolonged periods of negative SOI values coincide with abnormally warm ocean waters 
across the eastern tropical Pacific typical of El Ni?o episodes and prolonged periods of positive 
SOI values are typical of La Ni?a episodes. 
In addition to the aforementioned indices, several other indices have been proposed for the 
study of ENSO events. Two of these indices include the trans-Ni?o index (TNI) and the 
multivariate ENSO index (MEI). TNI consists of scaled difference between SST anomalies 
averaged in Ni?o 1+2 and Ni?o 4 regions and though it can show the formation of ENSO events 
but cannot capture their occurrence very well. TNI leads ENSO in Ni?o-3.4 by 3-12 months prior 
to 1976/77 and then lags and has been reported to be not a good index for identification of 
individual ENSO events. The MEI is a composite index using not only SST, but also surface air 
temperature, sea-level pressure, zonal and meridional surface wind, and cloudiness (Wolter 
and Timlin, 1993). It correlates well with SST and SOI based indices in identifying individual 
ENSO events.  
 Ni?o-3.4 region (5?N -5?S and 170?W - 120?W) of the Pacific has been reported (Trenberth 
and Hoar 1996) to be the main area where sea level pressure and temperature anomalies are 
very well-correlated with each other and for having the most relevance to the southeast United 
States, hence this index will be used in this research. 
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1.4 ENSO IMPACTS 
The ENSO phenomenon is composed of complex environmental changes that have different 
influences throughout the world, and are somewhat related, statistically and physically, with 
the main regional precipitation-generating mechanisms (Waylen and Poveda, 2002). ENSO 
events are associated with climate extremes over many areas of the globe (Ropelewski and 
Halpert 1987; Halpert and Ropelewski 1992) and large-scale precipitation and temperature 
patterns influenced by ENSO have been examined in many areas of the world (Barsugli et al. 
1999; McCabe and Dettinger, 1999). ENSO effects can range from significant to very little or no 
effect at all in different parts of the world (Molnar and Cane, 2007). Most pronounced signal of 
ENSO can be seen where this phenomenon was discovered i.e. equatorial South America, 
where El Ni?o years bring less than normal precipitation and La Ni?a years are associated with 
more than normal precipitation and cooler temperatures (Aceituno, 1988).  
Australia experiences less rainfall during El Ni?o, especially during the winter in the interior 
of eastern Australia and during the northern Australian monsoon whereas La Ni?a years are 
often wetter (Nicholls et al., 1996). Investigations have also reported relationships between 
precipitation from the Indian Monsoon and El Ni?o events (Ropelewski and Halpert, 1987; 
Charles et al., 1997). As a critical component of Indian sub-continent water supply and 
agriculture, historic monsoon failures have often coincided with strong El Ni?o events (Kiladis 
and Diaz, 1989; Ropelewski and Halpert, 1987; Charles et al., 1997). Quinn et al. (1978) 
reported a relationship between El Ni?o and Indonesian droughts, particularly in the east 
monsoon season of May?October. In southeast and the eastern equatorial Africa, El Ni?o 
events bring greater than normal precipitation and cooler temperatures (Ropelewski and 
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Halpert, 1987; Halpert and Ropelewski, 1992).West and Central Europe may experience higher 
temperatures and lower precipitation during strong El Ni?o winters whereas northern Europe 
receives less precipitation. La Ni?a events bring higher precipitation to northern Europe 
(Fraedrich and Muller, 1992).  
The Southern Oscillation influences temperature, precipitation and upper-level winds 
(Halpert and Ropelewski, 1986 during a particular year. Prior knowledge of the expected state 
of the equatorial Pacific Ocean gives a substantial source of predictability of seasonal climate 
variability over the Tropics (Palmer and Anderson 1994). Many studies have verified a 
relationship between ENSO and precipitation and streamflow (e.g. Redmond and Koch, 1991; 
Eltahir, 1996; Chiew et al., 1998; Berri and Flamenco, 1999; Simpson and Colodner, 1999). 
Significant ENSO correlations have been reported in different parts of North America that 
include studies that show West and south Canada and the northern United States experience 
warmer winters and less precipitation during El Ni?o events whereas the southwestern United 
States have greater than average precipitation during El Ni?o summers. During La Ni?a years 
most of these patterns are reversed (Rasmusson and Wallace, 1983; Ropelewski and Halpert, 
1986; Halpert and Ropelewski, 1992).  
The southeastern United States generally receives generous amounts of rainfall, with annual 
amounts in Alabama alone totaling 53 inches. The amount and timing of this rainfall can be 
quite variable, which has led to many water related disputes in the region. This region has 
shown cooling and warming temperature trends that have varied at an inter-decadal temporal 
scale making the southeast the only region in the country to show an overall cooling of 1-2 ?C 
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(Burkett et al., 2001). Rainfall trends in the last century have shown overall increases of 20-30% 
or more in Mississippi, Alabama, and Louisiana, with mixed results in Georgia and Florida. In the 
southeastern United States climate variability can be attributed to El Ni?o Southern oscillation 
(ENSO) phenomenon (Enfield et al., 2001; Glantz et al., 1991; Diaz and Markgraf, 2000; Schimdt 
et al 2001). During El Ni?o events, winter precipitation is anomalously high, but temperatures 
are low due to increased cloud cover, while summers tend to be dry along the southeast coast 
(Ropelewski and Halpert, 1986; Adams et al., 1995). This distinctive winter El Ni?o pattern in 
the region is caused as a result of deflection of the subtropical jet due to stronger Hadley 
Circulation over the eastern Pacific Ocean (Cane, 2005). ENSO influence on rainfall has a lagged 
effect on streamflows in the region, as Zorn and Waylen (1996) showed for the Santa Fe River in 
northern Florida.   
Knowledge of what has happened during past ENSO events gives some hint of what might 
happen during a present or future event. This information gives a better approximation of the 
possible future climate than the assumption that seasonal conditions will be the same as 
average. Based on this knowledge of ENSO impacts in southeastern United States, I am 
analyzing the use of ENSO outlooks in drought forecasting and water resource management in 
the region. 
1.5 DROUGHT 
 Drought is a normal, recurrent climatic feature that occurs almost in every climatic zone 
around the world, causing billions of dollars in loss annually. According to the US Federal 
Emergency Management Agency (FEMA), the United States loses $6-8 billion annually on 
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average due to drought (FEMA 1995). A drought is considered to be a period of abnormally dry 
weather that causes serious hydrological imbalance in a specific region (Burke et al. 2006). 
Drought may be a temporary condition where the amount of water from precipitation falls 
short of a threshold value. From meteorological point of view the threshold value can be 
normal precipitation. From hydrological perspective, the threshold value can be normal ground 
or underground water level. From an agricultural viewpoint, the threshold value is the when 
plant available water is less than atmospheric demand for evapotranspiration (ET). From 
socioeconomic standpoint, the threshold value water supply is less than the water demanded 
by the society. Drought basically starts from a deficiency of precipitation resulting in water 
shortage for a certain activity.  
Linsley et al. (1975) defined hydrological drought as  a period during which stream flows 
could not supply recognized uses under a given water management plan.  Bryant (1991) ranked 
natural hazard events based on various characteristics, such as severity, duration, spatial 
extent, loss of life, economic loss, social effect, and long-term impact. He found that drought 
ranks first among all natural hazards. This is because, compared with other natural hazards like 
flood and hurricanes that develop quickly and last for a short time, drought is a creeping 
phenomenon that accumulates over a period of time across a vast area, and the effect lingers 
for years even after the end of drought (Tannehill 1947). According to IPCC, the frequency and 
severity of droughts could increase in some areas as a result of a decrease in total rainfall, more 
frequent dry spells and higher evapotranspiration (Frederick and Major, 1997).  
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 A drought can occur due to a combination of natural causes, including precipitation and 
evapotranspiration imbalance over a long period of time, unusually high temperatures , or low 
precipitation, as well as human causes, including unsustainable demand/supply ratio and 
landuse changes. Water demand forecasts are needed for the design, operation, and 
management of urban water supply systems (Bougadis et al. 2005).  
Drought management depends on indicators to detect drought and triggers to activate 
drought response. However, indicators often lack spatial and temporal transferability, 
comparability among scales, and relevance to critical drought impacts ; triggers often lack 
statistical integrity and consistency among drought categories (Steinemann, 2003). Physical 
measures of a system such as reservoir level and groundwater supply are used as hydrological 
indicators to define drought triggers and their use requires comparison of forecast of demand 
and supply (Fisher and Palmer, 1997).  
1.6 SIGNIFICANCE OF DROUGHT IN THE SOUTHEAST UNITED STATES  
Unlike the western US where aridity is widespread and populations have developed 
approaches to deal with water shortages, the southeast USA finds itself ill-prepared to deal 
with drought. During the past decade, the southeast USA has experienced several severe 
droughts, which have affected the region adversely. For example, La Ni?a conditions in 1998 
and 1999 were associated with a drought that lasted until 2000 in Florida and until 2001 in 
northern Georgia and Alabama. More recently, La Ni?a-like conditions during the winter of 
2006 caused drought throughout the southeast that had an economic impact that ran in to 
billions of dollars in the region. As discussed earlier, in the southeast climate variability, and 
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hence occurrence of drought, is greatly influenced by El Ni?o Southern Oscillation (ENSO) 
phase. Drier conditions in winter (La Ni?a) have an enormous impact in the region because of 
its dependence on water recharge during the cool season. Even without La Ni?a, the southeast 
suffers from low surface water availability during summer months because of intra-annual 
climate variability, very high evapotranspiration rates, and increased demand by ever growing 
urban centers. And since La Ni?a typically returns every two to seven years, drought is a 
recurring phenomenon in the southeast states, which emphasizes the importance of drought 
preparedness. 
1.7 DROUGHT INDEX 
Based on the defined drought criteria, the intensity and duration of drought is 
expressed with a drought index. A drought index integrates various hydrological and 
meteorological parameters, such as rainfall, temperature, evapotranspiration (ET), runoff, and 
other water supply indicators into a single number and gives a comprehensive picture for 
decision-making (Narasimhan and Srinivasan, 2005; Hayes, 2006). Federal and State 
government agencies use drought indices to assess and respond to drought. Available drought 
indices vary among themselves in many respects, such as applicability (regions and conditions), 
basic concept (energy-balance- or water-balance-based), input requirements, purpose 
(monitoring crop water deficit or estimating crop yield), and target use (agricultural, 
hydrological, or socioeconomic). They also vary in terms of complexity, genericness (whether 
the parameters of these indices are crop-specific or not), and spatio-temporal resolution. Each 
index has been developed for a particular purpose and has specific features. Among various 
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available drought indices, the Palmer Drought Severity Index (PDSI) (Palmer 1965), 
Standardized Precipitation Index (SPI) (McKee et al 1993), and Surface Water Supply Index 
(SWSI) (Shafer and Dezman 1982) are most widely used for water resources management and 
drought monitoring in the US and are discussed briefly below. 
1.7.1 PALMER DROUGHT SEVERITY INDEX (PDSI) 
Palmer Drought Severity Index (PDSI) was developed by Palmer (1965) as a meteorological 
drought index based on the criteria of beginning and end of a drought or wet spell. PDSI has 
gained a wide acceptance because the index is based on a simple lumped parameter water 
budget model. The input data needed for PDSI are monthly precipitation, monthly temperature, 
and average available water content of the soil for the entire catchment. It does not consider 
streamflows, lake and reservoir levels, human impacts such as irrigation, or other hydro-
meteorological variables that affect droughts (Karl and Knight, 1985). The PDSI is also known as 
the Palmer Hydrological Drought Index (PHDI) as it is based on moisture inflow (i.e. rainfall), 
outflow as moisture loss due to temperature effect and storage as soil moisture content (Karl 
and Knight, 1985). The PDSI has been widely used for a variety of applications across the United 
States for monitoring drought and triggering drought relief programs (Loucks and van Beek, 
2005). The capability of PDSI to provide a measure of abnormality of weather in a region, 
spatial and temporal representation of historic droughts, and current conditions in historical 
perspective are three major features that make it popular (Alley, 1984). Although the PDSI has 
been widely used within the US, several limitations of this application have been reported by 
Alley (1984), Karl and Knight (1985) and Karl (1986). PDSI does not do well in regions with 
extreme rainfall variability such as Australia and South Africa (Hayes, 2003) and is a poor 
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indicator of soil moisture changes at temporal scales ranging from one to several weeks 
(Bruwer, 1990). Other limitations of PDSI include the use of Thornthwaite?s method for 
calculation of potential evapotranspiration (ET), which has been reported to be the poorest 
performing method of estimating potential ET (Jensen et al., 1990).  Since the water balance 
model used by Palmer (1965) is a lumped parameter model, it makes it difficult to spatially 
delineate the areas affected by drought (Balaji, 2004). 
1.7.2 STANDARDIZED PRECIPITATION INDEX (SPI) 
 Standardized Precipitation Index (SPI) was developed by McKee et al. (1993) to replace PDSI 
for Colorado, US. It is calculated as the difference between total precipitation and his torical 
mean precipitation for a given time period divided by the standard deviation. This index is 
mainly a meteorological drought index based on the precipitation amount in a 3, 6, 9, 12, 24, or 
48 month period. Observed rainfall during these time periods are first fitted to a Gamma 
distribution, and then transformed to a Gaussian distribution to obtain the value of SPI for that 
time scale. Since the SPI requires minimal input data it is widely used throughout the world 
(Hughes and Saunders, 2002; Hayes, 2003; Bhuiyan, 2004; Mishra and Desai, 2005; Bacanli et 
al., 2008). Despite of its popularity, it still has limitations as it does not consider many other 
hydro-meteorological variables that effect droughts, such as soil moisture, ET, reservoir 
storage, land use characteristics, crop species, crop growth stage, and temperature anomalies 
that are critical for drought monitoring. (Keyantash and Dracup, 2004; Smakhtin and Hughes, 
2004). 
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1.7.3 SURFACE WATER SUPPLY INDEX (SWSI) 
 The SWSI was primarily developed as a hydrological drought index with an intention to 
replace PDSI for areas where local precipitation is not the primary source of water. The main 
aim for its development was to incorporate both hydrological and climatological features into a 
single index (Shafer and Dezman, 1982; Doesken et al., 1991). The SWSI is calculated based on 
monthly non-exceedance probability from available historical records of reservoir storage, 
stream flow, snow pack, and precipitation. Details on the computation of SWSI are presented 
by Shafer and Dezman (1982). The SWSI has been used to trigger the activation and 
deactivation of the Colorado Drought Plan along with reported use in other western states in 
the US. Its advantages include that it gives a representative measurement of surface water 
supplies across the basin. However, just like SPI, it does not consider some hydro-
meteorological variables such as soil moisture content and potential ET along with having a bias 
involved in determining weights that are a part of SWSI calculations. Furthermore, the changes 
in the water management within a basin, such as flow diversions or new reservoirs, mean that 
the entire SWSI algorithm for that basin needs to be redeveloped to account for these changes 
making it difficult to maintain a homogeneous time series of the index (Heddinghaus and Sabol, 
1991). 
There are many other drought indices reported in literature but most have limited use. 
Some of these indices are briefly presented in Table 1.1. However, none of the drought indices 
discussed operates at a spatial scale that water resource managers of small to mid-size 
communities desire; nor do they consider the supply and demand balance or forecast drought. 
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This study is concerned with the possibility for developing a new hydrological drought index 
that is simpler and may perform better than the other drought indices available now. 
1.8 MUNICIPAL WATER SYSTEMS AND DROUGHTS 
Domestic water use accounts for 8 percent of withdrawals and 6 percent of consumptive use 
in the United States (Solley et al. 1993). To serve an adequate quantity of water to a modern 
city in the Southeast US, a public water supply system is necessary and this supply system may 
depend on surface water, or groundwater, or both. The former may include water drawn from 
rivers, reservoirs, and lakes. A municipal water system may be defined as all the utility 
components and services involved in providing finished water to the water users (Shaw, 1993).  
The water supply systems of many small- and mid-size municipalities depend on surface 
water sources. Due to this dependence on surfaces sources as well as due to fast growth of 
these communities they become extremely vulnerable to drought. Most of these cities have 
their water resources (lakes or reservoirs) in small watershed systems. Smaller systems and 
systems relying on surface water have greater sensitivity to climate variation than larger 
systems and systems relying on groundwater (O?Connor et al. 1999). Changes in land use, 
population growth, urban sprawl, and economic growth further worsen the situation (Varis et 
al., 2004).   
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Table 1.1: Some other Drought Indices 
Drought Index Definition Use 
Deciles (Gibbs and Maher, 1967)  Grouping monthly precipitation 
occurrences into deciles 
  
Meteorological drought 
measurement within the Australian 
Drought Watch System 
 
Keetch-Byram Index (Keetch and 
Byram, 1968) 
Daily water balance, precipitation and soil 
moisture balanced in a water budget 
model 
Estimates of forest fire potentials 
   
Crop Moisture Index (Palmer, 1968) A Palmer derivative, precipitation and 
temperature used in a water balance 
method across major crop- producing 
regions  
Agricultural drought 
   
Vegetation Condition Index (Kogan, 
1995) 
Calculated with satellite Advanced 
Very High Resolution Radiometer 
(AVHRR) radiance  
?Health? of vegetation, drought 
detection and tracking 
   
Reclamation Drought Index 
(Weghorst, 1996) 
Calculated at river basin level, using 
precipitation, temperature, streamflow 
and reservoir levels. 
Drought severity and duration by 
U.S Bureau of  Reclamation 
   
Effective Drought Index (Byun and 
Wilhite, 1999) 
Amount of rain needed to overcome 
accumulated deficit 
Used to monitors daily drought 
conditions in the United States  
   
U.S. Drought Monitor (Svoboda, 
2000) 
Incorporates several drought indices and 
indicators to produce a weekly map 
Multipurpose 
 
Climate variability is not the only factor that affects the supply of and demands for water; 
other factors influencing supply and demand include population size, technology, economic 
conditions, and other social factors. In addition, household water demand fluctuates with 
climatic conditions, water prices, and use restrictions, and household income. Hughes et al 
(1994) in a study of urban water use in Utah found that potential ET and rainfall best explained 
the changes in residential water use attributable to climate. Changes in climate variables such 
as rainfall and temperature drive changes in both water supplies and demands. Fluctuations in 
weather conditions, along with normal loading conditions, may cause short-term failures in a 
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system. Consequently, drought conditions subject municipal water systems to the combined 
effects of higher demands and lower supplies thus posing serious risk to the performance of 
these systems (Radwan and Shaw, 1994). 
1.9 PROBLEM STATEMENT 
Most of the drought indices already available are not designed to cater to the needs of water 
resource managers of small to mid-size communities (population less than 100,000). It is very 
important for water resource managers of the Southeast to have a water deficit index that 
operates at a fine spatial resolution; accounts for the balance of available water supply 
(dependent on climate variables such as precipitation and temperature) and water demands 
(dependent on time of the year, population, and climate variables); and should be able to 
forecast drought based on the climate variability signal ENSO that is prevalent in the 
southeastern United States. 
 Water balance in a watershed can be estimated accurately using hydrologic models. 
However, these models are difficult to apply because they require a large numbers of inputs 
and parameters that are difficult for users to obtain. Thus, a complex drought index derived 
from a hydrologic model is impractical for broader application. Another important 
consideration is that the index should be generic or customizable for any community, based on 
its water supply and demand systems. Generic indices also provide economy in both modeling 
and understanding (Reynolds and Acock, 1997). So in this study, a drought index is proposed 
that would be customizable for small to mid-size communities of the southeastern United 
States.  
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It is hypothesized that the proposed water balance-based, simple, generic, and high-
resolution drought index would characterize hydrologic drought better than other drought 
indices that are available now and that, being simple and generic, the index would be more 
convenient for water resource managers, and would provide them with a tool that forecast 
drought 3-4 months in advance taking in to account the ENSO conditions. It would be more 
convenient for the users to apply this index and also, being relatively simple, the chance of its 
application as a web-based, decision support system would be high.  
1.10 DISSERTATION OBJECTIVES 
The objectives of this dissertation are: 
1. To study the impact of El Ni?o Southern Oscillation on the precipitation and streamflows 
in Alabama for better water resource management. 
2. To develop a drought index for forecasting drought for small to mid-size communities of 
the southeastern United States using the El Ni?o Southern Oscillation impact in the 
region. 
3. To evaluate the value of the developed index by studying the use of this information for 
water resource managers of the region. 
1.11 DISSERTATION ORGANIZATION 
This dissertation focuses on the above mentioned three objectives and is presented in 
manuscript format for those chapters discussing the methodology and results. Chapter 1 
provides an introductory overview justifying this research, a review of literature and presents 
the research objectives. Chapters 2 through 4 present in manuscript format a discussion and 
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response to the three objectives outlined for this research. Chapter 2 presents the details of 
study of impact of ENSO signal on precipitation and streamflows in Alabama. It establishes the 
different El Ni?o and La Ni?a patterns as observed over the past 52 years in the state of 
Alabama. This chapter has already been accepted for publication in Journal of Soil and Water 
Conservation (Sharda et al. 2011). Chapter 3 documents the development of Community Water 
Deficit Index (CWDI) as the drought index to forecast drought based on ENSO outlook. This 
chapter has been submitted for publication in Journal of Hydrologic Engineering (Sharda et al., 
2012). Chapter 4 covers the quantification of value of drought forecast information for water 
resource managers. This chapter will be submitted in the Transactions of American Society of 
Agricultural and Biological Engineers for publication. Chapter 5 presents the conclusions of this 
research.  Finally, Chapter 6 presents future research suggestions and practical implications of 
the research findings. Style manual or Journal used in the manuscript is Transactions of 
American Society of Agricultural and Biological Engineers (ASABE). 
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2.1 ABSTRACT  
There is increased pressure on the water resources of the southeastern United States due to 
the rapidly growing population of the region. This pressure is further exacerbated by the severe 
seasonal to inter-annual (SI) climate variability this region experiences, most of which has been 
attributed to El Ni?o Southern Oscillation (ENSO). Understanding the regional impacts of ENSO 
on precipitation and streamflow is valuable information for water resources managers in the 
region. This study was undertaken to develop a clear picture of the effect of ENSO on observed 
precipitation and streamflow anomalies in Alabama to help water resource managers in the 
state with decision-making. The effects of ENSO on precipitation in eight climate divisions of 
Alabama were assessed using 59 years (1950-2008) of monthly, historical data. In addition, 
eight unimpaired streams, one in each climate division, were selected to study the relationships 
between ENSO and streamflow. Results indicate a significant relationship between ENSO and 
precipitation and streamflow. However, different parts of the state respond differently to 
ENSO. For precipitation, it was found that the relationship is significant during winter months 
with dry conditions being associated with La Ni?a in the southern climate divisions. A fairly 
strong relationship was also found during other months. Streamflows show a high variability 
and positive correlation during winter months in the southern climate divisions. These results 
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provide a basis for the water resource managers in Alabama to incorporate climate variability 
caused by ENSO in their decision-making related to soil and water conservation. 
2.2 INTRODUCTION 
 Natural climate variability has a considerable impact on society, particularly on agricul ture and 
water resources. To minimize its negative consequences, we must identify, quantify, and 
understand this variability (Climate Research Committee and National Research Council 1995). 
Natural climate variations caused by El Ni?o Southern Oscillation (ENSO), the Pacific Decadal 
Oscillation (PDO), and the North Atlantic Oscillation (NAO) can significantly alter the behavior of 
extreme events including floods, droughts, hurricanes, and cold waves (IPCC 2001). 
 The southeastern US is a region with a rapidly growing population including a reported 32% 
population increase between 1970 and 1990. This expanding urban population increases 
pressure on water resources in this region, which is exacerbated by severe seasonal to inter-
annual (SI) climate variability. The climate variability in the Southeast is influenced greatly by 
ENSO (Enfield et al. 2001). ENSO is a coupled, ocean-atmospheric phenomenon that occurs in 
the equatorial Pacific Ocean and the atmosphere above it and results in varied climatic effects 
in different parts of the world (Roy 2006). The terms ?El Ni?o? and ?La Ni?a? describe the 
respective warming and cooling of sea surface temperatures off the shores of the west coast of 
South America (Quinn 1994; Aceituno 1992). Another important phenomenon that affects the 
climate in this region is PDO, which is a long-lived, ENSO-like pattern of Pacific climate 
variability that operates on a decadal time scale and can last up to 30 years. Gershunov and 
Barnett (1998a, b) reported that PDO has a regulating effect on ENSO, with typical ENSO signals 
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being stronger during the strong phase of PDO. NAO has also been reported to impact 
temperatures in the region, with La Ni?a winters being colder than normal during its negative 
(cold) NAO phase. However, since NAO phase changes in a 1-2 week time scale, its effect is 
transitory. Tootle et al. (2005) reported that NAO might influence La Ni?a impacts on 
streamflow in the midwestern United States. However, the literature suggests that ENSO has 
the strongest impact on climate variables in the Southeast. Ropelewski and Halpert (1986) 
studied the response of precipitation and temperature to ENSO over all of North America and 
found that above-normal precipitation (normal precipitation being the mean of the available 
data) was associated with El Ni?o conditions in the southeastern United States during October 
through March. La Ni?a years were relatively warm and dry between October and April 
(Mearns et al. 2003). During warm (El Ni?o) events, winter precipitation was anomalously high, 
but temperatures were low due to increased cloud cover (Ropelewski and Halpert 1986). 
The southeastern United States often suffers from low surface water availability during 
summer months due to high evapotranspiration rates and increased demand by ever-growing 
urban centers. Smaller water systems and systems relying on surface water sources have 
greater sensitivity to climate variability compared to larger systems or systems relying on 
groundwater sources or a combination of groundwater and surface water sources (O?Connor et 
al. 1999). This situation is further worsened by changes in land use, population growth and 
urban sprawl (Varis et al. 2004).  
Past research has studied the relationship between precipitation and ENSO on global and 
regional scales. Many of these analyses have included Alabama (e.g., Ropelewski and Halpert 
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1986; Livezey et al. 1997; Gershunov and Barnett 1998a; Livezey and Smith 1999). Although 
such regional studies of climate variability provide a broad picture of potential impacts, they do 
not adequately address the spatial and temporal scale of variability on which decisions are 
based.  
Various researchers have also studied the relationship between ENSO and the streamflow of 
different rivers (e.g., Amarasekera et al. 1997; Fu et al. 2007; and Zubair 2003). Although 
Alabama relies heavily on surface water resources, with 88% of its public water supply coming 
from surface water (USGS 2005; US Census data), little has been done to examine in detail the 
patterns of rainfall in Alabama. Streamflow integrates precipitation over the drainage basin and 
responds to precipitation by a temporally-variable combination of runoff and groundwater 
inputs (Schimdt et al. 2001). Abtew et al. (2009) reported that identifying connections of ENSO 
indices to a basin?s or region?s hydrology can aid in resource management decision-making. For 
example, a tool to manage food security in Indonesia has been developed utilizing the study of 
Naylor et al. (2004). They showed that four to eight months of sea surface temperature (SST) 
measurement can be used to predict and plan rice production in the region. Forecasting and 
managing flooding of the Brahmputra-Jamuna River in Bangladesh is based on a study of the 
relationship between SST and wet season flows of the river (Jahan et al. 2006).  
The changes in precipitation and streamflow caused by ENSO have potential implications for 
the conservation of soil and water. For example, the inter-annual variability in precipitation in 
Alabama affects the availability of surface water resources in the state and may cause short-
term failures in the system. This makes it all the more important from a water manager?s 
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perspective to study, in detail, the impact of ENSO on precipitation and streamflow in this part 
of the southeastern United States. Those who manage surface water resources in the state 
could potentially make explicit use of information about probable inter-annual changes in 
surface supplies based on a range of observed and forecasted ENSO parameters. For example, 
municipal water managers can impose timely water use restrictions and encourage water 
conservation based on ENSO forecasts, thus preparing consumers to deal with low water 
availability or hydrologic drought. This type of information is also important for agricultural 
water use where decisions about water withdrawals and irrigation can be made based on the 
impacts of ENSO on precipitation and streamflows. A recent study by Mondal et al. (2011) has 
shown that by using this information, an ecologically-sustainable surface water withdrawal 
prescription for irrigation can be developed. 
Quantifying and understanding precipitation trends associated with climate variability is also 
important due to its direct link with droughts, floods, and soil erosion (Pruski and Nearing 
2002). For example, knowledge of ENSO impacts on precipitation and streamflow can be used 
for implementing non-structural BMPs, such as riparian buffers, vegetated waterways, and live 
stakes to reduce erosion and sediment transport. ENSO-related climate variability can also 
affect water quality and impact ecosystems, health, and food availability (Keener et al. 2010). 
Therefore, understanding the impact of ENSO on precipitation and streamflow, the objective of 
this study, can provide valuable information to water resource managers. 
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2.3 MATERIALS AND METHODS 
2.3.1 STUDY AREA 
For this study, we selected the state of Alabama in order to explore the relationship between 
ENSO and precipitation and streamflow. However, the methodology presented here can be 
applied to other regions that are affected by ENSO or any other seasonal to inter-annual 
climate variability phenomenon. Alabama has a humid, subtropical climate with an average 
annual temperature of 17.8?C (64 ?F) and average annual rainfall of 142 cm (53 in). The 
northern parts of the state, especially the Appalachian Mountains in the northeast, tend to be 
slightly cooler, whereas, the southern parts are slightly warmer. Rainfall in the state is also 
affected by tropical storms and hurricanes. 
2.3.1.1 Precipitation Data 
Monthly precipitation data for 49 stations (APPENDIX A), for a 59-year period of record, 
1950-2008, spread over eight climate divisions in Alabama (Figure 2.1) were obtained from the 
National Climate Data Center, US Department of Commerce 
(http://www.ncdc.noaa.gov/oa/ncdc.html). Mean monthly precipitation from the stations in 
each climate division was summed. Climate divisions were adopted from the US Department of 
Agriculture Bureau of Agricultural Economics Crop Reporting Districts in 1949. The reason for 
adopting crop reporting districts as climate divisions was because crop production areas are 
strongly related with climate classification. There were minor revisions made in order to 
organize the data based on geography, drainage basins, river districts , and forecast areas of 
responsibility.  In the 1950?s, a standard national scheme based partially on climatic 
considerations was adopted (Guttman and Quayle 1996). The historical perspective associated 
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with these climate divisions and the ease with which information from these divisions can be 
understood by stakeholders or water resource managers were important considerations in 
summing up the station data using the state?s eight different climate divisions. 
 
Figure 2.1. Climate Divisions of Alabama and stations in different Climate Divisions used for analyses. 
It has been reported that higher than yearly time resolution may be desirable to study the 
relationship between precipitation and ENSO episodes (Redmond and Koch 1991).Therefore, to 
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obtain the best correlation between precipitation and ENSO episodes, three-month mean 
precipitation data were used and referred to as the seasonal mean for the seasons of January-
February-March (JFM), April-May-June (AMJ), July-August-September (JAS), and October-
November-December (OND). In addition, two ?municipal? seasons were selected for analysis. 
These are the wet season or growing season- December, January, February, March and April 
(DJFMA) - and the dry season - April, May, June, July, August and September (AMJJAS). 
In Alabama, the wet season provides the most precipitation and the least evapotranspiration 
and is considered a recharge season by water managers. During this season, water managers 
allow reservoirs to fill so that they can supply water during the dry season.  The rate of 
evapotranspiration and thus water consumption is the highest in the dry season. Further, if the 
wet season does not receive adequate rainfall, increased water consumption often exacerbates 
the negative effects of high evapotranspiration on water use. 
2.3.1.2 Streamflow Data 
The streamflow data were obtained from the United States Geological Survey (USGS) (USGS 
2010). One unimpaired stream, with more than 30 years of past streamflow data, was selected 
in each climate division. The BASINS (Better Assessment Science Integrating point & Non-point 
Sources) model (EPA 2001) was used to select the streams (gauging stations) with minimal 
upstream human interventions, such as regulations and diversions, point source discharges, 
and dams. The data obtained from USGS were mean monthly streamflows in cubic meter per 
second (m3/s).  
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2.3.2 ENSO INDEX 
The National Oceanic and Atmospheric Administration (NOAA) Ni?o 3.4 index was used to 
define the ENSO phase. This index is based on a three-month, extended reconstruction, sea 
surface temperature (SST) analysis (ERSST.v2), which includes average SST anomalies in the 
Ni?o 3.4 region (5?N -5?S and 170?W - 120?W) of the Pacific. This region has been reported 
(Trenberth and Hoar 1996) to be the main area where sea level pressure and temperature 
anomalies are very well-correlated.  If the Ni?o 3.4 index is more than +0.5?C, the event is 
termed El Ni?o, and, if the index is less than -0.5?C, the event is termed La Ni?a.  A neutral 
phase is defined when the Ni?o 3.4 index is between +0.5?C and -0.5?C. The NOAA Climate 
Prediction Center (CPC) assigns ENSO phase to a three-month period based on the SST anomaly, 
and this information is available on their website from 1950 to present (NOAA-CPC 2010).  
2.3.3 ENSO PHASE ASSIGNMENT 
Seasonal (JFM, AMJ, JAS, OND) ENSO information from 1950 ? 2008 available from NOAA 
CPC was used. For the ?municipal? seasons, the phase over the entire period was considered. 
For example, for DJFMA, we looked at the ENSO phases for NDJ, DJF, JFM, and FMA and, if 
there was no phase change during these months, it was assigned to DJFMA; otherwise, that 
particular year was deleted from the analysis. The same procedure was repeated for AMJJAS. 
Based on this method, the seasons for the entire period of 59 years (1950-2008) were classified 
as El Ni?o, La Ni?a or Neutral (Table 2.1).  
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Table 2.1: Number of years, by seasons, in each ENSO phase. 
ENSO Phase JFM AMJ JAS OND DJFMA* AMJJAS** 
El Ni?o 13 11 14 19 13 9 
La Ni?a 17 16 12 19 16 12 
Neutral 29 32 33 21 25 30 
* Years 1964, 1965, 1972, 1978 and 2007 were deleted from the analysis. 
** Years 1963, 1965, 1969, 1970, 1983, 1998, 2000 and 2004 were deleted from the analysi s. 
 
2.3.4 PRECIPITATION AND STREAMFLOW VARIABILITY 
Historic mean monthly precipitation values for 49 rainfall stations of the state were 
downloaded and the monthly values were then added and averaged for each of the six seasons. 
These values were then averaged by ENSO phases (i.e., El Ni?o, La Ni?a, and Neutral). The 
station data were grouped according to climate divisions. The total, seasonal mean 
precipitation values for each climate division were analyzed, and standard deviation and 
coefficient of variation along with anomalies were calculated to study the precipitation 
variability during each ENSO phase. Seasonal precipitation anomalies were calculated by 
subtracting the seasonal mean monthly precipitation value of all the years from the value of 
that year. Seasonal streamflow anomalies were similarly calculated for the six seasons. The 
Environmental Systems Research Institute (ESRI) ArcMap 9.2 was used to create precipitation 
anomaly maps. Maps were created for each season for both the El Ni?o and La Ni?a phas es 
using the ArcToolbox Natural Neighbor tool of interpolation.  
Monthly mean streamflows (m3/s) were used for each of the eight streams selected and 
analyzed for variability in a similar manner as precipitation for the six seasons. These values 
were then averaged over the months in a season to get seasonal mean streamflows for each 
year of the past data. 
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Analysis of variance (ANOVA) was conducted using Statistical Analysis System (SAS) software 
(SAS Institute, Inc., NC, USA) General Linear Model (GLM) procedure to ascertain if statistical 
differences existed in precipitation and streamflow during different ENSO phases. Means and 
standard deviations for these parameters were also calculated using the GLM procedure. 
Multiple comparisons of means for all parameters were conducted using the Least Square 
Difference (LSD) procedure. All statistical analyses were conducted using a 90% confidence 
interval. 
2.3.5 CORRELATION ANALYSIS 
Correlation coefficients between the Ni?o 3.4 index and precipitation and streamflow 
anomalies were calculated using SAS to study the relationship between ENSO and precipitation 
and ENSO and streamflow. The Pearson correlation coefficient (r) measures linear association.  
The null hypothesis, H0 - no correlation, was tested at a 90% level of significance for all the 
seasons for both precipitation and streamflow in each climate division using SAS. Because 
Pearson?s correlation measures the linear association, and because it is difficult to establish an 
independent, identically distributed, normal relationship for hydrologic variables such as 
precipitation and streamflow (Xu et. al. 2004), Kendall?s correlation (?A), which is a distribution-
free rank correlation, was also calculated for the dataset. Kendall?s rank coefficient does not 
require the variables to be normally distributed and is more efficient with high power (Kendall 
1975).  
Lag correlations of linear regression between streamflow and the Ni?o 3.4 index were 
calculated to quantify the strength of the relationship and to find if streamflow in the region 
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showed a lagged response to ENSO, as has been observed in different parts of the world (Chiew 
et al. 1998). A significant lag correlation also indicates a potential for forecasting. 
2.3.6 COMPOSITE ANALYSIS 
Composite Analysis is a sampling technique based on the conditional probability of a certain 
event such as El Ni?o or La Ni?a occurring. This analysis was performed on the dataset to find 
the conditional probability of El Ni?o, La Ni?a, and Neutral precipitation or streamflow being 
above, below, or near normal based on the historic data. Seasonal mean monthly precipitation 
and seasonal mean monthly streamflow data were used, and the analysis was performed for 
JFM, AMJ, JAS, OND, DJFMA, and AMJJAS for all climate divisions. Lower and upper terciles 
were calculated to obtain the cutoff points between above, near, and below normal 
precipitation and streamflow categories for each season using the 1971-2000 dataset. These 
tercile values were then compared with the precipitation and streamflow values for each 
month and season to find if the precipitation and streamflows were above, near or below 
normal. The number of each above, near or below normal precipitation/streamflow values 
were counted for each El Ni?o, Neutral, and La Ni?a event, and then the probability of 
occurrence was calculated.   
2.4 RESULTS AND DISCUSSION 
2.4.1 PRECIPITATION VARIABILITY 
The results of seasonal precipitation variability are presented in Figure 2.2. The figure shows 
anomalies in total, seasonal precipitation values in El Ni?o and La Ni?a phases as compared 
with the normal precipitation for all eight climate divisions of the state for the six seasons 
analyzed.  
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Figure 2.2. Anomalies in total seasonal precipitation in each climate division for the El Ni?o and La Ni?a 
phases for all the six seasons. 
 It was found that seasonal El Ni?o precipitation for JFM and AMJ was higher than normal 
precipitation (positive anomaly) and La Ni?a precipitation in the southern climate divisions 6, 7, 
and 8. The statistical analysis of total mean precipitation according to different phases indicates 
that the southern climate divisions of the state might have drier winters during La Ni?a with 
larger variability. Table 2.2 lists those results.  
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Table 2.2: Precipitation means and standard deviations for different climate divisions during El Ni?o and La 
Ni?a phases. 
Climate 
Division Season 
El Ni?o La Ni?a 
Mean 
(cm) 
Std. dev. 
(cm) 
Mean 
(cm) 
Std. dev. 
(cm) 
CD1 JFM 35.84 10.57 43.28 12.27 
AMJ 35.64 11.46 32.39 9.09 
OND 35.15 11.48 33.35 9.86 
DJFMA 61.67 15.27 68.99 14.38 
AMJJAS 63.96 6.25 57.10 12.34 
CD2 JFM 39.47 8.33 44.32 8.48 
AMJ 37.34 9.12 34.82 8.03 
OND 34.62 10.03 31.52 8.81 
DJFMA 67.26 13.11 68.78 11.00 
AMJJAS 69.72 8.99 67.08 11.25 
CD3 JFM 43.21 9.83 46.89 8.48 
AMJ 41.05 13.61 35.61 7.42 
OND 35.38 8.36 33.30 7.95 
DJFMA 73.48 16.08 73.56 10.46 
AMJJAS 73.03 7.06 74.22 15.88 
CD4 JFM 42.57 11.30 41.66 9.07 
AMJ 39.09 12.50 32.59 7.57 
OND 31.24 9.37 28.19 10.11 
DJFMA 67.28 13.82 64.80 11.94 
AMJJAS 67.18 10.11 63.35 13.34 
CD5 JFM 41.10 6.71 37.87 12.17 
AMJ 35.71 9.25 32.44 12.88 
OND 29.08 7.19 28.98 8.86 
DJFMA 65.66 12.07 62.69 15.82 
AMJJAS 61.72 8.61 64.01 12.95 
CD6 JFM 43.64 9.50 40.26 8.94 
AMJ 36.40 12.70 33.88 11.10 
OND 31.32 7.19 29.79 7.87 
DJFMA 69.85 14.05 65.41 10.01 
AMJJAS 65.00 11.15 66.93 16.71 
CD7 JFM 44.81 7.49 39.62 11.61 
AMJ 40.41 11.48 37.64 12.50 
OND 34.93 7.19 32.36 8.61 
DJFMA 75.46 12.75 68.30 12.73 
AMJJAS 80.11 12.55 83.95 17.70 
CD8 JFM 47.19 11.76 35.36 10.80 
AMJ 45.97 15.57 37.57 13.11 
OND 33.76 9.30 31.24 12.57 
DJFMA 75.62 18.44 60.12 13.23 
AMJJAS 95.78 19.63 94.97 19.20 
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 It clearly showed the tendency for the average, seasonal El Ni?o precipitation to be more than 
La Ni?a precipitation in southern climate divisions of the state except during the growing 
season, which did not show a clear response. Most of the southern part of the state had wet 
(dry) conditions during the El Ni?o (La Ni?a) phases in JFM and DJFMA. During the wet season, 
La Ni?a precipitation was lower than El Ni?o and normal precipitation in the climate divisions 7 
and 8. The precipitation anomalies were more prominent in the winter months for the southern 
part of the state.  
For JAS, there was no clear response in any part of the state. El Ni?o precipitation was 
slightly less than normal in most of the state, whereas La Ni?a precipitation was near or slightly 
higher than normal. In climate division 8, both El Ni?o and La Ni?a precipitations in JAS were 
more than normal. These results agree with the findings of earlier research that indicate that 
ENSO teleconnection patterns exhibit strong, climatic signals during fall, winter, and spring 
months in the southeastern USA. However, these teleconnections show weak signals during the 
summer season (Leathers et al. 1991; Yin 1994). In climate divisions 6, 7, and 8, El Ni?o 
precipitations were, on an average, 10% higher than normal during winter months (OND, JFM 
and DJFMA) and La Ni?a precipitations were 8% lower than normal. 
 The opposite relationship was found in the northern climate divisions 1 and 2 during JFM. This 
relationship was, however, not clearly observed during OND and AMJJAS. Climate division 5 
displayed higher La Ni?a variability than El Ni?o during all seasons. In climate divisions 1, 2, and 
3, the El Ni?o precipitations were on an average 6% lower than normal precipitations during 
JFM, and La Ni?a precipitations were nearly 8% higher than normal. In other words, winter 
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precipitation was generally higher (lower) than normal during El Ni?o conditions in the 
southern (northern) climate divisions of the state with lower variation as compared to La Ni?a 
precipitation, which was lower than normal with high variability. 
These results are consistent with the findings of Ropelwiski and Halpert (1987), who 
reported higher than normal precipitation in the southeastern US during El Ni?o conditions in 
the winter months, and with the findings of Mondal et al. (2011), who found similar results for 
a South Alabama watershed. This information can be helpful to regional water managers when 
planning for water storage during the wet season. During La Ni?a, due to an expectancy of 
below normal precipitation in the climate divisions 6, 7, and 8, more water should be stored in 
the reservoirs, whereas in the northern part of the state, water storage should be reduced to 
make room for the coming higher runoff and precipitation. An opposite strategy could be 
adopted during El Ni?o conditions. Such a strategy can help water managers conserve water 
when scarcity is expected and release water when abundance is expected. 
2.4.2 PRECIPITATION ANOMALY MAPS 
Precipitation anomaly maps were created as a tool for the water managers to see the spread 
of precipitation anomalies throughout the state. Figure 2.3 shows the precipitation anomaly 
maps for the entire state for three seasons, i.e., JFM, OND and DJFMA, for both El Ni?o and La 
Ni?a phases. The red color in the map indicates a dry condition or a negative precipitation 
anomaly and blue indicates a wet condition or more than normal precipitation. Based on the 
historic precipitation data, JFM received up to 13.9 cm (5.47 in) more than normal precipitation 
in the southern part of climate division 8 during El Ni?o and 9.4 cm (3.7 in) less than normal 
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precipitation during La Ni?a. For JFM during El Ni?o, positive anomalies entirely covered 
climate divisions 6, 7, and 8 and most parts of climate division 5.  
 Southern parts of the climate divisions 2, 3, and 4 also had more than normal precipitation 
during El Ni?o in JFM, whereas climate division 1, the northeastern part of climate divis ions 2 
and 4, and the northwestern part of climate division 3 were drier than normal. An almost 
opposite trend was observed in La Ni?a conditions in JFM with positive anomalies extending up 
to the northern part of climate division 6. Negative anomalies were observed during OND in La 
Ni?a phase in southern climate divisions 7 and 6, extending up to climate division 5, although 
the eastern parts of climate divisions 5 and 7 were wet. Most of the central part of the state 
was dry in La Ni?a conditions and wet in El Ni?o, whereas the northwestern part of the state 
was wet (dry) during La Ni?a (El Ni?o). 
During DJFMA, similar conditions as those during JFM existed in most of the state with lower 
than normal precipitation or drier conditions during El Ni?o moving further south. In La Ni?a, 
the eastern (eastern part of climate divisions 4 and 5) and southern (climate divisions 7 and 8) 
parts of the state were mostly dry, and wet conditions prevailed in Northwest and Central 
Alabama. No clear impact was observed during AMJ, JAS, and AMJJAS. These results agree with 
the results obtained through composite analysis and correlation studies (discussed below). 
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     (a)                                                (b)                                                 (c) 
    
                 (d)                                                 (e)                                                (f) 
                                                                                                        
 
Figure 2.3. Precipitation anomaly distribution in the state during JFM, OND and DJFMA. Maps (a), (b), and (c) 
are for El Ni?o conditions and (d), (e), and (f) are for La Ni?a conditions. 
These precipitation anomaly patterns can be attributed to the physical mechanisms 
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storms provide rain in the southern part of the state. During La Ni?a winters, the opposite 
occurs and the jet stream weakens and travels north making the winters drier than normal in 
the southern part of the state. These results agree with the general results found in studies 
conducted on the southeastern United States that concluded that the effect of ENSO is 
observed to be stronger in the South than the North and stronger in winter-spring than in 
summer-fall (O?Brien et al. 1999). These anomaly maps can be used to communicate impact of 
ENSO to the water managers of the state and how the anomalies spread throughout the state. 
A combination of anomaly maps and composite analysis can indicate the probability of how a 
certain set of precipitation conditions can occur in any region of the state depending on the 
ENSO phase.  
2.4.3 CORRELATION BETWEEN ENSO AND PRECIPITATION 
Table 2.3 presents the results of the correlation tests conducted at a significance level of 90% 
with the cells with an asterisk representing significant correlation. The results indicated that 
there was a significant correlation between ENSO and precipitation during winter months in 
climate divisions 7 and 8. Climate division 8 also demonstrated high correlation during AMJ. In 
climate division 4, a positive correlation existed between ENSO and precipitation anomalies 
during OND. A strong positive correlation was also indicated during DJFMA in climate divisions 4 
and 5. In general, a positive correlation indicates that, during cool ENSO events (La Ni?a), 
precipitation tends to be below normal and, during warm ENSO (El Ni?o), it tends to be higher 
than normal. This relationship was stronger during winter months in climate divisions 7 and 8 
and was reversed in the northern climate divisions. The negative association was also clear in 
climate divisions 1 and 2 during JFM and for OND in climate division 3. Both Pearson and 
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Kendall?s correlations showed similar results in most climate divisions during all the seasons 
analyzed except for in climate divisions 3 and 4 during AMJ, for climate divisions 5 and 6 during 
JFM, and for climate division 3 during OND, when Pearson?s correlation was significant and 
Kendall?s was not. During AMJJAS, precipitation anomalies were found to be correlated with the 
ENSO signal in climate divisions 1, 5, 6, and 7. For JAS, the correlations were non-significant in 
all the climate divisions (not presented in Table 2.3.  
Table 2.3. Pearson?s (r) and Kendall?s (?) Correlation Analyses results between ENSO and precipitation.  
Climate 
Division 
JFM AMJ OND DJFMA AMJJAS 
r ? r ? r ? r ? r ? 
CD1 -0.21* -0.16* 0.07 0.02 0.02 0.04 -0.06 -0.07 0.16* 0.10* 
CD2 -0.15* -0.15* 0.08 0.04 0.13* 0.05 0.02 -0.02 0.04 -0.02 
CD3 -0.09 0.07 0.11* 0.03 -0.10* -0.10* 0.06 -0.01 0.01 -0.01 
CD4 0.06 0.03 0.13* 0.04 0.19* 0.12* 0.13* 0.06* 0.01 -0.01 
CD5 0.12* 0.09* 0.04 0.04 0.08 0.05 0.21* 0.17* -0.16* -0.11* 
CD6 0.16* 0.07 0.00 -0.02 -0.03 -0.03 0.26 0.15 -0.09* -0.09* 
CD7 0.29* 0.18* 0.07 0.07 0.21* 0.11* 0.29* 0.19* -0.17* -0.09* 
CD8 0.45* 0.27* 0.19* 0.11* 0.14* 0.10* 0.48* 0.32* 0.01 -0.02 
*Significant correlation 
2.4.4 COMPOSITE ANALYSIS ? PRECIPITATION 
Figure 2.4 presents the charts showing the probability of precipitation being below, near, or 
above normal during the three ENSO phases in all the climate divisions for JFM. Based on the 
historic data, during JFM, the chance that La Ni?a precipitation would be below normal was 
nearly 65% in climate divisions 7 and 8, 53% in climate division 5, and below 50% in the rest of 
the climate divisions. An interesting observation made through this analysis for the season of 
JFM was that in the Neutral ENSO phase the probability of precipitation being below normal 
was near or just above 50% for all climate divisions except in climate division 1 (31%).   
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During the wet season (Figure 2.5), it was observed that there was more than a 50% chance 
of La Ni?a precipitation being below normal in climate divisions 5, 6, and 7. El Ni?o precipitation 
had a higher probability of being below normal in almost all the climate divisions in the state; 
the expected result was that it would be above normal. Although the weather stations used in 
this study were distributed throughout the state, this result can still be attributed to great 
spatial variability of precipitation in the region and also to the calculation procedure of 
composite analysis (use of terciles instead of means). 
It was found that climate division 8 shows, except for JAS, the effect of the ENSO phase in all 
of the six seasons studied, i.e., below (above) normal precipitation occurring during La Ni?a (El 
Ni?o). The lowest probabilities for El Ni?o (La Ni?a) precipitation being above (below) normal 
were obtained for AMJ in all the climate divisions. This result also matches the correlation 
analysis that showed the weakest correlation during this three-month period. For OND, Neutral 
phase precipitation had around a 50% chance of being below normal in climate divisions 2, 3, 4, 
and 5 with almost the same probability existing for El Ni?o precipitation to be above normal in 
climate divisions 3, 4, 7, and 8. No clear trend was observed in the composite analysis 
conducted for the growing season (AMJJAS) in all the climate divisions of the state. 
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Figure 2.4. Conditional probabilities of precipitation during the three ENSO phases in different climate 
divisions (CDs 1 through 8) as obtained by the composite analysis for the JFM season. 
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Figure 2.5. Conditional probabilities of precipitation during the three ENSO phases in different climate divisions 
(CDs1 through 8) as obtained by the composite analysis for the wet season (DJFMA). 
2.4.5 STREAMFLOW VARIABILITY 
The streamflow dataset was comprised of data from eight streams or stream gauge stations, 
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Fork, Hillabee Creek, Noxubee River, Uchee Creek, and Chickasaw Creek in climate divisions 1, 
2, 3, 4, 5, 6, 7, and 8, respectively. The mean monthly flows of all the streams being considered 
are shown in Figure 2.6. From the figure, it is clear that, for all the streams, most of the flow 
occurred from January through March with mean monthly streamflow being highest in March. 
Because December and April also had high flows and the clear impact of ENSO on precipitation 
was observed during this period or wet season (DJFMA), as discussed in previous sections, the 
relationship between ENSO and streamflow is presented only for this season. However, for 
correlation, all five seasons are discussed to show the strength of this relationship throughout 
the state of Alabama. 
 
Figure 2.6. Mean monthly streamflows of all the streams used in this study. The names and watershed area 
for the streams in each climate division are: CD1 - Flint River (88577.6 ha), CD2 - Paint Rock River (82879.6 ha), 
CD3 - Kelly Creek (49986.8 ha), CD4 - Sipsey Fork (23853.8 ha), CD5 - Hillabee Creek (49209.8 ha), CD6 - Noxubee 
River (284121.7 ha), CD7 - Uchee Creek (83397.6 ha), and CD8 - Chickasaw creek (32374.8 ha). 
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The mean streamflows normalized by the drainage area according to different ENSO phases 
are presented in Figure 2.7 for the DJFMA season. El Ni?o streamflows were higher than 
Neutral and La Ni?a streamflows during this season in the southern climate divisions, and these 
results were similar to precipitation results.  Streamflows were on an average 13% higher 
during El Ni?o than under Neutral conditions in climate divisions 5, 6, 7, and 8. In the northern 
part of the state, La Ni?a streamflows were higher than normal which was opposite to the 
trend in climate divisions 5, 6, 7, and 8, where La Ni?a streamflows were lower than Neutral 
ones. Climate division 4 streamflows did not show any response to ENSO for the wet season as 
the flow was almost the same in all of the three phases. The streamflows in climate division 6 
displayed the highest variability in the state, which could be because the Noxubee River 
watershed in climate division 6, among all the watersheds used in this study, had the largest 
area and might experience higher rainfall spatial variability. These results were similar to but 
not in total agreement with the precipitation variability results. Dettinger and Diaz (2000) 
suggested that this difference between precipitation and streamflow response tp ENSO could 
be due to several reasons including: (i) precipitation freezing in a season and being released as 
snow-melt subsequently in a season of a different ENSO influence, (ii) different ENSO signals 
upstream of the stream-flow gauging station coupled with long, stream-flow travel time, (iii) 
storage in underground reservoirs, (iv) seasonality in evaporation, and (v) groundwater 
recharge?discharge mechanisms. Out of these, seasonality in evaporation is the most likely 
reason given the conditions in the state of Alabama. 
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Figure 2.7. Mean monthly streamflow normalized by watershed area for DJFMA for different ENSO phases in 
each climate division. Also shown are standard deviation error bars. In the legend, EN = El Ni?o, N = Neutral, and 
LN = La Ni?a. 
2.4.6 CORRELATION BETWEEN ENSO AND STREAMFLOW 
The results for correlation between ENSO and streamflow are presented in Table 2.4 with 
the cells with an asterisk representing significant correlations. During winter months, mean 
streamflows in climate divisions 5, 7, and 8 showed a positive correlation with the Ni?o 3.4 
index at a 90% level of significance. Significant correlation between streamflows and ENSO was 
observed in climate divisions 1 through 4 during OND. Apart from this, climate division 1 had 
negative correlation for JFM and positive correlation during AMJ, which means lower (higher) 
streamflow during El Ni?o (La Ni?a) and higher (lower) streamflows during El Ni?o (La Ni?a), 
respectively.  
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Table 2.4. Pearson?s (r) and Kendall?s (?) Correlation Analyses results between ENSO and streamflows.  
Climate 
Division 
JFM AMJ OND DJFMA AMJJAS 
r ? r ? r ? r ? r ? 
CD1 -0.25* -0.17* 0.12* 0.10* 0.22* 0.06* 0.08 0.06 -0.03 -0.05 
CD2 -0.13 -0.11 0.01 -0.01 0.17* 0.10* 0.03 -0.01 -0.11 -0.08 
CD3 0.03 -0.01 -0.11 -0.05 0.16* 0.09* -0.18 -0.14 0.01 -0.01 
CD4 0.06 -0.01 0.06 -0.03 0.08* 0.09* 0.15 0.04 0.13 0.01 
CD5 0.26* 0.19* 0.05 0.04 0.10 0.13 0.27* 0.18* 0.06 0.04 
CD6 -0.12 0.07 0.06 0.03 -0.01 -0.03 -0.13 -0.13 -0.03 -0.10 
CD7 0.41* 0.28* -0.02 0.04 0.17 0.11 0.42* 0.26* -0.09 -0.04 
CD8 0.30* 0.17* 0.09 0.07 -0.09 -0.04 0.29* 0.18* -0.03 -0.03 
*Significant correlation 
 
Lag correlation results are presented in Figure 2.8 for DJFMA in climate division 8. Lag 
correlation analyses showed that during El Ni?o events the streamflow anomalies had strong 
lag correlations with the sea surface temperature anomalies (Ni?o 3.4 index), with the 
correlation coefficients varying between 0.15-0.68, the strongest being for one-month lag 
correlations (Figure 2.8a). Three to four months lag correlations were also observed during La 
Ni?a events, with the strongest correlation coefficients for a one-month lag (Figure 2.8b). It was 
found that the highest correlations were obtained for a one-month lag period in most of the 
climate divisions. That is, the ENSO effect on streamflow was lagged by one month. Also, as was 
the case with correlations, the lag-correlations were different for different parts of the state. 
These correlations were relatively higher during the winter months and the recharge season 
(DJFMA) as compared with the summer and fall seasons. These results indicate that there is a 
potential for forecasting streamflow one month in advance, especially during winter months, 
which can be very helpful to the regional water resource managers.  
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(a) 
 
(b) 
Figure 2.8. Ni?o 3.4 versus streamflow plot showing one-month lag correlation for (a) El Ni?o (0.68) and (b) La 
Ni?a (0.74) for the climate division 8 for DJFMA (wet season). 
2.4.7 COMPOSITE ANALYSIS ? STREAMFLOW 
The results of composite analysis conducted on ENSO and streamflow for the wet season are 
presented in Figure 2.9. It was found that there is more than a 52% probability for the La Ni?a 
streamflows to be below normal in the southern climate divisions 6, 7, and 8. A high probability 
of El Ni?o streamflow being near normal (56%) in climate division 1 and La Ni?a streamflow 
being near normal (67%) in climate division 3 was observed. Also, there is a 54% probability 
that the El Ni?o streamflow will be more than normal in climate division 7. These results are 
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similar to but not as clear as those obtained for precipitation, which might also be due to the 
lagged response of streamflow to ENSO. 
2.5 SUMMARY AND CONCLUSIONS 
This study was undertaken to explore the impact of ENSO on precipitation and 
streamflow in the state of Alabama. The Ni?o 3.4 ENSO index was used to study the 
relationship using historic precipitation and streamflow datasets. Four seasons, JFM, AMJ, JAS, 
and OND, and two ?municipal? seasons, wet season (DJFMA) and growing season (AMJJAS), 
were used to group the monthly mean precipitation and monthly mean streamflows. The 
precipitation data were obtained from 49 stations, which were then grouped into eight climate 
divisions. For streamflows, one unimpaired stream was selected in each climate division. The 
results obtained are in broad agreement with previous studies conducted in the southeastern 
United States. However, this more detailed study of Alabama has resulted in some new 
observations, which can be put to effective use by managers of the state in their decision- 
making process related to soil and water conservation. 
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Figure 2.9. Conditional probabilities of streamflow during the three ENSO phases in different climate divisions 
(CDs 1 through 8) as obtained by composite analysis for the wet season. 
Both seasonal precipitation and streamflows showed strong response to the inter-annual 
variability in the tropical Pacific Ocean represented in this study by Ni?o 3.4 SST anomalies.  It 
was observed that dry conditions during winter months in the southern climatic divisions (6, 7, 
and 8) tend to be associated with La Ni?a. These climate divisions also showed a more than 
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50% decrease in La Ni?a precipitation during JFM. Significant correlation was found between 
Ni?o 3.4 and precipitation anomalies in climate divisions 7 and 8 during the winter months. 
Northwestern climate divisions demonstrated negative correlation in the winter months 
indicating an opposite effect as compared to 7 and 8. The correlation was not very strong or 
nonexistent for most of the central climate divisions during AMJ and AMJJAS. Climate divisions 
7 and 8 had a high probability of precipitation that was below (above) normal for La Ni?a (El 
Ni?o) events during JFM, AMJ and OND. Most of the climate divisions had a high probability of 
neutral precipitation that was also below normal during the winter months, which is a very 
important factor for water resource management. The anomaly maps showed that dry La Ni?a 
events extend up to climate division 5 and some parts of climate division 6 during winter 
months. JFM and DJFMA showed the clearest impact of ENSO on precipitation anomalies from 
south to north.  
 La Ni?a streamflows were lower than normal and El Ni?o flows in climate divisions 6, 7, and 8 
during the wet season, whereas there was opposite impact in climate divisions 1, 2, and 3. 
Streamflows showed a high variability in all the climate divisions and a strong positive 
correlation during winter months in the southern climate divisions. OND streamflows were also 
significantly correlated with ENSO in the northern climate divisions.  There was more than a 
50% probability that La Ni?a streamflow would be below normal in the southern climate 
divisions of the state. Lag correlations indicated that there was a one-month lag in the ENSO 
impact on streamflow and that the Ni?o 3.4 index can be used with some success to forecast 
streamflow in some parts of the state at least one month in advance. 
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 In conclusion, the relationship between the Ni?o 3.4 index, precipitation, and streamflows are 
significant during the winter season in Alabama and that dry conditions during winter months in 
the southern climatic divisions (6, 7, and 8) of the state tend to be associated with La Ni?a. The 
streamflows show a high variability and a positive correlation and indicate a one-month lagged 
response to ENSO during winter months in the southern part of the state. These results also 
show that the state doesn?t respond to ENSO uniformly with respect to precipitation and 
streamflow and that the impact is different in the South as compared with the North.  
 Knowledge of this pattern of seasonal variation in association with ENSO forecasts can help 
water resource managers of the state with decision-making.  In particular, it can give them lead 
time for planning. This study can be used to convince state water managers to increase their 
use of seasonal ENSO forecasts in the decision-making process. The water managers can use 
the results of this study to assess ENSO impact on the precipitation and streamflow in their 
region and can get an idea of what the regional supply and demand of water will be. This 
advance knowledge combined with ENSO forecasts will lead to the mitigation of negative 
impacts by allowing managers to make timely water conservation decisions, thus curbing 
excessive water use when there is an ample supply and imposing timely water restrictions 
when there is a shortage. Also, this information can be used for agricultural irrigation 
scheduling, planning for point discharge of contaminants into streams, monitoring lake and 
reservoir water quality, predicting monthly nutrient loads in streams, and facilitating 
management in high risk seasons, implementing plant-based Best Management Practices 
(BMPs) for soil conservation. All of these uses have implications for soil and water conservation. 
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3.1 ABSTRACT  
El Ni?o Southern Oscillation (ENSO) climate variability phenomenon greatly affects water 
availability in the Southeast USA. For example, it is well-known that La Ni?a conditions bring 
drought to this region.  In the past decade, several severe droughts have adversely impacted 
the water resources of many communities in this region, especially those that rely on surface 
water systems. Since small- to mid-size communities are the most vulnerable to climate 
variability, this study was undertaken to develop a climate variability-based Community Water 
Deficit Index (CWDI) for use by water managers in these communities. While, drought indices 
can be useful tools for monitoring and forecasting purposes, currently available drought indices 
are not suitable for use in water supply systems for small to mid-sized communities. The CWDI 
was conceptualized keeping in mind that it should: (1) forecast hydrologic drought, (2) operate 
at a high spatial resolution, and (3) address both water supply and demand during droughts. 
System dynamics modeling software STELLA? was used to develop the modeling framework to 
estimate CWDI by evaluating differences in a community water supply and demand, and thus 
help predict the severity of an impending drought.  Another important feature of the CWDI is 
its ability to evaluate how drought management policies can affect the severity of drought. 
CWDI was tested in two small- to mid-size communities of this region (Auburn, AL and Griffin, 
GA). The results indicate that the index not only can monitor drought in the studied water 
supply systems, but can also forecast ENSO-induced droughts in the region and be used in 
drought planning. 
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3.2 INTRODUCTION  
As global climate systems evolve, there is an increasing need to understand how changes 
have been and will be manifested at regional and local scales. It has been reported in the 
literature that climate variability greatly influences water availability (Jenerette and Larsen, 
2006). Water managers throughout the world are facing the increasing challenge of supplying 
water under the growing, combined stresses of population growth and climate variability.  
Climate variability signals, such as El Ni?o Southern Oscillation (ENSO), Pacific Decadal 
Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO), 
and their relationship with hydrologic variables have been studied in the past and used in 
regional water resource planning (Battisi and Sarachik, 1995; Mantua et al., 1997). Of all these 
ocean-atmospheric phenomena, ENSO has been studied the most comprehensively, both at 
global and regional scales (Ropelewski and Halpert, 1987; Andrews et al, 2004; Schmidt et al., 
2001). The ENSO is a coupled, ocean - atmospheric phenomenon that is centered over the 
eastern equatorial Pacific Ocean and maintains an irregular 2-7 year periodicity that gives it 
some level of predictability, yet it retains some variability in its occurrence, magnitude and 
climate consequences around the world (Cane, 2005).  The ENSO can be divided into the cold 
(La Ni?a) and warm (El Ni?o), and Neutral phases. There are several accepted indices in use 
including the Ni?o 1 & 2, Ni?o 3, Ni?o 3.4, Ni?o 4, Multivariate ENSO Index (MEI), and Japan 
Meteorological Agency (JMA) index. Each uses slightly different definitions of ENSO coordinates 
and phases and is relevant to different regions around the world. In this study, the National 
Oceanic and Atmospheric Administration (NOAA) Ni?o 3.4 index was used for the definition of 
the ENSO phase. This index is based on a three-month, extended reconstruction, sea surface 
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temperature (SST) analysis (ERSST.v3b), which includes average SST anomalies in the Ni?o 3.4 
region (5?N -5?S and 170?W - 120?W) of the Pacific. This region has been reported (Trenberth 
and Hoar, 1996) to be the main area where sea level pressure and temperature anomalies are 
very well-correlated.  If the Ni?o 3.4 index is more than +0.5?C, the event is termed as El Ni?o, 
and, if the index is less than -0.5?C, the event is termed as La Ni?a.  A neutral phase is defined 
when the Ni?o 3.4 index is between +0.5?C and -0.5?C. 
Droughts remain one of the most widespread effects of climate variability and cause 
considerable damage. The western US have been plagued with persistent droughts this century 
and have developed approaches to deal with this problem. The Southeast United States, 
however, has been long spared, but suddenly finds itself among the most rain-starved regions 
of the country (Manuel, 2008) and ill-prepared to deal with such. La Ni?a brings warm and dry 
conditions to this region between October and April (Mearns et al., 2003) and typically returns 
every two to seven years, making the Southeast vulnerable to ENSO-related droughts. In the 
winter of 2007, the arrival of La Ni?a resulted in drought throughout the Southeast and deficits 
in rainfall during the recharge period accentuated water resource concerns. Ryu et al. (2010) 
reported that different relationships between ENSO and hydrologic drought exist in different 
parts of the United States, and that the type of relationship, when established on a regional 
basis, can help water managers in minimizing the impact of hydrologic events associated with 
ENSO.  
Various studies on application of ENSO to drought (Barlow et al., 2001; Ropelewski and 
Halpert, 1987; Karl and Koscielny, 1982) have been done in the past, but few have focused on 
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hydrologic drought (Piechota and Dracup, 1996; Ropelwwski and Halpert, 1986) and ENSO-
driven, hydrologic drought forecasting (Ryu et al., 2010).  
Forecasts of ENSO-induced hydrologic droughts can provide insight to water managers to 
store more water during the recharge season, when lower than normal precipitation is 
forecasted, and to impose timely restrictions during the ?growing season? when outdoor 
residential water use increases. In the Southeastern states, winter months constitute the 
recharge season and drier conditions during winter increases the odds of drought during the 
following spring and summer. The water supply in many of the small- to mid-size communities 
in the region depends on surface water sources, and management of water supply and demand 
during drought conditions is critical for these communities in order to meet daily demands and 
assure unbroken supply. 
The ability to forecast drought conditions in advance is fundamental to mitigating the 
detrimental effects associated with droughts (Mishra et al., 2007). In recent years, various 
hydrologic drought indices have been developed including Total Water Deficit, Cumulative 
Streamflow Anomaly, Palmer Hydrological Drought Severity Index (PHDI), and Surface Water 
Supply Index (SWSI), among others. Although useful for managing many types of droughts on 
regional and big basin or watershed scales, these indices are of limited use to municipal water 
managers in small- to mid-size communities because of three main reasons: (1) high spatial 
variability of rainfall in the Southeast due to convective rains during the summer months and 
the relatively small size of these communities requires an index that can operate at a high 
spatial resolution; (2) management of municipal drought has two main components: supply and 
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demand, both of which are affected by drought and are not adequately addressed by currently 
available indices; and (3) most of the currently available indices provide drought information 
that is based on past and current data, and do not forecast how the drought might progress 
based on future climate forecasts. Resolving these issues is crucial for developing a drought 
index that is useful for municipal water managers in these communities. Based on this 
background, this study was undertaken to develop a Community Water Deficit Index (CWDI) for 
small- to mid-size communities of the Southeastern United States for disseminating ENSO-
based drought information. The novelty of this index lies in the fact that, unlike other available 
indices, it addresses both water supply and demand components, operates at a high spatial 
resolution, and forecasts drought 3 to 6 months in advance while utilizing the underlying 
climate variability signal in the region. The methodology presented in this paper provides a 
framework for general use across similar communities in this region but, at the same time, can 
be customized for use by a particular community. 
A brief description of the concept of the model is first presented, followed by descriptions of 
the design of the model framework leading to forecasting the drought index, formulation of the 
model, use of STELLA for modeling, and the method and data used for forecasting drought with 
the CWDI. 
3.3 METHODOLOGY AND MODEL DEVELOPMENT 
Singh (1995) observed that all watershed models need to be packaged at the level of a user 
who is not necessarily a hydrologist and should be integrated with, or at least have the 
capability of being integrated with, social, economic and management modules. Keeping in 
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mind that the end users of this model are the stakeholders, namely, water managers, water 
managers, a simple watershed modeling approach, based on the guidelines discussed earlier 
was applied to develop the Community Water Deficit Index (CWDI). CWDI is described here as a 
tool that can be used for better water management during drought. It is based on the balance 
between the water supply and demand according to the ENSO outlook in the region. The index 
is a result of integrating climatic factors, hydrological processes, and management parameters 
into a simulation model. Some assumptions have been made in the methodology to make the 
index simple to understand while not compromising its scientific merit. It is assumed that, 
irrespective of the source of water supply, each community has a reservoir to store water; the 
source of supply to this reservoir can be a river, a watershed draining into the reservoir, or 
supplemental supply from a groundwater well or purchased water; there is a supply watershed 
and a demand watershed; and the supply watersheds have minimal land cover changes making 
climate the driving factor affecting the supply of water. 
3.3.1 MODELING FRAMEWORK 
The CWDI is forecasted by using an integrated modeling approach in which different parts 
are connected together to obtain the drought forecast (Figure 3.1(a)). The first part of the 
integrated model consists of analyzing the watershed characteristics, such as, topography, 
landuse/land cover, and soils, using the Environmental Systems Research Institute?s (ESRI) 
ArcGIS. These watershed characteristics along with input parameters for the model are stored 
in Microsoft Excel which then connects this part of the model to the second part, serving as the 
intermediate link between the two parts. The second part of the model is the development of 
the actual model in the Systems Thinking for Education and Research (STELLA) (HPS 2001) and 
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consists of various modules. All the input parameters, relationships, limiting factors, model map 
and the user interface are included in this part. The third part consists of analyses that are done 
to study the impact of ENSO-based climate variables on drought forecasting. 
3.3.2 MODEL FORMULATION 
The research methodology presented below is general and can be adapted by different 
communities depending upon the different water supply scenarios that a community or 
municipality may have. The basic principle behind this model is the reservoir water balance 
given by: 
  (1) 
where,  
dS/dt =rate of change in storage of the reservoir, 
I = inflows into the reservoir, and 
O = outflows from the reservoir. 
Inflow from the supply watershed is assumed to have two components: surface runoff and 
baseflow. Soil Conservation Service (SCS) runoff curve number method (USDA Soil Conservation 
Service 1974) is used to calculate runoff from the watershed.  
  for P > Ia (2) 
  (3) 
where R is the runoff depth (mm); P is the rainfall depth (mm); Ia is the initial abstraction 
(mm) and is equal to 0.2Sr and gives the amount of water needed before runoff begins, i.e., 
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water lost to interception and/or the infiltrated water; Sr is the potential maximum soil 
moisture retention (mm) and CN is the Curve Number. The CN is also adjusted for season and 
for the antecedent moisture condition (AMC, total 5-day antecedent rainfall) using the method 
given by McCuen (2004). In this method, AMC is categorized into three categories: I ? 
dry/wilting point, II ? average moisture, and III - wet (field capacity). The range of AMC values 
depends on the cropping season being dormant or growing. 
Baseflow is one of the most important low flow hydrologic characteristics of a watershed and 
obtaining its value is important for water management strategies, especially regarding drought 
conditions (Lacey and Grayson, 1998).  The model is set up to use the method provided by 
Neitsch et al. (2005) to estimate baseflow using Equation 4. It is assumed that there is no 
bypass flow. 
  (4) 
Where,  
Qgw,i = groundwater flow or base flow into the main channel on day i (mm), 
Qgw,i-1 = groundwater flow or base flow into the main channel on day i ?1 (mm), 
gw = base flow recession constant, 
 t = time step (days), 
Wrechrg,i  = amount of recharge entering the aquifer on day i (mm) that takes place due to 
percolation.  
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(a)       (b) 
 
(c) 
Figure 3.1 Framework of the model showing (a) input data and modules of the STELLA model, (b) framework of the forecasting module, and (c) example 
modules as implemented in the CWDI STELLA model. 
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This method requires knowledge of input variables that describe the physical properties of 
soils in the watershed along with daily soil moisture balance. The daily soil moisture balance is 
calculated using infiltration, percolation, and evapotranspiration. The details of this method ca n 
be found in Neitsch et al. (2005). The sum of the runoff generated by the watershed and the 
baseflow will give the total generated streamflow, Qin.  
  (5) 
Total inflow into the reservoir, I, on a daily time step can be obtained using Qin along with 
purchased water (PS, if any), groundwater pumped in as an external source (G, if any) and 
precipitation falling directly into the reservoir (Pr). The parameters PS and G are user inputs in 
the model, and when no supplemental water supply is available, these can be set to zero. 
  (6) 
Outflow from the reservoir consist of the water withdrawal for distribution (W), evaporation 
from open water surface (E), and any other discharges (Qout).  
  (7) 
W is the total demand that arises in the demand watershed. This watershed can be different 
from, same as, or can have some overlap with the supply watershed. The demand can be 
partitioned into two components: static and dynamic demand, i.e., 
  (8) 
where N is the total population served by the water distribution system, Ws is the static 
demand which depends only on the population being served and does not have a climatic 
component. This component of water demand can be obtained from the past water 
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consumption data provided by the user or can be estimated using the per capita consumption 
(Tidwell et al., 2004). Wd is the dynamic demand and fluctuates with changing climatic 
conditions. The driver of dynamic demand is outdoor water use or irrigation demand due to 
loss of soil moisture because of evapotraspiration (ET) and is related to the soil moisture deficit, 
so it is calculated by using the relation: 
  (9) 
where PET is potential evapotranspiration, AET is actual evapotranspiration, and A is total 
irrigated area (area under lawns,) in the demand watershed.  
PET is defined as the rate at which ET occurs from a large area that is completely and 
uniformly covered with growing vegetation which has access to an unlimited supply of soil 
water (Dingman, 2002). The FAO 56 Penman Monteith method (Allen et al., 1998) is used to 
estimate PET. The Penman-Monteith equation, which estimates ET realistically from various 
surfaces, climatic conditions, and at different scales (Jensen et al., 1990), is as follows: 
  (10) 
where PET is in mm/day, ? is the slope of vapor pressure curve (kPa?C-1), Rn is the net 
radiation at the grass surface (MJ m2 day-1), ? is the psychometric constant (kPa?C-1), T is the 
mean daily air temperature in (?C), u is the wind speed (m s-1), es is the saturation vapor 
pressure (kPa), and ea is the actual vapor pressure (kPa). 
PET calculations assume that there is no moisture stress in the soil and that the water is 
freely available to the plants. When soil moisture availability limits ET, these methods require 
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major calibration and validation to estimate AET (Saxton, 1982). Many methods have been 
developed for estimating AET, which depends on climatic factors, crop growth parameters, and 
soil moisture. For the CWDI, method given by Khan et al. (2009) is used. According to this 
method  
  (11) 
where, Ks is a dimensionless factor expressing the effects of limiting soil moisture conditions 
on crop ET; and Kc is crop coefficient (Allen et al., 1998), which depends on type of grass being 
grown in the area and also on time of the year. Ks is estimated using the total available soil 
water and readily available soil water in the root. 
For the case studies (discussed later), total irrigated area within the limits of the water 
distribution system was calculated using the National Land Cover Database (MRLC 2001) along 
with the imperviousness dataset obtained from the National Land Cover Dataset (NLCD) 
website. Lawn area was calculated by subtracting the percentage of impervious area from total 
developed area categories of the NLCD dataset.  
Evaporation from open water surface (E) is estimated using the method given by Valiantzas 
(2006). This method uses same climatic and atmospheric variables as the PET method. This 
value is then multiplied by the surface area of the reservoir obtained from stage-area 
characteristic curve of the reservoir to obtain the volume of water evaporated from the 
reservoir. Mandatory discharge data ( ) is provided by the user. Total outflow from the 
reservoir is then calculated using equation (7) followed by total available storage, S. The 
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Community Water Deficit Index (CWDI) at a daily time step is then defined using these 
components as: 
  (12) 
where, Sd is the desired storage in the reservoir. Desired storage can be different during 
different times of the year and is a user- defined variable. In this study, Sd can be set as the 
storage below which the reservoir levels fall under Phase I drought according to a community?s 
drought plan. 
If S? Sd, CWDI? 0, => No deficit (13) 
If S< Sd, CWDI< 0, => Deficit (14) 
3.3.3 MODEL REALIZATION IN STELLATM  
 Based on the concept of CWDI as described in the previous section, a modeling approach with 
specific characteristics is needed. These characteristics are: (1) watersheds can be described 
and simulated in a simple fashion, (2) the model should rely on available data and be 
expandable to benefit from additional data as they become available, (3) it should be dynamic 
so as to cope with the nature of hydrologic systems, (4) it should provide a way to represent 
feedback mechanisms, (5) it should have the ability to model human intervention, and (6) it 
should provide the ability to test different policy or management scenarios for better decision-
making.  
Although it might appear difficult to have all of these characteristics embodied in one 
modeling approach, the development of system dynamics modeling (Forrester, 1961, 1968; 
Sterman, 2000) has made it possible (Elshorbagy and Ombrsee, 2005). These models have the 
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potential for implementing a combination of empirical formulations and physically-based 
concepts, and also allow building based on a tentative knowledge of the relationship between 
two parameters by incorporating a qualitative relationship between those parameters 
(Elshorbagy et al., 2007). The use of system dynamic models for improved water resource 
management does not have a long tradition (Stave, 2003) but has been recently applied to 
different water resources fields (Xu et al., 2002) like watershed planning (Palmer et al., 1999) 
and reservoir operation (Ahmed and Simonovic, 2000). Winz et al. (2009) and Simonovic and 
Rajasekaram (2004) reported that system dynamic models have been used at a finer spatial 
scale of basins and watersheds with the aim of identifying regional and local solutions.  
For this study, a simple hydrologic model was developed using the system dynamic software 
STELLATM 9.1. It is a commercially available, general purpose mathematical simulation object-
oriented modeling software, which means that the user can create model code using the point-
and-click, drag-and-drop mouse-based editing. The building blocks of any STELLA model include 
a STOCK variable, a FLOW or rate variable, a CONVERTER variable, and a CONNECTOR for linking 
them together in a manner that shows functional dependence. Simulation algorithms (4th-order 
Runge-Kutta) were applied to each simulation procedure with a daily time step. Figure 3.1 (a) 
shows different modules in the STELLA model which include: (1) Rainfall-runoff module, which 
simulates the direct runoff, effective rain caused by precipitation and  infiltration (input for the 
soil moisture module); (2) Soil moisture module, which calculates the change in soil moisture 
caused by infiltration, evapotranspiration and percolation; (3) Baseflow module, which 
simulates the groundwater flow into the channel; (4) Evapotranspiration module, which 
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simulates the dynamic water demand of the community; and (5) Water balance module, which 
simulates the storage in the reservoirs, with inflows and outflows. Figure 3.1 (b) shows the 
steps of the Forecasting module of the model which involves the use of ENSO forecasts to 
generate ENSO-constrained weather inputs for CWDI model in STELLA and produces an 
ensemble forecast. Figure 3.1 (c) shows some of the modules as implemented in the CWDI 
STELLA model.  
 Although this model and study describe the methodology of CWDI and development of this 
model using SETLLA, the ultimate goal is to develop a customizable web-based system that can 
be used by multiple communities. This paper does not discuss the implementation of this 
methodology as a web-based tool. 
3.3.4 DROUGHT (CWDI) FORECASTING 
A drought index may be forecast based on various approaches. One such approach is the use 
of climate or teleconnection indices as predictors of drought because atmospheric circulation 
patterns have been shown to exert influence on the occurrence of droughts (Stahl and Demuth, 
1999). Spatially-averaged areas of sea surface temperatures in various parts of the world are 
particularly relevant to describing climate phenomena at specific locations and the El 
Ni?o/Southern Oscillation (ENSO) has been proven to be one of the most consistent indices in 
describing low-frequency climate variability on both regional and local scales (Ropelewski and 
Halpert, 1986).  
 For forecasting drought based on ENSO outlook, the Spectral Weather Generator (Schoof et 
al., 2005; Schoof, 2008) was constrained to ENSO phases using historic data. Using observed 
Ni?o 3.4 values from the past, climatic variables of interest were divided into different ENSO 
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phases. This ENSO-classified, historic data was then input to the weather generator to obtain 
climate variables for El Ni?o, La Ni?a, or Neutral conditions. This weather generator uses a 
second order Markov Chain model in which precipitation on the current day is dependent on 
the two previous days. The method employed in the model involves computation and averaging 
of monthly, spectral estimates to divulge average variability as a function of frequency, helps 
the generated series maintain a level of variability similar to the observed series, and ensures a 
realistic level of day-to-day variability. A detailed description of this method is beyond the 
scope of this study and can be obtained in the publications listed above. The weather generator 
produces daily values of precipitation (mm), maximum and minimum surface air temperatures 
(oC), and total daily solar radiation (M J m-2) and was run 32 times to get an ensemble of inputs 
for drought forecasting. 
The NOAA Climate Prediction Center (CPC) issues official Seasonal Outlooks for surface 
temperature and precipitation each month for up to one year, and these outlooks are based on 
ENSO predictability in addition to climate trends. However, because the specific daily data from 
these seasonal forecast datasets are uncertain (Fu et al., 2011), the International Research 
Institute for Climate and Society?s (IRI) (IRI, 2011)ensemble model predictions of ENSO were 
used to generate multiple ensembles of daily data according to each particular ENSO phase. In 
the forecast mode, the model produces a 95% confidence interval band of CWDI values based 
on an ensemble of generated, climatic variables. CWDI presents a unique and novel drought 
forecasting tool because a climate variability signal was used to forecast the supply and 
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demand balance for small- to mid-size communities in the ENSO-prone southeastern United 
States. 
3.3.5 MODEL INPUT DATA 
Precipitation data are required for several modules of the model. For example, daily and 5-
day past precipitation data are needed for estimating AMC and calculating CN and the amount 
of precipitation directly falling into the reservoir. Land cover data are needed for the calculation 
of CN and for estimation of the total lawn area of the demand watershed. The runoff module 
also requires soil properties data which is used in the soil moisture balance as well as in 
estimating AET. Temperature data is needed in calculating PET and evaporation from open 
water surface. In addition, data such as population and per capita water demand of the 
community are needed. For the case studies, daily precipitation and temperature data were 
obtained from the National Climate Data Center, US Department of Commerce website (NCDC, 
2010). To account for the spatial variability of rainfall in the region, all the available stations 
located in and around the watershed were used, and Thiessen polygons were created to model 
or approximate the zones of influence around these points (stations). If a detailed network of 
rain gauges is not available for the region, the best source of spatially distributed data would be 
the NEXRAD (Next-Generation Radar) data which would be used in the web-based CWDI (future 
work).  For variables used in the Penman-Monteith equation, other than precipitation and 
temperature, station data (wherever available) was used. If station data were not available, the 
variables were estimated using the relationships given in FAO paper 56 (Allen et al., 1998). CN 
was estimated by creating a CN Grid using HEC-GeoHMS in ArcMap 9.3, using land cover data 
available from National Land Cover Database 2001 (MRLC, 2010) and soils data available from 
 
73 
 
the Soil Survey Geographic (SSURGO) Database (USDA, 2010) with a unique CN for each soil and 
land use type combination. The calculated runoff depth for each CN was multiplied by the area 
under that CN and then summed for the entire watershed to obtain total runoff volume.  The 
soil properties from the SSURGO data were used in all the modules requiring soil properties . 
3.4 CASE STUDIES 
Two communities: Auburn, Alabama and Griffin, Georgia (Figure 3.2) were selected to test 
the CWDI. These communities can be characterized as fast growing small to mid-size urban 
areas. In many respects they are typical of non-metropolitan areas of the Southeast US. The 
model developed is customizable and would be applicable to other small to mid-size 
communities throughout the Southeast that have similar water supply systems. 
3.4.1 CITY OF AUBURN 
Auburn, Alabama is home to Auburn University and is experiencing significant population 
growth and urbanization. The population of the city jumped from 33,830 in 1990 to currently 
over 50,000, and is expected to grow to 66,000 by 2025. In the past ten years, there has been 
an apparent trend of increasing water demand (Figure 3.3). The impact of relatively dry and wet 
years is also clear, which points toward the compound effects of population growth and 
drought. The impacts of the 2000 and the recent 2007 droughts on the water use are evident 
from Figure 3.3. The main source of water for City of Auburn (CoA) is Lake Ogletree, which has a 
surface area of approximately 121.4 ha and is fed primarily by Chewacla Creek (Figure 3.2). 
The total watershed feeding the lake encompasses is approximately 8545 ha. The current 
average usage for the Auburn water system is 22,712.5 m3/day and the current water supply 
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capacity is 43,911 m3/day. The city can purchase up to 13,627.5 m3/day from the City of Opelika 
Utilities and is required by the Safe Harbor Agreement to discharge a minimum flow of 7,571 
m3/day to Chewacla Creek. Recent droughts have resulted in critically low water levels in Lake 
Ogletree, in response to which the city prepared a drought management plan which is a crude 
outline based on a combination of lake levels and consumption and demand rates. According to 
the drought plan, it is assumed that Lake Ogletree can meet peak water supply needs during  
droughts provided it is at full pool on May 1st (after winter and spring rains) of any given year. 
This approach, however, fails during La Ni?a winters and springs during which the region 
experiences below normal precipitation (Sharda et al., 2011) followed by an increase in 
residential irrigation demands during summer months because of high evapotranspiration 
rates. 
 
3.4.2 CITY OF GRIFFIN 
Griffin is located in north-central Georgia (Figure 3.2), about 40 miles south of Atlanta. The 
current estimated population of the city is around 23,000. The Griffin water supply system is a 
regional supplier of finished drinking water to seven customers (approximately 85,000 people) 
including the City of Griffin (CoG). The system consists of two reservoirs: the Head Creek 
reservoir in Griffin and the Still Branch reservoir in Molena, both of which withdraw water from 
the Flint River (Fig. 2). The Head Creek reservoir was initially the only reservoir; this was the 
case when the region experienced extreme drought conditions in 2000, 2002, 2004 and 2006.   
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Figure 3.2 Location of study areas, Auburn, AL and Griffin, GA, showing setup of both the systems. 
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To enhance the availability of water to the system, in 2006, the City of Griffin constructed the 
Still Branch Regional Reservoir in Molena which is 32 km downstream from the Head Creek 
reservoir.  The city can withdraw up to a maximum of 49,967 m3/day from Flint River at Griffin 
and 189,271 m3/day at Molena. Griffin water managers have also developed a drought 
management plan that includes imposing water use restriction but do not have any information 
on how climate variability impacts the availability of water in their system.  
The drought index can help these communities by forecasting hydrologic drought 3 to 6 
months in advance based on the ENSO forecast, thus helping them in decision-making and in 
taking timely steps towards water conservation. 
 
Figure 3.3 Average daily water use in Auburn for the past twelve years in million gallons per day (blue line) 
and per capita (red line). 
3.5 RESULTS AND DISCUSSION 
3.5.1 VALIDATION OF THE MODEL 
The CWDI model was set up to compute the output variables (storage and CWDI) at a daily 
time step. However, the results are presented at a weekly time step to meet the expectations 
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by the water managers for the information provided to them. The water managers require a 
drought forecast with a 3- to 6- months lead time, which also happens to lie within the 
temporal scale of ENSO forecasts made by IRI. Figure 3.4 shows the weekly observed and 
modeled water storage (m3 x 106) of Lake Ogletree during the calibration (Jan 06 to Dec 06) and 
validation (Jan 07 to Dec 07) periods, and the CoG system, during the calibration (May 07 to Apr 
07) and validation (May 08 to Apr 09) periods. The calibration variables included the baseflow 
parameters, baseflow recession factor and groundwater delay. No other model parameters 
were calibrated. The green, yellow, orange and red lines on both the charts are lake storage 
levels that indicate full pool, phase I drought, phase II drought and phase III drought as per the 
existing drought plans for both the communities being studied. In both the cases, the model 
was able to reproduce the reservoir storage trends that were evident in the historic data. The 
Nash Sutcliffe coefficient of model efficiency (NSE) (Nash and Sutcliffe, 1970; Moriasi et al., 
2007) for the validation period was 0.91 (very good) for the CoA model and 0.73 (good) for the 
CoG model. Other than NSE, the other two quantitative statistics calculated, percent bias 
(PBIAS) and the ratio of the root mean square error to the standard deviation of the observed 
data (RSR) were -0.13 (very good) and 0.21 (very good) and -1.47 (very good) and 0.52 (good) 
for CoA and CoG, respectively. Generally, the weekly modeled storage of CoA and CoG followed 
the weekly observed storage during the calibration and validation periods, although some over- 
or underestimations were observed. The NSE indicated that the CWDI model reliably predicted 
weekly lake storage and hence CWDI for the two systems. The differences between  the 
observed and modeled results could be attributed to the fact that reservoir levels for both 
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systems were indirectly observed using reservoir levels that were noted once or twice a week. 
These verification results are important as these provide credibility and confidence in the 
model and demonstrate that the modeled units of the water budget attain balance.  
3.5.2 CWDI TESTING 
The CWDI developed in this study was tested against the actual lake storage levels (m3 x 106) 
from June to November 2007 for CoA. The CWDI captured the municipal drought fairly well 
with negative values indicating drought and positive values showing storage above the phase I 
drought level. However, according to CWDI, it was found that the drought started sooner and 
ended later than the observed storage levels. The probable explanation to this could be 
attributed to the fact that the soil moisture balance component of the model did not get time 
to stabilize before the actual period under discussion. To account for this, the model was run six 
months before the actual period of interest, and this was considered as a ?warm-up? period. 
The chart for CoG shows the results from June to November 2007, after the model was 
warmed-up for six months, and an improvement in the simulated CWDI can be seen (Figure 
3.5). For the CoG system, CWDI presented lower than the full pool, combined storage levels of 
the Head Creek and Still Branch reservoirs during this period though the system did not go into 
drought. This can be attributed to the fact that CoG constructed a second reservoir (Still 
Branch) in 2006 to enhance their water supply. These results suggest that the dry and wet 
periods indicated by the CWDI values generally agreed with the observed storage in both the 
systems. However, the duration of the dryness or wetness and the intensity of drought 
measured by CWDI are different depending on the inherent characteristics of the reservoir 
system. It is important to note that the results of CWDI presented here are for the time period 
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during which ENSO was in the La Ni?a phase, which results in dry winters. For CoA, CWDI was 
negative throughout the period of discussion, indicating drought conditions.  However, CWDI 
showed an upward trend towards the end of the year.  
Lower than normal precipitation during the recharge period of winter stresses the supply 
system which was further exacerbated by the dry, hot spring and summer of 2007. CWDI 
provides the water resource managers relative information about the storage of water available 
rather than the desired storage required for supplying water to the community. 
3.5.3 SCENARIO ANALYSIS 
A variety of hypothetical water conservation alternatives were modeled as a part of this 
study. The main aim was to provide a quantitative basis for comparatively evaluating the 
alternatives in terms of timely water savings. Figure 3.6 shows the scenario analysis for the year 
2000 for CoA assuming the stakeholder knew the climate variability based drought forecast for 
his system 3 to 6 months in advance and started imposing water use restrictions ahead of time 
based on that forecast. Without the use of CWDI and, hence, no water restrictions, CoA entered 
Phase I drought in August and the drought worsened into a Phase III drought by mid-September 
2000 (Figure 3.6). It was observed that if the message of an approaching drought was sent out 
to the community along with voluntary water restrictions on outdoor water use (dynamic 
demand) from Feb 1, 2000 onwards so as to reduce total outdoor water use by 10%, the system 
would have improved from a Phase III drought in September to a Phase II drought. Results of 
the 25% outdoor water use-saving scenario show a complete recovery from drought by the end 
of the year. It can be noted that the saving in water increases as summer approaches and 
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people start watering their lawns more during hot and dry conditions but there is not as much 
saving required during February to April. 
 
Figure 3.4. Weekly observed and modeled storages for Auburn and Griffin during calibration and validation 
periods. Phase I, Phase II and Phase III represent storage levels below which the community is under respective 
drought stage. 
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Figure 3.5 Comparison of observed lake level (as storage volume in m3*106) and modeled CWDI for Auburn 
and Griffin. Negative values of CWDI indicate drought. 
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These scenarios were implemented in the model to explore the impact of different water use 
restrictions on the forecasted water availability on a 3 to 6 months? time scale. The results 
indicate that CWDI can be successfully guide plans for water use restrictions and water 
conservation policies given the ENSO forecasts. The available water in the system remains the 
determinant factor which is driven by the climate (precipitation and temperature and indirectly 
evapotranspiration).  
 
Figure 3.6. Scenario analysis showing the impact of policy implications of outdoor water saving (dynamic 
demand) for the City of Auburn. 
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3.5.4 CWDI FORECASTING 
The CWDI was tested for forecasting for both CoA and CoG using historically observed lake 
levels and the ensemble forecasts constrained to ENSO phase (Figure 3.7).  CWDI captured the 
drought occurrence for CoA. In June 2009, ENSO forecasts and ocean temperature 
measurements from the tropical atmosphere ocean buoy system predicted El Ni?o developing 
for the winter of 2009-2010. The forecast shows a high likelihood of high spring and summer 
precipitations and a low probability of summer low-flow conditions. As of June 2010, early 
ENSO forecasts predicted that El Ni?o conditions were changing to La Ni?a conditions, which 
might persist through the winter of 2010 and continue till the spring of 2011. To obtain the 
CWDI forecast, already available ENSO information (CPC, 2010) was used to constrain the 
weather generator. The forecast shows an ensemble (95% confidence band) moving towards a 
Phase I drought beginning Sep 2010 (Figure 3.7), in response to the ENSO phase changing from 
Neutral to La Ni?a during May 2010 to Aug 2010.  Although La Ni?a (dry) conditions persisted 
till April 2011, during winter of 2010, the region received an ample amount of rain, which might 
be attributed to the climate phenomenon called North Atlantic Oscillation that affects the 
North American winter.  When the NAO is in its negative (cold) phase, arctic air pushes further 
south into the United States. NAO phases can change at a temporal scale of 1-2 weeks and 
hence are not predictable (Martinez, 2011). As the ENSO phase changed from La Ni?a back to 
Neutral conditions in May 2011, the ensemble indicated the system eventually coming out of 
drought conditions and moving back to full pool conditions. Similar results were found for CoG. 
In this paper, ?skill? is used to evaluate the ensemble forecasts (Hamlet and Lettenmaier, 1999). 
An ensemble is said to have skill if the observed reservoir storage (indirectly CWDI) falls within 
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the upper and lower boundaries of the ensemble for the period of interest. The model displays 
skill for most of the forecast period, especially during the recharge season (Dec through April) 
during which the observed lake levels are within the upper and lower boundaries of the 
ensemble. During this time period, there was a higher impact of ENSO conditions in the state 
(Sharda et al, 2011) as compared with the rest of the year. As summer approached, ENSO 
predictability in the region decreased and hence the observed lake levels were more outside 
the ENSO-based forecast band.  
The results presented here show just one of many ways of forecasting drought. However, 
CWDI forecasting methodology is developed in such a way that the forecast can be updated on 
a weekly or a bi-weekly basis as the observed storage levels change in the reservoir. 
3.5.5 USING CWDI FORECASTS IN DECISION MAKING 
Steinemann (2006) conducted a survey of water resource decision-makers in the 
southeastern United States and reported that there were several reasons for nonuse of 
forecasts that include: (1) forecasts are difficult to understand, (2) it is difficult to assess their 
accuracy and benefits and (3) it is difficult to apply the forecasts to types of decisions 
concerning drought management. Keeping these points in mind, CWDI forecasts aim to provide 
information of hydrologic drought and hence water availability in a municipal water system 
based on the ENSO phase outlook at a 3- to 6-month time-scale. Figure 3.8 shows an example 
of one such forecast for CoA, which gives the forecast value of CWDI with  95% confidence band 
for the community. The shaded area presents the range within which the water availability 
might vary during a certain time of the forecast with the dotted line representing the median of 
this ensemble forecast. 
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Figure 3.7. Comparison of observed lake storage volume (blue line) and storage volume forecast (black dotted 
lines) showing observed values mostly lying within the 95% confidence forecast band.  
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The red line represents the CWDI calculated with observed storage values till mid-November 
2011, and very good agreement is found between the drought forecast and observed values. 
CWDI presents a forecast that is simple to understand and gives the decision-makers ease of 
interpretation. Because it is available at the spatial and temporal resolution most suited for the 
decision-makers, it takes away the concerns about accuracy and applicability of the forecast to 
their system, making it a product tailored to local and specific needs. CWDI has been tested 
before and evaluated after a drought and has performed well, proving it scientifically sound so 
that decisions can be made and defended on the basis of CWDI. 
 
Figure 3.8. An example (City of Auburn) of CWDI 95% confidence interval forecast band with the median 
value (green dotted) and the observed values (red) till Nov. 2, 2011. 
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3.6 SUMMARY AND CONCLUSIONS 
In this study, a modeling framework was developed to quantify the interrelationships among 
climatic variability, water supply and water demand. This methodology for forecasting ENSO -
based hydrologic drought for small to mid-size communities of the southeastern United States 
is based on a unique index that is being called Community Water Deficit Index (CWDI). What 
makes this index unique is that it addresses both supply and demand of water in a system; 
operates at a fine spatial resolution to account for the spatial variability of rainfall experienced 
in the region; works at a temporal resolution that is the most desired by the water managers; 
forecasts drought based on the climate variability signal ENSO; and is customizable for different 
communities. 
The model was developed using the system dynamics software STELLA? and it combines sub-
models, a number of auxiliary equations, and reservoir operation rules. A rigorous testing 
framework was set up to validate the model for real-world water resource systems.  Two 
communities primarily depending on surface water sources were selected, and their systems 
were modeled for this study.  CWDI well-represented the municipal water systems studied and 
captured La Ni?a-induced droughts with a high degree of accuracy.  The study also 
demonstrates the usefulness of different climate forecasts being made.  
Because it considers both the inflow variation caused by season and climate variability and 
demand changes, CWDI presents a robust methodology that is supported by the results 
obtained. This model provides a useful method for early detection of onset, duration, severity 
and recovery from drought.  CWDI could be very useful in mitigating droughts impacts and the 
value of damage attached with it, and its use could lead to substantial benefits for the 
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stakeholders. It can also be utilized to send out timely water use restrictions leading to water 
conservation. It can therefore be concluded that using climate variability-based CWDI can help 
the water managers in decision-making and predict the probable severity and damage of the 
drought. 
Future work on this methodology will include development of a web-based CWDI tool 
that would be customizable by communities of the Southeastern United States. The 
users/stakeholders/water managers will be required to provide some basic consumption data, 
lake levels, desired storage, etc., and the model will be able to forecast drought 3 to 6 months 
in advance. 
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-  
4.1 ABSTRACT  
There have been great advances in the climate forecasting ability in the past years. However, 
the use of this information in water management decision-making has been lacking. The 
accuracy of forecast information and the time and spatial scales of forecasts have been cited as 
key inhibitions in use of these forecasts. A Community Water Deficit Index (CWDI) was 
developed as a tool to use NOAA ENSO forecasts to forecast drought in small to mid-sized 
communities of the southeastern United States. A pathway for increased adoption of forecasts 
requires connecting seasonal forecast system, e.g., CWDI, with the analysis of decision-making 
in the target system and quantification of value of these forecasts to the water resource 
managers. This study investigated the value and benefits of using a seasonal drought 
forecasting technique. The efforts were focused on determining the usefulness of drought 
information for municipal water management, as determined by the impact of drought on 
municipal water demand, usefulness of water restrictions imposed by municipal water 
management, and the extent to which advance knowledge of probabilistic drought forecast 
mitigates negative impacts. The results indicate that water use restrictions are effective for 
coping with drought and that benefits of use of forecasts and water management adjustments 
should involve planning ahead. It was also found that by using the drought forecasts and thus 
having a drought preparedness plan the communities can save both water and money. 
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4.2  INTRODUCTION 
Drought can be defined as a period of abnormally dry weather in a geographic area where 
precipitation is normally present. Walker et al. (2011) stated that because it is hard to tell 
exactly when a drought starts and when it is over, it can be compared to economic recession. 
Drought or the threat of drought has become a constant problem in many parts of the United 
States and, apart from being the costliest natural disasters, has become the most serious and 
complex problem that confronts water resources planners. Despite the fact that droughts cost 
billions of dollars every year in United States (Ryu et al., 2010), there is no methodical effort to 
determine its complete impact. Most states now implement drought management plans, one 
crucial aspect of which is to establish a link between drought status in a basin and management 
actions. Drought has been called a "creeping disaster" because it is easy to ignore until it is too 
late (Grigg 1996). It has been suggested that to mitigate adverse impacts of drought, proactive 
planning is more effective than reactive crisis management (Wilhite 1991; USACE, 1993; Wilhite 
and Rhodes, 1993). 
In the southeastern US, there is extreme interannual variability of water availability due to 
growing demands and shrinking supplies. Demand of water has increased in the region due to 
rapid residential, industrial, and recreational growth; climate variability in the region intensifies 
the situation. Coping with this problem has become the main focus of most surface water 
managers of the region. Seasonal climate variability influences water availability and affects 
agricultural productivity, animal and human disease epidemiology, population of plants and 
wildlife, and many other phenomena (Barrett, 1998). Water supply enhancement in forms of 
purchasing water, ground water mining, interbasin transfers, and construction or enhancement 
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of reservoir storage have been the traditional approaches to deal with such drought conditions 
(Pagano et al., 2001). However, most of these approaches are expensive and do not have social 
or political support (Western Water Policy Review Advisory Commission, 1998). To deal with 
these circumstances, a sophisticated surface water management system is needed in the 
southeastern United States. There is a need to develop methods to measure different impacts, 
including both direct and indirect, and this is required as a prerequisite for estimating value of 
forecasts.  
Improved information about future climate fluctuations can help decision makers to take 
advantage of climate good fortune and mitigate the impact of adverse situations. Recent 
advances in seasonal climate forecasting offer the potential to improve the ability and 
willingness of stakeholders to respond to forecasts of climate fluctuations. Despite the potential 
usefulness of seasonal forecasts, these currently remain underutilized with forecasts playing a 
marginal role in decision making (Callahan et al., 1999; Pulwarty and Melis, 1999). The value of 
forecasts comes from improved decision making, which could reduce costs and losses to water 
users and reduce social disruption. Many obstacles to forecast use have been stated in the 
literature, which include awareness of their existence, distrust of their accuracy, perceived 
irrelevance to management decisions, and competition from other innovations (Carbone and 
Dow, 2005). Other concerns about the use of seasonal forecast reported include the forecasts 
being difficult to understand and apply in decision making (Pulwarty and Redmond, 1997; Stern 
and Easterling, 1999). Moreover, the use of forecast products by themselves cannot decrease 
the vulnerability of a community water system to drought; past observations and projections of 
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climate variables such as precipitation and temperature at seasonal to decadal timescales can 
potentially help them prepare for water shortages (Lowery et al., 2011). 
In the southeastern United States most climate variability is attributable to El Ni?o Southern 
Oscillation (ENSO) (Schmidt et al., 2001), so much so, that ENSO has become a norm rather than 
an exception. ENSO is a climate pattern driven by cyclical warming and cooling of sea surface 
temperatures in the central Pacific Ocean. As scientific understanding of ENSO has only begun 
around 1997, the capacity to provide reasonably reliable ENSO based forecasts of climatic 
variables is a very recent development (Crane et al., 2011). That being said, ENSO, the most 
pronounced climate variability signal at a seasonal scale, is being used as an indicator to study 
precipitation and temperature patterns at regional (Andrews et al., 2004; Sharda et al., 2011) 
and global scales (Ropelewski and Halpert, 1987). As far as forecasts are concerned, there is a 
vast difference between forecast skill of ENSO phase and ability to forecast impact of ENSO on 
climatic variables that matter to the stakeholders (Barrett, 1998). This indirect relation makes 
the value of ENSO related forecast information dependent on strength of the arbitrating 
interventions. Although over the past few years the accuracy and lead times of ENSO phase 
predictions have improved noticeably, it has still been able to explain only a small part of 
variation in variables most important for decision-makers.  
As stated earlier, the main challenge for forecasters is to provide reliable and useful 
forecast products that can be understood and used by stakeholders who may or may not be 
technically qualified. There are myriad forecast products freely available on the internet that 
include outlooks provided by the National Weather Service (NWS), Climate Prediction Center 
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(CPC), International Research Institute for Climate Prediction (IRI), along with several other 
agencies that provide seasonal outlooks. None of these products are tailored specifically to the 
needs of water resource managers that primarily rely on surface water resources, especially 
those of small to mid-size communities in the Southeast United States. Keeping these points in 
mind, a Community Water Deficit Index (CWDI) was developed to forecast ENSO based drought 
for the small to mid-sized communities of the region (Sharda et al., 2011). This tool forecasts 
hydrologic drought 3 to 4 months in advance and operates at spatial scales most desired by 
water resource managers. Most importantly it considers both the water availability and water 
demand of the community. 
However, the usefulness and value of CWDI remains to be established. This study was 
undertaken to assess the value of this ENSO based hydrologic drought forecast information for 
small to mid-size communities of the region. 
The value or usefulness of this drought information was assessed by studying the seasonality 
of water demand; impact of drought (climate variables) on municipal water demand, i.e., how 
consumption changes with precipitation and temperature; and use and effectiveness of water 
restrictions in curtailing seasonal demand. In addition, the study also dealt with as to how 
drought forecast will influence the decision making process or mitigate negative impacts of 
drought that is how it can help in imposing conservation measures and also by arranging 
alternate or supplemental supply.   
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4.3 MATERIALS AND METHODS 
4.3.1 STUDY AREA 
To investigate the value and usefulness of drought forecast information, a case study that 
uses the consequences from the intended user?s viewpoint was used. Past researchers have 
reported that use of perspective studies to examine forecast information can be helpful to 
increase understanding and implementation of forecasts (Katz and Murphy, 1997). Because the 
usefulness of any forecast is based on the opinion of a potential user, it can be best achieved 
through the cooperation of forecasters and users (Pagano et al., 2001). It has been reported 
(Ritchie et al., 2004) that to avoid the risk of issuing forecasts that do not motivate confidence 
among the users a cooperative approach that ensures that the needs of the user are known and 
targeted by the forecaster instead of being assumed is required.   
Keeping the above points in mind, to study the usefulness and value of drought forecast 
information for small to mid-size communities of the southeastern United States, the 
methodology presented in this paper was tested for the City of Auburn (referred to as Auburn 
hereafter), Alabama. Auburn is a city of around 55,000 people, located in Lee County. For 85% 
of its water supply the city relies on Lake Ogletree, which is situated to the southeast of the 
city. Apart from Lake Ogletree, the city has an agreement with a neighboring city of Opelika to 
purchase water on a monthly basis. The storage in Lake Ogletree is also supplemented by the 
water pumped in from two quarries situated in the area. Increasing water demands and recent 
droughts in the region caused by La Ni?a phase of ENSO have put the city?s water managers in a 
tight situation many a times in the past.  
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Because the city relies on a surface water source, is a mid-size community, and is located in 
the Southeast United States, it was selected to study the usefulness of drought forecast 
information to its water resource managers. 
4.3.2 WATER DEMAND AND EFFECTIVENESS OF RESTRICTIONS 
The two main reasons for forecasting water demand of a community are long term 
planning and short term operation (Polebitski and Palmer, 2010). Variation in annual water 
demand of a community is driven by climatic variables such as precipitation and temperature 
due to outdoor water use in urban and sub-urban areas. This seasonality of water demand is an 
important basis to study the impact of climate variables on daily water demand of a 
community. Generally, water managers compare daily water use (demand) during periods of 
restricted water use to water use during same time periods in the past to find out the 
effectiveness of municipal water restrictions during drought or low water availability scenarios. 
However, this approach does not consider the impacts of climate on water use and demand. So 
in this study daily use of water during periods of restricted uses was compared to an estimate 
of ?expected use? of water. ?Expected use? was defined as water use that would have been 
used in the absence of restrictions, given the temperature and precipitation conditions. This 
comparison would thus help in evaluating the impact of climate on water use and effectiveness 
of water restrictions. Daily precipitation and temperature data were used as predictors in a 
multiple regression model to predict expected use of water along with a one-day lag variable to 
account for the temporal persistence in the time series of community daily water use. Because 
population is the largest factor determining water demand (Gutzler and Nims, 2005), it was 
important to isolate the demand component related to climate variability, hence water use 
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data were converted to per capita water consumption. Similar approaches to study the impacts 
of climate on water use have been mentioned in Kenney et al. (2004), and Shaw et al. (1992). 
The regression model developed was in the form of the equation 1. 
????? ????? 3322110 xxxy  (1) 
where y is the per capita water use and x1, x2 and x3 are the predictors namely daily maximum 
temperature, daily precipitation, and one-day lag variable of water use, respectively. ?0 is the 
regression constant, ?1,  ?2, and ?3 are the slope coefficients for the predictor variables and ? is 
the error. The regression model was developed using the Statistical Analysis System (SAS) 
software (SAS Institute, Inc., NC, USA) and the coefficients were estimated using data from a 
year in which no restrictions were issued by the community. For Auburn, the regression 
equations were estimated using data from the year 2002 and tested for the years 2003 and 
2004. The R-square value obtained from the regression model indicated the accuracy of the 
model in predicting water use using the climate variables. The equation developed was then 
applied to data from a period when restrictions were in effect to estimate the expected use 
(2007 and 2008). The difference between actual and expected water use during that time 
period were calculated to estimate the effectiveness of water restrictions during drought. This 
exercise was done to establish the seasonality of water demand, impact of climate variables on 
water use during drought, and effectiveness, if any, of water use restrictions during drought.  
Water saving over the period of restrictions was also investigated to study the effectiveness 
of water restrictions. Total use water savings were calculated by comparing 2007 and 2008 
water use with average of 2002, 2003, and 2004, whereas, expected use was a comparison of 
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actual per capita use during 2007-08 with that expected due to the climatic conditions, which 
were calculated using the regression model. These values were calculated both for the entire 
study period and the restriction period, i.e., October 1, 2007 to June 30, 2008.  
4.3.3 FORECASTING DROUGHT USING CWDI 
The Auburn water supply system has dealt with moderate to severe drought in the past and, 
based on the city drought management plan, phases of drought depend on percentage lake 
storage available. Figure 4.1 shows drought phases during 1999-2001 for Lake Ogletree ranging 
from moderate (Phase I) to extreme (Phase IV) drought.  These droughts coincide with a strong 
La Ni?a phase of ENSO as described by the ENSO index Ni?o 3.4, signifying the impact that 
ENSO has on water availability for the city. Community Water Deficit Index (CWDI) (Sharda et 
al., 2011) was developed to forecast ENSO based drought in small to mid-sized communities of 
the southeastern United States. CWDI is a supply and demand water balance model that 
considers the decrease in supply and increase in demand from irrigation during drought 
conditions.  
During low precipitation and high temperature El Ni?o Southern Oscillation (ENSO) phase (La 
Ni?a), the loss of soil moisture through evapotranspiration increases the demand of water for 
outdoor water use by residents (e.g. lawn irrigation), which increases the stress on water 
availability for the community. System Dynamics modeling software STELLA? was used to 
develop a model that addresses the relationship between water supply and demand of a 
community. Demand is divided into two components: static demand, which is not dependent 
on climate and consists of water usage for indoor purposes, and dynamic demand, which is 
dependent on climate (ENSO) and arises from outdoor use or irrigation of lawns. 
 
98 
 
 
Figure 4.1. Droughts of record for the period 1999-2001 for Auburn (Source: City of Auburn data). 
The CWDI was estimated as ratio of available storage and desired level of water storage in the 
reservoir of the community and is given as: 
  (2) 
 where, S is the available storage in the reservoir and Sd is the desired storage in the reservoir.  
If S? Sd, CWDI? 0, => No deficit (3) 
If S< Sd, CWDI< 0, => Deficit (4) 
Based on the IRI ENSO forecast, a weather generator was used to generate ENSO 
constrained climatic variables, which were then used to forecast CWDI 3 to 4 months in 
advance. Major drought years from the past were selected and based on the ENSO phase (La 
Ni?a) during that time period, CWDI model was run to create an ensemble forecast for each 
year beginning in November to show what the drought forecast would have looked like during 
November through February. This period was chosen to coincide with the principal recharge 
period for reservoirs in this part of the country. Historic daily reservoir storage data along with 
the population data were provided by the City of Auburn.  
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4.3.4 VALUE OF CWDI FORECAST 
The methodology adopted investigates the usefulness of ENSO based drought forecast using 
CWDI by comparing the outcomes resulting from the use of ENSO phase forecasting system 
with those that did not use this information. Because the analysis was done using historic data, 
the outcomes that did not use ENSO forecasts are the observed conditions in the past. Potential 
value or usefulness of this forecast information for water resource managers was determined 
by assessing how this knowledge might allow mitigation of negative impacts. The model was 
run in the past using climate variables generated by a weather generator constrained with 
ENSO phase to estimate how the demand side management could be changed through demand 
management practices such as conservation measure, imposing voluntary and mandatory 
restrictions, and altering transfer or  purchase agreements. The value of forecast information 
could come from planning ahead thus minimizing the drought vulnerability of these water 
systems.  
Value of drought information as provided by CWDI was studied using the historical 
consumption data, water supply availability in the past, demand levels, reservoir levels, and 
ENSO phase. To account for uncertainty in the dataset, ensembles of daily data obtained from a 
weather generator constrained by the seasonal forecast were used. 
The details of conservation measures adopted by the city, supply enhancement policies, and 
other options of water managers were studied in the context of using the CWDI as a planning 
tool. Based on the past strategies used by the water managers, the following elements were 
studied. 
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The first element is planning for drought before it occurs. This planning can include water 
conservation programs and increasing, public awareness about the possibility of a drought.  
The second element is identifying and classifying drought based on the water supply. The 
CWDI forecast indicates the status of water availability in the system. This water availability 
information can be used to identify and classify the drought and interventions can be planned 
accordingly. The best time frame to identify and classify a drought will be during the recharge 
period, i.e., Dec-Feb.  Once the drought is identified, it can be communicated to the public in 
Feb-April and not in June or July when the community is already well into the drought and there 
is no way to recover. Once the reservoir levels improve, water managers can officially lift 
restrictions, and remove fines and surcharges. To accomplish identification and classification of 
drought, a demand reduction goal was set and was assumed that looking at stage or severity of 
forecasted drought, measures would be taken by the water resource manager to conserve 
water or curtail demand. The rules followed for demand reduction were adopted from Walker 
et al. (2008) and are given in Table 4.1. 
The third element is responding to a drought by increasing supply and decreasing demands. 
Increase in water supply can be achieved through purchasing water from some outside source 
with which the community already has a contract or other supplemental supply options 
depending upon the system structure, for example, groundwater withdrawal. Decreasing water 
demand measures include reducing the water budget of the municipality as a whole. Individual 
water budget can be reduced by percentage specific to the outdoor use of water and wise 
water use practices emphasized.  
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Table 4.1. Demand reduction goals with the use of Community Water Deficit Index (CWDI). (Adapted from  
Walker et al., 2008) 
Drought Phase Drought Description Conservation Goal Proposed Actions 
Phase I Incipient 0% Public awareness 
Phase II Moderate 15% Voluntary restrictions 
Phase III Severe 20% Mandatory restrictions 
Phase IV Extreme 25% Mandatory restrictions + Drought rates 
 
These elements can help evaluate the drought information available to water managers and 
how they can use this information to formulate a drought response plans and policy changes. 
This can also help the water managers to smoothly cope with drought and will help the 
communities to be well prepared and aware of the forthcoming drought. 
Based on the phase of drought at the beginning of the forecast period, target conservation 
percentages would be applied in the dynamic demand component of the CWDI model to 
achieve better storage levels in the reservoir. The change in storage levels would then be 
converted to volumetric savings of water as well as economic savings.  
The volume of water savings arise from conservation achieved by the community in 
compliance with the water restrictions or conservation measures imposed by the city in 
anticipation of approaching drought. This saving was calculated as the difference between 
storage levels forecasted (using CWDI) and the observed reservoir storage levels at end of each 
month. A monthly time scale was used because the conservation measures are usually issued 
by the communities once every month. The economic component was analyzed by utilizing the 
unit cost of production and unit cost of purchase per 1000 gallons of water. These data were 
provided by Auburn. The cost of production includes costs for pumping, purification, 
distribution, meter reading, billing and collection, operational administration expenses , and 
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general operation expenses. Auburn has purchase agreement with neighboring city of Opelika 
and has to purchase minimum 8 million gallons per month and can buy up to 3.6 million gallons 
per day. The cost of purchased water was provided by Auburn and the monthly saving in cost of 
water would arise mainly from reducing the need to purchase water from Opelika. Although 
this information is community specific, it still gives an idea about the potential importance of 
forecast information for the water resource managers of small to mid-size communities. 
4.4 RESULTS 
4.4.1 SEASONALITY OF WATER USE 
Historic daily demand data (gallons/day) were obtained from Auburn for a period of 11 years 
(1998-2010) and it was observed that this variable was highly variable across the dataset. These 
data were then converted to average population weighted data (gallons/capita/day) using the 
population data of the city. Because communities actually report water production rather than 
water consumption, monthly data have more measurement error than do annual data. Patterns 
of monthly water use presented in Figure 4.2 were obtained by averaging population-weighted 
data across the entire sample. The seasonality of water use is evident from this figure, but 
other interesting details are also apparent. Demand in winter months is rather invariant from 
year to year whereas water use during summer months can be highly variable from year to 
year. Figure 4.2 shows a definite seasonality in water demand during drought years. It was 
found that during these La Ni?a years, the water use/demand increased (as compared to a 
normal year) as the temperatures during the summer months were high and there was not 
enough precipitation. As the residents irrigated their lawns to keep the grasses in their lawns 
alive, the water use spiked during May through August. 
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4.4.2 EFFECTIVENESS OF RESTRICTIONS 
 Auburn has not, to date, enforced mandatory water restrictions, however, word has been 
sent out time to time for public awareness as well as to implement voluntary restrictions. These 
efforts include asking the residents to water their lawns 2-3 times a week with odd and even 
number households alternating their watering schedule. Voluntary restrictions also call for the 
residents to irrigation only between 6 PM to 8 AM because evapotranspiration is lowest during 
these times. Equation 5 shows an example regression equation for year 2000 when no water 
restrictions were used (R denotes daily precipitation, T is daily maximum temperature and L is 
the one-day lag variable of water use). 
1 8 1 4 9.07 1 0 1 9.01 9 0 9.04 5 9 2.0 ????? LTRy   (5) 
 The regression model showed skill in predicting water use with R-squared values ranging 
from 0.65-0.81.  Greater accuracy could be achieved using more sophisticated regression 
techniques, however, this regression model solves the purpose of our investigation, which was 
to describe drought response in this case study. The regression model also showed that the 
water use and demand have a positive relationship with temperature and the lag variable 
indicating that water use increases with increase in temperature. An inverse relationship was 
observed with precipitation. A strong relationship was observed between the one-day lag 
variable for current demand indicating that demand or water use on a given day is a function of 
water use on the previous day. This outcome was not unexpected and provided aggregate 
assessment of anticipated water saving attributable to climate.  
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Figure 4.2. Monthly and annual water use for drought years. 
The difference between expected (calculated) and actual (observed) water use is shown in 
Figure 4.3 and this provides an estimate of water saving that can be attributed to the drought 
inspired water restrictions imposed during this time period (October 2007- June 2008- La Ni?a). 
It is important to note that during this period only voluntary restrictions were in effect. Higher 
water savings can be seen during fall to winter months when people do not irrigate their lawns 
as much. However, as temperatures soar during late spring and summer along with low 
precipitation due to typical La Ni?a conditions, differences between observed and expected 
water use decrease indicating that voluntary restrictions are relatively ineffective conservation 
measures. Imposing mandatory restrictions results in higher water saving during summer 
months (Kenney et al., 2004), but because Auburn did not impose any; we do not have any 
results to report for those. 
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Figure 4.3. Observed vs. expected per capita water use for Auburn from October 1, 2007 to June 30, 2008 
demonstrating the impact of water restrictions. 
Past studies show that if mandatory restrictions were imposed in April 2008; after drought 
conditions did not improve from Oct 2007 till Apr 2008; it would have resulted in better water 
savings and improving the drought conditions. Because per capita water use was investigated, 
these results evaluate water restrictions effectiveness from an individual user stand point.  
Table 4.2 summarizes the calculated effectiveness of water restrictions in terms of percent 
savings for Auburn. During the period of study total water use increased, whereas, expected 
per capita water use decreased slightly. During the period of voluntary restrictions, expected 
per capita water use showed a saving of 14% indicating effectiveness of these restrictions in 
saving water in terms of per capita expected use.  
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Table 4.2. Percent water saving based on expected use during water restrictions.  
Variable 
Total time period Restrictions time period 
Total Use Expected Use Total Use Expected Use 
Percent -8 2 -2 14 
 
These results establish the fact that water use and demand of a community depends on 
climates and that management decisions, such as imposing voluntary or mandatory water use 
restrictions, can be effective tools for saving water and averting severe drought conditions.  
4.4.3 VALUE OF CWDI FORECAST 
To study the advantages of using ENSO-based drought forecast of CWDI, we selected some 
past La Ni?a years and then forecast drought during those years using CWDI methodology. 
Table 4.3 shows CWDI forecast in terms of percentage lake capacity. The drought phases were 
assigned according to Auburn?s drought plan. The CWDI forecast was based on climate variables 
generated according to historical ENSO phase data.  
CWDI forecast severe to extreme drought for all four years discussed here during November 
through February. Results of these months are discussed as these months represent the 
recharge period during which water managers observe the reservoir levels closely and decide or 
estimate the reservoir condition in the forthcoming summer months. This period was selected 
in discussions with water managers of Auburn. These results agree with some of the observed 
drought data discussed earlier in the manuscript (Figure 4.1) and show that the CWDI forecast 
has skill and is consistent. These forecast results present the situation when no conservation 
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measures were adopted by the city. However, to evaluate and quantify the value of this 
forecast information, results of hypothetical scenarios using different conservation measures, 
restrictions, or public awareness measures were then studied in terms of volumetric water 
savings as well as economic benefit to the community. 
Table 4.3. Drought phases assigned to percentage lake capacity as forecasted by CWDI for La Ni?a years 
studied for Auburn water supply system (Drought phases attributed according to Auburn?s proposed drought 
plan). 
M on t h 1 9 8 4 -9 5 1 9 9 8 -9 9 1 9 9 9 -0 0 2 0 0 7 -0 8
N o v 4 0 . 0 1 3 0 . 7 0 4 6 . 1 3 5 2 . 2 1
N o v 4 0 . 6 2 3 6 . 0 2 4 3 . 6 6 5 3 . 0 3
N o v 4 0 . 6 5 3 7 . 5 6 5 0 . 7 3 4 9 . 7 2
N o v 3 9 . 9 2 4 0 . 4 2 4 8 . 6 4 4 7 . 4 4
De c 4 0 . 9 3 3 8 . 8 5 4 7 . 6 9 4 7 . 4 0
De c 4 1 . 3 1 3 9 . 2 9 4 7 . 3 3 4 4 . 8 2
De c 4 2 . 8 5 4 0 . 7 4 5 0 . 2 7 4 4 . 9 3
De c 4 1 . 7 1 4 1 . 9 7 5 5 . 2 8 4 3 . 1 9
De c 4 3 . 4 9 4 1 . 8 7 5 3 . 8 1 4 6 . 4 3
J a n 4 2 . 4 3 4 2 . 3 6 5 1 . 6 7 5 4 . 6 5
J a n 4 1 . 1 4 4 2 . 5 6 4 9 . 1 9 6 5 . 5 4
J a n 4 2 . 0 7 4 0 . 7 4 5 2 . 9 6 6 3 . 6 4
J a n 4 6 . 4 4 4 0 . 3 4 5 4 . 1 9 6 1 . 4 9
J a n 4 6 . 9 2 4 3 . 9 0 5 5 . 2 1 5 9 . 1 7
Fe b 4 5 . 8 7 4 5 . 7 0 5 2 . 9 8 6 5 . 1 7
Fe b 4 5 . 4 8 4 5 . 7 0 5 4 . 4 1 6 5 . 2 9
Fe b 4 5 . 1 7 4 5 . 1 3 5 6 . 4 3 6 2 . 7 8
Fe b 5 3 . 3 5 4 3 . 3 8 6 4 . 4 1 6 8 . 1 6
 
 Two main deliverables of studying this forecast are that what can a community gain from this 
forecast knowledge versus ignoring the forecast and what changes can be thought of in the 
community?s drought plan to deal with drought conditions. Figure 4.4 shows the ensemble 
forecast of CWDI for three drought years (1998-99, 1999-00, and 2007-08). The figure consists 
of a 95% confidence interval band indicating that there is a 95% probability that forecast 
Phase I 
Phase II 
Phase III 
Phase IV 
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drought will lie between the upper and lower bounds of the band. Figure 4.4 is another way of 
analyzing the results given in Table 4.3, the difference being that Table 4.3 presents percentage 
lake levels whereas the figure shows the actual CWDI with negative CWDI values indicating the 
severity of drought and positive values indicating no drought or desired storage levels being 
met. As it is clear from the figure, during these La Ni?a years, CWDI forecasts showed less than 
desired storage levels during most of the recharge period. According to the Auburn drought 
management plan, if Lake Ogletree was at or above full pool level on May 1, the supply should 
last the community through summer and fall. But this plan assumes normal precipitation and 
temperature conditions during the months following May 1, which may not always be the case, 
and worsen the storage conditions during high demand summer and fall months. During all the 
example years shown in Figure 4.4, the reservoir was still in drought even after February 1 and 
La Ni?a conditions persisted till at least May (2000 and 2008) and even beyond (1998 and 1999) 
making it difficult to reach full pool conditions by May 1 without enhancing the supply by 
purchasing water from Opelika.  
The value of CWDI forecast information was studied by quantifying the water and cost 
savings for the community, based on the assumption that this information was used to plan 
ahead, create awareness or impose voluntary or mandatory restrictions depending on the 
severity of drought. The results of example model runs (1999-00 and 2007-08) showing the 
beginning and ending storage levels at end of each month for which CWDI was forecast are 
given in  
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Table 4.4. 
 
Figure 4.4. Examples of CWDI forecasts showing 95% confidence interval band (black dotted lines) and 
median (green line) for Auburn (November through February) for three different drought years. 
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Table 4.4. Comparison of reservoir storage levels with and without the use of forecast information in terms of 
volumetric and economic savings. 
Year Month 
Starting 
Storage 
(Mgallon) 
Ending 
Storage 
(Mgallon) 
Ending 
Drought 
Phase 
Conservation 
Measure 
Change from without forecast 
information case 
Volume 
(1000 gallons) 
Cost 
(US Dollars) 
1999-2000 
Nov 461.31 486.36 III 20% 93598 176900 
Dec 498.27 538.27 II 15% 54330 102684 
Jan 593.94 597.68 II 15% -5610 2824 
Feb 581.09 644.13 II 15% -441370 2954 
2007-2008 
Nov 626.53 630.15 II 15% 80150 151484 
Dec 643.84 601.87 II 15% -80.19 2801 
Jan 684.31 820.43 I 0% -264.17 998 
Feb 817.80 862.00 I 0% -149.8 -1018 
 
 The volumetric change and the cost change (profit or loss) are reported in the last column of 
the table. There was a saving at the end of month of November for both years studied. This 
saving could be due to two reasons. First, water use declined in response to the restrictions 
imposed during phase III drought that the community was in at the beginning of the month. 
Because of the effectiveness of restrictions, especially during winter months, was already 
established in earlier sections of this study, it can be said with confidence that the restrictions 
imposed on outdoor water use would have helped in reducing the dynamic demand of water as 
compared with observed data. Second, the cost saving could be attributed to the fact that the 
community was still not aware of the approaching drought and so did not enhance its supply 
(purchase water) to raise the storage levels. Similar results were obtained for December 1999. 
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However, there was a negative change in the storage volume during January and February 2000 
and December, January, and February 2008 showing that the forecast storage volume at the 
end of each of these months was less than the observed storage volume during the same time. 
This change was due to the reason that Auburn actually purchased a lot of water from 
neighboring city of Opelika during these time periods, sometimes even more than their daily 
limit of 3.6 MG, for which they had to pay wholesale reseller rates to the City of Opelika (Table 
4.5). 
Table 4.5. City of Opelika?s schedule of rates for sale to resellers of water to public water systems. (Source: 
Opelika Utilities website, www. owwb.com) 
 Monthly Consumption (Gallons) Unity Price (per 1000 gallons) 
Min 25,000 $2.77 
Next 50,000 $2.54 
Next 75,000 $2.48 
Next 100,000 $2.43 
Next 125,000 $2.36 
Next 150,000 $2.25 
Next 175,000 $2.15 
Next 700,000 $2.06 
 
This purchase allowed them to increase storage, but at the added expense of purchasing this 
water. This explains the economic gain the community could have made with the forecast 
information.  
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From the starting and ending storage levels in the reservoir for both study periods, it was 
observed that with the use of this forecast information the community could have improve the 
storage and mitigated drought conditions of the reservoir. For 1999-2000, drought conditions 
improved from a Phase III drought to Phase II drought by end of February 2000 and during 
2007-2008, drought conditions improved from Phase II drought in November 2007 to Phase I 
drought by the end of February 2008.  
4.5 DISCUSSION AND CONCLUSIONS 
The climate of United States is among the most variable climates of the world with 
southeastern part of the country experiencing the largest variability related to ENSO. This 
variability has led to several droughts in the region, which have resulted in major economic 
losses. A water management system?s vulnerability to climate variability can potentially be 
reduced with the use of climate forecasts. In the southeastern US, the benefits of using forecast 
information could include a reduced risk of economic losses from extreme conditions such as 
droughts. Yet, to enable drought-related decision making based on a climate variability signal 
such as ENSO, the water managers must be able to understand and acknowledge the 
connection between ENSO and the vulnerability of their water resources. This understanding 
can be achieved only if forecasters and the stakeholders use a common language that can cross 
the barriers of miscommunication. Although seasonal forecast information such as the Climate 
Prediction Center (CPC) three-month outlooks have been available for many years, use of this 
information in decision making has been rare (Millner and Washington, 2011). Potential of 
these and other forecasts products to enable water managers to mitigate impacts of drought 
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vary considerably because of reasons that might include physical, economic, social, and political 
factors. Other factors may also vary; ranging from water resource manager?s complaint about 
the forecast information being too technical and difficult to understand to the spatial and 
temporal scales at which this information is being provided. Apart from these reasons, this lack 
of use of forecast information has also been attributed to traditional factors that include 
unawareness of types of forecasts available, unsuitable presentation, and missing link between 
forecast and decision making (Carbone and Dow, 2005). Other concerns include doubts about 
the skill of forecasts and availability and uncertainty of these climate forecasts. 
Several actions could be taken to address these issues, which include maintaining 
interactions involving scientists and forecasters in the drought planning process and involving 
stakeholders in the development of forecast products and prediction processes. More accurate 
forecasts with appropriate lead times need to be developed and in a format that is easily 
understood and used in decision-making by the water managers. It is also important to have 
forums to bring stakeholders and forecasters together.  
As far as drought planning is concerned, water managers of the southeast rate the 
importance of drought-related decision making as very important. A major challenge for small 
to mid-size communities is to secure water at a reasonable cost during drought as the cost of 
supplemental supplies becomes high making advance planning for such scenarios very 
important. These water shortages and the costs associated with securing water supplies during 
drought could be averted by planning ahead. Communities that rely on surface water supplies 
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could use forecasts tailored to their needs to manage reservoirs across a longer time frame and 
better allocation of water resources over time. 
During the winter season, water managers follow predicted precipitation and temperatures 
very closely in this part of the United States because these factors drive the storage levels in the 
reservoirs during spring (Callahan et al., 1999). Accurate forecasts delivered during these 
months could prove very helpful in water management during hot and dry summer months.  
This study investigated the regional benefits and water management actions that might 
occur if the Auburn water management decisions were conditioned on ENSO-based CWDI 
forecast information. Seasonality of water demand studied and the regression model 
developed showed that there were statistically significant relationships between climatic 
conditions and water use in Auburn. These results formed the basis for imposing water 
restrictions to deal with water shortages in the community water supply system. Per capita 
water consumption responded to the imposed voluntary water restrictions during the period 
studied and resulted in water savings. Having established the fact that water use restrictions 
could be effective tools in handling drought conditions, CWDI forecasts for late winter and early 
spring months (recharge period) were selected to study the value of this forecast information 
for water resource managers. In order to study value of CWDI forecast information, it was 
important to consider the net economic, environmental and social benefits resulting from its 
use. Social benefits should ensue from planning ahead, for example through increased public 
awareness about the approaching drought without imposing any restrictions. Environmental 
benefits could be achieved by conserving water by identifying the drought stage according to 
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forecast CWDI and taking necessary actions, which may be tied with the social benefits, to 
conserve and enhance available storage and recharge period is the best time to take these 
steps. Economic benefits were calculated by taking in to account the cost of purchasing 
additional water to bring the reservoir levels up during the recharge season so that the supplies 
last though the summer months. If CWDI forecast were used in the past drought years, there 
would have been saving in this cost associated with purchasing water.  
Based on these results, it can be suggested that small to mid-sized communities that 
predominantly rely on surface water sources, should have more clear and elaborate drought 
plans based on supplies and demands during droughts of all levels of severity. Moreover, a 
forecast provided by a tool like CWDI that is customized to the community and caters to their 
specific needs, operates at the desired spatial and temporal scales and considers both supply 
and demand related to climatic variables, holds great value for the water resource managers of 
the region. 
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5  
 
5.1 SUMMARY AND CONCLUSIONS 
The persistent drought that impacted Southeast United States over the past few years 
brought to the forefront many water management issues that cannot be ignored any longer. 
Ensuring sustainable water resources to meet the growing demand requires better 
management of existing supplies and to achieve this improved coordination and planning 
within and between levels of government and water users is needed. The value of preparing 
for, detecting, and responding to drought has increased in importance and prominence not only 
in Southeast United States, but nationally. The overall objective of this study was to develop a 
relatively simple, generic, and supply and demand balance-based hydrologic drought index that 
can forecast drought and can be used by water managers of small to mid-sized communities of 
the southeastern United States. In the beginning of the manuscript three main objectives were 
presented. Each of these objectives is summarized below and the most important findings 
listed. 
5.1.1 OBECTIVE 1 
To study the impact of El Ni?o Southern Oscillation on the precipitation and streamflows in 
Alabama for better water resource management. 
Historic precipitation and streamflow data were used to analyze the relationship between 
Ni?o 3.4 index and these climate variables in Alabama. Variability, correlation and composite 
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analyses were done at a seasonal time scale for the eight climate divisons of the state and it 
was found that: 
1. There is a significant relationship between Ni?o 3.4 index, precipitation and 
streamflow during winter months in climate divisions 5, 7, and 8. 
2. Precipitation analyses indicated that dry conditions in the southern part of the state 
(climate divisions 6, 7, and 8) tend to be associated with La Ni?a. 
3. It was found the entire state of Alabama does not respond uniformly to ENSO as the 
anomaly trends were almost opposite in north and south parts of the state. 
4.  High streamflow variability was established along with strong positive correlation 
between ENSO and streamflows during wet (recharge) season in southern climate 
divisions of the state. 
5. The response of streamflow to ENSO events was lagged by one month for south 
Alabama during winter months. 
5.1.2 OBJECTIVE 2 
To develop a drought index for forecasting drought for small to mid-size communities of the 
southeastern United States using the El Ni?o Southern Oscillation impact in the region. 
Community Water Deficit Index (CWDI) was expressed as the ratio between available storage 
and desired storage minus one. The available storage was computed as the difference between 
available supply and demand of water of the community with the demand being composed of 
static and dynamic demand, the dynamic component being tied to ENSO. The desired storage 
latter was a user defined variable. Using a weather generator constrained to ENSO, CWDI was 
successfully used to forecast drought for the region. Major conclusions of this objective were: 
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1. The drought index methodology developed was found to be strong in representing 
the water supply systems of small to mid-sized communities of southeast United 
States. 
2. CWDI provided a general indicator of shortage of water availability in a community 
water system and was found to be generally applicable to two different types of 
water system studied. However, it is designed to be customizable according to the 
needs of the user. 
3. CWDI model was successfully able to mimic a complex hydrologic simulation 
modeling system and accurately detected onset, duration, severity and recovery from 
ENSO induced droughts. 
4. The results related to predictability of CWDI showed that the index can be forecasted 
using ENSO signal.  
5.1.3 OBJECTIVE 3 
To evaluate the value of the developed index by studying the use of this information for water 
resource managers of the region. 
Seasonality of water demand indicated that water use was dependent on climate variables , 
which was established with the use of regression models. Periods during which water 
restrictions were issued were compared with periods of no water restrictions to study the 
effectiveness of these municipal water restrictions. CWDI forecasts for several drought years 
were generated and potential value of this information was analyzed with respect to volumetric 
and cost savings. The specific conclusions of this objective are listed below: 
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1. A statistically significant relationship showed that water use in the study area was 
dependent on climate (precipitation and temperature) and one-day lag variable of 
water use. 
2. Outdoor water restrictions were found to be an effective means of reducing water 
use during drought conditions. 
3. Potential volumetric and cost savings could be achieved if CWDI forecast 
information was used to create public awareness and impose water restrictions in a 
timely manner.  
Finally, CWDI, an outcome of the study, may be used as a decision support tool by water 
resource managers:  
? To monitor hydrologic drought in their community by computing weekly 
values of CWDI,  
? To forecast drought by computing three to four month lead-time values of 
CWDI using the model developed and forecasted values of ENSO indices, and  
? To plan water conservation measures and imposition of outdoor water use 
restrictions using the CWDI forecasts. 
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6  
 
 
6.1 FUTURE RESEARCH 
The drought index methodology established for this research provided useful and 
quantifiable results as related to forecasting drought for small to mid-sized communities of the 
southeast US. However, further studies are needed to expand the use of and to make the index 
more robust and applicable.  
Observed station data were used in this study to run the model during the ?warm-up? period 
before actually forecasting drought for a community. However, to make the spatial scale of the 
model more useful to water resource managers, Next-Generation Radar (NexRad) data could be 
used. The use of this gridded dataset could lead to effectively capturing the spatial variability of 
rainfall, and could overcome the limitations of using station data for calculation of drought 
index for drought monitoring. 
To account for spatial variability of rainfall during drought forecasting with CWDI, use of 
GeoSpatio-Temporal weather generator (GiST) (Baigorria and Jones, 2009) could prove useful. 
This weather generator preserves the spatial and temporal patterns of weather and climate 
over a region or watershed and could prove helpful in capturing the variability during 
forecasting.  
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Frequency and spatial characteristics of hydrologic drought associated with ENSO could be 
studied to develop an Intensity-Area-Duration (IAD) curve to characterize the spatial patterns of 
drought. This IAD information could prove helpful in identifying areas within the region that are 
frequently affected by droughts as well as the spatial extent of drought, which could be used 
for the development of a drought preparedness plan.  
A sensitivity analysis could be done on the developed drought index to study the effect of 
changes in model parameters to corresponding changes in drought severity and duration.   
Although several forecasting products have been around for a while, their use and 
adaptability into decision making has been really limited and the extent to which drought 
forecasts are being incorporated in management decisions remains unclear. Keeping this in 
mind, to develop a web-based tool of CWDI that would help in decision making of water 
resource managers of small to mid-sized communities could be the most immediate follow up 
step of this study.  
One means of averting uncontrolled supply deficits is controlled conservation (Draper et al., 
1981). The knowledge of approaching drought as obtained by using CWDI could be used to 
develop and test conservation plans for different communities and the effectiveness and value 
of CWDI information for water managers could be studied in more detail. 
6.2 PRACTICAL IMPLICATIONS 
Data availability for making seasonal climate forecasts as well as availability of actual 
forecasts has increased considerably through technical progress in climate science. The 
advances made in seasonal climate forecasting, particularly in relation to ENSO, have 
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stimulated considerable interest from potential users. These developments, which have 
quickened in pace since the 1997-98 El Ni?o event, have been built on the improved knowledge 
of links between slowly varying SST anomalies and rainfall on seasonal time scales, and have 
since helped in improving empirical models. However, a considerable gap still remains between 
the forecast information being generated and the actual needs of stakeholders. Though efforts 
of extension agencies and media, among others, water resource managers are aware of 
potential benefits of using seasonal climate forecasts in decision making, still several obstacles 
to forecast use exist. These obstacles include doubts about accuracy of forecasts, supposed 
inappropriateness to management decisions, and competition from other technological 
products.  
The Southeast United States has suffered huge losses attributable to ENSO induced droughts 
in the past decade along with pressure on the water resources of the region caused by rapid 
residential and industrial growth. Considering these aspects of state of seasonal forecast use in 
decision making, the results and findings of this study have practical impact for the 
stakeholders of the region. 
The precipitation anomaly maps created as part of Objective 1 of this study can be used 
along with the results of composite analysis to pictorially depict the impact of ENSO phases in 
particular climate divisions and seasons. Stakeholders can visualize the probability associated 
with their region of concern or interest being dry or wet during a season depending on the 
ENSO phase. This information can have positive consequences as many water managers rely on 
historic data and these maps present the analyses of past ENSO events with a fresh and easy to 
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understand perspective. This information can be used by a vast range of potential users 
including farmers, utilities, and insurance, and banking industries. 
As discussed earlier in the manuscript, some of the most common concerns of water 
resource managers in using drought indices already available are the temporal and spatial 
scales being irrelevant along with the indices being difficult to understand. This disparity 
between the products available and the actual need of water managers is taken care of by 
CWDI, which presents a drought index that operates at watershed scale and can analyze 
drought at weekly time scales. CWDI can be effectively and easily used by water managements 
of small to mid-sized communities of the region to monitor hydrologic drought in their water 
supply systems.   
Use of CWDI as a tool for drought forecasting has immense potential for water supply 
management in the southeast US. It can be used by water resource managers to store more 
water in case of drought forecasts and release more water if CWDI forecasts more than full 
pool conditions in the coming three to four months. Based on the severity of forecast drought, 
public awareness steps can be taken; conservation measures can be planned; voluntary or 
mandatory restrictions imposed, or drought rates put into effect. This information can be 
beneficial for community water supply system and translate into savings both in terms of water 
and cost.  
The water resources community is slowly moving towards embracing the use of seasonal 
climate forecasts and specific tools for forecasting extreme events such as droughts and floods. 
However, as the knowledge and skill of these forecast tools and techniques advances, so does 
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the need to create awareness and improve understanding of these tools among the potential 
users.  Overall, future research and development of CWDI and climate variability related 
drought forecasting in general is needed to achieve more sophistication and implementation of 
this tool. Moreover, a network of education tools such as extension workshops, hands -on 
trainings or online seminars are required to educate the users about using CWDI as a drought 
planning tool for their communities, thus helping in water conservation and maintaining a 
water supply system that is not prone to drought related failures.  
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A.1 STATION DATA  
The list of stations used in precipitation analysis is given in Table A.1. 
Table A.1. List and co-ordinates (in decimal and degrees-minutes-seconds) of rain gauge stations of Alabama 
used for obtaining historic precipitation data.  
City Latitude Longitude Latitude Longitude 
D M S D M S 
Alberta 32.23 -87.42 32 14 0 87 25 0 
Aliceville 33.13 -88.15 33 8 0 88 9 0 
Andalusia 31.18 -86.31 31 10 48 86 18 48 
Anniston 33.58 -85.85 33 34 48 85 50 59 
BayMinette 30.53 -87.47 30 31 48 87 28 12 
Bellemina 34.41 -86.53 34 24 36 86 31 48 
Birmingham 33.57 -86.75 33 34 11 86 45 0 
Boaz 34.15 -86.17 34 12 0 86 10 0 
Brewton 31.03 -87.03 31 1 48 87 1 48 
Calera 33.12 -86.75 33 7 0 86 45 0 
Calyton 31.53 -85.29 31 31 48 85 17 24 
Demopolis 32.31 -87.53 32 18 36 87 31 48 
Evergreen 31.27 -86.57 31 16 12 86 34 12 
Fairhope 30.55 -87.88 30 33 0 87 53 0 
Fayette 33.41 -87.49 33 24 36 87 29 24 
Gainesvillelock 32.50 -88.08 32 30 0 88 4 48 
Greensboro 32.42 -87.35 32 25 12 87 21 0 
Greenville 31.48 -86.37 31 28 48 86 22 12 
Haleyville 34.14 -87.38 34 8 24 87 22 48 
Headlanad 31.22 -85.20 31 13 12 85 12 0 
Hunsville 34.65 -86.78 34 38 59 86 46 59 
Highland 31.53 -86.15 31 31 48 86 9 0 
Lafayette 32.54 -85.26 32 32 24 85 15 36 
Livingston 32.35 -88.11 32 21 0 88 6 36 
Marion 32.28 -87.14 32 16 48 87 8 24 
Montgomery 32.18 -86.24 32 10 48 86 14 24 
MobileAeros 30.41 -88.15 30 24 36 88 9 0 
Moulton 34.48 -87.30 34 28 48 87 17 59 
Muscle Shoals 34.75 -87.60 34 45 0 87 35 59 
Oneonta 33.57 -86.28 33 34 12 86 16 48 
Reform 33.38 -88.02 33 23 0 88 1 0 
Rock Mills 33.17 -85.28 33 10 0 85 16 59 
Russelville 34.52 -87.73 34 31 0 87 43 59 
 
139 
 
Stbernard 34.10 -86.49 34 6 0 86 29 24 
Sandmt 34.17 -85.58 34 10 12 85 34 48 
Scottsboro 34.40 -86.03 34 24 0 86 1 48 
Selma 32.25 -87.01 32 15 0 87 0 36 
Talladega 33.25 -86.08 33 15 0 86 4 48 
Thomasville 31.32 -87.53 31 19 12 87 31 48 
Tuscaloosa 33.13 -87.37 33 7 48 87 22 12 
Unionspr 32.01 -85.45 32 0 36 85 27 0 
Uniontwn 32.47 -87.52 32 28 0 87 31 0 
Valleyhd 34.57 -85.62 34 33 54 85 37 1 
Walnuthill 32.70 -85.90 32 42 0 85 54 0 
Warrior 32.77 -87.83 32 46 0 87 50 0 
Wetumpka 32.58 -86.22 32 35 0 86 13 0 
Westblocton 33.12 -87.12 33 7 0 87 7 0 
Winfield 33.92 -87.85 33 55 0 87 51 0 
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B.1 CREATING SCS CURVE NUMBER GRID USING HEC-GEO HMS  
Curve number grid (Figure B.1) for supply watersheds was created using datasets like the Digital Elevation Model (DEM), SSURGO 
soils data and MRLC land use dataset. Method used was given by Merwade (2010).                                                                                                                                                                                           
 
                        Land Cover                                                                Soils                                                                      Curve Number Grid
       
Figure B.1. Procedure for creating curve number grid using land use data and soils data. Curve number is used to calculate runoff in supply watershed 
(Lake Ogletree watershed shown in this figure).  
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C.1 INTRODUCTION 
The System Dynamics (SD) modeling approach is based on the concept of understanding 
interrelationships between different components of a system. This approach can be thought of 
as a web of interlinked pathways that affect the elements of the system temporally. SD works 
on the feedback principle and requires exchange of information between the different 
components of the system. To build a good SD model, several steps need to be carried out 
(Elshorbagy, 2005). These include: complete understanding of the system, its components and 
its boundaries; recognizing the main building blocks; effective representation of physical 
processes of the model using mathematical equations; connecting the different components to 
map the structure of the model; and running the simulation at a desired time step. 
C.2 COMPONENTS OF SD MODELS 
Feedback and causal loops are two essential components of SD modeling. To conceptualize a 
complex system and connect model based perceptions, diagrams of loops of information 
feedback and circular causality are used.  A feedback loop results from exchange of information 
between the different components of the model and eventually returns in some form to its 
point of origin, potentially influencing future action.   
A causal loop diagram (Figure C.1) is used to represent the components and their interactions 
in a system. It is a graphical sketch that is used to achieve the concept of system thinking using 
the embedded feedback loops. The behavior of a system over a time step can be ascertained by 
understanding its structure as represented by the causal loop diagram. This diagram consists of 
a sign at every link which represent a positive or negative feedback loop. A positive feedback 
loop reinforces the initial action whereas a negative feedback loop opposes the initial action. 
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This concept of feedback loops emphasizes the dynamic behavior of the system and can be 
considered as the central decision-making feature of a system. 
 
Figure C.1. A Causal Loop diagram of simple water balance (Jutla et. al., 2006). 
C.3 STOCK AND FLOW DIAGRAMS 
Stock and Flow Diagrams are the building blocks of SD models and consists of four basic 
structures: stocks, flows, connectors and converters. These are used to convert the qualitative 
representation given by causal loop diagrams to perform quantitative analyses on the system. 
These can be connected in many different ways to represent and analyze simple to complex 
systems (Table C.1).  
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Table C.1. Description of building blocks of SD models (Deaton and Winebrake, 2000). 
Name Description Symbol 
Stock Represents variables capable of accumulating something 
over time. Considered a reservoir whose contents may go 
up or down 
 
   
Flow Represent the rate of change of a stock.     
 
Converter Represent the rate at which the system operates and 
explain modifications done in stocks and flows. 
 
   
Connector Represent the cause-effect relationship among stocks, 
flows and converters 
 
 
Figure C.2 shows the stock and flow diagram of a simple water balance model developed on the 
basis of a causal loop diagram (Figure C.1).   
 
Figure C.2. A stock and flow diagram of simple water balance (Jutla et. al., 2006). 
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C.4 TIME STEP (?T) 
A specified time step is used to simulate a system that is represented by the stock and flow 
diagram of the model. Equations containing the mathematical relationships are contained in 
the converters. All these governing equations are represented by first order differential 
equations which, during simulation, are applied at successive time intervals. This time interval is 
the time step of the simulation and is set by the modeler depending on the requirements of the 
model. 
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APPENDIX D
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D.1 INTRODUCTION  
STELLATM software is a simulation environment used in this study to build a system dynamic 
model. It consists of four different layers for creating a model and these are the equation layer, 
the model builder, the model map and the user interface.  
As described in APPENDIX C, stocks, flows, converters and connectors can be used in a 
graphical way to build a model. When the different building blocks are connected to each 
other, every building block has to be modeled. With double clicking on a building block, this 
block opens and equations, tables or values can be inserted. Figure D.1 shows a stock. On the 
top the user can define what kind of stock it is (in this case: a reservoir) and in the white field at 
the bottom the initial value of the stock has to be defined. This can be done by inserting a 
value, but also by inserting an equation or an equation that uses one of the ?Allowable Inputs? 
in the field above. The ?Document? button can be used to enter the description of the stock, 
e.g. units of the entity, assumptions etc. Same principal is also used for flows and converters. 
Figure D.2 shows the dialog box that opens when a user double clicks a flow. The flow can be 
set to allow flow only in one direction (uniflow) or in both the directions (biflow) from the 
stock. The ?Required Inputs? box shows the list of variables connectors from which are drawn 
to the flow. The flow can also be input as a graphical relationship between two variables using 
the ?Become Graphical Function? button. For a converter (Figure D.3), in the field with the 
?Required Inputs? is a list of the variables which are all connected to this specific converter. All 
these building blocks have to be used in the equation (see marked text in field) which describes, 
in this case, the Water Demand. Certain pre-defined mathematical functions or operations can 
be found under ?Builtins?. 
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Figure D.1. Dialog box showing modeling of a stock. 
 
Figure D.2. Dialog box showing modeling of a flow. 
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Figure D.3. Dialog box showing modeling of a converter. 
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APPENDIX E 
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E.1 EQUATION LAYER EXAMPLE SCREENSHOT OF CWDI MODEL IN STELLATM  
This layer consists of all the empirical and physical equations that are used in the model. 
 
  
 
153 
 
E.2 MODEL BUILDER LAYER EXAMPLE SCREENSHOT OF CWDI MODEL IN STELLATM  
This part of the model consists of all the components of the model and simulates all the 
processes taking place in the model. This layer is composed of stocks, flows and connectors 
joined together to form a flow diagram of sorts. 
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E.3 USER INTERFACE EXAMPLE SCREENSHOTS OF CWDI MODEL IN STELLATM  
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E.4 OUPUT GRAPH AND TABLE EXAMPLE SCREENSHOTS OF CWDI MODEL IN STELLATM  
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APPENDIX F 
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F.1 DISCLAIMER FOR USE OF CITY OF AUBURN DATA  
?These data are property of the City of Auburn, Alabama.  The City of Auburn does not 
guarantee these data to be free from errors or inaccuracies.  Additionally, the City of Auburn 
disclaims any responsibility or liability for interpretations of these data or decisions based 
thereon.? 
  
 

